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Abstract 
 
Peter Aczel developed a constructive set theory called CZF that is a constructive version of 
the classical set theory ZF. Aczel showed that CZF can be interpreted in Martin Löf’s type 
theory by considering a type of sets, hence giving CZF a constructive meaning. In this 
master’s thesis we review this interpretation. 
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Introduction 
 
Background 
Set theory is a young discipline in mathematics, starting in the end of the 19th Century, and it 
was meant to serve as a foundation of mathematics. 
 
Due to the foundational crisis that shook classical mathematics at the same time as the birth of 
set theory, some mathematicians started to search for a safer ground for mathematics to be 
built upon. So alongside the rise of set theory a new school of mathematics took form, now 
known as constructive mathematics. Many mathematicians remained sceptical though – once 
this safer constructive ground was established, how much of classical mathematics could 
actually be rebuilt on it?1 
 
Not too much, it seemed, at least not until 1967, when Bishop published his book 
Foundations of Constructive Analysis2. Here Bishop answered the sceptics by showing how 
one actually could develop constructive mathematics in the field of mathematical analysis. 
Bishop’s book was the start of a renewed interest in constructive mathematics and a call for 
continuing the task of reformulating all the fields of mathematics. One field left to rebuild 
constructively was set theory. Myhill presented, in 1975, a constructive set theory that had the 
advantage of being very close to classical set theory, but it lacked a clear explanation of the 
constructive notion of set.3 
 
In this paper we will consider a constructive set theory, called CZF, formulated by Peter 
Aczel. Aczel introduced it in a series of three papers where he showed that CZF has an 
interpretation in Martin-Löf’s type theory, thus giving CZF a constructive meaning.4 To 
review this interpretation will be the main task of this master’s thesis.  
 
It might help if the reader has some previous knowledge of first-order classical and 
intuitionistic logic as well as of classical set theory, otherwise the presentation is meant to be 
self-contained. 
 
A note on constructive mathematics 
Constructive mathematics is a very broad and heterogeneous field.  Here are two features of 
constructive mathematics that will be used in this paper. 
 
Intuitionism 
According to intuitionism a statement cannot be said to be true or false independently of our 
knowledge concerning the statement. A statement is true if there is a proof for it and a 
statement is false if the assumption that the statement has a proof leads to a contradiction. 
Therefore we cannot state for an arbitrary statement that it is either true or false. The law of 
the excluded third is therefore not valid in intuitionism.5 
 
 
 
                                                
1 Troelstra and van Dalen 1988. 
2 Bishop 1967 
3 Myhill 1975. 
4 Aczel 1978, Aczel 1982, Aczel 1986. 
5 Troelstra and van Dalen, 1988, vol. I, p. 4. 
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Predicativity 
Definitions should be predicative, i.e. it is not permissible to define an object d by referring to 
a collection D of which the object d is to be an element. This means that quantification over D 
in defining d is not permitted.6 
 
Disposition 
In Chapter 1 we present the axioms of classical set theory and briefly discuss them from a 
constructive point of view. Then we present the axioms of constructive set theory as 
formulated by Aczel. The justification of the axioms will partly come later when we give a 
constructive model for Aczel’s set theory. 
 In Chapter 2 and 3 we present the type theory of Martin-Löf, in which we will 
give the model for Aczel’s set theory. Chapter 4 proves that there is, in type theory, a model 
for intuitionistic predicate logic. Then, in Chapter 5, we prove some results in type theory that 
will be used later in the interpretation of CZF.   
 Chapter 6 introduces the type of sets in type theory. And in Chapter 7 we 
construct a model for Aczel’s set theory. This is the justification of the axioms of CZF. 

                                                
6 Troelstra and van Dalen, 1988, vol. I, p. 2.  
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1 Set Theories 
 
Classical set theory 
Classical Zermelo-Fraenkel axiomatic set theory, ZF, is formulated in first order classical 
logic. The binary predicates ∈ and = are the only non-logical symbols. The axioms of ZF are 
pairing, union, powerset, infinity, extensionality, foundation, separation and replacement. 
 
There are several axioms in ZF that are problematic from a constructive point of view. In 
order to obtain the constructive set theory CZF we make the following changes: 
 
1. Use intuitionistic logic instead of classical logic. 
2. Use the subset collection scheme instead of the power set axiom. 
The power set axiom is impredicative. 
3. Use the set induction scheme instead of the foundation axiom. 
The foundation axiom implies the law of the excluded third. Set induction scheme is a 
contrapositive of the foundation axiom. 7   
4. Use the restricted separation scheme instead of the separation scheme. 
The separation scheme is impredicative.  
5. Use the strong collection scheme instead of the replacement scheme.  
The strong collection scheme implies the replacement scheme.8 The replacement scheme is 
not non-constructive but we need the strong collection scheme when using restricted 
separation.  
 
So the set theoretical axioms of CZF are pairing, union, infinity, extensionality, set induction, 
restricted separation, subset collection and strong collection. Now let’s formulate it explicitly. 
 
The axiom system CZF 
The language, L, of CZF is the standard first-order language for set theory having ∈ and = as 
its only non-logical symbols. The system is based on intuitionistic first-order logic with the 
logical operators ⊥, ∧, ∨, →, ∀, ∃, (∀x ∈ y) and (∃x ∈ y). As usual ¬F and F ↔ P will 
abbreviate F → ⊥ and  
(F → P) ∧ (P → F) respectively.  
 
Definition 
A formula is restricted if all its quantifiers are restricted, i.e. it has been built up only using ⊥, 
∧, ∨, →, ∈, =, (∀x ∈ y) and (∃x ∈ y). 
 
CZF is axiomatized using a standard axiomatization of intuitionistic predicate logic. The 
remaining axioms are as follows: 
 
Restricted quantifiers 
(∀x ∈ y)F(x) ↔ ∀x(x ∈ y → F(x)) 
(∃x ∈ y)F(x) ↔ ∃x(x ∈ y ∧ F(x)) 
for every formula F(x) of L. 
 

                                                
7 See Troelstra and van Dalen, 1988, vol. II, p. 622 for a proof. 
8 See Troelstra and van Dalen, 1988, vol. II, p. 622 for a proof. 
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Extensionality 
i) ∀x∀y∀z((x = y ∧ y ∈ z) → x ∈ z) 
ii) ∀x∀y(x = y ↔ ∀z(z ∈ x ↔ z ∈ y)) 
 
Set induction 
∀x((∀y ∈ x)F(y) → F(x)) → ∀xF(x)   
for all formulae F(x) of L. 
 
Pairing   
∀x∀y∃z∀u(u ∈ z ↔ u = x ∨ u = y) 
 
Union  
∀x∃z∀u(u ∈ z ↔ (∃y ∈ x)(u ∈ y)) 
 
Restricted separation 
∀x∃z∀y(y ∈ z ↔ y ∈ x ∧ F(y)) 
for all restricted formulae F(y) of L. 
 
Strong collection 
∀u((∀x ∈ u)∃yF(x,y) → ∃vF’(u,v))  
for all formulae F(x,y) of L, where F’(u,v) abbreviates 
(∀x ∈ u)(∃y ∈ v)F(x,y) ∧ (∀y ∈ v)(∃x ∈ u)F(x,y). 
 
Subset collection 
∀v∀w∃t∀u((∀x ∈ v)(∃y ∈ w)F(x,y) → (∃z ∈ t)F’(v,z))  
for all formulae F(x,y) of L. 
 
Infinity 
∃z((∃x ∈ z)(∀y ∈ x)⊥ ∧ (∀x ∈ z)(∃y ∈ z)suc(x,y)) 
where suc(x,y) is  
x ∈ y ∧ (∀u ∈ x)(u ∈ y) ∧ (∀u ∈ y)(u ∈ x ∨ u = x) 
 
Remarks 
CZF with classical logic has the same theorems as ZF.9 

Many aspects of the informal development of classical set theory still apply 
when working informally in CZF. For example, natural numbers, ordered pairs, relations and 
functions can be defined just as in classical set theory.10 
 
Now we will turn to Martin-Löf’s type theory in order to find a constructive justification of 
the axioms of CZF.

                                                
9 A proof of this is to be found in Aczel 1978, or in Troelstra and van Dalen, 1988, vol. II, p. 
624. 
10 To see how this is developed see Aczel and Rathjen, 2000/2001. 
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2 Introducing type theory 
 
Martin-Löf’s type theory (from now on referred to as ‘type theory’) is meant to give us a 
theory that formulates a constructive foundation of mathematics. Unlike most other 
formalizations of mathematics, type theory is not based on first-order predicate logic. Instead, 
predicate logic is interpreted within type theory through the correspondence of propositions 
and types. A proposition is interpreted as a type whose elements represent the proofs of the 
proposition. Hence, a false proposition is interpreted as an empty type and a true proposition 
as a non-empty type. This will be further discussed in Chapter 3. 

We will restrict the presentation of type theory to what is needed for the 
interpretation of CZF.11 
 
Language and meaning 
 
Judgements in type theory 
The basic units of type theory are judgements, possibly depending on certain assumptions. 
There are four fundamental judgements in type theory 

 
A ∈ type  A is a type 
A = B A and B are equal types 

a ∈ A  a is an element of the type A 
a = b ∈ A  a and b are equal elements of the type A 

 
Note that the judgement a ∈ A is only meaningful if A is a type, i.e. it presupposes the 
judgement A ∈ type. The judgement a = b ∈ A presupposes the judgements a ∈ A and b ∈ A. 
And A = B presupposes A ∈ type and B ∈ type.  

The semantics of type theory will explain what these judgements mean.  
 
Contexts 
Each judgement has a finite, possibly empty, sequence of assumptions, called context, of the 
form 
 
 x1 ∈ A1, x2 ∈ A2(x1), …, xn ∈ An(x1, …,xn-1) 
 
Judgements with an empty context are called categorical judgements and judgements with a 
non-empty context are called hypothetical judgements. We will write the context in 
parentheses after the judgement. The empty context () will be left out. 
 
