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Abstract

It was recently noticed that one can gain substantial new insight into the
geometry of polynomials by using methods from operator theory and ma-
jorization theory. Such methods were used by Pereira and Malamud to prove
three long-standing conjectures of de Bruijn-Springer, Schoenberg and Kat-
soprinakis that go much beyond the classical Gauss-Lucas theorem. In this
paper, we present the solutions to these conjectures and several new relation-
ships between the zeros and critical points of arbitrary complex polynomials.
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1 Introduction

The geometry of zeros and critical points of complex polynomials is a clas-
sical subject in geometric function theory. There is a vast literature devoted
to this topic and its applications (see [1] and references therein.) The well-
known Gauss-Lucas theorem says that the critical points of a polynomial
lie in the convex hull spanned by its roots. We shall prove three conjec-
tures that give us much more information about relationship between zeros
and critical points of an arbitrary polynomial than we already know from the
Gauss-Lucas theorem. The conjectures are the de Bruijn-Springer conjecture
(1947), Schoenberg’s conjecture (1986) and a related conjecture by Katso-
prinakis (1997). These long-standing problems have been recently solved by
Pereira [2] and Malamud [3] through an ingenious combination of arguments
involving operator theory and majorization theory.

In Section 1 we present some general results that are helpful to prove the
three conjectures. These preliminary results are regrouped into three sub-
sections. We first review the necessary background on matrix and operator
theory in Section 1.1. We will assume that the reader is already familiar
with the basic properties of Hilbert spaces and matrix functions. In Sec-
tion 1.2 we discuss the concept of differentiator, first introduced by Davies
in 1958 (see [4]). Given an operator that possesses a differentiator we can
construct a compression of the operator in such a way that the characteris-
tic polynomials of the operator and its compression relate in a similar way
that an arbitrary polynomial relates to its derivate. We also define the no-
tion of trace vector of an operator and show that the existence of a trace
vector implies the existence of a differentiator, and vice versa. We end the
subsection by showing that every normal operator actually possesses a trace
vector and thus a differentiator. To summarize so far, Section 1.2 provides
the set-up for studying relations between a polynomial and its derivate via
operators and their characteristic polynomials. In Section 1.3 we briefly
touch the subject of majorization. We shall subsequently see that we can in
fact formulate the de Bruijn-Springer and Katsoprinakis conjectures in terms
of majorization relations. By making use of the tools presented in section
1, we prove Schoenberg’s conjecture, Katsoprinakis conjecture and the de
Bruijn-Springer conjecture in section 2, 3 and 4, respectively.

5



1.1 Some general results in operator theory

Let H be an n-dimensional Hilbert space, L(H) be the set of linear operators
from H to H, A be any operator in L(H) and e = (e1, e2, . . . , en) be any basis
of H. Each operator in a given basis of H can be represented by an n by n
matrix, so to make a clear distinction between an operator and a matrix, we
let [A ]e denote the matrix representation of A in basis e = (e1, e2, . . . , en).
The (i, j)th element in [A]e is e∗i Aej = 〈Aej, ei〉. Given two operators A1 and
A2 we also have the basic property [A1A2]e = [A1]e[A2]e. For operators we
will use the operator norm and for matrices the Euclidian norm also called
the Frobenius -or Hilbert-Schmidt norm.

Definition 1.1. Define the operator norm ‖ ·‖ of an operator A ∈ L(H) to
be

‖A‖ = sup
‖ x‖=1

x∈ H

‖Ax‖ .

Definition 1.2. Define the Euclidian norm ‖ ·‖E of an n by n matrix M =
(mij) to be

‖M‖E =
[ n∑

i=1

n∑
j=1

|mij|2
] 1

2
.

We note that the Euclidian norm is a unitarily invariant norm.1 Recall
that given a matrix M = (mij) one define its Hermitian transpose to be the
matrix M∗ whose (i, j)th entry is mj i. M is called Hermitian if M = M∗

and normal if MM∗ = M∗M . Hence for any operator A, the Euclidian norm
of a matrix representation of A is independent of the choice of orthonormal
basis in H. This may also be verified by using the following lemma that
describes the relation between matrix representations of A in different bases.

