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1. Special Functions

When I hear the expression ”special function”, functions like the log-
arithm, the exponential and the trigonometric come up into my mind.
But of course there are many more, like the ones that are described
here .
In fact special functions are those functions which have a good rela-
tion with physics, and which belong to applied mathematics. These
functions have many useful properties that come from their connection
with the partial differential equations of mathematical physics.
Orthogonality is one of most important properties that some of these
functions have. The orthogonality of cos x is for example the foundation
of the theory of Fourier series, and similar theories may be developed
for other special functions.
This branch of mathematic has a history with great names such as Eu-
ler, Gauss, Fourier, Legendre and many other.
In this paper we are going to describe Legendre polynomials and their
most important properties.

1
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2. Legendre Polynomials

Legendre functions are solutions to Legendre’s differential equation:

d

dx
[(1− x2)

d

dx
p(x)] + n(n + 1)p(x) = 0 (2.1)

They are named after Adrian-Marie Legendre(1752-1833).
This ordinary differential equation is frequently encountered in physics

and other technical fields. In particular, it occurs when solving Laplace’s
equation and related partial differential equations in spherical coordi-
nates (see section 3).
The Legendre differential equation may be solved using the power se-
ries method. The solution is finite (i.e the series converges) provided
|x| < 1. Furthermore, it is finite at x = ±1 provided n is a non negative
integer. In this case the solutions form a polynomial sequence called
the Legendre polynomials. Each Legendre polynomial pn(x) is a nth
degree polynomial.

3. Solution Of Legendre’s Equation Via Power Series

3.1. Legendre Functions: We will use Laplace’s equation later, so
we will first describe it shortly here.

3.1.1. Laplace’s Equation. Laplace’s equation in cartesian coordinates
is

∂ϑ2

∂x2
+

∂ϑ2

∂y2
+

∂ϑ2

∂z2
= 0.

Laplace’s equation in ordinary spherical coordinates r, θ, Φ is

52φ =
1

r2

∂

∂r
(r2∂φ

∂r
) +

1

r2 sin(θ)

∂

∂θ
(sin(θ)

∂φ

∂θ
) +

1

r2 sin2(θ)
(
∂2φ

∂Φ2
) = 0

(3.1)

Taking the axis of symmetry over the angle Φ so that ∂2φ
∂Φ2 = 0, Laplace’s

equation reduces to

∂

∂r
(r2∂φ

∂r
) +

1

sin θ

∂

∂θ
(sin θ

∂φ

∂θ
) = 0 (3.2)

We solve it by separation of variables, and then the solution will be as
follows:
φ(r, θ) = A(r)B(θ).
Differentiating this with respect to r and θ, evaluating the Laplacian
of this and dividing through by A(r)B(θ) gives

r2A′′(r)

A(r)
+ 2r

A′(r)

A(r)
+

B′′(θ)

B(θ)
+

cos θ

sin θ

B′(a)

B(θ)
= 0. (3.3)

But r and θ are independent variables therefore this equation is true
only if

r2 A′′(r)
A(r)

+ 2rA′(r)
A(r)

and B′′(θ)
B(θ)

+ cos θ
sin θ

B′(θ)
B(θ)

are constants.
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Letting µ = r2 A′′(r)
A(r)

+2rA′(r)
A(r)

and −µ = B′′(θ)
B(θ)

+ cos θ
sin θ

B′(θ)
B(θ)

, we have the

two separate differential equations

r2A′′(r) + 2rA′(r)− µA(r) = 0 (3.4)

sin θB′′(θ) + cos(θ)B′(θ) + µ sin(θ)B(θ) = 0. (3.5)

A solution of (3.4) is A(r) = rn if µ = n(n + 1). A solution of (3.5), if
n = 1, is B(θ) = cos(θ) with µ = n(n + 1) = 2.
The function φ(r, θ) = r cos(θ) is then a solution of Laplace’s equation,
corresponding to n = 1. We take this as a hint, and consider now the
solutions of (3.5)that are functions of the form

B(θ) = Pn(cos(θ)) (3.6)

Inserting (3.6) in (3.5), and dividing by sin θ, we get

n(n + 1)Pn(cos θ) +
(
sin θ)2P ′′

n (cos θ)
)
− 2 cos θP ′

n(cos θ) = 0 (3.7)

Replacing cos(θ) with x, and noting that (sin θ)2 = 1 − (cos θ)2, this
becomes

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0. (3.8)

Replacing Pn(x) with y and λ = n(n + 1) we get

(1− x2)y′′ − 2xy′ + λy = 0 (3.9)

This equation is called Legendre’s equation, where x = cos θ ranges
from -1 to +1, and we will be interested in the solutions y(x) on
−1 ≤ x ≤ 1. However, there might be some other context which could
produce this ODE, and then one will need to also consider possible use
of solutions for |x| > 1, but assume for now that we only require y(x)
for |x| ≤ 1.

Note that the usual boundary conditions are that y(x) should remain
finite at the endpoints x = 1 and x = −1 (corresponding to θ = 0 and
θ = π).
Since the equation is analytic around x= 0, we can use the standard
power series method to determine solutions for this ODE, as follows:

y(x) =
∞∑

j=0

ajx
j

y′(x) =
∞∑

j=1

jajx
j−1

y′′(x) =
∞∑

j=2

j(j − 1)ajx
j−2
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and upon substitution of these series into the original equation, we get
∞∑

j=2

j(j − 1)ajx
j−2 −

∞∑
j=0

[j(j + 1)− λ]ajx
j = 0

or
∞∑

j=0

[(j + 2)(j + 1)aj+2 − (j(j + 1)− λ)aj]x
j = 0

The last equation produces the recurrence relation:

aj+2 =
j(j + 1)− λ

(j + 2)(j + 1)
aj (3.10)

for j = 0 we have:

a2 =
−λ

2
a0 (3.11)

for j = 1 we have

a3 =
2− λ

3× 2
a1 =

2− λ

6
a1 (3.12)

for j = 2 we have

a4 =
(2× 3)− λ

4× 3
a2 =

6− λ

12
.
−λ

2
a0 (3.13)

for j = 3 we have

a5 =
(3× 4)− λ

5× 4
a3 =

12− λ

20
.
2− λ

6
a1 (3.14)

and so on...
It is clear that every even subscripted coefficient is a multiple of a0 and
every odd coefficient is multiple of a1.
I mean that a0 determines a2 which determines a4, a6... and a1 deter-
mines a3 which determines a5, a7...
Now if we let a0 = 1, a1 = 0 we get the solution:

y1(x) = 1 +
∞∑

k=1

a2kx
2k (3.15)

