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Abstract

With the massive advances in computer technology over the last few decades,
digital sampled data processing is everywhere in the technological world surround-
ing us. The aim of the �rst two chapters of this report is to provide a concise
review of some of the theoretical background to the applied mathematics used in
this context. The most common integral transforms are introduced in a way that
emphasizes their interrelations. With the aid of some basics of distribution theory,
a simple form of the Poisson summation formula and subsequently the Whittaker-
Shannon sampling theorem are derived.

The third and �nishing chapter constitutes a brief introduction to the so called
�lifting technique�, which � somewhat simpli�ed � takes on the task of provid-
ing time-invariant representations of innate periodically time-variant sampled-data
systems and thus making them accessible to H2- and H∞- control.
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CHAPTER 1

Fourier Transforms and Distributions

1. Introduction

This report begins with a short review of a few of the most important properties
of the continuous time Fourier transform, central to all theoretical treatment of
signal processing. The Fourier transform is presented in a form often encountered
in this branch of applied mathematics, see Subsection �variations� for details.

Also fundamental is the notion of impulses and their e�ect on mathematically
described systems. Much to the aim of providing an acceptable conceptual founda-
tion to these phenomena, the theory of distributions was developed in the middle
of the twentieth century. In the second half of the �rst chapter, we will recall some
of the basics of this theory.

2. The Continuous Time Fourier Transform

2.1. Intuitive Derivation and Formal De�nition.

2.1.1. The Fourier Series. In elementary Fourier analysis we learn that a pe-
riodic function de�ned on the real line and subject to certain assumptions on con-
tinuity � the nature of these assumptions depending on the level of re�nement of
the Fourier theorem involved � is equal to a convergent in�nite series of simple sine
and cosine functions. The concept is based on the orthogonality of the sine and
cosine functions as these, formally, are made to constitute an in�nite-dimensional
basis for a vector representation. For a �su�ciently nice� function f(t), periodic
with period T , we thus have

f(t) =
a0

2
+

∞∑
k=1

(
ak cos

2πkt
T

+ bk sin
2πkt
T

)
, (1.1)

with the Fourier coe�cients

ak =
2
T

∫ T/2

−T/2

f(t) cos
2πkt
T

(k = 0, 1, 2, . . .) (1.2)

bk =
2
T

∫ T/2

−T/2

f(t) sin
2πkt
T

(k = 1, 2, 3, . . .). (1.3)

Equivalent to these expressions, but more compact in writing, is the complex form
for the Fourier series

f(t) =
∞∑

k=−∞

cke
2πikt/T , (1.4)

where the coe�cients are

ck =
1
T

∫ T/2

−T/2

f(t)e−2πikt/T dt. (1.5)
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8 1. FOURIER TRANSFORMS AND DISTRIBUTIONS

2.1.2. Intuitive approach for non-periodic functions. Suppose now that we are
presented with a function f(t), which is not periodic. In search for an expansion
analogue to equation (1.4), we explore the idea of restricting f(t) to the interval
−T/2 ≤ t ≤ T/2 and extending this restricted version of the function periodically
with period T . The subsequent step of this strategy will then be to let T approach
in�nity.

Let us de�ne ωk := k/T and f̂(ωk) := Tck. We substitute in equation (1.4)
and arrive at

f(t) =
1
T

∞∑
k=−∞

f̂(ωk)e2πiωkt =
∞∑

k=−∞

f̂(ωk)e2πiωkt(ωk − ωk−1). (1.6)

The intuitive part of the argument now follows. Namely, if we let T approach∞ in
equation (1.6), the grid of points {ωk} becomes in�nitely �ne and the right-hand
side of equation (1.6) seems to approach an integral expression. That is, taking the
limit we have

f(t) ∼
∫ ∞

−∞
f̂(ω)e2πiωtdt, (1.7)

which could be thought of as a generalized summation of sinusoids over a continuum
of frequencies. Since we have not veri�ed the operation, we use the sign ∼ in stead
of =. For the inverse of equation (1.7) we by equation (1.5) have

f̂(ω) ∼
∫ ∞

−∞
f(t)e−2πiωtdt. (1.8)

2.1.3. The Fourier transform de�ned. With the the preceding passage as a
motivation, we introduce:

Definition 1.1. For a function f(t) de�ned ∀t ∈ R we de�ne the Fourier

transform of f(t), denoted f̂(ω) = F [f(t)](ω) and the Inverse Fourier transform,

denoted f(t) = F−1[f̂(ω)](t) as respectively

f̂(ω) =
∫

R
f(t)e−2πiωtdt (1.9)

f(t) =
∫

R
f̂(ω)e2πiωtdω (1.10)

We will later on �nd it useful to refer to the following basic observation, where
L1 denotes the space of Lebesgue integrable functions on the real line.

Theorem 1.1. If |f(t)| ∈ L1, then a uniformly bounded Fourier transform of
f(t) exists.

Proof. We have for f̂(ω) = F [f(t)] and for some M < ∞ by assumption and
De�nition 1.1

|f̂(ω)| =
∣∣∣∣∫

R
f(t)e−2πiωtdt

∣∣∣∣ ≤ ∫
R
|f(t)e−2πiωt|dt =

∫
R
|f(t)|dt < M (1.11)

�

Remark 1.1. With the de�nition of the inverse Fourier transform and a proof
analogue to that of Theorem 1.1, we can conclude that for every g(ω) with |g(ω)| ∈
L1, there is a bounded function F−1[g(ω)](t) possessing g(ω) as its Fourier trans-
form.



2. THE CONTINUOUS TIME FOURIER TRANSFORM 9

2.1.4. Variations of the Fourier Transform. The forms of the Fourier transform
and its inverse presented in De�nition 1.1 are the ones we will use throughout this
report. They are common in applications related to signal processing, which is one
of our principal topics.

However, other forms are used in other contexts. What di�ers is mainly the
location of the factor 1/(2π) and sometimes the minus sign. In pure mathematics,
the Fourier transform and its inversion are thus often de�ned as

f̂(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt (1.12)

f(t) =
1√
2π

∫ ∞

−∞
f̂(ω)eiωtdω. (1.13)

Sometimes the minus sign is interchanged, that is put in front of the exponent in
the inverse transform instead in front of the exponent of the transform. In many
engineering applications the so called �non-unitary� form is used:

f̂(ω) =
∫ ∞

−∞
f(t)e−iωtdt (1.14)

f(t) =
1
2π

∫ ∞

−∞
f̂(ω)eiωtdω (1.15)

Transition between the forms can easily be achieved with substitutions.

2.2. A few properties of the Fourier Transform.

2.2.1. Shifting Theorems for the Fourier Transform. The following two theo-
rems often facilitate calculations of transforms. We will later also use them for
further developments.

Theorem 1.2. If |f(t)| ∈ L1 and there is a Fourier transform F [f(t)] = f̂(ω),
then for any −∞ < a < ∞ there is a Fourier transform of the shifted function
f(t− a) given as

F [f(t− a)] = f̂(ω)e−2πiωa (1.16)

Proof. Since a is �nite, |f(t)| ∈ L1 ⇒ |f(t − a)| ∈ L1 and the existence of
F [f(t)] by Theorem 1.1 implies the existence of F [f(t− a)]. We thus have

F [f(t− a)] =
∫

R
f(t− a)e−2πiωtdt (1.17)

Substituting variables x = t− a⇒ dx = dt gives

F [f(t− a)] =
∫

R
f(x)e−2πiω(x+a)dx

= e−2πiωa

∫
R
f(x)e−2πiωxdx (1.18)

= f̂(ω)e−2πiωa

�

Theorem 1.3. With f(t), f̂(ω) and a as in Theorem 1.2, the following Fourier
transform exists

F [f(t)e2πiat] = f̂(ω − a) (1.19)
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Proof. Since |f(t)e2πiat| = |f(t)| and |f(t)| ∈ L1, the existence is proved. Thus

F [f(t)e2πiat] =
∫

R
f(t)e2πiate−2πiωtdt

=
∫

R
f(t)e−2πi(ω−a)tdt (1.20)

= f̂(ω − a)

�
2.2.2. Derivative Theorems for the Fourier Transform. We here present three

theorems describing important aspects of the Fourier transform.

Theorem 1.4 (Derivatives of the Fourier Transform). Let f(t) be a function

such that |tnf(t)| ∈ L1 and F [f(t)] = f̂(ω). Then all derivatives up to and including

the n:th of f̂(ω) exist and are given by

dnf̂(ω)
dωn

= (−2πi)nF [tnf(t)] (1.21)

Proof. Let

h(t, ω) = f(t)e−2πiωt. (1.22)

We note that the partial derivatives of h(t, ω) with regard to ω exist and are given
by

∂nh

∂ωn
= (−2πi)ntnf(t)e−2πiωt (1.23)

The assumption |tnf(t)| ∈ L1 implies that h(t, ω) ∈ L1 and that |∂nh/∂ωn| ≤
|(2πt)nf(t)| ∈ L1. The theory of integration of product measures thereby allows us
to take the partial derivative under the integral sign in the following expression

df̂(ω)
dω

=
∫

R

∂h

∂ω
dt = −2πi

∫
R
tf(t)e−2πiωtdt (1.24)

By repeated application we have the desired result of equation (1.21). �

Lemma 1.1. If |f(t)| ∈ L1 and |f ′(t)| ∈ L1, then

lim
t→∞

f(t) = lim
t→−∞

f(t) = 0 (1.25)

Proof. The assumption |f ′(t)| ∈ L1 implies that

∀ε > 0, ∃X1 ∈ R :
∫ ∞

X1

|f ′(t)|dt < ε. (1.26)

Thus, we have

lim
X→∞

|f(X)− f(X1)| =
∣∣∣∣∫ ∞

X1

f ′(t)dt
∣∣∣∣ ≤ ∫ ∞

X1

|f ′(t)|dt < ε. (1.27)

That is, f(t) approaches a de�nite limit as t → ∞. However, since by assumption
|f(t)| ∈ L1 we have

∀ε > 0, ∃X2 ∈ R :
∫ ∞

X2

|f(t)|dt < ε, (1.28)

this de�nite limit must be zero. �

Theorem 1.5 (Fourier Transform of Derivatives). Let f̂(ω) be the Fourier
transform of a function f(t), such that |f (m)(t)| ∈ L1, ∀m ∈ {0, 1, . . . , n}. Then
the Fourier transform of f (n)(t) exists and

F [f (n)(t)] = (2πiω)nf̂(ω) (1.29)
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Proof. Since |f ′(t)| ∈ L1, it possesses a Fourier transform

F [f ′(t)] =
∫

R
f ′(t)e−2πiωtdt (1.30)

We integrate by parts, with a limit expression for the generalized integral

F [f ′(t)] = lim
X→∞

[
f(t)e−2πiωt

]X
−X

+ 2πiω
∫

R
f(t)e−2πiωtdt (1.31)

However, by assumption |f(t)| ∈ L1, and |f ′(t)| ∈ L1 which by Lemma 1.1 implies
limX→∞ f(X) = limX→∞ f(−X) = 0. This means the �rst term in the right-hand
expression of equation (1.31) vanishes, and we have

F [f ′(t)] = 2πiω
∫

R
f(t)e−2πiωtdt (1.32)

Repeated application renders equation (1.29) �

Theorem 1.6 (Behavior at in�nity). If |f(t)| ∈ L1, then (in the sense of the
absolute value norm)

lim
ω→∞

f̂(ω) = 0 (1.33)

Proof. |f(t)| ∈ L1 motivates the existence of

f̂(ω) =
∫

R
f(t)e−2πiωtdt (1.34)

We use Euler's identity and take the limits

lim
ω→∞

f̂(ω) = lim
ω→∞

[∫
R
f(t) cos(2πωt)dt− i

∫
R
f(t) sin(2πωt)dt

]
(1.35)

Now, recall from elementary Fourier analysis theory the Riemann-Lebesgue lemma,
by which both terms on the right of equation (1.35) go to zero. �

Combining Theorem 1.5 and 1.6 we observe

lim
ω→∞

(2πiω)nf̂(ω) = 0. (1.36)

Remark 1.2. With completely analogue proofs, dual Theorems to 1.4, 1.5 and
1.6 can be formulated for the inverse Fourier transform. These latter theorems
would then be entitled: Derivatives of the inverse Fourier transform, Inverse fourier
Transform of derivatives and Behavior at in�nity for the inverse Fourier transform.

2.3. Convolution and Fourier Transforms.

2.3.1. Convolution of Two Functions. The convolution operation is frequent in
many applications, signal-processing included. We review the de�nition and some
properties.

Definition 1.2. The convolution of two functions is f(t) and g(t) is de�ned
as

f(t) ∗ g(t) :=
∫

R
f(x)g(t− x)dx. (1.37)

Theorem 1.7. Convolution is commutative, that is

f(t) ∗ g(t) = g(t) ∗ f(t) (1.38)

Proof. The substitution t− x = y ⇔ dx = −dy gives

f(t) ∗ g(t) =
∫

R
f(x)g(t− x)dx =

∫
R
g(y)f(t− y)dy = g(t) ∗ f(t) (1.39)

�
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Theorem 1.8. Convolution is associative, that is

f(t) ∗ [g(t) ∗ h(t)] = [f(t) ∗ g(t)] ∗ h(t) (1.40)

Proof. It's a well known consequence of the Fubini theorem concerning product
measures in integration theory (see for example [3], [5] or [15]), that we can change
the order of integration in double integral expressions, so that∫

R
f(x)

∫
R
g(y)h(t− y − x)dydx =

∫
R
g(y)

∫
R
f(x)h(t− x− y)dxdy (1.41)

�

Theorem 1.9. Convolution is distributive with respect to addition, that is

f(t) ∗ [g(t) + h(t)] = f(t) ∗ g(t) + f(t) ∗ h(t). (1.42)

Proof. By the linearity of integrals, we have∫
R
f(t− x)[g(x) + h(x)]dx =

∫
R
f(t− x)g(x)dx+

∫
R
f(t− x)h(x)dx. (1.43)

�
2.3.2. The Convolution and Product Theorems. The following two theorems

are of fundamental importance.

Theorem 1.10 (Convolution Theorem). Let f(t) and ĝ(ω) be Lebesgue-integrable
functions on the real line, with F [f(t)](ω) = f̂(ω) and F−1[ĝ(ω)](t) = g(t). Then

F [f(t) ∗ g(t)](ω) = f̂(ω)ĝ(ω). (1.44)

Proof. We �rst note that by Theorem 1.1 f̂(ω) and g(t) are sure to exist and
since by the same token g(t) is bounded, f(t)∗g(t) ∈ L1 and F [f(t)∗g(t)](ω) exists.
Also by Theorem 1.1 f̂(ω) is bounded, so f̂(ω)ĝ(ω) ∈ L1.

