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Abstract 
 

 

We study the problem of optimising the flow of cash in a large company when the cash 

reserve is assumed to follow a jump-diffusion process. This means that we have a Brownian 

motion to model ordinary fluctuations and a Poisson process to model large fluctuations, 

jumps, that occur due to rare unpredictable events such as wars or natural disasters. We derive 

the solution to this stochastic optimal control problem for both a pure diffusion model and a 

jump-diffusion model. The solution will be of "bang-bang" type, i.e. there exists a "switch 

point" at which it is optimal to change strategy. By numerical studies we analyse the switch 

point's qualitative properties, as well as the value of all cash that we take out over time as a 

function of the initial cash level. We also interpret this problem as the problem of deciding 

how much to supply of a specific commodity (we study the U.S. crude oil price in detail) 

based on an observed price, maximising the total supplied amount over time constraint to a 

maximum production capacity.  
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1  Introduction 
 

 

1.1  The Problem 
 

Imagine that we are fishermen; interested in determining how much salmon we can fish from 

a lake without threatening the survival of them. We can assume that the number of salmons in 

the lake evolves in time according to a diffusion process. But sometimes, rare events can 

occur that can kill many salmons at one point in time, e.g. natural disasters or wars. It is 

suitable to model these events by a Poisson process with a small intensity rate. This is 

important, as these events definitely have an impact on how many salmons we can fish 

without threatening their survival. 

 

The problem of finding how many salmons that we can fish is an optimal control problem, in 

which we want to maximise the total number of salmons that we can fish, and in the same 

time we must make sure that they survive. This problem can be translated into many other 

examples, and they are all equivalent in a mathematical setting. We list some examples here, 

stating the key mathematical properties of each of them: 

 

1. The number of salmons in a lake 

Control function: How many we actually fish up. 

Optimisation incentive: Maximise the total amount of salmons fished over time. 

Conflict: If we fish too much, the survivals of salmons in the lake is threatened. 

Constraint: Bound on maximum fishing capacity. 

 

2. Cash reserve of a large company 

Control function: Taking cash out for e.g. dividends and investments. 

Optimisation incentive: Maximise the total amount of cash that we take out over time. 

Conflict: Risk for liquidation if cash level becomes too small.  

Constraint: Bound on maximum amount that we can take out at one point in time. 
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3. Prices of raw materials 

Control function: How much to supply. 

Optimisation incentive: Maximise the total supplied amount over time. 

Conflict: If price becomes too low, it is not profitable to produce.   

Constraint: Bound on suppliers' production capacity. 

 

This Thesis will mainly be concerned with examples 2 and 3, but the problem can easily be 

translated into example 1 as well as other ones. Note that the examples are analysed under 

further assumptions, which we will present later.  

 

By studying these examples, we see that the main problem is to find the specific control 

function that optimises the optimisation incentive and satisfies the constraint, and in the same 

time not takes the risk outlined in the conflict.  

 

So what do we expect the solution to this problem to be? If we look at the second example, 

the optimisation incentive tells us to maximise the total amount of cash that we take out, so 

the answer should be to take out cash at the maximum possible speed. On the other hand, the 

conflict tells us to stop if the cash is below some level, so that there will not be risk for 

liquidation. The main difficulty is thus to find this "switch point" for which it is optimal to 

stop the payments. We are also interested in determining the value of all dividends paid out 

over time for a given cash level, which we optimised.  

 

 

1.2  Objective 
 

Our analysis is being based on the article by Jeanblanc and Shiryaev [2], in which this 

problem is analysed for a pure diffusion model. But this article is quite theoretic and not so 

accessible for non-mathematicians. Therefore, we will make parts of these results explicit and 

also do some numerical studies, which will serve as an important verification of the results 

and in the same time give us the possibility to visualise the results in various plots. This is 

possible as one gets an analytic solution that is relatively easy to deal with.  
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Further, we will look at the problem as described in the article by Belhaj [1], that presents the 

jump-diffusion model, the optimal control problem and solves it for some examples of the 

distribution of the jump's size. We will look at the case with an exponential distribution, as we 

will see that it is the easiest one to deal with. But in [1] no conclusions are drawn concerning 

qualitative properties of the results. Our objective is to analyse the qualitative properties by 

conducting some numerical investigations. The difficulty with this model is that it is too 

difficult to derive an analytic solution in this case, so we must rely on numerical examples.  

 

 

1.3  Organisation of the Thesis 
 

� SECTION 2: In section 2 we will provide the prerequisites necessary to understand the 

mathematical formulation of the problem, i.e. basic definitions from stochastic 

calculus and some information on the Laplace transform, that we will use to solve the 

optimisation problem. We will also set up the general optimal control problem in both 

the deterministic and stochastic case.  

 

� SECTION 3: In Section 3 we will present the jump-diffusion model we will analyse. 

We present methods to obtain the switch point and the value function. We also 

determine the Laplace transform for the general solution explicitly.  

 

� SECTION 4: Section 4 will be concerned with analysing the pure diffusion model. In 

this case it is quite easy to determine the switch point and the value function. We show 

that the value function is always concave in this case, which is not generally true when 

we work with the jump-diffusion model. We also study the nature of the solution by 

numerical studies. 

 

� SECTION 5: In Section 5 we will analyse the jump-diffusion model when the size of 

the jumps is exponentially distributed. We derive a general equation for the switch 

point. Then we look at the crude oil price and estimates parameters based on this data. 