If we let a0 = 0, a1 = 1 we get the solution:

y2(x) = 1 +
∞∑

k=1

a2k+1x
2k+1 (3.16)

We see that y1(x) and y2(x) are linearly independent so the general
solution for Legendre Equation can be written as

y(x) = a0y1(x) + a1y2(x)

where y1(x) contains only even powers of x, while y2(x) contains only
odd powers of x.
We now use the ratio test to check that Legendre series converge.
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3.1.2. Ratio Test. We examine the limits of the ratio of two successive
terms. We find that:

lim
k→∞

|ak+2x
k+2

akxk
| = lim

k→∞
|ak+2

ak

|x2

and from equation (3.10) we have

ak+2

ak

=
k(k + 1)− λ

(k + 2)(k + 1)
=

k2 + k − λ

k2 + 3k + 2
−→ 1

when k →∞.
And thus we see that

limk→∞|
ak+2

ak

|x2 = x2

and so the series converges when |x| < 1.

3.2. Polynomial Solutions. From the recurrence relation it is clear
that the separation parameter λ affects the value of all but the first
coefficients in y1(x) and y2(x). The infinite series may diverge at |x| =
1, but we can get convergent series solutions if we allow the separation
parameter λ, to take on special values such that the series terminate.

A terminating series will be obtained if we take λ = n(n + 1) where
n is any positive integer.

Then we have the Legendre equation:

(1− x2)y′′(x)− 2xy′ + n(n + 1)y = 0 (3.17)

and the recurrence relation:

a(j+2) =
j(j + 1)− n(n + 1)

(j + 2)(j + 1)
aj. (3.18)

If n is any even integer, the solution y1(x) becomes a polynomial of
degree n since an+2 = 0 and consequently an+4 = an+6 = .... = 0.

Thus we have:

y1(x) = a0 + a1x
2 + a2x

4 + ..... + anx
2n

and y2(x) remains an infinite series.
But for an odd integer n, y2(x) becomes a polynomial:

y2(x) = a1x + a2x
3 + a3x

5 + ..... + anx
2n−1

while y1(x) remains an infinite series.

3.3. Legendre Polynomial. We finish determining the series solution
for the Legendre equation, in the case where λ = n(n + 1) with an
integer n, by describing more explicitly the general term.
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3.3.1. Even Series. We have for an even integer n the solution y1(x):

y1(x) =
∞∑

k=0

akx
2k (3.19)

and the recurrence formula:

ak+1 =
2k(2k + 1)− n(n + 1)

(2k + 1)(2k + 2)
ak. (3.20)

We know that

x(x+1)−y(y+1) = x2−y2+x−y = (x+y)(x−y)+(x−y) = (x−y)(x+y+1))

and using this on the numerator,we can write the recurrence relation
as:

ak+1 =
(2k − n)(2k + n + 1)

(2k + 1)(2k + 2)
ak = −(n− 2k)(n + 2k + 1)

(2k + 1)(2k + 2)
ak

and continue in this way

ak = −(n− 2k + 2)(n + 2k − 1)

(2k − 1)(2k)
ak−1

=
[
− (n− 2k + 2)(n + 2k − 1)

(2k − 1)(2k)

][
− (n− 2k + 4)(n + 2k − 3)

(2k − 3)(2k − 2)

]
. . .

. . .
[
− n(n + 1)

(1)(2)
a0

]
= (−1)k 1

(2k)!

[
(n− 2k + 2)(n− 2k + 4) · · · (n− 2)n(n + 1)(n + 3) . . .

. . . (n + 2k − 3)(n + 2k − 1)
]
a0

But we know that the series will terminate at the mth term for n = 2m
(from the recurrence formula (3.20) if n = 2m then a(m+1) = 0), so we
have the following description of the general term:

ak = (−1)k 1

(2k)!
.(2m+2k−1)(2m+2k−3) . . . (2m+3)(2m+1)2m(2m−2) . . .

. . . (2m− 2k + 2)a0

=
(−1)k

(2k)!
.
(2m + 2k − 1)!!

(2m− 1)!!
.

(2m)!!

(2m− 2k)!!
a0

and so

y1(x) =
(2m)!!

(2m− 1)!!
a0

m∑
k=0

(−1)k(2m + 2k − 1)!!

(2k)!(2m− 2k)!!
x2k

(here we use m!! = m(m− 2)(m− 4)....).
To get the standard normalization choose a0 so that

(2m)!!

(2m− 1)!!
a0 = (−1)m



LEGENDRE POLYNOMIALS AND THEIR APPLICATIONS 7

Now we can reverse the order of terms in the sum. Letting k = m− l
yields

y1(x) = (−1)m

m∑
l=0

(−1)m−l(4m− 2l − 1)!!

(2m− 2l)!(2l)!!
x2m−2l

=
m∑

l=0

(−1)l

2ll!(2m− 2l)!
.
(4m− 2l)!

(4m− 2l)!!
x2m−2l

=
m∑

l=0

(−1)l

2ll!(2m− 2l)!
.

(4m− 2l)!

22m−l(2m− l)!
x2m−2l

The last formula gives the 2mth Legendre polynomial:

p2m(x) =
m∑

l=0

(−1)l(4m− 2l)!

22ml!(2m− 2l)!(2m− l)!
x2m−2l

3.3.2. Odd Series. The above formula is for even series but in similar
way, for an odd integer n = 2m + 1, the odd series will terminate with
b2m+2 = 0. And we have for the other Legendre solution namely y2(x):

y2(x) =
∞∑

k=0

bkx
2k+1,

bk+1 =
(2k + 1)(2k + 2)− n(n + 1)

(2k + 2)(2k + 3)
bk

bk+1 =
(2k + 1− n)(2k + 1 + n + 1)

(2k + 2)(2k + 3)
bk

=
(2k − 2m)(2k + 2m + 3)

(2k + 2)(2k + 3)
bk

or:

bk =
(2k − 2m− 2)(2k + 2m + 1)

(2k)(2k + 1)
bk−1 = −(2m− 2k + 2)(2m + 2k + 1)

(2k)(2k + 1)
bk−1

=
[
−(2m− 2k + 2)(2m + 2k + 1)

2k(2k + 1)

][
−(2m− 2k + 4)(2m + 2k − 1)

(2k − 2)(2k − 1)

]
. . .