Propositions and judgements 
Since we have judgements as basic units and not propositions, the distinction between 
proposition and judgement becomes essential. What we combine by means of logical 
operators and hold to be true are propositions. When we hold a proposition to be true, we 
make a judgement. The premises and conclusion of a logical inference are judgements.  
 

                                                
11 We mainly follow the presentation of type theory in Martin-Löf 1984 and Nordström, 
Petterson and Smith 1990, see also Ranta 1994. 
. 
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The semantics of the judgement forms 
The semantic explanation of a judgement is given by stating the conditions under which the 
judgement is justified.  
 
The meaning of A ∈ type 
To know that A is a type is to know how the canonical elements of A are formed as well as 
how two equal canonical elements of A are formed.  

The equality relation between canonical elements must always be defined in 
such a way as to be reflexive, symmetric and transitive. 
 
The meaning of a ∈ A 
Suppose we know A to be a type. To know that a is an element of a type A is to know that a is 
a method which, when executed, yields a canonical element of A as a result.  

We assume the notion of method to be primitive.  
 
The meaning of a = b ∈ A 
To know that two arbitrary elements a, b of a type A are equal is to know that when executed, 
a and b yield equal canonical elements of A as results. 
 
The meaning of A = B 
Suppose we know A and B to be types. To know that two types A and B are equal is to know 
that a canonical element of A is also a canonical element of B and vice versa, and further 
more, equal canonical elements of A are also equal canonical elements of B and vice versa. 
 
From this we get the semantics of the categorical judgements in type theory. 
 
Hypothetical judgements with one assumption 
The first form of judgement is generalized to the hypothetical form 
 
B(x) ∈ type (x ∈ A) 
 
which says that B(x) is a type under the assumption x ∈ A. The meaning of the judgement is 
that B(a) is a type whenever a is an element of A. And also that B(a) and B(c) are equal types 
whenever a and c are equal elements of A. We will call B(x) a family of types over A. 
 
The second form of judgement is generalized to the hypothetical form 
 
f(x) ∈ B(x) (x ∈ A) 
 
which says that f(x) is an element of the type B(x) under the assumption x ∈ A. The meaning 
of the judgement is that whatever element a of A is substituted for x in f(x), an element f(a) of 
B(a) results. And that substitutions of equal elements a and b of A result in equal elements of 
B(a).  
 
The hypothetical judgements f(x) = g(x) ∈ B(x) (x ∈ A) and B(x) = D(x) (x ∈ A) are treated 
in a similar way. 
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Hypothetical judgements with more than one assumption 
Hypothetical judgements with more than one assumption are defined by means of induction.12  
 
From this we get the semantics of the judgements in type theory. 
 
General rules 
The rules of type theory are given of form 
 
  J1  ...  Jn 
       J 
 
where J1, …, Jn, J are all judgements. In stating the rules we suppress mention of a context 
that is common to both the premises and the conclusion of the rule.  

A rule of inference is justified by explaining the conclusion on the assumption 
that the premises are known. 
 
First we have some general rules concerning equality and substitution. These rules are 
justified by the semantics of type theory. 
 
Rules of equality 
The rules of reflexivity, symmetry and transitivity are valid for all elements and types, since 
they are valid for canonical ones, and each non-canonical element can be computed into 
canonical form. Furthermore the meanings of A = B, a ∈ A and a = b ∈ A justify the rules of 
type equality. 
 
a ∈ A A = B  type eq 1 
a ∈ B 
 
a = b ∈ A A = B type eq 2 
a = b ∈ B 
 
Substitution rules 
The meanings of the four hypothetical judgements yield four groups of substitution rules. 

The first hypothetical judgement B(x) ∈ type (x ∈ A) yields the rules of 
substitution in types. 
 

(x ∈ A) 
a ∈ A B(x) ∈ type  sub type 1 

B(a) ∈ type 
 
 

(x ∈ A) 
a = b ∈ A B(x) ∈ type  sub type 2 

B(a) = B(b) 
 
In the rules, the hypotheses are written above the corresponding judgements. The second 
hypothetical judgement f(x) ∈ B(x) (x ∈ A) yields the rules of substitution in elements. 

                                                
12 See Nordström, Petterson and Smith 1990 pp. 29-33 for a detailed account. 
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(x ∈ A)       
f(x) ∈ B(x)   a ∈ A sub el 1  
f(a) ∈ B(a) 
 
(x ∈ A)  
f(x) ∈ B(x) a = b ∈ A sub el 2 

f(a) = f(b) ∈ B(a) 
 
The third and fourth hypothetical judgments yield the substitution rules, substitution in equal 
elements and substitution in equal types, in a similar way. All substitution rules are 
generalized to the case of more than one assumption. 
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3 Operators and their rules 
 
For each operator we use in type theory we have four rules: formation, introduction, 
elimination and equality rules.  

The formation rules say that we can form a certain type from certain other types 
or families of types.  

The introduction rules say what are the canonical elements and equal canonical 
elements of the type, thus giving its meaning. The constructors by which canonical elements 
are formed are introduced in these rules.  

The elimination rules are a kind of induction rules. The selectors, which are 
introduced in these rules, make it possible to do recursion and define functions on the type 
defined by the introduction rules.  

The equality rules relate the introduction and elimination rules by showing how 
the selector operates on the canonical elements. 

To each rule of formation, introduction and elimination there corresponds an 
additional equality rule, which we will leave implicit. What it means is that it allows us to 
substitute equals for equals. E.g. the equality rules corresponding to the introduction rules say 
that the operator produces equal elements from equal arguments and only from equal 
arguments. 
 
Cartesian product of a family of types 
The operator Π that forms the cartesian product of a family of types, generalizes the usual 
notion of functions from A to B by allowing B to depend on an element of A. 
 
 (x ∈ A) 
A ∈ type B(x) ∈ type Π-formation 
(Πx ∈ A)B(x) ∈ type 
 
We introduce the constructor λ abstraction which is used to form the elements of the function 
type. 
 
(x ∈ A) 
b(x) ∈ B(x)  Π-introduction 
(λx)b(x) ∈ (Πx ∈ A)B(x) 
 
The selector ap is used for applying an element of (Πx ∈ A)B(x) to an argument a ∈ A. The 
application of (λx)b(x) to an argument a is computed by substituting a for x in b(x). 
 
c ∈ (Πx ∈ A)B(x) a ∈ A Π-elimination 
ap(c,a) ∈ B(a) 
 
(x ∈ A) 
b(x) ∈ B(x) a ∈ A  Π-equality 
ap((λx)b(x),a) = b(a) ∈ B(a)  
 
If B(x) = Β does not depend on x, then (Πx ∈ A)B(x) becomes the type of functions between 
A and B, denoted A ➝ B. We get the rules for ➝ by replacing (Πx ∈ A)B(x) with  
A ➝ B in the Π rules. 
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Disjoint union of a family of types  
The operator Σ that forms the disjoint union of a family of types generalizes the cartesian 
product of two types A and B by allowing B to depend on a variable x ∈ A. 
 
 (x ∈ A) 
A ∈ type B(x) ∈ type Σ-formation 
(Σx ∈ A)B(x) ∈ type 
 
Σ has one constructor, the pairing operator. The canonical elements of (Σx ∈ A)B(x) will be 
of the form (a,b) where a ∈ A and b ∈ B(a). 
 
a ∈ A  b ∈ B(a) Σ-introduction 
(a,b) ∈ (Σx ∈ A)B(x) 
 
  (x ∈ A, y ∈ B(x)) 
c ∈ (Σx ∈ A)B(x) d(x,y) ∈ C((x,y)) Σ-elimination 

E(c,d) ∈ C(c)   
 
  (x ∈ A, y ∈ B(x)) 
a ∈ A b ∈ B(a) d(x,y) ∈ C((x,y)) Σ-equality 

E((a,b),d) = d(a,b) ∈ C((a,b))   
 
There are two special cases of E that give us the selectors p and q, the left and right 
projections. Let p(c) = E(c,(x,y)x) ∈ A and q(c) = E(c,(x,y)y) ∈ B(p(c)), then   
 
c ∈ (Σx ∈ A)B(x) Σ-elimination 1 

p(c) ∈ A 
 
c ∈ (Σx ∈ A)B(x) Σ-elimination 2 

q(c) ∈ B(p(c)) 
 
a ∈ A b ∈ B(a) Σ-equality 1 

p((a,b)) = a ∈ A 
 
a ∈ A b ∈ B(a) Σ-equality 2 

q((a,b)) = b ∈ B(a) 
 
If B(x) = Β does not depend on x, then (Σx ∈ A)B(x) becomes the cartesian product of two 
types, denoted A × B. We get the rules of × by replacing (Σx ∈ A)B(x) with A × B in the Σ 
rules. 
 
Disjoint union of two sets  
The canonical elements of the disjoint union of two types, A + B, are canonical injections of 
the elements of the constituent types. The elimination rule says that a function can be defined 
on A + B if it can be defined separately on each of the types A and B. 
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A ∈ type B ∈ type +-formation 
A + B ∈ type 
 
a ∈ A  +-introduction 1 

i(a) ∈ A + B 
 
b ∈ B  +-introduction 2 

j(b) ∈ A + B 
  
 (x ∈ A)  (y ∈ B) 
c ∈ A + B d(x) ∈  C(i(x)) e(y) ∈ C(j(y))                     +-elimination 
D(c,d,e) ∈ C(c) 
 
 (x ∈ A)  (y ∈ B) 
a ∈ A d(x) ∈  C(i(x)) e(y) ∈ C(j(y))  +-equality 1 

D(i(a),d,e) = d(a) ∈ C(i(a)) 
 
 (x ∈ A)  (y ∈ B) 
b ∈ B d(x) ∈  C(i(x)) e(y) ∈ C(j(y))  +-equality 2 

D(j(b),d,e) = e(b) ∈ C(j(b)) 
 
Identity types  
Since the judgemental equality a = b ∈ A cannot be used for constructing new types, we need 
an identity type that expresses that two elements are equal. 
  
