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Abstract

The term regular convolution was introduced by Narkiewicz in 1963. A
regular convolution, %4 is defined by

Fragny= 3" f(dg(3) ®

deA(n)

where A(n) is a set of divisors to the natural number n, such that the ring
of arithmetic functions with this convolution as multiplication is

commutative

(a
(b

associative

)
)
(c) has a unit element
(d) preserves multiplicativity
)

(e) the inverse function of f(n) = 1, called the “Mobius-function”; u, de-
fined by f x4 p = e, take only the values 0 and —1 for prime powers

The most well-known examples of regular convolutions are the Dirichlet con-
volution and the unitary convolution. Each convolutions is determined by
a family of partitions of the natural numbers into arithmetic progressions
(which all contains 0). By regarding these progressions as incidence algebras
we find the previously undescribed ternary convolution.

We find an explicit formula for the inverse of invertible elements in the
ring with ternary convolution which accually works in rings with any regular
convolution.

We also show that there exist only one regular convolution on the ring
of arithmetic functions such that

c € C if n square-free
f(n) = { d

0 otherwise

The work also treats restrictions to the subring T'[V] = {f : NT —
C|f(n) =0,n ¢ V} and describe how these parts can be joined together to
the whole ring and somethings about the [n]-truncation.
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Chapter 1

Preliminaries

1.1 Definitions

Let N and N* denote the non-negative respectively the positive integers. We
denote the ¢’th prime number by p;, and the set of all prime numbers by P.
Let the C-vector space, with coordinatewise addition and scalar multiplica-
tion, of arithmetic functions f : N* — C be denoted T'.

Definition 1.1. Let f € T'\ {0}. Define the support of f as

supp(f) = {n € N"|f(n) # 0} (1.1)

Define the order of a non-zero element by
ord(f) = minsupp(f) (1.2)

Define the norm of f as .
|fl = ord(f) (1.3)

By definition the zero element has order infinity and norm 0. This is an
ultra-norm on I'.

If we give C the trivial norm, by for ¢ € C setting

1 c¢#0
|C|_{ 0 ¢=0

then I'" becomes a normed vector space over C.
Definition 1.2. For m € NV, define the prime support of m as
psupp(m) = {p € P | p|m}
and (when m > 1) the leading prime as
Ip(m) = min psupp(m)

For n € NT, let
NI" = {k € N*[Ip(k) = pn}



Definition 1.3. For any n € NT we let e, be the characteristic function on
{n}, ie.
1 k=n
enl(k) = { 0 otherwise

It is clear that any f € I' be be written as
[ee]
f= Z f(n)en (1.4)
n=1

This sum is convergent with respect to the norm.

Definition 1.4. Let f € ' be a non-unit. The canonical decomposition of
f is the unique way of expressing f as a convergent sum

F=> "0 fi= ) f(k)e
i=1

keNldl

The element f is said to be of polynomial type if all but finitely many of
the f;’s are zero. In that case, the largest IV such that fy # 0 is called the
filtration degree of f.

Definition 1.5. An arithmetic function f is multiplicative if f(n)f(m) =
f(mn) for (m,n) =1

1.2 Regular convolutions

The term regular convolution was introduced by Narkiewicz in [1], 1963.

Definition 1.6. A convolution, *4, is defined by

[ragm) = J(d)g(3) (L5)

deA(n)
where A(n) is a set of divisors to the natural number n.

In [1] Narkiewicz states and proves the following propositions, which all
have to apply if the convolution is regular.

Proposition 1.7. The convolution x4 s associative if and only if the fol-
lowing two conditions are equivalent:

(a)
de A(m), m € A(n)

(b)

d e A(n), %EA( )

al3



Proposition 1.8. The convolution * 4 is commutative if and only if d € A(n)
implies that 5 € A(n).

Proposition 1.9. The convolution x4 has a unit element if and only if for
every n, {1,n} C A(n).

The unit element is

o1 itn=1
1 =9 0 otherwise

Definition 1.10. A convolution is multiplicative if from the multiplicativity
of the factors follows the multiplicativity of the convolution product, i.e. if
f and ¢ are multiplicative, then so is f x4 g.

Proposition 1.11. The convolution defined by (1.5) is multiplicative if and
only if A(mn) = A(m) x A(n), for (m,n) =1. (Here B x C denote the set
of all integers which can be represented in the form be, b € B,c € C)

Definition 1.12. A convolution, *4 is reqular if the ring of arithmetic func-
tions with this convolution as multiplication is

commutative

(a
(b

associative

)

)

(¢) has a unit element

(d) preserves multiplicativity
)

(e) the inverse function of f(n) = 1, called the "Md&bius-function”, u, de-
fined by f *4 p = e, take only the values 0 and —1 for prime powers

The most well-known examples of regular convolutions is the Dirichlet
convolution (where A(n) is the set of all divisors of n) and the unitary con-
volution (where A(n) = {d| djn and (d,5) = 1}).

A consequence of condition (e) in Definition 1.12 is the following theorem,
proven in [1]

Theorem 1.13. The convolution satisfying condition (a)-(d) is reqular if
and only if for every prime power p* the set A(p*) is of the form: 1,pt,p, ... p" =
pF, with some t # 0, and, moreover, p* € A(p?),p? € A(p*),...

This result leads to the following theorem, also proven by Narkiewicz in

1.



