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Abstract

In the attempt to relate cognitive and neural descriptions of mental functions,
using the human language faculty as a model, a fundamental di�culty is to de-
termine which theoretical description to start with. When comparing theories,
it is of great importance to develop concepts describing biologically relevant
properties common to all languages and other mental functions, such as recur-
sive structures. We describe the symmetric language pattern anbn, generated by
the recursive process of adding the component ab in the middle of the pattern in
each step. Our contribution is to formalize this intuition through implementing
recognition of this pattern in abstract system descriptions of cognition (theo-
retical machines such as �nite automata and neural networks). As a result of
taking space limitation in the physical brain into account, we propose �nite
state machines as an interesting conceptual framework.
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Notation

C (the class of computable functions)

P [l1, l2, l3, . . .→ lp]

Instruction to program P to compute on input l1, l2, l3 and store the result
in lp

{a, b, ...}+

all non-empty, �nite strings from the alphabet
∑

= {a, b, ...}∑∗ (Kleene closure)

the set of all �nite strings over
∑

including the empty string.

	 (cut-o� subtraction, or monus)

x	 y = 0 if x < y
x	 y = x− y if x ≥ y

anbn

the language of stings consisting of n a's followed by n b's, where n ∈ N

aaaaaaaabbbbbbbb
aaaabbbb
aabb
ab
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Chapter 1

Introduction

In april 2006, a paper appeared in Nature (Gentner, Fenn, Margoliash & Nus-
baum, 2006) stating that European Starlings (a singing bird species) can learn
recursive syntactic patterns. The strings presented to the birds were taken from
the language anbn, which capture the concept of centrally embedded recursive
structures. Since then, the linguistic community, all the way up to it top the-
oreticians, has debated if this capacity has implications on theories about the
origin of language. The results have been interpreted as contradictory to the
hypothesis that recursive embedded structure is at the core of the unique hu-
man language faculty (Fitch & Hauser, 2004). One counter argument is that
the results are dismissible since the Starlings could have counted the a's and
b's (sung to them as syllables with male or female voices) and thus classify
strings without a proper sense of grammar. Our theoretical investigation shows
that being able to count (or something equivalent to the counting functionality)
might be the only way to learn to categorize this kind of recursive structures.
The scope of this thesis is to introduce useful concepts from the mathematics
of symbols, computability theory, the neural networks literature and a tinge of
dynamical systems theory, to shed light on this discussion.

We start with a review of how cognitive functions can be implemented in some
simple theoretical mechanisms or machines (called automata, for a full intro-
duction see Cohen, 1997). At some level of abstraction, these can be seen as
models for both the bird and human cortex. However, some of these systems
might be considered too unrealistic with respect to biological constraints. That
is why we develop special cases of earlier proved general results about formal
language recognition or computation in the framework of unlimited register ma-
chines (Cutland, 1970), analog neural networks (Siegelmann, 1999) and simple
recurrent networks (Elman, 1991). In other words, we are going from simple ab-
stractions to biologically inspired implementations by gradually introducing well
chosen constraints. The two later frameworks touch on assumptions on space
limitation and limited processing or architectural precision. Simply put, these
assumptions are relevant since the human brain is �nite and thus most likely has
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CHAPTER 1. INTRODUCTION 4

a �nite storage capacity. In addition, noise sources introduce a limitation on the
precision with which the brain can process information. The most prominent
sources are probably imprecision in the structural architecture, synaptic noise
such as the probabilistic nature of synaptic transmission and variability in the
post synaptic potential (Koch, 1999). Thermal noise is of course also present,
but most likely negligible at room temperature. We conclude that research from
last ten years make a strong case in favor of the �nite state architecture of mind
(Minsky, 1967, Petersson, 2005, Wells, 2005), de�ned below. This is of impor-
tance for the foundations of linguistics. The Chomsky hierarchy of grammars
fades into a sand castle of platonic play, since complexity levels above the �nite
state architecture rely on the assumption of an in�nite external memory capac-
ity. Although it might seem trivial, we are not in�nite users of �nite means,
since we can not produce or recognize language patterns that require such fan-
tastic amounts of external memory. However, we have gained something more
interesting, a well grounded outlook on the implementation level, where one can
seek further understanding of the neural underpinnings of syntactic processing
(e.g. by conducting empirical research on the syntax learning phase in infants
and second language adult learners. With simple arti�cial grammar learning,
more robust physiological phenomena can be studied, since they can be taught
to other animal species and human learners, even when a�ected by pathologies,
for instance dysgraphia, dyslexia and developmental aphasia).

1.1 Formal languages

Let us begin with a symbol, the smallest syntactic entity. An alphabet
∑

is a
�nite set of symbols. A string ω of an alphabet is a �nite sequence of symbols
of that alphabet. The set of all strings over an alphabet is denoted

∑ ∗ and
any subset of this set is called a language. The empty set ∅ is a language, over
all alphabets, consisting of no string at all. We observe that the set of all strings
contains in�nitely many strings over any non-empty alphabet. Furthermore, if
we allow in�nite strings over an alphabet with two or more symbols the set of
strings contains an uncountable in�nity of strings, which is easily proved by a
diagonal argument. Usually, this is avoided by regarding the Kleene closure

∑ ∗

of �nite strings as described above. The set of strings in a in�nite language L
must be extensionally de�ned as in the scheme:

L = {ω ∈
∑ ∗ : ω has the property P}

However, it might not be transparent from a given ω whether it has the property
P or not. Suppose we want to �nd a systematic way of answering the question
"Is ω in L?". Formally, this is to �nd a language recognition algorithm, i.e. a
�nite set of ordered instructions for solving this problem in a �nite number of
steps.
Another task is "Generate a string in L". This is done by language generators.
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Grammars are the most spread form of language generators and in a sense, they
can also be seen as being �nite de�nitions of languages. Typically, grammars
are non-deterministic generative devices and not deterministic algorithms since
it is not speci�ed in which order the instructions should be performed; but they
can be viewed as non-deterministic algorithms. One might think that absence
of the deterministic constraint could increase the computational power, in the
sense of giving possibilities of specifying additional languages. However, this
turns out not to be the case, since a non-deterministic device can be simulated
in exponential time by a deterministic equivalent that goes through all possibil-
ities of each computational step in a systematic way (Lewis & Papadimitriou,
1998).

1.2 Languages as functions

In order to relate the mathematics of symbols to other �elds of mathematics,
it is important to establish the equivalence between formal languages and in-
dicator functions. Any function with a binary range can be viewed as de�ning
a language and any language corresponds to an indicator function in the sense
that the set of domain elements mapped to one stipulates the language.

f(x)=
{

1 iff ω ∈ L
0 iff ω /∈ L

}
It turns out that the interesting class of computable functions corresponds to the
formal languages described in the Chomsky hierarchy, which we return to when
introducing grammars. The next chapter is a case study of this equivalence
where we show that anbn is a computable function.



Chapter 2

Computability

Many approaches have been made to stipulate the class C of computable func-
tions, including Turing machines, Goedel's and Kleene's Recursive functions,
Church's λ-calculus and the symbol manipulation systems of Post and Markov.
We will outline a relatively recent framework centered on unlimited register

machines (URM), which can be viewed as a mathematical idealization of com-
puters, or more speci�cally the CPU of a computer.