A ∈ type  a ∈ A b ∈ A I-formation 
I(A,a,b) ∈ type 
 
The type I(A,a,a) will have the canonical element r(a). 
 
a ∈ A              I-introduction 
r(a) ∈ I(A,a,a)  
 
          (x ∈ A) 
c ∈ I(A,a,b)  d(x) ∈ C(x,x,r(x)) I-elimination 
J(c,d) ∈ C(a,b,c) 
 
a ∈ A    I-equality 
J(r(a),d) = d(a) ∈ C(a,a,r(a)) 
 
Finite types  
We introduce the enumerated types N0, N1, N2.13 The finite types Nk have the canonical 
elements 0k,…,(k – 1)k for k = 0,1,2. The formation rules have no premises. 
 
 

                                                
13 We leave the rest of the Nk’s out since we do not need them in this paper. See e.g. 
Nordström 1990, p. 41-42, for the general case. 
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N0 ∈ type  N0-formation 
 
N1 ∈ type  N1-formation  
 
N2 ∈ type  N2-formation 
 
There is an introduction rule without premises for each of the enumerated constants  
0k,…,(k – 1)k. So N0 has no element, N1 the single element 01 and N2 the elements 02 and 12. 
 
01 ∈ N1   N1-introduction 
 
02 ∈ N2, 12 ∈ N2 N2-introduction 
 
The elimination rule has the major premise c ∈ Nk, and a minor premise for each of the 
elements 0k,…,(k – 1)k. 
 
c ∈ N0  N0-elimination 
R0(c) ∈ C(c) 
 
c ∈ N1 c1 ∈ C(01) N1-elimination 
R1(c,c1) ∈ C(c) 
 
c ∈ N2 c1 ∈ C(02) c2 ∈ C(12) N2-elimination 
R2(c,c1,c2) ∈ C(c) 
 
Thus there is an equality rule for each of the elements 0k,...,(k – 1)k. 
 
c1 ∈ C(01)  N1-equality 

R1(01,c1) = c1 ∈ C(01) 
 
and 
 
c1 ∈ C(02) c2 ∈ C(12) N2-equality1 

R2(02,c1,c2) = c1 ∈ C(02) 
 
c1 ∈ C(02) c2 ∈ C(12) N2-equality 2 

R2(12,c1,c2) = c2 ∈ C(12) 
 
Natural numbers  
So far we have no means of constructing infinite types. Now we introduce N, the type of 
natural numbers, by the following formation rule. 
  
N ∈ type  N-formation 
 
The introduction rules for N say that canonical natural numbers are 0 and those of the 
successor form s(a). 
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0 ∈ N N-introduction 1 

 
a ∈ N N-introduction 2 

s(a) ∈ N 
 
The elimination rule for N can be seen both as giving a proof of the proposition C(c), for an 
arbitrary c ∈ N, by induction, and as a rule for defining a function on N by recursion. 
 
  (x ∈ N, y ∈ C(x)) 
c ∈ N d ∈ C(0) e(x,y) ∈ C(s(x)) N-elimination 
R(c,d,e) ∈ C(c) 
 
Finally we have the equality rules for N. 
 
 (x ∈ N, y ∈ C(x)) 
d ∈ C(0) e(x,y) ∈ C(s(x)) N-equality 1 

R(0,d,e) = d ∈ C(0) 
 
  (x ∈ N, y ∈ C(x)) 
a ∈ N     d ∈ C(0) e(x,y) ∈ C(s(x)) N-equality 2 

R(s(a),d,e) = e(a,R(a,d,e)) ∈ C(s(a)) 
 
N-induction 
By suppressing proofs we get 
 
  (x ∈ N, C(x) true) 
 c ∈ N C(0) true C(s(x)) true  N-induction 
C(c) true 
 
The following statement can be proved by N-induction, one ∧ introduction, two ∀ 
introductions and two → introductions (see Chapter 4 for ∧, ∀ and → rules): 
C(0) ∧ ((∀x ∈ N)C(x) → C(s(x))) → (∀x ∈ N)C(x) 
 
Well-orderings  
We will now introduce the well-ordering type (Wx ∈ A)B(x), whose elements are well-
founded trees. To form a canonical element of (Wx ∈ A)B(x), we must say which way the 
tree is formed and what the parts are. If we have an element a ∈ A, i.e. if we have a particular 
form we want the tree to have, and if we have a function from B(a) to (Wx ∈ A)B(x), i.e. if 
we have a collection of subtrees, then we may form the tree sup(a,b). 
 
 (x ∈ A) 
A ∈ type B(x) ∈ type W-formation 
(Wx ∈ A)B(x) ∈ type 
 
a ∈ A b ∈ B(a) ➝ (Wx ∈ A)B(x)  W-introduction 
sup(a,b) ∈ (Wx ∈ A)B(x) 
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               (x ∈ A, y ∈ B(x) ➝ (Wx ∈ A)B(x), z ∈ (Πv ∈ B(x))C(ap(y,v))) 
c ∈ (Wx ∈ A)B(x)  d(x,y,z) ∈ C(sup(x,y))                    W-elimination 
T(c,d) ∈ C(c) 
 

                          (x ∈ A, y ∈ B(x) ➝ (Wx ∈ A)B(x), z ∈ (Πv ∈ B(x))C(ap(y,v))) 
a ∈ A b ∈ B(a) ➝ (Wx ∈ A)B(x)  d(x,y,z) ∈ C(sup(x,y))   W-equality 
T(sup(a,b),d) = d(a,b,(λv)T(ap(b,v),d)) ∈ C(sup(a,b)) 
 
Universes  
Now we arrive at types of types. So let us define a universe as the least type closed under 
certain specified type forming operations. So far we have constructed types from N0, N1, N2, 
N by means of the operations Π, Σ, +, I(A,b,c) and W. We now consider the universe U of all 
types generated from N0, N1, N2, N with closure with respect to Π, Σ, +, I(A,b,c) and W. 
 
U ∈ type U-formation  
 
A ∈ U U-formation 
A ∈ type  
 
 (x ∈ A) 
A ∈ U B(x) ∈ U UΠ-introduction 

(Πx ∈ A)B(x) ∈ U 
 
 (x ∈ A) 
A ∈ U B(x) ∈ U UΣ-introduction 

(Σx ∈ A)B(x) ∈ U 
  
A ∈ U B ∈ U U+-introduction 

A + B ∈ U 
 
A ∈ U b,c ∈ A UI-introduction 

I(A,b,c)  ∈ U 
 
N0 ∈ U  N1 ∈ U N2 ∈ U N ∈ U UN-introduction 

 
(x ∈ A) 

A ∈ U B(x) ∈ U UW-introduction 

(Wx ∈ A)B(x) ∈ U 
 
U itself is not an element of U. We say that a type A is small if A ∈ U. Now U is closed under 
Π, Σ, +, I(A,b,c), N0,…, N. U is a type but it is not small. 
 
The type theory presented in this chapter is enough for giving a model of CZF. There is a 
second level of type theory, which is not presented here since it is not needed for our model, 
see e.g. Nordström 1990 for a presentation.  
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4 Propositions as types 
 
We now start with the interpretation of the axioms of CZF. The first thing we have to show is 
that intuitionistic predicate logic can be interpreted in type theory. In order to prove this, we 
will return to the relationship between propositions and types. 
 
The intuitionistic notion of proposition 
Intuitionistically, a proposition is defined by laying down what counts as a proof of the 
proposition and a proposition is true if it has a proof, i.e. if a proof of it can be given. Thus 
truth is identified with provability. The proofs of complex propositions are defined as certain 
complexes of proofs of their constituent propositions. 
 
The propositions-as-types principle 
Since types are defined by prescribing how its canonical elements are formed and 
propositions are defined by laying down how its canonical proofs are formed, we identify 
types and propositions, i.e. we treat them as one and the same notion. This is the propositions-
as-types interpretation on which type theory is based.14  
  So, propositions are types and proofs are elements. That a proposition is true 
means that the type has an element. Now we can reread the judgements of type theory in the 
following way: 
  
A ∈ type A is a type  A is a proposition (abbreviated A ∈ prop) 
a ∈ A a is an element of A a is a proof of the proposition A 
A true A has an element A is true 
 
Making no distinction between propositions and types we can use A ∈ type and A ∈ prop 
interchangeably. A true is an abbreviation of a ∈ A obtained by suppressing the proof a. 
 
Logical operators 
The next step is to look at the logical operators. Here is the explanation of the logical 
operators according to Brouwer-Heyting-Kolmogorov. 
 
proposition  is proved by 
⊥  --- 
A ∧ B  a proof of A and a proof of B 
A ∨ B  a proof of A or a proof of B 
A → B  a method for obtaining a proof of B from any proof of A 
¬A  a method for obtaining a proof of ⊥ from any proof of A 
(∀x ∈ A)B(x) a method for obtaining a proof of B(a) from any a ∈ A 
(∃x ∈ A)B(x) an element a ∈ A and a proof of B(a) 
 
Using the language of type theory we can rewrite the list above as follows:  
 
proposition  is proved by  
⊥  --- 
A ∧ B  a pair (a,b) where a ∈ A and b ∈ B 
A ∨ B  a canonical injection i(a) where a ∈ A or j(b) where b ∈ B 
                                                
14 See Howard 1969. 
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A → B  a lambda abstract (λx)b(x) where b(x) ∈ B (x ∈ A) 
¬A  a lambda abstract (λx)b(x) where b(x) ∈ ⊥ (x ∈ A) 
(∀x ∈ A)B(x) a lambda abstract (λx)b(x) where b(x) ∈ B(x) (x ∈ A) 
(∃x ∈ A)B(x) a pair (a,b) where a ∈ A and b ∈ B(a) 
 
Applying the proposition-as-types principle we get the following list of definitions: 
 
proposition  is defined by the type 
⊥  N0 

A ∧ B  (Σx ∈ A)B, where B does not depend on x, i.e. A × B 
A ∨ B  A + B  
A → B  (Πx ∈ A)B, where B does not depend on x, i.e. A ➝ B 
¬A  (Πx ∈ A)N0, i.e. A ➝ N0  
(∀x ∈ A)B(x) (Πx ∈ A)B(x) 
(∃x ∈ A)B(x) (Σx ∈ A)B(x)  
 
We can hereby use terminology from the two sides of the list interchangeably.  
 