Lemma 1.3. Let e = (e1, e2, . . . , en) and f = (f1, f2, . . . , fn) be two different
bases in H where f = eQ for an n by n matrix Q. Then Q is invertible and
[A]f = Q−1[A]eQ. Furthermore, if e = (e1, e2, . . . , en) and f = (f1, f2, . . . , fn)
are orthonormal bases, then [A]f = Q∗[A]eQ and Q is a unitary matrix where

the (i, j)th element of Q is 〈fj, ei〉 = 〈ei, fj〉.

For two given orthonormal bases e = (e1, e2, . . . , en) and f = (f1, f2, . . . , fn)
in H we have according to Lemma 1.3 that ei =

∑n
j=1 〈ei, fj〉 fj and fi =∑n

j=1 〈fi, ej〉 ej. By taking the norm of a given base vector, we get ‖ ei‖ =

1An n by n matrix U is unitary if U∗U = I = UU∗. A norm ‖ ·‖ on the m by n
matrices is unitarily invariant if ‖UMV ‖ = ‖M‖ for all m by n matrices M , m by m
unitary matrices U , and n by n unitary matrices V .
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∑n
j=1 | 〈ei, fj〉|2 = 1 and ‖ fi‖ =

∑n
j=1 | 〈fi, ej〉|2 = 1. This result is usually

known as Parseval’s theorem.
In our next theorem we will see that given an operator A ∈ L(H) we can

always find an orthonormal basis e = (e1, e2, . . . , en) such that [A]e becomes
an upper triangular matrix. This basis is called a Schur basis of A, and [A]e
the Schur Triangular Form of A.

Theorem 1.4. For any operator A ∈ L(H) we can find an orthonormal basis
e = (e1, e2, . . . , en) such that Aek is a linear combination of e1, . . . , ek where
k = 1, 2, . . . , n.

If e = (e1, e2, . . . , en) is a Schur basis of A then the (i,j)th entry in [A]e
is e∗i Aej which is 0 whenever i > j, and thus [A]e is upper triangular. An
immediate consequence of this theorem is shown in Corollary 1.6, which also
follows from Spectral Theorem for normal matrices. Let us first define the
notions of adjoint operator and normal operator.

Definition 1.5. Let A ∈ L(H). There exists a unique operator A∗ ∈ L(H)
such that 〈Ax, y〉 = 〈x, A∗y〉 for all x, y ∈ H. We call A∗ the adjoint (or
dual) operator of A. The operator A is called normal if AA∗ = A∗A.

It is easy to see that an operator is normal if and only if its matrix
representation in some (and then any) orthonormal basis is normal.

Corollary 1.6. Let A ∈ L(H) be a normal operator and let e = (e1, e2, . . . , en)
be a Schur basis of A. Then [A]e is a diagonal matrix, and e1, . . . , en are
eigenvectors of [A]e.

Due to Theorem 1.4 and Corollary 1.6, it is convenient to work with upper
triangular matrices or diagonal matrices. For example, we immediately see
that an operator is normal if and only if its matrix representation in a Schur
basis is diagonal.

By studying the properties of the matrix representations given by an
operator, one can in some cases generalize these properties to the operator
itself. We list some properties of n by n matrices in the following lemma.

Lemma 1.7. Let Q be an invertible n by n matrix. For any n by n matrix
M let τ(M) to be the arithmetic mean of the diagonal elements in M . Then
the following relations hold:

1. det(M) = det(Q−1MQ).

2. det(λI −M) = det(λI −Q−1MQ).
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3. τ(M) = τ(Q−1MQ).

4. Let p be any polynomial. Then p(Q−1MQ) = Q−1p(M)Q.

For any operator A ∈ L(H), Lemma 1.3 and Lemma 1.7 basically say that
the determinant, the characteristic polynomial, the trace and a polynomial
of the matrices defined by A are independent of the choice of basis in H.
Therefore we define the determinant of A to be det(A), the characteristic
polynomial of A to be pA and the normalized trace of A to be τ(A) by fixing
a basis e = (e1, e2, . . . , en) in H and setting det(A) = det([A]e), pA(λ) =
p[A]e(λ) = det(λI − [A]e) and τ(A) = τ([A]e). Let the eigenvalues of A be
{λi(A)}; then by choosing a Schur Triangular Form of A we can see that
det(A) =

∏n
i=1 λi(A) and τ(A) = 1

n

∑n
i=1 λi(A).

If det(A) 6= 0, every matrix representation of A is invertible, so we say
that A itself is invertible.

We end this subsection with a couple of lemmas which describe some
useful properties of normal operators.

Lemma 1.8. Let A ∈ L(H) be a normal operator. Then we can express its
adjoint operator A∗ as a polynomial of A.

