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Abstract

In the year 1933, the Polish mathematician Karol Borsuk conjectured that
an n-dimensional body of diameter d can always be partitioned into n + 1
parts, each having diameter less than d. Over half a century later, this
geometrical conjecture was finally proved to be false in general, with the
help of combinatorial arguments. However, there are special cases for which
the conjecture holds. Borsuk’s Conjecture is the main topic of this paper.
At the same time, the paper aims at giving an introduction to the field of
Combinatorial Geometry.
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1 Introduction

Borsuk’s Conjecture was stated by Karol Borsuk more than half a century
ago. He conjectured that one can always decompose n-dimensional bodies
of a given diameter into n + 1 pieces, each of smaller diameter. It is easy to
confirm n + 1 as a “lower bound” just by looking at the regular simplex in
R

n. It was not until the year 1992 that this widely studied and accepted (ge-
ometrical) conjecture was (combinatorially) disproved by Kahn and Kalai.
By this time, Borsuk’s Conjecture had been verified for several classes, e.g.
for all sets in R

2 and R
3, and for all convex bodies with smooth boundaries,

as well as for all centrally symmetric bodies. Kahn and Kalai did not only
show the falsity of Borsuk’s Conjecture, but they also proved that the min-
imum number of pieces needed for the decomposition of bodies in R

n grows
exponentially with n.

The primary aim of this paper is to discuss Borsuk’s Conjecture. We give
the disproof for the general case and we also present the assertion of the
conjecture for sets in R

2 and R
3, and for n-dimensional convex bodies with

smooth boundaries.

In this paper, the reader will encounter the use of combinatorial arguments
for proving geometrical problems. This field of mathematics is called Com-
binatorial Geometry and one of our objectives is to give an introduction to
this subject.

Basic Linear Algebra is a prerequisite for this paper, although most of the
necessary definitions are included in the text. Apart from that, mathemati-
cal maturity is all that is needed.

We start with some basic definitions. Thereafter, we present the tools needed
to prove the Kahn-Kalai Theorem. Finally, after disproving Borsuk’s Conjec-
ture for general n-dimensional bodies, we give the assertion of the Conjecture
for some of the special cases mentioned above.

I would like to thank Paul Vaderlind for presenting this subject to me and
for guiding me throughout my work. Also, thanks to Peter Strömbeck for
patiently answering all of my questions.
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2 Basic Definitions and Results

In this chapter we present some terminology and basic definitions and results
in Abstract Algebra, Geometry and Graph Theory, needed for this paper.

2.1 Abstract Algebra and Geometry

Definition 1. Let n be an integer. Then [n] = {1, 2, . . . , n}.

Definition 2. Let X be a set. Then |X| denotes the cardinality of the set
X, i.e. the number of its elements.

Definition 3. A k-set is a set of k elements.

Definition 4. If X is a set then 2X denotes the set of all subsets of the set
X and

(
X
k

)
denotes the set of all k-subsets of X.

Definition 5. Given a set S, Sn denotes the set of ordered n-tuples:

Sn = {(s1, s2, . . . , sn) : si ∈ S} (1)

Definition 6. We call the set {0, 1}n := {(ε1, . . . , εn) : εi ∈ {0, 1}} the n-
cube or the unit cube. It has 2n elements. These elements are points in R

n,
the n-dimensional Euclidean space.

Definition 7. The incidence vector of the set C ⊆ [n] = {1, 2, . . . , n} is
(α1, . . . , αn) ∈ {0, 1}n, where

αi =

{
1 if i ∈ C
0 if i /∈ C

(2)
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Definition 8. We define the distance between two incidence vectors, (x1, . . . , xn)
and (y1, . . . , yn), to be the number of places i, where xi �= yi. In other words,
the distance between the incidence vectors of two sets, A and B, is the cardi-
nality of their symmetric difference. (The symmetric difference of two sets,
A and B, is the set whose members belong to A or B and not to both.)

Definition 9. The Euclidean distance between two vectors, u = {u1, u2, . . . , un}
and v = {v1, v2, . . . , vn}, in R

n is defined by

d(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + . . . + (un − vn)2 (3)

Note that in the case of two incidence vectors, u and v, their distance is
equal to d(u, v)2. (The Euclidean distance, |x − y|, between two points, x =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, is defined similarly.)

Definition 10. A set system or a family of sets is a set of sets. The sets
belonging to the family are its members. A set system F over a set X is a
family of subsets of X. We say that X is the universe of F .

Definition 11. A set system F is k-uniform if its members are k-sets. F is
uniform if it is k-uniform for some k.

Definition 12. Let L be a set of positive integers. A set system F is
L-intersecting if |A ∩ B| ∈ L for any two distinct A, B ∈ F .

Definition 13. The function space F
X is the set of functions from the set X

to a field F. This is a linear space with f + g and λf defined by (f + g)(x) =
f(x) + g(x) and (λf)(x) = λf(x) for f, g ∈ F

X and x ∈ X.
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Definition 14. The functions f1, . . . , fm, not all of them equal in the func-
tion space F

X, are said to be linearly independent if, for every λi (i =
1, . . . , m), the equation

λ1f1 + . . . + λmfm = 0 (4)

implies λ1, . . . , λm = 0. Here, we say that the solution to equation (4) is
trivial.

Definition 15. A monomial is a product of variables with a scalar coefficient.
The degree of a monomial is the sum of its exponents. A monic monomial
is a monomial with coefficient 1. A (multivariate) polynomial is a sum of
monomials. A multilinear polynomial is a sum of monomials for which the
degree in each variable is ≤ 1.

Example 1.

2x2
1x

5
3 is monomial of degree 7.

x2
1x

5
3 is a monic monomial of degree 7.

2x2
1x

5
3 − 8x9

5 + x2
2x4x

3
3 + 3 is a (multivariate) polynomial of degree 9.

2x1x3 − 8x5 + x2x4x3 + 3 is a multilinear polynomial of degree 3.