Now we are ready to prove the following theorem: 
 
Fundamental theorem 
For each natural-deduction derivation in intuitionistic predicate calculus, there is a 
corresponding proof in type theory that is obtained by filling in the proof objects. 
 
Proof 
The rules of intuitionistic predicate calculus of the form of Gentzen’s natural deduction are 
obtained by suppressing proofs in the type theoretical rules.   
 
Universal quantification  
The ∀ rules are obtained from the Π rules. 
 
 (x ∈ A) 
A ∈ prop B(x) ∈ prop ∀-formation 
(∀x ∈ A)B(x) ∈ prop 
 
(x ∈ A) 
B(x) true  ∀-introduction 
(∀x ∈ A)B(x) true 
 
(∀x ∈ A)B(x) true a ∈ A ∀-elimination 
B(a) true 
 
Implication 
The → rules are also obtained from the Π rules. 
 
A ∈ prop B ∈ prop →-formation 
A → B ∈ prop 
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(A true) 
B true  →-introduction 
A → B true  
 
A → B true A true →-elimination 
B true 
 
Existential quantification  
The ∃ rules are obtained from the Σ rules. 
 

   (x ∈ A) 
A ∈ type B(x) ∈ prop ∃-formation 
(∃x ∈ A)B(x) ∈ prop 
 
a ∈ A  B(a) true ∃-introduction 
(∃x ∈ A)B(x) true 
 
             (x ∈ A, B(x) true) 
(∃x ∈ A)B(x) true C true ∃-elimination 

C true   
 
Conjunction 
The ∧ rules are also obtained from the Σ rules, (using the rules Σ-elimination 1 and  
Σ-elimination 2). 
 
A ∈ prop B ∈ prop ∧-formation 
A ∧ B ∈ prop  
 
A true  B true ∧-introduction 
A ∧ B true 
 
A ∧ B true ∧-elimination 1 

A true   
 
A ∧ B true ∧-elimination 2 

B true   
 
Disjunction 
The ∨ rules are obtained from the + rules. 
 
A ∈ prop B ∈ prop ∨-formation 
A ∨ B ∈ prop 
 
A true  ∨-introduction 1 

A ∨ B true 
 
B true  ∨-introduction 2 

A ∨ B true 
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 (A true) (B true) 
A ∨ B true C true C true ∨-elimination 
C true 
 
Absurdity 
The absurdity rules are obtained from the N0 rules. 
 
⊥ ∈ prop  ⊥-formation 
 
⊥ true ⊥-elimination 
C true 
 
This concludes the proof that type theory validates intuitionistic logic.  
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5 Some results 
 
Here are some results in type theory that are needed in interpreting CZF. 
 
The axiom of choice (AC) 
The axiom of choice is provable in type theory, i.e. 
(∀x ∈ A)(∃y ∈ B(x))C(x,y) → (∃f ∈ (Πx ∈ A)B(x))(∀x ∈ A)C(x,ap(f,x)) true 
where A ∈ type, B(x) ∈ type (x ∈ A), C(x,y) ∈ type (x ∈ A, y ∈ B(x)). 
 
Proof 
Let A ∈ set, B(x) ∈ set (x ∈ A), C(x,y) ∈ set (x ∈ A, y ∈ B(x)) and assume  
z ∈ (Πx ∈ A)(Σy ∈ B(x))C(x,y). Let x ∈ A. Then  
 

   2.                1. 
z ∈ (Πx ∈ A)(Σy ∈ B(x))C(x,y)   x ∈ A     

Π-elimination  ap(z,x) ∈ (Σy ∈ B(x))C(x,y)     
Σ-elimination 1 p(ap(z,x)) ∈ B(x)                    (x ∈ A,y ∈ B(x)) 
Π-equality, 1.          ap((λx)p(ap(z,x)),x) = p(ap(z,x)) ∈ B(x)                  C(x,y) ∈ set 
sub type 2              i)  C(x,ap((λx)p(ap(z,x)),x)) = C(x,p(ap(z,x))) 
 

   2.                           1.  
z ∈ (Πx ∈ A)(Σy ∈ B(x))C(x,y)   x ∈ A   

Π-elimination ap(z,x) ∈ (Σy ∈ B(x))C(x,y)    
Σ-elimination 2         ii)  q(ap(z,x)) ∈ C(x,p(ap(z,x)))     
 
Now combining i) and ii) 
 

q(ap(z,x)) ∈ C(x,p(ap(z,x)))    C(x,ap((λx)p(ap(z,x)),x)) = C(x,p(ap(z,x)))   
type eq 1  q(ap(z,x)) ∈ C(x,ap((λx)p(ap(z,x)),x))     
Π-introduction, 1. iii) (λx)q(ap(z,x)) ∈ (Πx ∈ A)C(x,ap((λx)p(ap(z,x)),x)) 
  
           2.                                                    1. 

z ∈ (Πx ∈ A)(Σy ∈ B(x))C(x,y)   x ∈ A      
Π-elimination ap(z,x) ∈ (Σy ∈ B(x))C(x,y)       
Σ-elimination 1 p(ap(z,x)) ∈ B(x)     
Π-introduction, 1.    iv)  (λx)p(ap(z,x)) ∈ (Πx ∈ A)B(x) 
 
Now combining iii) and iv)  
 

iii)  iv)     
Σ-introduction  

((λx)p(ap(z,x)),(λx)q(ap(z,x))) ∈ (Σf ∈ (Πx ∈ A)B(x))(Πx ∈ A)C(x,ap(f,x))  
→-introduction, 2.  

(Πx ∈ A)(Σy ∈ B(x))C(x,y) → (Σf ∈ (Πx ∈ A)B(x))(Πx ∈ A)C(x,ap(f,x)) true 
 
Notation: We will from now on write ap(f,x) simply as f(x), since the distinction is not 
essential in the remainder of this paper. 
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Σ-, +-, N0-, N1- and N2-existence 
i) Σ-existence.  
Let B(x) ∈ type (x ∈ A), then 
(∃z ∈ (Σx ∈ A)B(x))F(z) ↔ (∃x ∈ A)(∃y ∈ B(x))F((x,y)) 
ii) +-existence.  
Let A ∈ type and B ∈ type, then 
(∃z ∈ A + B)F(z) ↔ (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) 
iii) N0-, N1- and N2-existence.  
(∃z ∈ N0)F(z) ↔ ⊥ 
(∃z ∈ N1)F(z) ↔ F(01) 
(∃z ∈ N2)F(z) ↔ F(02) ∨ F(12) 
 
Proof 
The implication from right to left is given by the introduction rules and the opposite direction 
by the elimination rules. 
i) Assume (∃x ∈ A)(∃y ∈ B(x))F((x,y)) true. Then, by ∃-elimination, we have x ∈ A,  
y ∈ B(x) and F((x,y)) true. Σ-introduction gives us (x,y) ∈ (Σx ∈ A)B(x) and F((x,y)) true.  
Then (∃z ∈ (Σx ∈ A)B(x))F(z) true. 

Now let z ∈ (Σx ∈ A)B(x)). We have p(z) ∈ A, and q(z) ∈ B(p(z)). If 
F(p(z),q(z)), then (∃x ∈ A)(∃y ∈ B(x))F((x,y)).  
So F(p(z),q(z)) → (∃x ∈ A)(∃y ∈ B(x))F((x,y)) true. 
Σ-elimination gives us F(z) → (∃x ∈ A)(∃y ∈ B(x))F((x,y)) true. 
Hence (∀z ∈ (Σx ∈ A)B(x))(F(z) → (∃x ∈ A)(∃y ∈ B(x))F((x,y))) true. 
Hence (∃z ∈ (Σx ∈ A)B(x))F(z) → (∃x ∈ A)(∃y ∈ B(x))F((x,y)) true. 
ii) Assume (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true. 
(∃x ∈ A)F(i(x)) true gives a ∈ A and F(i(a)) true. +-introduction gives i(a) ∈ A + B.  
Thus (∃z ∈ A + B)F(z) true.  
Similarly (∃y ∈ B)F(j(y)) true gives b ∈ B and F(j(b)) true. +-introduction gives j(b) ∈ A + B. 
Thus (∃z ∈ A + B)F(z) true. 
Hence (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) → (∃z ∈ A + B)F(z) true. 

Now if a ∈ A and F(i(a)) true then (∃x ∈ A)F(i(x)) true.  
And then (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true.  
Hence F(i(x)) → (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true.  
Similarly if b ∈ B and F(j(b)) true then (∃y ∈ B)F(j(y)) true.  
And then (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true.  
Hence F(j(y)) → (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true.  
Assume z ∈ A + B. Then +-elimination gives F(z) → (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true. 
So (∀z ∈ A + B)(F(z) → (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y))) true. 
Hence (∃z ∈ A + B)F(z) → (∃x ∈ A)F(i(x)) ∨ (∃y ∈ B)F(j(y)) true.    
iii) (∃z ∈ N0)F(z) is never true, thus equivalent to ⊥. 

Let F(01) true. 01 ∈ N1 by N1-introduction. ∃-introduction gives  
(∃z ∈ N1)F(z) true. 
Let (∃z ∈ N1)F(z) true. ∃-elimination gives F(01) true. 
 Let F(02) ∨ F(12) true. 02 ∈ N2, 12 ∈ N2 by N2-introduction. Assume 02 and 12. 
∃-introduction gives (∃z ∈ N2)F(z) true and (∃z ∈ N2)F(z) true. ∨-elimination gives  
(∃z ∈ N2)F(z) true. 
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Let (∃z ∈ N2)F(z) true. We have F(02) → F(02) ∨ F(12) true and F(12) → F(02) ∨ F(12) true. 
Assume z ∈ N2. N2–elimination gives F(z) → F(02) ∨ F(12) true.  
Hence (∀z ∈ N2)(F(z) → F(02) ∨ F(12) true. 
Hence (∃z ∈ N2)F(z) → F(0k) ∨ F(12) true. 
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6 A type of sets 
 
In order to give a constructive meaning to the set theoretical notions of CZF we will explain 
its interpretation in type theory. 
 