De�nition 1 An URM has a countably in�nite number of registers R1, R2, R3, . . .
containing natural numbers r1, r2, r3, . . .. The URM changes the content of
the registers according to �nite sets of instructions I1, I2, I3, . . . , Ik called pro-
grams. After executing instruction Ii it proceeds to Ii+1 (with the exeption of
the jump instruction, de�ned below).

The class of computable functions can be computed by the URM if we allow
the programs to be composed of the following instructions:

1. Zero instruction Z(n) changing rn to 0.

2. Successor instruction S(n) increasing rn by 1.

3. Transfer instruction T(m,n) changing rn to rm

4. Jump instruction J(m,n,q) evaluating if rn equals rm and if so, jump
to instruction q.

The URM must be loaded or provided with an initial con�guration; that
is, a �nite, non-empty sequence of natural numbers in the registers which are
called the input to the computation.

6



CHAPTER 2. COMPUTABILITY 7

2.1 Recursion

In order to establish computability for some functions needed to prove the com-
putability of our language, we need the following theorem showing that C is
closed under de�nition by recursion. The crucial idea is the introduction of a
time dimension, specifying in which order the values of the constructed function
has to be obtained. This is a theme reoccurs in the network constructions, see
further Elman 91.

Theorem 1 Let x=(x1, x2, ..., xn) and suppose f(x) and g(x, y, z) are com-
putable functions. Then there is a unique function h(x,y) satisfying

h(x,0)=f(x)
h(x,y+1)=g(x,y,h(x,y))

and this function is computable.

Proof The uniqueness is garuanteed by the de�nition as follows. Suppose we
have two di�erent functions h1 and h2. Now for an arbitruary x, h1(x, 0) =
h2(x, 0) = f(x) which gives the basis step. Suppose h1(x, p) = h2(x, p), then
h1(x, p + 1) = h2(x, p + 1) = g(x, p + 1, h(x, p + 1)). By induction, h(x, y) we
have shown that h1(x, y) and h2(x, y) have equivalent maps for any choice of x
and y, thus h1 = h2 = h.

It is clear that h is computable since we have speci�ed an algorithm for pro-
ducing it, which is the essential de�nition of computability. To see this from
the URM point of view, simply concatenate the instructions of the programs we
know exist for f and g into one program, h. For details on register organization,
see next proof.

Cut o� subtraction, 	 by one, that is x-1 on N is then computable if we take
f(x)=0 and g(x, y, z)=x, i.e.:

0	 1 = 0
(x+ 1)	 1 = x

In the same manner, for the so called signum function sg(x)

sg(x)=

{
0 if x = 0
1 if x 6= 0

}
We take f(x) = 0 and g(x, y, z) = 1

sg(0)=0
sg(x+1)=1
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2.2 Substitution

Theorem 2 Let x=(x1, x2, ..., xn) and suppose f(y1,y2,. . .,yk) and g1(x),g2(x),. . .,gk(x)
are computable functions. Then the function
h(x,y) =f(g1(x),g2(x),. . .,gk(x))
is computable.

Proof Let F be the program that computes f and G1, G2, . . ., Gk compute
g1,g2,. . .,gk. In order to clearify the possibility of building one program in spite
of just having one row of registers, �rst compute g1,g2,. . .,gk and store the re-
sults in the �rst, second, . . ., kth register not a�ected by any of the programs.
Now use F to compute f and store the result in R1.

Now we have that, by substitution|x-y|is computable since
|x-y| = (x 	y)+(y 	 x)

2.3 An URM that decides anbn

The function we will proceed to compute has input strings ω ∈ {a, b, ...}+ and
the element mapped to one should be the elements from the language anbn (all
else are mapped to zero). Let us start with encoding each string as a natu-
ral number, exchanging each a's with 1's and b's with 0's so that we have the
language 1n0n. Now each string belonging to {a, b, ...}+ has a unique represen-
tation. Let the natural number x be stored in the �rst register, R1. Let F be a
program that computes div(x, y), the indicator function for 'is x dividable by y',
mapping an accepting answer to one and a rejecting answer to zero. Let G be
a program that computes qt(x, y), producing the quotient when x is divided by
y. Let H be a program that computes |x− 1|, in order to count down whatever
the sucsessor function has been counting up (see �gure 2.1).

Since we will show that F, G and H are �nite, we know that there is a register
Rp which is una�ected by each program P, denoted ρ(P ). We use the output
convention that the output of F is stored in this p=max(ρ(F ), ρ(G), ρ(H)). The
program starts with letting p+2 store a 1 and p+3 a 0 and p+4 a 10 for ref-
erence, using the successor function. Now the rest of the program decides if
ω ∈ anbn and stores the output in R1, accepting ω with a 1 and rejecting with
a 0. See further explanation in the �gure 2.1.

1 F[1,p+4 → p]
2 J(p,p+3,7)
3 S(p+1)
4 G[1,p+4 → 1]
5 F[1,p+4 → p]
6 J(1,1,1)
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7 H[p+1 → p+1]
8 G[1,p+4 → 1]
9 J(p+1,p+3,13)
10 F[1,p+4 → p]
11 J(p,p+3,7)
12 J(1,1,14)
13 J(1,p+3,15)
14 Z(p+2)
15 T(p+2,1)

The preceding program is not the shortest possible but it serves the purpose of
simplifying the transitions to the cellular automata described in the next chap-
ter, which will process the input in a similar way.

To conclude the case study of computability of the indicator function of anbn,
we need to show that the programs div(x, y) and qt(x,y) are computable. We
assume that rm(x,y), that is the reminder when y is divided by x and with
rm(0,y)=y, is computable. Then qt(x,y) and div(x,y) are computable.

Proof Div(x,y)=sg(rm(x, y)) is computable by substitution. We write out
the recursive step in the de�nition of qt(x,y):

qt(x, y + 1)=
{
qt(x, y) + 1 if rm(x, y) + 1 = x
qt(x, y) if rm(x, y) + 1 6= x

}
qt(0, y) = 0
qt(x, y + 1) = qt(x, y) + sg(|x− (rm(x, y) + 1)|)

Since we have shown a recursive de�nition from other computable functions,
qt(x,y) is computable. In order to put this example into perspective we conclude
that computable functions are functions which can be solved by algorithms, for
instance the algorithms represented as programs that can be built from the four
elementary instructions in the URM-framework. Using only de�nition by re-
cursion and substitution, the class of primitive recursive functions can be
generated. Interestingly, primitive recursive functions are the indicator func-
tions of a type of formal languages called regular languages (Davis, Weyuker &
Sigal 1994). These can be parsed by the �nite state machine, which we de�ne
in the next chapter. However, all computable functions are not primitive re-
cursive. To see this we will use Cantor's diagonal process following Lewis and
Papadimitriou (1998).