Proposition 16 (Diagonal Criterion). Let F be a field and S an arbitrary
set. For i = 1,. . . ,m let fi : S → F be functions and ai ∈ S elements such
that

fi(aj)

{ �= 0 if i = j
= 0 if i �= j

(5)

Then, f1, . . . , fm are linearly independent.
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Proof. Let
∑m

i=1 λifi be a linear relation between the fi. Then, in
∑m

i=1 λifi(aj),
all but the jth term vanish (condition (5)), and what remains is the λjfj(aj) =
0. Again, by condition (5), fj(aj) �= 0 and therefore λj = 0. Since this must
hold for every j, the linear relation under consideration is trivial. That is∑m

i=1 λifi = 0 implies λ1, . . . , λm = 0, which, according to definition (14),
proves the independence of f1, . . . , fm.

Proposition 17 (Multilinearization). Let F be a field and Ω = {0, 1}n ⊆ F
n.

If f is a (multivariate) polynomial of degree ≤ s in n variables over F then
there exists a unique multilinear polynomial f̃ of degree ≤ s in the same
variables such that

f(x) = f̃(x) for every x ∈ Ω (6)

Proof. f̃(x) is obtained by the identity x2
i = xi, which is clearly valid over Ω

(since 02 = 0, 12 = 1).

Example 2. If f(x) = x3
1x

2
2 + x3

4, we obtain f̃(x) = x1x2 + x4 and obviously
f̃(x) = f(x) for every x ∈ Ω = {0, 1}n.

Theorem 18 (Prime Number Theorem). For every ε > 0 and sufficiently
large x, the number of primes not greater than x is between the bounds
(1 ± ε)x/ ln x. This means that, for sufficiently large x, there are approxi-
mately x/ ln x prime numbers ≤ x.

Proof. The proof is beyond the scope of this paper. See Widder [ITT] for a
proof.

Definition 19. Consider a body (a bounded set of points) C ⊂ R
n. The

diameter d of C is the greatest (Euclidean) distance between its points, i.e.

d = sup{|x − y| : x, y ∈ C} (7)

In other words, we say that the set C has diameter d if:

(a) There exists two points, x0, y0 in C or its boundary, which are at (Euclidean)
distance d.
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(b) For any two points x, y ∈ C, their distance is ≤ d.

Example 3. The diameter of a circle is its diameter. The diameter of
a square is the length of its diagonal. In fact, the diameter of a polygon
(Definition 24) is the maximum distance among its vertices.

Definition 20. (Geometric Definition) A set C ⊂ R
n is said to be convex

if, for every x, y ∈ C, the line segment from x to y lies entirely in C (figure 1).

(Algebraic Definition) In other words, a set C ∈ R
n is said to be convex

if, for every x, y ∈ C and λ ∈ [0, 1], we have that

(1 − λ)x + λy ∈ C (8)

x

y y

x

Convex set in the plane Nonconvex set in the plane

Figure 1

Definition 21. Let W be a linear space over R. A convex combination of
the vectors (points) v1, . . . , vm ∈ W is a linear combination

i=1∑
m

λivi (λi ∈ R
n) (9)
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where
m∑

i=1

λi = 1 (λi ≥ 0) (10)

Definition 22. The convex hull of a subset S ⊆ W is the set of all convex
combinations of the finite subsets of S.

Example 4. The convex hull of the body in figure 2(a) is illustrated by figure
2(b). It is obvious that the convex hull of a convex set S is equal to S.

(a) (b)

Figure 2

Definition 23. The set M ⊂ R
n is open if, for any point x ∈ M , there

exists a real number ε > 0 such that, given any point y ∈ R
n whose Euclidean

distance from x is smaller than ε, y also belongs to M . The set M ⊂ R
n is

closed if its complement R
n\M is open.
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Definition 24. A polygon is a body in R
2 with n sides, where the sides form

a closed curve, e.g. a rectangle that has 4 sides. By a side we mean a straight
line segment including its end points. A polyhedron is a body in R

3, bounded
by a finite number of polygons (faces).

We call a polyhedron “simple”, if it is topologically equivalent to a sphere
(i.e. if it was inflated, it would produce a sphere) and its faces are polygons
that are topologically equivalent to a disk. In the remainder of this paper we
assume that every polyhedron is simple in this sense.

The generalization of the notion of polygon and polyhedron to n dimensions is
a polytope. A spherical polytope is a polytope bounded by spherical “faces”.

Example 5. Figure 3 shows a spherical tetrahedron (in R
3).

Figure 3

Theorem 25 (Euler’s Polyhedral Formula). For a “simple” polyhedron, let
V , E and F denote the number of vertices, edges and faces respectively. Then
we have the following relation:

V − E + F = 2 (11)

Proof. Imagine a simple hollow polyhedron, i.e. a polyhedron that is topo-
logically equivalent to a sphere, with a surface that can be deformed. Then, if
we cut one of the faces of the hollow polyhedron, we can deform the remain-
ing surface until it stretches out flat on a plane as in figure 4(b). The fact
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that the areas of the faces and the angles between the edges of the polyhedron
will change in the process of deformation is of no significance, but what is
important is that the network of vertices and edges in the plane contains the
same number of vertices and edges as did the original polyhedron, while the
number of polygons (faces) will be one less than in the original polyhedron.
Our aim is now to prove the theorem by showing that for the plane network
V − E + F = 1.

Our first step is to “triangulate” the plane network. We do so by draw-
ing diagonals in every polygon of the network that is not already a triangle.
The effect of each triangulation is to increase both E and F by 1, thus leaving
the value of V −E+F unchanged. Now, the figures consists entirely of trian-
gles (figure 4(c)) and V −E + F = 1. We observe that some of the triangles
have one or two edges on the boundary of the plane network. Next, we take
any boundary triangle and remove that part of it which does not also belong
to some other triangle. Thus, from ABC (figure 4(c)) we remove the edge
AC and the face, leaving the vertices A, B, C and two edges AB and BC,
while from DEF (figure 4(d)) we remove the face, the two edges DF and
FE, and the vertex F . The removal of a triangle of the type ABC decreases
E by 1 and F by 1, and the removal of a triangle of the type DEF decreases
V by 1, E by 2 and F by 1. Thus in both cases the value of V −E +F again
remains the same.