Theorem 1.14. A convolution defined by (1.5) is reqular if and only if there
is a family { m,|p € P} of partitions of N into (finite or infinite) arithmetic
progressions (which all contains 0), such that

T b T
pitepir e AP phr)

if and only if
a; < b;
forall 1 <i <7 and a; and b; belong to the same progression in the partition

Ty, -

7

The two extremal cases are the Dirichlet convolution, where all partitions
have only one (infinite) block, and unitary convolution, where all blocks have
size 1.

By theorem 1.14 we get the following

emn if m € A(mn) and n € A(mn)
€n *A €y = .
0 otherwise

Definition 1.15. p° is called a primitive prime power (with respect to the
convolution) if a is the first number (besides 0) in some progression in 7.

The set of primitive prime powers is denoted by PP.
Proposition 1.16. With x4 as multiplication I" becomes a normed C-algebra.

Proof. Take f,g € I'. Let ord(f) = kand ord(g) = 1. Then f =3 7, f(n)e,
and g = > o2, g(n)en, f(k) #0,9(l) # 0. But then it is clear that

f*ag=f(k)g(l)ex + terms of higher order

and hence |f*Ag|:%§%%:|fH9’- =



Chapter 2

Restrictions

Definition 2.1. For V C N*, we let I'[V] be the closed subvector space of T
consisting of functions f : N — C with support in V. Suppose that 1 € V.
If A gives a regular convolution product x4 on I', we use this to make I'4[V]

a topological algebra by

| fxag(n) ifneV
Jrgln) = { 0 otherwise

Theorem 2.2. If

iclhclc--cWeN, Ju=w
then there are natural continuous C-linear surjections

W] < T[Ve] = T[V3] —--- = T[W] T,

and
lImT'[V;] 2 T[WV]
Jm

Proof. Use the notation in (1.4), i.e

f=Y_fnen
n=1

The natural homomorphisms

oji : T[Vj] = TVi] U]

maps Znevj f(n)en to >, cy. f(n)en. These are clearly surjections.

(2.1)

(2.2)

(2.3)



Now we can draw the following diagram:

The elements in @F[VZ] are of the form (fi, f2, f3,...) with f; € T'[V}]
and Uji(fj) = fz Define

o; ImI'[V;] — T'[Vi]
P

o; maps (fo, f1, f2,...) € anF[VZ] to f; € T'[V;]. This gives that o; = 0j;00;.
Define
a; : [W] — T[V}]

like 0j;, i.e. maps f = > 7 f(n)en to >,y f(n)en. Then, if i < j,
Q; = 045 © Q.

This induces a homomorphism « : I'[W] — lim I'[V;] such that the diagram
commutes. « maps fiy € T'[W] to f = (f1, f2, f3,...) € @I‘[Vg] « is
clearly injective, since the only function that maps to 0 is the O-function. To
show that « is also surjective, take f € @F[VZ] f=(f1, f2, f3,...) with
fi € Vi and 0j;(f;) = fi i < j, We want to show that this f € limI'[Vj]
corresponds to a unique fyr € I'[W]. Since fi € I'[W] is determined by it’s
values on W, take w € W. Since UV; = W and Vi C Vo C ..., w € V]
for j large enough. Take this j and define fy(w) = fj(w). If & > j then
fu(w) = fj(w) since oy;(fr) = f;- Hence fy is well-defined. From this
construction follows that «;(fi) = f;. Hence « is surjective. O

Proposition 2.3. Let p € P and let By, By € mp; let B, = {p’|j € B; }.
Then the following hold:
(a) T[B}] = C|[z]] if B} is infinite, and I'[B]] = Cle] 4f B! has { elements.

i s

(b) If By # Bs then I'|B] U BS] = T'[B]] xc I'[B}], where R x¢ S is the
fibre product of the augmented C-algebras R and S, i.e. the pullback
of the diagram R — C «— §.

(c) T[{p'li > 0}] = lim(xcI'[BY]), the inverse limit over n of the fibre
products of the first n.
Note that the inverse limit is per definition isomorphic to the infinite

fiber product x¢(p,ex,)T[B}].



Proof. (a) B; € mp means that B; = {0,a,2q,... },or B; ={0,a,2q,...,ra},

for some a. Thus p? € B! implies that j = ka for some k € N. Another
way of expressing the same thing would be to say that p/ = (p®)* for
some k € N. I'[B]] contains the vector space with basis {e,;|j € B;}
First let B; be infinite. Define

¢ : T[Bj] — C[[x]]

J
€pi F> Ta

This is a homomorphism since j,I € B; and B; infinite implies that
| +m ] m

epi * epm = epitm and @(epirm) = ghd" = gagd = w(eps )o(epm).

It is well defined, and since the only thing that maps to 0 is 0, it’s

injective. Since B; is infinite for any k € N there exists a j € B;

such that j = ka, i.e. for any 2* there exists a function ey such that
p(eyi) = xa = z*. This, and the fact that T'[B!] also contains infinite

(2
sums, makes ¢ surjective, and hence it is an isomorphism. So in this

case I'[B!] = C|[z]].
Now let B; be finite with £ elements. Then I'[B;] has a basis {e1, epa, €24,
-y €y-1a }. Now define the following homomorphism

epj — :L’%
If j,m € By, but j+m ¢ By, i.e. j+m > la, then e,; * eym =0, so in
order to make o well defined, ¢(e,; )p(eym) = 0. Assume j+m = la+n.