As we will see also in the case of regular languages, the key point here is enu-
meration. Each primitive function can be speci�ed with the �nite set of symbols
denoting basic functions (instructions in the URM-case), and de�nition by re-
cursion and substitution. Primitive recursive functions can thus be ordered in
lexicographic order. Now, let
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START

YESNO

S(p+1)H(p+1)

qt(x,10)x

qt(x,10)x

div(x,10) ?

div(x,10) ?

END

YES

x=0?

NO

END

p+1=0?

NO

YES

Figure 2.1: Suppose we have a �nite ω ∈ {1, 0}+. In the initial state ω, coded as
the natural number x, is in R1. In the �rst loop the URM test if the last digit is
a 0, erase it and increase a counting register Rp+1 by one. When the last digit
is a 1, it will proceed to the next loop without the possibility of going back to
erase 0's. Here, 1's are erased and the counting register is instead decreased by
one. As soon as an additional 0 is encountered, the machine rejects the input.
The URM tests if the counter is zero each turn. When it is, there should be
no remains of the string, otherwise the string is rejected. Thus ω must have a
number of consecutive 1's followed by the same number of consecutive 0's to be
accepted. This is a way to implement a push-down stack memory, a memory
structure which is intimately connected with context-free languages.
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f1, f2, f3, . . . ,

be the list of all primitive recursive functions. Construct g(n), as the func-
tion speci�ed by fn(n) + 1. Clearly, g(n) is computable since we have given
an algorithm to construct it, with substitution from the successor function, but
since it is di�erent from each primitive recursion function for at least one n, it
is not primitive recursive.



Chapter 3

Automata and grammars

We wish to deepen the discussion about computation of the indicator function
for the language anbn which we have shown to be computable in the URM-
framework. In the following section, we describe the interesting features of this
language from the perspective of language recognition devices and grammars.
The conclusion is that anbn is a context-free grammar, but not regular. Gram-
mars and automata mechanisms are at the core of traditional linguistic theories
of natural language.

3.1 Automata

Automata are abstract devices which compute functions of the input deliv-
ered on an input tape. According to the described analogy between languages
and functions, automata are also language recognition devices. The language
accepted by the automaton M is denoted L(M). Generally, we can compare the
computational expressivity or complexity of automata by the class of languages
that they can recognize. When comparing the automata, it is important to
distinguish between the machine complexity and the complexity of its memory
organization (Petersson, 2005). In the �rst example the automaton have no
external memory, the second can have �nite memory. Having �nite memory is
a restriction needed whenever we assume space limitation, as with the physical
systems of bird or human cortex. It should also be clear that a �nite memory
makes real number processing impossible, since it is not possible to represent the
real numbers in the memory. Although models of cognition using real numbers
might be important to develop useful concepts, any �nite cognitive system can
only be an approximately close to such a model, a property that we call �nite
precision computing.

De�nition 2 A �nite automaton, or �nite state machine is a quintuple M =
(Q,

∑
, qI , qH , f) Where Q is a �nite set of states,

∑
is a input alphabet, qI and

qH are the initial and halting states, and f is a transition function
f : Q×

∑
→ Q

12
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In order to emphasize similarities between the automata, we use the convention
of a single halting state instead of a set F ⊆ Q of �nal states used in some
de�nitions. Equivalent input output maps, that is the total function which
associates an element from the output set to every element of the input set, are
easy to construct by adding a single halting state with transitions from all the
�nal states given the empty string as an input.

De�nition 3 A push-down automaton is a 6-tuple M = (Q,
∑
,Γ, qI , qH , f)

Where Q is a �nite set of states,
∑
, is a input alphabet, Γ is the stack alphabet,

qI and qH are the initial and halting states, and f is a transition function
f : Q×

∑
×Γ∗ → Q× Γ∗ (where both the range and domain are �ninte sets)

The stack is the �rst example of external memory. Communication between
the �nite control part of the automata and the stack is done by two operations,
pushing symbols down to the stack, thus adding a new top element, or popping,
which erase the top element.

De�nition 4 A p-stack machine is de�ned by a (p+4)-tuple
(Q, qI , qH , θ0, θ1, θ2,. . . , θp)

Where Q, qI and qH are as above, θ0 map con�gurations, that is a combi-
nation of a state and an input, to Q (intuitively, encoding the transitions). θi,
i=1,. . .,p, map the con�gurations to a stack operation on stack i. The stacks
are here unbounded.

A p-stack machine with two or more stacks is computationally universal, i.e.
it has the same computational power as a Turing machine. However, we chose
to introduce the p-stack machine in order to make the input mode clear when
describing how the machine will compute anbn. The input will be stored in one
stack, which is then popped.

3.1.1 A P-stack machine computing anbn

In this example, two states, Q = {qI , qH}, and two stacks are necessary and
su�cient for M to decide the anbn, here encoded as 0n1n. Mapping the input
symbols to 0's and 1's is relevant in mimicking sensory organization as described
with a number sensors being on or o�. The con�gurations are here encoded as
a state, that can be thought of as the compound of the state of the central
processing unit and the state of the stacks. We also introduce some metadata
of the stacks, an empty stack predicate encoding an empty stack with a 0 and
a non-empty stack with a 1. This is to avoid introducing a third symbol in Γ
denoting an empty stack.

Two states are needed from the de�nition and one stack is insu�cient since
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we are using the input convention that ω is encoded in one stack in the initial
state. We observe that with this particular input convention and only one stack,
the 1-stack machine becomes equivalent to a �nite state machine (FSM), having
no external memory. In general, context-free grammars like 0n1n can not be
decided or recognized by �nite state machines. This will be proven below. In
brief however, this is because the FSM has a �nite number of states and to
parse a string longer then the number of states (such a string can be picked
from L(G)) one state has to be visited twice. Since the FSM had no external
memory, there is nothing that can distinguish the �rst time this state is visited
from the second. Thus, the loop created could be traveled any number of times
without the FSM changing its output. The only grammars that allow arbitrary
recurrences of at least one substring, concatenated in a right phrase linear man-
ner (i.e. adding the recurrent pattern on the right) are the regular grammars,
as we will see below.

θ0
qI × (0, 0, 1, 0) 7−→ qI
qI × (0, 0, 1, 1) 7−→ qI
qI × (1, 0, 1, 1) 7−→ qH
qH × (1, 0, 1, 1) 7−→ qH
qH × (0, 0, 0, 0) 7−→ qH
qI × all other inputs 7−→ qH
qH × all other inputs 7−→ qH

As seen in the table above, the input is encoded as a vector with four en-
tries (top element stack 1, top element stack 2, empty stack predicate stack 1
and empty stack predicate stack 2). We note that this example is parallel to
the visualized URM. The di�erence is that the interaction with the registers,
here pooled into levels of a stack, are explicitly modeled as numerical operations
on numbers. We want to encode the time evolution of the stack itself as a row
of cleverly chosen numbers and stack operations then correspond to a certain
computation with this number as an input. Speci�cally, the stack operations
are encoded vectors which we will use later in constructing a neural network.
For a fully worked out example of the stack-dynamics see the appendix.

It is clear how closely the URM-framework and the p-stack machine are related
and thus we have bridged the gap between, mathematics and theoretical linguis-
tics, computability theory and automata theory. These two descriptions support
each other in relation to thinking about applications, the URM-framework be-
ing closer to computer science and the automata theory more commonly used
in discussions about cognitive function. The perhaps most popular automaton
is the Turing machine de�ned below.