Proof. Choose an orthonormal basis of eigenvectors {vi}n
i=1 of A correspond-

ing to the eigenvalues {λi}n
i=1. Let q be a polynomial of degree n−1 with com-

plex coefficients {ai}n
i=1. Denote the distinct eigenvalues of A by µ1, µ2, . . . , µk

where k ≤ n. Then {λi}n
i=1 = {µi}k

i=1 We want to choose the coefficients in
q such that q(A) = A∗. By Lemma 1.7 it is enough to consider the equality
q([A]v) = [A∗]v, hence we only need to show that there exists a q such that
q(µi) = µi for i = 1, 2, . . . , k. This system of equations is in matrix form 1 µ1 . . . µk−1

1
...

...
. . .

...
1 µk . . . µk−1

k


 a0

...
ak−1

 =

 µ1
...

µk

 . (1)

The k by k matrix V = (vij) = (µj−1
i ) in (1) is usually known as the Van-

dermonde matrix. Its determinant is
∏k

i>j≥1(µi − µj) 6= 0, since the µi’s are
(pairwise) distinct and thus (1) has a unique solution.

Let A ∈ L(H) be a normal operator with eigenvalues {λi}n
i=1. Let further

{vi}n
i=1 be an orthonormal basis of eigenvectors of A such that Avi = λvi.

The Spectral Decomposition of A is given by

A =
n∑

i=1

λiviv
∗
i , 1 ≤ i ≤ n,

and we call viv
∗
i , 1 ≤ i ≤ n, the eigenprojections of A.
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Lemma 1.9. Any eigenprojection of a normal operator A ∈ L(H) can be
expressed as a polynomial of A.

Proof. The proof is much similar to the one given for Lemma 1.8 and is
therefore omitted.

An operator A ∈ L(H) is Hermitian if A∗ = A. As usual, we denote by
I ∈ L(H) the identity operator, i.e., Iv = v for all v ∈ H. The following
lemma may be found in [9].

Lemma 1.10. The eigenvalues of a normal operator A ∈ L(H) are collinear2

in the complex plane if and only if A is of the form A = aH + bI, for some
complex numbers a and b where H is Hermitian and I is the identity operator.

1.2 Differentiators and compressions

Definition 1.11. Let H be an n-dimensional Hilbert space, A ∈ L(H), ϑ be
a unit vector in H and P be the orthogonal projection onto ϑ⊥. Then we
say that B = PAP |PH is the compression of A from PH to PH.

Example 1.1. Let A ∈ L(C3), let e1, e2 and e3 be the standard basis in C3

and suppose that

[A](e1,e2,e3) =

 a11 a12 a13

a21 a22 a23

a31 a22 a33

 .

Let P be a projection onto span{e1, e2}; then the associated compression
B = PAP |PH of A in basis (e1, e2) is

[B](e1,e2) =

(
a11 a12

a21 a22

)
.

In general, if e = (e1, e2, . . . , en) is an orthonormal basis in H and P is a
projection onto e⊥n , the matrix [B](e1,...,en−1) will be the upper-left hand n− 1
by n − 1 principal submatrix of [A]e. Recall that the determinant of every
matrix defined by these operators are the same in all bases. Therefore by
making use of Cramer’s theorem we get the following useful lemma.

Lemma 1.12 (Adjugate relation). Let A be an invertible operator on an
n-dimensional Hilbert space H. Let e = (e1, e2, . . . , en) be any basis in H, let

2That is, they lie on a straight line in the complex plane.
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P be the projection onto e⊥n and let B = PAP |PH. Then the (n, n)th element
of [A]−1

e is
det(B)

det(A)
= e∗nA

−1en.

It was first noticed in [4] that certain relations between pA and pB resemble
the relations between a polynomial and its derivates. For example, Gauss-
Lucas theorem shows that every critical point lies in the convex hull of the
roots of a polynomial. When A is normal, one can show that every eigenvalue
of B lies in the convex hull of the eigenvalues of A. We therefore study the
conditions on P that force the relation pB = p′A/n.

Definition 1.13. Let H be an n-dimensional Hilbert space, A ∈ L(H), and
P a projection from H onto a subspace of H having co-dimension one and
set B = PAP |PH. Then we shall say that P is a differentiator of A if

pB(λ) =
1

n

d

dλ
pA(λ).