The iterative notion of set – a constructive version 
We will now discuss informally the motivation for the interpretation. The classical iterative 
notion of set has been used to explain the meaning of classical set theory. The idea is to seek a 
constructive version of the iterative notion of set. With ‘iterative notion of set’ we mean the 
notion that arises by iterating the notion ‘set of’ in order to get sets, sets of sets, sets of sets of 
sets, etc. 
 Assume that we had a notion of ‘set of objects’, that we could apply to an 
arbitrary domain of objects. Then the universe of iterative sets might be viewed as the domain 
of objects that is inductively constructed by the single rule 
 
 if A is a set of iterative sets then A is an iterative set. 
 
We also need a suitable notion of ‘set of objects’ for an arbitrary given domain of objects. In 
general let us take a set of objects from some domain to be the result of combining into a 
whole the selection of those objects from the domain that are to be the elements of the set. 
The set may be written {ai}i where the ai’s are understood to be the selected elements of the 
set. Sets are to be treated extensionally. Two sets {ai}i and {bj}j are extensionally equal if 
every ai is equal to some bj and every bj is equal to some ai. Notice that we have used a 
variable i to index the selections of the elements ai of the set {ai}i. What can be the range of i? 
This needs consideration if we are to avoid circularity. It is no good to let i range over any set. 
An independent notion is needed. Now we turn to type theory and we consider the notion of 
type. So let i range over a type I and the set {ai}i should be written more explicitly as {ai}i ∈ I. 
The iterative sets are now inductively constructed using the rule that for each type I 
  
 if ai is an iterative set for i ∈ I then {ai}i ∈ I is an iterative set. 
 
This seems to be acceptable as a rule of construction. But in order to use it in a type 
theoretical framework and hence give an interpretation of the set theoretical language, we 
need a type of iterative sets. If all types I are allowed in forming iterative sets, then the 
iterative sets themselves cannot be expected to form a type. So we need to restrict the type I. 
If I is required to be a small type in forming the iterative set, then we obtain a relativised 
notion of iterative set over the type U of small types, and we can have the type V of iterative 
sets over U. It is this type V that we use to give an interpretation of constructive set theory in 
Martin-Löf’s type theory. 
 Equality between two sets {ai}i ∈ I and {bj}j ∈ J, denoted by ≈, will be explained 
as: (∀i ∈ I)(∃j ∈ J)(ai ≈ bj) ∧ (∀j ∈ J)(∃i ∈ I)(ai ≈ bj). That x is a member of a set {ai}i ∈ I, 
denoted by ε, will be explained as: (∃i ∈ I)(ai ≈ x). This is an informal explanation of ≈ and ε, 
the definitions will follow in Chapter 7. 
  
The iterative type V 
By considering the type of sets, defined by V = (Wx ∈ U)x, we will see that we obtain a 
constructive interpretation of CZF. This version is a constructive version of the classical 
conception of the cumulative hierarchy of sets, as explained informally in the previous 
section.  
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Definition of V 
Let V = (Wx ∈ U)x.  
 
Notation: We use Greek lower case letters α,β,γ,δ,η for elements of V.  
 
The rules for W-types give us the following V rules: 
 
V ∈ type V-formation 
 
A ∈ U b ∈ A ➝ V V-introduction 
sup(A,b) ∈ V 
 
Notation: We shall also write (supx ∈ A)b(x) for sup(A,b). 
 
      (x ∈ U, y ∈ x ➝ V, z ∈ (∀v ∈ x)C(y(v))) 
α ∈ V  d(x,y,z) ∈ C(sup(x,y))  V-elimination 
T(α,d) ∈ C(α) 
 
       (x ∈ U, y ∈ x ➝ V, z ∈ (∀v ∈ x)C(y(v))) 
A ∈ U b ∈ A ➝ V  d(x,y,z) ∈ C(sup(x,y))  V-equality 
T(sup(A,b),d) = d(A,b,(λv)T(b(v),d)) ∈ C(sup(A,b)) 
 
V-induction 
By supressing proofs in V-elimination we get. 
 
     (x ∈ U, y ∈ x ➝ V, (∀v ∈ x)C(y(v)) true) 
α ∈ V  C(sup(x,y)) true  V-induction 
C(α) true 
 
The following statement can be proved by V-induction, two → introductions and three ∀ 
introductions: 
 
(∀x ∈ U)(∀y ∈ x ➝ V)((∀v ∈ x)C(y(v)) → C(sup(x,y))) → (∀x ∈ V)C(x) 
 
An important property of the type V, proved in the following lemma, is that we can always 
for each element α ∈ V recover the branching index −α ∈ U and the corresponding mapping 
∼α ∈ −α ➝ V. 
 
Lemma 1  
Let α ∈ V. There are one-place functions − and ∼ such that −α ∈ U and ∼α ∈ −α ➝ V. And 
for α = sup(A,b) we have −sup(A,b) = A and ∼sup(A,b) = b.   
 
Proof  
Let α ∈ V, i.e. α ∈ (Wx ∈ U)x. Let −α = T(α,(x,y,z)x).  
So −α ∈ U. Now let ∼α = T(α,(x,y,z)y) be defined by 
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                     (x ∈ U, y ∈ x ➝ V) 
α ∈ V  y ∈ −sup(x,y) ➝ V  V-elimination 
T(α,(x,y,z)y) ∈ −α ➝ V 
 
Then ∼α ∈ −α ➝ V. And V-equality gives  
 

(x ∈ U) 
A ∈ U b ∈ A ➝ V   x ∈ U  V-equality 
T(sup(A,b),(x,y,z)x) = A ∈ U 
 

              (x ∈ U, y ∈ x ➝ V) 
A ∈ U b ∈ A ➝ V  y ∈ x ➝ V  V-equality 
T(sup(A,b),(x,y,z)y) = b ∈ A ➝ V 
 
So −sup(A,b) = A and ∼sup(A,b) = b.  
 
Remark 1 
We have I(V,sup(−α,∼α),α) true. 
 
Proof 
Let α = sup(A,b) and g = (λα)sup(−α,∼α) ∈ V ➝ V. We have g(α) = sup(−α,∼α) = 
sup(−sup(A,b),∼sup(A,b)) = sup(A,b) = α. So now we have  
r(sup(x,y)) ∈ I(V,g(sup(x,y)),sup(x,y)) for x ∈ U and y ∈ A ➝ V.  
 

              (x ∈ U, y ∈ x ➝ V) 
α ∈ V  r(sup(x,y)) ∈ I(V,g(sup(x,y)),sup(x,y)) V-elimination 
T(α,r) ∈ I(V,g(α),α) 
 
Which gives us I(V,sup(−α,∼α),α) true.   
 
Let us summarize the basic idea of the interpretation: V = (Wx ∈ U)x is the domain of our 
model. Each canonical element of V is of the form sup(A,b) where A ∈ U and b(x) ∈ V for  
x ∈ A. That is, the elements of V are constructed inductively as families of sets indexed by 
the elements of a small type. Alternatively, the elements of V are well-founded trees where 
the successors of a node are always indexed by the elements of a small type. The membership 
relation corresponds to the successor relation on such trees. 
 For any element α ∈ V, ∼α(x) for x ∈ α play the role of elements. The small 
types play the same role as the ordinals do in ZF. 
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7 A model 
 
CZF has the language L with the relations = and ∈. An intuitionistic model for CZF is a triple 
M = (M,≈,ε) where ≈ has the same number of arguments as =, ε has the same number of 
arguments as ∈ and M is an intuitionistically meaningful domain. Let A(=,∈) be a sentence in 
L. M is a model for A(=,∈) if and only if AM(≈,ε) holds intuitionistically, where AM(≈,ε) is 
obtained from A(=,∈) by replacing all occurrences of = and ∈ with ≈ and ε respectively, and 
relativizing all quantifiers in A(=,∈) to M (i.e. ∀x and ∃x are replaced by (∀x ∈ M) and  
(∃x ∈ M) respectively).15 
 
So what we want to show is that V = (V,≈,ε) is a model of CZF. That is, we want to show that 
the axioms of CZF interpreted in V are valid.  
  
Let LV denote the language L where ≈, ε, (∀x ∈ V), (∃x ∈ V), (∀x ε y) and (∃x ε y) replaced 
by =, ∈, ∀x, ∃x, (∀x ∈ y) and (∃x ∈ y) respectively. Here follow the axioms of CZF 
interpreted in V: 
 
Restricted quantifier axioms 
(∀x ε y)F(x) ↔ (∀x ∈ V)(x ε y → F(x)) 
(∃x ε y)F(x) ↔ (∃x ∈ V)(x ε y ∧ F(x)) 
for every formula F(x) in LV. 
 
Extensionality axioms 
i) (∀x ∈ V)(∀y ∈ V)(∀z ∈ V)((x ≈ y ∧ y ε z) → x ε z) 
ii) (∀x ∈ V)(∀y ∈ V)(x ≈ y ↔ (∀z ∈ V)(z ε x ↔ z ε y)) 
 
Set induction 
(∀x ∈ V)((∀y ε x)F(y) → F(x)) → (∀x ∈ V)F(x)   
for all formulae F(x) in LV. 
 
Pairing   
 (∀x ∈ V)(∀y ∈ V)(∃z ∈ V)(∀u ∈ V)(u ε z ↔ u ≈ x ∨ u ≈ y) 
 
Union  
(∀x ∈ V)(∃z ∈ V)(∀u ∈ V)(u ε z ↔ (∃y ε x)(u ε y)) 
 
Restricted separation 
(∀x ∈ V)(∃z ∈ V)(∀y ∈ V)(y ε z ↔ y ε x ∧ F(y)) 
for all restricted formulae F(y) in LV. 
 