De�nition 5 A Turing machine (TM) is a A Turing machine is a 7-tuple
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(Q,
∑
,Γ, b, qI , qH , f)

Where Q, qI and qH are as above. Γ is here called the tape alphabet and b
is an element in Γ called the blank symbol (the only symbol allowed to occur on
the tape in�nitely often at any step during the computation).

∑
is a subset Γ

not including b and called the input alphabet. Finally f is the partial function

f : Q× Γ,→ Q× Γ× {L,R}

In the visualization of the TM, L, R corresponds to moving the tape, alterna-
tively the tape head, left or right.

In terms of computational strength, Turing machines are stronger then PDA's
which in turn are stronger then FSM's. This is because of the external unlimited
memory device provided in the Turing architecture and PDA's. Interestingly,
no abstract digital device can have more capabilities then Turing machines, a
result known as the Church-Turing thesis.

Figure 3.1: A TM with three states and a tape alphabet of black and white
shading. The instructions have two rows. The �rst one is depicting each state
as the orientation of the pointing tape head and the tape alphabet as black or
white shading. The other one is indicating if the TM will shade the underlying
square or not, and if the tape head will move to the left or to the right and
which orientation it will take in the next step. Notice that the instructions are
on the above mentioned form f : Q× Γ,→ Q× Γ× {L,R}
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context sensitive grammars

context free grammars

regular grammars

(a or b)*

a bn n

a b cn n n

Figure 3.2: Venn diagram of the hierarchy of grammars, with examples.

3.2 Grammars

De�nition 6 A grammar or context-sensitive grammar is a quadruple
G = (V,

∑
, R, S) where V is an alphabet,

∑
is a set of terminal symbols, S

is the start symbol which is a member of (V −
∑

), R is the set of rules, a �nite
subset of (V ∗(V −

∑
)V ∗)× (V ∗)

If all the rules of G are of the form (V −
∑

) × (V ∗) the grammar is called a
context-free grammar. If all the rules of G are of the form (V −

∑
) → a or

(V −
∑

) → aV where a ∈
∑
the grammar is called a regular grammar.

Since strings are obtained by applying the rules to the start symbol, each gram-
mar determine a set of strings that can generated from its rules. This set we
call L(G), the language generated by G. In our example, L(G)=anbn and the
grammar can be speci�ed as G = (V,

∑
, R, S) where V = {S, a, b}, Σ = {a, b}

and the rules are
S −→ aSb
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S −→ e

This way of writing the rules as productions makes it clear that the crucial dif-
ference between the context-free and the context-sensitive grammars is on the
left-hand side. The context-free case restricts the left-hand side to single non-
terminals. In addition, the right phrase linear structure of the regular grammars,
mentioned above, come from the further restriction of rules to (V −

∑
) → a or

(V −
∑

) → aV . It is clear that rules of the second form can create a subset
of strings in L(G) with an arbitruary �nite number of a's in a row as a substring.

Our language is a speci�ed as a context-free language, since it is generated by
a context-free grammar. However, since all regular languages are also context-
free, we will proceed to prove that anbn is not regular. The following theorem
will be helpful.

Theorem 3 (Pumping Lemma) Let L=L(M) where M is a �nite state ma-
chine with p states. Let x ∈ L where |x| ≥ p. Then we can write x= uvw where
v 6= 0 and uviw ∈ L for all i = 0, 1, 2, 3, . . .

The simple idea is to use the pigeon-hole principle to see that in parsing x at
least one state, say state i, has to be visited more then once. Let u be the part
of the string parsed before the �rst time the FSM goes into state i. Let v be
the part of the string parsed between the �rst and the second time. Now it is
clear that in terms of input-output behavior, the machine is not sensitive to the
number consecutive v's since it can go through this loop any number of times
and still end up in the same place. Let w be the reminding part of the string.
Hence, uviw ∈ L.

We now show that anbn is not regular to convince the reader that the p-stack
machine is indeed the right automaton to chose for implementation.

Being a substring, v is on the form al1bl2 where l1, l2 ≤ n and l1 or l2 > 0.
If both l1 and l2 > 0 vi /∈ L when i > 1, since it contains the illegal substring
ba. If one of l1 and l2 > 0 vi /∈ L when i > 1 since starting with an equal number
of a's and b's, adding a's or b's exclusively will inevitably produce asymmetry.



Chapter 4

Analog Recurrent Neural

Networks

The next step in approaching a biologically relevant model for recognition of
anbn is to embody the idea of a �nite set of states into neurons as the physical
entities being in the states. The goal of this chapter is to show recognition of
anbn by analog recurrent neural networks, a recent construction from the
revived �eld of analog computation. The whole chapter builds on the three �rst
chapters of Siegelmann's "Neural Networks and Analog Computation: Beyond
the Turing limit" where she introduces her model, showing the increasing com-
plexity that arise from integer, rational weights (see below), corresponding to
the FSM and the TM architecture, respecticely. Siegelmann also shows that
extending the presented model with real weights yields computational strength
richer than that of the Turing machine and that in fact, a very rich class of time-
discrete analog dynamical systems correspond to the class of ARNNs. However,
we limit ourselves to introducing some of the basic concepts.

4.1 Neural Networks

A neural network consists of N processors called neurons and a map F de�ning
the dynamics of the network. The activation vector x with N components is
updated according to F, given the input vector uj , j=1,. . .,M. The most general
network discussed in this thesis use binary inputs and rational activation values:

F : QN × {0, 1}M → QN

Component-wise

xi(t+ 1) = σ

(
N∑

J=1

aijxj(t) +
M∑

J=1

bijuj(t) + ci

)
i=1,. . .,N

18
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aij , bij and ci are called the weights of the network and σ is the piecewise
linear function:

σ(x) =

 0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1


The given weights constitutes F, uj is the discretized input, and xj is the pre-
vious state.

4.2 Analog computation

Analog computation is de�ned as computation in continuous space and time
(Siegelmann & Fishman, 1998). The last �fteen years, the �eld of analog com-
putation has become popular in the attempt to relate computational theories
to cognition. The idea is to deduce classical cognitive functions from the state
space dynamics of dynamical systems.

De�nition 7 A �nite-dimensional continuous-time smooth dynamical system
can typically be de�ned by a set of ODEs:

dx

dt
= F(x(t)) (4.1)

where x is a d-dimensional vector and F a d-dimensional vector function.

The dimensionality of the system corresponds to the number of neurons in the
neural network and also the number of coupled equations if we would write equa-
tion (4.1) on component form. A particular x is a state in the d-dimensional
state space. The state to which a system �ows is the output and the initial con-
dition is the input. The �ow itself, represented by a trajectory in state space,
is equivalent to what we have called processing, but could be more precisely
specifyed as information processing. The class of dynamical systems which has
been preferred in the attempt to explain cognition is called dynamical recog-
nizers. These are discrete-time dynamical systems with a given initial starting
point in a space Rn, called an alphabet

∑
. For each symbol in

∑
, the dynam-

ical recognizer has functions that maps Rn → Rn and an accepting region in Rn.