Example 1.2. Let A ∈ C3, and e1, e2, e3 be the standard basis of C3. Let P
be the projection onto span{e1, e2} and set B = PAP |PH. Suppose that

[A](e1,e2,e3) =

 0 1 0
0 0 1
1 0 0

 .

Then

[B](e1,e2) =

(
0 1
0 0

)
and pB(λ) = λ2 = p′A(λ)/3 so P is a differentiator of A.

Now Lemma 1.12 can be used to give a new characterization of differen-
tiators.

Theorem 1.14. Let H be a finite dimensional Hilbert space, A ∈ L(H) and
ϑ be a unit vector in H. Let P denote the projection onto ϑ⊥. Then the
following are equivalent.

(1) P is a differentiator of A.

(2) ϑ∗(λI − A)−1ϑ = τ((λI − A)−1) for all λ > ‖A‖.

(3) ϑ∗Aiϑ = τ(Ai) for every nonnegative integer i.

(4) ϑ∗p(A)ϑ = τ(p(A)) for every polynomial p.
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Proof. It is well known that λI −A is invertible when λ > ‖A‖. We use the
adjugate relation (Lemma 1.12).
(1)⇒(2) Suppose that P is a differentiator; then

ϑ∗(λI − A)−1ϑ =
pB(λ)

pA(λ)
=

1

n

p′A(λ)

pA(λ)
=

1

n

n∑
i=1

(λ− λi(A))−1 = τ
(
(λ− λi(A))−1

)
.

(2)⇒(1) Suppose that ϑ∗(λI−A)−1ϑ = τ((λI−A)−1) for all λ > ‖A‖. Then

pB(λ)

pA(λ)
= ϑ∗(λI − A)−1ϑ =τ((λI − A)−1) =

1

n

n∑
i=1

(λ− λi(A))−1 =
1

n

p′A(λ)

pA(λ)
.

The equivalence of (2) and (3) follows from the Neumann series (i.e., (I −
A/λ)−1 =

∑∞
i=0(A/λ)i for all λ > ‖A‖) by comparing the coefficients of λ.

The equivalence of (3) and (4) is obvious.

In light of the previous theorem we make the following definition.

Definition 1.15. Let A ∈ L(H) and ϑ ∈ H. Then we say that ϑ is a trace
vector of A if ϑ∗p(A)ϑ = τ(p(A)) for all polynomials p.

From Theorem 1.14 we see that there is a 1−1 correspondence between a
differentiator and a trace vector. They relate with each other by the formula
P + ϑ ϑ∗ = I, and by putting p = 1 in the above definition we see that all
trace vectors must be of unit length.

We next give an explicit construction of trace vectors (which implies the
existence of a differentiators) of normal operators.

Corollary 1.16. Let H be an n-dimensional Hilbert space, A ∈ L(H) be
a normal operator and let e = (e1, e2, . . . , en) be an orthonormal basis of
eigenvectors in H. Set ϑ = 1√

n

∑n
i=1 ei; then ϑ is a trace-vector of A.

Proof. Consider the eigenprojection ene
∗
n. By Lemma 1.9, ene

∗
n is a polyno-

mial of A and therefore ϑ is a trace-vector of A iff ϑ∗ene
∗
nϑ = τ(ene

∗
n). We

have that ϑ∗ene
∗
nϑ = | 〈ϑ, en〉|2 =

∣∣〈 1√
n

∑n
i=1 ei, en

〉∣∣2 = 1/n = τ(ene
∗
n) and

thus the proof is complete.
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One has also been able to prove the existence of a trace vector for nonnor-
mal operators, but we will not be needing this result in this paper. Instead
we refer to [2] for the interested reader.

Next we give an example of normal operators that share the same differ-
entiator.

Example 1.3. Let A ∈ L(H) be a normal operator and let P be a differen-
tiator of A. Then P is also a differentiator of the following operators:

1. The adjoint A∗ of A,

2. 1
2
(A + A∗) and 1

2i
(A− A∗),

3. AA∗ = A∗A,

4. Any eigenprojection of A.

These properties follow from Lemma 1.9, Lemma 1.8, Theorem 1.14 and
Definition 1.13.