We continue with these operations until finally only one triangle remains,
with its 3 edges, 3 vertices and 1 face (figure 4(f)). For this simple network,

V − E + F = 3 − 3 + 1 = 1 (12)

But we have seen that, by constantly erasing triangles, the value of V −E+F
was not changed. Therefore, V −E +F equals 1 for the polyhedron with one
face missing. Adding the face that we removed from the original polygon,
we see that V − E + F = 2 for the complete polyhedron.

Definition 26. The points n1, n2, . . . , nk ∈ R
n are affinely independent if,

for every λ1, λ2, . . . , λk ∈ R, where
∑k

i=1 λi = 0, the equation

λ1n1 + λ2n2 + . . . + λknk = 0 (13)

is trivial, i.e. every λi = 0.
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C A

B

F
E

D

(a)

(e)(d) (f )

(c)(b)

Figure 4

Definition 27. A simplex in R
n is the convex hull of a set of n + 1 affinely

independent points n1, n2, . . . , nk. A regular simplex is a simplex, where every
pair of the points n1, n2, . . . , nk are at the same distance. In R

3, for example,
this means the regular tetrahedron.

Definition 28. For a set L ⊂ Z (Z is the set of all integers) and integers r
and t we say that

t ∈ L (mod r) (14)

if t ≡ � (mod r) for some � ∈ L. A set system F is L-intersecting (mod r) if

|A ∩ B| ∈ L (mod r) (15)

for any two distinct sets A, B ∈ F .
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Definition 29. A hyperplane in R
n is a plane that divides R

n into two
parts. In other words, a hyperplane in R

n is any affine subspace S ⊂ R
n of

dimension n − 1. For example, in R
2 a hyperplane is a straight line.

Definition 30. A tangential hyperplane in a point p of the boundary of a
set S ⊂ R

n is a hyperplane in R
n that intersects with S in p.

Definition 31. A body in R
n is said to have a smooth boundary if, for

every point in its boundary, there exists a unique tangential hyperplane. For
example, the boundary of a cube in R

3 is not smooth since there are more
than one (infinitely many) hyperplanes in each vertex.

2.2 Graph Theory

The purpose of this paper is to illustrate the connection between Geometry
and Combinatorics and to give a disproof to Borsuk’s Conjecture. The fol-
lowing results from Graph Theory is needed for us to complete our task. For
more on Graph Theory, see Biggs [DM].

Definition 32. A simple graph G consists of a finite set V, whose members
are called vertices, and a set system E of 2-subsets of V , whose members are
called edges. We write G = (V, E).

Two vertices, u and v, are said to be adjacent in the simple graph G if
the pair {u, v} is one of the edges of G, i.e., {u, v} ∈ E. Here we say that u
and v are incident to the edge {u, v}. The degree of a vertex is the number
of its incident edges. In this paper we will only deal with simple graphs.

Example 6. The graph G = (V, E), where V = {A, B, C, D, E, F, G} and
E = {{A, B}, {A, D}, {B, C}, {B, D}, {C, D}, {F, G}} is illustrated in figure
5.

Definition 33. The complement of the graph G(V, E) is another graph Ḡ
with the same vertex set, having complementary edge set, i.e., Ḡ = (V, Ē)
where Ē =

(
V
2

)\E. (
(

V
2

)
are all the 2-subsets of the set V )
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A

B C

D

E

F

G

Figure 5

Definition 34. A subgraph is obtained by deleting edges and vertices. (Ob-
viously, when we delete a vertex, its incident edges are also deleted.)

An induced subgraph is obtained by deleting vertices and only those edges
which are incident to them. So an induced subgraph is determined by its set
of vertices.

Definition 35. An independent set in G is a subset W ⊆ V , which induces
an empty subgraph, (W, ∅) (an empty graph is a graph with no edges). The
size of the largest independent set in G is denoted by α(G).

Definition 36. A legal coloring of G is an assignment of “colors” to each
vertex such that adjacent vertices receive different colors. In other words, it
is a partition of the vertex set into independent sets, where the members of
each independent set have the same color. The minimum number of colors
required for a legal coloring is the chromatic number of G, denoted by χ(G).
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Remark 1. It is, in general, hard to find χ(G), but there are some techniques
to find a good lower bound for it. For example, if a graph contains a complete
subgraph Kn, then χ(G) ≥ n (a complete graph Kn = (V, E) is a graph, with
n vertices, where E =

(
V
2

)
).

Example 7. Here, we present an algorithm that often leads to a good enough
lower bound for χ(G) (G is the graph of Example 6). The result is illustrated
in figure 6. We start with one vertex (here A) and color it red. Then we
continue with B and since we cannot use the color red, we color it blue. The
vertex C cannot be colored blue, but we can color it red. Now, for vertex
D, we can neither use red nor blue, so we have to introduce the new color
green. Proceeding in this manner we see that the number of colors needed is
3. We also observe the complete subgraph K3, with vertices A, B, D. This
means that χ(G) is at least 3. And since we have found a legal coloring with
3 colors, χ(G) = 3. So, generally, in each step we try to pick one of the
previously used colors. If this is not possible, we assign a new color to the
vertex.

Proposition 37. Let G be a graph with n vertices. The following relation be-
tween the chromatic number χ(G) and the independence number α(G) holds:

χ(G) ≥ n/α(G) (16)

Proof. According to Definition 36, every color class in a legal coloring is
independent. So there are χ(G) independent sets, each of size ≤ α(G). That
is, there are χ(G) color classes containing n1, n2, . . . , nχ(G) vertices with each
n1, n2, . . . , nχ(G) less than or equal to α(G). Then

n = n1 + n2 + . . . + nχ(G) ≤ χ(G) · α(G) (17)
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D

E

F

G

(red)

(blue)

(green)

(red)

(red)

(blue)

(red)

Figure 6

3 More Advanced Tools

In this chapter, some more advanced results are presented. Here we obtain
the final tools needed to achieve our main goal; disproving Borsuk’s Conjec-
ture.

