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1. Graph Theory

A graph is a mathematical object that catches the notation of con-
nection. Most people are familiar with the children’s puzzle of trying
to connect three utilities (water, telephone and electricity) to three
houses without having any of the ”wires” cross. The widely thought
about how the graph theory originated is found in a puzzle that was
posed by the two towns folk of Kningsberg, Prussia in the early 1700’s.
Köningsberg was built largely on the pergel river, this island sits near
where tow branches of the river join, and the borders of the town spread
over to the banks of the river as well as a nearby promontory. Between
these four land masses, seven bridge had been erected.
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2 HALL’S MARRIAGE THEOREM

Somebody asked ”is it possible to take a walk through town, cross-
ing each of the seven bridges just once, and ending up wherever you
started?”
The famous mathematician Leonard Euler heard of the problem, solved
it (it is not possible) and in the process invented Graph Theory.
In this paper I am going to describe Hall’s Marriage Theorem which
belongs to this branch i mathematic, and prove it in several ways. To
understand the different proofs of this theorem I have to introduce
some different definitions, conceptions and theorems.

2. Definitions

A graph G consists of a finite set V of vertices (points, nods) and a
finite set E of edges, where each edge is an unordered pair of vertices.
We write G = G(V, E).

We say that two vertices a and b are adjacent if there is an edge
e = (a, b) in E, while the edge e ∈ E(G) is said to be incident to a and
b.

Two edges e and f intersect if they share a common endpoint. If
they do not intersect we say that they are disjoint.

A walk is a sequence of vertices v1, ...., vn where (vi, vi+1) ∈ E(G)
and i = 1, 2, ..., n− 1. A path is a walk without repeated vertex in the
sequence.
A set of vertices X ⊆ V is a covering of G = (V, E) if every edge of E
contains at least one endpoint in X.

3. Matchings

Definition 1. A matching M of a graph G = (V, E) is a set of edges,
no two of which are incident to a common vertex.

Definition 2. A matching M in a graph G is maximum if there is no
matching M ′ in G so that |M | < |M ′|, where |M | is the size of the set
M .

Definition 3. Let G = (V, E) be a graph, and M a matching in G.
1. If v is an end vertex of some edge in M , we say that M saturates v.
Otherwise, we say that v is unsaturated by M .
2. An M−alternating path is a path whose edges alternate between
edges in M and edges not in M .
3. An augmenting path is an M−alternating path whose ends are both
not saturated by M .
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Theorem 1. (Berge,1957) M is a maximum matching in G if G has
no M−augmenting path.

Before proving this theorem we will need some more definitions.

1. We define an edge to be weak with respect to a matching M if
it is not in the matching. Vertex is weak if it incident to a weak edges.
2. The symmetric difference between two sets S and T as:
S ⊕ T = (S \ T ) ∪ (T \ U).
3. A covering of a graph G is a subset K av V such that every edge of
G has at least one end in K. A covering K is minimum covering if G
has no covering K ′ med |K ′| < |K|.
If K is a covering of G, and M is a matching of G, then K contains
at least one end of each of the edges in M . Thus for any matching M
and any covering K, |M | ≤ |K|.

Observation. An augmenting path P has an odd number of edges,
with one more edge that is not covered by the matching. Note that
we can always increase a matching by removing the even edges of P
from M and adding the odd edges of P to M increases the size of the
matching by one.
Now to Berge’s proof.

Proof. We prove first that if there is an augmenting path so the match-
ing is not maximum.
Let M be a maximum matching in G and suppose that G contains an
M-augmenting path

P : v0, v1, ..., vk,

where k is clearly odd (by the definition of augmenting path). If N is
defined to be

N = (M − {v1v2, v3v4, ..., vk−2vk−1}) ∪ {v0v1, v2v3, ..., vk−1vk}
then N is a matching in G, and it contains one more edge than M ;
thus, M is not a maximum matching.
To prove the other direction, we will show that if the matching is not
maximum then there is some augmenting path. Suppose that M is not
a maximum matching and there does not exist an M-augmenting path
and let N be a maximum matching in G. Now, consider the symmetric
difference M⊕N . Since no two edges in a matching meet at a common
vertex(matching defintion), every vertex is incident with at most one
vertex in M and one vertex in N . We represent N by dotted edges and
M by solid edges, each connected component of M ⊕ N is one of the
following types:
1. A path that begins and ends with a solid edges:

. . . . . . . . . . . .
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2. A path that begins with a solid edge and ends with a dotted edge:
. . . . . . . . . . . . . . . . . .

3. A path that begins and ends with a dotted edge:
. . . . . . . . . . . . . . . . . .

4. An alternating cycle such as:

. . . . . . . . . . . .

. . . . . . . . . . . .

Since N is a maximum matching then|N | > |M |, and there must
be a component with more dotted edges than solid ones. Note that
any alternating cycle must have an even length because every vertex
is incident with at most one edge from N and one edge from M . Thus
some connected component must be of type 3, wich is an augmenting
path.This gives a contradication of our assumption that there is not an
augmenting path.