1.3 Majorization

Majorization quantifies the intuitive notion that the components of an n-
vector x are less spread out than the components of another such vector
y. This is done by means of n inequalities. Hardy, Littlewood and Pólya
showed that these inequalities can be expressed as an equality in terms of
so called doubly stochastic matrices. In turn this led to another characteri-
zation of majorization involving arbitrary convex functions. Further studies
in this topic have resulted in other characterizations of majorization, as well
as generalizations. Specifically Sherman’s theorem describes an inequality
between two sets of vectors in Rm which resembles the characterization of
the majorization for real numbers by Hardy, Littlewood and Pólya. This
theorem will for example allow us to study a type of majorization relation
between two sets of complex numbers, not necessarily of the same size. Let
us begin with the definition of majorization.

Definition 1.17. Let (a1, . . . , an) and (b1, . . . , bn) be two n-tuples arranged
in descending order. Then we say that (a1, . . . , an) is majorized by (b1, . . . , bn)
if
∑k

i=1 ai ≤
∑k

i=1 bi for k = 1, 2, . . . , n− 1 and
∑n

i=1 ai =
∑n

i=1 bi, and write
(a1, . . . , an) ≺ (b1, . . . , bn).

As we already noted, the fact that (a1, . . . , an) is majorized by (b1, . . . , bn)
means roughly that the n-tuple (a1, . . . , an) is less spread out than (b1, . . . , bn).
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In 1929, Hardy, Littlewood and Pólya published the following character-
ization of majorization [5]. First define a doubly stochastic matrix to be a
matrix with all real positive entries whose columns and rows sum to 1.

Theorem 1.18. Let I be any interval in R and let (a1, . . . , an) and (b1, . . . , bn)
be two n-tuples of real numbers arranged in descending order. Then the fol-
lowing are equivalent.

(1) (a1, . . . , an) ≺ (b1, . . . , bn).

(2) There exists a doubly stochastic n by n matrix S such that aj =
∑n

i=1 sijbi

for all j = 1, 2, . . . , n.

(3)
∑n

i=1 φ(ai) ≤
∑n

i=1 φ(bi) for all convex functions φ : I → R.

For vectors in Rm, one defines (so-called multivariate) majorization in the
following way (see [6], chapter 15.)

Definition 1.19. Let A and B be m× n real matrices. Then we say that A
is majorized by B if A = BS for some doubly stochastic matrix S, and write
A ≺ B.

In 1950’s Sherman took Definition 1.19 one step further (see [8]) and gave
a generalized characterization of multivariate majorization.

Theorem 1.20. Let A and B be m× r and m× s real matrices respectively.
Denote aC

i as the ith column in A for i = 1, . . . , r and bC
i the ith column in

B for i = 1, . . . , s. Then the following are equivalent.

1.
1

r

r∑
i=1

φ(aC
i ) ≤ 1

s

s∑
i=1

φ(bC
i )

for all convex functions φ : Rm → R.

2. There exists a real s × r matrix S = (sij) that satisfies the following
conditions:

A = BS; sij ≥ 0 for 1 ≤ i ≤ s, 1 ≤ j ≤ r;
s∑

i=1

sij = 1 for 1 ≤ j ≤ r;
r∑

j=1

sij =
r

s
for 1 ≤ i ≤ s.

This motivates the following definition.

Definition 1.21. Let S be an s × r matrix with positive real entries. We
say that S is doubly rectangular stochastic if

∑s
i=1 sij = 1 for 1 ≤ j ≤ r and∑r

j=1 sij = r
s

for 1 ≤ i ≤ s.
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2 Schoenberg’s conjecture

In this section we give a first application of the theory of differentiators.
Namely, we prove Schoenberg’s 1986 conjecture [8] on the zeros and critical
points of arbitrary complex polynomials. Any monic polynomial can be
considered as a characteristic polynomial of a normal operator. This can
be realized by for example constructing a diagonal matrix whose diagonal
elements are the roots of the polynomial. Schoenberg conjectured that the
following holds in the special case when G = 0.

Conjecture 2.1 (Schoenberg’s conjecture). Let p(z) be an nth degree
polynomial. Let z1, z2, . . . , zn be the roots of p(z) and let w1, w2, . . . , wn−1 be
the roots of p′(z). Let G = 1

n

∑n
i=1 zi = 1

n−1

∑n
i=1 wi. Then

n−1∑
i=1

|wi|2 ≤ |G|2 +
n− 2

n

n∑
i=1

| zi|2

with equality iff the roots of p(z) are collinear in the complex plane.

Later De Bruin et al. [15, Section 3] and independently Katsoprinakis
[10] showed that the case G = 0 considered by Schoenberg is equivalent to
the more general conjecture stated above.