. . .
[
− 2m(2m + 3)

(2)(3)

]
b0

we can write this more compactly as:

bk =
(−1)k

(2k + 1)!
(2m+2k +1)(2m+2k− 1) . . . (2m+3)(2m)(2m− 2) . . .

. . . (2m−2k+4)(2m−2k+2)b0 =
(−1)k

(2k + 1)!

(2m + 2k + 1)!!

(2m + 1)!!

(2m)!!

(2m− 2k)!!
b0

This term gives the odd solution, and we can write y2(x) as:

y2(x) =
m∑

k=0

bkx
2k+1 =

(2m)!!

(2m + 1)!!
b0

m∑
k=0

(−1)k(2m + 2k + 1)!!

(2k + 1)!(2m− 2k)!!
x2k+1
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To get the standard normalization we choose b0 so that (2m)!!
(2m+1)!!

b0 =

(−1)m.
We replace k with m− l, which yields:

y2(x) = (−1)m

m∑
l=0

(−1)m−l(4m− 2l + 1)!!

(2m− 2l + 1)!(2l)!!
x2m−2l+1

=
m∑

l=0

(−1)l

(2m− 2l + 1)!2ll!
.
(4m− 2l + 2)!

(4m− 2l + 2)!!
x2m−2l+1

=
m∑

l=0

(−1)l

(2m− 2l + 1)!2ll!
.

(4m− 2l + 2)!

22m−l+1(2m− l + 1)!
x2m−2l+1.

This is the 2(m + 1)th Legendre polynomial P2m+1(x) :

P2m+1 =
m∑

l=0

(−1)l(4m− 2l + 2)

22m+1l!(2m + 1− 2l)!(2m + 1− l)!
x2m+1−2l.

We compare this relation with previous result for P2m(x), and we see
that for any odd or even integer n, by replacing m with n/2 for the
even series and 2m + 1 with n for the odd series, the nth Legendre
polynomial can be written as:

Pn(x) =
1

2n

[n/2]∑
l=0

(−1)l.(2n− 2l)!

l!(n− 2l)!(n− l)!
xn−2l

where:
[n/2] = n

2
if n is even,

and [n/2] = (n−1)
2

if n is odd.
We see that the nth Legendre polynomial Pn is a polynomial of

degree n. If n is an even integer, the above derivation clearly shows
that the polynomial is an even function of x, while if n is an odd
integer, Pn is an odd function. Thus Pn(−x) = (−1)nPn. For the
values of the parameter λ = n(n + 1) the Legendre polynomial is a
solution of Legendre equation which is finite for all x.

The first few polynomials are:

P0(x) = 1

P1(x) =
1× 2!

2× 1× 1
x = x

P2(x) =
1× 4!

4× 1× 2!× 2!
x2 +

(−1)2!

4× 1× 1× 1
x0 =

1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)
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4. Generating Function

Let fn(x) be a sequence of functions. A function F (x, t) is said to
be a generating function of fn(x) if F (x, t) =

∑∞
n=0 fn(x)tn.

The idea of generating functions is that these functions contain all the
sequence, and so these functions can be used in a comprehensive way
to find solutions for in example combinatoric problems or differential
equations. The generating function for the sequence of Legendre poly-
nomials Pn(x) is given in the following:

Theorem 1. (Generating Function)

(1− 2xt + t2)
−1
2 =

∞∑
n=0

Pn(x)tn (4.1)

Proof. We will prove that |2xt−t2| < 1 so that we can expand the right
hand side using the binomial theorem. If |x| ≤ r where r is arbitrary,

and |t| < (1 + r2)
−1
2 − r then it follows that

|2xt−t2| ≤ 2|x||t|+|t2| < 2r(1+r2)
−1
2 −2r2+1+r2+r2−2r(1+r2)

1
2 = 1

and hence we can expand (1− 2xt + t2)
−1
2 binomially as follows.

We know that the binomial formula is given by:

(1 + x)r =
∞∑

k=0

(
r

k

)
1kxr−k where |x| < 1

Here when r is not an integer, then the coefficients are given by:(
r

k

)
=

1

k!

k−1∏
r=0

(r − n) =
r(r − 1)(r − 2) . . . (r − k + 1)

k!
(4.2)

Our function
(
1+(t2−2xt)

)−1
2 has r = −1

2
which is not an integer and

thus the coefficients will be given by:

(
−1

2

n

)
=

1

n!

n−1∏
k=0

(−1

2
− k) =

−1
2
(−1

2
− 1)(−1

2
− 2) . . . (−1

2
− n + 1)

n!
=

−1
2
.(−1

2
.3)(−1

2
.5) . . . (−1

2
(2n− 1))

n!
=

(−1
2
)n(2n− 1)!!

n!
=

(−1)n(2n− 1)!!

2nn!
We have by using (4.2)

(1 + (t2 − 2xt))
−1
2 =

∞∑
n=0

(−1)n(2n− 1)!!

2nn!
(t2 − 2tx)n
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We expand(t2 − 2tx)n binomially again:

(t2 − 2tx)n =
n∑

k=0

(
n

k

)
(−2tx)n−kt2k =

n∑
k=0

n!

k!(n− k)!
(−2tx)n−kt2k

or

(1− 2tx + t2)
−1
2 =

∞∑
n=0

n∑
k=0

(−1)k (2n)!

2nn!2nn!

n!

k!(n− k)!
(2x)n−ktn+k

=
∞∑

n=0

n∑
k=0

(−1)k (2n)!

22nn!k!(n− k)!
(2x)n−ktn+k (4.3)

Let us relate this to generating functions. The generating function of
the Legendre polynomials Pn(x) is

g(t, x) =
∞∑

n=0

Pn(x)tn

As we see above that we have the double sum
∑∞

n=0

∑∞
k=0 an,k, where

an,k = (−1)k (2n)!

22nn!k!(n− k)!
(2x)n−ktn+k (4.4)

are terms that each is correspond with tn+k.
The inner sum in the double sum is represented by the vertical lines

of the array:

an,k =



a00 a10 a20 a30 a40 . . .
a11 a21 a31 a41 . . .

a22 a32 a42 . . .
a33 a43 . . .

a44 . . .
...