We note that the neural network as stated in the previous section is a dicrete
time dynamical system and that is also how the particular network will be con-
structed. The reason is that the process of going from discrete time to continous
time is technically consuming and it is not the only, or the most important sense
in which an analog system is analog. One can also expect that there is a least
time-scale relevant to real neural systems (e.g. refractory period between spikes,
which is in the order of microseconds).
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De�nition 8 An analog system is a system in which:

1. Real constants are present and in�uence the macroscopic behavior of the
system.

2. Continuity in the dynamics.

3. Continuous time update.

4. Discrete input/outputs: discrete input in order to relate complexity to the
classical framework and discrete output that correspond to probing state
space with �nite precision (that is, the only way it can be probed).

The �rst condition is indeed typically believed to be a property of all physical
systems, but it is a curious fact that we can never measure these constants with
in�nite precision. Instead, we have to postulate them and see what the calcula-
tions yields.

Siegelmann's analog recurrent networks use a �nite number of neurons, which
can be viewed as analog registers, but in�nite precision in the processing (which
amounts to an assumption of in�nite memory capacity). The similarities to the
idea of the Turing machines are clear but needs to be shown in detail, which we
do in the special case of anbn.

Theorem 4 Let ψ : {0, 1}+ → {0, 1}+ be the total function such that for every
ω ∈ {0, 1}+, ψ(ω) = 1 i� ω ∈ {0n1n}. This function is computable by a p-
stack Turing machine in time T : N → N . Then there exists a network N with
rational weights that computes ψ(ω) in time 4T.

We simulate time slowed down by a factor of four since this work consumes less
technical detail while still giving the relevant insight to the equivalence between
Turing machines and ARNN's.
Let M be a P-stack machine that computes ψ. We shall construct a formal
network N that simulate M.

4.3 Analog recurrent neural network simulation

4.3.1 Encoding the stack

We use the stack alphabet
∑

= 0,1 and we must encode possibly in�nite se-
quences this by encoding functions. We use the 4-Cantor sets, which can we
described as having a �nite and an in�nite component. The idea is to introduce
gaps between the numbers, making a fast retrieval of the most signi�cant bits
possible.
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Figure 4.1: The 4-Cantor set. Each black square in the �gure corresponds to a
stack encoding g. For instance, the stack 0.3334 corresponds to the square to
which the arrow point. Now, reading the top of the stack simply corresponds
to two steps. First the linear operation 4g-2 stretch and translate the [ 34 ,1) to
[1,2) and [ 14 ,

1
2 ) to [-1,0). Now σ(4g − 2) gives us the top element.

4.3.2 Dynamical system description

Let M be simulated by equations of the following form.

βij : {0, 1}4 → {0, 1} where i,j ∈ {1, 2}
βij(x) = 1 where x ∈ {0, 1}4 encodes a transition from state j to state i.
γk

hj : {0, 1}4 → {0, 1} where h,j ∈ {1, 2} and k ∈ {1, 2, 3, 4}
γk

hj(x) = 1 where x ∈ {0, 1}4 encodes stack operation k at stack h when in state
j.

The stack operations 1-4 correspond to no change, push 0, push 1 and pop
respectively. Now it is clear that we can translate the transitions and stack
operations used to create the P-stack machine M, into β and γ functions. A
worked out example of this translation can be found in the appendix.

We let the states xi and the stacks gi be updated as follows:

x+
i =

∑s
j=1 βij(a1, . . . , ap, b1, . . . , bp)xj

g+
i = (

∑s
j=1 γ

1
hj(a1, . . . , ap, b1, . . . , bp)xj)gi

+ (
∑s

j=1 γ
1
hj(a1, . . . , ap, b1, . . . , bp)xj)( 1

4gi + 1
4 )

+ (
∑s

j=1 γ
1
hj(a1, . . . , ap, b1, . . . , bp)xj)( 1

4gi + 3
4 )

+ (
∑s

j=1 γ
1
hj(a1, . . . , ap, b1, . . . , bp)xj)gi(4gi − 2(σ4gi − 2)− 1)
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These equations are on dynamical system form, but we want to proceed by
also introducing the biologically inspired transfer function σ which works as a
�lter on each computation.

4.3.3 Network description

It can be proved that for each function β and γ there exist vectors vr and scalars
cr such that for each d1, d2, ..., dt, x ∈ {0, 1} and each g in[0, 1)
β(d1, d2, ..., dt)x =

∑2t

r=1 crσ(vr · µ)

and

β(d1, d2, ..., dt)xg = σ(g +
∑2t

r=1 crσ(vr · µ)-1)

where we denote µ = (1, d1, d2, ..., dt, x) and · denotes the inner product. For a
worked out example, again see appendix.

These equation are now on the desired neural network form. In the neural
network literature, the coupled equations are often divided into layers. This
organization provides a time dimension so in our case of a four time slow down,
we use four layers to describe the system. Se appendix for �gure.
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Simple Recurrent Networks

The simple recurrent network (SRN) architecture was introduced by Elman 1988
as a model for sequential processing. Elman 91 further showed that an SRN can
to prediction predict the next word from the training sentences. Christiansen
and Chater (1999) showed that the SRN can reproduce phenomena known from
human syntax processing. Rodriguez explicitly proposed the architecture as a
model for language processing (Rodriguez, 1999b).

A SRN is a neural network with �rst order recurrent connections. Here re-
currence is the possibility for re-entry of input signals or, more importantly,
internal states. Adding recurrent connections can be described as adding a
temporal component to the model. The SRN architecture is essentially a �-
nite memory Markov process, but in the case of �nite precision processing
of strings of �nite length, as in the case of anbn the SRN reduces to a network
analogue of the �nite state machine.

De�nition 9 Let I be a countable set, a state space (for instance QN as in the
de�nition of a neural network). Now take X to be the current activation value
in the neural net, but here the state transitions are interpreted as probabilistic,
i.e. X has probability λi of being in state i ∈ I. A transition NxN matrix P
can thus describe each state transition, each row and column adding up to one.
The chain of activation values Xn is called Markov(λ, P ) if

P(X0 = i0) = λi0 and
P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = pinin+1

The last row is interpreted as the next state being dependent on the current
state but independent of the earlier states in the chain. However, the Markov
chain, the SRN and the FSM can be described as having quite an amount of
internal memory, although distributed in the architecture, since many units can
have recurrent connections. The connections are usually realized as a line of

23
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neurons called copy units or context units, through which an earlier state of
another neuron propagates one unit per time step.

Typically, the network is described as having a small number of hidden layers

a concept introduced in the neural networks literature going from single layer
networks called perceptrons (which can only solve linearly separable problems)
to multilayer feedforward networks. This assembly of neurons are not directly
connected to the input and not producing the �nal output, but are rather pro-
jecting the input to a higher, say n-dimensional space where the input set can
be classi�ed through applying some discretization of state space.