3.1 The Nonuniform Modular RW Theorem

Let L be a set of s integers and F an L-intersecting k-uniform family of m
subsets of a set of n elements. Ray-Chaudhuri and Wilson proved the RW
Theorem, which states that

m ≤
(

n

s

)
(18)
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when s is small compared to n
(
n ≥ 2s,

(
n
s

)
= n!

(n−s)!s!

)
.

The RW Theorem has been extended in several ways. One extension is
for the set L to consist of s residue classes (mod p) where p is a prime and
k, the size of the members of the family, does not belong to these residue
classes. We will prove the RW Theorem considering this extension but, for
a slightly weaker bound of the form

m ≤
(

n

s

)
+

(
n

s − 1

)
+ . . . +

(
n

0

)
(19)

Theorem 38 (Nonuniform Modular RW Theorem, Alon-Babai-Suzuki, 1991).
Let p be a prime number and L a set of s integers. Assume that E =
{A1, . . . , Am} is a family of subsets of a set of n elements such that

(a) |Ai| /∈ L (mod p) (1 ≤ i ≤ m)

(b) |Ai ∩ Aj| ∈ L (mod p) (1 ≤ j < i ≤ m)
(20)

Then inequality (19) holds.

Proof. We begin by introducing the polynomial

F (x, y) =
∏
�∈L

(x · y − �) (21)

in 2n variables where x, y ∈ F
n
p (the n-dimensional vector space over the field

with p elements) and x · y =
∑n

i=1 xiyi is the standard inner product in F
n
p .

Thus,

F (x, y) =
∏
�∈L

(x1y1 + x2y2 + . . . xnyn − �) (22)

Now consider the n-variable polynomials fi(x) = F (x, vi), where vi ∈ F
n
p is

the incidence vector of the set Ai (i = 1, . . . , m). It is clear from condition
(20) and equation (21) that for 1 ≤ i, j ≤ m

fi(vj) = F (vj, vi) =

{ �= 0 if i = j
= 0 if i �= j

(23)
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By Proposition 17, these equations remain valid if we replace fi by the cor-
responding multilinear polynomial f̃i (note that every f̃i is unique). Clearly,
each one of the polynomials f̃1, . . . , f̃m corresponds to exactly one of the sets
A1, . . . , Am. We conclude by the Diagonal Criterion (Proposition 16) that
f̃1, . . . , f̃m are linearly independent over F

n
p .

On the other hand, all the f̃i are multilinear polynomials of degree ≤ s.
Therefore, they can be represented as a linear combination of the following
polynomials:

1
xi1

xi1xi2

xi1xi2xi3
...

...
xi1xi2 · · ·xis

(24)

where the range of i1, i2, . . . , is are from 1 to n. The number of polyno-
mials listed above is

1 +

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

s

)
(25)

and therefore f̃1, . . . , f̃m belong to a space of dimension
∑s

k=0

(
n
k

)
.

To show that we lose little by using the upper bound (19), let us examine
the contribution of the tail of the sum in (19).

Proposition 39. For n ≥ 2s we have

(
n

s

)
+

(
n

s − 1

)
+

(
n

s − 2

)
+ · · · +

(
n

0

)
<

(
n

s

)
·
(

1 +
s

n − 2s + 1

)
(26)
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Proof. First, we make the observation that for 1 ≤ k ≤ s ≤ n

(
n

k−1

)
(

n
k

) =
k

n − k + 1
≤ s

n − s + 1
(27)

Setting α = s/(n − s + 1), it follows that for s ≤ n/2 we have

s∑
k=0

(
n

k

)
=

=

(
n

s

)
+

(
n

s

)
· s

n − s + 1
+

(
n

s

)
· s(s − 1)

(n − s + 2)(n − s + 1)
+ · · ·+

(
n

s

)
· 1(

n
s

) ≤

≤
(

n

s

)
· 1 +

(
n

s

)
· α +

(
n

s

)
· α2 + · · · =

=

(
n

s

)
· (

∞∑
i=0

αi) =

(
n

s

)
/(1 − α) (28)

The last equality holds since

∞∑
i=0

αi = lim
n→∞

1 − αn

1 − α
= lim

n→∞
1

1 − α
(29)

(Note that α < 1.) To obtain inequality (26) we substitute the value of
α.

Remark 2. Observe that when s is substantially smaller than n/2, the term(
n
s

)
determines the order of the magnitude, since α becomes very small.
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3.2 A Connection Between Geometry and Combina-
torics

In 1944 Hadwiger formulated the (geometrical) problem,

What is the minimum number c(n) with the property that R
n can

be divided into c(n) subsets R
n = S1∪ . . .∪Sc(n) such that no pair

of points within the same Si, i = 1, . . . , c(n) is at unit distance?

Before treating this problem, we need to make the following definition:

Definition 40. The distance-δ graph in R
n has the set R

n as its vertex
set and two points are adjacent if their Euclidean distance is δ. The unit
distance graph corresponds to δ = 1.

Remark 3. The unit distance graph and the distance-δ graph on R
n are

isomorphic for any δ > 0. The isomorphism from the unit distance graph to
the distance-δ graph is given by Φ(p) = δp for every point p ∈ R

n.

With the above definition in mind we see that Hadwiger asks for the chro-
matic number of the unit distance graph. This problem hasn’t even been
solved in the plane (all we know is that 3 < c(2) ≤ 7). Frankl and Wilson
showed that, for large n, the chromatic number of the unit distance graph on
R

n grows exponentially with n. Before presenting this, we need the following
theorem.