...
. . .


We can rearrange the sum of the an,k in other ways, for instance by
grouping the terms which have the same powers of t together, that is
n + k is constant.

Thus we can group the terms which have the same values (n+k), and
get the double sum as ank:

∞∑
n=0

n∑
k=0

an,k =
∞∑

n=0

[n/2]∑
k=0

an−k,k
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By using this sum, we write the generating function as:

[1− 2xt + t2]−1/2 =

=
∞∑

n=0

[n/2]∑
k=0

(−1)k (2n− 2k)!(2x)n−2k

22n−2k(n− k)!k!(n− 2k)!
tn

=
∞∑

n=0

[
1

2n

[n/2]∑
k=0

(−1)k (2n− 2k)!xn−2k

(n− k)!k!(n− 2k)!

]
tn

We see that the term in brackets is just the same as our representation
for the Legendre polynomial Pn(x).
Thus we have proved that :

(1− 2xt + t2)
−1
2 =

∞∑
n=0

Pn(x)tn

where g(t, x) = (1 − 2xt + t2)
−1
2 is the generating function for the

Legendre polynomials. �

5. Recurrence Relations

The generating function can be used to devise various relationships
among the set of the polynomials Pn(x).

Consider differentiating with respective to t:

∂g(t, x)

∂t
=

x− t(
1− 2xt + t2

)3/2
=

∞∑
n=0

nPn(x)tn−1

By using formula (4.1) this can be written as:

x− t

(1− 2xt + t2)

∞∑
n=0

Pn(x)tn =
∞∑

n=0

nPn(x)tn−1

or:

∞∑
n=0

Pn(x)(t− x)tn +
∞∑

n=0

nPn(x)(1− 2xt + t2)tn−1 = 0

which can be reformulated as:
∞∑

n=0

Pn(x)tn+1 − x

∞∑
n=0

Pn(x)tn +
∞∑

n=0

nPn(x)tn−1

−2x
∞∑

n=0

nPn(x)tn +
∞∑

n=0

nPn(x)tn+1 = 0

If we shift all indexes so that all powers of t have the same degree, we
find:
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∞∑
n=0

Pn−1(x)tn − x
∞∑

n=0

(2n + 1)Pn(x)tn +
∞∑

n=0

(n + 1)Pn+1(x)tn+

+
∞∑

n=0

(n− 1)Pn−1(x)tn = 0

which means that:

−x(2n + 1)Pn(x) + nPn−1(x) + (n + 1)Pn+1(x) = 0 (5.1)

Now we will rewrite the last equation as the following theorem:

Theorem 2. The following relation:

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (5.2)

is true and gives the Legendre polynomials, by starting with P0(x) = 1,
P1(x) = x.

We see that this recurrence relation connects three Legendre polyno-
mials with consecutive indices.By using this theorem we can calculate
the Legendre polynomials step by step, starting from
P0(x) = 1, P1(x) = x.

Example:
We use the recurrence relation to obtain the first four Legendre poly-

nomials using that P0(x) = 1, P1(x) = x
Put n=0,1,2,3,4 in the recurrence relation to obtain

P1 − xP0 = 0 ⇒ P1(x) = x

2P2 − 3xP1 + P0 = 0 ⇒ P2(x) =
1

2
(3x2 − 1)

3P3 − 5xP2 + 2P1 = 0 ⇒ P3(x) =
1

3
[−2x +

5

2
x(3x2 − 1)] =

1

2
(5x3 − 3x)

4P4 − 7xP3 + 3P2 = 0 ⇒ P4(x) =
1

4
[−3

2
(3x2 − 1) +

7

2
(5x3 − 3x)] =

=
1

8
(35x4 − 30x2 + 3)

One can devise another recursion relation, by differentiating g(t, x)
with respect to x

∂g(t, x)

∂x
=

t

(1− 2xt + t2)3/2
=

∞∑
n=0

P ′
n(x)tn

which can be reformulated as:

t

(1− 2xt + t2)

∞∑
n=0

Pn(x)tn =
∞∑

n=0

P ′
n(x)tn
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−
∞∑

n=0

Pn(x)tn+1 +
∞∑

n=0

P ′
n(x)(1− 2xt + t2)tn = 0

or

−
∞∑

n=1

Pn−1(x)tn +
∞∑

n=0

P ′
n(x)tn − 2x

∞∑
n=1

P ′
n−1(x)tn +

∞∑
n=2

P ′
n−2(x)tn = 0

We can write the last equation in this way:

Pn−1(x) = P ′
n(x)− 2xP ′

n−1(x) + P ′
n−2(x)

for n ≥ 2
or:

Pn(x) = P ′
n+1(x)− 2xP ′

n(x) + P ′
n−1(x)

for n ≥ 1
This equation can be combined with the first recursion relation to

give another beautiful form:

Theorem 3. P ′
n+1(x)− P ′

n−1(x) = (2n + 1)P ′
n(x)

and also others, such as:

Theorem 4. (2n + 1)(1− x2)P ′
n(x) = n(n + 1)

(
Pn−1(x)− Pn+1(x)

)
6. Special Values Of Pn(x)

Theorem 5. (i) Pn(1) = 1
(ii) Pn(−1) = (−1)n

(iii)

Pn(0) =

{ (2n)!
22n(n!)2

if n is even

0 if n is odd

Proof. (i) By setting x = 1 in equation (1−2xt+t2)
−1
2 =

∑∞
n=0 tnPn(x),

∞∑
n=0

tnPn(1) = (1− 2t + t2)
−1
2 = (1− t)−1 =

∞∑
n=0

tn

so that, by equating the coefficients of tn, Pn(1) = 1.

(ii) Similarly,

∞∑
n=0

tnPn(−1) = (1 + 2t + t2)
−1
2

= (1 + t)−1 =
∞∑

n=0

(−1)ntn

leading to Pn(−1) = (−1)n.



14 MATILDA KAPRO

(iii) Finally,

∞∑
n=0

tnPn(0) = (1 + t2)
−1
2 =

∞∑
n=0

(−1)n (2n)!

22nn!n!
t2n

giving for even integers (n = 2m)

P2m(0) =
(2m)!

22m(m!)2

and for odd integers (n = 2m + 1)

P2m+1(0) = 0.