!

4. Matching In Bipartite Graph

4.1. Definition. A graph G(V, E) is called bipartite if V = A ∪ B
whithA ∩ B = φ and A (= φ, B (= φ, and every edge of G is of the
form a, b with a ∈ A and b ∈ B. If each vertex in A is joined with
every vertex in B, we have a complete bipartite graph. In this case, if
|A| = m, |B| = n, the graph is denoted by Km,n.
Let’s now turn our attention to matching in bipartite graphs. Con-
sider the following example: if we have a set of teachers and a set
of subjects, assume that every teacher is qualified to teach only some
subjects. What condition would guarantee that each teacher take a
suitable subject which she(he) qualified.
This is a typical problem in bipartite matching and we can model this
situation using a bipartite graph, where each vertex in A represents
a teacher, each vertex in B represents a subject, and edge (t, s) ∈ E
means that teacher t is qualified for subject s.

Theorem 2. (König’s Theorem) If G is a bipartite then the maximum
size of matching µ(G) = the minimum size of a covering β(G).

Proof. !
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5. The Marriage Theorem

5.1. Introduction. If a group of men and women may date only if
they have previously been introduced, then a complete set of dates
is possible if and only if every subset of men has collectively been
introduced to at least as many women, and vice versa.
”Do you call this a marriage?” asked somebody who was interested in
understanding what I am writing about? Yes this theorem is about
mathematical matching, which the mathematicians call it marriage.
It is a mathematical marriage not a social one. Dont thing a bout
the social definition of marriage, for the Marriage theorem has some
assumptions that can only exist in mathematics. It assumes that any
man would be happy to marry a woman who wants to marry him which
is very polite and idealistic. It assumes that one-man matches/marries
one and only one woman, which is not the case in all philosophies.
Some philosophies or religions assume that one man can marry up to
4 women, and I hope that there is some philosophy which allows one
woman to get marry at least two men. It assumes a marriage between
a man and a woman, which is also not always the case nowadays.
”In this case call it Catholic Marriage theorem” somebody suggested.

Now the question is : When can one marry off the men to the women,
and is there an algorithm, a simple set of rules, that can be followed,
that will find such a pairing when one exists in a reasonable amount of
time, even for large numbers of men and women?

The ideas that lie behind this marriage theorem were discovered inde-
pendently in several different contexts. The Hungarian graph theorist
Dénes König (1894-1944), the British group theorist Philip Hall and
others, all found their way to involve the ideas in matching. Hall had
come across his theorem in 1935. Hall’s marriage theorem is an impor-
tant result in combinatorics. It gives necessary and sufficient conditions
for a maximal matching to exist between the two sets of vertices of a
bipartite graph.

5.2. Hall’s Theorem.

Definition 4. If G(A∪B; E) is a bipartite graph and a matching M of
G saturates all the vertices in A, then M is called a complete matching
(also called a perfect matching).
Consider the following bipartite graph:
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Does it have a complete matching ?
It obviously does not. We have three vertices in A which are only con-
nected to tow vertices in B. Since 3 > 2 so no complete matching can
exist.
Let us formulate the following definition of range:

Definition 5. let G = (A∪B, E) be a bipartite graph, and let X ⊂ A.
The range of X, denoted N(X), is defined to be N(X) = {v ∈ B such
that (u, v) is an edge for some u ∈ X}.

Observation The following is a necessary condition for a bipartite
graph G = (A∪B, E) to have an A-complete matching: |N(X)| ≥ |X|
for all X ⊆ A.

Proof. We prove that if we have complete matching then |N(X)| ≥ |X|.
Let M be a complete matching which saturates every vertex in A, then
every vertex in A has a neighbor vertex in B. It means that for a subset
X ⊆ A every vertex in X is end of an edge in M and the other end is
in B. Thus since edges in M are disjoint, |X| ≤ |N(X)|.

!

Hall’s theorem says that whenever a bipartite graph satisfies the con-
dition just mentioned then it has a complete matching,i.e. the condition
above is not only necessary but also sufficient. To be precise:

Theorem 3. (Hall’s Theorem) A bipartite graph G with bipartition
A∪B has a complete matching of A if and only if for every set X ⊆ A,
|N(X)| ≥ |X|.