We see that the left -and right-hand side of the above inequality resemble
the Euclidian norm of a matrix. Therefore we will investigate the Euclidian
norm of matrices defined by an operator and one of its compressions. Let
H be an n-dimensional Hilbert space, A ∈ L(H) be a normal operator with
eigenvalues z1, z2, . . . , zn. Choose a basis of eigenvectors v = (v1, v2, . . . , vn)
so that [A]v becomes a diagonal matrix where z1, z2, . . . , zn are diagonal el-
ements. Let ϑ = 1√

n

∑n
i=1 vi be a trace-vector of A and P its associated

differentiator. Let B = PAP |PH be a compression of A, choose an orthonor-
mal basis u = (u1, u2, . . . , un−1) in PH and let û = (u1, u2, . . . , un−1, ϑ).
Then

[A]û =

(
[B]u C
D∗ τ(A)

)
where C and D are (n− 1)× 1 matrices. (2)

Indeed, according to Lemma 1.3, the (n, n)th element of [A]û is

n∑
j=1

| 〈ϑ, vj〉|2 zj =
1

n

n∑
j=1

zj = τ(A).
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By Example 1.3, P is a also a differentiator of AA∗ and A∗A, so we can
decompose these operators in the same way as A. We get

[AA∗]û =

(
[B]u[B]∗u + CC∗ ∗

∗ ‖D‖E + | τ(A)|

)
(3)

and

[A∗A]û =

(
[B]∗u[B]u + DD∗ ∗

∗ ‖C‖E + | τ(A)|

)
. (4)

Now

‖A‖2
E = ‖B‖2

E + ‖C‖2
E + ‖D‖2

E + | τ(A)|2

= ‖B‖2
E +

(
‖C‖2

E + | τ(A)|2
)

+
(
‖D‖2

E + | τ(A)|2
)
− | τ(A)|2

= ‖B‖2
E + ϑ∗[AA∗]ûϑ + ϑ∗[A∗A]ûϑ− | τ(A)|2

=
[
since AA∗ = A∗A and [A]ûϑ =

1√
n

n∑
i=1

zivi

]
= ‖B‖2

E +
2

n
‖A‖E − | τ(A)|2 .

It follows that

‖B‖2
E = | τ(A)|2 +

n− 2

n
‖A‖2

E . (5)

This result and the next theorem, a classical inequality by Schur actually
proves the inequality part of Schoenberg’s conjecture. We use the notation
λi(A) to denote the ith eigenvalue of an operator A.

Theorem 2.2. Let A be an operator on an n-dimensional Hilbert space and
let ReA = 1

2
(A + A∗) and ImA = 1

2i
(A − A∗) Then

∑n
i=1 |λi(A)|2 ≤ ‖A‖2

E

and
∑n

i=1 |λi(ReA)|2 ≤ ‖ReA‖2
E and

∑n
i=1 |λi(ImA)|2 ≤ ‖ ImA‖2

E with
equality in any one of the above relations implying the equality in all three
and occurring iff A is normal.

Let p be an nth degree polynomial whose roots are z1, . . . , zn and crit-
ical points are w1, . . . , wn−1 and let G = 1

n

∑n
i=1 zi = 1

n−1

∑n−1
i=1 wi. Let A

be a normal operator whose characteristic polynomial is p(z), let P be a
differentiator of A and let B = PAP |PH. Then by Theorem 2.2 and (5)

n−1∑
i=1

|wi|2 ≤ ‖B‖2
E = | τ(A)|2 +

n− 2

n
‖A‖2

E = |G|2 +
n− 2

n

n∑
i=1

| zi|2 .

Equality holds iff B is normal. The next proposition (which is also a special
case of [9, Theorem 2]) will complete the proof of Conjecture 2.1.
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Proposition 2.3. Let A ∈ L(H) be normal. Let P be a differentiator and
let B = PAP |PH. Then B is normal if and only if all the eigenvalues of A
are collinear in the complex plane.

Proof. Suppose that the eigenvalues of A lie on a straight line in the complex
plane. According to Lemma 1.10 we may write A of the form A = aH + bI
where H is Hermitian, I is the identity and a, b are complex numbers. The
compression B = PAP |PH = aPHP |PH + bI |PH where PHP = PH∗P and
P = P ∗ implies that PHP |PH is Hermitian. Hence B is normal.