. i m Jjtm Latn n n
Slnce gO(epj)gO(epm) = ala = a = a :l’g.’]}'a =0-xa :0’ ©

is well defined and as above we get that I'[B]] = %.

Define
g1:T[B]] —C
f= )
Define g2 analogous. gl(epi * epj) = gl(€p7;+j) = epi+j(1) =0

epi(Lepi (1) if i +j € By,i+j # 0 and gi(ey * €,) = 91(0) =
ifi+j ¢ Br. Ifi+j=0theni=j =0 and gi(eyn * ey
gi(erxer) =gi(er) = ei(l) =1=1-1=gi(e1)gi(e1). Thus g, and g
are well defined surjections.

We can now draw the following commutative diagram:

=]

['[B] U By
]fl/ ~2
NCA/W

I[B I'[By)



q1 and ¢o are defined in the natural way:

al Y e =Y fnen

neEB{UB) neB]
We have a homomorphism
p1: D[By] x¢ T[B3] — I'[By]

(fi, f2) = f1

We also have a homomorphism py defined analogous to p1. This gives
the induced homomorphism ¢ in the following diagram:

I[Bi] xc I'[By]

e

IB] [[By U By

I'[Bs]

q1 q2

1 is defined in the following way:

(Y fmen) = (Y fm)en, Y fln)en).

neB|UB) neB] neB)

1 is injective since ¢(f) = (0,0) implies that f lacks support in both
B and B), and hence it lacks support in Bj U B). To show that v is
surjective, take (f1, f2) € T[B]] xc'[Bj]. Since every f € T'[BjUBj] is
uniquely determined by the values it takes on B UBY, take w € B{UBY.
Then there are three possibilities, w € B \ {1}, w € B\ {1} or
w=1 Ifwe B let f(w) = fi(w), if we B, let f(w) = fo(w),
if w = 1 then, since the diagram commutes fi(1) = f2(1) and to let
f(1) = f1(1) = fa(1) will therefore be well-defined. Hence this f exists
and is unique, hence 9 is surjective.

- T[Bj U By = T[Bj] xc I'[B)
Define the following homomorphisms
oji : T[Bj] xc -+~ xc T[Bj] = T'[By] xc--- xc[[B]], i<}y
oj; maps (fi, fa,--s fis---5 f5) to (fi, fas- .-, fi)-
oj : lim(xcl[Bj]) — T[Bj] xc -~ xc T[Bj]
oj maps (f1, (fi)i_, (fe)iops--) to (f)iy-

aj : T[{p'li > 0}] — T[Bj] x¢ -+ xc T[B]]

9



«; is defined in the same way as 1 in (b).«; is clearly a surjection.

These induce a homomorphism
o T[{p'li > 0] — lim(xcT[B)])

a takes an element f' € T[{p‘li > 0}] to (a1(f'),a2(f’),...). It’s
obvious that « is injective. That « is surjective can be shown in the
same way as in the proof to Theorem 2.2.

~. Tl{p'li > 0}] = lim(xcT(Bj])
O

Proposition 2.4. Let p,q € P,p # q. Let 1 € B} C {p'li >0}, 1 € By C
{¢"li > 0} and BB, = {p'¢’|p’ € B},¢’ € By}. Then

T[B} B3] = T[By]&cT[ By

as C-algebras, i.e. T'[B]B}] solves the following universal problem,

I[Bi]
% ©1
¥
TBB)---% - - - -D
X ©2
I[By]

where ; : T'[B!] — D,i = 1,2 are bounded C-algebra homomorphisms into
a complete C-algebra D and o; : T'[B]] — T'[B{BS),i = 1,2, are bounded
C-algebra homomorphisms.

If both T'[B]] and T'[BS| are finite, the complete tensor product can be

replaced by ordinary tensor product over C.

Proof. Define

0i:T[B] = T[BIBy], > cjej— > cjej, i=1,2
JEB; JEB;

These are obviously bounded C-algebra homomorphisms. I'[B]Bj] is obvi-
ously a complete C-algebra. In order to verify the universal property for
['[B{B}], let ® denote the C-bilinear map ® : I'[B}] x I'[BS] — D, (f1, f2) —
©1(f1)p2(f2), which is bounded by |p1]||p2|. If one can prove that this in-
duces a unique bounded C-algebra homomorphism 1/ such that the following

10



diagram commutes, then this 1) will also make the diagram in the proposition
commutative.

L[By] x T[By] —— I'[B1 By

) [ad
7
Ve
~

D

*x denotes multiplication, i.e. the convolution. It must be verified that =
is bilinear and bounded. The bilinearity follows from the fact that * is a
regular convolution, and hence it is associative and distributive. That * is
bounded is verified by an easy calculation.

Now, let W C I'[ B} Bj] be the set of all elements on the form

M N
ZZCijepiqj € F[BiBé]

i=0 j=0

where M, N are finite. Let T'[B{/"" C T'[B!] be the set of finite sums in
I'[B]]. Then we have the following diagram

P[B{)/in x T{By)fin

Then it is clear that ¢(f), f € W is determined by the values of ¢ of the
epiqj’s. We have that

(I)(epiﬂ eqj) =© (epi)SOQ(eqj)
and since the diagram has to be commutative we have that
w(epiqj) = ‘pl(epi%‘)?(eqj)

But since W = T'[B{ By] we can apply proposition 6 from chapter 1.1.7 in [2]
which say that there exist a unique % such that this diagram commutes

B/BQ —>D

Hence I'[B] Bj] solves the universal problem and hence
[[B] B3] = I'[B{]&cl[Bs)]

If T'[B]] and T'[B)] are finite just skip the last step in the proof and it is
clear that T'[BBj] 2 I'[B}] ®c ['[B)). O

11



Proposition 2.5. Let I'; = F[{pﬂj > 0}]. Then

I lim I'®c...®cly

n—oo

Proof. Tet Ty = T[{p],.. pff}] Then by putting B, = {p/|j > 0} and
use induction on proposition 2.4 we get that I'y j = Fp@c ... @CFk. But
now we can apply theorem 2.2 which gives the result.

