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Abstract 

 

In this paper I introduce a permutation statistic, the Parikh matrix statistic, which counts the 

number of permutations with a given Parikh matrix and prove this is equidistributed with the 

descent statistic, when we consider permutations in nS . First I will introduce a generalization 

of the classical Parikh vector and show a matrix completeness for Parikh matrices of words in 

nS . When we consider nS , this Parikh matrix completeness implies that the Parikh matrix 

statistic is equivalent to what can be defined as a Parikh vector statistic of order 2. In order to 

prove the equidistribution between the Parikh matrix statistic and the descent set statistic I 

make use of results from R.P. Stanley on descent set statistics. I define analogous inclusive 

and exclusive Parikh vector statistics. The desired result follows from the Principle of 

Inclusion- Exclusion. 
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Notations 

 

( )P S                            the power set of S 

( )
M

P S                          the set of all multisets with the elements from S 

[n]                               the set {1,..., }n  

n

k

  
  
  

                         the number of k-combinations of  [n] with repetions 

( )
n

S M                         the set of all permutations of length n of elements from a multiset M 

( )D π                           the descent set of π  

( )Sα                            the inclusive descent set statistic 

( )Sβ                            the exclusive descent set statistic 

∑                                 an alphabet 

*∑                                the set of all words with letters from the alphabet ∑  

u
w                               the number of occurrences of the word u as a scattered subword in w 

,i j
a                                the word , 1i j i i j

a a a a+= ⋅⋅⋅  of consecutive letters from an ordered  

                                     alphabet 1 2{ }
n

a a a∑ = < < ⋅⋅⋅ <   

1k
M +                             the set of upper triangular ( 1) ( 1)k k+ × + -matrices , 1 , 1( )

i j i j k
m ≤ ≤ +  

*

1:
kM kMψ +∑ →           the Parikh matrix mapping given an alphabet of k letters 

* 1: k j

jψ − +∑ →�           the Parikh vector mapping of order j 

( )
k

vϑ                             the inclusive Parikh vector statistic of order j 

( )
j

vρ                             the exclusive Parikh vector statistic of order j 

, 1 , 1(( ) )
kM i j i j k

mϑ ≤ ≤ +          the inclusive Parikh matrix statistic over an alphabet of k letters 

, 1 , 1(( ) )
kM i j i j k

mρ ≤ ≤ +          the exclusive Parikh matrix statistic over an alphabet of k letters 

( )
B

Dφ π                        the descent vector of π  

( )
B

Sφβ                            the descent vector statistic  

( )i π                         the number of inversions in a permutation π  
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1 Introduction 

 

The Parikh vector mapping is an important tool in the theory of formal languages, introduced 

1966 by R.J. Parikh in [6]. Given an ordered alphabet with k letters 1{ }
k k

a a∑ = < ⋅⋅⋅ <  and a 

word *
w∈∑ , where *∑  denotes the set of all words with letters from the alphabet 

k
∑ , the 

Parikh vector mapping is a morphism *: kψ ∑ →� , defined by 
1

( ) ( ,..., )
ka a

w w wψ = , where 

ia
w  denotes the number of occurrences of the letter 

i
a  in the word w  and �  denotes the set 

of nonnegative integers. One important result concerning the Parikh vector mapping, found in 

[6], is that the image by the Parikh vector mapping of a context-free language is always a 

semilinear set.  

The Parikh vector contains numerical properties of a word expressed as a vector. For 

example, consider the ordered 3-letter alphabet 3 { }a b c∑ = < <  and the word w abccbac= . 

Then we get the Parikh vector 

3( ) ( ) ( , , ) ( , , ) (2,2,3)
a b c a b c

w abccbac w w w abccbac abccbac abccbacψ ψ= = = = ∈� .  

The Parikh vector mapping is not injective since two words can have the same Parikh vector. 

Thus, much information of the words is lost in this mapping and therefore the natural 

continuation of this topic was the development of an extension of the Parikh vector mapping. 

This new tool, the Parikh matrix mapping, contains more information about a word than the 

Parikh vector mapping. The Parikh matrix mapping was introduced several decades later in 

[1], quite recently 2001. It contains information about the number of occurrences of certain 

subwords. Here subwords means scattered subwords defined in the following way: 

 

Definition 1.1 A word u  is a subword of a word w  if there exist words 1,..., n
x x  and 

0 ,...,
n

y y , some possibly empty, such that 1 n
u x x= ⋅⋅⋅  and 0 1 1 n n

w y x y x y= ⋅⋅⋅ .    

Let 
u

w denote the number of occurrences of u  as a scattered subword of w . For example, 

take the word *
w abccbac= ∈∑  and consider the subword u abc= . Then 

u
w  means the 

number of occurrences of  u abc=  as a scattered subword of  w abccbac= . We have 
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following 4 occurrences

1 

2 

3 

4 

abccbac

abccbac

abccbac

abccbac

. Thus 4
u

w = . When working with Parikh matrices we 

will repeatedly encounter subwords denoted ,i j
a , where ,i j , i j≤ , denotes the indices of the 

letters position in the given alphabet. So in other words we are dealing with subwords 

consisting of consecutive letters from an alphabet. 

For example we might be in the ordered alphabet 1 5{ }a a∑ = < ⋅⋅⋅ < . The notation 2,4a  means 

that we are considering the word 2,4 2 3 4a a a a= . If we let 2 2 1 3 4w a a a a a=  then we have that 

2,4a
w denotes the number of occurrences of 2,4 2 3 4a a a a=  as a scattered subword in 

2 2 1 3 4w a a a a a= . We have the following 2 occurrences 
2 2 1 3 4

2 2 1 3 4

1 

2 

w a a a a a

w a a a a a

=

=
 . Thus 

2,4

2
a

w = . 

  

The Parikh Matrix mapping is a morphism *

1:
kM kMψ +∑ →  where 1kM +  is a collection of  

( 1)k + - dimensional upper triangular matrices with nonnegative integral entries and unit 

diagonal. The classical Parikh vector will appear as the second diagonal (the diagonal above 

the main diagonal) in the Parikh matrix. The other entries above the second diagonal contain 

information about the order of the letters (in the word in examined) and are of the form 
,i ja

w , 

i j< . The main diagonal entries are 1’s and 0’s below it. Given the alphabet 

1{ }k ka a∑ = < ⋅⋅⋅ < , we have *

1:
kM kMψ +∑ → , defined by 

1,1 1,2 1,

2,2 2,

1, 1 1,

,

1 ...

0 1 ...

... ...... ... ...
( )

0 0 ...

... ... ... 1

0 ... 0 0 1

k

k

k

k k k k

k k

a a a

a a

M

a a

a

w w w

w w

w
w w

w

ψ

− − −

 
 
 
 
 

=  
 
 
 
 
 

 .  

(I should point out that this definition is equivalent to Definition 2.8 on page 12). 

In this thesis I will examine words in kS , the set of all permutations of the elements of the set 

[ ] {1,..., }k k= .  The Parikh matrices we deal with in this paper will have entries of the form 
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i j
w

⋅⋅⋅
, i j≤ . Consider the classical Parikh vector mapping of 

1 2
( ) ( , ,..., )

k
w w w wψ = , for 

kw S∈  .  

Since the letters of words belonging to kS  occur exactly once, ( given the alphabet 

{1 }k k∑ = < ⋅⋅⋅ < ) we have that all the words of kS  have the same Parikh vector, namely 

�( ) (1,...,1)
k

wψ = . So, given 5 {1 2 3 4 5}∑ = < < < <  what is the Parikh matrix of  

513245w S= ∈ ? 

First of all note that since we are working with 5S , the value of 
i j

w
⋅⋅⋅

 is either 0  or 1. In 

general the Parikh matrices of words from 
k

S  will have entries from 2� . 

 In our case we have 513245w S= ∈  and 

5

1 12 123 1234 12345

2 23 234 2345

3 34 345

4 45

5

1 1 1 0 0 01

0 1 1 0 0 00 1

0 0 1 1 1 10 0 1
( ) (13245)

0 0 0 1 1 10 0 0 1

0 0 0 0 1 10 0 0 0 1

0 0 0 0 0 10 0 0 0 0 1

M

w w w w w

w w w w

w w w
w

w w

w

ψ ψ

   
   
   
   

= = =   
   
   
   
    

. 

 

The Parikh matrix mapping is not injective. This can easily be seen. If we consider the case 

studied in this thesis, that is, 1:
kM k kS Mψ +→  , we have a surjective mapping from a set with 

!k  elements to a set with less than !k  elements, namely 12k −  elements. This might not be 

obvious to the reader at this moment, but it will be seen later, when we show that the Parikh 

matrix of a word in kS  is completely determined by its third diagonal. The third diagonal can 

be seen as a binary string of length 1k −  and we will show that it is the same as the Parikh 

vector of second order.  

It can easily be realized if one considers for example the subword 234 can only exist if the 

word 23  and 34  exists. Generalize this idea and the result is clear. This is proved in the 

Parikh Matrix Completeness Theorem. So as a result we will focus on this third diagonal. It is 

very special in this thesis and will be referred to as the Parikh vector of second order. 