After that we do some numerical studies to analyse what happens when we allow one 

or more jumps to occur.   

 

3



2  Preliminaries 
 

 

2.1  Stochastic Calculus 
 

2.1.1  DEFINITION: A σ-algebra  on F Ω  is a collection of subsets on Ω  such that 

� It is not empty; ∅  and F∈ F∈Ω ; 

� If  then ; and  FA∈ FAc ∈

� If  then  and . FAA ∈...,, 21 FA
i i ∈
∞

=U 1
FA

i i ∈
∞

=I 1

 

2.1.2  DEFINITION:  is a probability space if ),,( PFΩ Ω  is the set of all possible outcomes, 

 is a σ-algebra and F P  denotes the probability function. 

 

2.1.3  DEFINITION: A collection  of σ-algebras on 0}{ >ttF Ω  is a filtration if 

 tsFF ts ≤≤∀⊂ 0 .

 

2.1.4  DEFINITION: A stochastic process x  is a collection of random variables 

 defined on a probability space },),({},{ Ω∈∈=∈ αα TtxTtx tt ),,( PFΩ . 

 

2.1.5  DEFINITION: A stochastic process  is a standard Wiener process (or a Brownian 

motion) if  

0}{ >ttw

� ; 00 =w

�  has stationary independent increments, i.e. 0}{ >ttw st ww −  has the same distribution 

as  such that hsht ww ++ − Tst ∈∀ , Thsht ∈++ ,  and  such that Tti ∈∀ ntt << ...1  

and  we have that are independent random variables; 1≥n
112

,...,
−

−−
nn tttt wwww

� ; and ),0(~,0 tNwt t>∀

�  has continuous sample paths. 0}{ >ttw
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2.1.6  REMARK: We have that ),0(~ dtNdwt  as dtdwt ε=  where ε  is a random drawing 

from a standardised normal distribution. 

 

2.1.7  DEFINITION: A stochastic process  is a Poisson process if it satisfies the first 

and second properties of the standard Wiener process, and 

0}{ >ttN

� , where Poi denotes the Poisson distribution. For example, it 

has the following properties (called the Poisson Postulates): 

)(~,0 tPoiNt t λ>∀

� The number of events occurring in nonoverlapping time intervals are 

independent; 

� The probability structure is time-invariant; 

� The probability of exactly one event in an infinitesimal interval is 

approximately proportional to its length; and 

� The probability of finding more than one event in an infinitesimal interval is 

smaller than the probability of finding one. 

 

 

2.2  The Laplace Transform 
 

2.2.1  DEFINITION: The function  defined on )(tyy = ),0[ ∞∈t  belongs to  if  ),0[2 ∞L

∞<∫
∞

0

2|)(| dtty  

 

2.2.2  DEFINITION: The Laplace transform of a function  is a function L),0[)( 2 ∞∈ Lty y )(ξ  

defined as  

Ly ∫
∞

⋅−=
0

)()( dttye tξξ  

The Laplace transform satisfies several nice properties. For example, 

Ly´ ⋅= ξξ )( Ly )(ξ )0(y− , so one can use Laplace transforms to transform differential 

equations into algebraic equations.  
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2.3  Deterministic Optimal Control 
 

2.3.1  DEFINITION:  is called a utility function if )(xu 0)0( =u  and if u  is a strictly concave 

continuously differentiable function, such that the derivative  decreases strictly 

from  to 0.  

)´(xux a

∞+

 

2.3.2  EXAMPLE: A common example of a utility function is xxu =)( . 

 

2.3.3  THE PROBLEM: The deterministic optimal control problem is set up as follows: Let 

 be a utility function and )(xu 0>ρ  a discount factor. The problem is to find the function 

 that maximises  )(xu

∫
∞

⋅− ⋅
0

))(( dttxue t &ρ  

Therefore, we let 

J =)(A  Max  ∫
∞

⋅− ⋅
0

))(( dttxue t &ρ

where 
dt
dxx =&  and we have the condition , which expresses the total disposal of 

resources. 

Adttx =⋅∫
∞

0

)(&

 

2.3.4  THE SOLUTION: The solution to this problem is according to Euler given by the 

differential equation: 

0)´( Cxue t =⋅⋅− &ρ  

where  is a constant. 0C

 

 

2.4  Stochastic Optimal Control 
 

2.4.1  THE PROBLEM: The stochastic optimal control problem is set up as follows: We denote 

by  the consumption and by  the level of capital at time  that is governed by the 

following process: 

)(tc 0}{ ≥ttx t
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ttt dwxdttcdx ⋅⋅+⋅= σ)(  

where  is a standard Wiener process and the  in front of it means that we have a 

geometric process. 

0}{ ≥ttw tx

0>σ  is the volatility constant of the Wiener process. The problem is to 

find the function  that maximises the expected value )(tct a

∫
∞

⋅−⋅
0

))(( dtetcuE tρ  

We also have the condition that the process stops if 0)( =τx  for some 0≥τ . We note that the 

solution to this problem is not given in advance. As a general reference we refer to the 

account of stochastic optimisation as presented in chapter 20-21 in the book by Kamien-

Schwartz. 