Theorem 41 (Omitted Intersection Theorem). Let p be a prime number
and suppose that F is a (2p− 1)-uniform family of subsets of a set of 4p− 1
elements. If no two members of F intersect in precisely p− 1 elements, then

|F | ≤ 2 ·
(

4p − 1

p − 1

)
(30)
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Proof. Set L = 0, . . . , p − 2. Then we have that

|F | ≤
(

4p − 1

p − 1

)
+

(
4p − 1

p − 2

)
+ . . . +

(
4p − 1

0

)
<

<

(
4p − 1

p − 1

)
· (1 +

p − 1

3p − 1
) < 2 ·

(
4p − 1

p − 1

)
(31)

The first inequality follows from Theorem 38 (F obviously satisfies the as-
sumptions of Theorem 38) and the second inequality follows from Proposition
39. The third inequality is trivial.

Theorem 42 (Frankl-Wilson, 1981). For large n, the chromatic number of
the unit distance graph on R

n is greater than 1.139n.

Proof. Since the unit distance graph and the distance-δ graph on R
n are iso-

morphic for any δ > 0, they both have the same chromatic number c(n).

To prove the theorem, we show that the distance-δ graph of some subset
S of the unit cube Ω = {0, 1}n has exponentially large chromatic number
for some δ > 0. This δ will depend on n. Then, obviously, the unit dis-
tance graph on R

n will have exponentially large chromatic number (since
S ⊆ Ω ⊂ R

n).

Each subset S ⊆ Ω corresponds to a set system H ⊆ 2[n] (e.g. for n =
3, we have that {(1, 1, 0), (0, 1, 1)} = S ⊆ {0, 1}3 corresponds to H =
{{1, 2}, {2, 3}}). We see that S consists of the incidence vectors of the mem-
bers of H .

Let d(A, B) denote the Euclidean distance of the incidence vectors of the
sets A, B ∈ H . From Definitions 8 and 9 we conclude that d(A, B)2 is the
size of the symmetric difference of A and B. Now if we assume that H is
k-uniform, then

d(A, B)2 = 2(k − |A ∩ B|) (32)

This means that the distances between the elements of S are determined by
the intersection sizes of the corresponding sets of H . Thus we have shown
the connection between Geometry and Combinatorics.
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Now, let us assume that n = 4p−1 for some prime p, and that k = 2p−1. We
say that two sets A, B ∈ H are adjacent if |A∩B| = p−1. This corresponds
to distance δ =

√
2p, since

δ = d(A, B) =
√

2(k − |A ∩ B|) (33)

With the above assumptions in mind, we have defined a graph Gp = (Hp, Ep)

with vertex set Hp =
(
[4p−1]

2p−1

)
(i.e. all (2p − 1)-subsets of the set [4p − 1]).

Now, our goal is to deduce an exponential lower bound for the chromatic
number χ(Gp). Instead, we will find an upper bound for α(Gp), the size of
the largest independent set. By our definition of adjacency for Gp, no two
members of an independent set of size α(Gp) intersect in precisely p − 1 ele-
ments. Therefore, applying the “Omitted Intersection Theorem” (Theorem
41), we have that

α(Gp) ≤ 2 ·
(

4p − 1

p − 1

)
(34)

To show the exponential lower bound for χ(Gp), we use Proposition 37:

χ(Gp) ≥ |Hp|/α(Gp) ≥
(
4p−1

2p−1

)
2 · (4p−1

p−1

) > 1.13974p−1 (35)

We have thus shown that the chromatic number of the distance-
√

2p graph
of the set S(Hp) ⊆ Ω = {0, 1}(4p−1) ⊂ R

4p−1 is greater than 1.1397n for all
sufficiently large n of the form n = 4p − 1 (S(Hp) denotes the incidence set
S ⊆ Ω of the set system Hp).

Now, in order to show that exponential growth holds for all sufficiently large
n, let p be the largest prime such that n > 4p − 1. By the “Prime Number
Theorem” (Theorem 18), for every ε > 0 and every sufficiently large x there
exists a prime number p between (1 − ε)x and x. Applying this to x = n/4,
we find a prime number p such that (1 − ε)n < 4p < n. Therefore,

c(n) > c(4p − 1) > 1.13974p−1 > 1.1397(1−ε)n > 1.139n (36)

when ε is chosen small enough.
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The chromatic number of the unit distance graph on R
n has been proven to

be greater than 1.203n. But the above verification of the weaker lower bound
suffices for the purpose of this paper. For the proof of the stronger lower
bound, see Babai and Frankl [LAMC].
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4 The Disproof of Borsuk’s Conjecture

Borsuk conjectured that every body in R
n of diameter d can be partitioned

into n + 1 parts each of diameter less than d. (Actually, Borsuk was careful
not to state this as a conjecture but as a question, but with time it got known
as Borsuk’s Conjecture.) The fact that we need, at least, n+1 parts is easily
observed by looking at the regular simplex in each dimension.

Borsuk’s partition problem refers to all subsets of R
n. Obvious arguments

show that one may consider, without loss of generality, only sets which are
closed and of diameter 1.

After decades of efforts by various mathematicians, Kahn and Kalai man-
aged, in 1993, to give a disproof to Borsuk’s, by then, widely accepted Con-
jecture. They did so by proving that the number of parts in such a partition
grows exponentially with n. The simplicity and elegance of this relatively
short proof is an excellent example of the value of “Combinatorial Geometry”.

Theorem 43 (Kahn-Kalai, 1993). Let f(n) denote the minimum number
such that every set of diameter 1 in R

n can be partitioned into f(n) pieces of
smaller diameter. Then f(n) > 1.2

√
n.