Now, by virtue of Theorem 1.2 we can write

F [g(t− x)](ω) = ĝ(ω)e−2πiωx (1.45)

and by De�nition 1.1

g(t− x) =
∫

R
ĝ(ω)e−2πiωxe2πiωtdω. (1.46)

We substitute equation (1.46) into the expression of the convolution

f(t) ∗ g(t) =
∫

R
f(x)g(t− x)dx (1.47)

which returns

f(t) ∗ g(t) =
∫

R
f(x)

∫
R
ĝ(ω)e2πiω(t−x)dωdx. (1.48)

We interchange the order of integration, move around the factors and obtain by
De�nition 1.1

f(t) ∗ g(t) =
∫

R
ĝ(ω)

∫
R
f(x)e−2πiωxdxe2πiωtdω

=
∫

R
ĝ(ω)f̂(ω)e2πiωtdω

= F−1[ĝ(ω)f̂(ω)](t) (1.49)

and

F [f(t) ∗ g(t)](ω) = ĝ(ω)f̂(ω) = f̂(ω)ĝ(ω). (1.50)

�



3. A FEW ELEMENTS OF DISTRIBUTION THEORY 13

Theorem 1.11 (Product Theorem). Let f̂(ω) and g(t) be Lebesgue-integrable

functions on the real line, with F−1[f̂(ω)](t) = f(t) and F [g(t)](ω) = ĝ(ω). Then

F [f(t)g(t)](ω) = f̂(ω) ∗ ĝ(ω). (1.51)

Proof. By Theorem 1.1 f(t) exists and is bounded and thereby f(t)g(t) ∈ L1,
which in turn guarantees the existence of the left-hand side of equation (1.51). Thus

F [f(t)g(t)](ω) =
∫

R
f(t)g(t)e−2πiωtdt. (1.52)

We use De�nition 1.1 of the inverse Fourier transform to express the right-hand
side of equation (1.53) as

F [f(t)g(t)](ω) =
∫

R

∫
R
f̂(u)e2πiutdug(t)e−2πiωtdt. (1.53)

By Fubini's theorem we can interchange the order of integration, whereafter we
again apply De�nition 1.1 and then Theorem 1.3 to obtain

F [f(t)g(t)](ω) =
∫

R
f̂(u)

∫
R
g(t)e2πiute−2πiωtdtdu

=
∫

R
f̂(u)ĝ(ω − u)du (1.54)

= f̂(ω) ∗ ĝ(ω)

�

3. A Few Elements of Distribution Theory

3.1. Introductory Notes. The following section relies for the most part on
the presentation made by Weaver in [20], however with notation and terminology
sometimes brought back to conventional. This means, a stripped bare-version of
basic distribution theory, with the main purpose of providing acceptable grounds
for the subsequent treatment of phenomena such as the Dirac delta and comb
functionals, their Fourier transformations and convolutions of some distributions.

Though essentially consistent with more complete and far more detailed cov-
erings � such as found in for example [23] � for reasons of brevity, much of the
standard vocabulary has been dropped or simpli�ed. Only tempered distributions
are considered. This means that only the spaces S and S ′ (following standard
notation) are mentioned, not D and D′.

Furthermore, although many of the results are valid for operators on multidi-
mensional variables, for simplicity the variable x will in this section be presumed
to be single-dimensional. If nothing else is mentioned, limits are considered to be
in the sense of the absolute value norm.

3.2. Spaces of Functions and Functionals. We recall the following de�ni-
tion, directly quoted from [23].

Definition 1.3. A functional is a rule that assigns a number to every member
of a certain set, or space of functions.

In other words, a functional is a mapping from the space of functions in ques-
tion, to a set, or space of numbers. The space of functions will in this report be
some set of functions called testing functions. The space of numbers will be C.

For a function φ belonging to some space of testing functions E and a functional
t, we designate the assigned complex number 〈t, φ〉. If for any φ1, φ2 ∈ E and any
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α ∈ C we have

〈t, φ1 + φ2〉 = 〈t, φ1〉+ 〈t, φ2〉
〈t, αφ1〉 = α〈t, φ1〉, (1.55)

then the functional is said to be linear on E . If for any sequence of testing functions
{φν}∞ν=1 that converges in E to φ, the sequence of numbers {〈t, φν〉}∞ν=1 converges
to the number 〈t, φ〉, then t is said to be continuous on E .

3.2.1. The Schwartz Space.

Definition 1.4. The Schwartz Space, denoted S, is the linear space of all
complex-valued functions φ that satisfy:

(1) φ is in�nitely smooth; that is, ∀n ∈ Z+ and x ∈ R ∃φ(n)(x).
(2) ∀n ∈ Z, limx→∞ xnφ(x) = 0

The functions φ of S are called testing functions of rapid descent. It is clear
that if

φ(x) ∈ S then ∀n,m ∈ Z+, x
mφ(n)(x) ∈ S. (1.56)

Example 1.1. The function φ(x) = e−|x| complies with the second condition
of De�nition 1.4, but not with the �rst � so it is not in S.

3.2.2. Equivalent condition. An alternative to the conditions in De�nition 1.4
is possible, namely: ∀φ(x) ∈ S and ∀m, k ∈ Z+ there are constants Cmk such that
the following set of inequalities are satis�ed

|xmφ(k)(x)| ≤ Cmk −∞ < x <∞ (1.57)

3.2.3. The space S ′ of Distributions of Slow Growth. A distribution is a con-
tinuous linear functional on some space of testing functions. A distribution t(x)
that is de�ned ∀φ ∈ S is called a tempered distribution.

Definition 1.5. The space of all tempered distributions is denoted S ′ and is
also called The space of distributions of slow growth.

3.3. The Inner Product.

3.3.1. The Integral Inner Product of Functions. If f(x) is a function in the
ordinary, binary sense of the word, and if f(x) is locally integrable, that is integrable
on every compact subset of R, then we can de�ne a distribution f as

〈f, φ〉 = 〈f(x), φ(x)〉 :=
∫ ∞

−∞
f(x)φ(x)dx, (1.58)

provided that φ belongs to a space of testing functions for which this integral
converges.

The above integral is well known as the inner product of functions and the

associated norm
√∫

R f
2(x)dx is very easily shown to comply with the standard

requirements regarding commutativity, distributivity, associativity, etcetera.
We recall two supplementary properties of the integral inner product. Provided

〈f, φ〉 exists, we have
Translation of One Function.

〈f(x− a), φ(x)〉 = 〈f(x), φ(x+ a)〉 (1.59)

This is shown by substituting y = x − a and then changing the dummy variable
back from y to x, that is∫ ∞

−∞
f(x− a)φ(x)dx =

∫ ∞

−∞
f(y)φ(y + a)dy =

∫ ∞

−∞
f(x)φ(x+ a)dx
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Scale Change.

〈f(ax), φ(x)〉 =
1
|a|

〈
f(x), φ

(x
a

)〉
(1.60)

In this case we substitute y = ax⇒ dx = dy/a. When a > 0 this leads to∫ ∞

−∞
f(ax)φ(x)dx =

1
a

∫ ∞

−∞
f(y)φ

(y
a

)
dy (1.61)

When a < 0 there is also a change of integration limits∫ ∞

−∞
f(ax)φ(x)dx =

1
a

∫ −∞

∞
f(y)φ

(y
a

)
dy = −1

a

∫ ∞

−∞
f(y)φ

(y
a

)
dy (1.62)

Equations (1.61) and (1.62) combined, with variable switched from y to x yields
the desired result of (1.60).

3.3.2. Functions of Slow Growth. With function as before, a function f of a
variable x is said to be of slow growth, if it is locally integrable and increase at
in�nity slower than some power of x, or equivalently

n ∈ Z : lim
x→∞

x−nf(x) = 0 (1.63)

For the sake of facilitating the present exposition only and with the concept of
function taken as above, we now introduce a non-standard linear subspace:

Definition 1.6. We denote by G the space of all functions of slow growth.

The space G is a subset of S ′. That is

∀f ∈ G, ∀φ ∈ S we have

∣∣∣∣∫ ∞

−∞
f(x)φ(x)dx

∣∣∣∣ <∞ (1.64)

This is readily shown by �rst noting that for any arbitrary X ∈ R+∣∣∣∣∫ ∞

−∞
f(x)φ(x)dx

∣∣∣∣ ≤
∫ ∞

−∞
|f(x)φ(x)|dx

=
∫ −X

−∞
|f(x)φ(x)|dx (1.65)

+
∫ X

−X

|f(x)φ(x)|dx (1.66)

+
∫ ∞

X

|f(x)φ(x)|dx. (1.67)

Starting with the term (1.66), we can by setting m = k = 0 in (1.57) immediately
conclude that φ(x) must be bounded everywhere on R and on [−X,X] in particular.
Since f is locally integrable, we can therefore for every X, with respect to f and φ
�nd an M such that∫ X

−X

|f(x)φ(x)|dx <
∫ X

−X

M ′|f(x)|dx < M2 (1.68)

Continuing with (1.67) we can for any ε ∈ (0, 1) �nd an Xα such that for some
integer n

|f(x)||x|−n < ε ∀x > Xα (1.69)

and for any m ∈ Z we can �nd an Xβ such that

|φ(x)||x|m < ε ∀x > Xβ (1.70)

Now, choosing X = max{Xα, Xβ} and setting m = n+ 2 we have

|f(x)||φ(x)| < ε2x−2 (1.71)
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which gives us ∫ ∞

X

|f(x)φ(x)|dx ≤
∫ ∞

X

ε2

x2
dx =

ε2

X
< ε (1.72)

The argument is completely analogue for∫ −X

−∞
|f(x)φ(x)|dx < ε (1.73)

Combining (1.68), (1.72) and (1.73), we arrive at∫ ∞

−∞
|f(x)φ(x)|dx < M2 + 2ε (1.74)

That is, the inner product exists.

3.4. Tempered Distributions in General.

3.4.1. Distributions that are not Functions. The space G is indeed a proper
subset of S ′, since the latter also consists of operators that are not functions in the
sense of binary relations. The most important example is the following.

The Dirac Delta Distribution. δ(x) : S → C is by de�nition the mapping

∀φ(x) ∈ S, 〈δ(x), φ(x)〉 = φ(0) (1.75)

The Dirac delta δ(x), also known as the impulse function, may in fact be regarded
as the main raison d'être of distribution theory. It is an abstraction of great prac-
tical use in applied physics. In signal-processing it is central and most elementary
textbooks include attempts to more or less suggestively describe it in terms of
conventional mathematical vocabulary.

In this presentation, no such attempt will be made. We will con�ne ourselves
to a vague, verbal summary of what would inevitably be its conclusion. That is,
the Dirac delta is something which when graphically represented in the plane in
the manner of a function, would horizontally be situated at the origin, be of width
approaching zero in the �rst dimension, of hight approaching in�nity in the second
dimension and with a total area of one.

This description would in turn imply the following integral representation∫ ∞

−∞
δ(t)dt = lim

ε→0

∫ 0+ε

0−ε

δ(t)dt = 1 (1.76)

However, equation (1.76) is obviously not consistent with Lebesgue integral theory,
since the Lebesgue measure of limε→0(0− ε, 0 + ε) is zero. Consequently, the only
possible right-hand value of equation (1.76) would be zero, not one. In measure
theory, the Dirac delta therefore needs special treatment. This will not be covered
here. We merely conclude that we are not dealing with a function in an ordinary
sense.

Other examples of distributions that are not functions in a conventional sense,
can be found in for example probability theory. On the other hand, we have for
example:

The Null Distribution. N(x). This distribution can be equaled to a constant
zero function and belongs therefore to G ⊂ S ′. We de�ne the null distribution as

∀φ ∈ S 〈N(x), φ(x)〉 = 0 (1.77)

3.5. General Properties of Distributions. The concept of distributions
can in some respect be seen as a generalization of the concept of functions. For
non function distributions t(x) ∈ S ′\G we will subsequently apply several de�-
nitions aimed at modeling the behavior of 〈t(x), φ(x)〉 to that of 〈f(x), φ(x)〉 =∫∞
−∞ f(x)φ(x)dx, with f(x) ∈ G and φ ∈ S. We have for example, in accordance
with what is easily veri�ed for the integral inner product of two functions:
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Definition 1.7 (Product with Complex Number).

∀a ∈ C,∀t(x) ∈ S ′,∀φ(x) ∈ S we have

〈at(x), φ(x)〉 := 〈t(x), aφ(x)〉 = a〈t(x), φ(x)〉 (1.78)

With t(x), φ(x) as above, we by virtue of equations (1.59) and (1.60) also state:

Definition 1.8 (Translation of a Tempered Distribution).

〈t(x− a), φ(x)〉 := 〈t(x), φ(x+ a)〉 (1.79)

Example 1.2. For the delta distribution we have

〈δ(x− a), φ(x)〉 = 〈δ(x), φ(x+ a)〉 = φ(a) (1.80)

Equation (1.80) describes what is often referred to as the sifting property of the
delta distribution.

Definition 1.9 (Scale Change).

〈t(ax), φ(x)〉 :=
1
|a|

〈
t(x), φ

(x
a

)〉
(1.81)

Example 1.3. With a = −1 we have

〈t(−x), φ(x)〉 = 〈t(x), φ(−x)〉 (1.82)

Example 1.4. For the delta distribution, the interpretation is

〈δ(ax), φ(x)〉 =
1
|a|

〈
δ(x), φ

(x
a

)〉
=
φ(0)
|a|

(1.83)

When t(x) is in G and h(x) is a function such that h(x)t(x) ∈ G, it is by the
associativity of multiplication obvious that

〈h(x)t(x), φ(x)〉 =
∫ ∞

−∞
h(x)t(x)φ(x)dx = 〈h(x), t(x)φ(x)〉 (1.84)

This leads us to the following generalization for multiplication of a function h(x)
and a tempered distribution t(x) in general:

Definition 1.10 (Product of a Distribution and a Function).

∀h(x) such that ∀φ(x) ∈ S h(x)φ(x) ∈ S, we have ∀t(x) ∈ S ′

〈t(x)h(x), φ(x)〉 := 〈t(x), h(x)φ(x)〉 (1.85)

By the De�nitions 1.4 and 1.5 it is easily veri�ed that if the testing function
φ(x) belongs S, that is it is of rapid descent, it is su�cient that a function h(x) is of
slow growth � that belongs to G � and is in�nitely di�erentiable, in order to ensure
that the product h(x)φ(x) belongs to the set S. This is however not a necessary
condition, but we will not pursue this matter further. It should be noted, that the
product between two arbitrary distributions is not de�ned.