�

7. Orthogonality Of the Legendre Polynomials

Definition 1. A system of real functions fn(x) (n=0,1,2,3,....) is said
to be orthogonal with weight f(x) on the interval [a, b] if :∫ b

a

fm(x)fn(x)f(x)dx = 0

for every n 6= m and f(x) is a fixed nonnegative function which does
not depend on n or m.

Example:
The function cos nx are orthogonal with weight 1 on [0, π] because:∫ π

0
cos mx cos nxdx = 0 (n 6= m).

The orthogonality property is important because the functions with
this property can often used to expand arbitrary functions in an infi-
nite series expansion.An example is the Fourier series expansion of a
functionf(x) =

∑∞
n=1 an sin nx where an is the expansion coefficients.

A similar property holds for the Legendre polynomials. One of the most
important properties of Legendre polynomials is their orthogonality on
[−1, 1].

Theorem 6. (i) If m 6= n, then
∫ 1

−1
Pm(x)Pn(x)dx = 0

(ii) For each n, we have
∫ 1

−1
P 2

n(x)dx = 2
2n+1

Proof. (i) Let Pm(x) and Pn(x) be two polynomials which satisfy
Legendre’s equation.

We have for m 6= n:

(1− x2)P ′′
m − 2xP ′

m + m(m + 1)Pm = 0 (7.1)

(1− x2)P ′′
n − 2xP ′

n + n(n + 1)Pn = 0 (7.2)

Multiply (7.1) by Pn(x) and (7.2) by Pm(x) and subtract the
resultant expression giving
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(1− x2)(PnP
′′
m − PmP ′′

n )− 2x(PnP
′
m − PmP ′

n)+

+[m(m + 1)− n(n + 1)]PmPn = 0 (7.3)

But
d

dx

(
PnP

′
m− PmP ′

n

)
= PnP

′′
m + P ′

nP
′
m− P ′

mP ′
n− PmP ′′

n = PnP
′′
m− PmP ′′

n

therefore, (7.3) reduces to:

(1−x2)
d

dx

(
PnP

′
m−PmP ′

n

)
−2x

(
PnP

′
m−PmP ′

n

)
= [n(n+1)−m(m+1)]PmPn.

We can continue by writing the left hand side as:

d

dx

[
(1− x2)(PnP

′
m − PmP ′

n)
]
,

and therefore:

d

dx

[
(1− x2)(PnP

′
m − PmP ′

n)
]

= [n(n + 1)−m(m + 1)]PmPn (7.4)

Finally we integrate this equality over [−1, 1]:

(1− x2)(PnP
′
m − PmP ′

n) |1−1= 0 =

=
[
n(n + 1)−m(m + 1)

] ∫ 1

−1

Pm(x)Pn(x)dx (7.5)

since n 6= m (7.5) reduces to:∫ 1

−1

Pm(x)Pn(x)dx = 0 (7.6)

and this is the statement in the theorem on the orthogonality
of Legendre polynomials for n 6= m with weight f(x) = 1 on
[-1,1].

(ii) This time we will use the generating function, square it:

g2 = (1− 2xt + t2)−1 =

( ∞∑
k=0

Pn(x)tn
)2

We integrate from −1 to 1 with respect to x:

∫ 1

−1

dx

1− 2xt + t2
=

∞∑
n=0

n∑
k=0

∫ 1

−1

Pk(x)Pn−k(x)dxtn

each integral on the right vanishes except when k = n − k
(the other terms are zero due to orthogonality), therefore the
only nonzero terms in the series are those for which n is even,
n = 2k. Hence:
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∫ 1

−1

dx

1− 2xt + t2
=

∫ 1

−1

dx
∞∑

n=0

P 2
n(x)t2n

[
− 1

2t
ln(1− 2xt + t2)

]1

−1
=

∞∑
n=0

∫ 1

−1

P 2
n(x)dxt2n

− 1

2t

[
ln(1− t)2 − ln(1 + t)2

]
=

∞∑
n=0

∫ 1

−1

P 2
n(x)dxt2n

or : −1

t

[
ln(1− t)− ln(1 + t)

]
=

∞∑
n=0

∫ 1

−1

P 2
n(x)dxt2n.

Expand the left hand side as a power series in t. Since

ln(1 + t) = −
∞∑

p=1

(−t)p

p
,

we have that:
∞∑

n=0

∫ 1

−1

P 2
n(x)dx.t2n =

1

t
(−

∞∑
p=1

−tp

p
+

∞∑
p=1

(−1)p.tp

p
)

=
1

t

∞∑
p=1

tp

p

(
1− (−1)p

)
The terms in the sum vanish for even powers and only odd
powers of t survive in the sum.

Put p = 2n + 1, then

∞∑
n=0

∫ 1

−1

P 2
n(x)dxt2n =

1

t

∞∑
n=0

t2n+1

2n + 1
.2 =

∞∑
n=0

2

2n + 1
t2n (7.7)

from (7.7) we see that we must have:∫ 1

−1

P 2
n(x)dx =

2

2n + 1
(7.8)

�

8. Rodrigues Formula

If one looks at the series expansion for the Legendre polynomials,
one finds it can be rewritten somewhat:

Pn(x) =
1

2n

[n/2]∑
l=0

(−1)l(2n− 2l)!

l!(n− 2l)!(n− l)!
xn−2l (8.1)
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Let D = d
dx

, we know that Dsxm = m!xm−s

(m−s)!
.

Take s = n, m = n− 2l, then we rewrite the formula as:

Dnx2n−2l =
(2n− 2l)!x2n−2l−n

(2n− 2l − n)!
=

(2n− 2l)!xn−2l

(n− 2l)!
(8.2)

Setting this equality into (8.1), we have

Pn(x) =
1

2n

[n/2]∑
l=0

(−1)lDnx2n−2l

l!(n− l)!
(8.3)

Actually we can replace the upper limit on this sum by n because
Dnx2n−2l = 0for every value of l such that

n/2 < l ≤ n.

This is seen since then

n/2− n < l − n ≤ 0

or 0 ≤ n− l < n/2 which means that

0 ≤ 2n− 2l < n

and thus Dnx2n−2l = 0, Thus we rewrite (8.3) as

Pn(x) =
1

2n

n∑
l=0

(−1)l

l!(n− l)!
.
dn

dxn

(
x2n−2l

)
=

1

2n

dn

dxn

n∑
l=0

(−1)l

l!(n− l)!
x2n−2l (8.4)

By the binomial theorem we can write:

Pn(x) =
1

2n.n!

dn

dxn

n∑
l=0

n!

l!(n− l)!
(− 1

x2
)lx2n

=
1

2n.n!

dn

dxn

[
(1− 1

x2
)n.x2n]

and thus we have proved the following theorem

Theorem 7.