Strong collection 
(∀u ∈ V)((∀x ε u)(∃y ∈ V)F(x,y) → (∃v ∈ V)F’(u,v))  
for all formulae F(x,y) in LV, where F’(u,v) abbreviates 
(∀x ε u)(∃y ε v)F(x,y) ∧ (∀y ε v)(∃x ε u)F(x,y). 
 

                                                
15 Troelstra and van Dalen, 1988, vol. I, p. 75. 
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Subset collection 
(∀v ∈ V)(∀w ∈ V)(∃t ∈ V)(∀u ∈ V)((∀x ε v)(∃y ε w)F(x,y) → (∃z ε t)F’(v,z))  
for all formulae F(x,y) in LV. 
 
Infinity 
(∃z ∈ V)((∃x ε z)(∀y ε x)⊥ ∧ (∀x ε z)(∃y ε z)succ(x,y)) 
where succ(x,y) is  
x ε y ∧ (∀u ε x)(u ε y) ∧ (∀u ε y)(u ε x ∨ u ≈ x) 
 
Proofs of the axioms 
Now we proceed to prove the axioms.16  
 
Definition 1 (∀x ε α)F(x) and (∃x ε α)F(x) 
Let α ∈ V and let F(x) be a proposition for x ∈ V. 
(∀x ε α)F(x) = (∀x ∈ −α)F(∼α(x)) 
(∃x ε α)F(x) = (∃x ∈ −α)F(∼α(x)) 
 
Theorem 1 Set induction 
(∀x ∈ V)((∀y ε x)F(y) → F(x)) → (∀y ∈ V)F(y) 
 
Proof 
Assume h ∈ (∀x ∈ V)((∀y ε x)F(y) → F(x)).  
Then h ∈ (∀x ∈ V)((∀y ∈ −x)F(∼x(y)) → F(x)).   
So h(x) ∈ ((∀y ∈ −x)F(∼x(y)) → F(x)) for x ∈ V. 
So h(x)(z) ∈ F(x) for x ∈ V and z ∈ (∀y ∈ −x)F(∼x(y)). 
In order to use V-elimination we have to express h through −x and ∼x. 
So let h’ = (λ−x)(λ∼x)h(sup(−x,∼x)) 
Then h’(−x)(∼x)(z) ∈ F(sup(−x,∼x)) for −x ∈ V,∼x ∈ −x ➝ V and z ∈ (∀y ∈ −x)F(∼x(y)).  
Now let α ∈ V.  
V-elimination gives T(α,h’) ∈ F(α).  
Hence (λy)T(y,h’) ∈ (∀y ∈ V)F(y). 
Hence (λx)(λy)T(y,x’) ∈ (∀x ∈ V)((∀y ε x)F(y) → F(x)) → (∀y ∈ V)F(y), i.e.  
(∀x ∈ V)((∀y ε x)F(y) → F(x)) → (∀y ∈ V)F(y) true. 
 
Lemma 2  
There is a type ≈ such that, for A,B ∈ U and f,g ∈ U ➝ V, 
sup(A,f) ≈ sup(B,g) = (∀x ∈ A)(∃y ∈ B)(f(x) ≈ g(y)) ∧ (∀y ∈ B)(∃x ∈ A)(f(x) ≈ g(y)), where 
sup(A,f) ≈ sup(B,g) stands for (sup(A,f),sup(B,g)) ∈ ≈ and such that  
sup(A,f) ≈ sup(B,g) is a small type for all sup(A,f),sup(B,g) ∈ V, i.e. a type in U. 
 
Proof  
We define 
G1(u,v,w) = (∀x ∈ u)(∃y ∈ −v)w(x)(∼v(y)) ∈ U 
G2(u,v,w) = (∀y ∈ −v)(∃x ∈ u)w(x)(∼v(y)) ∈ U 
and G(u,z,w) = (λv)(G1(u,v,w) ∧ G2(u,v,w)) ∈ V ➝ U 
where u ∈ U, v ∈ V, z ∈ u ➝ V and w ∈ u ➝ (V ➝ U) which is another way of writing  

                                                
16 We mainly follow Aczel 1982 and Troelstra and van Dalen 1988. 
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w ∈ (∀x ∈ u)(V ➝ U). NB. G(u,z,w) does not actually depend on z.  
Now by V-elimination we get T(α,G) ∈ V ➝ U, for α ∈ V. So we define, for 
sup(A,f),sup(B,g) ∈ V 
sup(A,f) ≈ sup(B,g) = T(sup(A,f),G)(sup(B,g)) ∈ U. 
From V-equality we get T(sup(A,f),G) = G(A,f,(λu)T(f(u),G)) ∈ V ➝ U, where A ∈ U and  
f ∈ A ➝ V. Let b = (λu)T(f(u),G).  
Now sup(A,f) ≈ sup(B,g) = T(sup(A,f),G)(sup(B,g)) = G(A,f,(λu)T(f(u),G))(sup(B,g)) = 
G(A,f,b)(sup(B,g)) = G1(A,sup(B,g),b) ∧ G2(A,sup(B,g),b). 
But G1(A,sup(B,g),b) = (∀x ∈ A)(∃y ∈ B)b(x)(g(y)) = (∀x ∈ A)(∃y ∈ B)T(f(x),G)(g(y)) =  
(∀x ∈ A)(∃y ∈ B)(f(x) ≈ g(y)).  
And G2(A,sup(B,g),b) = (∀y ∈ B)(∃x ∈ A)b(x)(g(y)) = (∀y ∈ B)(∃x ∈ A)T(f(x),G)(g(y)) =  
(∀y ∈ B)(∃x ∈ A)(f(x) ≈ g(y)).  
Hence  
sup(A,f) ≈ sup(B,g) = (∀x ∈ A)(∃y ∈ B)(f(x) ≈ g(y)) ∧ (∀y ∈ B)(∃x ∈ A)(f(x) ≈ g(y)). 
 
Remark 2 
Let α = sup(A,f) ∈ V and β = sup(B,g) ∈ V. Then the definition of ≈ can be reformulated in 
the following way:  
α ≈ β = (∀x ε α)(∃y ε β)(x ≈ y) ∧ (∀y ε β)(∃x ε α)(x ≈ y) 
 
Lemma 3 The equivalence relation ≈ 
For α,β,γ ∈ V 
i) α ≈ α 
ii) α ≈ β → β ≈ α 
iii) α ≈ β ∧ β ≈ γ → α ≈ γ 
 
Proof 
i) Let α ∈ V. We have 
(∀x ε α)(x ≈ x) 
→ (∀x ∈ −α)(∼α(x) ≈ ∼α(x)).  
→ (∀x ∈ −α)(∃y ∈ −α)(∼α(x) ≈ ∼α(y)).  
→ (∀x ε α)(∃y ε α)(x ≈ y). 
Similarly, by renaming (∀x ε α)(x ≈ x) we get  
(∀y ε α)(y ≈ y) 
→ (∀y ∈ −α)(∼α(y) ≈ ∼α(y)).  
→ (∀y ∈ −α)(∃x ∈ −α)(∼α(x) ≈ ∼α(y)).  
→ (∀y ε α)(∃x ε α)(x ≈ y). 
So we have (∀x ε α)(x ≈ x) → (α ≈ α).  
And Theorem 1 gives us (∀α ∈ V)(α ≈ α). 
 
ii) Let F(x) = (∀y ∈ V)(x ≈ y → y ≈ x). Let α ∈ V such that (∀x ε α)F(x). Let β ∈ V. 
α ≈ β  
→ (∀x ε α)(∃y ε β)(x ≈ y)  
→ (∀x ε α)(∃y ∈ −β)(x ≈ ∼β(y))  
→ F(x) for x ε α and ∼β(y) ∈ V for y ∈ −β 
(∀x ε α)(∃y ∈ −β)(∼β(y) ≈ x) 
→ (∀x ε α)(∃y ε β)(y ≈ x).   
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Similarly α ≈ β  
→ (∀y ε β)(∃x ε α)(x ≈ y)  
→ (∀y ∈ −β)(∃x ε α)(x ≈ ∼β(y))  
→ F(x) for x ε α and ∼β(y) ∈ V for y ∈ −β 
(∀y ∈ −β)(∃x ε α)(∼β(y) ≈ x)  
→ (∀y ε β)(∃x ε α)(y ≈ x) 
Hence α ≈ β → β ≈ α. 
Hence (∀x ε α)F(x) → F(α). 
Hence (∀x ∈ V)F(x), i.e. (∀x ∈ V)(∀y ∈ V)(x ≈ y → y ≈ x). 
 
iii) Let F(x) = (∀y ∈V)(∀z ∈ V)(x ≈ y ∧ y ≈ z → x ≈ z). Let α, β, γ ∈ V and (∀x ε α)F(x). 
α ≈ β ∧ β ≈ γ  
→ (∀x ε α)(∃y ε β)(x ≈ y) ∧ (∀y ε β)(∃z ε γ)(y ≈ z)  
→ (∀x ε α)(∃y ∈ −β)(x ≈ ∼β(y)) ∧ (∀y ∈ −β)(∃z ∈ −γ)(∼β(y) ≈ ∼γ(z))  
→ (∀x ε α)(∃y ∈ −β)(∃z ∈ −γ)(x ≈ ∼β(y) ∧ ∼β(y) ≈ ∼γ(z))  
→ F(x) for x ε α, ∼β(y) ∈ V for y ∈ −β and ∼γ(z) ∈ V for z ∈ −γ 
(∀x ∈ −α)(∃z ∈ −γ)(∼α(x) ≈ ∼γ(z))  
→ (∀x ε α)(∃z ε γ)(x ≈ z). 
Similarly α ≈ β ∧ β ≈ γ → β ≈ γ ∧ α ≈ β  
→ (∀z ε γ)(∃y ε β)(y ≈ z) ∧ (∀y ε β)(∃x ε α)(x ≈ y)  
→ (∀z ∈ −γ)(∃y ∈ −β)(∼β(y) ≈ ∼γ(z)) ∧ (∀y ∈ −β)(∃x ε α)(x ≈ ∼β(y))  
→ (∀z ∈ −γ)(∃y ∈ −β)(∃x ε α )(∼β(y) ≈ ∼γ(z) ∧ x ≈ ∼β(y)) 
→ (∀z ∈ −γ)(∃y ∈ −β)(∃x ε α )(x ≈ ∼β(y) ∧ ∼β(y) ≈ ∼γ(z))  
→ F(x) for x ε α, ∼β(y) ∈ V for y ∈ −β and ∼γ(z) ∈ V for z ∈ −γ  
(∀z ∈ −γ)(∃x ε α)(x ≈ ∼γ(z))  
→ (∀z ε γ)(∃x ε α)(x ≈ z). 
Hence α ≈ β ∧ β ≈ γ → α ≈ γ. 
Hence (∀x ε α)F(x) → F(α). 
Hence (∀x ∈ V)F(x), i.e. (∀x ∈ V)(∀y ∈V)(∀z ∈ V)(x ≈ y ∧ y ≈ z → x ≈ z). 
 