The ”only if” part is proved above , so we will give several different
proofs of the ”if” part of this theorem.
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Proof. 1. (using König’s theorem) We prove that if we cannot match
A into B then the Hall’s condition fails.
If there is no compete matching in G, then there is a vertex in A which
is not in the maximum matching M . Let X be the subset of A which
has all the vertices in the matching M . Well... if there is no complete
matching then Konig’s theorem implies that there is an edge cover W
such that |W | < |A|.
Let W = A′ ∪ B′ with A′ ⊆ A and B′ ⊆ B. Then |A′| + |B′| = |W | <
|A|.
Let X = A \W .We prove that N(X) ⊆ W ∩B. Indeed, let b ∈ N(X).
Then there exist a vertex a ∈ X such that ab is an edge. As X = A\W ,
vertex a does not lie in W . So, as W is a vertex cover, b ∈ W . Moreover,
as a ∈ X ⊆ A, we have also that b ∈ B. Hence, b ∈ W ∩ B. So we
proved that N(X) ⊂ W ∩ B, as required. So
| N(X) |≤ |W ∩ B| = |W | − |W ∩ A| = |W | − [|A| − |A \ W |] =
|W | − |A| + |A \ W | = |W |− |A| + |X| < |X|. So X is a subset of A
with |N(X)| < |X|.

!
Proof. 2.(using Berge’s theorem)
Suppose M is maximum and does not saturate A. We will find a set X
that violates the Hall’s condition. Let u be an M-unsaturated vertex
in A. Consider the set U of vertices that are on M- alternating paths
starting in u and let X = U ∩ A, Y = U ∩ B. Note that all the edges
in M have the first endpoint in U and the other in U . We will find a
set X such that:
(a) |X| = |Y | + 1
(b) |N(X)| = Y
To prove (a) note that u is M-unsaturated and M is maximum, thus by
Berge’s theorem there is no augmenting path which means that every
vertex in U − (u) is M-saturated. Thus all vertices in X − u and Y
are matched by edges from M which are on the M-alternating paths
starting at u, so we have |X|− 1 = |Y |.
Now we prove (b) in this way:
Again all vertices from U −u are M-saturated and than T ⊆ N(X).To
see that N(X) ⊆ Y , we have to prove that there is an odd M-
alternating path from u to every vertex in N(X). Let w ∈ N(X)
be a vertex. We prove that w ∈ Y . Now two things can happen:
1. uw is an edge in G, then we have an odd alternating path from u to
w which means that w ∈ T and N(x) ⊆ T .
2. There is no such edge between u and w. Since w ∈ N(X), there is
an edge say sw for some s ∈ X − u. Since u is the only vertex in X
which is not M-saturated it means that there is an M-alternating path
from u to s. Both end points (u,s) of this path lie in X which means
that the alternating path has an even length and so the last edge on
it is from M . Consequently we can extend this path with an edge and
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get an odd M-alternating path from u to w. From (a) and (b) we have
found a set X with |N(X)| < |X| which contradicts Hall’s condition.
Thus we must to have a complete matching.

!
Proof. 3. This proof is based on induction.
Suppose that Hall’s condition holds and we show that a matching ex-
ists. We use induction on the cardinality of A (the number of all
vertices in A). If |A| = 1 then Hall’s condition implies that the only
vertex which is in A has at least one neighbor in B, and so a matching
exists. Now suppose that the result is true for |A| ≤ n. (Using the
strong version of mathematical induction). We will prove that it is
true for |A| = n + 1. Consider a bipartite graphG whose input set A
has cardinality n + 1. There is tow possibilities: either every proper
subset X ⊂ A, the cardinality of N(X) is greater than the cardinal-
ity of X, or there exists a proper subset X ⊂ A such that |N(X)| = |X|.

Case 1: Choose any vertex x ∈ A and any y ∈ N{x} (we know that
every x ∈ A has at least one element in N{x} by hypothesis). Then
we define a new bipartite graph G∗ with two new sets. The first set is
A − {x} and the another set is B − {y}, and we remain all the edges
in the original graph G, except the edges which are incident to x and
y (I mean we take away all the edges are related to x and y). Now
the our new bipartite graph G∗ satisfies the hypothesis |N(X)| ≥ |X|,
because in case 1 every proper subset X ⊂ A has |N(X)| > |X| or we
can write |N(X)| ≥ |X| + 1, and by deleting a vertex y from N(x) we
still have |N(X)| ≥ |X|. By the induction hypothesis we have a perfect
matching in G∗. We can extend this matching by adding the edge xy
and in this case we have a perfect matching in the original graph G.

Case 2: We have |N(X)| = |X| for a proper subset X + A, we want
to show that there is a complete matching in A. Construct two new
bipartite graphs namely G∗ and G∗∗ with input sets: X and A − X,
output sets N(X) and B − N(X) and the same edges which are in
the original graph G. So we have G∗ = (X, N(X)), E∗ and G∗∗ =
(A − X, B − N(X), E∗∗). Now we show that the both bipartite have
complete matchings and then the joins of these tow bipartite G have a
complete matching.
We know that both vertex sets X and A−X have cardinality no greater
than n because X ⊂ A and A−X ⊂ A. Thus, the induction hypothesis
will give us the existence of perfect matching in G∗ and G∗∗ provided
it is shown that the hypothesis |N(X)| ≥ |X| for each of these graphs.
For G∗: we take any subset X∗ ⊆ X, then the range setN∗(X∗) in the
graph G∗ coincides with N(X∗) in G (we have the same edges which
are in G). Consequently G∗ have a complete matching.
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Now consider G∗∗. If there is a subset X∗∗ ⊂ A is disjoint from X, then
|N∗∗(X∗)| = |N(X∪X∗)|−|N(X)|, but |N(X∪X∗)| ≥ |X∪X∗| because
|X| ≤ n ⇒ |N(X)| ≥ |X|, and the same for X∗. So |(N∗∗(X∗)| ≥
|(X ∪ X∗)| − |A| or |(N∗∗(X∗)| ≥ |X∗|. This means that G∗∗ has
perfect matching. The join of G∗ and G∗∗ which is G has complete
matching. This proves the theorem.