3.6. The Comb. The Dirac Comb Distribution � also known as the Shah
Distribution, because of its resemblance in shape with the Cyrillic letter Shah, �
is de�ned as

∆h(x) :=
∞∑

k=−∞

δ(x− kh) (1.86)

for some given period h, with δ as in equation (1.75).
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In accordance with equation (1.80) and the linearity of distributions, this gives
for any φ ∈ S

〈∆h(x), φ(x)〉 = . . .+ 〈δ(x+ 2hx), φ(x)〉+ 〈δ(x+ hx), φ(x)〉
+〈δ(x), φ(x)〉+ 〈δ(x− hx), φ(x)〉
+〈δ(x− 2hx), φ(x)〉+ . . .

= . . .+ φ(−2kh) + φ(−kh) + φ(0)
+φ(kh) + φ(2kh) + . . .

=
∞∑

k=−∞

φ(kh) (1.87)

That is, an in�nite series of evaluations of the function φ(x), taken at points on
the axis of the variable x, with an intermediate distance of h. This leads to the
interpretation of the Dirac comb as a series of Dirac delta distributions, spaced h
apart. If we accept the graphic representation of the delta distribution as a vertical
upward arrow on the �rst axis, we can depict the Dirac comb as in Figure 1.1.

Figure 1.1 (The Dirac Comb).

-5h -4h -3h -2h 0-h h 2h 3h

In accordance with Example 1.2 and De�nition 1.10, we can derive as follows:

Example 1.5. For the simple product of a Dirac comb distribution and a suf-
�ciently nice function f(t), we have

〈f(x)∆h(x), φ(x)〉 = 〈f(x)
∞∑

k=−∞

δ(x− kh), φ(x)〉

=

〈 ∞∑
k=−∞

δ(x− kh), f(x)φ(x)

〉

=
∞∑

k=−∞

f(kh)φ(kh)

=

〈 ∞∑
k=−∞

f(kh)δ(x− kh), φ(x)

〉
. (1.88)

That is,

f(x)∆h(x) =
∞∑

k=−∞

f(kh)δ(x− kh). (1.89)

3.6.1. Convergence issues. Nothing has so far been said on the convergence of
the series in equations (1.87) and (1.89). At this point, questions about the validity
of these expressions would therefore be justi�ed. However, the actual summation
of these series will never be an issue in this report. Indeed � as will be discussed
further in Subsection 2.1 � in those applications that are of interest here, the very
notion of in�nite series in this context is something of an abstraction. To conclude,
we view these series and other similar as formal.
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3.7. Fourier Transform of Distributions. We here introduce a de�nition
for the Fourier transform of a distribution. Among other things, this will make it
possible to consider Fourier transforms of the Dirac delta and comb distributions,
which will be of importance later on.

3.7.1. Variable notation. In the preceding subsections we used a general x for
the variable. However, in accordance with earlier considerations of continuous trans-
forms, we from here on switch back to t and ω in the time and frequency domain
respectively.

3.7.2. De�nition and General Considerations. We start out with a closer look
at the elements of the set S from De�nition 1.4. By the de�nition of S, we have

∀φ(t) ∈ S, |tmφ(n)(t)| ∈ L1 ∀m,n ∈ Z+. (1.90)

By Theorem 1.1, this implies that there exists a Fourier transform of φ(t) which

we, as usual, denote φ̂(ω). By equation (1.90) and Theorem 1.4, φ̂(ω) possesses all
derivatives and from the observation in equation (1.36) we conclude that φ̂(ω) is

of rapid descent. Taken together, we thus have φ̂(ω) ∈ S. In line with Remarks
1.1 and 1.2, the same reasoning is possible in the direction of the inverse Fourier
transform. All in all, we note

Theorem 1.12. The set S is closed under F and F−1.

Theorem 1.12 and the obvious equivalence [φ̂(ω) ∈ S] ⇔ [φ̂(−ω) ∈ S] assure
the validity for all f(t) ∈ S ′ of the following

Definition 1.11. For any testing function φ(t) ∈ S with Fourier transform

φ̂(ω), we de�ne the Fourier transform f̂(ω) of a tempered distribution f(t) ∈ S ′ by
the equality

〈f̂(ω), φ̂(−ω)〉 = 〈f(t), φ(t)〉 (1.91)

Making use of previous de�nitions and the possibility to exchange integration
order in double integrals given by Fubini's theorem in the theory of product mea-
sures (see for example [3], [5] or [15]), we have for the special case when f(t) is a
function in the set G ⊂ S ′ of De�nition 1.6

〈f(t), φ(t)〉 =
∫

R
f(t)φ(t)dt (1.92)

by De�nition 1.1

=
∫

R
f(t)

∫
R
φ̂(ω)e2πiωtdωdt

by Fubini's theorem

=
∫

R

∫
R
f(t)e2πiωtdtφ̂(ω)dω

(1.93)

substituting −x = ω

=
∫

R

∫
R
f(t)e−2πixtdtφ̂(−x)dx

=
∫

R

∫
R
f(t)e−2πiωtdtφ̂(−ω)dω

by De�nition 1.1

=
∫

R
f̂(ω)φ̂(−ω)dω

= 〈f̂(ω), φ̂(−ω)〉 (1.94)

The De�nition 1.11 is thus consistent with the integral inner product of functions.
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3.7.3. Fourier Transform of the Dirac Delta. We now turn to a practical appli-
cation of De�nition 1.11, as we determine the Fourier transform of the Dirac delta
functional. Recall that by De�nition 1.75 we have

〈δ(t), φ(t)〉 = φ(0) (1.95)

For F [δ(t)](ω) = δ̂(ω) we thus by De�nition 1.11 have

〈δ̂(ω), φ̂(−ω)〉 = φ(0) (1.96)

By De�nition 1.1 of the inverse Fourier transform then

φ(0) =
∫

R
φ̂(ω)e2πiω·0dω =

∫
R
φ̂(ω)dω (1.97)

We substitute −x = ω

φ(0) =
∫

R
φ̂(−x)dx =

∫
R
φ̂(−ω)dω (1.98)

Since φ̂(−ω) ∈ S by Theorem 1.12 we can interpret this as∫
R
φ̂(−ω)dω =

∫
R

1 · φ̂(−ω)dω = 〈1, φ̂(−ω)〉 (1.99)

The conclusion is that

〈δ(t), φ(t)〉 = φ(0) = 〈1, φ̂(−ω)〉 (1.100)

and by De�nition 1.11

F [δ(t)](ω) = δ̂(ω) = 1. (1.101)

Since we by the de�nition of the inverse Fourier transform in equation (1.1)
and by Theorem 1.12 have

F [φ̂(−ω)] =
∫

R
φ̂(−ω)e−2πiωtdt =

∫
R
φ̂(ω)e2πiωtdt = φ(t), (1.102)

equation (1.100) also implies
F [1](ω) = δ(ω) (1.103)

3.7.4. Shifting Theorems � Distributions. With the aid of De�nition 1.11 many
of the properties of Fourier transforms of functions can be generalized to Fourier
transforms of the larger class of tempered distributions. We here give but two
examples.

Theorem 1.13. If f(t) is a tempered distribution with the Fourier transform

f̂(ω), then for any −∞ < a < ∞ there is a Fourier transform of the shifted
distribution f(t− a) given as

F [f(t− a)] = f̂(ω)e−2πiωa (1.104)

Proof. From De�nition 1.8 we have

〈f(t− a), φ(t)〉 := 〈f(t), φ(t+ a)〉 (1.105)

Since Theorem 1.2 gives

F [φ(t+ a)] = φ̂(ω)e2πiωa, (1.106)

the Fourier transformation of both sides of equation (1.105) by De�nition 1.11 yields

〈F [f(t− a)], φ̂(−ω)〉 = 〈f̂(ω), φ̂(−ω)e−2πiωa〉. (1.107)

However, for the right-hand side of equation (1.107) we by De�nition 1.10 have the
equality

〈f̂(ω), φ̂(−ω)e−2πiωa〉 = 〈f̂(ω)e−2πiωa, φ̂(−ω)〉 (1.108)

and thus
〈F [f(t− a), φ̂(−ω)〉 = 〈f̂(ω)e−2πiωa, φ̂(−ω)〉 (1.109)
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from which the desired result is obvious. �

Example 1.6. By equation (1.101) and Theorem 1.13 we have

F [δ(t− a)] = e−2πiωa (1.110)

Example 1.7. Example 1.6 together with the de�nition of the Dirac comb in
equation (1.86), followed by a simple substitution yields

F [∆h(t)](ω) =
∞∑

k=−∞

e−2πiωkh =
∞∑

k=−∞

e2πiωkh (1.111)

Theorem 1.14. If f(t) is a tempered distribution with the Fourier transform

f̂(ω), then for any −∞ < a <∞ the Fourier transform of f(t)e2πiat is given by

F [f(t)e2πiat] = f̂(ω − a). (1.112)

Proof. We again refer to De�nition 1.10 and conclude

〈f(t)e2πiat, φ(t)〉 = 〈f(t), φ(t)e2πiat〉. (1.113)

Since we by Theorem 1.3 have

F [φ(t)e2πiat] = φ̂(ω − a), (1.114)

the Fourier transformation of both sides of equation (1.113) renders

〈F [f(t)e2πat], φ(t)〉 = 〈f̂(ω), φ̂(−ω + a)〉 (1.115)

and by a movement of a along the real axis

〈f̂(ω), φ̂(−ω + a)〉 = 〈f̂(ω − a), φ̂(−ω)〉. (1.116)

Thus,

〈F [f(t)e2πat], φ(t)〉 = 〈f̂(ω − a), φ̂(−ω)〉, (1.117)

from which the result follows. �
3.7.5. The Poisson Summation Formula. Consider an arbitrary function of

rapid descent, de�ned on the real line ∀t ∈ R, f(t) ∈ S. We can construct a
periodic function, with the period T , in the following manner

PT f(t) =
∞∑

k=−∞

f(t− Tk). (1.118)

With f(t) ∈ S, PT f(t) must be at least piecewise continuous and a Fourier series
expansion is conceivable, that is

PT f(t) =
∞∑

k=−∞

cke
2πikt/T , (1.119)

with the coe�cients given by

ck =
1
T

∫ T
2

−T
2

PT f(t)e−2πikt/T dt. (1.120)

When substituting equation (1.118) in the above expression, we can move the sum-
mation sign outside the integral1. In the subsequent steps we substitute x = t−Tj,

1This is a rather easy consequence of measure and integration theory. See for example [15],
Th. 1.27, together with the thereafter following de�nition of the integral in Def. 1.30.
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switch back to the variable t and continue. That is

ck =
1
T

∞∑
j=−∞

∫ T
2

−T
2

f(t− Tj)e−2πikt/T dt (1.121)

=
1
T

∞∑
j=−∞

∫ Tj+ T
2

Tj−T
2

f(x)e−2πik(x+Tj)/T dx

=
1
T

∞∑
j=−∞

∫ Tj+ T
2

Tj−T
2

f(t)e−2πikt/T · e−2πikTj/T dt

=
1
T

∞∑
j=−∞

∫ Tj+ T
2

Tj−T
2

f(t)e−2πikt/T · 1dt

=
1
T

∫ ∞

−∞
f(t)e−2πikt/T dt

=
1
T
f̂

(
k

T

)
(1.122)

We substitute equation (1.122) in equation (1.119) and get

PT f(t) =
1
T

∞∑
k=−∞

f̂

(
k

T

)
e2πikt/T (1.123)

When evaluated at t = 0, this turns into

PT f(0) =
1
T

∞∑
k=−∞

f̂

(
k

T

)
· 1 =

1
T

∞∑
k=−∞

f̂

(
− k

T

)
(1.124)

However, by equation (1.87) and Theorem 1.12, equation (1.124) is equal to

PT f(0) =
1
T

〈 ∞∑
k=−∞

δ

(
ω − k

T

)
, f̂(−ω)

〉
. (1.125)

Not passing by the Fourier series, PT f(0) can also by the same token be interpreted
as

PT f(0) =
∞∑

k=−∞

f(Tk) =

〈 ∞∑
k=−∞

δ(t− Tk), f(t)

〉
(1.126)

Thus, by De�nition 1.7〈 ∞∑
k=−∞

δ(t− Tk), f(t)

〉
=

〈
1
T

∞∑
k=−∞

δ

(
ω − k

T

)
, f̂(−ω)

〉
(1.127)

which by De�nition 1.11 implies that

F

[ ∞∑
k=−∞

δ(t− Tk)

]
(ω) =

1
T

∞∑
k=−∞

δ

(
ω − k

T

)
. (1.128)

The Fourier transform of the Dirac Comb is thus another Dirac Comb.
The equality

∞∑
k=−∞

f(Tk) =
1
T

∞∑
k=−∞

f̂

(
k

T

)
(1.129)

is a form of the Poisson summation formula which, quoting [23]

is an identity that equates the sum of certain values of a function
to the sum of certain values of its Fourier transform.
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The formula is with other methods possible to prove for wider classes of functions
than those of rapid descent, however usually with some kind of limiting argument
(see [18]).

Note also that by equation (1.128) and Example 1.7 combined, we have the
alternative expression for a general Dirac Comb of spacing T

∆T (t) =
1
T

∞∑
k=−∞

e2πikt/T (1.130)

3.8. Convolution of Distributions. In line with the other operations dis-
cussed above, convolution can also be generalized to be valid for tempered distribu-
tions. Although slightly di�erent approaches and de�nitions are possible (see [23]
for details), we will stick to the subsequent.