O

12



Chapter 3

Incidence algebras

Assume that A gives a regular convolution, and that W C NT contains
1. Define a partial order <=<4 on W by m <4 n iff m € A(n). Then
W = (W, <,4) is a locally finite poset, so we can define its incidence algebra
I(W), which consists of all C-valued functions on closed intervals in W, with
pointwise addition and multiplication of scalars, and with the convolution
product

Frg(la, b)) = D f(la,c)g(le,b]) (3.1)

a<c<b

It is given the topology of pointwise convergence.

The reduced incidence algebra Red(W') of W consists of the subalgebra
of functions which take the same value on equivalent intervals, where [a, b]
and [c, d] are considered equivalent if b/a = d/c.

Theorem 3.1. As a topological C-algebra, Red(W) is isomorphic to I'[W].
Proof.

Red(W) = {f € I(W)| f([w1,]) = f([w2,a]) it 270 = 223

T2

Then Red(W) is the reduced incidence algebra of W over C. The mapping
¢ : Red(W) — T'[W] such that

fl—)Zf([lTL e

n=1

is a bijection. Then, if f,g € Red(W)

(F-o)(Ln) = > F(Ldg(dn) = > F([Ld)g((L, 5)

deA(n) deA(n)

and if

(nz::lanen) * (nz::lbnen) = ;Cﬂen

13



then

Cnén = E aded*b%e%: E adb%en

deAn deAn

which implies ¢;, = > ¢ 4, @nbz. This shows that multiplication in Red (W)
corresponds to multiplication in I'[W]. It follows that Red (V) is isomorphic
to T[WV]. O

Definition 3.2. @ and + are operations on posets defines as follows. P+ Q
has the underlying set P U ) and the order is defined as u < v iff either
u,v € Pand u <wvin P, or u,v € Q and u < v in Q.

P ® Q@ has PUQ as a underlying set. u < v iff either

e u,v € Pand u <wvin P, or
e y,veQand u<vin Q, or
e uc PveqQ.

Definition 3.3. A underlying set B of a partially ordered set is a chain if
for any u,v € B, either u < v or v < w.

Definition 3.4. A wedge of chains is a set of chains {C;| ¢ € I} with an
element w € C; for all i € I, such that w < u for all u € C;.

Figure 3.1: Examples of a chain and a wedge of chains

We give a counterpart to Proposition 2.3:

Proposition 3.5. Let p € P and let By, By € mp; let B = {p’|j € B; }.
Partially order B, and By U BY, as above. Let N denote the natural numbers

with their natural order, and [n] the induced subposet on {1,2,...,n}. Then
the following hold:

(a) B, =N if B} is infinite, and = [{] if B} has { elements.

14



(b) If By # B}, then

BiuBy = (1] @ [(B\{1}) + (B3 \ {1})]

i.e. the Hasse diagram of B{ U B}, is obtained by placing the diagrams
of B! and B} next to each other, then identifying the two elements
corresponding to 1.

(c) {pl|2 > 0} is a wedge of chains, one for each block B; € m,, joined
together with the element 1 as the minimum.

(d) There is at most one infinite chain in (c), and if there is an infinite
chain, there is a common bound of the lengths of the other chains.

Proof. (a) Let B! be infinite. Since B; € 7, B! = {1,p%,p*?,...}. Define
¢:B - N
P41
This is obviously a poset isomorphism.
Let B/ be finite. Now B} = {1,p%,...,p*"1%}. Define
p:Bi— [l

pPhi—r+1

Also an obvious poset isomorphism.

(b) [1] @ (B; \ {1} + B, \ {1}) is the poset with underlying set B} U B},
and v < v iff either

—u=1,or
— u,v € B} and u < v,
— u,v € By and u <.

Define
¢ BiU B, — [1 @ [(By\ {1}) + (B3 \ {1})]
BiUBy 3 p™ = p™ e [l @ (B \ {1}) + (B3 \ {1})]

It is obvious from the above that the inverse of this bijective homo-
morphism preserves the order. Hence it’s an poset isomorphism.

(c) Follows from theorem 2 in [1].

15



(d) Assume that the diagram has two infinite chains, B and Bj. Then
B; ={0,a,2a,...}

By ={0,b,2b,...}
But since ba = ab and ba € B1, ab € By we have a contradiction.

Assume that the diagram has one infinite chain, say Bj. Let By =
{0,a,2a,...}. Then the common bound of length of the other chains
have to be a because if a chain, B, has length a + 1 then B; =
{0,b,2b,...,ab} and then it would intersect Bj.

O

Proposition 3.6. If all chains in a Hasse diagram of posets {p‘|li > 0}
have the same length, then the length have to be 2, 3 or the diagram will be
composed of only one infinite chain.

Proof. We already know the existence of a convolution with all chains of
length 2, namely the unitary convolution. Therefore this proof considers
only wedges with chains of length > 2.