 

2.4.2  THE SOLUTION: If the solution is not given in advance, how does one come about a 

solution to this problem? We start by defining 

J =);( σA  Max  ∫
∞

⋅−⋅
0

))(( dtetcuE tρ

when the initial asset value is , i.e. A Ax =)0( . To determine an expression of  J );( σA , we 

consider a small interval in time ],0[ tδ  in which csc ≡)(  for all ts δ≤≤0 . The value at time 

tδ  is approximately equal to ⋅− )1( tδ  J );( σA  if the value of the asset at time 0 is J );( σA , 

since ⋅tδ J );( σA  is consumed in this time interval, given that the consumption is 

maximised. This gives that the profit is equal to  

⋅⋅−⋅ Atcu ρδ)(  J tA δσ ⋅);(  

as we get what we consume in the time interval ],0[ tδ  and we subtract the discounted value 

of this. This profit is approximately equal to 

J =);( σδtx J );( σσδ δtdwAtcA ⋅⋅−⋅−  

where is a random variable such that twδ 0)( =twE δ  and twVar t δδ =)( . 

Using these properties and evaluating in a Taylor expansion yields the expected profit: 

[E J =)];( σδtx [E J =⋅⋅+⋅− )];( σσδ δtdwAtcA  

=J ⋅− cA );( σ  J´ ⋅
⋅

+⋅
2

);(
22 σδσ AtA  J´´ +⋅ tA δσ );( 23)( to δ  

so we should choose the function  so that we maximise c

⋅− ccu )(  J´  J´=⇔ )´();( cuA σ );( σA  
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where the fact that  is strictly concave implies that the problem has a unique solution.   u
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3  The Model 
 

 

In this section, we use the interpretation of the problem of optimising the flow of cash in a 

large company. 

 

 

3.1  Definition of the Model 
 

Let  be the cash held at time zero, m 0≥µ  the constant growth rate, 0>σ  the Brownian 

volatility rate, 0≥λ  the intensity of the Poisson process  and  a random variable 

denoting the size of the Poisson jump.  can be discrete or continuous. 

0}{ >ttN s

s

 

We make the following assumptions:  

� The liquidation value of the firm is zero, i.e. the firm goes into bankruptcy the first 

time its cash reserves becomes negative; 

� The firm has no access to external financing; 

� The firm has no possibility to invest its cash reserves in the stock market or in a risk-

free asset.  

 

Under the assumptions and definitions above, the firm’s cash reserves evolve according to the 

process: 

tttt dLdNsdwdtdm −⋅−⋅+⋅= σµ  

where  denotes the total amount of cash taken out up to time t.  is assumed to be 

non-negative and right-continuous. In deciding the strategy  at a time  we only have 

access to the information given at that specific time, i.e.  is adapted to a filtration . 

 is also assumed to be bounded by a so-called technological constraint, i.e.  for 

some constant 

0}{ >ttL tL

tL t

tL 0}{ >ttF

tL ∞<< KLt

K . This is the bound on the maximum amount of cash that one can take out at 

one point in time. 
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3.1.1  REMARK: In reality, the constants µ , σ , λ  and the distribution for  in the model 

above should be estimated from empirical data using statistical estimation techniques. This 

means that when one inserts values of these parameters into the results derived in this Thesis 

one gets an inexact model that always involves some kind of error, which in turn can be 

estimated by observing the signal/noise ratio in the data and analysing the error of the 

estimation method one uses. This error should always be analysed before one starts using 

models that are inexact and the exactness of the results only depends on how good the 

estimations of the parameters are. The truth lies in the empirical data, not in the mathematical 

models. These are just approximations of the data and should always be handled with care. 

We should also say that Brownian motion in general is good for prediction, but bad with 

matching historical data – as it is a stochastic process.  

s

 

 

3.2  The Optimal Control Problem 
 

Recall from the introduction that we wanted to maximise the total amount of cash that we take 

out. The expected value of this is  

∫ ⋅−=
τ

ρ

0

)( t
t

m dLeEmV  

where }0)(:inf{ ≤= tmtτ  is the moment of bankruptcy and 0>ρ  is the discount factor. The 

expectation is taken conditioned on the initial reserve m .  is called the value function or 

the optimal return function. By maximising the expected value like this, we expect the 

optimal policy of taking out cash to be something like this: when the cash level is large 

enough, it is optimal to take out the amount 

)(mV

K . And if the cash level is small, it is optimal to 

take out nothing. So the strategy itself is not so exciting. The main problem is to find what we 

call the switch point, below which we shall take out nothing. The existence of such a switch 

point and the solution to this optimal control problem is given by the following proposition:  

 

3.2.1  PROPOSITION: There is a switch point  such that  *m

� When , we have that *mm ≤ 0)( =mL  and V  and  are given by the following 

equations: 

*m
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⎪
⎩

⎪
⎨

⎧

≥∀≥
==≤∀=

−−⋅+⋅+⋅=⋅

00)´(
0*)´´(,1*)´(,00)(

)]()([)´´()´()( 2
2
1

mmV
mVmVmmV

mVsmVEmVmVmV sλσµρ
 

� When , we have that *mm > KmL =)(  and *)(*)( mVmmmV +−= . 

We see that when , the marginal value of taking out cash equal the marginal value of 

retaining cash. The value function is reflected at this point; the solution is of "bang-bang" 

type.  

*mm =

 

 

3.3  The Switch Point 
 

How does one find the switch point ? According to the above, we should proceed as 

follows: 

*m

� First, we find the function  that solves f

 
⎪⎩

⎪
⎨
⎧

≤∀=

=−−⋅+⋅−⋅+⋅

00)(

0)]()([)()´()´´(2
2
1

mmf

mfsmfEmfmfmf sλρµσ
 

� Then the switch point  is the unique point in the set  

that minimises . 