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (8.5)

This is known as Rodrigues formula for Legendre polynomials.
We will prove that (8.5) satisfies Legendre equation (2.1) directly. This
gives another proof of the theorem. By putting (8.5) in (2.1), we get:

d

dx

[
(1− x2)

1

2nn!

dn+1

dxn+1
(x2 − 1)n

]
+ n(n + 1)

1

2nn!

dn

dxn
(x2 − 1)n = 0

1

2nn!

[
−2x

dn+1

dxn+1
(x2−1)n+(1−x2)

dn+2

dxn+2
(x2−1)n+n(n+1)

dn

dxn
(x2−1)n

]
= 0
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multiplying by −1 the above equation becomes

1

2nn!

[
2x

dn+1

dxn+1
(x2−1)n+(x2−1)

dn+2

dxn+2
(x2−1)n−n(n+1)

dn

dxn
(x2−1)n

]
= 0

(8.6)
But we can rewrite the terms as:

−n(n+1)
dn

dxn
(x2−1)n = n(n+1)

dn

dxn
(x2−1)n−2n(n+1)

dn

dxn
(x2−1)n

(8.7)
and

2x
dn+1

dxn+1
(x2−1)n = 2(n+1)x

dn+1

dxn+1
(x2−1)n−2nx

dn+1

dxn+1
(x2−1)n (8.8)

Setting (8.7) and (8.8) into (8.6) gives

1

2nn!

[
2(n + 1)x

dn+1

dxn+1
(x2 − 1)n − 2nx

dn+1

dxn+1
(x2 − 1)n +

(x2 − 1)
dn+2

dxn+2
(x2 − 1)n + n(n + 1)

dn

dxn
(x2 − 1)n

− 2n(n + 1)
dn

dxn
(x2 − 1)n

]
= 0 (8.9)

Now rewrite the above equation in the following form:

1

2nn!

[
n(n + 1)

dn

dxn
(x2 − 1)n + 2(n + 1)x

dn+1

dxn+1
(x2 − 1)n +

(x2 − 1)
dn+2

dxn+2
(x2 − 1)n − 2n(n + 1)

dn

dxn
(x2 − 1)n

− 2nx
dn+1

dxn+1
(x2 − 1)n

]
= 0 (8.10)

This equation recalls to us Leibniz theorem:

Lemma 1.

dn

dxn
(uv) =

dnu

dxn
.v + n

dn−1u

dxn−1
.v′ +

n(n− 1)

1.2

dn−2u

dxn−2
v
′′

+ ...+

+
n(n− 1)...(n− k + 1)

k!

dn−ku

dxn−k
.
dk

dxk
v + · · ·+ u

dn

dxn
v

Thus we can write (8.10) in this way:

1

2nn!

dn+1

dxn+1

[
(x2 − 1)

d

dx
(x2 − 1)n − 2nx(x2 − 1)n

]
= 0 (8.11)

Note that the terms between brackets in(8.11) are actually equal to zero
and thus their differential must be equal to zero.We have thus proven
that the polynomials given by Rodrigues formula satisfy Legendre’s
equation.

The great advantage of Rodrigues formula is its form as an nth de-
rivative. This means that in an integral, it can be used repeatedly
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in an integration by parts to evaluate the integral. The orthogonality
of the Legendre polynomials, for example, follows very quickly when
Rodrigues formula is used. There is a Rodrigues formula for many,
but not all, orthogonal polynomials. It can be used to find recurrence
relation, the differential equation, and many other properties of them.
We will now give an example which shows that this formula is useful
for proving various properties of the Pn(x).

Example: We can show that the Legendre polynomials are orthog-
onal by integrating and using Rodrigues formula.

For an arbitrary function g(x) defined in the interval −1 ≤ x ≤ 1,
consider the integral

I =

∫ 1

−1

g(x)Pn(x)dx

Using Rodrigues formula, we write the integral as:∫ 1

−1

g(x)
1

2nn!

dn

dxn
(x2 − 1)ndx

=
1

2nn!

∫ 1

−1

g(x)
dn

dxn
(x2 − 1)ndx

=
1

2nn!

∫ 1

−1

g(x)d
[ dn−1

dxn−1
(x2 − 1)n] (8.12)

Let u(x) = g(x) ⇒ du = g′(x)d(x)

dv(x) = d
[ dn−1

dxn−1
(x2 − 1)

]
⇒

v(x) =
dn−1

dxn−1
(x2 − 1)n

Integrate (8.13) by parts

I =
1

2nn!

( [
g(x)

dn−1

dxn−1
(x2 − 1)n

]1

−1︸ ︷︷ ︸
=0

−
∫ 1

−1

g′(x)
dn−1

dxn−1
(x2 − 1)ndx

)

=
−1

2nn!

∫ 1

−1

g′(x)
dn−1

dxn−1
(x2 − 1)ndx (8.13)

continue integrating by parts the equality (8.14), by setting

dv(x) =
[ dn−1

dxn−1
(x2 − 1)n]dx = d

[ dn−2

dxn−2
(x2 − 1)n]

⇒ v(x) =
dn−2

dxn−2
(x2 − 1)n

u(x) = g′(x) ⇒ du = g′′(x)dx
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Now we write the integral as

I =
−1

2n.n!

( [
g(x)

dn−2

dxn−2
(x2 − 1)n

]1

−1︸ ︷︷ ︸
=0

−
∫ 1

−1

g′′(x).
dn−2

dxn−2
(x2 − 1)n.dx

)

=
1

2n.n!

∫ 1

−1

g′′(x).
dn−1

dxn−1
(x2 − 1)n.dx (8.14)

and so on. After n partial integrations this yields the final result:∫ 1

−1

g(x)Pn(x)dx =
(−1)n

2n.n!

∫ 1

−1

(x2 − 1)n dn

dxn
g(x)dx (8.15)

Now we can use the last equality to obtain orthogonality of Legendre
polynomials, by replacing g(x) with Pm(x)∫ 1

−1

g(x)Pn(x)dx =
(−1)n

2n.n!