The case with only one infinite chain is the well-known Dirichlet convolution
so the rest of the proof only deals with finite chains.

Let all chains be of length r > 2. Then the chains are constructed as follows

{0,1,2,...,7 — 1}
{0,7,2r, ..., (r — 1)r}
{0,r+1,2(r+1),...,(r =1)(r+1)}

{0,s,2s,...,rs}

where s is the first number not in any previous chain.

Assume r is even, then r > 3, so there exists chains with r and » + 2 as
first non-zero element. r and r 4+ 2 are even and hence we can factor out
2 and their least common multiple will be w But since both § and
# = 5 + 1 are less than r — 1 the least common multiple will be in both
chains and hence the only wedge of chains where all chains are of the same
even length is the unitary case.

Now assume r # 3 is odd. Consider r + 1 and r + 3. There exists chains
with 7 + 1 and r + 3 as first non-zero element. The least common multiple
ofr+1andr+3is % Since both TTH and T—J;)’ are < r — 1 the least
common multiple will be in both chains and hence there exist no diagram
with all chains of the same odd length > 3.

16



When r = 3 the chains will be:

{0,1,2}
{0,3,6}
{0,4,8}
{0, 5,10}
{0,9,18}

It is clear that these chains will never intersect, outside 0, because if we
continue to take the next number not in any previous chain, say s, then 2s
will clearly not be in any previous chain, since 2s # 2t if s # t. O

Figure 3.2: Posets of Dirirchlet, unitary and ternary convolution, restricted
to powers of a single prime

Proposition 3.7. All diagrams, except for the one with just one chain of
infinite length (i.e. the Dirichlet convolution), must contain chains of length
2 or 3.

Proof. Assume that the diagram does not contain any chains of length 2 or
3. Let the chain containing 1 have length r. r is finite, since otherwise we
have the Dirichlet case and moreover r > 4, since the diagram doesn’t have
chains of length 2 or 3. Then we will have the chains

0,1,...,r—1}
{0,7r,...,sr}
{0,7+1,....t(r+1)}
{0,774+ 2,...,u(r+2)}
{0,7+3,...,0(r+3)}

with s,t,u,v,--- > 3. But then it follows as in the proof of proposition 3.6
that two chains have some element in common, which is a contradiction. [J

17



Proposition 3.8. Let p,q € P, p#q. Let 1 € By C {p’|2 > O}, 1e By, C
{qi|i >0 } Then
BlBQ = Bl X BQ,
where the X denotes the Cartesian product of the posets B1 and Bs.
Proof. The order in By Bs is defined as usual, i.e. p%® > p"q¢® iff p* > p"

and ¢” > ¢°. The same order is used in By x By, i.e. (p% q°) > (", ¢°) iff
p® > p" and ¢® > ¢°. Define

gOZBlBQ—>Bl XBQ
P = (1", 4°)
Since p(p*) = (p*, 1), ¢ is a homomorphism since multiplication in By x By

is componentwise multiplication. This makes ¢ a bijection. We can also
define the inverse to ¢

e ) =1"¢
The inverse is well-defined and (p", ¢*) < (p", ¢") implies that ¢((p",¢*)) =
p"q® < p"g™ = p((p", ¢"™)) according to the definition of order above. Hence

 is an order preserving bijection whose inverse is order preserving and hence
it’s a poset isomorphism.

. B1By = By X By
O

Proposition 3.9. The poset (N1, <,4) is isomorphic to the infinite direct
product of the posets ({ pg ‘j >0 } ,<a). Then (N, <4) is isomorphic to S.

Ifn € N, then the interval [1,n] is isomorphic to a product of finitely many
finite chains.

Proof. Let n € NT have the prime factorization n = p{'p3? - - - p%» Define

@ (NF,<a) = ({pll7 = 0} x {phlj = 0} x ..., <a)

¢ maps n to the vector with p;” on the i:th places and 0 on all others. That
this mapping preserves the order follows from Theorem 1.14. ¢ is clearly a
bijection. The inverse of ¢ then exists and

b b
(pclllvpgzv"') 2 (p117p22)"')
implies a; > b; for all ¢ € N. Hence

e (P, P32, .. ) = pipsz - > phiph = o (), PR, )

({pili > 0} x {p}lj >

1%

Hence ¢ is a poset isomorphism and (N, <j4)
0} X, SA)
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If 1 <n € N then there exists a largest prime number p; < n. For each
prime p; there exists a unique number /; € N such that péi is the largest
power of p; less then or equal to n. Then as above we can define a mapping

o ([L,n],<a) = (P10 <G <h}x - x {phl0 < j < Ui}, <a)

This mapping is a poset isomorphism according to the above. The number
of chains is clearly finite and all {p]|0 < j <;} are clearly finite chains. O

Let 1 € W C N*. We define the zeta function of T[W] to be ( =
Y onew en € L[W], ie ¢((n) =1 for n € W, and let the Mébius function be
its multiplicative inverse x4 = ¢ 1. The Mé&bius function exist, since (1) # 0
Theorem 3.10. p(pi* ---pt) is (—1)" if all pj* are primitive prime powers,
0 otherwise.