Proof. The proof is similar to the one given for Theorem 42. We want to
show that the number of partitions of some subset of R

n into parts of smaller
diameter is exponential with respect to n. We consider a subset S of the
unit cube Ω = {0, 1}n ⊂ R

n. As we know, such a subset corresponds to a
set system F ⊆ 2[n], and we write S = S(F ) to denote the set of incidence
vectors of the members of F . We assume that F is �-uniform. By the same
argument as before, we obtain

d(A, B)2 = 2(� − |A ∩ B|) (37)

for any A, B ∈ F (d(A, B) denotes the distance of the incidence vectors of the
sets A and B). Thus the maximum distance between two members of S oc-
curs when, for their corresponding sets A, B ∈ F , |A∩B| is minimal. Now, let

μ(F ) = min{|A ∩ B| : A, B ∈ F} (38)

We observe that a partition of S(F ) into sets of smaller diameters means a
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partition of F as F = F1 ∪ . . . ∪ Ft such that μ(Fj) > μ(F ) for j = 1, . . . , t.
Let g(F ) denote the smallest t for which this is possible. Then clearly
f(n) ≥ g(F ) for any uniform set system F ⊂ 2[n]. Thus, we have turned
the geometrical problem into a combinatorial one.

Our next step is to associate a graph G with the set system F , where the
vertex set consists of the members of F and two sets (vertices) A, B ∈ F are
adjacent if |A ∩ B| = μ(F ) (as in Theorem 42 the adjacency is connected to
the intersection sizes). Then, we observe that g(F ) is the chromatic number
χ(G).

We want to construct a set system F such that the graph G it represents
according to the “minimum intersection size adjacency rule” (equation (38))
will be isomorphic to the graph Gp of Theorem 42. (Actually, they are two
different representations of the same graph.) This will make the strong lower
bound on the chromatic number of Gp (inequality (35)) valid for our graph G.

Assume that n is of the form (2p − 1)(4p − 1) for some prime number p.
We set m = 4p − 1, k = 2p − 1, and Hp =

(
[m]

k

)
, as in Theorem 42.

Moreover, let X =
(
[m]

2

)
; |X| =

(
m
2

)
= n. We define the set system F

over the universe X, i.e. F ⊂ 2X .

We shall associate a set Φ(A) ⊂ 2X with each A ∈ Hp. The set system
to beat “Borsuk’s Conjecture” will be

F = {Φ(A) : A ∈ Hp} (39)

Remember, our goal is to make a correspondence A �→ Φ(A) such that

|A ∩ B| = p − 1 if and only if |Φ(A) ∩ Φ(B)| = μ(F ) (40)

for all A, B ∈ Hp. This will establish that Φ is an isomorphism between Gp

and G, as desired.

Here is the simple construction: Φ(A) will be the set of those pairs of el-
ements [m] which are split by A. Formally,

Φ(A) = {{x, y} : x ∈ A, y ∈ [m]\A} (41)
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Clearly Φ(A) ⊂ X and the set system defined by equation 39 is �-uniform
with � = k(m − k). The correspondence A �→ Φ(A) being one-to-one, all we
need to verify is that it preserves adjacency (equation 40).

To this end, assume |A ∩ B| = r (A, B ∈ Hp). It is easy to see that

|Φ(A) ∩ Φ(B)| =

= r(m − 2k + r) + (k − r)2 =

= 2(r − (k − (m/4)))2 − 2(2k − (m/2))2 + k2 (42)

The minimum of this expression is attained when r is as close to k−(m/4) =
p − (3/4) as possible, i.e., when r = p − 1. This completes the proof of the
G ∼= Gp isomorphism.

By inequality (35) we conclude that

g(F ) = χ(G) = χ(Gp) ≥
(
4p−1

2p−1

)
2 · (4p−1

p−1

) > 1.13974p−1 = 1.1397m (43)

(The last inequality holds when p is sufficiently large.) Since m >
√

2n, we
obtain (for sufficiently large n)

f(n) ≥ g(F ) > 1.1397
√

2n > 1.203
√

n (44)

completing the proof for all dimensions n of the form

n =

(
4p − 1

2

)
= (4p − 1)(2p − 1) (45)

where p is a prime. The extension to all dimensions, using the Prime Number
Theorem, is analogous to the corresponding argument at the end of the proof
of Theorem 42.
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Remark 4. Concerning an upper bound for the partition of a set of points
into parts of smaller diameter, it has been shown (Schramm, 1988) that, for
every ε > 0 and sufficiently large d,

f(d) < (
√

3/2 + ε)d (46)

During the time it took to disprove “Borsuk’s Conjecture’, several interest-
ing results concerning the conjecture have been obtained. In the following
chapters we will give the assertion of “Borsuk’s Conjecture” for some special
cases.
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5 Borsuk’s Conjecture in the Plane and in

the Room

The highest dimension for which Borsuk’s Conjecture (with no restrictions)
has been verified, is 3, i.e., the room. In this chapter we will present a geo-
metrical proof for the case R

2 and a combinatorial one for R
3 (it is obvious

that Borsuk’s Conjecture holds for R
1).

5.1 The Assertion of Borsuk’s Conjecture in R
2

In this section we will present the validity of Borsuk’s Conjecture for planar
bodies. The proof was given by Borsuk himself in 1933. For this purpose
he used a lemma, proved by Pal in 1920, stating that every body in R

2 with
diameter d can be surrounded by a regular hexagon whose opposite sides are
at distance d. Then he showed that it is possible to partition such a hexagon
into three parts, each of diameter less than d. We begin by proving this
lemma:

Lemma 44 (Pal, 1920). Every plane set F of diameter d can be enclosed in
a regular hexagon whose opposite sides are at distance d (figure 7).

d

Figure 7

Proof. We may without loss of generality assume that F is topologically
closed, i.e. F contains its boundary. Take an arbitrary line l that does not
intersect the set F and move it closer to F while keeping it parallel to its
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original direction, until it touches F (figure 8). The resulting line l1 has at
least one point in common with F and the whole set F lies on one side of
l1. Such a line is called the support line of F . Let us draw a second support
line l2, parallel to l1 (figure 8). Clearly, the whole set F will lie in the strip
between the lines l1 and l2, and the distance between the lines is at most d,
since the diameter of F is d.

l1

F l2

l

Figure 8

Now, draw two support lines, m1 and m2, at an angle of 60 ◦ to l1 (figure 9).
The lines l1, l2, m1 and m2 form a parallelogram ABCD with angle 60 ◦ and
heights at most d, surrounding the set F .