∫ 1

−1

(x2 − 1)n dn

dxn

[ 1

2mm!

dm

dxm
(x2 − 1)m

]
dx

(8.16)
Case 1)Suppose m 6= n
If m 6= n, let m < n, then the degree of (x2 − 1)m is 2m < m + n, and

so dm+n

dxm+n (x2 − 1)m = 0 (m < n). Thus∫ 1

−1

Pm(x)Pn(x)dx =
(−1)n

2n.n!

∫ 1

−1

(x2 − 1)n.

dn+m

dxn+m

[ 1

2m.m!
(x2 − 1)m

]
dx = 0. (8.17)

So for n < m
∫ 1

−1
Pm(x)Pn(x)dx = 0.

By symmetry:
∫ 1

−1
Pm(x)Pn(x)dx = 0form > n

We have proved that∫ 1

−1

Pm(x)Pn(x)dx = 0for(m 6= n) (8.18)

Case 2)Suppose n=m
We have ∫ 1

−1

Pn(x)Pn(x)dx =
1

(2nn!)2

∫ 1

−1

(u(n))2dx

From the integration by parts procedure just used we rewrite this as

(−1)n

(2nn!)2

∫ 1

−1

u(x)u(2n)(x)dx =
(−1)n(2n)!

(2nn!)2

∫ 1

−1

(x2 − 1)ndx

This last integral is equal to∫ 1

−1

(x2 − 1)ndx =
(−1)n22n+1(n!)2

(2n + 1)!
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Inserting this into the integral expression gives∫ 1

−1

Pn(x)Pn(x)dx =
(−1)n(2n)!)

(2nn!)2

(−1)n22n+1(n!)2

(2n + 1)!
=

2

2n + 1

So we have ∫ 1

−1

Pn(x)Pm(x)dx =
2

2n + 1
δm,n

9. Expansion Of Functions In Legendre Series

Definition 2. (Sturm-Liouville Form)
The differential equation:

d

dx

(
p(x)

d

dx
y(x)

)
+ q(x)y(x) = λw(x)y(x)

is said to be in Sturm Liouville form. The function w is known as the
weight function.

The Legendre equation can be put in Sturm-Liouville form, since
d
dx

(1− x2) = −2x, so that the Legendre equation is equivalent to(
(1− x2)y′

)′
+ n(n + 1)y = 0

From the Sturm-Liouville theory, the Legendre polynomials form
a complete set and therefore functions on the interval [−1, 1] can be
expanded in term as a basis. To get pointwise convergence certain
properties of f e.g. continuity are needed(see the references)

Theorem 8. For any arbitrary function f(x) on the interval [−1, 1] :

f(x) =
∞∑

n=0

anPn(x) (9.1)

is a generalized Fourier Legendre series.

To obtain an, we multiply both sides in (9.1) by Pm(x) and integrate:∫ 1

−1

f(x)Pm(x)dx =

∫ 1

−1

∞∑
n=0

anPn(x)Pm(x)dx

=
∞∑

n=0

an

∫ 1

−1

Pn(x)Pm(x)dx (9.2)

but by the orthogonality of Legendre polynomials, we know that∫ 1

−1
Pn(x)Pm(x)dx = 0 for n 6= m and∫ 1

−1
Pn(x)Pm(x)dx =

∫ 1

−1
P 2

n(x) = 2
2n+1

for n = m
so(9.2) can be rewritten as∫ 1

−1

f(x)Pn(x)dx = an
2

2n + 1
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so an = 2n+1
2

∫ 1

−1
f(x)Pn(x)dx

So we can develop an arbitrary function on [−1, 1] in a Fourier-
Legendre series where

f(x) =
∑

n

anPn(x), an =
2n + 1

2

∫ 1

−1

f(x)Pn(x)dx (9.3)

This kind of approach is useful where one might expand an unknown
function in Legendre Polynomials and then convert the problem of
determining f(x) into the problem of determining the expansion coef-
ficients an which may be easier.

Example
Write the function f(x) = (x+a)(x−a), a > 0 as a series of Legendre

polynomials.
Solution
The given function can be rewritten as f(x) = x2 − a2 and it is a

second degree polynomial which can therefore be trivially expressed in
terms of P0, P1, P2 as:

f(x) = x2 − a2 =
2∑

n=0

anPn(x)

Here, applying the result from (9.3),

an =
2n + 1

2

∫ 1

−1

f(x)Pn(x)dx

and so by direct calculation we have

a0 =
1

2

∫ 1

−1

(x2 − a2)dx =
1

2
[
1

3
x3 − a2x]1−1 =

1

3
− a2

a1 =
3

2

∫ 1

−1

(x3 − a2x)dx =
3

2
[
1

4
x4 − 1

2
a2x2]1−1 = 0

a2 =
5

2

∫ 1

−1

1

2
(x3 − a2x)(3x2 − 1)dx =

5

4

∫ 1

−1

(3x4 − (1 + 3a2)x2 + a2)dx

=
5

4
[
3

5
x5 − (1 + 3a2)

3
x3 + a2x]1−1 =

2

3
− 2a2

Then the required expression is
f(x) =

(
1
3
− a2

)
P0(x) +

(
1
3
− 2a2

)
P2(x)

10. Associated Legendre Functions

Separation of variables for Laplace’s equation leads also to variants
of Legendre’s equation of the following form: (1 − x2)d2Θ

dx2 − 2xdΘ
dx

+

[n(n + 1)− m2

1−x2 ]Θ = 0.
We saw that for m = 0 we have Legendre function which we studied
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before, but now we want to consider the more general case of m as
nonzero integer.

One can also obtain the above associated Legendre equation from the
Legendre equation, by differentiating the Legendre equation m times.
Start from

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0

and apply dm

dxm .
We will need to make use again of Leibniz lemma for the derivative of
a product:

dm

dxm

[
A(x)B(x)

]
=

m∑
s=0

m!

s!(m− s)!

dm−s

dxm−s
A(x)

ds

dxs
B(x)

Then proceeding to differentiate,

dm

dxm

[
(1− x2)y′′

]
− 2

dm

dxm
(xy′) + n(n + 1)y(m) = 0

we have
dm

dxm
(xy′) =

m∑
s=0

(
m
s

)
ds

dxs
(x)

dm−s

dxm−s
(y′)

=

(
m
0

)
xy(m+1) +

(
m
1

)
.1.y(m)

= xy(m+1) + my(m)

and

dm

dxm

[
(1− x2)y′′

]
=

m∑
s=0

(
m
s

)
ds

dxs
(1− x2)

dm−s

dxm−s
(y′′)

=

(
m
0

)
(1− x2)y(m+2) +

(
m
1

)
(−2x)y(m+1) +

(
m
2

)
(−2)y(m)

= (1− x2)y(m+2) − 2mxy(m+1) − 2
m(m + 1)

2!
y(m)

Thus, the mth derivative of Legendre’s equation becomes

(1−x2)y(m+2)−2mxy(m+1)−m(m−1)y(m)−2xy(m+1)−2my(m)+n(n+1)y(m) = 0.