*m }0)´´´(,0)´´(:{ >= mfmfm

)´(mf

 

3.3.1  REMARK: The equation that we have to solve is a partial integro-differential equation 

for non-zero λ , involving the two unknown functions  and the frequency function for the 

jump size. The equation is only possible to solve analytically in a few cases, as we will see 

later. An interesting observation is to compare this equation with ones obtained when pricing 

options when the underlying stock follows a jump-diffusion process. If the option can be 

realised anytime of the holders choice, and if the holder also can choose how much of the 

invested value that he/she prefer to realise, we see that one is interested in finding the point in 

time when it is optimal to realise the option and how much it is optimal to realise at that time. 

The solution will also in this case be of "bang-bang" type, i.e. at a given point in time it is 

optimal to either realise as much as you can or to realise nothing – depending on the current 

value of the underlying stock.    

f
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3.4  The Value Function 
 

The value function as a function of the initial cash level  is: m

⎪⎩

⎪
⎨
⎧

<+−

≤
=

mmmVmm

mm
mf
mf

mV
**),(*

*,
*)´(
)(

)(  

 

3.4.1  REMARK: One observation we can make immediately is that  for all 

, i.e. V  is linear in this region. So when analysing concavity/convexity one only 

needs to consider the case when . We also see that the slope of the value function is 

always one after the switch point, independent of any of the parameters.  

0)´´( =mV

*mm ≥

*mm <

 

 

3.5  The Laplace Transform of the General Solution 
 

To solve the problem, we will determine the Laplace transform of the general solution. This is 

as far as one can say things about the general solution without making any further 

assumptions on the frequency function for the jump size.  

 

3.5.1  PROPOSITION: If the function  is in  and if  satisfies the equation f ),0[2 ∞L f

⎪⎩

⎪
⎨
⎧

≤∀=

=−−⋅+⋅−⋅+⋅

00)(

0)]()([)()´()´´(2
2
1

mmf

mfsmfEmfmfmf sλρµσ
 

then  has the Laplace transform f

Lf )(ξ
][)(

)0´(
22

2
1

2
2
1

s
s eE

f
⋅−⋅++−⋅+⋅

⋅
= ξλλρξµξσ

σ  

where s is a random variable.  

 

PROOF: As , we have that L0)0( =f f ´ )(ξ ⋅= ξ Lf )(ξ  and Lf ´´ )(ξ ⋅= 2ξ Lf )(ξ )0´(f− . 

If we by )(ss ψa  denote the frequency function for s, the equation to solve becomes 
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⎪
⎩

⎪
⎨

⎧

≤∀=

=⋅−⋅+⋅+−⋅+⋅ ∫
∞

00)(

0)()()()()´()´´(
0

2
2
1

mmf

dsssmfmfmfmf ψλλρµσ
 

where the Laplace transform of the integral is 

=−=⋅− ∫ ∫∫ ∫
∞ ∞

⋅−
∞ ∞

⋅− dsdtstfesdtdssstfe tt

0 00 0

)()()()( ξξ ψψ

=⎥
⎦

⎤
⎢
⎣

⎡
−+−⋅= ∫ ∫∫

∞ ∞
⋅−⋅−

0 0

)()()( dsdtstfedtstfes
s

t
s

t ξξψ

===− ∫ ∫∫ ∫
∞ ∞

⋅−
∞ ∞

+⋅−

0 00 0

)( )()()()( sedsdttfesdsdtstf sst ξξ ψψ= ∫ ∫ ⋅−
∞ ∞

⋅−

0

)()( dsdttfees t

s

t ξξψ  

=  Lf )(ξ ∫
∞

⋅− =
0

)( dsse sψξ Lf ⋅)(ξ ][ s
s eE ⋅−ξ  

We now take the Laplace transform of the whole equation, and obtain: 

⋅⋅ 22
2
1 [ξσ Lf )(ξ ⋅⋅+− ξµ)]0´(f Lf )(ξ ⋅+− )( λρ Lf )(ξ ⋅+ λ Lf ⋅)(ξ [ ]s

s eE ⋅−ξ ⇒= 0  

Lf ⋅)(ξ [ ] ⇒=⋅−⋅++−⋅+⋅ ⋅− 0)0´(][)( 2
2
122

2
1 feE s

s σλλρξµξσ ξ  

Lf )(ξ
][)(

)0´(
22

2
1

2
2
1

s
s eE

f
⋅−⋅++−⋅+⋅

⋅
= ξλλρξµξσ

σ  � 

 

3.5.2  REMARK: We see that in general it will be very difficult to find the inverse Laplace 

transform and thereby an analytical expression for the function . In fact, the only cases we 

can analyse analytically are the ones when either 

f

0=λ  (when we have a pure diffusion 

model) or when  has an exponential distribution, as these are the only cases that makes both 

the nominator and the denominator of the Laplace transform algebraic.  

s

 

3.5.3  REMARK: The function  appears as a familiar and very useful tool in 

mathematical statistics. 