Definition 2 α ε β and α ⊆ β 
For α,β ∈ V, let 
α ε β = (∃y ε β)(α ≈ y) 
α ⊆ β = (∀x ε α)(x ε β)  
 
Remark 3  
i) α ⊆ β = (∀x ε α)(x ε β) = (∀x ε α)(∃y ε β)(x ≈ y) 
ii) α ε β is a small type since α ≈ β is small. 
iii) α ⊆ β is a small type since α ε β is small. 
 
Definition 3 
Let x ∈ V. F(x) is extensional over V if 
(∀x ∈ V)(∀y ∈ V)( x ≈ y ∧ F(x) ↔ F(y)) 
 
Remark 4 
An implication of Definition 3 is 
(∀y ∈ V)((∀x ∈ V)(x ≈ y → F(x)) ↔ F(y)). 
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Lemma 4  
If F is extensional over V then, for α ∈ V 
i) (∀x ε α)F(x) ↔ (∀x ∈ V)(x ε α → F(x)) 
ii) (∃x ε α)F(x) ↔ (∃x ∈ V)(x ε α ∧ F(x)) 
 
Proof 
i) (∀x ∈ V)(x ε α → F(x))  
↔ (∀x ∈ V)((∃y ε α)(x ≈ y) → F(x))  
↔ (∀x ∈ V)((∃y ∈ −α)(x ≈ ∼α(y)) → F(x)) 
↔ (∀x ∈ V)(∀y ∈ −α)(x ≈ ∼α(y) → F(x)) 
↔ (∀y ∈ −α)(∀x ∈ V)(x ≈ ∼α(y) → F(x)) 
↔ by Remark 4 
(∀y ∈ −α)F(∼α(y)) 
↔ (∀y ε α)F(y) 
↔ (∀x ε α)F(x) 
ii) (∃x ∈ V)(x ε α ∧ F(x)) 
↔ (∃x ∈ V)((∃y ε α)(x ≈ y) ∧ F(x)) 
↔ (∃x ∈ V)((∃y ∈ −α)(x ≈ ∼α(y)) ∧ F(x)) 
↔ (∃x ∈ V)(∃y ∈ −α)(x ≈ ∼α(y) ∧ F(x)) 
↔ (∃y ∈ −α)(∃x ∈ V)(x ≈ ∼α(y) ∧ F(x)) 
↔ by Definition 3 
(∃y ∈ −α)F(∼α(y)) 
↔ (∃y ε α)F(y) 
↔ change of bound variable 
(∃x ε α)F(x). 
 
Theorem 2 Extensionality 
For α,β,γ ∈ V 
i) (α ≈ β ∧ β ε γ) → α ε γ 
ii) α ≈ β ↔ (∀x ∈ V)(x ε α ↔ x ε β) 
 
Proof 
i) α ≈ β ∧ β ε γ 
→ α ≈ β ∧ (∃z ε γ)(β ≈ z) 
→ α ≈ β ∧ (∃z ∈ −γ)(β ≈ ∼γ(z)) 
→ (∃z ∈ −γ)(α ≈ β ∧ β ≈ ∼γ(z)) 
→ by Lemma 3 iii) 
(∃z ∈ −γ)(α ≈ ∼γ(z)) 
→ (∃z ε γ)(α ≈ z) 
→ α ε γ 
Hence F(x) = (x ε α) is extensional over V. 
ii) Now  
α ⊆ β  
↔ (∀x ε α)(x ε β) 
↔ by Lemma 4 i) 
(∀x ∈ V)(x ε α → x ε β) 
We also have β ⊆ α  
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↔ (∀x ε β)(x ε α) 
↔ by Lemma 4 i) 
(∀x ∈ V)(x ε β → x ε α) 
Now α ≈ β = (∀x ε α)(∃y ε β)(x ≈ y) ∧ (∀y ε β)(∃x ε α)(x ≈ y) 
and α ≈ β → β ≈ α  
and α ⊆ β = (∀x ε α)(∃y ε β)(x ≈ y) give 
α ≈ β 
↔ (∀x ε α)(∃y ε β)(x ≈ y) ∧ (∀y ε β)(∃x ε α)(x ≈ y) 
↔ α ⊆ β ∧ β ⊆ α 
↔ (∀x ∈ V)(x ε α → x ε β) ∧ (∀x ∈ V)(x ε β → x ε α) 
↔ (∀x ∈ V)(x ε β ↔ x ε α). 
 
Lemma 5 
i) (α ε β ∧ β ≈ γ) → α ε γ 
ii) (α ε β ∧ β ε α) → ⊥ 
 
Proof 
i) Assume α ε β ∧ β ≈ γ. β ≈ γ implies that x ε γ whenever x ε β, by Theorem 2 ii). Hence  
α ε γ.  
ii) Let α,β ∈ V and let F(x) = (∀y ∈ V)((x ε y ∧ y ε x) → ⊥). Assume (∀x ε α)F(x). 
Now (α ε β ∧ β ε α) 
→ (β ε α ∧ α ε β) 
α ∈ V, β ε α and (∀x ε α)F(x) give 
→ ⊥  
Hence by Set induction, (α ε β ∧ β ε α) → ⊥.  
 
Lemma 6 
If F ∈ LV, then F is extensional. 
 
Proof 
By induction on the construction of F. 
Lemma 3 iii) takes care of ≈, and Theorem 2 i) takes care of ε, for example. 
 
Theorem 3 Restricted quantifier 
i) (∀x ε α)F(x) ↔ (∀x ∈ V)(x ε α → F(x)) 
ii) (∃x ε α)F(x) ↔ (∃x ∈ V)(x ε α ∧ F(x)) 
By Lemmata 4 and 6 
 
Theorem 4 Pairing 
If α,β ∈ V, then there is γ ∈ V such that for all η ∈ V 
η ε γ ↔ (η ≈ α ∨ η ≈ β) 
 
Proof  
Let α,β ∈ V and let γ = (supz ∈ N2)(λz)R2(z,α,β) ∈ V. Then for η ∈ V 
η ε γ 
↔ (∃z ε γ)(η ≈ z)  
↔ (∃z ∈ −γ)(η ≈ ∼γ(z))   
↔ (∃z ∈ N2)(η ≈ R2(z,α,β))  
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↔ by N2-existence (∃z ∈ N2)F(z) ↔ F(02) ∨ F(12) 
η ≈ R2(02,α,β) ∨ η ≈ R2(12,α,β) 
↔ N2-equality 
η ≈ α ∨ η ≈ β  
 
Theorem 5 Union 
If α ∈ V, then there is γ ∈ V such that for all η ∈ V 
η ε γ ↔ (∃x ε α)(η ε x) 
 
Proof 
Let α ∈ V and let γ = (supz ∈ (Σx ∈ −α)−∼α(x))∼(∼α(p(z)))(q(z)) ∈ V. Now for η ∈ V 
η ε γ  
↔ (∃z ∈ −γ)(η ≈ ∼γ(z)) 
↔ (∃z ∈ (Σx ∈ −α)−∼α(x))(η ≈ ∼(∼α(p(z)))(q(z))) 
↔ by Σ-existence (∃z ∈ (Σx ∈ A)B(x))F(z) ↔ (∃x ∈ A)(∃y ∈ B(x))F((x,y)) 
(∃x ∈ −α)(∃y ∈ −∼α(x))(η ≈ ∼(∼α(p((x,y))))(q((x,y)))) 
↔ (∃x ∈ −α)(∃y ∈ −∼α(x))(η ≈ ∼(∼α(x))(y)) 
↔ (∃x ∈ −α)(∃y ε ∼α(x))(η ≈ y) 
↔ (∃x ε α)(∃y ε x)(η ≈ y) 
↔ (∃x ε α)(η ε y) 
 
Lemma 7  
If F(x) ∈ LV for x ∈ V and F(x) is restricted, then F(x) is small. 
 
Proof 
By induction on the construction of F(x). 
F → G, F ∧ G, F ∨ G, ⊥ are small if F and G are small, by definition and since U is closed 
with respect to Π, Σ, +, N0. 
(∀x ε y) and (∃x ε  y) are small by Definition 1 and since U is closed with respect to Π and Σ. 
α ≈ β is small by Lemma 2. 
α ε β is small by Remark 3. 
 
Theorem 6 Restricted separation 
If α ∈ V, F(x) ∈ LV for x ∈ V and F(x) is restricted, then there is γ ∈ V such that for all η ∈ V 
η ε γ ↔ η ε x ∧ F(η)  
 
Proof 
Let α ∈ V, F(x) ∈ LV for x ∈ V and F(x) be restricted . Then F(x) is a small type, by Lemma 
7.  Let γ = (supz ∈ (Σx ∈ −α)F(∼α(x)))∼α(p(z)) ∈ V. Now if η ∈ V 
η ε γ 
↔ (∃z ε γ)(η ≈ z)  
↔ (∃z ∈ −γ)(η ≈ ∼γ(z))   
↔ (∃z ∈ (Σx ∈ −α)F(∼α(x)))(η ≈ ∼α(p(z))) 
↔ by Σ-existence (∃z ∈ (Σx ∈ A)B(x))F(z) ↔ (∃x ∈ A)(∃y ∈ B(x))F((x,y)) 
(∃x ∈ −α)(∃y ∈ F(∼α(x)))(η ≈ ∼α(p((x,y)))) 
↔ (∃x ∈ −α)(∃y ∈ F(∼α(x)))(η ≈ ∼α(x)) 
↔ (∃x ∈ −α)(F(∼α(x)) ∧ η ≈ ∼α(x)) 
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↔ (∃x ε α)(F(x) ∧ η ≈ x) 
↔ by Lemma 6  
(∃x ε α)(F(η) ∧ η ≈ x) 
↔ (∃x ε α)(x ≈ η) ∧ F(η)  
↔ η ε α ∧ F(η)  
 
Notation 
Let F(x,y) be a type for x,y ∈ V. Then let F’(x,y) be given by 
F’(x,y) = (∀u ε x)(∃v ε y)F(u,v) ∧ (∀v ε y)(∃u ε x)F(u,v). 
 