Let’s examine the entries of the above Parikh matrix a bit closer. The main (first) diagonal is, 

by the Parikh matrix Theorem (Theorem 2.10), , 1i im = ,  1 i k+1∀ ≤ ≤ .  So we may think of it 
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as the unit vector �
1

(1,...,1)
k +

. The second diagonal 
1

( ,..., )
k

w w  is just the classical Parikh vector 

(Corollary 2.11). 

Let 513245w S= ∈ . Then in this case as we established earlier we have 

�1 5

5

( ) ( ,..., ) (1,...,1)w w wψ = = . Now it seems natural to continue this procedure, investigating 

the entries by going through the diagonals in increasing order. Let us continue. 

The third diagonal of the Parikh matrix in this case is 
12 23 34 45

( , , , ) (1,0,1,1)w w w w = . 

The general case would be the j+1 diagonal corresponds to 
1 2 23 ( 1) ( 1)

( , ,..., )
j j k j k

w w w
⋅ ⋅⋅⋅ ⋅⋅⋅ + − + ⋅⋅⋅

. 

Now, why not call this a Parikh vector of  j:th order, if we let the classical Parikh vector be 

the Parikh vector of first order. In the same way we have Corollary 2.11, we can establish a 

Corollary such that the third diagonal corresponds to the Parikh vector of second order. This 

follows directly from the Parikh matrix theorem (Theorem 2.10) in the same way we get 

Corollary 2.11. We will get a generalized Parikh vector of order i ,where 1 i k≤ ≤  and our 

attention will be directed toward 2i =  , the Parikh vector of second order.  

 

Two words with the same (classical) Parikh vector will in many cases have Parikh matrices 

that are different.  

I should also mention that Parikh mapping is a morphism from *( , , )λ∑ i  (where i  denotes 

concatenation) to �( , , (0,...,0))k

k

+�  and the Parikh matrix mapping is a morphism from 

*( , , )λ∑ i  to kM  consisting of the set of ( 1)k + -dimensional upper triangular matrices as 

defined above together with the operation multiplication of matrices and with as its unit the 

unit matrix of dimension 1k + , 1 1 1( , , (1) )k k kM + + × +× .  

I have now provided some background of Parikh matrices. Now I will provide some 

background on permutation statistics.  

 

What is permutation statistics?   

Permutation statistics is a branch of enumerative combinatorics dealing with enumeration of 

permutations with respect to properties such as the descent set of a permutation.  
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Definition 1.2 

The descent set of a permutation 1 k kSπ π π= ⋅⋅⋅ ∈  is denoted ( )D π  and is defined by 

1( ) { : } [ 1]i iD i kπ π π += > ⊆ − .  

 

Sometimes it is useful to think of it as a mapping : ([ 1])kD S P k→ − , where ([ 1])P k −  

denotes the powerset of [ 1]k − , that is the set of all subsets of [ 1] {1,..., 1}k k− = − .  The 

permutation statistic that counts the number of permutations with a given descent set is called 

the descent (set) statistic and has been extensively studied.  

The descent set statistic is denoted by ( ) #{ : ( ) }kS S D Sβ π π= ∈ = , [ 1]S k⊆ − . In this thesis 

we will consider descent set statistic of words that belong to kS . Consider the powerset of 

[ 1]k − , ([ 1])P k − . It will be very useful to represent each subset [ 1]S k⊆ −  as a binary string 

corresponding to S. For example if we consider {1,3, 4} [4] {1, 2,3,4}S = ⊆ = ,  may represent 

this by letting position  1, 3, and 4 in the binary string of length 4 correspond to a 1 and the 

rest correspond to 0. Formally this is a mapping Bφ , where B stands for binary, defined as 

follows: 

  

Definition 1.3 Let ([ 1])P k −  denote the powerset of [ 1]k − . Define 1

2: ([ 1]) k

B P kφ −− → � , by 

( )B S vφ = , such that 1 kv v v= ⋅⋅⋅  and 
0 if   

 
1 if 

i

i

i

v i S
v

v i S

= ∈
= 

= ∉
.  

 

This is easily seen to be a bijection.  

Having this way of representing sets we also have a way of representing descent sets as binary 

strings.  I sometimes denote descent sets of permutations as ( )
B

Dφ π , where the set is mapped 

to its binary string. (or alternatively ( ( ))B Dφ π ) . For example we have (13245) 1011
B

Dφ = . 

(Note that 2 (13245) 1011ψ = ). 

By this point you might have begun to suspect what I’m aiming for. I want to investigate 

possible connections between Parikh vectors of second order of words in kS  (they are binary 

strings of length ( 1)k − ) and descent sets of  words in kS . I will do this in this by introducing 

a new permutation statistic by thinking of the Parikh matrix mapping as the property in 

question. To be more specific, I am interested in counting the number of permutations 

mapping to a given Parikh matrix , and as a  consequence of the Parikh Matrix Completeness 
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(Theorem 3.5). This turns out to be the same as determining the number of permutations 

mapping to a certain Parikh vector of second order, since every Parikh matrix of a word in kS  

is completely determined by its third diagonal, which is the diagonal corresponding to the 

Parikh vector of second order. The number of permutations mapping to a given Parikh vector 

v of second order is denoted by 2 ( )vρ . The number of permutations mapping to a given  

descent vector  v  is denoted by 
Bφβ  (see the section of Notations below). 

Later I will prove that 2 ( ) ( )
B

v vφρ β=  (see Theorem 6.12). In other words that the Parikh 

statistic of order 2 is equidistributed with the descent statistic. This may be considered the 

main result of this thesis and possibly a new contribution connecting the theory of formal 

languages with the permutation statistics. This opens up a vast number of interesting 

enumerative problems to explore further. 

 

 

2 Parikh Matrices Basic Definitions and Theorems  

 

We have been informally introduced to what Parikh matrices represents, namely it contains 

information of the number of certain subwords (of consecutive letters) of  a word, given an 

ordered alphabet. In this section I will more formally go through the theory as found in [1], 

before going further and introducing my own results concerning Parikh statistics and descent 

statistics. First of all we need some definitions. 

 

Definition 2.1 [1] An ordered alphabet is a totally ordered finite set denoted by 

1{ ... }ka a∑ = < < .  

 

In this thesis, working in kS , we will mostly consider the ordered alphabet where the letters 

are a finite set of integers {1 ... }k∑ = < < .  

 

 

Definition 2.2 A finite multiset is a finite set where repetitions of elements are taken into 

consideration: Let {1,2,..., }N k=  be a set. A finite multiset with respect to N of cardinality n 



 11 

is denoted 1{1 ,..., }kbb
M k= , 

1

#
k

i

i

M b n
=

= =∑ ,  where 
i

b  denotes the number of repetitions of 

element i . 

 

We will consider words w of length n that are permutations of elements of multisets M . This 

is denoted by ( )
n

w S M∈ .  

 

Example 2.3 Let {1,...,5}N = and consider the multiset 2 1 3 0 1{1 ,2 ,3 , 4 ,5 }M = . If we consider 

words ( )
n

w S M∈ , we are considering words that are permutations of length 

# 2 1 3 0 1 7M = + + + + = . The number of such words is equal to the multinomial coefficient 

7 7!
280

2,1,3,0,1 2!1!3!0!1!

 
= = 

 
. One such word is 53125331 ( )w S M= ∈ .  

 

Definition 2.4 [1] Let 1{ }
k

a a∑ = < ⋅⋅⋅ <  be an ordered alphabet. The Parikh vector mapping 

is a morhpism *

1 : kψ ∑ → �  defined by 
1

1( ) ( ,..., )
ka a

w w wψ = , where 
ia

w denotes the 

number of occurences of the letter 
i

a  in w . 

 

Given *

1 2,w w ∈∑ , we have 1 1 2 1 1 2( * ) ( ) ( )w w w wψ ψ ψ= + , where *  denotes concatenation and 

*∑  denotes the set of all words with letters from ∑ .  

 

Example 2.5 Consider the ordered alphabet 7 {1 2 7}∑ = < < ⋅⋅⋅ <  and the words 

*

1 1234w = ∈Σ  and *

2 5367w = ∈∑ . Then we have 1 2 12345367w w∗ =  and  

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 3 4 5 6 7
( ) ( , , , , , , ) (1,1, 2,1,1,1,1)w w w w w w w w w w w w w w w wψ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ =

1 1 1 1 1 1 1 11 2 3 4 5 6 7
( ) ( ) (1,1,1,1,0,0,0)w w w w w w w wψ = =  

2 2 2 2 2 2 2 21 2 3 4 5 6 7
( ) ( ) (0,0,1,0,1,1,1)w w w w w w w wψ = =  

So we have 1 2 1 2( ) (1,1, 2,1,1,1,1) (1,1,1,1,0,0,0) (0,0,1,0,1,1,1) ( ) ( )w w w wψ ψ ψ∗ = = + = + . 
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In this thesis, working in 
k

S , we have that the Parikh vector mapping 
1

1( ) ( ,..., )
ka a

w w wψ =  

is �1 1
( ) ( ,..., ) (1,...,1)

k

k

w w wψ = = , since each letter of the k-letter alphabet in a permutation in 

k
S  of length k occurs exactly once.  