][ s
s eE ⋅−ξ

 

3.5.4  EXAMPLE: Consider the case when  is a discrete stochastic variable, denoting jumps 

that occur due to interest rate decisions. To be precise, we let 

s

1=s  with probability ½ and 

 with probability ½. Then we have that 2=s )(][ 2
2
1 ξξξ −−⋅− += eeeE s

s  and the Laplace 

transform for the function  becomes f
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Lf )(ξ
)()(

)0´(
2

2
122

2
1

2
2
1

ξξλλρξµξσ
σ

−− +⋅++−⋅+⋅
⋅

=
ee

f
 

We see that in this case, the inverse Laplace transform is impossible to find without the use of 

advanced residue techniques. 
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4  Analysis of the Pure Diffusion Model 
 

 

Throughout this section, we assume that there are no Poisson jump present in the model, i.e. 

0=λ . This case was studied by Jeanblanc and Shiryaev in 1995 [2]. Below, we shall make 

some of their results explicit and do some numerical investigations.  

 

 

4.1  The Switch Point 
 

4.1.1  PROPOSITION: The function  is   f

mbe
b

fmf ma ⋅⋅⋅= ⋅− sinh)0´()(  

where 2σ
µ

=a  and 2

22 2
σ

σρµ ⋅+
=b  

 

PROOF: The Laplace transform of the function  becomes f

Lf )(ξ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
−+

⋅=
−⋅+⋅

⋅
=

babab
ff

ξξρξµξσ
σ 11

2
)0´()0´(

22
2
1

2
2
1

 

so we have that 

mbe
b

fee
b

fmf mambmambma ⋅⋅⋅=−⋅= ⋅−⋅−⋅−⋅+⋅− sinh)0´()(
2

)0´()(  

if we let 2σ
µ

=a  and 2

22 2
σ

σρµ ⋅+
=b . � 

 

4.1.2  PROPOSITION: Assuming that , we have that the switch point is  0)0´( >f

⎟
⎠
⎞

⎜
⎝
⎛

−
+

⋅=
ab
ab

b
m ln1*  

where  2σ
µ

=a  and 2

22 2
σ

σρµ ⋅+
=b   

 

PROOF: By taking derivatives we obtain: 
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]coshsinh[)0´()´( mbbmbae
b

fmf ma ⋅⋅+⋅⋅−⋅⋅= ⋅−  

]cosh2sinh)[()0´()´´( 22 mbbambbae
b

fmf ma ⋅⋅⋅−⋅⋅+⋅⋅= ⋅−  

]cosh)3(sinh)3([)0´()´´´( 2222 mbbabmbbaae
b

fmf ma ⋅⋅+⋅+⋅⋅+⋅−⋅⋅= ⋅−  

Letting  gives that  0*)´´( =mf

⇔=⋅⋅⋅−⋅⋅+ 0*cosh2*sinh)( 22 mbbambba  

⇔=+⋅⋅−−⋅+ ⋅−⋅⋅−⋅ 0][2][)( ****22 mbmbmbmb eebaeeba  
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4.2  The Value Function 
 

4.2.1  PROPOSITION: The value function is given by 
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PROOF: Inserting the switch point  into  we obtain *m ´f
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4.3  Concavity of the Value Function 
 

We recall from earlier observations that 0)´´( =mV  for all . The following 

proposition provides a robust result that not holds in the case with a non-zero 

*mm ≥

λ , as we will 

see in the next section. 
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4.3.1  PROPOSITION:  for all 0)´´( <mV *mm < , i.e. the function V  is strictly concave in this 

interval. 
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which was assumed. �  

 

 

4.4  Numerical Study 
 

The objective with this section is to analyse the results obtained in the pure diffusion model 

for various values of the parameters. We start by observing the components of the value 

function and we expect it to be concave up to the switch point and linear after that. Then we 

will study the switch point and how it depends on the parameters. We expect it to be 

increasing with σ  and decreasing with ρ . But how does it depend on µ ? Our calculations 

will show that this dependence looks like the beta distribution, an interesting fact that may 

have economic implications. Finally we will study when the firm is sensitive towards the 

Brownian risk induced by a non-zero σ . We will show that when σ  is small the firm is 

sensitive up to the switch point, and when σ  increases above some switch point, the firm is 

sensitive up to a point below the switch point that will converge quite fast to zero.  
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4.4.1  The Value Function 
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4.4.1.1  FIGURE: In this figure, the two components of the value function  are 

plotted. The value function follows the function that starts at zero, and when it reaches the 

switch point it switches to follow the linear line. We see that the value function is indeed 

concave up to the switch point, and after that it becomes linear (i.e. either concave or convex). 

The parameter values are as follows:  

)(mVm a

I: 2/1=µ , 3/1=σ , 10/1=ρ  

II: 2/1=µ , 3/1=σ , 5/1=ρ  

III: 2/1=µ , 5/1=σ , 10/1=ρ  

IV: 3/1=µ , 3/1=σ , 10/1=ρ  
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4.4.2  The Switch Point 
 

We will next study what happens when we let one of the parameters be free, and we fix the 

rest of them at the same values as above. 
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4.4.2.1  FIGURE: The function )(* σσ ma . Of course we were expecting the switch point to 

be an increasing function of σ , as a larger σ  means a greater risk and therefore the firm 

needs to retain more cash against possible liquidation. On the other hand, if σ  converges 

towards zero, there is no need to retain any cash as the model gets deterministic, i.e. the σ -

risk is eliminated. This is kind of a strange solution, as it is optimal to take out everything, 

wait until the cash grows with µ  and then take everything out once again. The parameter 

values are as follows:  

I: 2/1=µ , 10/1=ρ  
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II: 2/1=µ , 5/1=ρ  