One interesting issue is how to chose the appropriate number of hidden units.
One suggestion has been to divide whatever data provided into a training set
and a test set (Trappenberg, 2002). Now, increasing the number of hidden units
clearly minimize the error the network creates on input taken from the training
set, but of course this amount to over�tting. Thus, the way to go is to �nd an
optimal number of hidden units for minimizing the error on the test set.

5.1 Predicting next input

Prediction has gained popularity as a task for computational models of the mind
(see, temporal di�erence learning, the Rescorla-Wagner rule (Dayan & Abbott,
2001)). Stemming from behaviorist ideas of conditioning as the foundation of
behavior, reinforcement learning algorithms uses prediction as a way to bridge
the gap between the time points of action and reward or punishment. In the
SRN case the internal error signal provides additional information of direction.
As Elman (Elman, 1990) puts it, the prediction task can also be seen as forcing
the network to develop an internal representation of time. Thus, we leave the
task of deciding if inputs belong to a language or not for the more biologically
relevant task of online understanding of languages from a certain class. However,
the described concept of a stack is still needed. The system will not be able to
predict when the �rst b comes, but in order to have predict the beginning of the
next string, that is the next a, the system need some analogue to a stack. We
will see that this is solved by properties of the dynamics that can be interpreted
as a counting mechanism.

5.2 Learning in neural networks

The system is given error signals ej = yj − tj where tj is the target, that is the
wanted output at neuron j. Given input yi, the output of neuron i, the error is
a function of the weights and we can apply the method of gradient descent to
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�nd what point in weight space will minimize this error. Below we derive the
back-propagation formula following Haykin 1999.

First, we introduce some important concepts. The induced local �eld at
time step n vj(n) =

∑
wji(n)yi(n) is the signal that reached neuron j, sum-

ming what is left of the inputs when passed through the weights and adding
a bias wj0. The output signal yj(n) = σj(vj(n)) is the result of applying the
activation function to the induced local �eld. The error energy E = 1

2

∑
e2j

is the sum of squared error signals taken over all the output neurons. Now, we
want to change each weight by reducing the weights in the direction determined
by the gradient of the error energy function with respect to the particular weight.

∂E
∂wij

=
1
2 ∂(tj−yj)

2

∂yj

∂yj

∂wij
= −(tj − yj)

∂yj

∂vj

∂vj

∂wij
= −(tj − yj)σ′(vj)

∂vj

∂wij

= −(tj − yj)σ′(vj)
∂yiwij

∂wij
= −(tj − yj)σ′(vj)yi

We shorten this formula by taking δj = − ∂E
∂vj

= − ∂E
∂ej

∂ej

∂yj

∂yj

∂vj
= ejσ

′
j(vj) to

be the local gradient.

Now, given a learning rate η, determining how big steps will be taken, we end
up with the following formula, also incorporating the direction relative to the
gradient with the minus sign.

∆wij = −η ∂E
∂wij

= −ηδjyi

However, since the local gradient is dependent on the error signal, which we
only have at the neurons in the output layer, we must �nd a way to propagate
the error back throughout the network to �nd local gradient for all neurons. The
idea is quite straightforward, to pass the local gradients from the next layer (we
index neurons from this layer k) back through the weights to the hidden neuron
j and summing.

δj = σ′j(vj)
∑
δkwkj

To see this, we start with the earlier de�nition of the local gradient.

δj = − ∂E
∂ej

∂ej

∂yj

∂yj

∂vj
= − ∂E

∂yj

∂yj

∂vj
= − ∂E

∂yj
σ′j(vj)

Now, from di�erentiating both sides in the de�nition of the error energy, er-
ror signal and output signal, respectively, and substituting into the derived
expression for δj , we arrive at the desired formula.

δj = σ′j(vj)
∑
ek

∂ek

∂yj
= σ′j(vj)

∑
ek

∂ek

∂vk

∂vk

∂yj
= σ′j(vj)

∑
ekσ

′
k(vk)wkj = σ′j(vj)

∑
δkwkj

To introduce the concept of momentum, we make a further simpli�cation of this
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Figure 5.1: The SRN and its unfolded analogue.

derivation to the one-dimensional case, which also serves as good mnemonic.
Take the error energy as a function of the weights w. We wish to �nd the change
w by a term ∆w, so that the new weight w∗ minimizes the error energy. So, do-
ing the �rst order Taylor expansion around w∗ gives us E(w) = E(w∗)+∆w dE

dw
where w2 = w1 +∆w. The point was that E(w2) should be smaller than E(w1),
which is ful�lled if we take ∆w = η dE

dw where η is some small positive number.
Now, it is quite clear that we can speed up the convergence to the optimal
wieght in most cases by introducing a second or third order momemtum term
into the learning process.

5.3 Back-propagation through time

When training recurrent networks, the networks N are transformed to a feedfor-
ward analogueN∗ and then trained with back-propagation. This transformation
can be described as a unfolding N into layers of the N∗, so that each time point
of N is a layer in N∗, each such layer contains a copy of each neuron in N. In
N∗, a connection between neuron j in layer l and neuron i in layer l+1 is made
if the corresponding neurons were connected in N.

However, since we now know the target response for neurons in many layers, the
weight updates are calculated by back-propragating the error from the output
neurons in each layer, alternatively between hidden units in two layers. It is
somewhat unclear from the literature how the network should be folded back.
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This is also dependent on how many time steps it take to present one pattern,
or a batch of patterns (depending on how often the weights are chosen to be
updated). One possible solution is to take the average of all the weight updates
done to the neuron j and its analogues, an other would be to regard the later
layers as more important. We failed to �nd an appropriate template shedding
light on this rather basic issues and thus, we instead proceed by showing the
behavior of a SRN with prespeci�ed weights from Rodriguez 1999. It predicts
anbn in the sense that b's are predicted throughout the string (since there is no
way to know when the �rst b will come), while the �rst a of the next string is
correctly predicted.

5.4 Description of dynamical system analysis of

SRN

The activation function σ is a non-linear sigmoid function. It is important for
the learning mechanism that the non-linerity is smooth, so that the function is
di�erentiable. For example, one can use the hyperbolic tangent function

σ(x) = tanh(x) with the derivative

dtanh(x)
dx = 1

cosh(x)2 = 1− tanhx2

After the weights are trained, or in our case, with prespeci�ed weights, the
activations of the hidden units can be plotted for a stream of input to visualize
the behavior of the system.

There will be one vector �eld for the input a and one for the input b. Since the
networks is written as a system of equations, we will linearize it, write it as a
matrix and �nd its eigenvalues λ and eigenvectors v. In turn, we can interpret
these as the rate of expansion and contraction of the system, and the axis of
this change, respectively.

|λ| < 1

An attracting �xed point to which the system is contracting.

|λ| > 1

A repelling �xed point from which the system is expanding.

|λj | > 1 for some non consecutive j ∈ Z and if |λ| < 1 for all other i ∈ Z

Repelling point called saddle point, giving unstable system behavior. The sys-
tem is expanding in directions given by the eigenvectors vj and contracting in
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input letter

state variable

Figure 5.2: Sequence of the sum of state variables for the handcoded solution.
Each peak is one string, the higher the peak, the longer the string. We see that
the SRN in this case has a accepting region at the x-axis, since the trajectory
returns there for in the end of each string.
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the directions vi.