 

The following definition concerns how the subwords are notated. 

 

Definition 2.6 [1] Consider the alphabet 1{ ... }
k

a a∑ = < < . Then the ,i j
a denotes the word 

, 1i j i i j
a a a a+= ⋅⋅⋅  of consecutive letters from the alphabet. In particular ,i i i

a a= . 

 

As we will work with words belonging to 
k

S , the above subwords will have the form 

( 1)i i j+ ⋅⋅⋅ , where i  and j  are letters from the ordered alphabet {1 }
k

k∑ = < ⋅⋅⋅ < . 

 

Definition 2.7 [1] The number of occurrences of  ,i j
a  as a scattered subword of w is denoted 

by 
,i ja

w ∈� .  

 

Again, in our case 
k

S , we will have 2,i j
w ∈� , and since each subword in a permutation can 

occur at most once. 

 

We have informally defined the Parikh matrix mapping but we will do it more formally here. 

 

Definition 2.8 [1] Let  1{ ... }
k

a a∑ = < <  be the an ordered alphabet. 

The Parikh matrix mapping is a morphism *

1:
kM kMψ +∑ → , where 1k

M +  denotes the set of 

upper triangular ( 1) ( 1)k k+ × + matrices , 1 , 1( )
i j i j k

m ≤ ≤ + , such that ,i j
m ∈� .  

kM
ψ  is defined on ∑  by , 1 , ( 1)( ) ( )

kM l i j i j k
a mψ ≤ ≤ += ,  where we set , 1

i i
m = , , 1 1

l l
m + =  for 

1 1i k≤ ≤ +  and for all other entries in ( )
kM l

aψ  we set , 0
i j

m = . 

 

1k
M +  has a unit which is the identity matrix 

k
I .  For *

w∈∑  with 
1 si i

w a a= ⋅⋅⋅ , 
ji

a ∈∑ , 

define 
1

( ) ( ) ( )
k k k sM M i M i

w a aψ ψ ψ= ⋅⋅⋅  where multiplication is matrix multiplication.  
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We have ( ) ( ) ( )
k k kM r t M r M t

a a a aψ ψ ψ= , ,
r t

a a ∈∑ . 

 

Example 2.9 Let 3∑  be the ordered alphabet {1 2 3}< <  and assume that 22113w = . Then 

3
( )

M
wψ  is a 4 4×  triangular matrix and can be computed as follows: 

3 3 3 3 3 3
(22113) (2) (2) (1) (1) (3)

M M M M M M
ψ ψ ψ ψ ψ ψ= =  

1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0

0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

         
         
          =
         
         
         

 

1 2 0 0

0 1 2 2

0 0 1 1

0 0 0 1

 
 
 
 
 
 

.  

However as we mentioned earlier although two words have the same Parikh vector they can 

have different Parikh matrices. For instance, take 11223u =  given the same alphabet as 

above. 11223u =  has the same Parikh vector as 22113  but it can easily be verified that 

3 3 3 3 3 3
(11223) (1) (1) (2) (2) (3)

M M M M M M
ψ ψ ψ ψ ψ ψ= =  

 

1 2 4 4 1 2 0 0

0 1 2 2 0 1 2 2

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

   
   
   ≠ =
   
   
   

3
(22113)

M
ψ .  

 

 

Theorem 2.10 (Parikh matrix mapping) [1] Let 1{ }
k

a a∑ = < ⋅⋅⋅ <  be the an ordered 

alphabet with 1k ≥  and *
w∈∑ , then the matrix , 1 , 1( ) ( )

kM i j i j k
w mψ ≤ ≤ +=  has the following 

properties: 

1) . 0
i j

m = ,  1 1j i k∀ ≤ < ≤ + , 

2) , 1
i i

m = ,  1 i k+1∀ ≤ ≤  

3) 
,

, 1
i j

i j a
m w+ = ,  1 i j k+1∀ ≤ ≤ ≤ . 
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Proof [1]  Clearly property 1) and 2) follows directly from the definition. Let’s prove 

property 3) by induction. Assume that w n= . If 1n ≤  the assertion is clearly true.  

Assume that 3) holds for all words of length n and let w be of length 1n + . 
i

w ua= , where 

u n=  and 
i

a ∈∑  with 1 i k≤ ≤ . It follows that ( ) ( ) ( ) ( )
k k k kM M i M M i

w ua u aψ ψ ψ ψ= = . 

Assume that 

1,2 1, 1

2, 1

, 1

1 ... ...

0 1 ... ...

( ) ... ... ... ... ...

... ... ... ...

0 0 ... ... 1

k

k

k

M

k k

m m

m

u

m

ψ

+

+

+

 
 
 
 =
 
 
  

. By the induction hypothesis ( )
kM

uψ  has 

property 3). From Definition 2.8 we have that  

1 0 ... 0

... ....

0 ... 1 1 ... 0
( )

... ... ... ... ... ....

1 0 ... 1

kM i
aψ

 
 
 
 

=  
 
 
 
 

 . 

All the elements in the matrix ( )
kM i

aψ  are 0, except the main diagonal, that is all 1:s and 

entry , 1 1
i i

m + = . So we have  ( ) ( ) ( ) ( )
k k k kM M i M M i

w ua u aψ ψ ψ ψ= = =  

1,2

2, 1

, 1

1 ... ... 1, 1

0 1 ... ...

... ... ... ....

...

...

0 0 ... ... 1

k

k k

m m k

m

m

+

+

+ 
 
 
 
 
 
 
 
 

 

1 0 ... 0

... ....

0 ... 1 1 ... 0

... ... ... ... ... ....

1 0 ... 1

N

 
 
 
 

= 
 
 
 
 

. 

The resulting matrix N has the following property: , 1 , , 1j i j i j i
n m m+ += +  for all 1 j i≤ ≤  and for 

all indices, , ,p q p q
n m= . �       

 

Given the above theorem we can easily get the following corollary, since this follows directly 

from property 3) 
,

, 1
i j

i j a
m w+ = ,  1 i j k+1∀ ≤ ≤ ≤ , in the above theorem:  

 

Corollary 2.11 [1] Let 1{ ,..., }
k

a a <∑ =  be an ordered alphabet. The Parikh matrix 

1 , 1( ) ( )
kM i j k

w mψ ≤ ≤ +=  has as its second diagonal, the Parikh vector of w. That is 

1
1,2 2,3 , 1( , ,..., ) ( ,..., ) ( )

k
k k a a

m m m w w wψ+ = = . �  
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Example 2.12 Given the alphabet {1 2 3}∑ = < < and 22113w =  we have 

3

1 2 0 0

0 1 2 2
(22113)

0 0 1 1

0 0 0 1

M
ψ

 
 
 =
 
 
 

. We can see that the Parikh vector (22113) (2, 2,1)ψ =  equals 

the second diagonal of the matrix.  

 

Now I will proceed and present some of the new results on Parikh matrices in connection with 

permutations statistics that I have developed. 

 

 

 

 

 

3 The Generalized Parikh Mapping 

 

This section is the part where I start develop the Parikh matrix subject further to establish new 

connections with existing permutation statistics.  Some of the ideas have been mentioned 

informally in the introduction. Here I will attempt to give a more formal foundation for these 

ideas. I am going to show a matrix completeness (Theorem 3.5) for Parikh matrices of words 

in 
n

S . We shall see that the Parikh matrix of words in 
n

S  is completely determined by its 

third diagonal. Therefore it is natural to generalize Corollary 2.11 so that it connects each  

j+1:th diagonal with a certain Parikh vector of  order  j  in the following way: 

 

Definition 3.1 (Generalization of the Parikh Vector Mapping) Let 1{ ,..., }
k

a a <∑ =  be an 

ordered alphabet. Define the Parikh vector mapping of order j as the mapping 

* 1: k j

jψ − +∑ →� , defined by 
1, 2, 1 1,

( ) ( , ,..., )
j j k j k

j a a a
w w w wψ

+ − +

= .  

In particular 1j =  gives the classical Parikh vector mapping. If we set ,i i i
a a=  , then 

1,1 2,2 , 1 2
1( ) ( , ,..., ) ( , ,..., )

k k ka a a a a a
w w w w w w wψ = = , corresponding to the second diagonal.  
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Analogically, which is easy to verify by using Theorem 2.10, we get a generalization of 

Corollary 2.11 as follows:  

 

Corollary 3.2 Let 1{ ,..., }
k

a a <∑ =  be an ordered alphabet. The Parikh matrix 

1 ,( ) ( )
kM i j k

w mψ ≤ ≤=  has as its j:th diagonal, the Parikh vector of order j of the word w. That is 

1, 2, 1 1,
1, 1 2, 2 1,( , ,..., ) ( ) ( , ,..., )

j j k j k
j j k j k j a a a

m m m w w w wψ
+ − +

+ + − + = = . 