III: 3/1=µ , 10/1=ρ  
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4.4.2.2  FIGURE: The function )(* ρρ ma . We see that the switch point starts declining 

rapidly when ρ  increases if we start at zero, and we see that ρ  must be held sufficiently 

small for the switch point to not converge to zero. So the switch point is very sensitive to 

changes in the discount factor! The special thing with the discount factor is that it is an 

external parameter compared to the other ones that are given from data generated internally 

within the firm. The discount factor “decides” how profitable it is to retain cash compared to 

consuming and this figure illustrates how the relationship with discount factor looks like. The 

parameter values are as follows:  

I: 2/1=µ , 3/1=σ  
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II: 2/1=µ , 5/1=σ  

III: 3/1=µ , 3/1=σ  
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4.4.2.3  FIGURE: The function )(* µµ ma . We see that this function has a shape similar to a 

beta distribution; it starts at zero, it is concave up to a maximum point and then convex after 

that. This is less intuitive than the other plots. The existence of a maximum point can be 

explained by the following conflict: The fact that the firm goes into ruin quite fast because of 

the 0>σ  gives that a larger value of µ  is desirable. On the other hand, if µ  is too large then 

the firm does not need to retain any cash as the large µ  provides a guarantee that cash will 

flow in fast. We see that when µ  converges towards zero; the switch point converges towards 

zero. It is thus optimal to not retain any cash when µ  is zero as the σ -risk can bring it down. 

The parameter values are as follows:  

I: 3/1=σ , 10/1=ρ  

22



II: 3/1=σ , 5/1=ρ  

III: 5/1=σ , 10/1=ρ  

 

 

4.4.3  Sensitivity Against the Brownian Risk  
 

Finally, we discuss a variation, which perhaps is a bit tentative. The sensitivity is studied by 

observing the sign of the derivative of the value function with respect to σ . When , 

this derivative is independent of  and thus it has the same sign for all  (it is positive). 

Then the firm is not sensitive to the Brownian risk. When 

*mm >

m m

*mm ≤ , the derivative of the value 

function with respect to σ  is a function of , so for a fixed value of m σ  there is in the pure 

diffusion model one point for which the sign of the derivative changes. This means that for  

smaller than this point the derivative is negative and the firm is sensitive to the Brownian risk 

– and for  larger than this point the firm is not sensitive. We note that there is just one such 

point, as indicated by the following figure: 

m

m

 

 

0=
∂
∂
σ
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)(* σm  
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4.4.3.1  FIGURE: The function that starts in 0 is the switch point as function of σ . This is 

plotted as this is the upper bound on  for which the plot is valid. The other function is 

obtained by letting the derivative of the value function with respect to 

m

σ  be equal to zero and 

taking out  as a function of m σ , to see at which values of  that the sign of this derivative 

changes. We see that for 

m

σ  smaller than the intersection between these two functions, we 
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have that the sign changes at the switch point ; the firm is thus sensitive up to the switch 

point. In this figure the intersection point between the two functions is approx.  and 

*m

35.1=m

8.0=σ . For σ  larger than that, the figure indicates that there is a point less than  for 

which the sign changes. This means that even if the cash goes below the switch point the firm 

does not need to be sensitive for the Browninan risk. The parameter values are: 

*m

2/1=µ , 

10/1=ρ .  
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5  Analysis of the Jump-Diffusion Model 
 

 

Throughout this section we analyse the jump-diffusion model as outlined in section 3. We 

assume that  is exponentially distributed with parameter s ∆ , which means that the frequency 

function for  is  s

ses ⋅∆−⋅∆=)(ψ  such that  and 1
0

=⋅∆∫
∞

⋅∆− dse s 0≥∆  

The expected size of the jump is ∆= /1)(sE . This model is analysed to some extent in [1]. 

We will first derive an equation that gives us a unique switch point. Then we will study a 

numerical example, derive parameters from given data, solve the switch point equation and 

determine the value function. We then analyse some qualitative properties of the switch point 

and the value function that we get.  

 

 

5.1  A General Equation for the Switch Point 
 

This section culminates in Theorem 5.1.4 that gives a general equation for the switch point. 

But the theorem needs some preparation. Using the frequency function above, we have that 
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So the Laplace transform of the function  becomes f
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The polynomial  
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has three distinct real roots for the parameter values that we are interested in, which can be 

checked by algebraic computations (the discriminant is positive). We do it numerically for all 

set of parameters that we will use. We have 
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and by using the standard technique for finding roots to cubic polynomials, we have proved 

the following proposition: 

 

5.1.1  PROPOSITION: The roots to the polynomial equation 
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We have that the Laplace transform becomes 
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where K, F and D will be determined by partial decomposition.  

 

DETERMINING K, F AND D: The equality above is equivalent to 
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Summing up, we have that 

 

5.1.2  PROPOSITION: Partial decomposition yields that 
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Finally, taking the inverse Laplace transform yields 
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and we have proved the following proposition: 

 

5.1.3  PROPOSITION: Assume that  is exponentially distributed with parameter . Let s ∆ 0ξ , 

1ξ  and 2ξ  be the roots of Proposition 5.1.1 and let F and D be given by Proposition 5.1.2. 