The system is linearized according to the standard technique of linearization
(a multidimensional equivalent to analyzing local extreme points by analyzing
the derivative). Here, we take the partial derivatives as the �xed point, assem-
bled as a matrix called the Jacobian, which is a linear system.

By �nding the �xed points, evaluating the partial derivative at the �xed point
and analyzing the linearized system in terms of its eigenvectors and eigenvalues,
the two networks described in the �gures above can be separated and there dif-
ferent counting behavior can be understood. Although much more mathematics
is needed to conclusively understand why the saddle point is the appropriate
solution, it is suggestive that it has to do with the dynamical system equivalent
of copying over the number of a's. That is, the �rst network can indeed count,
but it can not compare the counting of a's and b's.

In discussing the possibilities and limitations of the SRN to learn natural lan-
guage, we �nd the approach taken by Velde (Velde et al, 2004) worth discussion.
They encoded words as basis vectors in R20 and then trained the network on
about 150 000 sentences consisting of about 850 000 items. This is a training
set comparable to Elman's seminal work from 1991. However, the SRN could
not generalize from the training set, in the sense of, for example, understanding
boy sees girl and dog hears cat and even more complex sentences present in the
training set, but not boy hears girl. This points to some kind of over�tting to
the data-set. Apparently, the SRN has failed to introduce a representation for
word categories that would group the examples in such way that generalization
was trivial. Though, is it hard to say if this is just a negative result (for instance
a result of the particular training set and regime) or if the behavior of the SRN
in this case is inherent to the architecture. One way to answer this question
would be to formalize the SRN framework and the di�erent levels of the input.
In any case, it is not evident that the SRN has to be able to generalize to be
considered a relevant model. In principle, a big enough SRN could encode each
transition as a level, and then an additional SRN could be working as a meta
system on this SRN, encoding the transitions at the next level of generalization.

Many have prosed formalizations of the SRN framework as an important fu-
ture task for the �eld. Rodriguez writes "one would like to have a formal
analysis using dynamical systems theory to specify how frequency information
in the input and the computational properties of an SRN determine its abilities
to process linguistic sequences". Levelt has criticized the standard approach,
which he describes as demonstrating that networks can represent some domain
of knowledge by showing that this domain of knowledge can be taught to the
network. What he envisions is instead a formal theory of learnability "Hornik
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Figure 5.3: Adopted from Rodriguez (1999). Here, the two vectors �elds Fa

(input a) and Fb (input b) are shown for two networks having trained with
di�erent learning rates. The two �gures on the left correspond to a network
that failed to generalize. The two �gures on the right to a second network, that
where presented with fewer sweeps of the input, but other learning rates and
initial weights, so that is �nds a solution that generalize from n=11 to n=16.
By varying learning rate and the number of sweeps, Rodriguez found that the
crucial di�erence was the initial weights. The lower left panel is misleading,
since it looks like Fb developed an attracting point. At higher resolution, this
point turns out to be a saddle point.
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Figure 5.4: Adopted from Rodriguez (1999). Each vector is representing one
time step, that is one input, going from the �rst pair of hidden unit activations
to the next. Thus, the top �gures have string length n=2 and the bottom �gures
n=3. See how the two vector �elds are combined into the behavior of the system.
Here we see that the left network tried a more intuitive solution to the counting
problem, but in a sense it is over�tted to the data so that is fails to generalize.
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et al.'s theorems on the generative power of networks could form the starting
point".



Chapter 6

Conclusion

Cognitive neuroscience approaches the human brain as a cognitive system: a
system that functionally can be conceptualized in terms of information process-
ing. In general, we consider a physical or biophysical system as an information
processing device when a subclass of its physical states can be viewed as cogni-
tive/representational and when transitions between these can be conceptualized
as a process, operating on these states by implementing well-de�ned operations
on the representational structures. Information processing, (i.e., the state tran-
sitions) can thus be conceptualized as trajectories in a suitable state-space.

It is possible that the brain has implemented a stack as in PDAs or ARNNs, but
this stack is then highly likely to be �nite. Thus, at this level of abstraction,
both of these models can be reduced to a �nite state machine while the SRN
can be regarded as a time discrete possibly analog (if using in�nite precision
processing) network version of the same. We have show that the SRN behaves
like dynamical recognizer in the case of a formal language and that standard
methods from dynamical system theory can be useful in analyzing how these
networks can be said to develop cognitive processing, in a very general sense.
The language of mathematics and dynamical systems thus provides a �rst ap-
proximation of what a cognitive information process is: categorization of and
computation on the multidimensional input stream by discretizing and making
transistions through state space, respectively. The output of the process is the
generation of a motor response.

The framework of classical cognitive science and arti�cial intelligence �eld as-
sumes that information is coded by structured representations or data structures
and that cognitive processing is accomplished by the execution of algorithmic
operations or rules on the basic representations such as symbols making up
compositionally structured representations (Newell & Simon, 1976). This pro-
cessing paradigm suggests that cognitive phenomena can be modeled within the
framework of Church-Turing computability and e�ectively takes the view that
isomorphic models of cognition can be found within this framework (cf. e.g.,
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Cutland, 1980; Davis, Weyuker & Sigal, 1994; Lewis & Papadimitriou, 1998).
Language modeling in theoretical linguistics and psycholinguistics represents
one example in which the classical framework has served (reasonably) well and
all common formal language models can be described within the classical frame-
work (cf. e.g., Partee, ter Meulen, & Wall, 1990).

The perhaps most closely related application of this thesis is in arti�cial gram-
mar learning, "which is a relevant model for aspects of language learning in
infants, exploring species di�erences in learning and second-language learning
in adults" (Petersson 2004, cf., Gomez & Gerken 2000, Friederici 2002). It is
also a promising model for investigating adults with learning pathology. Peters-
son, Grenholm and Forkstam (2005) showed that the SRN can learn a simple
arti�cial grammar and interestingly, they used principle component analysis to
extract the grammar from the state space dynamics of the network. This shows
that SRN and similar extended simulations are relevant and perhaps also be-
coming popular in cognitive science. If robust phenomena can be observed at
this abstract level, it might be possible to rule out which part of the variation is
due to di�erent kind of surface structure of natural languages when conducting
empirical experiments. There is a potential for cross-fertilization in the sense
that besides biological inspiration, the simulations could also be inspired by
more transient cognitive phenomena. Though, a more modest next step would
be to continue introducing the more suitable biological constraints. For instance
one could use spiking (pulsed) neural networks that take the timing of the input
(presented as a time series of spikes) into account. The mathematically oriented
research question at hand would then be if there are similarities between the
state space dynamics of abstract and the more realistic models. If so, it might
be important to introduce concepts to describe these invariants.