 

Proof Again this follows directly from property 3) in Theorem 2.10, same as for Corollary 

2.11 and by the definition of the generalized Parikh vector mapping. �  

 

Example 3.3 (Generalized Parikh vector and the Parikh matrix diagonals). Let 

5 {1 2 3 4 5}∑ = < < < < , 2 2{1, 2,3,4 ,5 }M =  and  consider the word 71235445 ( )w S M= ∈ . 

Then we have 
5

1 12 123 1234 12345

2 23 234 2345

3 34 345

4 45

5

1 1 1 1 2 21

0 1 1 1 2 20 1

0 0 1 1 2 20 0 1
( )

0 0 0 1 2 20 0 0 1

0 0 0 0 1 20 0 0 0 1

0 0 0 0 0 10 0 0 0 0 1

M

w w w w w

w w w w

w w w
w

w w

w

ψ

   
   
   
   

= =   
   
   
   
    

. 

By Corollary 3.2 we have the following: 

The (trivial) Parikh vector of order 0j =  corresponds to the main diagonal. That is  

0 ( ) (1,1,1,1,1,1)wψ =  corresponds to the underlined main (first) diagonal in 

1 1 1 1 2 2

0 1 1 1 2 2

0 0 1 1 2 2

0 0 0 1 2 2

0 0 0 0 1 2

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

 . 

The (classical) Parikh vector of order 1j =  corresponds to the second diagonal. That is 
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1 1 2 3 4 5
( ) ( , , , , ) (1,1,1, 2, 2)w w w w w wψ = =  corresponds to the underlined second diagonal 

in 

1 1 1 1 2 2

0 1 1 1 2 2

0 0 1 1 2 2

0 0 0 1 2 2

0 0 0 0 1 2

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

. 

The Parikh vector of second order ( 2j = )  corresponds to the third diagonal. That is  

2 12 23 34 45
( ) ( , , , ) (1,1,2, 2)w w w w wψ = =  corresponds to the underlined third diagonal in 

1 1 1 1 2 2

0 1 1 1 2 2

0 0 1 1 2 2

0 0 0 1 2 2

0 0 0 0 1 2

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

. etc 

 

The following result will be useful when proving the Matrix Completeness Theorem 

(Theorem 3.5) for words in 
k

S .  The Matrix Completeness Theorem simplifies the task of 

finding the connection between descent statistic and Parikh statistics because we can consider 

binary strings in both cases instead of binary strings and binary matrices. 

 

Proposition 3.4 Consider the Parikh matrix mapping on the set of permutations of the 

elements of [k]. Define 1:
kM k k

S Mψ +→ , by 

12 123 1234 123 ( 1) 123

23 234 23

34

( 2)( 1) ( 2)( 1)

( 1)

1 1 ...

0 1 1 ... ...

0 0 1 1 ... ... ...

0 0 0 1 ... ... ... ...
( )

... ... ... ... ... ...

... ... ... ... ... 1 1

0 ... ... ... ... 0 1 1

0 0 0 0 ... 0 0 1

k

k k

k

M

k k k k k

k k

π π π π π

π π π

π

ψ π
π π

π

⋅⋅⋅ − ⋅⋅⋅

⋅⋅⋅

− − − −

−








= 





, 1 , 1( )
i j i j k

m ≤ ≤ +








=



 
 
 
 

 

 

Then for 1 i j k≤ < ≤ , we have.  



 18 

1) If  
( 1)

1
i j

π
⋅⋅⋅ −

=  and 
( 1)

1
i j

π
+ ⋅⋅⋅

= , then 1
i j

π
⋅⋅⋅

= . 

2) If  
( 1)

0
i j

π
⋅⋅⋅ −

=  and 
( 1)

1
i j

π
+ ⋅⋅⋅

= , then 0
i j

π
⋅⋅⋅

= .  

3) If  
( 1)

1
i j

π
⋅⋅⋅ −

=  and 
( 1)

0
i j

π
+ ⋅⋅⋅

= , then 0
i j

π
⋅⋅⋅

= . 

4) If  
( 1)

0
i j

π
⋅⋅⋅ −

=  and 
( 1)

0
i j

π
+ ⋅⋅⋅

= , then 0
i j

π
⋅⋅⋅

= . 

 

Proof Let 
k

Sπ ∈ . Then the entries of ( )
kM

ψ π  are exclusively 0’s and 1’s, since for each word 

k
Sπ ∈  every letter of {1 }k∑ = < ⋅⋅⋅ <  occur exactly once and by consequence the subwords 

of 
k

Sπ ∈  can occur at most once, thus 
i j

π
⋅⋅⋅

 is either 0 or 1. We will use this property of 
k

S  

in this proof. 

1) For 1 i j k≤ < ≤ , assume that 
( 1) ( 1)

1
i i j

π
+ ⋅⋅⋅ −

=  and 
( 1) ( 1)( )

1
i j j

π
+ ⋅⋅⋅ −

= . This means that the 

words ( 1) ( 1)i i j+ ⋅⋅⋅ −  and ( 1) ( 1)( )i j j+ ⋅⋅⋅ −  both exist as subwords of π  and therefore, 

since we are working in 
k

S , ( 1) ( )i i j+ ⋅⋅⋅  must also exist as a subword of π . Thus 1
i j

π
⋅⋅⋅

= . 

2) For 1 i j k≤ < ≤ , assume that 
( 1) ( 1)

0
i i j

π
+ ⋅⋅⋅ −

=  and 
( 1) ( 1)

1
i j j

π
+ ⋅⋅⋅ −

= . This means that the word 

( 1) ( 1)i i j+ ⋅⋅⋅ −  does not exist as a subword of π . Then ( 1) ( 1)i i j j+ ⋅⋅⋅ −  cannot exist since 

( 1) ( 1)i i j+ ⋅⋅⋅ −  is a subword of  ( 1) ( 1)i i j j+ ⋅⋅⋅ − . Thus 0
i j

π
⋅⋅⋅

= . 

3) For 1 i j k≤ < ≤ , assume that 
( 1)

1
i j

π
⋅⋅⋅ −

=  and 
( 1)

0
i j

π
+ ⋅⋅⋅

= . Then by a similar reasoning as 

in 2) we get that 0
i j

π
⋅⋅⋅

= . 

4) For 1 i j k≤ < ≤ , assume that both
( 1)

0
i j

π
⋅⋅⋅ −

=  and 
( 1)

0
i j

π
+ ⋅⋅⋅

= . Then by the same 

reasoning as in 2) we get that 0
i j

π
⋅⋅⋅

= .  �  

In conclusion the only way to get 1
i j

π
⋅⋅⋅

=  is if both when 
( 1)

1
i j

π
⋅⋅⋅ −

=  and 
( 1)

1
i j

π
+ ⋅⋅⋅

=  

otherwise 0
i j

π
⋅⋅⋅

= . We can think of this as a rule when computing the Parikh matrix 

( )
kM

wψ of a word 
k

Sπ ∈ . All entries of the main diagonal in a Parikh matrix are 1’s, by the 

Parikh matrix Theorem (Theorem 2.10).   

As we mentioned earlier about words
k

Sπ ∈ , all the entries of the second diagonal of the 

Parikh matrix (the classical Parikh vector, Corollary 2.11) also consists exclusively of 1’s. 

By Corollary 3.2, the third diagonal is the Parikh vector of second order 
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2 12 23 ( 1)
( ) ( , ,..., )

k k
ψ π π π π

−
= . The entries 

( 1)i i
π

+
 of this vector depends on whether or not 

( 1)i i + exist as a subword of π . 

If  ( 1)i i + exist as a subword of π  then  
( 1)

1
i i

π
+

=  . If  ( 1)i i +  does not exist as a subword of 

π  then 
( 1)

0
i i

π
+

= . 

By the above proposition we can automatically compute the entries in the fourth diagonal 

from the third diagonal and the fifth diagonal from the fourth diagonal etc, until we have 

completed the computation of the matrix.  

     

Now having established this result we have the tools for proving the Matrix completeness.  

 

Theorem 3.5 (Parikh Matrix Completeness Theorem) Consider the Parikh vector of 

second order 1

2 2: k

k
Sψ −→ � ,  2 12 ( 1)

( ) ( ,..., )
k k

ψ π π π
−

= , for 
k

Sπ ∈ . Then the Parikh matrix 

mapping 1:
kM k k

S Mψ +→ , 1 ,( ) ( )
kM i j j

mψ π ≤ ≤=  is completely determined by 2 ( )ψ π . 

 

Proof By the Parikh matrix Theorem (Theorem 2.10) we have 

12 123 1234 123 ( 1) 123

23 234 23

34

( 2)( 1) ( 2)( 1)

( 1)

1 1 ...

0 1 1 ... ...

0 0 1 1 ... ... ...

0 0 0 1 ... ... ... ...
( )

... ... ... ... ... ...

... ... ... ... ... 1 1

0 ... ... ... ... 0 1 1

0 0 0 0 ... 0 0 1

k

k k

k

M

k k k k k

k k

π π π π π

π π π

π

ψ π
π π

π

⋅⋅⋅ − ⋅⋅⋅

⋅⋅⋅

− − − −

−








= 















 
 
 
 

.  