Then 
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Differentiating the function of Proposition 5.1.3 twice and letting the second derivative equal 

to zero yields the following theorem: 

 

5.1.4  THEOREM: Assume that  is exponentially distributed with parameter . Let s ∆ 0ξ , 1ξ  

and 2ξ  be the roots of Proposition 5.1.1 and let F and D be given by Proposition 5.1.2. Then 
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provided .We call this the switch point equation. 0)0´( ≠f

 

 

5.2  Numerical Study: The Price of Crude Oil 
 

We will analyse the solution in detail for the U.S. crude oil price. The model we use suits the 

price quite well, especially as there are big jumps present in the price data, which can be 

modelled by a Poisson process. We will see that the small fluctuations look very much like a 

Brownian sample path, which also shows that this model is very suitable to use. But one must 

have access to a large amount of data; otherwise the model will not fit. Lots of data also 

ensure better parameter estimations. Note that this approach suits prices of raw materials in 

general, not only crude oil. 

 

Before the subsequent analysis, we insert an introductory discussion. 

 

Assume that the suppliers on the market that we are considering only supply one particular 

commodity (which we below will assume to be crude oil), that the market sets the price of this 

commodity and that we can observe how this price evolves in time. Then the suppliers will go 

out of business if they do not make a profit. This means that the price for the commodity will 

never go below some positive non-zero threshold, below which it is not profitable to supply 

this commodity. The suppliers may be companies of different size that have different 

investment capacity, so the threshold is some average level for all companies contributing to 

the price index for this commodity. When the price reaches the threshold, the profit of 
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supplying the commodity is equal to zero. This threshold is the switch point, as the suppliers 

should stop their production if the price goes below that point. We see that the control 

function is the amount of the commodity supplied, and the optimisation incentive is to 

maximise the total amount supplied over time. Of course, this is a simplification of reality, but 

I think that it is more close to reality than to just assume that the log-price follows e.g. a 

jump-diffusion process when modelling a price index. 

 

 

5.2.1  Estimation of the Parameters 
 

The following figure is a visualisation of the data set that we will use: 
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5.2.1.1  FIGURE: The U.S. crude oil price between January 1986 and March 2005. 

 

We see that it is suitable to assume that the price follows a jump-diffusion process 

tttt dLdNsdwdtdm −⋅−⋅+⋅= σµ  
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The parameters that we will work with are the following (note that these are approximate 

values): 112/1224/2 ==λ  (two Poisson events occur in the lapse of 224 months), 03.0=ρ , 

07.0=µ  (obtained by regression on the data set after taking out the Poisson jumps). After 

normalising the initial value to 1, we see that 2/1=∆ . In the original units, 9.1=σ , which is 

the deviation from a simulated normal distribution, and we choose the value that fits our 

modified data best (obtained by experimenting with different σ ’s and plotting against data), 

which is approx. 1.9. Below, we plot the deviations from the data set together with simulated 

random numbers that have a normal distribution with expectation zero and standard deviation 

1.9: 
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5.2.1.2  FIGURE: The deviations in the data set and random deviations from a normal 

distribution with expectation zero and deviation 1.9. This shows in some sense how well the 

model is suited for the data. We see that the data has a larger probability for large values than 

the normal distribution has, but the similarity is quite good! Here, one has the possibility to 

choose a σ  that is good with small jumps, or good with large jumps. We have chosen to take 

a σ  that goes as good as possible with both small and large jumps.  

 

After normalisation, 0844.05.22/9.1 ≈=σ .  
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5.2.2  The Switch Point 
 

First, we calculate the switch point with all the parameters as estimated to be 0.126277 

(normalised) and 2.8412325 (in the original units $). This is visualised together with the data 

below. 

 

.2.2.1  FIGURE: The original data and the calculated switch point. We see that historically, 

ext, our interest lies in analysing the qualitative properties of the function 
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the price has never fallen below the switch point.  

 

N

),(*),( λσλσ ma . 

 

henW  0=λ , the probability of a large upward jump is zero. If λ  is controllable, the 

ler mcontrol ay want to increase λ  a little, to get a positive proba ility of a large upwa

that may bring a large increase in value to the controller. It is like winning on a lottery 

because of the small probability that the event occurs but the great value that an upward

may bring. But to be able to play in this lottery, the controller must increase 

b rd jump 

 jump 

λ  from zero and 

thereby also increase the probability of a downward jump. So this is not a lottery where you 

only can win something – you can also lose a large amount. This conflict means that for small 

λ , the function )(* λλ ma  can be increasing or decreasing. We will see that the other risk 

rameter, pa σ , decides whether the function )(* λλ ma  is increasing or decreasing for small 
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λ . We will see that when σ  is sufficiently sm ected profit of an upward jump is 

eater than the expected loss of a downward jump for small 

all, the exp

gr λ  and thus the function 

)(* λλ ma  will be increasing for small λ . And when σ  grows, there exists a thresh

posite becomes true, i.e. the function )(*

old for 

which the op λλ ma  will be decreasing for small 

λ .  

 

But what happens when ∞→λ ? Then the risk of a large downward jump becomes so big so 

anytthat it is dangerous to keep hing and thus the function )(* λλ ma  must converge to 

zero, and the convergence speed must be decreasing in σ . at if the function 

)(*

So we see th

λλ ma  is increasing for small λ , there exists a λ  for which the function attains a 

um. And if the function )(*global maxim  λλ ma  is decreasing for small λ  then it is 

decreasing for all λ .  

 

All these properties of the function )(* λλ ma  are illustrated by the figure below: 

.2.2.1  FIGURE: The function 

 

 

5 )(* λλ ma  as a numerical solution to the switch point 

quation with normalised parameters as estimated in section 5.2.1, except for e λ  that is free, 

and σ  that we prescribe two values according to the figure.  