Definition 1.12. With φ(t) an arbitrary function in S, the convolution of a
tempered distribution f(t) and a Lebesgue-integrable and in�nitely smooth function
h(t) is denoted f(t) ∗ h(t) and de�ned by the equality

〈f(t) ∗ h(t), φ(t)〉 = 〈f(t), h(−t) ∗ φ(t)〉. (1.131)

Theorem 1.15 (Product theorem of distributions). Let f(t) and h(t) be as in

De�nition 1.12 and with Fourier transforms f̂(ω) and ĥ(ω) respectively. Then the
Fourier transform of the simple product of f(t) and h(t) is equal to the convolution
product of their Fourier transforms, that is

F [f(t)h(t)](ω) = f̂(ω) ∗ ĥ(ω). (1.132)

Proof. Recall the simple product of f(t) and h(t) as de�ned in De�nition 1.10
for any φ(t) ∈ S:

〈f(t)h(t), φ(t)〉 = 〈f(t), h(t)φ(t)〉 (1.133)

We Fourier transform both sides in accordance with De�nition 1.11 and obtain

〈F [f(t)h(t)], φ̂(−ω)〉 = 〈f̂(ω),F [h(−t)φ(−t)]〉. (1.134)

However, by assumption, h(t) and φ(t) and their Fourier transforms clearly ful�l
the conditions for Theorem 1.11. Thereby we have

F [h(−t)φ(−t)] = ĥ(−ω) ∗ ĝ(−ω), (1.135)

which for equation (1.134) means

〈F [f(t)h(t)], φ̂(−ω)〉 = 〈f̂(ω), ĥ(−ω) ∗ φ̂(−ω)〉. (1.136)

Since φ̂(ω) is in S by Theorem 1.12, so must φ̂(−ω). We can therefore apply
De�nition 1.12 to the right-hand side of equation (1.136) and receive

〈F [f(t)h(t)], φ̂(−ω)〉 = 〈f̂(ω) ∗ ĥ(ω), φ̂(−ω)〉, (1.137)

which implies

F [f(t)h(t)] = f̂(ω) ∗ ĥ(ω). (1.138)

�

Theorem 1.16 (Convolution theorem of distributions). Let f(t), f̂(ω), h(t) and
ĥ(ω) be as in De�nition 1.12 and Theorem 1.15. Then the Fourier transform of the
convolution product of f(t) and h(t) is equal to the simple product of their Fourier
transforms, that is

F [f(t) ∗ h(t)](ω) = f̂(ω)ĥ(ω) (1.139)
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Proof. We again refer to Theorem 1.12 and conclude that φ̂(ω) as well as φ(−t)
belongs to the set S. It is easily veri�ed that by the restrictions on h(t), we also have
h(−t)∗φ(−t) ∈ S. Finally, we conclude that by Theorem 1.10 F [h(−t)∗φ(−t)](ω) =
f̂(−ω)φ̂(−ω). The ground is now cleared for the following progression: Once more
by De�nition 1.10 we have

〈f̂(ω)ĥ(ω), φ̂(ω)〉 = 〈f̂(ω), ĥ(ω)φ̂(ω)〉. (1.140)

However, we can by virtue of the preceding discussion and De�nition 1.11 conclude
that equation (1.140) is equal to

〈F−1[f̂(ω)ĥ(ω)], φ(−t)〉 = 〈f(t), h(−t) ∗ φ(−t)〉. (1.141)

We apply De�nition 1.12 to the right-hand side of equation (1.141), which returns

〈F−1[f̂(ω)ĥ(ω), φ(−t)〉 = 〈f(t) ∗ h(t), φ(−t)〉. (1.142)

Fourier transforming once more according to De�nition 1.11 yields

〈f̂(ω)ĥ(ω), φ̂(ω)〉 = 〈F [f(t) ∗ h(t)](ω), φ̂(ω)〉, (1.143)

from which the result is clear. �
For the special case when both f(t) and h(t) are Lebesgue-integrable functions,

it is readily veri�ed that De�nition 1.12 is consistent with De�nition 1.2 of convo-
lution for functions. By the use of the integral inner product and subsequently a
change of order of integration we thus have〈∫

R
f(x)h(t− x)dx, φ(t)

〉
=

〈
f(t),

∫
R
h(x− t)φ(x)dx

〉
∫

R

∫
R
f(x)h(t− x)dxφ(t)dt =

∫
R
f(t)

∫
R
h(x− t)φ(x)dxdt∫

R

∫
R
f(x)h(t− x)φ(t)dxdt =

∫
R

∫
R
f(t)h(x− t)φ(x)dtdx

=
∫

R

∫
R
f(x)h(t− x)φ(t)dxdt.

When h(t) is a function as in De�nition 1.12, we conclude from equation (1.101)
and Theorem 1.16 the following:

Example 1.8 (Convolution with the delta).

F [δ(t) ∗ h(t)](ω) = 1 · ĥ(ω) = ĥ(ω). (1.144)

Taking inverse Fourier transforms on both sides in equation (1.144) renders

δ(t) ∗ h(t) = h(t). (1.145)

The dirac delta functional is thus the unit element under convolution.
For the convolution of a shifted delta functional, we consider Theorem 1.13 and

Example 1.6 and conclude:

Example 1.9 (Convolution with the shifted delta).

F [δ(t− a) ∗ h(t)](ω) = 1 · e−2πiωaĥ(ω) = ĥ(ω)e−2πiωa (1.146)

By Theorem 1.2 inverse Fourier transformation on both sides this time returns

δ(t− a) ∗ h(t) = h(t− a). (1.147)

Equation (1.147) could be interpreted graphically. That is, convoluting a function
centered around the origin with a shifted Dirac delta, would be the same as relo-
cating the function to the position of the delta. An illustrated example is suggested
in Figure 1.
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0 0 a 0 a

f(t) d(t-a) f(t-a)

* =

Figure 1. Convolution with a shifted Dirac delta functional





CHAPTER 2

Sampling and Related Transforms

1. Introduction

By the elaborations of the �rst chapter, the tools are now at hand for a mathe-
matical approach to the procedure of registering a continuous time signal in discrete
time form � that is sampling � and then from the acquired series of registered values
retrieving the original continuous time signal. The conditions that have to be met
in order for this to be possible, are concisely stated in the famous sampling-theorem,
which is the main topic of the �rst half of this second chapter.

The needs of signal processing and system theory have led to the development
of, among other things, the Laplace-, the z- and the discrete Fourier transforms.
These three well-known transforms are introduced in the second part of the chapter.
We emphasize the interrelations between the three, and how they all can be derived
from the continuous Fourier transform.

2. Sampling

2.1. Retrieving ideally sampled signals.

2.1.1. The sampling interval. Let f(t) be a continuous function, representing
a continuous-time signal on (−∞,∞). Sampling f(t) at regular intervals of length
h produces a sequence {f(kh)}∞k=−∞. In fact, this is an abstraction. In real life,
the sampling process of course has to have a starting point, as well as an end. This
means the sequence {f(kh)} can not be in�nite. We will return to this topic in
Section 3.3. The notion of evaluating f at precise instances in time, is also an ab-
straction, denoted ideal sampling. In a physical context, some kind of quantization
is always necessary.

Disregarding these two disclaimers, we still note that if we want to correctly
retrieve f(t) on basis of this sequence of sampled values alone, it should be obvious
that we must impose some restriction as to the maximal length of the sampling
interval h in relation to the length of the period of f(t).

2.1.2. Confusing sinusoids. As a very elementary counterexample, consider the
two signals depicted in �g. (2.1). Setting h = 1 and sampling at integer values of
t would for both cos(2πt) and cos(4πt) produce the in�nite unit constant sequence
{. . . , 1, 1, 1, . . .}. In reconstructing a signal from the values of this sequence, we
would not know which one of the two (or indeed in�nitely many other signals) to
choose. Increasing the sampling frequency to h = 1/2 would still produce the unit
constant sequence for cos(4πt), but would for cos(2πt) result in the alternating
sequence {. . . , 1,−1, 1,−1, . . .}, indicating at least which one of the depicted two
signals we are dealing with.

2.1.3. Proper sampling. In the general context, if it is possible to correctly and
uniquely recreate an original signal f(t) from a sequence of sampled values, we say
that the signal has been properly sampled. The critical length of h in relation to
the period of f(t) turns out to be equivalent to the requirement that the Fourier
transform of f(t) vanishes outside a speci�ed interval, related to h. The latter
requirement is normally expressed as f(t) being band-limited with the bandwidth

27
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Figure 2.1 (Cosine of 2πt and 4πt, respectively).

0 0 . 5 1 1 . 5 2 2 . 5 3
- 1

0

1
c o s ( 2 π  t )
c o s ( 4 π  t )

of the interval in question. The relation between the bandwidth of f(t) and the
sampling interval h, as well as means to actually retrieve the original signal, are
provided in the following sampling theorem.

2.1.4. The Whittaker-Shannon sampling theorem.

Theorem 2.1. Let f(t) be a continuous function with the Fourier transform

f̂(ω). If f̂(ω) = 0 almost everywhere ∀ω /∈ [−1/(2h), 1/(2h)], then

f(t) =
∞∑

k=−∞

f(kh)
sin(π[t/h− k])
π[t/h− k]

(2.1)

We prove this result in a constructive manner. Also, we con�ne ourselves to the
special case, when f(t) complies with the restrictions imposed on h(x) in De�nition
1.10.

In relation to the sequence {f(kh)}∞k=−∞ � that is the sampled values of the
continuous-time function f , taken at instances . . .− 2h,−h, 0, h, . . . � we create the
functional

f̃h := f(t)∆h(t). (2.2)

From equation (1.89) we have f̃h =
∑∞

k=−∞ f(kh)δ(t − kh). It's obvious that f̃
depends on the values of f(t) at the sampling instances t = kh only, not on any

intermediate values of f(t). In fact, it's meaningful to fully identify f̃h with the
sampled sequence, that is

f(t)∆h(t) = {f(kh)}∞k=−∞. (2.3)

Bearing in mind that the Fourier transform of ∆h(t) is (1/h)∆1/h(ω), as was
established in Subsection 3.7.5, and applying the product Theorem 1.15, we take
the Fourier transform of f̃h = f(t)∆h(t) and acquire

F [f(t)∆h(t)] = (1/h)f̂(ω) ∗∆1/h(ω) (2.4)

Now, in line with equation (1.147) in Example 1.9, convolving a Fourier transform

f̂(ω) with a delta distribution located at, say the point h on the frequency axis,

renders a copy of the original f̂(ω) , centered at h. That is, f̂(ω)∗δ(ω−h) = f̂(ω−h).
Similarly, the convolution product of f̂(ω) and a Dirac comb distribution of spacing
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1/h, renders a series of copies of f̂(ω) distributed at locations ω = k/h, k ∈ Z. In
the case of equation (2.4) the amplitude of these copies is divided by h.

Among the possible methods to recover the original f(t), we now choose a
simple procedure. First, we de�ne P1/(2h)(ω) to be the pulse function of half-width
1/(2h), that is

P1/(2h)(ω) :=
{

1 − 1
2h ≤ ω ≤ 1

2h
0 otherwise

(2.5)

We then multiply the right-hand side of (2.4) with P1/(2h)(ω)h. A graphic inter-

pretation is suggested in Figure (2.2). Because of its limited band-width, f̂(ω) is
by this procedure safely returned. That is

f̂(ω) = [(1/h)f̂(ω) ∗∆1/h(ω)]P1/(2h)(ω)h

or, by the inverse Fourier transform and the product theorem

f(t) = F−1[(1/h)f̂(ω) ∗∆1/h(ω)] ∗ F−1[P1/(2h)(ω)]h (2.6)

However

F−1[P1/(2h)(ω)]h = h

∫
R
P1/(2h)(ω)e2πiωtdω

= h

∫ 1/(2h)

−1/(2h)

e2πiωtdω

=
h(e

π
h it − e−

π
h it)

2πit

=
h · sin

(
πt
h

)
πt

which, combined with (2.6) gives

f(t) = [f(t)∆h(t)] ∗
h · sin

(
πt
h

)
πt

=
∞∑

k=−∞

f(t)δ(t− kh) ∗
h · sin

(
πt
h

)
πt

=
∞∑

k=−∞

f(kh)
h · sin

(
π[t−kh]

h

)
π[t− kh]

and that is equal to (2.1).

Figure 2.2 (Fourier transform convolved and multiplied).

0 -2/h -1/h 0 1/h

1 /h f ∗1 /h1 /h f 

-1/h 1/h

P1 /2h h
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2.2. Aliasing. If the Fourier transform of the original function does not com-
ply with being zero almost everywhere outside [−1/(2h), 1/(2h)], a situation resem-
bling the one illustrated in �g. (2.3) may occur.

Figure 2.3 (Overlapping � Fourier transform extending interval).

0 -2/h -1/h 0 1/h-1/h 1/h

P1 /2h h

The copies generated by convolving with the comb distribution will overlap.
After masking with the pulse function, these overlaps will corrupt the result when
applying the inverse Fourier transform. In the time domain, this corresponds to
the discussion in Section 2.1.2, when sinusoid components of the original function
are confused with additional sinusoids at higher frequency. The latter are called
alias components. The phenomenon as such is called aliasing and is basically a
consequence of the fact that sin(ωt) is indiscernible from sin([ω + 2mπ/h]t) at the
sampling points t = kh, k ∈ Z.

2.2.1. The Nyquist sampling rate. By Theorem 2.1 we know that, given a func-
tion is band-limited to [−1/(2h), 1/(2h)] and the sampling period is not longer than
h, then aliasing will not occur. The critical sampling interval h is called the Nyquist
rate, in honor of Harry Nyquist (1889-1976).

2.2.2. Band-limited Transform � Entire Function. No aliasing implies an entire
function. When f(t) is band-limited to Ω = [−1/(2h), 1/(2h)], the inverse Fourier
transform expression is equal to

f(t) =
∫

Ω

f̂(ω)e2πiωtdω (2.7)

Since f(t) is de�ned ∀t ∈ R and indeed ∀t ∈ C, we have |f̂(ω)| < ∞ for almost

all ω and since f̂(ω) has support on the interval Ω, we can conclude that |f̂(ω)|
and indeed also |ωf̂(ω)| are integrable. Integral theory, (see sections on �product
measure� in for example [3] or [15]) now allows us to take the derivative of both
sides of equation (2.7) as

df(t)
dt

= 2πi
∫

Ω

ωf̂(ω)e2πiωtdω (2.8)

The integrability of |ωf̂(ω)| guarantees the existence of equation (2.8). Since equa-
tion (2.8) also de�nes a continuous function ∀t ∈ C, we can conclude that f(t) is
entire, that is de�ned and analytic in the entire complex plane. This point is made
even clearer if we more explicitly extend the domain of de�nition of f from R to C,
by the substitution z = t+ ci in equation (2.7). That is

f(z) =
∫

Ω

f̂(ω)e2πiω(t+ci)dω

=
∫

Ω

e−2πωcf̂(ω)e2πiωtdω (2.9)

where we still regard the variable ω of f̂ as real. With

f(z) = u(t, c) + iv(t, c) (2.10)
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we have

u(t, c) =
∫

Ω

e−2πωcf̂(ω) cos(2πωt)dω (2.11)

iv(t, c) = i

∫
Ω

e−2πωcf̂(ω) sin(2πωt)dω (2.12)

This renders the partial derivatives

∂u

∂t
=
∂v

∂c
= −2π

∫
Ω

ωe−2πωcf̂(ω) sin(2πωt)dω (2.13)

∂u

∂c
= −∂v

∂t
= −2π

∫
Ω

ωe−2πωcf̂(ω) cos(2πωt)dω (2.14)

Because of the limited integration interval, these derivatives are sure to exist. The
Cauchy-Riemann equations are thereby satis�ed everywhere and consequently f(z)
is entire.