Proof. Let p® be primitive. Then
a pa a a
prCen = D md)XCr) = Y pld) = p(l) + p(p) =1+ p(p?) =0
deA(p®) deA(p®)
which implies that p(p®) = —1 if p® is primitive. Then, if p* € A(p??),

prC®) = > pld) = p(l) + p(p®) + pp**) = 1 — 1+ p(p**) =0
deA(p?e)

It follows by induction that pu(p®) = 0 if p? non-primitive.
Let n = p{'p3? where both p{* and p5? are primitive. Then

D uld) = p() + pp) + np3?) + npi'ps?) =
deA(n)
=1—-1—-1+ u(pi*'ps?) =0
Hence p(pf'p§?) =1 = (—1)%. Assume that p(p{*---pr ') = (=1)""Lif all
py* are primitive. Let n = p{*--- p%" where all p{" are primitive. Then
r—1 r '
> opd)=> <i>(—1)’ +p(py ) =0
deA(n) i=0
Hence p(py" -+ pir) = (—1)" if all p* are primitive.
Let n = p%bpg where p%b is non-primitive and pg, pll’ is primitive. Then
> ud) = p(1) + p(3) + p(@Y) + p(pT) + w(pips) + ulpi’ps) =
deA(n)

=1—1—-14041+ up?pd) =0
which implies that u(p?p$) = 0. Induction over the number of factors gives
that p(p]® - - p&) = 0 if one of the p;’s is non-primitive. Moreover induction
over the number of non-primitive factors then shows that u(p}*---pf) =0

if some of the p}’s are non-primitive. O
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Chapter 4

Ternary convolution

In proposition 3.6 we concluded that the unitary convolution and the Dirich-
let convolution both have the property that a Hasse diagram of posets
{p'|i > 0} has the property that all wedges of chains had the same length.
The proposition said that there were only one more convolution with this
property. We call this convolution ternary convolution. Since both Dirichlet
convolution and unitary convolution are well-known it might be interesting
to look into this ternary convolution and see what can be said about it. The
ring of arithmetic functions with ternary convolution is obviously isomorphic
: Cla]
to the complete tensor product of countably many copies of OF
Proposition 4.1. A prime power p® is primitive if either a is odd or a = 2D
where b is odd and « is even.

Proof. Ternary convolution is determined by the progressions {0, 1,2}, {0, 3,6},
{0,4,8},...,{0,s,2s},..., where s is the next number not in any previous
chain. The primitive prime powers are p"” where n is the first non-zero el-
ement in some chain. The third element in every chain is divisible by 2,
hence all p® with a odd are primitive. Hence if a = 2b with b odd, then p®
is non-primitive. This gives that p22b must be primitive, since 22b can’t be
the third number in any chain (because if it were the third number then 2b
would be primitive). Continuation in this way gives the result. O

Corollary 4.2. The proportion of a such that p® is primitive in the interval
[1,] is near % for large 1.

Proof. In a large interval near % of the numbers are odd, near 2% are of the

form 22b where b is odd. This discussion leads to the following formula
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In [3] Schinzel formulate a formula for the inverse function to an invertible
function f under unitary convolution. Here we do the same thing for the
ternary convolution. The formula we give actually works for every regular
convolution, the tricky part is just to factor n into primitive elements. In
proposition 4.3 we show that this can be done under the ternary convolution,
but it is easy to realize that n can be factored into primitive elements in a
unique way with respect to any regular convolution.

Proposition 4.3. Any number n € N* has a unique factorization into prim-
itive prime powers.

Proof. Every n € NT has a unique prime factorization n = p‘l“pg2 PRk

Then if p{ is non-primitive one can write pi’ = pZ pZ ) where p, k1 must be
primitive. Hence it follows that n can be written as a product of primitive
elements in a unique way. O

Definition 4.4. For a number n € N let v(n) be the number of primitive
prime powers counted with multiplicity in the factorization of n.

Proposition 4.5. If f(1) = 1 the inverse function of f erists and is given
by the formula

iy =1
v(n)
f_l("):Z(—l)k Z Hf forn >1
k=1 “d =n

d; eA(n)d >1

Proof. Let g(n) be the formula given by the right hand side above. Then
f*g(1)=1,50 g(1) = f~1(1). Thus let n > 1. Then we have

Froi)= 3 [f@dg(5) =gm)+ > F(dg(5)+ i) =

deA(n) 1Gl

k=1 di-dpg=n  i=1
d; € A(n),d; > 1

+ > f@Y (-nF > Hf =0

) k=1 dk:d
<n deA( ), d; > 1
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U(%) k
S L)+ fn) =
d e A(n) k=1 dy--dy =2 i=1
l1<d<n dieA(%),d,>1
v(n) k
S DI LN . | FCD
k=1 dy---dp=n i=1
d; € A(n),d; > 1
Hence g is the inverse of f. O

One of the questions that we hoped to be able to answer about this ring
was what are the nilpotent elements and the zero divisors in the ring. This
work isn’t finished yet, but a result on the way is proposition 4.9. To get
there we need a few lemmas.

Lemma 4.6. 1. If p® is primitive, then epa x €pa = €2

2. If p® is non-primitive, then eya * epa = 0
3. Ifa#b, then epe xep =0

Proof. 1.
epa * epa (p2a) = Z epa (dl)epa (dz) =

didy = p3°
d; € A(P*®)

= ep“(p2a)€p“(1) + epa (p”)epe () + epa(1)epa (P**)=0+1+0=1

epa * epa (p2a) = Z epa (dl)epa (dQ) =
dydy = p2°
d; € A(P*)

, since p?® will be primitive.
= epe (P*")epe (1) + epe (L)epe (p7) = 0

3. If a # b then p™ is either primitive or non-primitive. If p? is primitive,
then
epa * €yp (p™) = Z epa(di)eyn(de) =

dydy = p®
d; € A(p®?)