!
Before going to the fourth proof, we will solve the following problem

which will be usefull later.
Problem. Let G be a bipartite graph, with vertex sets V1 and V2. Let
A and B be two subset of V1

(i) Prove that
|N(A ∩ B) ≤ |N(A) ∩ N(B)|

. (ii) Prove that

|N(A ∪ B)| = |N(A) ∪ N(B)|
Solution.
(i) It is enough to prove that:

N(A ∩ B) ⊂ N(A) ∩ N(B)

Suppose that y ∈ N(A∩B). Then there is x ∈ A∩B such that xy is an
edge of G. But then y ∈ N(A) and y ∈ N(B) and so y ∈ N(A)∩N(B).
(ii) It is enough to show that

N(A ∪ B) ⊂ N(A) ∪ N(B)

Suppose that y ∈ N(A ∪ B). Then there is a vertex x ∈ A ∪ B such
that xy is an edge of G. Thus x ∈ A or x ∈ B. But then y ∈ N(A) or
y ∈ N(B), so that y ∈ N(A) ∪ N(B).
Now suppose y ∈ N(A) ∪ N(B). But then y ∈ N(A) or y ∈ N(B),
then there is a vertex x ∈ A orB such that xy is an edge of G. In this
case x ∈ A ∪ B and y ∈ N(A ∪ B).

Back to Hall’s theorem and the fourth proof

Proof. 4 Let G be a minimal graph with respect to the number of edges
that satisfies Hall’s condition |N(X)| ≥ |X|.
We will prove that G is a matching with independent edges. Suppose at
the moment that there is no such matching. Then there is two edges
with a common vertex in B, a1x, a2x, where a1, a2 ∈ A and x ∈ B.
Now if we delete one edge of these tow the condition fails.
Take subsets Xi ⊂ A such that ai ∈ Xi and ai is the only vertex which
has x as its neighbor, and

|N(Xi)| = |Xi|
Thus

|N(X1) ∩ N(X2)| = |(N(X1) − {a1}) ∩ (N(X2) − {a2})| + 1
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≥ |N(X1 ∩ X2)| + 1 ≥ |X1 ∩ X2| + 1

(we add 1 because when we delete ai their neighbor namely x will be
deleted then we have to add one).
But then

|N(X1∪X2)| = |N(X1)∪N(X2)| = |N(X1)|+|N(X2)|−|N(X1)∩N(X2)|

≤ |X1| + |X2|− |X1 ∩ X2|− 1 = |X1 ∪ X2|− 1

which gives a contradication.

!

The last proof is based on Max-flow min-cut theorem, so to under-
stand it we have to write some basic concepts and definitions about
flow network.

6. Flow Theory

6.1. Definition. Directed graph: A directed graph (or digraph)
−→
G =

(V, E) is a graph in which each edge receives a unique direction:
if there is an edge between u and v then either (u, v) ∈ E or (v, u) ∈ E.

The World Wide Web is an example of a (directed) graph. The files
are the vertices. A link from one file to another is a directed edge (or
arc).

The following figure shows a directed graph with source and sink.

6.2. Definition. The incoming, or in degree of the vertex v is the
number of edges in

−→
G that are incident into v, and this is denoted by

id(v).

The outgoing, or out degree of v is the number of edges in
←−
G that are

incident from v, and this is denoted by od(v).
Example: The vertex 6 in this figure has in-degree 2 and out-degree
1.
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6.3. Definition. A network (directed network) N = (V, E) is a con-
nected directed graph where the following conditions are satisfied:
a) There exists a unique vertex a ∈ V with id(a), the in degree of a,
equal to 0. This vertex a is called the source.
b) There is a unique vertex z ∈ V , called the sink, where od(z), the
out degree of z, equals 0.
c) The graph N is weighted, so there is a function from E to the set
of nonnegative integers that assigns to each edge e = (v, w) ∈ E a
capacity, denoted by c(e) = c(v, w).
Example: The graph in the following figure is a transpot network.
Here vertex s is the source, the vertex t is the sink, and capacities
are shown beside each edge. Since c(s, a) + c(s, b) = 5 + 2 = 7, the
amount of the commodity being transported from s to t cannot exceed
7. c(c, t) + c(d, t) = 2 + 4 = 6, so the amount is restricted to be no
greater than 6.