Coming back to the European Starlings, it can not be excluded that the ap-
propriate way to interpret the successful behavior of the birds is that they
actually aquired the "grammar", even if it was through some kind of counting
mechanism. At least if we take the formal analysis of what that might mean
into account. Birds and humans could have implemented similar mechanisms
for trying to solve the problem of recognizing or predicting the language anbn.
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Appendix

The stack operations on the P-stack machine are listed below

θ1 θ2
qI × (0, 0, 1, 0) 7−→ (4,−2,−1) qI × (0, 0, 1, 0) 7−→ ( 1

4 , 0,
1
4 )

qI × (0, 0, 1, 1) 7−→ (4,−2,−1) qI × (0, 0, 1, 1) 7−→ ( 1
4 , 0,

1
4 )

qI × (1, 0, 1, 1) 7−→ (4,−2,−1) qI × (1, 0, 1, 1) 7−→ (4,−2,−1)
qH × (1, 0, 1, 1) 7−→ (4,−2,−1) qH × (1, 0, 1, 1) 7−→ (4,−2,−1)
qH × (0, 0, 0, 0) 7−→ ( 3

4 , 0,
3
4 )

qI × all other inputs 7−→ ( 1
4 , 0,

1
4 ) qI × all other inputs 7−→ (1, 0, 0)

qH × all other inputs 7−→ ( 1
4 , 0,

1
4 ) qH × all other inputs 7−→ (1, 0, 0)

The idea behind the P-stack machine that decides 0n1n is as follows. Sup-
pose a �nite ω ∈ {0, 1}+. In the initial state ω is in stack 1. The only way the
machine can proceed without halting with rejecting output is to have a arbi-
truary number of 0's at the top. These will, according to θ2, be pushed onto
stack 2. When the �rst bunch of 0's are popped, the only way for the machine to
proceed is to have a number of 1's at the top. The �rst one will, according to θ0,
make the machine go into the halting state, without any possibility of turning
back to popping 1's without rejecting the string. If this number is smaller then
the number of 0's in the previous bunch, whatever comes after will make the
machine halt with output no. If this number is larger, the same will happen.
Thus, the only way to get to a halt with accepting output is for ω to have a
number of consecutive 0's followed by the same number of consecutive 1's.

(4,−2,−1) is here a pop, ( 3
4 , 0,

3
4 ) is push a 1, ( 1

4 , 0,
1
4 ) is push a 0 and (1, 0, 0)

is leaving the stack as it is.

6.1 β and γ functions

We now list the inputs that are mapped to 1 for each function. All inputs that
are not referred to are mapped to 0.
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qI qH
β11(0, 0, 1, 0) = 1 β22(any input)= 1
β11(0, 0, 1, 1) = 1
β21(any other input)= 1

State 1 State 2

γ1
21(all inputs not mentioned in other γk

21) = 1 γ1
22(all inputs not mentioned in other γk

22) = 1
γ2
21(0, 0, 1, 0) = 1 γ2

12(0, 0, 0, 0) = 1
γ2
21(0, 0, 1, 1) = 1
γ1
11(all inputs not mentioned in other γk

11) = 1 γ1
12(all inputs not mentioned in other γk

12) = 1
γ4
11(0, 0, 1, 0) = 1
γ4
11(0, 0, 1, 1) = 1 γ4

12(1, 0, 1, 1) = 1
γ4
11(1, 0, 1, 1) = 1 γ4

22(1, 0, 1, 1) = 1
γ4
21(1, 0, 1, 1) = 1

Following Siegelmann's constructions showing that such vr and cr exist, let
vr be the following vectors, corresponding to each 24 (second to �fth element).
We also list the terms in eq 3.13 which this corresponds to and marks if this is
a valid input in the construction.

v1 (0,0,0,0,0,1) c1 Valid
v2 (-1,1,0,0,0,1) c2d1

v3 (-1,0,1,0,0,1) c3d2

v4 (-1,0,0,1,0,1) c4d3 Valid
v5 (-1,0,0,0,1,1) c5d4 Valid
v6 (-2,1,1,0,0,1) c6d1d2

v7 (-2,1,0,1,0,1) c7d1d3 Valid
v8 (-2,1,0,0,1,1) c8d1d4

v9 (-2,0,1,1,0,1) c9d2d3

v10 (-2,0,1,0,1,1) c10d2d4 Valid
v11 (-2,0,0,1,1,1) c11d3d4 Valid
v12 (-3,1,1,1,0,1) c12d1d2d3

v13 (-3,1,0,1,1,1) c13d1d3d4 Valid
v14 (-3,1,1,0,1,1) c14d1d2d4

v15 (-3,0,1,1,1,1) c15d2d3d4 Valid
v16 (-4,1,1,1,1,1) c16d1d2d3d4 Valid

We now list an example of cr for each β and γ that follows the constuction.
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State Transitions β11 β21 β22

c1 0 1 1
c4 1 -1 0
c5 0 0 0
c7 0 0 0
c10 0 0 0
c11 0 0 0
c13 0 0 0
c15 0 0 0
c16 0 0 0

State 1 γ1
21 γ1

11 γ2
21 γ4

11 γ4
21

c1 1 1 0 0 0
c4 -1 -1 1 1 0
c5 0 0 0 0 0
c7 1 1 -1 -1 0
c10 0 0 0 0 0
c11 0 0 0 -1 0
c13 -1 -1 0 2 1
c15 1 1 -1 -1 0
c16 0 0 0 0 -1

State 2 γ1
22 γ1

12 γ2
12 γ4

12 γ4
22

c1 1 0 1 0 0
c4 0 1 -1 0 0
c5 0 1 -1 0 0
c7 0 0 0 0 0
c10 0 0 0 0 0
c11 0 -1 1 0 0
c13 -1 -1 0 1 1
c15 0 0 0 0 0
c16 1 1 0 -1 -1

6.2 Handcoded SRN

The following piece of MATLAB-code produces �gure 5.2.

wh = [0.5− 5− 5;−5− 1− 5; 1 + 5− 5];

wo = [0.500; 220; 000];

L = [112231112223111222311122231112223112231231231111222231231231112223123123];

a = [L == 1]; b = [L == 2]; c = [L == 3];
PT = [a; b; c];
P = PT ′;T = [P (2 : end, :); 100]′;

vh = (wh ∗ PT (:, 1));
ifvh > 1
yh = 0;
elseifvh < 0
yh = 0;
else
yh = vh;
end
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F4

F3

F2

F1

Q4= (x , x , g , g  )1 12 2

states, stack

4g  - 2 1

4g  - 2 
2

4g   1

4g   
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Figure 6.1: The four layers of the network, each computing one step of the up-
date equations described in dynamical system form. The con�guration detectors
combines states and stack readings, thus corresponding to instructions in the
URM case and the tape reader in the turing machine. Here a= σ(

∑
cr1σ(vr1µ)

b= σ(
∑
cr2σ(vr2µ) c= σ(4g1 − 2(σ(4g1 − 2)) − 1 +

∑2
j=1

∑3p

r=1 crjσ(vrµj) − 1
d= σ(g11 + g12 + g13 + g14)
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visualize = yh

i = 2
whilei < length(L)

vo = wo ∗ yh;
vh = (wh ∗ PT (:, i));
v = vo + vh;

ifv > 1
yh = [0; 0; 0];
elseifv < 0
yh = [0; 0; 0];
else
yh = v;
end

visualize = [visualize, yh]
i = i+ 1;

end

plot(visualize(1, :) + visualize(2, :))