To prove the other direction, consider the case where τ(A) = 0. Let
u = (u1, u2, . . . , un−1) be an orthonormal basis of eigenvectors of B, û =
(u1, u2, . . . , un−1, un) be an orthonormal basis in H, and let C and D be
as in (2). Since AA∗ = A∗A and BB∗ = B∗B, (3) and (4) implies that
CC∗ = DD∗. The q = 1 case of [13, Theorem 3.1] (or the l = 1 case of [14,
Lemma 2]) states that CC∗ = DD∗ if and only if C = ωD for some complex
number ω of modulus one. Let S = A− ωA∗ and T = B − ωB∗ = PTP |PH.
Both S and T are normal and

[S]û =

(
[T ]u 0
0∗ 0

)
.

Therefore pS(λ) = λpT (λ) and pT (λ) = p′S(λ)/n. Hence, pT (λ) = λn and
S = 0. Thus

A = ωA∗ and A =
ω

ω + 1
(A + A∗),

so A is a complex multiple of an Hermitian operator. Therefore the eigen-
values are collinear in the complex plane by Lemma 1.10. For the case when
τ(A) 6= 0 we know that Â = A−τ(A)I is a complex multiple of an Hermitian
operator, which give us the relation A = Â + τ(A)I.

By using Schur’s inequality for the real and imaginary parts of eigenvalues
and following the same argument as above, we can also express a Schoenberg-
like inequality for the real -and imaginary parts of the roots and critical points
of a given polynomial.
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Theorem 2.4. Let p(z) be an nth degree polynomial. Let z1, . . . , zn be the
roots of p(z), let w1, . . . , wn−1 be the roots of p′(z), and let

G =
1

n

n∑
i=1

zi =
1

n− 1

n−1∑
i=1

wi.

Then
n−1∑
i=1

|Rewi|2 ≤ ‖ReB‖2
E = |ReG|2 +

n− 2

n

n∑
i=1

|Re zi|2

and
n−1∑
i=1

| Imwi|2 ≤ ‖ ImB‖2
E = | ImG|2 +

n− 2

n

n∑
i=1

| Im zi|2

with equality iff all the roots of p(z) are collinear on the complex plane.
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3 Katsoprinakis conjecture

In this section we state and solve a conjecture due to Katsoprinakis [10]. Let
us first make the following definition.

Definition 3.1. Let p(z) be a polynomial whose roots are {zi}n
i=1 and p∗(z)

be the polynomial whose roots are {Re zi}n
i=1. Let {wi}n−1

i=1 be the critical
points of p(z) and let {w∗

i }n−1
i=1 be the critical points of p∗(z). Then we

say that p(z) satisfies the majorization condition if (Re w1, . . . , Re wn−1) ≺
(w∗

1, . . . , w
∗
n−1).

We note that by Theorem 1.18, a polynomial p(z) also satisfies the ma-
jorization condition if

∑n−1
i=1 φ(Re wi) ≤

∑n−1
i=1 φ(w∗

i ) for any convex function
φ : R → R.

Katsoprinakis conjectured that every polynomial actually satisfies the
majorization condition. We give an example to illustrate the definition.

Example 3.1. Let p(z) = z4−1, the roots of p are {1,−1, i,−i} which have
real parts {1,−1, 0, 0}. Hence p∗(z) = (z − 1)(z + 1)z2 = z4 − z2 which has
critical points {0, 1/

√
2,−1/

√
2}. The critical points of p(z) are {0, 0, 0}, so

p(z) satisfies the majorization condition.

By using theory of diffentiators we can solve Katsoprinakis conjecture.
First we need the following result by Ky Fan [11] (see also [6, Theorem 9.F.1])
which describes a majorization relation between eigenvalues of an operator
and its real part operator.

Lemma 3.2. Let A be an operator on an n-dimensional Hilbert space and
let ReA = (1/2)(A + A∗). Then we have the majorization relation

(Reλ1(A),Reλ2(A), . . .Reλn(A)) ≺ (λ1(ReA), λ2(ReA), . . . , λn(ReA)).

Theorem 3.3 (Katsoprinakis’ conjecture). Every polynomial satisifes
the majorization condition.