All the entries below the main diagonal are always 0 (by Theorem 2.10). All the entries in the 

main diagonal are always 1 (by Theorem 2.10). Since we are working in 
k

S , all the entries of 

the second diagonal are always 1 (by Corollary 2.11 (classic vector)). By Corollary 3.2 we 

have that the third diagonal corresponds to the Parikh vector of second order so the Parikh 

vector of second order determines the third diagonal in the Parikh matrix. By Proposition 3.4 

we have, for 1 i j k≤ < ≤ , that the values of
( 1)i j

π
⋅⋅⋅ −

 and 
( 1)i j

π
+ ⋅⋅⋅

  determines the value of 

i j
π

⋅⋅⋅
 . Therefore the Parikh vector of second order 

12 23 ( 2)( 1) ( 1)
( , ,..., , )

k k k k
π π π π

− − −
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determines 
123 234 ( 3)( 2)( 1) ( 2)( 1)

( , ,..., , )
k k k k k k

π π π π
− − − − −

 which is the Parikh vector of third 

order. By Corollary 3.2 this corresponds to the fourth diagonal of the Parikh matrix. In the 

same way we get by Proposition 3.4, that the fifth diagonal follows from the third diagonal in 

the same way. We get all the diagonals by the same reasoning. In conclusion the Parikh vector 

of second order is enough information to compute all the entries of the Parikh matrix, when 

we consider words that belong to 
k

S .  �  

 

The Parikh matrix completeness for permutations in 
k

S  significantly speeds up the 

computations of Parikh matrices.  

 

To demonstrate this, here is a simple example 

 

Example 3.6 Let 5 {1 2 3 4 5}∑ = < < < <  and consider the words in 5S . Consider the 

following 3 permutations 1 51324π = , 2 12534π = , 3 25134π = , 4 12345π = , 5 54321π = .  

Then we have:  

 

1) 2 1 1 1 1 112 23 34 45
( ) ( , , , ) (1,0,1,0)ψ π π π π π= =  

2) 2 2 2 2 2 212 23 34 45
( ) ( , , , ) (1,1,1,0)ψ π π π π π= =  

3) 2 3 3 3 3 312 23 34 45
( ) ( , , , ) (0,1,1,0)ψ π π π π π= =  

4) 2 4 4 4 4 412 23 34 45
( ) ( , , , ) (1,1,1,1)ψ π π π π π= =  

5) 2 5 5 5 5 512 23 34 45
( ) ( , , , ) (0,0,0,0)ψ π π π π π= =  

 

Let us just compute the diagonals resulting from these (third diagonals) Parikh vectors of 

second order as described earlier. To make it easier to visually follow the computations I have 

removed the all entries below the third diagonal since they are the same for all Parikh 

matrices over words in 
k

S . 

Then we get: 
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1) 
5 1

1 0 0 0

0 0 0

1 0
( )

0
M

ψ π

 
 
 
 

=  
 
 
 
 

 

2) 
5 2

1 1 1 0

1 1 0

1 0
( )

0
M

ψ π

 
 
 
 

=  
 
 
 
 

 

3) 
5 3

0 0 0 0

1 1 0

1 0
( )

0
M

ψ π

 
 
 
 

=  
 
 
 
 

 

4) 
5 4

1 1 1 1

1 1 1

1 1
( )

1
M

ψ π

 
 
 
 

=  
 
 
 
 

 

5) 
5 5

0 0 0 0

0 0 0

0 0
( )

0
M

ψ π

 
 
 
 

=  
 
 
 
 

 

 

It is also visually more apparent if viewed as arithmetical triangles where and bottom row 

corresponds to the third diagonal and the next row to the fourth diagonal etc. Entries follow 

the rules from Proposition 3.4 . Then we get 
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1) 

 0   

 0    0   

 0    0    0   

1    0    1    0  

2) 

 0   

 1    0   

 1    1    0   

1    1    1    0  

3) 

 0   

 0    0   

 0    0    0   

0   1    1    0  

4) 

 1   

 1   1  

 1    1    1   

1    1    1    1  

5)

 0   

 0    0   

 0    0    0   

0    0    0    0  

   

    

 These arithmetical triangles have the form 

5

4

3

2

( )

( )

( )

( )

ψ π

ψ π

ψ π

ψ π

 
 
 
 
 
 

,  by Corollary 3.2. 

 

A consequence of this result is that if we are able to show something for Parikh vectors 

2 ( )ψ π , 
k

Sπ ∈ , it can also be used for Parikh matrices ( )
kM

ψ π , 
k

Sπ ∈ . For example if we are 

counting the number of permutations mapping to a given Parikh vector we are counting what 

is also equivalent to the number of permutations mapping to a given Parikh matrix. 

 

Similar to the descent set statistic, I will define an analogous permutation statistic for the 

Parikh mappings. Consider the Parikh vector of order j. I will define a permutation statistic by 

counting the number of permutations that maps onto a specific vector of order 2. By Theorem 

3.5, the Parikh vector of second order of a word 
n

w S∈  determines the Parikh matrix of this 

word. As a consequence, counting the number of permutations mapping to a specific Parikh 

vector of order 2 is equivalent to counting the number of permutations mapping to a given 

Parikh matrix. 

 

Now let’s revisit the descent sets.  

 

 

 

4 Descent  Statistic 

 

Permutation statistics is an ongoing branch of enumerative combinatorics and is currently 

under a lot of development. Computing the descent set statistic has been done by several. The 

methods I have chosen to present in this paper can be found in Stanley’s enumerative 

combinatorics and is based on the Principle of Inclusion-Exclusion. First let’s go through the 

permutation statistics of interest in this thesis, the descent set statistic. We have already been 
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introduced to it informally in the introduction. Now I will go through material in a more 

formal manner. 

 

Definition 4.1 Let 1 2 k k
Sπ π π π= ⋅⋅⋅ = . Define the descent set mapping by 

: ([ 1])
k

D S P k→ − , where 1( ) { : } [ 1]
i i

D i S kπ π π += > = ⊆ − .  

 

The following function will be useful because it maps each descent set of a permutation to a 

corresponding binary string and thus we can compare it to the binary Parikh vector of a 

permutation. 

 

Definition 4.2 Let 1

2: ([ 1]) k

B
P kφ −− →�   be a function defined by 

1

1 2 1 2( ) ( , ,..., ) k

B k
S v v v vφ −

−= = ∈� , such that 
0 if 

1 if 
i

i S
v

i S

∈
= 

∉
 , where [ 1]S k⊆ − .  

 

It’s easy to see that 
B

φ  in the above definition is a bijection. 

 

We can consider the composition 1

2: [ 1] BD k

B k
D S P k

φφ −→ − →� � ,  where vπ � . We 

may call the vector v mapped by this composition function the descent vector v  of π  and 

denote this by ( )
B

D vφ π = .  

 

Example 4.3 Consider the permutation 1 2 3 4 5 6 6245631 Sπ π π π π π π= = ∈ , then ( ) {4,5}D π = , 

since we have the following descents 4 56 3π π= > =  and 5 63 1π π= > =  and all other are 

ascents ( 1i i
π π +<  ).  The corresponding descent vector is ( ) ({4,5}) 11100

B B
Dφ π φ= = . 

 

So, how many permutations in 6S has got the descent set ( ) {4,5}D π = ? 

How is this computed?  

In finding a formula for the descent set statistic we shall find the Principle of Inclusion-

Exclusion very useful. I want to use binary strings as representatives for descent sets, since I 

will show the connection to Parikh vectors of second order later in the thesis. Therefore I will 

use a function 
B

φ  between sets and binary strings.  
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 First let’s define the inclusive descent statistic. This is an important construction in this 

thesis. Because we can use the Principle of Inclusion-Exclusion on it to establish the exclusive 

descent statistic formula. Later we will also define an analogue for Parikh vectors of second 

order and in the proof of the Main Theorem 6.2 we will eventually arrive at this formula.   

 

Definition 4.5 [3] Given [ 1]S n⊆ −  let ( )Sα denote the number of permutations 
n

Sπ ∈  

whose descent set is contained in S. That is ( ) #{ : ( ) }
n

S S D Sα π π= ∈ ⊆ . 

 

Proposition 4.6 [3] Let 1{ ,..., } [ 1]
k

S s s n<= ⊆ − . Then 
1 2 1 3 2

( )
, , ..., k

n
S

s s s s s n s
α

 
=  

− − − 
. 

 

Proof ([3] see page 22, proposition 1.3.11) Consider the permutation 1 2 n
a a aπ = ⋅⋅⋅  with 

( )D Sπ ⊆ , we may first choose 
11 2 ...

S
a a a< < < in 

1

n

s

 
 
 

 ways. Proceed by choosing  

1 1 21 2 ...
S S S

a a a+ +< < < in 
1

2 1

n s

s s

− 
 

− 
ways etc. From this we get 

1

3 2 1 2 11 2 1

( )
, ,...,

k

k k

n s n s nn n s
S

s s n s s s s n ss s s
α

− −−        
= ⋅⋅⋅ =       

− − − −−       
 as desired. 