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

Lambda

Sw
itc

h 
Po

in
t

Sigma=1,9 Sigma=0,5

32



 

It is also an interesting case to let σ  be free and look at the function )* (σσ ma  for some 

fixed values of λ . We will see that when λ  is small, there is a great uncertainty in the model 

hether the w λ -event will occur or no ive the function t. This will g )(* σσ ma  a special 

non-zero shape; it will fluctuate widely up and down. We will also see that for λ , the 

function )(* σσ ma  need not be monotone anymore. For larger λ , the result will be more 

robust as one knows that the λ -event probably will occur, and can t thereafter

The figure below indicates that the function )(*

be able to ac . 

σσ ma  actually seems to be monoto

sufficient

ne for 

ly large λ .  

 

Another question to pose is: Does the limit li ),(*m
0

λσ
σ

 exist? It seems to be that way, as 

indicated by the fo

m
→

llowing figure: 

 

5.2.2.2  FIGURE: The function
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 )(* σσ ma  for two values of λ , as a numerical solution to 

the switch point equation with normalised parameters as estimated in section 5.2.1. This 

figure visualises the uncertainty induced by a small λ , which causes large fluctuations in the 

function )(* σσ ma .   
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We see in the figure above that the limit ),(*lim
0

λσ
σ

m
→

 seems to exist and be equal to a very 

small positive amount. And this is quite natural, as the suppliers should always, if not the 

price is at a very small positive level, produce at their maximum capacity when 0→σ ; if λ  

is small then the event is not likely to occur, so it is better to supply down to a very small 

price and earn the money even if the price gets down. And if λ  is large, the risk induces that 

it also is better to supply down to a very small price, as the highly probable event can bring 

the price down as well. 

 

 

5.2.3  The Value Function 
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5.2.3.1  FIGURE: The function  for the normalised parameters of section 5.2.1 for )(mVm a

two prescribed values of λ . 

 

Below, we analyse the value function qualitatively.  

 

We see that when the initial cash level  is small, we are very sensitive to changes in m λ . For 

a small λ , the possibility of a large upward jump assigns a large value when  is small,  m
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reflected in the peak in the figure. For small , the profit of the event of winning in the 

lottery has a great positive impact on the value. But when  increases, we are less vulnerable 

to the effect of a large jump so the impact of a large jump decreases and so the value function 

decreases. And then the switch point comes and after that the value function is linear. We see 

that the smaller 

m

m

λ , the greater is the peak. We were expecting that the larger λ , the more 

dangerous the lottery becomes as then we can lose a large amount. Of course, when λ  grows, 

we get more and more afraid of a large downward jump and this is reflected in the v

function, which decreases when 

alue 

λ  increases.  

 

A non-zero λ  seems to provide the existence of such a peak, i.e. the existence of a point 

such that . This is consistent with the result that we obtained in the previous 

section; th e function always is concave when 

m  

0)´( =mV

at the valu 0=λ . Then, it is obvious that no 

point  with  exists. When m 0)´( =mV λ  is non-zero, the property  can be used to 

find the  for which the value function attains this local maximum. When 

0)´( =mV

m λ  was zero, it was 

 bad thing to have an initial cash level below the switch point, as the value function was a

concave. But in the case of a non-zero and quite small λ , we see that having an initial cash 

level that is below the switch point but not too close to zero is a good thing. We see that an 

optimal initial cash level" is the one that maximises the value function and not its derivative.  

 

m

probability of a downward jump. But when the Poisson intensity rate increased, the focus 

e also found the following: 

"

 

5.3  Conclusions 
 

We will here summarise the results that we found by the nu erical investigation above.  

 

We showed numerically that when the Poisson intensity rate is small, we are blinded by the 

profit that a large upward jump may bring and does not care about the equally large 

turned towards the risk of a downward jump and the equally large probability of an upward 

jump did not matter anymore. 

 

W
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THE SWITCH POINT 

� mall Brownian volatility rate: the switch point as a functio oisson intensity 

rate is increasing, attains a global maximum and then decreases towards zero. Large 

Brownian volatility rate: It is decreasing all the time towards zero.  

� When Poisson intensity rate is zero, the switch p int as a function of the Brownian 

volatility rate is monotone increasing. For non-zero Poisson intensity rate, the switch

point as a function of the Brownian volatility rate need not be monotone anymore. 

S n of the P

o

 

Especially in the case of a small Poisson intensity rate, when there is a great 

uncertainty whether the Poisson event will occur or not in a given time interval. In this 

dely up and down. It becomes monotone when the Poisson 

iciently large.  

� When Poisson intensity rate is zero, we saw that it was a bad thing to have an initial 

 a 

tial cash 

ial cash level" is the one at which the first derivative of 

the value function is equal to zero.   

y interpreting the problem as a problem of deciding how much to supply of a specific 

ommodity based on an observed price, we found when studying the crude oil price that the 

never been below the switch point that we obtained by calculations.  

case it fluctuates wi

intensity rate is suff

 

THE VALUE FUNCTION 

cash level below the switch point, as the value function is concave. But in the case of

non-zero and quite small Poisson intensity rate, we showed that having an ini

level below the switch point is a good thing, as the possibility of an upward jump 

gives a large value being in this interval if not initial cash level is very close to zero. 

We saw that an "optimal init

 

B

c

price had historically 
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