= epa (p™)epp (1) + e (L)eyp () = 0

And it follows from the calculations above that e,. x e
2

v = 0. If p is
non-primitive then p® = (p%b) where p%b is primitive. Hence

ab

ab ab ab
epa ey (p) = epa (P™)e 20 (1) +€pa (p2 )ey2a (p2 )+ epa(1)eyn (p ) = 0
O
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Lemma 4.7. If n = p{*---pi* were all p; are distinct primes, then

€, =€a1 % --%¢€a
n pit pkk

Proof. One can factor pi*---p;* into it’s primitive parts, so pi*---p*
qll’1 . --qfl, where each qfi is primitive. If p{" is non-primitive, then e

. P;
€ a; *e a; since
P> P2
a; n

ewxe (i)=Y eaq(de u(7)=1

P; i deA(p™) P; b,
Hence

€y K - ep:k(n) =egn kKe (n) = ) zd: e (dp) - € (d) =1
dy=n

O

Lemma 4.8. Let n = p{*---pi*¥ and m = qll’1 . --qfl, where p; and q; are
primes. Then

o wen — 0 if for some i,j,p; = q; and a; # b; or pi" non-primitive
meen emn Otherwise

Proof. This follows directly from Lemma 4.7, the commutativity of the ring
and the properties of the ternary convolution, since if p; = ¢; and a; # b;
for some i, 7, then clearly

en*em:"‘*ep%*“‘*epbj*"‘:"'*0*“‘:0
k2 .
1

On the other had if a; = b; but p{* non-primitive, then
Cn ke =t ke K ke K — e x0%---=0
O
Proposition 4.9. In the ring with three-convolution, all elements of poly-
nomial type are nilpotent.

Proof. Lemma 4.8 gives that (e, )® = 0 for all n. Hence, since k € NIl implies
that p;|k and by Lemma 4.6

(fi)* = ( > f(k)ek>3 =0

keNldl

If an element is of polynomial type then f = > 2, f; with all but finitely
many of the f;’s are zero. So, because of the above and the pigeonhole

principle,
N 2N+1
f(2N+1) — (Zfl) =0
i=1
Hence all elements of polynomial type are nilpotent. O
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Corollary 4.10. All elements of polynomial type are zero divisors in the
ring with ternary convolution.

Proof. Let f be of polynomial type. Proposition 4.9 gives that f™ = 0
for some m > 1. Hence f* f™ ! = f™ 1% f = 0 and hence f is a zero

divisor. 0

Question 4.11. Are all zero divisors of polynomial type?
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Chapter 5

Restrictions to square-free
integers

We now consider the special case when W consists of the square-free integers.

Theorem 5.1. Let W consist of the square-free integers. Then there is only
one regqular convolution on I'[W].

Proof. If p € P then, by Proposition 1.9, A(p) = {1, p}. By Proposition 1.11,
if p,q € P then A(pq) = {1,p,q,pq}. Induction gives that if n is squarefree,
then A(n) = {1,][;c;cpi where n = [[,. ; pi}. Hence Definition 2.1 implies
that any convolution on I'[W] is defined as

| emn if mn square-free
em * €n = i
0 otherwise

But this is a unique definition and hence there exist only one regular convo-
lution on I'[W]. mn squarefree implies that there exist no p € P such that
p|m and p|n, i.e. (m,n) = 1. O

Corollary 5.2. The convolution on I'[W] can be viewed as the unitary con-
volution on the square-free integers.

This means that the ring I'[IW] share many properties with the ring I’
with unitary convolution. For example all elements of polynomial type are
nilpotent (see [4]). The ring I'[IW] is obviously isomorphic to the completion
of the group ring to the direct sum of countably many Z/27Z. An alternative
description would be to view the ring as the completion of the free vector
space on finite subsets of N with the multiplication.

AUB ifAnB=10
AxB _{ 0 otherwise

Conjecture 5.3. All zero divisors and nilpotent elements in T'[W] are of
polynomial type.
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Chapter 6

Restrictions to |[n)

Let A be some regular convolution, and let W C NT be a finite subset
closed under taking A-divisors. We will be mostly interested in the case
W =In]={1,2,...,n}.

The ring '] is a monomial ring, i.e. a quotient of a polynomial ring
(on finitely many variables) with a monomial ideal.

Henceforth we assume A fixed and suppress it from notations. Let PP[WW]
be the primitive prime powers in W.

Theorem 6.1. I'[W] = W, where Iy, Jw are monomial ideals.

Iw = IN{eq|lq € PP[W]} and I is the defining ideal of I' = w.

Proof. 1t is clear that %ﬁp[w is a subvector space of w. De-
fine

such that
e, if e, € T[W]

plen) = { 0 otherwise

This is a homomorphism, since if e,,,e, € T[W],en, ¢ T[W] then 0 =
O(emn) = ©(em) * p(en) = em * e, = 0. Ker(yp) is clearly a monomial ideal.
Then Jy = Ker(p) so

_ Cl{eglq € PP[W]}]
rw] = Iy + Jw

O

Equivalently, W is identified with {e,|w € W } and is regarded as a
multicomplex on PP[W], and I'[W] as the multicomplex ring on W.