 

Now let’s define the exclusive descent statistic. 

 

Definition 4.7 [3] Given [ 1]S n⊆ − , the exclusive descent statistic is defined as 

( ) #{ : ( ) }
n

S S D Sβ π π= ∈ = . 

 

It is clear that ( ) ( )
T S

S Tα β
⊆

= ∑ . This “holds the key” for application of the Principle of 

Inclusion-Exclusion to get a formula for ( )Sβ .  

I will not go through this here but from Stanleys enumerative combinatorics [3] (by 

application of the Principle of  Inclusion-Exclusion) we have the formula: 
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(4.8-9)
1 2 11 2

| |

, ,1 ...

( ) ( 1) ( ) ( 1)
...,

jj

k jS T

i i i iT S i i i k

n
S T

s s s n s
β α

−−

⊆ ≤ < < < ≤

 
= − = −   − − 
∑ ∑ , where 

1 2 1

( )
, ,..., k

n
S

s s s n s
α

 
=  

− − 
 , 1 2{ ... } [ 1]

k
S s s s n= < < < ⊆ − and  #{S T S− = }T   

 

Example 4.10 Given 1 7n − =  and {1,5}S = . We get 

1 2{ 1, 5} {1, 2,...,7}S s s= = = ⊆ . 
| |

( ) ( 1) ( )
S T

T S

S Tβ α
−

⊆

= − =∑  

2 0 2 1 2 2
8 8 8 8

( 1) ( 1) ( 1) 217
0 1,8 1 5,8 5 1,5 1,8 5

− − −
        

= − + − + + − =        
− − − −        

 . 

 

In Stanleys enumerative combinatorics [3], page 69, the descent statistic is also written in an 

alternative form as a determinant. It can be shown that 

1 2 11 2

1
, ,1 ...

( ) ( 1) !det[1/( )]
...,

jj

k j

n j i
i i i ii i i k

n
S n s s

s s s n s
β

−

+
≤ < < < ≤

 
= − = −  − − 

∑ . 

 

We have 

( )
n

Sβ =

1 0 2 0 1 0

1 1 2 1 1 1

1

1 2 1

1 1 1
...

( )! ( )! ( )!

1 1 1
...

( )! ( )! ( )!
!

1
... ... ...

( )!

1 1 1
...

( )! ( )! ( )!

k

k

j i

k k k k

s s s s s s

s s s s s s
n

s s

s s s s s s

+

+

+

+

− − −

− − −

−

− − −

. 

 

So we can express the computation of the sum in Example 4.10 as 

1 1 1

1! 5! 8!

1 1
( ) 8! 1 217

4! 7!

1
0 1

3!

n Sβ = = . 
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5 Comparing the Parikh Vector Mapping to the Descent Vector Mapping  

 

This section is simply dedicated to providing some computations showing of the distribution 

of the Parikh Statistic and the Descent statistic. The computations indicate that they seem to 

be equidistributed. We do this by computing the Parikh vector mapping of second order and 

then for the same value of n = 5 we compute the Descent vector mapping (by using the 

function Bφ  mapping descent sets to their corresponding binary strings) 

 

Computations 5.1 Consider the Parikh vector mapping of second order on 5S . We have 

4

2 5 2: Sψ →� , where 2 12 23 34 45
( ) ( , , , ) vψ π π π π π= =    

(For convenience I will notate v as a word. For example 1110 instead of (1,1,1,0) ).  

4

2�         5S   

1111 – 12345 

0000 -  54321 

0001 – 45321,43521,43251,43215 

1110 – 12354,12534,15234,51234 

1000 – 54312,54132,51432,15432 

0111 – 21345,23145,23415,23451 

1100 - 12543,51243,51423,54123,15243,15423 

0011 – 34521,43215,32415,32145,34251,32451 

1101 – 12435,12453,14235,14253,14523,41235,41253,41523,45123 

0010 – 53421,35421,53241,35241,32541,53214,35214,32514,32154 

1011 – 13245,31245,13425,31425,34125,13452,31452,34152,34512 

0100 – 54231,54213,52431,52413,52143,25431,25413,25143,21543 

1001 – 41325,41325,41532,43125,43152,43512,45132,45312,14325,14352,14532 

0110 – 52314,52314,23514,52134,25134,21534,23154,21354,52341,25341,23541 

1010 - 13254,13524,13542,31254,31524,31542,35124,35142,35412,51324,51342, 

           53124,53142,53412,15324,15342  

0101- 45231,42531,24531,45213,42513,24513,42153,24153,21453,42315,24315 

          42135,24135,21435,42351,24351 
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Computation 5.2 Consider 4

2 5 2 2( ) #{ : ( ) }v S vρ π ψ π= ∈ = ∈� . 

 

2 (1111) ρ = 1 

2 (0000) = 1ρ  

2 (1110) = 4ρ  

2 (0001) = 4ρ  

2 (0111) = 4ρ  

2 (1000) = 4ρ  

2 (1100) = 6ρ  

2 (0011) = 6ρ  

2 (0010) = 9ρ  

2 (1101) = 9ρ  

2 (0100) = 9ρ  

2 (1011) = 9ρ  

2 (1001) = 11ρ  

2 (0110) = 11ρ  

2 (1010) = 16ρ  

2 (0101) = 16ρ  
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Let’s check the descent set distribution. Given 1

2: ([ 1]) BD k

B kD S P k
φφ −→ − →� � , where 

S vπ � � . For 5k = , we have 

 

Computation 5.3 (Descent vector mapping, n = 5) 

 

4

2�           5S  

1111 – 12345 

0000 – 54321 

1110 – 12354,12453,13452,23451 

0001 – 54312,54213,53214,43215 

0111 – 21345,31245,41235,51234 

1000 – 45321,35421,25431,15432 

1100 – 34521,14532,23541,24531,12543,13542 

0011 – 32145,52134,43125,42135,54123,53124  

0010 – 32154,42153,43152,43251,52143,53142,53241,54132,54231 

1101 – 34512,24513,23514,23415,14523,13524,13425,12534,12435 

0100 – 21543,31542,41532,51432,32541,42531,52431,43521,53421 

1011 – 45123,35124,25134,15234,34125,24135,14235,23145,13245 

1001 – 34215,35214,35412,45213,45312,14325,15324,15423,25314,25413,24315 

0110 – 51243,41253,21453,31254,21354,52341,42351,32451,41352,31452,51342 

0101 – 53412,41325,41523,42315,42513,43512,51324,51423,52314,52413,21435, 

            21534,31425,31524,32415,32514 

1010 - 13254,25341,25143,24351,24153,23154,15342,15243,14352,14253,45231, 

            45132,35241,35142,34251,34152 

 

 

Computation 5.4 Consider 4

5 2( ) #{ : ( ) }
B B

v S D vφ φβ π π= ∈ = ∈� . 

 

(1111) 
Bφβ = 1 

(0000) = 1
Bφβ  

(1110) = 4
Bφβ  

(0001) = 4
Bφβ  
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(0111) = 4
Bφβ  

(1000) = 4
Bφβ  

(1100) = 6
Bφβ  

(0011) = 6
Bφβ  

(0010) = 9
Bφβ  

(1101) = 9
Bφβ  

(0100) = 9
Bφβ  

(1011) = 9
Bφβ  

(1001) = 11
Bφβ  

(0110) = 11
Bφβ  

(1010) = 16
Bφβ  

(0101) = 16
Bφβ  

 

We see that for 5S  and 5 1

2v
−∈� ,  2 ( ) ( )

B
v vφρ β= . In the main theorem I will prove that this is 

true for all 1

2

k
v

−∈�  when we are considering 2ψ  and 
B

Dφ  over 
k

S .  

 

 

6 Yamba’s Theorem 

 

We have seen that for 5 1

2v
−∈� ,  2 ( ) ( )

B
v vφρ β= . I conjecture that this is true for all 1

2

k
v

−∈�  

and for all 2k ≥  when we are considering 2ψ  and 
B

Dφ  over 
k

S . The theorem can be 

considered as the main result of this paper.  

 

The proof of the exclusive descent set statistic formula is based on the Principle of Inclusion-

Exclusion. There are several methods of computing this statistic but I have chosen the 

methods found in [3]. (See Proposition 4.6 and Theorem 4.11). 

It is achieved by first defining the descent set inclusively in terms of subsets of a descent set 

and inverting the formula by identifying that it holds the setting of the Principle of Inclusion-

Exclusion. To get the analogue thinking for the Parikh vectors of second order I will make use 
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of subvectors (defined in Definition 6.1) instead of subsets. The bijection Bφ , between 

subsets and binary vectors motivates the use of this. This is useful later when we define the 

inclusive descent set statistic.  

 

Out of simplicity we will denote the binary vectors as binary words. 