Next, draw two support lines, p1 and p2, at an angle of 120 ◦ to l1, and
denote by M and N the bases of the perpendiculars dropped on these lines
from the ends of the diagonal AC (figure 9). We shall show that the direction
of l1 can be chosen so that AM = CN . Indeed, suppose AM �= CN , say
AM < CN . Then the value y = AM − CN is negative.

Now, we rotate l1 through 180 ◦ (the set F is kept fixed). The remaining lines
l2, m1, m2, p1 and p2 will also change their positions (since their positions de-
pend on the choice of l1). Therefore, as l1 rotates, the points A, C, M and N
will continuously move and continuously vary the value of y = AM − CN .
But when the line l1 has rotated through 180 ◦, it will lie in the position
formerly occupied by l2. Hence, we shall obtain the same parallelogram as in
figure 9 with the point A and C, and also M and N , reversed. Consequently,
y will be positive. If we now plot the graph of the rotation of l1 from 0 ◦ to
180 ◦ (figure 10), we see that y is 0 for some position of l1, i.e. AM = CN
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l1

F

l2

B D

C

m2

m1

A

N

M

p2

p1

60

Figure 9

(since as y continuously changes from negative to positive, it must at same
point be 0). We shall examine the positions of all our lines when y = 0

90O

y

x
180

Figure 10

(figure 11). The equality AM = CN implies that the hexagon formed by
the lines l1, l2, m1, m2, p1 and p2 is centrally symmetric. Each angle of this
hexagon is 120 ◦, and the distance between opposite sides is at most d. If the
distance between the lines p1 and p2 is less than d, we shall move them apart
(moving each the same distance) until the distance equals d. We then move
the lines l1, l2 and m1, m2 in exactly the same way. We thereby obtain a cen-
trally symmetric hexagon (with angles 120 ◦) with opposite sides at distance
d from each other (the dotted hexagon in figure 11). From the above it is
clear that all the sides of the hexagon are equal, i.e., the hexagon is regular
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l1

F l2

B

D

C

m2

m1

A,MN

p2

p1

Figure 11

with set F lying inside it.

Theorem 45 (Borsuk, 1933). Let F be a body (set of points) in R
2 with

diameter d. Then F can always be partitioned into 3 parts, each of diameter
less than d.

O

L

PQ

R

Figure 12

Proof. Since every body F ⊂ R
2 with diameter d can be surrounded by

a regular hexagon, whose opposite sides are at distance d, (Lemma 44) it
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suffices to show that such a hexagon can be partitioned into three parts each
of diameter less than d. The required partition is shown in figure 12 (the
points P , Q and R are the centres of the sides and O is the centre of the
hexagon). The diameter of each part is less than d since, e.g., in the triangle
PQL, the angle Q is a right angle. Therefore, PQ < PL = d. Because,
the distance PQ is equal to the diameter of all three parts, this proves the
theorem.

A similar proof for bodies in R
3 was given by Grünbaum in 1957. According

to a lemma proved by the American mathematician Gale in 1953, every 3-
dimensional body of diameter d can be surrounded by a octahedron whose
opposite faces are at distance d. Grünbaum then proved that every such
octahedron can be partitioned into 4 parts, each of diameter less than d
(≈ 0.9888d). For the complete proof, see Boltjansky and Gohberg [RPCM].

5.2 The Assertion of Borsuk’s Conjecture in R
3

In this section we will prove that a finite set of points P in R
3 can be

partitioned into at most 4 parts of less diameter. We begin with a definition:

Definition 46. Let A be a finite set of points in R
3. The maximum distance

between the points in A is defined to be

max{d(p, q) : p, q ∈ A} (47)

where d(p, q) is the Euclidean distance between the points p and q.

Before proceeding with the proof we need the following theorem, conjectured
by Vzsonyi and proved independently by Grünbaum, Heppes and Steraze-
vicz.

Theorem 47 (Grünbaum, 1956; Heppes, 1956; Sterazevicz, 1957). Let fmax
3 (n)

denote the maximum number of times the maximum distance can occur among
n points in R

3. Then
fmax

3 (n) = 2n − 2 (48)
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for every n ≥ 4.

Proof. We prove this by induction. Equality (48) holds for n = 4, where the
points are the vertices of the regular tetrahedron. First, we prove that

fmax
3 ≤ 2n − 2 (49)

Assume that it has already been proven for every integer smaller than n. Fix
a set P of n points in R

3 whose diameter d = 1. Connect a pair of elements
of P by a line segment if their distance is 1. This means that two points are
adjacent if they are at distance 1. By fP (n) we mean the number of times
distance 1 occurs in the set P of n elements. Then obviously we want to
show that

fP (n) ≤ 2n − 2 for every P ⊂ R
3 (50)

We consider two cases:

First, let us assume that there is a point p ∈ P which is connected to at
most two other elements of P . For the set P − {p} (consisting of n − 1
elements), we have

fP\{p} ≤ fmax
3 (n − 1) ≤ 2(n − 1) − 2 = 2n − 4 (51)

Since p is connected to no more than two elements

fP ≤ fP\{p} + 2 ≤ 2n − 4 + 2 = 2n − 2 (52)

Now, let us assume that every element of P is adjacent to at least three
points. Considering the correspondence between adjacency and maximum
distance, it is easy to see that every point of P is a vertex of the convex hull
of P . Draw a unit ball B(p) around each point p ∈ P , and set

C =
⋂
p∈P

B(p) (53)

Obviously, C is a convex set (a spherical polytope) bounded by spherical
“faces” and circular arcs (“edges”) separating them. Let V, F and E denote
the number of vertices, faces and edges of C, respectively. Notice that F = n,
because each B(p) contributes exactly one face to the boundary of C. On
the other hand, V ≥ n, where strict inequality holds if C has a vertex not
belonging to P .
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Every vertex x of C is incident with at least three edges of C. Further-
more, if x ∈ P , then the number of edges of C incident with x is equal to the
number of points q ∈ P with |x−q| = 1. For example consider that the points
q1, q2, q3, q4 are at distance 1 from the point x. The unit balls surrounding
q1, q2, q3, q4 define four sides s1, s2, s3, s4, respectively and they intersect in
the point x. These sides intersect pairwise in four circular “edges” (figure
13).

x

s
2

s
3

s
4

s
1

Figure 13

Double-counting the edges of C, we obtain

2fP + 3(V − n) ≤ 2E (54)

where 3(V − n) denotes the number of edges determined by the vertices of
C which are not in P .