Definition 6.2. A facet of W is an element which is maximal w.r.t <ju.
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Definition 6.3. The socle of a homogeneous quotient R = Clzy,...,x,]|/]
is the set
soc(R) = {f € R|fg =0 for all g € m},

where m = (z1,...,x,) is the unique graded maximal ideal in R.
Lemma 6.4. The socle is a graded ideal.

Proof. 1t is obvious that the socle is an ideal. Any f € R can be decomposed
into homogenous components, f = fi + fo+---+ fq. Take f € soc(R), then
since fg = 0 for all g € m we have that (f1+-- -+ fq)z; = frzi+- -+ fqr; =0
for all 4. This implies that fjz; = 0 for all 1 < j < d, since fiz;,..., faz;
are all homogenous of different degrees or 0.

It is obvious that any f = f; + -+ fg such that f,, € soc(R),1 <n <d
is in soc(R). Hence the socle is a graded ideal. O

Lemma 6.5. The element e,, € T'[W] is in the socle iff w € W is a facet.
These elements span the socle as a vector space.

Proof. n < m if and only if e,, = e, * ¢, for some p € W. Hence w is a facet
if and only if for all v € W\ {1}, e, x ey, # ex, k € W, i.e. e, x ey, = 0 for all
v € W\ {1}. Hence w facet implies e,, € soc(I'[W]).

Assume e,, € soc(I'[W]). m is generated by {e,| v € PP[W]}, which
means that it is also generated by the set {e,| v € W\ {1}}. Then, for all
v e WN\{1}, ey *e, = 0. Hence either vw ¢ W or w ¢ A(vw). In both cases
we have that e, * e,, ¢ I'[W]. Hence w is a facet.

That these elements then span the socle as a vector space is obvious. [

Question 6.6. Let c¢(A,n) = dimcSoc(I'a[W,]), the vector space dimen-
sion of the socle of I'a[W,]. Then the limit lim,,_,o c¢(A,n)/n ezist and for
Dirichlet convolution it’s value is % (since the socle is generated by ea, es, e[z,

hence lim,, .o c(A,n)/n = 1). For unitary convolution the value is

1

1—= + Z 7 i Pl ().60771435951661818
= [j=ips

(see [5]). What is the value of lim,,_,o c(A,n)/n for the ternary convolution?

Lemma 6.7. For any w € W, let JJ,, be the ideal in S =
generated by the set { e, € '[W]|v £ w}. Then the ideal Jyw is the intersec-
tion of all ideals JJ,, when w ranges over all facets, in S.

Cl{eq] t}GPIP’[W]}]

Proof. The ideal (), facet JJw 15 generated by all e, such that ¢ £ w for
any facet w. An equivalent formulation would be to say that the ideal is
generated by e, such that ¢ ¢ W. This together with the proof of theorem
6.1 proves the lemma. O
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Example 6.8. W = [10]. If A is Dirichlet then PP[W] = {2,3,5,7}, W
is the multicomplex {es, e3, €3, €5, €2e3, 7, €3, €3, ezes }, and so the multicom-
plex ring is

Clez, e3, €5, e7]

4 .3 2 3 2 2\°
(627 62637 62657 62677 637 63657 63677 657 65677 67)

(W] =

There is no Iy since I = (0). The facets are 10,9, 8,7,6 with corresponding
ideals JJ1g = (e3,€3,e7), JJo = (e, e5,e7), JJs = (e3,es,eae3,e7), JJr =
(e2,€3,€5), JJs = (€3, e5,€7,€3).

2 3 9 7
Figure 6.1: W = 10, Dirichlet convolution
Example 6.9. If A is unitary convolution, W = [10], then PP[W]| =
{2,3,4,5,7,8,9}, W is the multicomplex {es, €3, e4, €5, €2€3, €7, €3, €9, €265},
2 2 2 2 2 2 2
IW = (62) €2€4, €2€3, €3, €3€9, €4, €4€8, €5, €7, €3, 69)7
the restriction of I to this ring, and
Jw = (ezer, e2eg, e3e5, e3e7, e3es, eqes,
e4e7, €4€9, €5€7, €568, €5€9, €768, €7€9, €8€9).

The facets are 10,9, 8,7, 6, 4, with corresponding ideals JJ1g = (e3, €4, €7, €8, €9),J Jg =
(e2,e3,€e4,€5,e7,e8), JJg = (e2,e3,e4,€5,¢e7,€9),JJ7 = (e2,e3,€4,€5,¢€s5,€9),
JJG = (64,65,67,68,69), JJ4 = (62,63,65,67,68,69) .

Example 6.10. If A is ternary convolution, W = [10], then PP[W] =
{2,3,5,7,8}, W is the multicomplex {es, e3, €3, 5, eaes, €7, es, €3, eaes },

Iy = (€3, €3, eaes)

and

2 2 2 2
Jw = (e3es, ezer, e3e5, eae3, €365, €3€7, €3€8, €5, €5€7, €2€3€7, €768, €2€5€7)
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Figure 6.2: W = 10, unitary convolution

The facets are 10,9, 8,7, 6, 4, with corresponding ideals JJ1g = (es, e%, er, e, e%),
JJg = (e2,e5,eze3,e7,e8), JJg = (ea,e3,¢e5,€7), JJr = (e2,e3,¢e5,¢e8), JJg =

2 2 _
(e3,e5,e7,¢e8, €3, e2es5), JJy = (e3, 5, e2e3, €7, €3, €2€5)

2 3 5 7 8

Figure 6.3: W = 10, ternary convolution
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