Lemma 8  
If α, β ∈ V such that −α = −β then 
(∀x ∈ −α)F(∼α(x),∼β(x)) → F’(α,β) 
 
Proof 
Let α,β ∈ V such that −α = −β, then we have 
(∀x ∈ −α)F(∼α(x),∼β(x)) 
→ (∀x ∈ −α)(∃y ∈ −α)F(∼α(x),∼β(y)) 
→ substitution −α = −β  
(∀x ∈ −α)(∃y ∈ −β)F(∼α(x),∼β(y)) 
→ (∀x ε α)(∃y ε β)F(x,y) 
Similarly 
(∀x ∈ −α)F(∼α(x),∼β(x)) 
→ renaming 
(∀y ∈ −α)F(∼α(y),∼β(y)) 
→ (∀y ∈ −β)(∃x ∈ −β)F(∼α(y),∼β(x)) 
→ substitution −α = −β 
(∀y ∈ −β)(∃x ∈ −α)F(∼α(x),∼β(y)) 
→ (∀y ε β)(∃x ε α)F(x,y) 
So we have (∀x ∈ −α)F(∼α(x),∼β(x)) → (∀x ε α)(∃y ε β)F(x,y) ∧ (∀y ε β)(∃x ε α)F(x,y) 
Hence (∀x ∈ −α)F(∼α(x),∼β(x)) → F’(α,β). 
 
Theorem 7 Strong collection 
If α ∈ V then 
(∀x ε α)(∃y ∈ V)F(x,y) → (∃v ∈ V)F’(α,v) 
 
Proof 
Let α ∈ V, then 
(∀x ε α)(∃y ∈ V)F(x,y)  
→ (∀x ∈ −α)(∃y ∈ V)F(∼α(x),y)  
AC (∀x ∈ A)(∃y ∈ B(x))C(x,y) → (∃f ∈ (Πx ∈ A)B(x))(∀x ∈ A)C(x,f(x))  
AC implies that there is f ∈ −α ➝ V such that (∀x ∈ −α)F(∼α(x),f(x)) 
Let β = sup(−α,f) ∈ V. We have −β = −α and ∼β(x) = f(x) for x ∈ −α, by construction.  
(∀x ∈ −α)F(∼α(x),f(x))  
→ substitution f(x) = ∼β(x) 
(∀x ∈ −α)F(∼α(x),∼β(x)) 
So by Lemma 8, F’(α,β) 
→ (∃v ∈ V)F’(α,v)  
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Theorem 8 Subset Collection 
If α,β ∈ V then there is γ ∈ V such that 
(∀x ε α)(∃y ε β)F(x,y) → (∃z ε γ)F’(α,z) 
 
Proof 
Let α,β ∈ V and let γ = (supz ∈ −α ➝ −β)(supx ∈ −α)∼β(z(x)) ∈ V. 
We have −γ = −α ➝ −β ∈ U and ∼γ(z) = (sup x ∈ −α)∼β(z(x)) ∈ V for z ∈ −γ. 
Assume (∀x ε α)(∃y ε β)F(x,y) 
→ (∀x ∈ −α)(∃y ∈ −β)F(∼α(x),∼β(y)) 
AC (∀x ∈ A)(∃y ∈ B(x))C(x,y) → (∃f ∈ (Πx ∈ A)B(x))(∀x ∈ A)C(x,f(x))  
By AC there is f ∈ −α ➝ −β such that (∀x ∈ −α)F(∼α(x),∼β(f(x)). 
Let δ = (supx ∈ −α)∼β(f(x)) ∈ V. We have −δ = −α ∈ U. And for x ∈ −α we have f(x) ∈ −β 
and ∼δ(x) = ∼β(f(x)) ∈ V. 
Now ∼γ(f) = (supx ∈ −α)∼β(f(x)) = δ. Hence δ ≈ ∼γ(f)), since x ≈ x. 
And since f ∈ −α ➝ −β, i.e. f ∈ −γ, we have  
(∃x ∈ −γ)(δ ≈ ∼γ(x)) 
So (∃x ε γ)(δ ≈ x) 
So δ ε γ.  
Also −δ = −α and  
(∀x ∈ −α)F(∼α(x),∼β(f(x)))  
→ (∀x ∈ −α)F(∼α(x),∼δ(x)) 
So Lemma 8 implies F’(α,δ). 
Hence (∃z ε γ)F’(α,z). 
 
Lemma 9 
Let ∅ = sup(N0,(λx)R0(x)) ∈ V and for α ∈ V let α’ = (supx ∈ −α + N1)D(x,∼α,(y)α) ∈ V. 
Then  
i) for η ∈ V  
η ε ∅ ↔ ⊥ 
ii) for α ∈ V, α’ ∈ V and for η ∈ V 
η ε α’ ↔ (η ε α ∨ η ≈ α) 
iii) for α ε V 
α ε α’ 
iv) for α ∈ V 
α’≈ ∅ → ⊥ 
v) for α,β ∈ V 
α’ ≈ β’ → α ≈ β 
 
Proof 
i) For η ∈ V 
η ε ∅ 
↔ (∃x ε ∅)(η ≈ x) 
↔ (∃x ∈ −∅)(η ≈ ∼∅(x)) 
↔ (∃x ∈ N0)(η ≈ R0(x))  
↔ by N0-existence (∃z ∈ N0)F(z) ↔ ⊥ 
⊥ 
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ii) Let α ∈ V. If η ∈ V then 
η ε α’  
↔ (∃x ε α’)(η ≈ x) 
↔ (∃x ∈ −α’)(η ≈ ∼α’(x)) 
↔ (∃x ∈ −α + N1)(η ≈ D(x,∼α,(y)α) 
↔ +-existence (∃x ∈ A + B)F(x) ↔ (∃x1 ∈ A)F(i(x1)) ∨ (∃x2 ∈ B)F(j(x2)) 
(∃x1 ∈ −α)(η ≈ D(i(x1),∼α,(y)α) ∨ (∃x2 ∈ N1)(η ≈ D(j(x2),∼α,(y)α) 
↔ (∃x1 ∈ −α)(η ≈ D(i(x1),∼α,(y)α) ∨ (η ≈ D(j(01),∼α,(y)α) 
↔ (∃x1 ∈ −α)(η ≈ ∼α(x1)) ∨ (η ≈ α) 
↔ (∃x1 ε α)(η ≈ x1) ∨ (η ≈ α) 
↔ (η ε α) ∨ (η ≈ α) 
iii) Let α ∈ V  
→ ≈ reflexive 
α ≈ α 
→ by ii) where η = α 
α ε α’ 
iv) Let α’ ≈ ∅  
→ by iii) and Lemma 5 i) 
α ε ∅  
→ by i) 
⊥ 
v) Let α,β ∈ V 
We have α ε α’ and β ε β’ by iii) 
α’ ≈ β’ 
→ β’ ≈ α’ 
→ Lemma 5 i) 
α ε β’ ∧ β ε α’ 
→ by ii) 
(α ε β ∨ α ≈ β) ∧ ( β ε α ∨ β ≈ α) 
→ by Lemma 5 ii) 
α ≈ β 
 
Remark 5  
By Lemma 9 iii) we have α ε α’. 
By ii) we have η ε α’ → η ε α ∨ η ≈ α. 
By ii) we have η ε α → η ε α’. 
Thus succ(α,α’). 
 
Theorem 9 Infinity 
Let Δ(n) = R(n,∅,(x,y)y’) ∈ V for n ∈ N. 
Let ω = (supx ∈ N)Δ(x) ∈ V. Then   
i) ∅ ε ω 
ii) (∀x ε ω)(x’ ε ω) 
 
Proof 
Note that α ε ω ↔ (∃x ε ω)(α ≈ x) ↔ (∃x ∈ −ω)(α ≈ ∼ω(x)) ↔ (∃x ∈ N)(α ≈ Δ(x)) and  
(∀x ε ω)F(x) ↔ (∀x ∈ −ω)F(∼ω(x)) ↔ (∀x ∈ N)F(Δ(x)) 
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i) We have Δ(0) = R(0,∅,(x,y)y’) = ∅. So Δ(0) ≈ ∅. So ∅ ε ω. 
ii) Let α ε ω. Hence α ≈ Δ(n) for some n ∈ N. Then α’ = (Δ(n))’. 
Δ(s(n)) = R(s(n),∅,(x,y)y’) = (x,y)y’(n,R(n,∅,(x,y)y’)) = (x,y)y’(n,Δ(n)) = (Δ(n))’. 
So α’ ≈ Δ(s(n)) for some s(n) ∈ N.  
Hence α’ ε ω. Hence (∀x ε ω)(x’ ε ω). 
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Conclusion 
 
Theorem 
The axioms of CZF are valid in V = (V,≈,ε). 
 
Proof 
Chapter 4 proves that the axioms of intuitionistic logic are valid in type theory. Theorems 1 – 
9 in Chapter 7 prove the axioms of Set induction, Extensionality, Restricted quantification, 
Pairing, Union, Restricted separation, Strong collection, Subset collection and Infinity. 
 
We have now shown that V is a model for CZF, i.e. that there is an interpretation of CZF in 
type theory. This gives us what we were searching for: a constructive justification of CZF. 
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