By Euler’s polyhedral formula (Theorem 25)

V − E + F = 2 (55)

Thus,

2fP ≤ 2E − 3(V − n) = 2(V + F − 2) − 3(V − n) =

= 2(n + F − 2) − (V − n) ≤ 2(n + n − 2) − 0 = 2(2n − 2) (56)
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Figure 14

as required. The last inequality follows by the fact that V ≥ n.

Thus from equations (52) and (56) we obtain

fmax
3 (n) = max fP (n) ≤ 2n − 2 (57)

Figure 14 shows that
fmax

3 (n) ≥ 2n − 2 (58)

for n = 8. It is easy to see that inequality (58) holds for every n. Equations
(57) and (58) gives us the desired result

fmax
3 = 2n − 2 (59)

Theorem 48. Let P be a finite set of points in R
3. Then P can be partitioned

into at most 4 subsets of smaller diameter.

Proof. We prove this by induction. Let |P | = n. For n ≤ 4, the assertion is
obvious. Let n > 4 and assume that the assertion is true for every set of size
at most n − 1.

Now, think of the points of P as the vertices of a graph. Also, let two
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points be adjacent if and only if their distance is equal to the diameter of
P . It follows from Theorem 47 that the resulting graph has a vertex p of
degree at most 3. By the induction hypothesis, we can partition P − {p}
into 4 parts P1, P2, P3, P4, where diam Pi < diam P (1 ≤ i ≤ 4). So, there
exists an index i such that p is not adjacent to any element of Pi. Hence,
diam (Pi ∪ {p}) < diam P . Put i = 1 and the partition of P into 4 parts of
less diameter is given by

(P1 ∪ {p}) ∪ P2 ∪ P3 ∪ P3 (60)

Once again, we have observed the beauty of solving a geometrical problem
combinatorially. For a similar proof for bodies in R

2, see Pach and Agarwal
[CM].
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6 Borsuk’s Conjecture for Bodies in R
n

As we saw in Section 4, Borsuk’s Conjecture is generally not true. It has not
even been proven for bodies in R

4. However, in some special cases, the con-
jecture is true in R

n. In this chapter we will present Hadwiger’s proof of the
assertion of Borsuk’s Conjecture for convex bodies with smooth boundaries
in R

n. But first we need the following theorem:

Definition 49. An n-dimensional sphere is a set of points in R
n each having

a fixed distance r to a point C called the center of the sphere. A ball is a
sphere together with all of its interior points.

Theorem 50. Every n-dimensional ball E with diameter d can be partitioned
into n + 1 pieces, each of diameter less than d.

Proof. For the proof, see Boltjansky and Gohberg [RPCM].

Theorem 51 (Hadwiger, 1946). Every n-dimensional convex body with smooth
boundary and diameter d can be partitioned into n + 1 parts of diameter less
than d.

Proof. Let F be any n-dimensional convex body with smooth boundary hav-
ing diameter d. Consider also an n-dimensional ball E having the same
diameter d, and construct some partition of this ball E into n + 1 parts
M0, M1, . . . , Mn, each of diameter less than d. We now construct a partition
of the boundary G of the body F into n + 1 sets N0, N1, . . . , Nn.

Let A be an arbitrary boundary point of F . Draw the tangential hyperplane
of F passing through A (this is, by Definition 31, unique), and draw parallel
to it the tangential hyperplane of the ball E, so that the body F and the ball
E lie on the same side of these hyperplanes (figure 15). Denote by f(A) the
point at which the second hyperplane touches the ball E. We shall consider
the point A belonging to the set Ni if the corresponding point f(A) belongs
to the set Mi (i = 0, 1, . . . , n). Consequently, the whole boundary G of the
body F is partitioned into n + 1 sets N0, N1, . . . , Nn.

We shall prove, by contradiction, that each of the sets N0, N1, . . . , Nn has
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A
f(A)

F E

Figure 15

diameter less than d. Assume that a certain set Ni has diameter d and let A
and B be two points of the set Ni at distance d from each other. Construct
two hyperplanes ΓA, ΓB passing through the points A and B perpendicular
to the segment AB. Clearly, F lies in the region between these hyperplanes
(otherwise the diameter of F would be greater than d), i.e., ΓA and ΓB are
tangential hyperplanes of F , passing through A and B. These tangential
planes being parallel implies that the corresponding points f(A) and f(B)
are at distance d. On the other hand, as A and B belong to the set Ni, the
points f(A) and f(B) also belong to Mi and, therefore, the distance between
f(A) and f(B) is less than d. This contradiction shows that none of the sets
N0, N1, . . . , Nn has diameter d.

Now let O be an arbitrary interior point of F . For any i = 0, 1, . . . , n,
we shall denote by Pi the “cone” with apex O and curvilinear base the set
Ni. Clearly, the constructed “cones” P0, P1, . . . , Pn fill the whole body F ,
i.e., we have obtained a partition of F into n + 1 parts. Furthermore, it is
clear that each of the sets Pi has diameter less than d (because the diameter
of the “base” Ni is less than d). Hence, the constructed partition divides the
body F into n + 1 parts of diameter less than d, proving the theorem.
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