 

Definition 6.1 Consider the set of vectors of 1

2

k−
� . Let  1

1 1 2

k

ku u u
−

−= ⋅⋅⋅ ∈�  and 

1

1 1 2

k

kv v v
−

−= ⋅⋅⋅ ∈� . Define a relation ≤  on the set 1

2

k−
�  by u v≤  if 1 1 1 1,..., k ku v u v− −≤ ≤ . If 

u v≤  we may call u a sub vector of v and v a super vector of u. 

 

Example 6.2 Let {1 2 3 4 5}∑ = < < < <  and consider 513452w S= ∈  and 513524z S= ∈ . 

Then we have 2 12 23 34 45
( ) ( , , , )w w w w wψ = = 1 2 3 4( , , , ) (1,0,1,1)u u u u u= =  and  

2 1 2 3 412 23 34 45
( ) ( , , , ) ( , , , ) (1,0,1,0)z z z z z v v v v vψ = = = = . We have  

1 11 1v u= ≤ =   

2 20 0v u= ≤ =  

3 31 1v u= ≤ =  

4 40 1v u= ≤ =  

Thus v u≤ , so we have that v is a sub vector of u and u is a super vector of v. 

 

Descent statistic is originally formulated in terms of sets but one should keep in mind the 

bijection Bφ  to be aware of the connection between the descent statistic and the Parikh 

statistic.  

  

Definition 6.8 Let 1{ }
k

a a∑ = < ⋅⋅⋅ <  and 1

2

k
v

−∈� . The inclusive Parikh vector statistic of 

second order is defined by 2 2( ) #{ : ( ) }kv w S w vϑ ψ= ∈ ≥ .  

 

Definition 6.9 Let {1 }k∑ = < ⋅⋅⋅ < , and 1

2

k
v

−∈� . 

The exclusive Parikh vector statistic of second order is defined by  

1

2 2 2( ) #{ : ( ) }k

kv w S w vρ ψ −= ∈ = ∈�    
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We will now define the Parikh matrix statistic , 1(( ) )
kM i j kmρ + , counting the number of 

permutations with a given Parikh matrix , 1( )i j km + . By the Parikh Matrix Completeness 

Theorem (Theorem 3.5), we get that , 1 2(( ) ) ( )
kM i j km vρ ρ+ = , where v is a Parikh vector of 

second order corresponding to the third diagonal in , 1( )i j km +   (Corollary 3.2). 

 

Definition 6.11 Let {1 }k∑ = < ⋅⋅⋅ < , consider ( )
kM kSψ  and let 1 , 1( ) ( )

ki j k M k
m Sψ≤ ≤ + ∈ . The 

Parikh matrix statistic is defined by 

, 1 1 , 1(( ) ) #{ : ( ) ( ) ( )}
k k kM i j k k M i j k M km w S w m Sρ ψ ψ+ ≤ ≤ += ∈ = ∈  

 

Now I will show that the defined Parikh vector statistic is in fact equidistributed with the 

descent set statistic, when we consider words in 
k

S . The proof given for this is inspired by  

Stanley’s proof of the inclusive descent statistic. It can be simplified by observing the 

similarity of reasoning. Choosing a permutation with a given “inclusive descent” corresponds 

to choosing its elements of [n] satisfying a given ascent pattern. In the Parikh case we have a 

given subword pattern and choose among [n] incides in the same way as in the descent case. 

To compare the similarity in reasoning see [3], proposition 1.3.11.   

 

Main Theorem 6.12 

Let Bφ  be the function from Definition 4.3. For [ 1]S k⊆ −  and 1

2( ) k

Bv Sφ −= ∈�  consider 

1

2 2 2( ) #{ : ( ) }k

k
v w S w vρ ψ −= ∈ = ∈� and 1

2( ) #{ : ( ) }
B

k

kv w S D w vφ φβ −= ∈ = ∈� . 

Then 2 ( ) ( )
B

v vφρ β= . (The Parikh vector statistic of second order is equidistributed to the 

descent statistic when we consider words in kS ). The proof follows the same ideas as in  [3], 

page 22. 

 

Proof  Consider 1

2: ([ 1]) k

B
P kφ −− →� , ( )

B
S vφ = , [ 1]S k⊆ − ,  

Let 2 ( )vϑ be the inclusive Parikh statistic 1

2 2 2( ) #{ : ( ) }k

kv S vϑ π ψ π −= ∈ ≥ ∈�  and 2 ( )vρ  be 

the exclusive Parikh statistic 1

2 2 2( ) #{ : ( ) }k

kv S vρ γ ψ γ −= ∈ = ∈� . 
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Clearly 2 2( ) ( )
u v

v uϑ ρ
≥

=∑  (in the same way ( ) ( )
T S

S Tα β
⊆

= ∑ , [3], page 22), so if we can find a 

formula for 2 ( )vϑ , we can invert it, in analogue with 

( ) ( )
T S

S Tα β
⊆

= ∑ | |( ) ( 1) ( )S T

T S

S Tβ α−

⊆

⇔ = −∑  to get the desired result.  

 

Let 1

1 1 2

k

kv v v
−

−= ⋅⋅⋅ ∈� , such that 1

1( ) { ,..., } [ 1]B jv S s s kφ − = = ⊆ − . To create a kSπ ∈  that has 

the Parikh vector of second order 2 ( ) vψ π ≥ , first let’s take a closer look at v . 

We have, for 1 i j≤ ≤ , 
1 21 js s sv v v v v= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅  where 0

isv =  and 1lv =  for all other is l≠ .  

This means that 

� � �
1 1 2 2

1 2

2 ( 1) ( 1) ( 1)

1
1

( ) ..., ,..., ,..., ,... (...,0,1,...,1, 0 ,1,...,1, 0 ,1,...)
j j

j

s s s s s s
s s s

k
k

vψ π π π π
+ + +

−
−

 
 = ≥ =
 
 
 
�							
							�

�				
				�

.  

Now to create a kSπ ∈  that has the Parikh vector of second order 2 ( ) vψ π ≥ .  

First place the subword 1 112 ( 1)s s⋅ ⋅ ⋅ −  among k available indices of π .  This can be done in 

1

k

s

 
 
 

 ways. Then place 1 2 2( 1) ( 1)s s s+ ⋅⋅⋅ −  among the 1k s−  positions.  

This can be done in 
1

2 1

k s

s s

− 
 

− 
 ways. If we continue this process we see that 

21

2

3 21 2 1

( )
j

j

k sk sk k s
v

k ss ss s s
ϑ

−−−     
= ⋅⋅⋅     −−−     

= 
1 2 1 3 2, , ,..., j

k

s s s s s k s

 
 

− − − 
. 

Now recall that we have 2 2( ) ( )
u v

v uϑ ρ
≥

=∑ . Hence by the Principle of Inclusion-Exclusion (the 

formula) and Theorem 4.11 we have 

1 2 11 2

2

1

( ) ( 1) ( ) ( )
, ,..., B

tt

j t

i i i ii i i j

k
v S v

s s s k s φρ β β
−

≤ < <⋅⋅⋅< ≤

 
= − = = 

− − 
∑ . �  

 

Let 1{ ,..., } [ 1]jS s s k= ⊆ − . Then to choose a permutation 1 k ka a Sπ = ⋅⋅⋅ ∈ , where ( )D Sπ ⊆ . 

We can do this by first choosing the elements ia  from [ ]k   
11 sa a< ⋅⋅⋅ < . This can be done in 

1

k

s

 
 
 

 ways and this corresponds to placing the subword 1 11 2 ( 1)s s⋅ ⋅ ⋅⋅ −  among k available 

positions.  
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I claim that 1

2( ) ( )D vφ π ψ π −= = . But first let’s define what the inverse permutation 1π −  is .  

 

Definition 6.13 Given a permutation 1 2

1 2

1 2 ...

...
k k

k

k
a a a S

a a a
π

 
= ⋅⋅⋅ = ∈ 

 
 

The inverse permutation is defined as 
1 21

...

1 2 ...

k

k

a a a
S

k
π −  

= ∈ 
 

 . 

 

There is a one-to-one correspondence between a permutation and its inverse permutation. 

To get a permutation of the same form as 1 2 ka a aπ = ⋅⋅⋅ the indices ia  in 1π −  are placed in 

increasing order we get 1

1 2 k kb b b Sπ − = ⋅⋅⋅ ∈ .  

 

Example 6.14 Consider 5

1 2 3 4 5
13452

1 3 4 5 2
Sπ

 
= = ∈ 

 
 . Then 

1

5

1 3 4 5 2 1 2 3 4 5
15234

1 2 3 4 5 1 5 2 3 4
Sπ −    

= = = ∈   
   

 

 

Theorem 6.15 Let kSπ ∈ , let {1 }k∑ = < ⋅⋅⋅ <  be an ordered alphabet and let 

1

2( )
B

k
D vφ π −= ∈� .  

Then for 2k ≥ exist we have that 1

2( ) ( )D vφ π ψ π −= = . 