2.2.3. Further consequences of band-limiting. We can in fact conclude more
about f in equation (2.7). With the same substitution z = t + ci as in equation
(2.9), we note that e−2πωc achieves its maximum value at one of the endpoints of
the integration interval [−1/(2h), 1/(2h)]. That is e−2πωc ≤ eπ|c|/h. This means

|f(z)| =
∣∣∣∣∫

Ω

e−2πωcf̂(ω)e2πiωtdω

∣∣∣∣ ≤ e
π|c|

h

∫
Ω

|f̂(ω)|dω = Ae
π|c|

h (2.15)

where A is some constant. The growth of |f(z)| is thus at most exponential in the
imaginary part of z. Functions of this kind are referred to as exponential type A.

2.2.4. Anti-aliasing � analogue �lter. An existing signal in real life can not be
expected to constitute an analytic function and undesirable alias components will
inherently be present. In order avoid the e�ects of these components, an analogue
low-pass �lter is typically placed in front of the sampling device, blocking higher
frequency components. Though such an anti-aliasing �lter takes care of most of
the problem, it can never be totally e�ective � some alias components will always
remain. Of course there is also the problem, that the canceling of certain frequency
components means that the sampled and eventually reproduced signal, is slightly
di�erent from the original.

2.2.5. Sampling rate in practise. It should be pointed out, that the Nyquist
sampling rate of h in relation to equation (2.1) is a theoretical limit. By reasons
related to the foregoing discussion, this rate is usually not enough to avoid noise
or other signal degradation. In real life, a sampling rate of �ve times the Nyquist
rate is often recommended.

2.3. Some Historical Notes on the Sampling Theorem. Harry Nyquist
to some extent showed Theorem 2.1 by his work in the 1920'ies. Also, Karl
Küpfmüller is said to have presented results in the same direction at about the
same time, possibly reaching further. Proof of the complete theorem was given by
Claude E. Shannon in 1949, although Kotelnikov, E. T. Whittaker, J. M. Whit-
taker and Gabor are held to have published similar results earlier, in the case of
E. T. Whittaker as early as in 1915.



32 2. SAMPLING AND RELATED TRANSFORMS

3. Other Integral Transforms

Closely related to the Fourier transform, there exists a number of other integral
transforms, which are of use in di�erent aspects of signal processing and other areas.
We will just recall a few of the most important.

3.1. The Laplace Transform.

3.1.1. De�nition and Convergence Issues.

Definition 2.1. For a function f on R, the bilateral Laplace transform is,
when existing, de�ned as

f̂(s) = L[f ](s) =
∫ ∞

−∞
f(t)e−stdt. (2.16)

The parameter s is seen as in general complex, unlike the parameter ω in the
De�nition 1.1 of the Fourier transform, which is in this report generally considered
as real.

More common than equation (2.16) is the following, causal expression:

Definition 2.2. For a function f , de�ned on all real numbers t ≥ 0, the
unilateral Laplace transform is, when existing, de�ned as

f̂(s) = L[f ](s) =
∫ ∞

0−
f(t)e−stdt.1 (2.17)

The lower limit 0− is, as usual, interpreted as limε→+0−ε. This formulation
of the integral lower limit is to make sure that the Dirac delta δ(t) (positioned at
t = 0) can be treated without ambiguity. We have thus L[δ(t)] = 1 for the bilateral
and unilateral Laplace transforms alike.

A causal function is de�ned as a function f(t), with f(t) = 0 ∀t < 0. By
multiplying an arbitrary function with the Heaviside step function

H(t) =
{

1 if t > 0
0 if t < 0 (2.18)

a causal function is of course always acquired. Subsequent application of the Laplace
transform (no di�erence between De�nition 2.1 and 2.2 in this case) produces a
convergent result for a great many more functions than does use of the Fourier
transform. This is due to the causality and the exponential decay factor of e−st,
when Re(s) is big enough. As a simple example, the Fourier transform of the
function e3t is clearly divergent, whereas the Laplace transform ofH(t)e3t converges
to (s− 3)−1, whenever Re(s) > 3.

3.1.2. Laplace Transform of a Derivative.

Theorem 2.2. If f(t) has the unilateral Laplace Transform f̂(s), then the

derivative function g(t) = (d/dt)f(t) has the transform ĝ(s) = sf̂(s)− f(0).

Proof. We integrate by parts.

ĝ(s) =
∫ ∞

0−

d

dt
f(t)e−stdt

=
[
f(t)e−st

]∞
0

+ s

∫ ∞

0−
f(t)e−stdt (2.19)

= sf̂(s)− f(0)

�

1We have chosen not to introduce any notational distinction between uni- and bilateral
Laplace transforms. In this report, we will always try to make clear which of the two is referred
to. In control theory-literature in general, the unilateral form is the most common.
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3.1.3. Relationship to the Fourier Transform. To more explicitly show the con-
nection between the transforms and the role of the exponential decay factor, con-
sider the substitution s = σ + 2πiω, with σ and ω real. Let f(t) be a causal and
Fourier transformable function. With De�nitions 1.1 and 2.2 we then note

L[f ](s) =
∫ ∞

0−
f(t)e−stdt =

∫ ∞

−∞
f(t)e−σte−2πiωt = F [f(t)e−σt](ω) (2.20)

and

F [f ](ω) =
∫ ∞

−∞
f(t)e−2πiωtdt =

∫ ∞

0−
f(t)e(σ−s)tdt = L[f(t)eσt](s). (2.21)

Because of the close relation between the Fourier and Laplace transforms, the con-
volution and product Theorems (1.10 and 1.11) are valid for the Laplace transform

as well, so that L[f(t) ∗ g(t)] = f̂(s)ĝ(s) and L[f(t)g(t)] = f̂(s) ∗ ĝ(s). This can of
course be shown explicitly for the Laplace transform, but we omit these calculations.

3.1.4. Inversion of the Laplace Transform. For a complex constant a, The uni-
lateral Laplace transform of eat is easily established as∫ ∞

0−
e(a−s)tdt =

1
s− a

(2.22)

whenever Re(s) > Re(a). Tables of transforms can be constructed, based on di�er-
ent choices of a. For many functions, when necessary expanded in partial fractions,
such tables make it easy to �nd the inverse of the unilateral Laplace transform.

For a closed formula of the inversion, we can argue as follows: Since we � still
with s = σ+2πiω � by equation (2.20) have L[f ](s) = F [f(t)e−σt](ω), the formula
for the inverse Fourier transform in De�nition 1.1 gives

f(t)e−σt =
∫ ∞

−∞
L[f ](σ + 2πiω)e2πiωtdω. (2.23)

We multiply both sides with eσt:

f(t) =
∫ ∞

−∞
L[f ](σ + 2πiω)e(σ+2πiω)tdω

and substitute [s = σ + 2πiω, ds/2πi = dω] in the integral, which returns

=
1

2πi

∫ σ+i∞

σ−i∞
L[f ](s)estds. (2.24)

A more rigorous approach � which we choose not to include � would in fact lead to

f(t+) + f(t−)
2

=
1

2πi
p.v.

∫ σ+i∞

σ−i∞
L[f ](s)estds. (2.25)

Equation (2.25) is known as the Bromwich integral. Its evaluation typically leads
to calculus of residues.

Example 2.1. Find the function f , for which the Laplace transform is

L[f ](s) =
1

s2 + 3
. (2.26)

Solution. In accordance with the Bromwich formula, we seek to evaluate the
integral

I := p.v.

∫ σ+i∞

σ−i∞

est

s2 + 3
ds. (2.27)
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The integrand is certainly analytic for Re(s) > 0, which leads us to choose a σ > 0,
say σ = 1. Let γρ be the vertical segment from 1 − iρ to 1 + iρ. Then I can be
equalled to a contour integral as follows:

I = lim
ρ→∞

∮
γρ

ezt

z2 + 3
dz (2.28)

For t ≥ 0, we close the contour with a half-circle to the left (see Figure 1 a)), by

the parametrization z = 1 + ρeiθ, π/2 ≤ θ ≤ 3π/2. Since |ezt| = |e(1+ρeiθ)t| ≤ et

and z2 ≥ (1− ρ)2, the integral over the half-circle is bounded by

etπρ

−|(1− ρ)2 + 3|
(2.29)

which goes to zero as ρ→∞. For the integral I, with its two simple poles for the
integrand at ±

√
3i, calculus of residues then gives

I = 2πi[Res(
√

3i) + Res(−
√

3i)]

= 2πi

[
e
√

3it − e−
√

3it

2
√

3i

]

=
2πi√

3
sin(

√
3t) (2.30)

For t < 0, we close the contour with a half-circle to the right (see Figure 1 b)), that
is z = 1 + ρeiθ with −π/2 ≤ θ ≤ π/2. The integral over this half-circle, this time
with negative t, is also easily checked to go to zero. Since the right-hand half-circle
encloses no singularities, the contour integral on this side is zero and we have for
t < 0 f(t) = 0.

The inverse Laplace transform for t ≥ 0 on the other hand is

1
2πi

I =
sin(

√
3t)√

3
. (2.31)

and we conclude

f(t) = H(t)
sin(

√
3t)√

3
(2.32)

where H(t) is the Heaviside unit step function.

Figure 1. Closing contours to the left (a) and right (b)
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3.1.5. The Laplace Transform in Signal Processing. The Laplace transform is
a versatile tool for solving di�erential equations, in system theory, in analyzing
continuous-time signals and more. The unilateral Laplace transform is especially
suited to describe signals and systems that have not �been going on forever�, but
rather have a �xed �on� starting-point in time. In treating discrete-time signals
and systems, the Laplace transform is however seldom the �rst choice, at least not
in its original form.

3.2. The z-Transform.

3.2.1. De�nition and Relation to the Laplace Transform. Consider a sampled
sequence of a continuous-time function f , expressed like in Section 2.1.4 in the form
of f(t) multiplied with a comb-distribution.

f(t)∆h(t) =
∞∑

k=−∞

f(t)δ(t− kh) (2.33)

Let us apply the bilateral Laplace transform to both sides of equation (2.33). In
accordance with De�nition 2.1, the sifting property of the Dirac delta functional
�rst demonstrated in Example 1.2 and with Example 1.5, this returns

L

[ ∞∑
k=−∞

f(kh)

]
(s) = L[f(t)∆h(t)](s) (2.34)

=
∫ ∞

−∞

∞∑
k=−∞

f(t)δ(t− kh)e−stdt

=
∫ ∞

−∞
[. . .+ f(t)δ(t+ h) + f(t)δ(t) +

f(t)δ(t− h) + f(t)δ(t− 2h) + . . .]e−stdt

= . . .+ f(−h)esh + f(0) + f(h)e−sh + f(2h)e−2sh + . . .

=
∞∑

k=−∞

f(kh)e−skh. (2.35)

With s = σ+2πiω, as in Subsection 3.1.3, the summand in equation (2.35) involves
terms e−2πiωkh, which are periodic in ω with period 1/h. This makes equation (2.35)
a for many purposes unnecessarily complicated expression. A desire to simplify
matters has led to the introduction of the complex variable z ≡ esh and a special
name for the transformation from equation (2.33) to (2.35). Instead of regarding
the sequence of values as a continuous function times the comb, we now see it simply
as a discrete-time function of points on the time axle, separated by the �xed-length
interval k.

Definition 2.3. The bilateral z-transform of a discrete-time function ϕ[k] is
de�ned as

ϕ̂(z) = Z[ϕ](z) =
∞∑

k=−∞

ϕ[k]z−k. (2.36)

Just as with the Laplace transform, the one-sided variety is more common. If
we assume the function ψ below to be causal, the two de�nitions are of course the
same thing.
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Definition 2.4. The unilateral z-transform of a discrete-time function ψ[k] is
de�ned as

ψ̂(z) = Z[ψ](z) =
∞∑

k=0

ψ[k]z−k. (2.37)

3.2.2. Some Properties of the z-Transform.
3.2.3. The Time Shift Property. An important characteristic of the z-transform

is quite apparent. Let ϕ̂(z) be the z-transform of a discrete-time function ϕ[k].
Then the z-transform for the function shifted one time unit to the left, that is

ψ[k] = ϕ[k + 1], is given by ψ̂(z) = zϕ̂(z). In the same way the transform of a
function delayed or shifted one step to the right, is given by dividing the original
transform with z.

3.2.4. Convolution Theorem for the z-Transform. We de�ne the convolution-
sum of two discrete-time functions ϕ[k] and ψ[k] as

ϕ[k] ∗ ψ[k] =
∞∑

n=−∞
ϕ[n]ψ[k − n]. (2.38)

The transformed convolution then takes the form

Z[ϕ ∗ ψ] =
∞∑
k=0

∞∑
n=−∞

ϕ[n]ψ[k − n]z−k =
∞∑

n=−∞
ϕ[n]

∞∑
k=0

ψ[k − n]z−k. (2.39)

By the time-shift property we have

∞∑
k=0

ψ[k − n]z−k = z−nψ̂(z). (2.40)

Hence

Z[ϕ ∗ ψ] =
∞∑
n=0

ϕ[n]z−nψ̂(z) = ϕ̂(z)ψ̂(z). (2.41)

3.2.5. Convergence for the z-Transform. The discussion in this subsection is
based on the concept of Laurent series from the theory of analytic functions and
complex analysis. We will not review the background here. Details are given in most
elementary textbooks on complex analysis, see for example [16] for an accessible
account.

Recall that, for a complex function f(z), holomorphic in an open annulus A
encircling a point z0, that is r < |z − z0| < R, the Laurent series is de�ned as

f(z) =
∞∑

n=−∞
an(z − z0)n (2.42)

Using a generalization of Cauchy's integral formula and Taylor expansions, the
constant coe�cients an are given as

an =
1

2πi

∮
γ

f(ζ)
(ζ − z0)n+1

dζ. (2.43)

The integration path γ is any positively oriented simple closed contour inside A and
encircling z0. The series (2.42) converges point-wise everywhere in A and converges
uniformly in every compact subset of A. The radii of the limits of A can be identi�ed
as

r = lim sup
n→∞

|a−n|
1
n (2.44)

1
R

= lim sup
n→∞

|an|
1
n . (2.45)
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The relation between the coe�cients and the radii of convergence implies that for
the given complex function f(z), the Laurent series depend on the (given) values
of r and R, that is the region of convergence. Moreover, when a complex function
and a region of convergence are speci�ed, the Laurent series expansion is unique.