6.4. definition. A flow on the network is a function f : E → N that
satisfies two rules:
a) For each v ∈ V except the source a and the sinkz

∑
u,(u,v)∈E f(u, v) =∑

w,(v,w)∈E f(v, w)
b) For any e ∈ E f(e) ≤ c(e)
Example: For the network in the following figure, the first number
beside each edge e determines the capacity of the edge, and the second
number assignes for possible flow f . The label on each edge e satisfies
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f(e) ≤ c(e). The function f for in this figure satisfies the above prop-
erties, so it is a flow for the given network.

6.5. Definition. A partition of the vertices of the network into two
sets, one containing the source s, called S, and the other the sink,
called T , is called a cut. A cut can also be determined from, and is
usually identified with, the set of arcs starting in S and ending in T .
The capacity of a cut is the sum of the capacities on these arcs. A
minimum cut is a cut with the minimum capacity.
Example: The dotted curve in the following figure indicates a cut for
the given network. The cut C consists of the edges {s, b}, {a, c} and
{a, b}. This cut partitions the vertices of the network into two sets
P = {s, a} and its complement P = {b, c, d, t}, so C is denoted as
(P, P ). The capacity of a cut, denoted c(P, P ), is defined by

c(P, P ) =
∑

v∈P
w∈P

c(v, w)

the sum of the capacities of all edges (v, w), where v ∈ P and w ∈ P .
In our example, c(P, P ) = c(s, b) + c(a, c) + c(a, b) = 7 + 4 + 5 = 16.

The following theorem is the basic theorem of Ford and Fulkerson which
we will use to prove Hall’s marriage



HALL’S MARRIAGE THEOREM 13

Theorem 4. The Max-Flow Min-Cut theorem
A value of a maximum flow in a network N is equal to the value of a
minimum cut of N.

We will prove Hall’s theorem using the above theorem.

Proof. 5. Let V = A∪B, with A = {a1, a2, ...., am} and B = {b1, b2, ...., bn}.
Construct a transport network N that extends graph G by introducing
two new vertices a (the source) and z (the sink). For each vertex ai,
1 ≤ i ≤ m, draw edge a, ai. For each vertex bi, 1 ≤ i ≤ n, draw edge
bi, z.Each new edge is given a capacity of 1. Let M be any possitive
integer that exeeds |A|. Assign eagh edge in G the capacity M . The
complete matching in G exists if and only if there is a maximum flow
in N that uses all edges (a, ai). Then the value of such maximum flow
is m = |A|.

figure 1

We prove that there is a complete matching in G by showing that
c(P, P ′) ≥ |A| for each cut (P, P ′) in N . So if (P, P ′) is an arbi-
trary cut in the transport network N , let us define X = A ∩ P and
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Y = B ∩ P . Then X ⊆ A where we shall write X = {a1, a2, ...., ai} for
some 0 ≤ i ≤ m. now P consists of the source a together with the ver-
tices in X and the set Y ⊆ B. In addition P = (A−X)∪(B−Y )∪{z}.
If there is an edge {a, b} with a ∈ X and b ∈ (B−Y ), then the capacity
of that edge is a summand in c(P, P ) and c(p, p) ≥ M > |A|. If no
such edge exist, then c(P, P ) is determined by the capacities of:
1. the edges from the source a to the vertices in A − X, and
2. c(P, P ) = |A − X| + |Y | = |A|− |X| + |B|.
With Y ⊇ R(Y ), we have |Y | ≥ |R(Y )|, and since |R(X)| ≥ |X|, it fol-
lows that |Y | ≥ |X|. Consequently, c(P, P ) = |X| + (|Y |− |X| ≥ |A|).
Therefore, since every cut in network N has capacity at least |A| and
the cut ({a}, V − {a}) achives a capacity of |A′| (which is the comple-
ment to A), by theorem 4 any maximum flow for N has value |A|. such
a flow will result in exactly |A| edges from A to B having flow 1, and
this flow provides a complete matching of A to B.

figure 2

!
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7. Matching with defect

In general,there are problems where a bipartite graph has not a com-
plete matching.This remarks leads us to the question of finding the
maximal matching.

7.1. Definition. For a given bipartite graph G(V, E) with V is par-
titioned as A ∪ B, a maximal matching in G is one that matches as
many vertices in A as possible with the vertices in B.

7.2. Definition. Let G = (V, E) be a bipartite graph, where V is
partitioned as A ∪ B. If X ⊆ A, then δ(X) = |X| − |N(X)| is called
the deficiency of X.The deficiency of a graph G, denoted δ(G), is given
by δ(G) = max{δ(X)|X ⊆ A}.
Theorem 5. Let G = (V, E) be bipartite with V partitioned as A∪B.
The maximum number of vertices in A that can be matched with those
in B is |A|− δ(G).