 

Proof  1 

Consider 1 k ka a Sπ = ⋅⋅⋅ ∈  such that 1 2( ) { , ,..., } [ 1]jD S s s s kπ = = ⊆ − . This means  

1 1 2 21 2 1 1 1j j ks s s s s s sa a a a a a a a a+ + +< < ⋅⋅⋅ < > < ⋅⋅⋅ < > < ⋅⋅⋅ < > < ⋅⋅⋅ < . Let’s use an alternative 

notation for π : 

1 1 2 2

1 1 2 2

1 2 1 1 1 1

1 2 ... 1 ... 1 ... 1 ...

... ... ... ...

      1       1          1      0            1           1      0           1           1     0           1 

j j k

j j

s s s s s s s

s s s s s s k

a a a a a a a a aπ + + + +

+ + +

< < < > < < > < < > < <=

          1        

 
 
 
 
 

 

. With standard notation we have 

1 1 2 2

1 1 2 2

1 2 1 1 1 1

1 2 ... 1 ... 1 ... 1 ...

... ... ... ...
j j k

j j

s s s s s s s

s s s s s s k

a a a a a a a a a
π

+ + + +

+ + + 
=   
 

. 
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The first row is indices of π , the second row is the letters 
i

a  of 1 k k
a a Sπ = ⋅⋅⋅ ∈  with 

inequalities. The third row is the descent vector ( ) ( )
B B

D S vφ π φ= = .  

If we let indices change places then we get (with an alternative notation) 

1 1 21 2 1 2 1 1 1

1

1 1 2 2

... ... ... ...

1 2 ... 1 ... 1 ... 1 ...

           

j j ks s s s s s s

j j

a a a a a a a a a

s s s s s s kπ

+ + + +

−

< < < > < < > < < > < < 
 

= + + + 
 
 

. With standard notation we have  

1 1 2 21 2 1 1 1 1

1

1 1 2 2

... ... ... ...

1 2 ... 1 ... 1 ... 1 ...

           

j j ks s s s s s s

j j k

a a a a a a a a a

s s s s s s sπ

+ + + +

−

 
 

= + + + 
 
 

. 

Now 11 2 s⋅ ⋅⋅ ⋅  must exist as a subword of 1π −  since indices 
11 2 s

a a a< < ⋅⋅⋅ < .  

1 1( 1)s s +  does not exist as a subword of 1π −  since indices 
1 1 1s s

a a +>  means the letter 1 1s +  is 

to the left of 1s  in 1π − . Therefore we have ( ) �
1 1

1

1 1 1

12 23 ( 1)
, ,..., ,... 1,1,...,0,...

s s
s

π π π− − −

+

 
=   
 

. 

If we continue the same reasoning for 
i

s  , 1 i j≤ ≤  we will attain all the entries of what is the 

Parikh vector of second order.  

We have ( ) � � �
1 1

1 2

1 1 1 1

2
12 23 ( 1)

( ) , ,..., ,... 11 101 101 101 11 ( )
B

j

s s
s s s

Dφψ π π π π π− − − −

+
= = ⋅⋅⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  �  

I will now use this result for an alternative proof of Theorem 6.14. 

 

Proof 2 of Theorem 6.12 

Since there a one-to-one correspondence between the set of permutations and their inverse 

permutations and by Theorem 6.15, 1

2 ( ) ( )
B

Dφψ π π− = , we have for 1

2

k
v

−∈�  that 

1 1

2 2( ) #{ : ( ) } #{ : ( ) } ( )
Bk kv S v S D v vφρ γ ψ γ γ γ β− −= ∈ = = ∈ = = . For each permutation 

k
Sγ ∈  , 

where 2 ( ) vψ γ = , there is exactly one permutation 1

k
Sγ − ∈  , where 1( )D vγ − = .  

So 2( ) ( )
B

v vφβ ρ= . �  

 

Corollary 6.16 Let {1 2 }k∑ = < < ⋅⋅⋅ < , let  1

2

k
v

−∈�  and let , 1( )
i j k k

m M+ ∈  be a Parikh matrix 

of a word belonging to 
k

S , where v corresponds to the third diagonal. Then 

, 1(( ) ) ( )
k BM i j k

m vφρ β+ = . 
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Proof  

As mentioned earlier by the Parikh Matrix Completeness Theorem (Theorem 3.5), we get 

that , 1 2(( ) ) ( )
kM i j k

m vρ ρ+ = , where v is a Parikh vector of second order corresponding to the 

third diagonal in , 1( )
i j k

m +   (Corollary 3.2). By the Main Theorem 2 ( ) ( )
B

v vφρ β=  so it 

follows that , 1 2(( ) ) ( ) ( )
k BM i j k

m v vφρ ρ β+ = = . �  

 

 

 

7 2 ( )vρ for binary words 

 

In this section I will present some results in computing the number of binary word mapping to 

a given parikh vector of second order.  

 

Definition 7.1 Let ( , )
i j

b b  denote the inversion of the letters 
i

b  and 
j

b  in the word 

1 2 ( )
n n

w b b b S M= ⋅⋅⋅ ∈ , (where M is a finite multiset), if i j<  and 
i j

b b> .  

 

Let ( )i w  denote the number of inversions of 1 2 ( )
n n

w b b b S M= ⋅⋅⋅ ∈ . 

 

Definition 7.2 The number of words with k inversions is denoted 

( ) #{ ( ) : ( ) }
n

inv w w S M i w k= ∈ = , where 0 1k n≤ ≤ − . 

 

A generating function for this would have the form ( )

( )n

i w

w S M

q
∈

∑ . 

 

Let’s say we want to count 2 12
#{ ( ) : ( ) ( ) ( )}nw S M w w kψ∈ = = , where 0 1k n≤ ≤ −  and 

{1 ,2 }a bM = , # M a b n= + = . 

can be attained by observing that counting the number of subwords 21 in w. That is, 
21

w  

corresponds to counting the number of inversions  in a permutation and the fact that we are 

dealing with binary words. Also, since we are working with binary words, symmetry gives us 

that 2 ( ) ( )w i wψ = , where w  is the (binary) complement word (for example 

1122121 2211212w w= ⇒ = ). And since we have, by  
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Proposition 1.3.17 ([3] page 26), that for 1 2{1 , 2 ..., }maa a
M m= , with # M n=  

( )

( ) 1 2, ,...,
n

i w

w S M m q

n
q

a a a∈

 
⇒ =  

 
∑ . We get in particular     

1 2{1 ,2 }a a
M = , with # M n=  ( )

( ) ( ) 1 2,
n n

k i w

w S M w S M q

n
q q

a a∈ ∈

 
⇒ = =  

 
∑ ∑ , where 2 ( )k wψ= .  

 

Similar observations have also been made by D. Foata and G.-N. Han in [4], pages 24-31.     

 

Definition 7.3  (Binary words) [4] Let ( , )BW N n  denote the set of all words of length 

( )N n+ having exactly N  letters equal to 1 and n  letters equal to 0. If 1 2 N n
x x x x += ⋅⋅⋅  is such 

a word, the inversion number ( )inv x , is defined as the number of scattered subwords, 10 of 

the word x .   

 

Example 7.4 We can also write the number of 1’s that appear to the left of each letter equal to 

0. For the word 100101001x =  we have 

( ) 1 1 2 3 3 10i x = + + + + = . 

 

In [4] it is shown that ( )

( , )

i x

x BW N n q

N n
q

n∈

+ 
=  
 

∑ . I will not go through this here in more detail 

(it can also be found in [3], proposition 1.3.17, page 26), but since we have shown that 

2( ) ( )i x xψ=  we can make use of this result to get a generating function for Parikh vector 

statistic of second order on binary words. 

 

Proposition 7.12 [4] 

( )

( , )

i x

x BW N nq

N n
q

n ∈

+ 
= 

 
∑ , where 

q

N n

n

+ 
 
 

 is the q − binomial coefficient) 

 

As a consequence we get ( )

( , ) ( , )

ki x

x BW N n x BW N nq

N n
q q

n ∈ ∈

+ 
= = 

 
∑ ∑ , where 2 ( )k xψ=  
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8  Summary, Conclusions and Suggestion of Further Research 

 

 

Theorem 6.12 and Theorem 6.15 are the main result of this thesis with consequences for 

Formal language theory (and future Parikh matrix theory) and permutation statistics. The 

result connects formal languages with permutation statistics in such a way that the results 

established for descent set statistics (and inversions statistics) is transferred to Parikh matrix 

theory and thus motivates future research concerning, for example, lattice theory of Parikh 

matrices and the permutation statistics of various Parikh vector mappings (generalized Parikh 

vectors). For instance a generalized formula for the Parikh vector statistic 

1

2 2( ) #{ ( ) : ( ) }k

n
v w S M w vρ ψ −= ∈ = ∈� , where {1,..., }k <∑ = , 1{1 ,..., }knn

M k= , such that 

1

#
k

i

i

M n n
=

= =∑  would be desirable. It would also be interesting to study algorithms for listing 

the words with a given Parikh vector/matrix. The next step would be to investigate the Parikh 

vector statistic 2ρ  for arbitrary words ( )
n

w S M∈ . The general case, 

1

2 2( ) #{ ( ) : ( ) }k

n
v w S M w vρ ψ −= ∈ = ∈� , gets more complicated. 
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