The z-transform is clearly possible to identify as such a Laurent series, for
some complex function and for some region of convergence. The latter in form of
an annulus centered around the origin, that is with z0 = 0. Seen from another
angle, if ĝ(z) is a z-transform, inverting ĝ(z) means �nding the functional values of
the original discrete-time function g[k], which is the same as �nding the coe�cients
of a Laurent series. We can use the formula (2.43), which (with z0 = 0) then takes
the form

g[k] =
1

2πi

∮
γ

ĝ(ζ)ζk−1dζ (k = 0,±1,±2, . . .) (2.46)

or we can sometimes �nd the series by other means, as in the example below. The
dependence on the region of convergence corresponds to the contour integral in
equation (2.46) being dependent on which singularities γ encloses.

Example 2.2. Find the discrete-time function for which the z-transform is

f̂(z) =
1

z2 − 2z − 3
(2.47)

and the region of convergence is
a) |z| < 1 b) 1 < |z| < 3 c) |z| > 3.

Solution. Partial fraction decomposition yields

f̂(z) =
1
4

(
1

z − 3
− 1
z + 1

)
. (2.48)

a) We note that

1
z − 3

= −1
3
· 1
1− z

3

= −
∞∑
j=0

zj

3j+1
(2.49)

and
1

z + 1
=

1
1− (−z)

=
∞∑
j=0

(−z)j . (2.50)

Taken together we have

Z[fa](z) = −1
4

∞∑
j=0

[
zj

3j+1
+ (−z)j

]
= −1

3
+

2z
9
− 7z2

27
+

20z3

81
− . . . (2.51)

In terms of De�nition 2.3 this means

fa[k] = . . .+
20
81
− 7

27
+

2
9
− 1

3
+ 0 + 0 + . . . (2.52)

(k = . . . ,−3,−2,−1, 0, 1, 2, . . .),

or in a closed form

fa[k] =
{
−(4 · 3k+1)−1 + (−1)k if k ≤ 0
0 if k > 0 . (2.53)

b) For this region of convergence, equation (2.49) is still valid, while we have

1
z + 1

=
1
z
· 1
1− 1

(−z)

=
1
z

∞∑
j=0

1
(−z)j

= 1−
∞∑
j=0

1
(−z)j

(2.54)
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Together

Z[fb](z) = −1
4

1 +
∞∑
j=0

(
zj

3j+1
− 1

(−z)j

) = . . .− z2

108
− z

36
− 1

12
− 1

4z
+

1
4z2

− . . .

(2.55)
That is

fb[k] = . . .− 1
108

− 1
36
− 1

12
− 1

4
+

1
4
− . . . (2.56)

(k = . . .− 2,−1, 0, 1, 2, . . .)

and in close form

fb[k] =
{
−4−1 · 3k−1 if k ≤ 0
4−1 · (−1)k if k > 0 . (2.57)

c) In this case equation (2.54) remains and

1
z − 3

=
1
z
· 1
1− 3

z

=
1
z

∞∑
j=0

(
3
z

)j

(2.58)

Thus

Z[fc](z) =
1
4z

∞∑
j=0

(
3j

zj
− 1

(−z)j

)
(2.59)

and

fc[k] =
{

0 if k ≤ 0
(3k−1 + (−1)k)/4 if k > 0 . (2.60)

3.2.6. The λ-transform. In complex function theory, one often deals with func-
tions analytic in the unit disc. This frequently makes it preferable with a series
representation converging inside some circle around the origin, rather than outside
it. The circle in question being then in most cases the unit circle. To this end, the
λ-transform has been formulated, where λ = 1/z, with the z of the z-transform.

The unilateral λ-transform of a discrete time signal {ξ[k]}∞k=0 is thus

ξ̂(λ) =
∞∑

k=0

ξ[k]λk. (2.61)

For example, the λ-transform of the Heaviside step function (2.18) is

1 + λ+ λ2 + . . . =
1

1− λ
. (2.62)

3.3. The Discrete Fourier Transform � DFT. The discrete Fourier trans-
form is not essential for the conception of any other section of this report. However,
it is an important topic in sampled data analysis, wherefore we will not surpass it
completely. For more generous coverings, including here omitted proofs and more,
we refer to [4] and [20].

3.3.1. Intuitive derivation and de�nition. Consider a function f(t) sampled at
a �nite number of N instances, with a regular sampling interval h, that is, in a
sampling window of width Nh. To begin with, we regard f(t) as having support on
[0, N − 1]. This means an expression like in equation (1.89) but with �nite series:

N−1∑
k=0

f(t)δ(t− kh) =
N−1∑
k=0

f(kh)δ(t− kh). (2.63)
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In accordance with the linearity of the Fourier transform and Example 1.6, Fourier
transformation of this expression returns

F

[
N−1∑
k=0

f(t)δ(t− kh)

]
(ω) =

N−1∑
k=0

f(kh)e−2πiωkh. (2.64)

Note that the Fourier transform in equation (2.64) is valid for all frequencies ω,
including the discrete subset

ωj =
j

Nh
j = 0, . . . , N − 1. (2.65)

In fact, there is no point � at least not for the moment � in extending the integer
values of j outside [0, N − 1], because of the periodicity of exp(−2πiωjkh). Or
rephrased, because the Fourier transformed expression to the right in equation
(2.64) obviously is periodic in ω, with period ω = 1/h.

We let the above considerations motivate the following

Definition 2.5. For a complex-valued, bounded N th-order sequence {f [k]}N−1
k=0 ,

the discrete Fourier transform, DFT is de�ned as

f̂ [j] =
N−1∑
k=0

f [k]e−2πikj/N , j = 0, . . . , N − 1 (2.66)

We still, of course, have no knowledge of the behavior of f(t) outside the sampling
window. However, one possible interpretation of the periodicity of the DFT is as
follows. For the function f(t), considered to have support [0, N − 1], we assume, or
extrapolate an extended version, where the values of f(kh) in the sampling window
of width Nh are replicated on the next time span of width Nh, that is from Nh to
2Nh. And then replicated again and again in�nitely on every new span of widthNh.
The concept much resembles what was discussed for the continuous-time Fourier
transform in Section 2.1.2.

For the inversion of the DFT, we have

Definition 2.6. The inverse discrete Fourier transform is de�ned as

f [k] =
1
N

N−1∑
j=0

f̂ [j]e2πikj/N , k = 0, . . . , N − 1. (2.67)

3.3.2. Variations. As for the normalization factor 1/N and the signs of the
exponents, the situation is similar to that for the continuous Fourier transform,
discussed in Section 2.1.4, namely the placement is not standardized � sometimes
they are used on the transform, sometimes on its inverse.

3.3.3. Reciprocity. We can prove, that when the DFT has been applied to a
sequence, subsequent application of the inverse according to De�nition 2.67 uniquely
returns the original sequence.

Lemma 2.1.
N−1∑
j=0

e2πimj/N = 0 (2.68)

Proof. Let

V [j] =
e2πimj/N

e2πim/N − 1
. (2.69)
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We then have

N−1∑
j=0

[V [j + 1]− V [j]] =
N−1∑
j=0

e2πim(j+1)/N − e2πimj/N

e2πim/N − 1

=
N−1∑
j=0

e2πimj/N
(
e2πim/N − 1

)
e2πim/N − 1

=
N−1∑
j=0

e2πimj/N . (2.70)

On the other hand, we also note that by telescopical summation

N−1∑
j=0

[V [j + 1]− V [j]] = V [N ]− V [0]

=
e2πim − 1
e2πim/N − 1

(2.71)

=
1− 1

e2πim/N − 1
= 0

and the desired result is clear. �

Theorem 2.3. The DFT possesses complete reciprocity.

Proof. Let f̂ [j] be the DFT of {f [k]}N−1
k=0 . The inverse DFT then returns

1
N

N−1∑
j=0

f̂ [j]e2πikj/N =
1
N

N−1∑
j=0

[
N−1∑
l=0

f [l]e−2πilj/N

]
e2πikj/N k = 0, . . . , N − 1

=
1
N

N−1∑
l=0

f [l]

N−1∑
j=0

e2πi(k−l)j/N

 k = 0, . . . , N − 1 (2.72)

However, by the lemma

N−1∑
j=0

e2πi(k−l)j/N =
{

0 if l 6= k
N if l = k

(2.73)

This means

1
N

N−1∑
j=0

f̂ [j]e2πikj/N =
1
N
f [k]N = f [k] k = 0, . . . , N − 1 (2.74)

�

Example 2.3. For the second-order sequence {f [k]} = {1, 2} we have

f̂ [0] =
2−1∑
k=0

f [k]e0 = 1 + 2 = 3 (2.75)

f̂ [1] =
2−1∑
k=0

f [k]e−πik = 1 · e0 + 2e−πi = 1− 2 = −1. (2.76)

That is

f̂ [j] = {3,−1}. (2.77)
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The inverse DFT returns, as expected

f [0] =
1
2

2−1∑
j=0

f̂ [j]e0 =
3− 1

2
= 1 (2.78)

f [1] =
1
2

2−1∑
j=0

f̂ [j]e2πij/N =
3e0 + (−1)eπi

2
=

3 + 1
2

= 2. (2.79)

3.3.4. Convolution and product theorems for the DFT. With the function g[k]
understood to be of the extended form, as described in Section 3.3.1, we make

Definition 2.7. The convolution product of two N th-order sequences {f [k]}
and {g[k]} is given as

{f [k]} ∗ {g[k]} :=
N−1∑
i=0

f [i]g[k − i], k = 0, . . . , N − 1. (2.80)

Using the convolution above, the convolution and product theorems can readily
be shown to be valid for the DFT. See for example [20] for a straight-forward
account (with the alternative placement of the 1/N -factor).

3.3.5. The DFT in applications. The �nite set of sampling-instances and the
limited sampling window involved with the DFT, often makes it apt to depict what
is really going on in a real-life sampling situation.

However, since � as has been explained � the periodic extension of the original
function is merely a mathematical construction, there is of course no guarantee that
the sampled value at f(0) is at all close to that sampled at f(N − 1). This means,
that when a continuous-time function is eventually to be modeled on basis of the
sampled values, there are typically leap discontinuities at the edges of every Nh
time-span. Various windowing techniques have been developed to deal with these
matters.

The DFT constitutes the basis of the tremendously important fast Fourier
transform, FFT -algorithms, developed in the early 1960s by Tukey and Cooley.
The FFT radically reduces the computational power required in numerical analysis.

The DFT is also used in the process of zero-padding interpolation, in which the
resolution of a signal, in time or frequency domain, is increased by adding extra
zeroes to the original Nth order sequence.





CHAPTER 3

Sampled Data Systems

1. Introduction

In this chapter, we will address the implementation of digital devices in continuous-
time systems. Most often in this report, the device will be a controller. Hence, after
recalling a few facts about continuous-time and discrete-time systems in general,
some elements of modern control theory will be introduced. In the last section, on
the lifting technique, these elements will be viewed more explicitly in conjunction
with sampling and a discrete-time context.

Lifting is here �rst discussed in relation to discrete-time signals and later in
the chapter in relation to continuous-time signals. Especially the latter concept is
closely linked to modern robust control theory. Sampled data systems are naturally
periodically time variant. Computation of the norm of a transfer function of a
system, a central procedure of robust control, requires however time invariance.
Lifting provides time invariant representations of sampled data system. Norms can
then be computed, either for an equivalent, discrete time system or possibly directly
for the lifted continuous time system. The actual procedure for this is only hinted,
at the very end of this report.

In all of this chapter, the system approach means that variables are in general
assumed to be multi-dimensional.

1.1. List of spaces. Over the following pages, a number of functional spaces
will be introduced. For convenience, we here list the most important, with pages
of �rst appearances.

: L2(−∞,∞), with subsets L2[a, b] and L2+[0,∞), page 46, are spaces of
square integrable and Lebesgue measurable functions.

: `2(−∞,∞), with subspace `2[0,∞), page 47, are sets of square summable
sequences.

: L2(iR), page 47, is the space of Laplace-transformed elements of L2(−∞,∞).
: H2, page 47, is the subspace of L2(iR), with Laplace-transformed elements

of L2+[0,∞).
: L2(∂D), page 47, is the space of Z-transformed elements of `2(−∞,∞).
: H2(∂D), page 47, is the space of Z-transformed elements of `2[0,∞).
: L∞(iR), page 48, is the space of matrix-valued functions, that are essen-

tially bounded on iR.
: H∞, page 48, is the subspace of L∞(iR), with functions analytic in the

right half-plane.
: L∞(∂D), page 48, is a space of functions essentially bounded on the unit

circle.
: H∞(∂D), page 48, is a subset of L∞(∂D), with functions analytic in the

unit disc.
: L2e(R), page 56, is an extension of L2(−∞,∞).
: `L2[0,h) �nally, on page 57, is a space of lifted, continuous time signals.

43
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2. Sampled Data in Continuous Time Systems

2.1. Sampling and Zero-Order Hold Functions. Whether it is a con-
troller or some other digital device, in order for it to �t in, parts of the analogue
system must be converted to discrete time.

To begin with, the analogue signal preceding the device must be converted
to discrete time. This A/D converter will in this report always be assumed to
be an ideal sampler (see page 27). The discrete-time output of the device must
then be converted back to continuous-time , in order to reenter the continuous-
time system. The D/A converter applied is a hold function. In its basic form, it is
a zero-order hold, that simply keeps the value of the last sampling instant, until the
next sampling instant is registered. A hold function of higher order, would typically

a) b) c)

Figure 1. a) The original function. b) After sampling. c) After
0-order hold.

by some means interpolate between the sampling instants. Such constructions of
hold-devices exist, but they will not be treated here.

2.2. Impulse response and Transfer functions. The output of a continuous-
time linear time-invariant causal system is the weighted sum of all inputs from time
zero and onwards. With g(t) being the weight function � i.e. the e�ect of the sys-
tem on the input � setting u(t) for the input and y(t) for the output, and bearing
the time invariance in mind, this can be formulated as the convolution

y(t) =
∫ ∞

0

g(τ)u(t− τ)dτ = g(t) ∗ u(t) (3.1)

Laplace transforming (3.1) gives ŷ(s) = ĝc(s)û(s), where ĝc(s) is the gain or
transfer function of the system.

Since the Dirac delta function is the unit element under convolution, as seen
in Example 1.8, substituting it for u(t) in (3.1) returns

g(t) ∗ δ(t) = g(t) (3.2)

This motivates calling g(t) the impulse response. Laplace transforming (3.2) gives
ĝc(s) · 1 = ĝc(s). In other words: the transfer function is the transformed weight
function.

2.3. Transfer function for a discrete system. The analogue to (3.1) in the
discrete-time linear time-invariant causal system case is the discrete convolution

ψ[k] =
∞∑

l=0

g[l]υ[k − l] (3.3)

We here apply the Z-transform, which returns ψ̂(z) = ĝd(z)υ̂(z) where ĝd(z)is the
transfer function.