We rewrite this as:

(1− x2)y(m+2) − 2(m + 1)xy(m+1) + [n(n + 1)−m(m + 1)]y(m) = 0.

Let us define a new variable, u = y(m). The equation becomes

(1− x2)u′′ − 2(m + 1)xu′ + (n−m)(n + m + 1)u = 0

Note that for m = 0 the last equality is exactly Legendre differential
equation which has the solution y = Pn(x). Therefore we conclude
that there is a relation between the solution of the associated Legendre
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differential equation and the solution of the Legendre equation given
by

u(x) = constant.
dm

dxm
Pn(x).

If we multiply the last equation by (1 − x2)m, we can reformulate the
result as:

d

dx

(
(1− x2)m+1du

dx

)
+ (n−m)(n + m + 1)(1− x2)mu(x) = 0

We can then do a change of variables, namely: v(x) = (1− x2)m/2u(x)
or u(x) = (1− x2)−m/2v(x).

Then
u′(x) = mx(1− x2)−(m+1)/2v + (1− x2)−m/2v′ and

u′′(x) =

[
m(1− x2)−(m+2)/2 + m(m + 2)x2(1− x2)−(m/2+2)

]
v +

+ 2mx(1− x2)−(m+2)/2v′ + (1− x2)−m/2v′′

The differential equation is
(1− x2)u′′ − 2(m + 1)xu′ + (n−m)(n + m + 1)u = 0.
Multiplying this by (1− x2)m/2 we get finally

(1− x2)v′′ + 2mxv′ +
[
m +

m(m + 2)x2

1− x2

]
v +

−2(m + 1)xv′ − 2m(m + 1)

1− x2
x2v + (n−m)(n + m + 1)v = 0

We sum all the terms of v′′, v′, and v, we get

(1− x2)v′′ + (2mx− 2mx− 2x)v′+

+
[
m+

m(m + 2)x2

1− x2
− 2m(m + 1)

1− x2
x2+n2+nm+n−nm−m2−m

]
v = 0

or

(1− x2)v′′ − 2xv′ +
[
n(n + 1)− m2

1− x2

]
v = 0

This is the associated Legendre equation. It’s solution is :

v(x) = (1− x2)m/2u(x) = (1− x2)m/2 dm

dxm
Pn(x)

We can write these solutions as:

Pm
n (x) ≡ (1− x2)m/2 dm

dxm Pn(x) .

They are called the associated Legendre functions.
These functions are not polynomials.However, since Pn is an nth

degree polynomial, we can differentiate it only n times before obtaining
zero. thus, for Pm

n (x) to be nonzero, we must have m ≤ n.
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If we insert Rodrigue’s formula into the associated Legendre func-
tions, we will have:

Pm
n (x) = (1−x2)m/2 dm

dxm
.

1

2nn!

dn

dxn
(x2−1)n =

1

2nn!
(1−x2)m/2 dn+m

dxn+m
(x2−1)n

This means that we that m can be allowed to take negative values,
namely −n ≤ m ≤ n.

11. Dirichlet problem for Laplace’s equation

The Dirichlet problem for Laplace’s equation consists in finding a so-
lution u on some domain D such that u on the boundary of D is equal
to some given function. Since the Laplace operator appears in the heat
equation, one physical interpretation of this problem is as follows: fix
the temperature on the boundary of the domain and wait until the
temperature in the interior doesn’t change anymore; the temperature
distribution in the interior will then be given by the solution to the
corresponding Dirichlet problem. In the other words we will find the
function u = u(r, θ) such that:
1. u is harmonic in the domain r < a and continuous in r ≤ a.
2. u satisfies the boundary condition u |r=a= f(θ) where f(θ) is con-
tinuous in the interval 0 ≤ θ ≤ π.

Assume that the solution is of the form U = R(r)Θ(θ). Separation
of variables shows that for some constant λ the function R(r) satisfy
the radial differential equation:

r(rR)′′ − λR = 0

and for the same constant λ we have

1

sin θ

d

dθ
(sin θ

dΘ

dθ
) + λΘ = 0 (11.1)

where Θ, Θ′ and Θ′′ are continuous on the interval 0 ≤ θ ≤ π.
In fact, for x = cos(θ) the equation (11.1)is Legendre equation in the
following form:

d

dx

[
(1− x2)

dΘ

dx

]
+ λΘ = 0

where λ = n(n + 1) and Θ(θ) = Pn(cos θ) where Pn(x) is the Legendre
polynomials of degree n. This determines the possible λ.
We write the radial equation as

r2R′′ + 2rR′ − λR = 0

which is a so-called Cauchy-Euler equation and has the general solution:

R = C1r
n + C2r

−n−1

We choose C2 = 0(because the solution is bounded at the center
r = 0 of the disk). So we have R = Cnr

n, n = 0, 1, 2, ...
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The solutions of Laplace’s equation of the form U = R(r)Θ(θ) are the
function rnPn(cos θ). An arbitrary linear combination is:

U(r, θ) =
∞∑

n=0

Bnr
nP (cos θ)

and under suitable conditions this is a solution of the boundary value
problem.
Now suppose given a function f on the interval −1 < x < 1 such that
f(x) = F (arccos x) or F (θ) = f(cos θ). We write f(x) in Legendre
series:

f(x) =
∞∑

n=0

anPn(x)

where

an =
2n + 1

2

∫ 1

−1

f(x)Pn(x)dx.

We now have the following theorem

Theorem 9. The equation

U(r, θ) =
∞∑

n=0

anr
nPn(cos θ)

=
∞∑

n=0

2n + 1

2
rnPn(cos θ)

∫ 1

−1

f(s)Pn(s)ds

solves Dirichlet problem in the unit disk.
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