Proof. We use transport networks as in the proof of theorem (4). As
in figure (1), let N be the network assosciated with the bipartite graph
G. The result will follow when we show that:
(a) the capacity of every cut (P, P ) in N is greater than or equal to
|A|− δ(G).
(b) there exsists a cut with capacity |A|− δ(G).
Let (P, P ) be a cut in N , where P is made up of the source a, the
vertices in X = P ∩ A ⊆ A, and the vertices in Y = P ∪ B ⊆ B.[see
figure 2].As in the proof of theorem 4, the subset X, Y may be φ.
1) If edge (x, y) is in N with x ∈ X and y ∈ B − Y , then c(x, y)
is a summand in c(P, P ). Since c(x, y) = M > |A|, it follows that
c(P, P ) > |A| ≥ |A|− δ(G).
2) If no such edge in (1) exists, then c(P, P ) is determind by the |A−X|
edges from a to A − X and the |Y | edges from Y to z. Since each of
these edges has capacity 1, we find that c(P, P ) = |A − X| + |Y | =
|A| − |X| + |Y |. No edge connects a vertex in X with a vertex in
B − Y , so R(X) ⊆ Y and |R(X)| ≤ |Y |. Consequently, c(P, P ′) =
(|A| − |X|) + |Y | ≥ (|A| − |X|) + |R(X)| = |A| − (|X| − |R(X)|) =
|A|− δ(X) ≥ |A|− δ(G).
Therefore in either case, c(P, P ) ≥ |A| − δ(G) for every cut (P, P ) in
N .
To complete the proof, we must establish the existence of a cut with
capacity |A| − δ(G). Since δ(G) = max{δ(X)|X ⊆ A}, we can select
a subset X of A with δ(G) = δ(X). Let P = {a} ∪ X ∪ R(X). Then
P = (A − X) ∪ (B − R(X)) ∪ {z}. There is no edge between the ver-
tices in X and those in B − R(X), so c(P, P ) = |A − X| + |R(X)| =
|A|− (|X|− |R(X)|) = |A|− δ(X) = |A|− δ(G).
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!

Example: Let G = (V, E) be bipartite with V partitioned as X∪Y .
For each x ∈ X, deg(x) ≥ 4 and for each y ∈ Y , deg(y) ≥ 5. If
|X| ≤ 15, find an upper bound for δ(G).
(A subset A of X is said to have an upper bound c if c ≥ a for all
a ∈ A). Solution: Letφ (= A ⊆ X and let E1 ⊆ E, where E1 =
{{a, b}|a ∈ A, b ∈ R(A)}. Since deg(a) ≥ 4 for all a ∈ A, |E1| ≥ 4|A|.
With deg(b) ≤ 5 for all b ∈ R(A), |E1| ≤ 5|R(A)|. Hence 4|A| ≤
5|R(A)| and δ(A) = |A| − |R(A)| ≤ |A| − (4/5)|A| = (1/5)|A|. Since
A ⊆ X, we have |A| ≤ 15, so δ(A) ≤ (1/5)(15) = 3. Consequently,
δ(G) = max{δ(A)|A ⊆ X} ≤ 3 , so there exists a maximal matching
M of X into Y such that |M | ≥ |X|− 3.

8. The Stable marriage Problem

8.1. Description of the problem. Suppose that there are n boys
and n girls. Each boy ranks all of the girls according to his prefer-
ence, and each girl ranks all of the boys. There are no ties in anyone’s
rankings. For example the man M cannot like the woman w1 and w2

equally. Rankings are known at the start and stay fixed for all time.
Imagine you are a matchmaker and your job is to arrange n ”happy”
(stable) marriages.
By stable we mean that once the matchmaker has arranged the mar-
riages, there should be no man who says to another woman ”I love
you more than the woman I was matched with”, and the woman agree
because she loves this man more than she loves her husbad. Solving
the problem of stable marriage is an example of such new thinking.

Definition 6. A set of marriages is unstable if there is a boy and a
girl who prefer each other more than their spouses.

For example, suppose that the man B is married to the woman c,
and man A is married to b. But c likes A more than B and A likes c
more than b. The situation is shown in Figure. So c and A would both
be happier if they ran off together. We say that c and A are a rogue
couple, because this is a situation which encourages roguish behavior.

cB

bA " " " " " " " " " " "
♥
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Definition 7. A set of marriages is stable if there are no rogue couples
(blocking pair) or, equivalently, if the set of marriages is not unstable.

In other words: A matching M is stable if there is no pair (m, w) of
man m and a woman w satisfying the following conditions:
1. m and w are not married in M ,
2. m prefers w to his current partner in M ,
3. w prefers m to her current partner in M .
If this pair (m, w) exists, M is unstable and the pair (m, w) is called a
blocking pair.