Setting υ[k] as the unit pulse function, i.e.

υ[k] =
{

1 if k = 0
0 if k 6= 0 (3.4)
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we get ψ[k] = g[k] and after transformation ψ̂(z) = ĝd(z), why it is appropriate
to speak of g[k] as the unit pulse response , which is transformed to the transfer
function ĝd(z).

2.4. State-space realizations. Consider the continuous time �nite dimen-
sional linear time invariant dynamic system

ẋ = Ax+Bu (3.5)

y = Cx+Du (3.6)

The Laplace transform of the output is

ŷ(s) = ĝc(s)û(s) (3.7)

We assume x(0) = 0, solve for x̂ in the transformed version of (3.5) and substitute
in the transformed (3.6) to get

ĝc(s) = C(sI −A)−1B +D. (3.8)

We will subsequently predominantly use the shorthand notation(
A B
C D

)
:= ĝc(s) = C(sI −A)−1B +D (3.9)

A discrete time system is treated similarly, using the Z-transform.
In real life, a physical system may often be known through some transfer

function ĝ(s), generally matrix-valued, approximating its dynamics. In order to
facilitate computer implementation, we then try to to �nd a state-space model
(A,B,C,D) for this transfer, such that

ĝ(s) =
(
A B
C D

)
(3.10)

Definition 3.1. A ratio of polynomials in some variable is said to be a rational
function of that variable. If the degree of the polynomial in the numerator is no
greater than that of the denominator, the function is called proper.

Equivalent to De�nition 3.1, the function ĝ(s) is proper if it goes to a constant
as s→∞. Therefore for a matrix-valued function P (s)Q(s)−1 where P (s) and Q(s)
are matrices of polynomials of appropriate dimensions, the properness is equivalent
to that P (s)Q(s)−1 tends to a constant matrix as s tends to ∞.

Definition 3.2. When ĝ(s) is real rational and proper, we call the above de-
scribed state-space model a realization of ĝ(s).

Definition 3.3. A state-space realization (A,B,C,D) of ĝ(s) is said to be
minimal if the system matrix A has the smallest possible dimension.

2.4.1. Stability. For later use, we recall that a system is said to be stable, if
every bounded input-signal has a bounded output-signal. In a continuous-time
system, this is equivalent to the system matrix (A in the realizations above) having
all its eigenvalues in the left half of the complex plane. In a discrete-time system,
stability is equivalent to the system matrix having all its eigenvalues inside the unit
disc. See further for example [9].

For a system with feedback, i.e. where the output by interconnection a�ects
the input, a basic requirement is internal stability. Roughly, this means that if the
system is cut short of external input, it will eventually �die out�. This also guar-
antees that small nonzero initial conditions and errors can never lead to unbounded
signals at any location in the system. Somewhat simpli�ed, internal stability is
equivalent to the transfer matrix being proper, real rational and stable. For a more
stringent report, see for example [24] and [25].
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3. Rudiments of Robust Control Theory

3.1. Spaces and Norms.

3.1.1. Vector-induced norms and singular values. For a vector x ∈ Cn the Eu-
clidian 2-norm is well known: ‖x‖ =

√∑n
i=1 |xi|2.

Definition 3.4. For a complex m × n matrix A and a vector x as above, the
induced 2-norm is de�ned as

‖A‖ := sup
x6=0

‖Ax‖
‖x‖

. (3.11)

For the matrix A, the singular values of A are traditionally de�ned as the
square roots of the eigenvalues of A∗A, where A∗ denotes the complex conjugate
transpose of A. The largest singular value is denoted σ̄(A) and the smallest σ(A).
With the general vector u ∈ Cn an alternative de�nition can be formulated as

σ̄(A) := max
‖u‖=1

‖Au‖ (3.12)

and

σ(A) := min
‖u‖=1

‖Au‖. (3.13)

The equivalence can be made obvious in the following way: Let {λmin, . . . , λmax}
be the ordered set of eigenvalues of A∗A, and let y = Au be a general linear trans-
formation (u 6= 0). We then have

λmin‖u‖2 ≤ ‖y‖2 = ‖Au‖2 = u∗A∗Au ≤ λmax‖u‖2, (3.14)

which is equivalent to

σ(A) ≤ ‖y‖
‖u‖

≤ σ̄(A). (3.15)

The desired result follows by setting ‖u‖ = 1. In other words we have σ̄(A) =
max{‖y‖ | ‖u‖ = 1}.

In a system perspective, the interpretation is, that A is the transfer matrix
with u input and y output. σ̄(A) then equals the system gain, that is the maximum
output over all inputs of unit norm. Note the equality between ‖A‖ in equation
(3.11) and σ̄(A).

3.1.2. Hilbert spaces. Recall that a Hilbert space is a complete vector space with
inner product and norm. The set of Hilbert spaces is a proper subset of the set
of Banach spaces, which consists of complete vector spaces with norm. Recall also
the maximum modus theorem, according to which a non-constant function that is
analytic on the interior of some closed-bounded set S, can only attain its maximum
on S on the boundary ∂S.

3.1.3. Functional spaces in time domain.

Definition 3.5. L2[a, b] is an in�nite dimensional Hilbert space, which consists
of all square integrable and Lebesgue measurable functions de�ned on the interval
[a, b]. Its inner product is, for f, g ∈ L2[a, b], de�ned as

〈f, g〉 :=
∫ b

a

f(t)∗g(t)dt (3.16)

and the norm

‖f‖2 :=
√
〈f, f〉 (3.17)

This makes (3.16) nothing but a generalization of the inner product of equation
(1.58). To go one step further, we �rst recall that the trace of a matrix is the sum
of the entries on the main diagonal (which is easily shown to be equal to the sum
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of the eigenvalues). Now, if the functions f, g are matrix-valued, the inner product
of L2[a, b] is de�ned as

〈f, g〉 :=
∫ b

a

trace[f(t)∗g(t)]dt. (3.18)

We de�ne L2(−∞,∞), with the obvious interpretation of the limits in integral 3.18,
and L2+ := L2[0,∞), a subspace of L2(−∞,∞) consisting of causal functions.

In discrete time, we have for example the following Hilbert space:

Definition 3.6. `2(−∞,∞) is the set of all real or complex sequences x =
(. . . , x−2, x−1, x0, x1, x2, . . .) for which

∞∑
i=−∞

|xi|2 <∞ (3.19)

with the inner product for x, y ∈ `2(−∞,∞) de�ned as

〈x, y〉 :=
∞∑

i=−∞
x̄iyi. (3.20)

`2[0,∞) is the subspace of `2(−∞,∞) consisting of all causal sequences x =
(x0, x1, x2, . . .).

3.1.4. Functional spaces in frequency domain. The elements of L2(−∞,∞) can
be transformed with the bilateral Laplace transform. The transformed functions
constitute a Hilbert space de�ned as L2(iR), with the inner product

〈f̂ , ĝ〉 :=
1
2π

∫ ∞

−∞
trace[f̂∗(iω)ĝ(iω)]dω (3.21)

for f̂ , ĝ ∈ L2(iR). The norm is induced by the inner product and is given as

‖f̂‖2 =
√
〈f̂ , f̂〉. (3.22)

Laplace transformation of the elements ofL2[0,∞) yields the space of the following
de�nition

Definition 3.7. H2 is a subspace of L2(iR) with matrix functions f̂(s) analytic
in the right-half plane (Re(s) > 0). The norm is de�ned as

‖f̂‖2 :=

√
1
2π

∫ ∞

−∞
trace[f̂∗(iω)f̂(iω)]dω. (3.23)

Let D and ∂D denote the unit disc and unit circle, respectively. Let further the
variable λ ∈ D be λ = z−1, as in equation (2.61).

Similarly to the cases L2(iR) and H2, Z-transformation of the elements in
`2(−∞,∞) and `2[0,∞) yields the spaces L2(∂D) andH2(∂D) respectively. L2(∂D)
is then a Hilbert space of matrix valued functions de�ned on ∂D as

L2(∂D) =
{
f̂(λ) | 1

2π

∫ 2π

0

trace[f̂∗(eiθ)f̂(eiθ)]dθ <∞
}

(3.24)

with the inner product for f̂(λ), ĝ(λ) de�ned as

〈f̂ , ĝ〉 :=
1
2π

∫ 2π

0

trace[f̂∗(eiθ)ĝ(eiθ)]dθ. (3.25)

H2(∂D) is the subspace of L2(∂D) with matrix functions f̂(λ) analytic in D.
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3.1.5. Isometric isomorphism. It can be shown (this is Parseval's relation, see
[15], Th. 9.13) that there is an isometric isomorphism between L2 spaces in time
domain and L2 spaces in frequency domain:

L2(−∞,∞) ∼= L2(iR)
L2[0,∞) ∼= H2 (3.26)

This means that if g(t) ∈ L2(−∞,∞) has the Laplace transform ĝ(s) ∈ L2(iR),
then

‖ĝ‖2 = ‖g‖2. (3.27)

Similarly, we have

`2(−∞,∞) ∼= L2(∂D)
`2[0,∞) ∼= H2(∂D). (3.28)

3.1.6. L∞ and H∞-spaces. In the (continuous-time ) frequency domain, we
de�ne the space L∞(iR) to be the Banach space of matrix-valued functions that

are essentially bounded on iR. For f̂ ∈ L∞(iR) the norm is de�ned as

‖f̂‖∞ := ess sup
ω∈R

σ̄[f̂(iω)]. (3.29)

Definition 3.8. H∞ is the subspace of L∞(iR) consisting of functions that
are analytic and bounded in the right-half plane. The norm of H∞ is de�ned as

‖f̂‖∞ := sup
Re(s)>0

σ̄[f̂(a)]. (3.30)

The maximum modulus theorem can be generalized for matrix functions, which
for (3.30) means

‖f̂‖∞ = sup
ω∈R

σ̄[f̂(iω)]. (3.31)

For a proof [25] refers to Boyd and Desoer (1985).
Analogous to these spaces, we have in discrete time L∞(∂D) as the Banach

space of matrix functions essentially bounded on the unit circle and H∞(∂D) as
the subspace of L∞(∂D) consisting of functions analytic in D. With λ as in (3.24),
the norm of H∞(∂D) is de�ned as

‖f̂‖∞ := sup
λ∈D

σ̄[f̂(λ)] = sup
θ∈[0,2π]

σ̄[f̂(eiθ)]. (3.32)

The second equality above is motivated similarly as in (3.31).
3.1.7. Norms induced by spaces. Analogue to the discussion in conjunction with

De�nition 3.4 of norms induced on matrices by vectors, for a system of signals in
L2(−∞,∞), with input u(t) and output y(t), the L2(−∞,∞)-induced norm is the
maximal output when the input is any signal in a unit ball. With the norm from
(3.17), we have thus sup‖u‖2=1 ‖y‖2. This is then equal to the H∞-norm of the
transfer matrix. The L2+-induced norm and, for discrete time, norms induced by
`2(−∞,∞) and `2[0,∞) are de�ned correspondingly for signals in the respective
spaces. For example, in the case of L2+ we have once again, with ĝ being the
transfer function of a causal system

‖ĝ‖∞ = sup{‖y‖2 | ‖u‖2 = 1}. (3.33)
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3.2. Problems and Computation.

3.2.1. Problems of H∞ and H2. Consider a standard, stable, causal, continuous-
time, linear time-invariant setup, like in Figure 2. G is the interconnection matrix,
K is the controller, u is the m-dimensional control signal, y is the p-dimensional
measurement, w is a vector signal of some kind of disturbance and z are controlled
signals and tracking errors. We here assume that w is of the same dimension as u,
that is m, and that z is of dimension p, like y. We denote by Tzw the system from
w to z. According to some norm, the transfer function of Tzw, which we denote t̂zw,

Figure 2. Standard setup.

G

K

z w

y u

is to be minimized. Depending on which norm is used, this is the control problem
of H2 or H∞.

Let ei, i = 1, . . . ,m, denote the standard basis vector in Rm. δei is thus a Dirac
delta or impulse applied to input i and

∑m
i=1 Tzwδei is the output, when impulses

are applied at all input channels. With the norm of H2 from equation (3.23) on the
left-hand side and the norm of L2+ as in equation (3.17) on the right-hand side, we
then by the isometry of equation (3.27) have

‖t̂zw‖22 =
m∑

i=1

‖Tzwδei‖22. (3.34)

This makes the H2-norm of the transfer a measure of known inputs.
The H∞-norm of the transfer is on the other hand by equation (3.33) equal

to the maximum L2-norm of the output over all inputs of unit norm. This gives
optimization with regard to the H∞-norm the character of a worst-case problem.

3.2.2. Computation of norms. We refer to [2], [24] and [25] for accounts on this
subject. We merely note, that while the H2/L2-norm can be computed analytically,
for example by a contour integral, the computation of the H∞-norm in general
requires a numerical search. A bisection algorithm is often used, where � if ‖t̂‖∞
is to be minimized � ‖t̂‖∞ is tried against progressively smaller values γ, until
a satisfactory result has been achieved. Thereby thus transforming the optimal
H∞-problem to a sub-optimal problem.

3.3. Tustin transformation. In the area of control theory, the development
of computer technology has made digital control devices predominant. Often this
leads to a situation where a digital controller is asked for, in order to control a
continuous time system. One way of addressing the issue, is to design a continuous
time controller for the system, and then discretize the controller. The discrete
controller is then inserted in the system, preceded by a sampling unit and followed
by a hold device.

The manipulations described above, calls for means of migration back and
forth between continuous-time and discrete-time transfer functions, which should
both as accurately as possible describe the same underlying system. This is often
accomplished through bilinear transformation or the so called Tustin method.
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The basic concept can be derived as follows. Consider the most elementary of
dynamic continuous-time systems.