Proof. Let A ∈ L(H) be a normal operator with characteristic polynomial pA

and eigenvalues z1, . . . , zn. Then Re A is a normal operator with eigenvalues
Re z1, . . . , Re zn and characteristic polynomial p∗A (which we see for example
by choosing an orthonormal basis of eigenvectors of A.) Let the critical points
of pA and p∗A be w1, . . . , wn−1 and w∗

1, . . . , w
∗
n−1 respectively. The operator

Re A has the same differentiator as A (cf. Example 1.3) and

P
(1
2
(A + A∗)

)
P |PH =

1

2
(B + B∗) = Re B,

so the eigenvalues of Re B are w∗
1, . . . , w

∗
n−1 Thus by Lemma 3.2 we have

(Re w1, . . . , Re wn−1) ≺ (w∗
1, . . . , w

∗
n−1).
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In [10, Proposition 2.g] Katsoprinakis has shown that Theorem 2.4 would
follow from Theorem 3.3. Hence this section along with [10, Proposition 2.g]
would give us a second proof of Schoenberg’s conjecture. He also showed in
[10] that Theorem 3.3 would imply a whole family of inequalities between
roots and critical points of a polynomial.
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4 De Bruijn-Springer conjecture

In the mid 1940’s several papers were written about the inequalities of the
form

1

n− 1

n−1∑
i=1

φ(wi) ≤
1

n

n∑
i=1

φ(zi), (6)

where φ : C → R, p is an arbitrary polynomial, n = deg(p), {zi}n
i=1 are the

roots of p, and {wi}n−1
i=1 are the critical points of p.

Such questions were studied by Erdos, Niven, de Bruijn, Springer among
others. In particular, de Bruijn and Springer showed that any continuous
function φ that satisfies (6) for all complex polynomials must be convex.
They also proved that (6) is true for all convex functions φ and polynomials
p with all real zeros as well as for convex functions φ : C → R of the form
φ(z) = | z|r , r ≥ 1. It was natural to conjecture that (6) actually holds for
all convex functions, which de Bruijn and Springer did in [12].

Conjecture 4.1. Let p(z) be an arbitrary complex polynomial with roots
{zi}n

i=1 and critical points {wi}n−1
i=1 . Then

1

n− 1

n−1∑
i=1

φ(wi) ≤
1

n

n∑
i=1

φ(zi),

where φ : C → R is any convex function.

We shall give a proof of this conjecture by again using the tools in Section
1. We first note that by Sherman’s theorem (Theorem 1.20), the de Bruijn-
Springer conjecture (Conjecture 4.1) is in fact equivalent to a generalized
majorization relation between zeros and critical points of a polynomial.

Theorem 4.2 (De Bruijn-Springer conjecture). Let p be an arbitrary
complex polynomial whose roots are {zi}n

i=1 and whose critical points are
{wi}n−1

i=1 . Then there exists a doubly rectangular stochastic matrix S such
that

(w1, w2, . . . , wn−1) = (z1, z2, . . . , zn)S.

Proof. Let A ∈ L(H) be a normal operator whose eigenvalues are {zi}n
i=1.

Choose an orthonormal basis of eigenvectors {vi}n
i=1 of A. Let further ϑ =

1√
n

∑n
i=1 vi be a trace vector of A, P be its associated differentiator and

B = PAP |PH. Choose a Schur basis u = (u1, u2, . . . , un−1) that triangulizes
B. Then wi = u∗i Bui = u∗i Aui for i = 1, 2, . . . , n − 1. Recall from Lemma
1.3 that ui =

∑n
j=1 vj 〈ui, vj〉, so

wi =
n∑

j=1

zj | 〈ui, vj〉|2 .

20



Let S = (sij) denote the n×n−1 matrix where sij = | 〈vi, uj〉|2 . By Parseval’s
theorem S is doubly rectangular stochastic since

‖uj‖ =
n∑

i=1

| vi, uj|2 = 1, 1 ≤ j ≤ n− 1

and

‖ vi‖ =
n−1∑
j=1

| 〈vi, uj〉|2 +
∣∣∣ 〈vi,

1√
n

n∑
i=1

vi

〉∣∣∣2
=

n−1∑
j=1

| 〈vi, uj〉|2 +
1

n

⇒
n−1∑
j=1

| 〈vi, uj〉|2 =
n− 1

n
, 1 ≤ i ≤ n.

This completes the proof.

We note that Theorem 4.2 has been generalized in [3] by Malamud where
he showed that

1( n− 1
k

) ∑
1≤ii<...<ik≤n−1

φ

(
k∏

j=1

wij

)

≤ 1( n
k

) ∑
1≤ii<...<ik≤n

φ

(
k∏

j=1

zij

)
.

.
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