8.2. Example. (Marrying 3 men (A, B, C) to 3 women (a, b, c)).

Men Order of preference
A c b a
B b a c
C b a c

Women Order of preference
a A B C
b C A B
c C B A

One unstable matching is (Aa, Bb, Cc) because A and b prefer each
other more than the pair they matched with.
Let us take another matching, namely Ab, Ba, Cc. This marriage is
unstable too because of b and C. But the matching Ac, Ba, Cb is
stable because the list of the wives that each man prfers to his own:
A prefers c then b
B prefers b
C has his first choice
and the list of husbands that each woman prefers to her own:
a prefers A
b has her first choice
c prefers C, then B
We cannot improve upon A′s choice because neither c nor b prefers
him to her husband. Neither we cannot improve B′s choice because b
has already obtained her favorite partner. The matching considered is
therefore stable.

8.3. Example. Consider that there are n boys and n girls. Each boy
lists the girls in order of preference, and each girl lists the boys in order
of preference. The goal is to find a stable pairing between all boys and
girls. Stable in the sense that there is no boy - girl couple who are
not paired, but who both prefer each other above their partner in the
pairing. The number of ways to pair n boys and n girls is n!. ( The
first boy can be paired with n girls; once that girl has been chosen, the
next boy can be paired with n − 1 girls; etc. An so the total number
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of choices is n(n − 1)(n − 2)1 = n!. ) We know that there is at least
one stable pairing. But that might be the only one, or maybe there are
many stable pairing. Its very likely that the actual number of stable
pairings is depending on the actual lists of preferences. Of course the
largest possible number of stable pairings is n!.
(a) For each n ≥ 1, give an example of lists of preferences for the boys
and the girls so that only one of all the n! possible ways of pairing them
gives a stable pairing.
(b) Give an example of a lists of preferences for 2 boys and 2 girls so
that all 2! = 2 possible pairings are in fact stable.

Solution For convenience, we always denote the boys by b1, ..., bn

and the girls by g1, ..., gn. Also, given a person p, we use L(p) = [...] to
denote the preference list of that person. For instance, if n = 3, then
L(b2) = [g2, g1, g3] would indicate that boy b2 prefers girl g2 the most,
then g1 and girl g3 the least.
Also, we use (bi, gj) to denote that boy bi and girl gj form a pair in
some chosen pairing.
(a) For all i = 1, ..., n set preference lists L(bi) = [gi, ...] and L(gi) =
[bi, ...], where the dots indicate that it doesnt really matter what the
lists after the first choice look like.
First notice that with these preferences the pairing (b1, g1), (b2, g2), ..., (bn, gn)
forms a stable pairing : each person is paired with the person he/she
prefers most, hence nobody has another possible partner they prefer
over their current partner.
But we also must show that the pairing above is the only stable pairing.
So consider a pairing that is different from the one above. That means
that at least one boy, say bi, is not paired with his preferred girl gi. So
there is a pair (bi, gj) with gj (= gi. Note that this also means that girl
gi is in a pair (bk, gi) with bk (= bi. So both bi and gi have a partner
in this pairing they prefer less than each other. So bi, gi will form an
unstable pair.
(b) Choose L(b1) = [g1, g2], L(b2) = [g2, g1], L(g1) = [b2, b1] and L(g2) =
[b1, b2]. The both pairing (b1, g1), (b2, g2) and (b1, g2), (b2, g1) are stable
pairings.

8.4. The Fundamental Algorithm of Stable Marriage. A method
for computing a stable marriage is called a stable marriage algorithm.
The algorithm we describe, due to D. Gale and H. S. Shapely, origi-
nally appeared in the American Mathematical Monthly in 1962 under
the title “College Admissions and the Stability of Marriage.
Gale and Shapley devised a simple intuitive algorithm, now quite well
known, for solving the classical one-to-one stable marriage problem.
They proved that, for any equal number of men and women, it is al-
ways possible to solve the stable marriage problem (SMP) and make all
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marriages stable. They presented an algorithm to do so. A matching
in this algorithm is a one-to one mapping between the two sexes.
The Gale-Shapley algorithm involves a number of ”rounds” (or ”iter-
ations”) where each unengaged man ”proposes” to the most-preferred
woman to whom he has not yet proposed, and she accepts or rejects
him based on whether she is already engaged to someone she prefers.
If she is unengaged, or engaged to a man lower down her preference
list than her new suitor, she accepts the proposal (and in the latter
case, the other man becomes unengaged again). Note that only women
can switch partners to increase their happiness. The SMP is based on
the idea of minimizing happiness. The unhappiness, however, is only
relative, in example one pairing is either better or worse than another.
No measurment of how much better or worse is done.
Algorithm
1. assign each person to be free;
2. while some man X is free
3. x := first woman on X’s list; X proposes to x
4. if X is not on x’s preference list then
5. delete X from x’s preference list;
6. go to line 3
7. end if
8. if some man Y is engaged to x then
9. assign Y to be free;
10. end if
11. assign X and x to be engaged to each other;
12. for each each successor Y of X on x’s list loop
13. delete Y from x’s list;
14. delete x from Y’s list;
15. end loop;
16. end loop;
This algorithm starts by setting all persons free and iterates until all
the men are engaged.
A man always wanted to marriage his most-preferred woman (line 3).
When a woman x receives a proposal from a man X, she accepts it if X
is on her preference list. Otherwise, X deletes x from his preference list
(line 5) and then a new proposal is started (line 6). Whether X is on x’s
preference list and x is already engaged to Y, she discards the previous
proposal with Y and Y is set free (line 8-9). Afterwards, X and x are
engaged each other (line 11). Woman x deletes from her preference list
each man Y that is less preferred than X (line 13). Conversely, man
Y deletes x from his preference list (line 14). Finally, if there is a free
man, a new proposal is started. The algorithm terminates when all the
men are engaged.
To understand this algorithm, we take an example.
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Example

Men Order of preference

A b c a d
B d c a b
C b c a d
D d b a c

Women Order of preference

a C B A D
b D A B C
c C A B D
d A D C B

1. At the begining every person is free.
2. we take man A which has woman b as his first choice, A and b
become engeged.
3. Take man B which has woman prefer most woman d. B and d be-
come engaged.
4. Man C has woman b as his first choice, but b prefer A to C, so she
refused C. we delete b from his list and go to his second choice which
is woman c. c is not engeged so she accept him and we have now a new
couple Cc and go to the last man D
5. Man D has d as his first choice. Woman d prefers D to her current
partner B. She changes partners and B becomes the new suitor. Then
d is removed from B’s list.
6. The second choice for B now is c, but woman c is already has her
love, so she dumps B.
7. The best choice remaining on poor B is a. She accept him because
she prefers to has a partner instead of be alone.
8. We have now a stable list of couples which is shown in the table
below.

Theorem 6. At the end of the algorithm, everyone is engaged.

Proof. The number of engaged men at the end will be equal to the
number of engaged women at the end, because it could not be the case
that there remains an un-paired couple (A, a), since at some point (A)
would have proposed to (a), and she would have accepted. !
Theorem 7. The solution obtained by the Algorithm is a stable match-
ing.



HALL’S MARRIAGE THEOREM 21

Table 1. the table our example

Pairing Man Woman Result
0 A b accept

{Ab} B d accept
{Ab, Bd} C b not accept
{Ab, Bd} C c accept

{Ab, Bd, Cc} D d accept
{Ab, Cc, Dd} B c not accept
{Ab, Cc, Dd} B a accept

{Ab, Ba, Cc, Dd}

Proof. We prove it by contradication.We Assume that the final match-
ing is not stable, which mean that there exists parings (A, a) and (B, b)
but (A, b) is a blocking pair. Since A prefers b to a, A would have pro-
posed to b first, who must have rejected him, so b′s current mate must
be preferred to A This is a contradiction, since A is higher than B in
b′s preference list. Hence, the matching must be stable. !

In fact, the algorithm gives the optimal result for each man because
each man has the best possible matching. The result constitutes the
worset solution for the women
Proof. Suppose that Aa is a matching in the algorithm, but Ba and
Ab are matchings in another stable matching where a prefers A to B.
Thus A must prefer b to a, which contradicts the fact that the Aa is
the best solution for A.

Definition 8. A persons optimal partner is the possible partner that
person most prefers. A persons pessimal partner is the possible partner
that person least prefers.

Notation
aAb ⇐⇒ A prefers a to b or b is not in A′s list of references.
AaB ⇐⇒ a prefers A to B or B is not in a′s list of references.

8.5. Conflict of interest. We generelize the result that the best for
the men is the worst for the women in the following theorem which
says that every other stable matching is better for one of the spouses
and worse for the other.

Theorem 8. If one stable matching contains the couple Aa, and an-
other contains couples Ab and Ba, then either

bAa and AaB,
or
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aAb and BaA

Proof. by the definition of stability, the situations of A and a cannot
both worsen in the second solution. Therefore it remains to show that
they cannot improve for the two at the same time.
Let A = X0, a = x0, b = x1, and suppose that A prefers b to a, that
X0, it must be that x1 has obtained a better choice.
Let X1 be the husband of x1 in the first stable matching. Thus must
be that X1 has obtained a better choice. Let x2 be X1’s wife in the
second stable matching. Thus x2X1x1, etc.
We obtain the sequence

X0x0, X1x1, X2x2, ... in the first stable matching,
X0x1, X1x2, X2x3, ... in the second,

where
xk+1Xkxk and Xk+1xk+1Xk for all k ≥ 0. Since the number of persons
is infinte, there exist integers j and k, j < k, such that Xj = Xk. Let j
be the smallest integer such that Xj = Xk and k > j. We have xj = xk.
Furthremore, j = 0 since otherwise Xk−1xk = Xk−1xj would appear in
the second matching as well as Xj−1xj . (From which Xj−1 = Xk−1,
contradicting the fact that j is the smallest integer with Xj = Xk).
Thus Xk−1 = B. Given that XkxkXk−1, we have proved AaB. !
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