ẏ(t) = u(t) (3.35)

The output y(t) is just the integral of the input u(t). We apply the Laplace trans-
form on both sides of (3.35) and solve for the transfer function ĝc(s) = ŷ(s)/û(s).

sŷ(s) = û(s)

ĝc(s) =
1
s

(3.36)

Now, with values of y taken at instances kh and kh+ h, we arrive at the following
expression, corresponding to (3.35):

y(kh+ h)− y(kh) =
∫ kh+h

kh

u(τ)dτ (3.37)

where h is chosen as the sampling-period which will subsequently be used. For the
right-hand side of (3.37) we allow the approximation∫ kh+h

kh

u(τ)dτ ≈ h

2
[u(kh+ h) + u(k)] (3.38)

Accepting the approximation as equality, we have

y(kh+ h) = y(kh) +
h

2
[u(kh+ h) + u(k)] (3.39)

which we interpret as the discrete-time expression

y[k + 1] = y[k] +
h

2
[u[k + 1] + u[k]]. (3.40)

Aiming at an expression for a discrete-time transfer function, we apply the z-
transform .

zŷ(z) = ŷ(z) +
h

2
[zû(z) + û(z)] (3.41)

We then solve for ĝd(z) = ŷ(z)/û(z) and equate this to the continuous-time transfer.

h

2
· z + 1
z − 1

=
1
s

(3.42)

This means

ĝd(z) = ĝc(s) = ĝc

(
2
h
· z − 1
z + 1

)
(3.43)

On the other hand, solving for z returns the inverse of this transformation, namely

z =
hs+ 2
−hs+ 2

=
1 + h

2 s

1− h
2 s

(3.44)

which leads us to the interpretation

ĝc(s) = ĝd(z) = ĝd

(
1 + h

2 s

1− h
2 s

)
(3.45)

Example 3.1. If the continuous-time transfer function is

ĝc(s) =
1

s+ 1
then with the substitution from equation (3.43), the discrete-time transfer is given
by

ĝd(z) =
h(z + 1)

2(z − 1) + h(z + 1)
.
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3.3.1. Some remarks on the Tustin method. It is clear that the bilinear transfor-
mation is on the general form (az+b)/(cz+d), that is, it is a Möbius transformation.
The mapping from s to z by (3.45) takes the left half-plane into the unit disk. One
can easily verify this by checking for some numbers like s1 = 0, s2 = i , s3 = i∞.
As a consequence, if the poles of G(s) are all bounded by the imaginary axis, the
poles of H(z) will all have less than unit magnitude. This indicates that, as such,
the transformation preserves stability.

From a signal processing point of view, this is of great advantage. Note however,
that by (3.38), the system behavior between sampling points is only really guessed.
In the next section, we will introduce the lifting-technique, which deals with inter-
sampling in a more sophisticated way.

H∞-optimization is possible and frequently used in conjunction with the Tustin
transformation. For an account of this topic, we refer to [2].
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4. Lifting

4.1. Lifting discrete-time signals. Consider an arbitrary setup, where time
is measured with the base period h and a discrete-time signal υ[k] is being noticed
at the subperiod h/n for some n ∈ Z+. That is, υ = {υ[0], υ[1], υ[2], . . .} where υ[0]
occurs at time t = 0, υ[1] at time t = h/n, υ[2] at t = 2h/n, etc. We de�ne the
lifted discrete-time signal

υ :=




υ[0]
υ[1]
...

υ[n− 1]

 ,


υ[n]
υ[n+ 1]

...
υ[2n− 1]

 , . . .
 (3.46)

where υ is referred to the base period, with υ[k] occurring at time t = kh. It is
clear that if we assume dim(υ[k]) = m, then with n as before, dim(υ[k]) = mn.
We are led to the following

Definition 3.9. The above described map υ 7→ υ from Rm to Rmn is a matrix-
valued function, which we call the discrete-time lifting function for period h. We
denote it Wdh, with inverse W−1

dh .

We use the block diagram symbols

Wd
uu

Wd
uu -1

The inverse function imply that if we for some function ψ have

ψ :=



ψ1[0]
ψ2[0]
...

ψn[0]

 ,

ψ1[1]
ψ2[1]
...

ψn[1]

 , . . .
 (3.47)

then we can regard it as a lifted function, which can be unlifted as

W−1
dh ψ = {ψ1[0], · · · , ψn[0], ψ1[1], · · · , ψn[1], · · · } (3.48)

With υ = {υ[0], υ[1], υ[2], . . .} as before, we note that

υ∗υ = υ
′
υ = υ[0]′υ[0] + υ[1]′υ[1] + . . .

=


υ[0]
υ[1]
...

υ[n− 1]


′ 

υ[0]
υ[1]
...

υ[n− 1]

+


υ[n]

υ[n+ 1]
...

υ[2n− 1]


′ 

υ[n]
υ[n+ 1]

...
υ[2n− 1]

+ · · ·

= υ[0]′υ[0] + υ[1]′υ[1] + · · · = υ′υ = υ∗υ (3.49)

and thereby that ‖υ‖2 = ‖υ‖2 as well as ‖υ‖∞ = ‖υ‖∞. In other words, the lifting
function is norm-preserving or isometric.
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4.2. Lifting discrete-time systems. Consider a discrete-time FDLTI � i.e.
�nite dimensional linear time invariant� system Gd, with state-space equations

ξ[k + 1] = Aξ[k] +Bυ[k]
ψ[k] = Cξ[k] +Dυ[k]

A : n× n B : n×m

C : p× n D : p×m

where k ∈ Z+, just as in Subsection 4.1, corresponds to integer-multiples of h/n
for some sampling interval h and some n ∈ Z+.

4.2.1. The system matrix.

Definition 3.10. A Toeplitz matrix is a matrix in which each descending
diagonal from left to right is constant.

The matrix representation of Gd is

[Gd] =


D 0 0 0 · · ·
CB D 0 0 · · ·
CAB CB D 0 · · ·
CA2B CAB CB D · · ·

...
...

...
...

. . .

 (3.50)

The block-lower triangular form of this matrix is equivalent to this particular system
being causal, whereas the constant block-diagonals � i.e. the matrix is Toeplitz �
correspond to the time-invariance of the system.

Let us say we want to lift this system to the base period h. In block represen-
tation this would mean

Figure 3.1.

u y
W WGd

yu-1

dh dh

with wider separation of dots indicating base period and narrower separation sub-
period. In matrix form we have

[Gd] := [Wdh][Gd][W−1
dh ] (3.51)

If n = 1, [Wdh] = [W−1
dh ] = I and nothing is changed. If n = 2 the matrix

representations of the functions are

[Wdh] =



I 0 0 0 0 · · ·
0 I 0 0 0 · · ·
0 0 I 0 0 · · ·
0 0 0 I 0 · · ·
0 0 0 0 I · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .


, [W−1

dh ] =



I 0 0 0 0 0 · · ·
0 I 0 0 0 0 · · ·
0 0 I 0 0 0 · · ·
0 0 0 I 0 0 · · ·
0 0 0 0 I 0 · · ·
...

...
...

...
...

...
. . .


which yields

[Gd] =


D 0 0 0 · · ·
CB D 0 0 · · ·
CAB CB D 0 · · ·
CA2B CAB CB D · · ·

...
...

...
...

. . .

 (3.52)
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For a general n, the lifted system matrix is in the same way the original system
matrix block-partitioned as



D 0 · · · 0 0 · · · · · ·

CB D · · ·
... · · ·

...
...

. . .
...

...
. . .

. . .

CAn−2B CAn−3B · · · D · · ·
CAn−1B CAn−2B · · · CB D · · · · · ·

...
...

. . .
...

...
. . .

. . .

CA2n−2B · · · · · · CAn−1B CAn−2B · · · · · ·
...

...
...

...
...

. . .
. . .


By the same argument as referred to above, the lifted system thus remains time-
invariant and causal.

4.2.2. Realizations for general divisors of h � �Polyphase decomposition�. As
for the transfer, we have for n = 1 of course

C[Iz −A]−1B +D =
[
A B
C D

]
When n = 2 we can relate

D in (3.50) to

[
D 0
CB D

]
in (3.52)

CB in (3.50) to

[
CAB CB
CA2B CAB

]
=
[

C
CA

] [
AB B

]
in (3.52) and

CAB in (3.50) to

[
CA3B CA2B
CA4B CA3B

]
=
[

C
CA

] [
A2
] [

AB B
]
in (3.52) which

renders

ĝ
d

=

 A2 AB B
C D 0
CA CB D


In a similar way, we can derive the state-space realization for a general n as being

An An−1B An−2B · · · B
C D 0 · · · 0
CA CB D · · · 0
...

...
...

CAn−1 CAn−2B CAn−3B · · · D

 (3.53)

4.3. Discrete lifting to enable state realization. In the system depicted in
Figure (3.2) below, a plant P with a control input ω and the signal to-be-controlled
ζ is equipped with a digital controller Kd. As suggested by the di�erent linings
for the signals in the �gure, this system is two-rate. The controller is working at
one, slower, sampling-rate, say h, whereas ζ and ω are signals referred to a faster
period, say h/n for some n ∈ Z+.
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Figure 3.2 (a two-rate discrete-time system).

P

K

z w

y u

d

A situation like this may occur when, for example, in an analytic context we
are set to work with an existing controller with pre-�xed rate. The input-output
may then originate from continuous-time signals, transformed to discrete time by
some � presumably in the plant P integrated � sample and hold-devices which are
able to work at a higher pace than the controller. A faster sampling-period means
a better approximation of the continuous signals and we want to make use of the
full capacity.

Whatever the background, the two-rate system in Figure (3.2) is time-variant.
Its response to a certain input-signal is depending on when this signal is set in, in
matters of relative distance in time to the nearest sampling-instance of the con-
troller.

However, we may lift the system to the base period h as shown in Figure (3.3).

Figure 3.3 (a lifted two-rate discrete-time system).

P

K

z w

y u

d

Wdh W
-1

dh

z w

We formally absorb the lifting-operator and its inverse in P and arrive at Figure
(3.4).

Figure 3.4 (a single-rate lifted system).

P

K

z w

y u

d

With

P =
[
P11 P12

P21 P22

]
we then have

P =
[
Wdh 0

0 I

] [
P11 P12

P21 P22

] [
W−1

dh 0
0 I

]
=
[
WdhP11W−1

dh WdhP12

P21W−1
dh P22

]
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Assuming basic demands on the stability of the original P were met, i.e. that the
time-variance was caused by the two-rate situation alone, the present system P
may now very well be turned time-invariant by the lifting process. In this case a
state model can be obtained. Nothing of the information on ω and ζ sampled in
between the sampling instances of Kd at integer-multiples of h has been lost, it is
all carried in vector-form by the lifted system. We are free to retrieve the unlifted
ω and ζ by employing inverse functions as shown in Figure (3.5).

Figure 3.5 (the system unlifted).
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K

z w

y u

d

Wdh W
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4.4. Lifting continuous-time signals. Arguably more conceptually inter-
esting than discrete-time lifting, is the lifting of signals and systems in continuous
time, bridging as it seems between discrete and continuous worlds.

As an introduction to what can be achieved, we consider a general continuous-
time periodic system, naturally expected to be time-varying over its period. Pro-
ceeding much in a similar manner as with the two-rate discrete-time system in the
last subsection, such a continuous-time system can with lifting be associated to a
discrete-time one that is time-invariant, without sacri�cing any knowledge of its
inter-sampling behavior.

4.4.1. The lifting operators. To illustrate the basic idea, consider any real-
valued continuous-time signal u(t) ∈ L2e(R). That is, u is meeting the demand∫ T

0

u(t)′u(t)dt <∞ ∀T > 0

Instead of sampling, i.e. u 7→ {u(kh)}∞k=0, which would mean the loss of all inter-
sample information, we map u to a functional space valued sequence:

u 7→ u := {u[k](t)}∞k=0, u[k](t) = u(kh+ t), 0 ≤ t < h, (3.54)

where thus

∀k, u[k] ∈ L2[0, h)

which is a Hilbert space for which we use the inner product

〈v, w〉 =
∫ h

0

v(t)′w(t)dt (3.55)

and the norm

‖v‖ =

(∫ h

0

v(t)′v(t)dt

) 1
2

. (3.56)
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Figure 3.6 (lifting of a continuous signal).

0
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Let `L2[0,h) be the space of such sequences, each element of which is a function
in L2[0, h), that is with u and u as in (3.54)

`L2[0,h) := {u | u[k] ∈ L2[0, h), ∀k ∈ Z+} (3.57)

We then make

Definition 3.11. For any h > 0 The lifting operator Wch : L2e(R) 7→ `L2[0,h)

is a functional valued operator such that u = Wchu. We denote byW−1
ch an operator

such that u = W−1
ch u.

We use the block diagram symbols

Wc
uu

Wc
uu -1

The similarities between Wch and Wdh, de�ned previously for the all discrete con-
text, are obvious. Indeed the �rst may be seen as a generalization of the latter.
Hence, when there is no risk for confusion, the discriminating extra su�x will from
now on be dropped.1

We can see that Wh is clearly a bijection between L2e(R) and `L2[0,h), so the

inverse W−1
h is sure to exist. Furthermore, if the signals to be lifted are square

integrable on the full real line, or rephrased, if we restrict the domain of Wh to the
Hilbert space L2(−∞,∞) and if we for `L2[0,h) de�ne inner product and norm in
accordance with (3.55) and (3.56), i.e. for any

ξ, ψ ∈ `L2[0,h), 〈ξ, ψ〉 =
∞∑
−∞

〈ξ[k], ψ[k]〉

1Indeed, lifting may be performed in a more general setting, with Wh using as domains not
only Rm or L2e(R), but other Banach spaces as well, but this will not be dwelt upon here.
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then Wh and W−1
h preserve inner products and are isometric, as can readily be

shown. Indeed, for any v, w ∈ L2(−∞,∞), we have

〈v, w〉 =
∫ ∞

−∞
v(t)′w(t)dt

=
∞∑

k=−∞

∫ (k+1)h

kh

v(t)′w(t)dt

=
∞∑

k=−∞

∫ h

0

v[k](t)′w[k](t)dt (3.58)

=
∞∑

k=−∞

〈v[k], w[k]〉

= 〈v, w〉
= 〈Whv,Whw〉

4.5. Lifting continuous-time systems. Consider an open-loop continuous-
time FDLTI system G, with input u and output y = Gu. The lifted system for
some period h > 0 is then G := WhGW−1

h with lifted input u = Whu and lifted
output y = Why. In block diagrams this is Figure (3.7).

Figure 3.7 (an open-loop continuous-time system lifted).

u y
W WGc

yu-1

h h

G

For simplicity of notation, we can without loss of generality assume that u
and y belong to the same Euclidean space Rn. For convenience, even if this is
not necessary for the computations, we also assume that G is stable, i.e. a linear
operator on L2.

4.5.1. Deriving state space equations. The state space equations of G are

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (3.59)

Our aim is to derive corresponding equations for the discrete-time system G. These
would be

ξ[k + 1] = Aξ[k] +Bu[k]
y[k] = Cξ[k] +Du[k] (3.60)

where u[k] and y[k] are elements from the sequences u and y respectively and
A,B,C and D are yet to be de�ned. To proceed, let us now apply to G an input
of [0, h) support. That is

u(t) =

 0 if t < 0
u[0](t) if 0 ≤ t < h
0 if t ≥ h

(3.61)

By elementary system theory (see for example [9]) the output then is

y(t) =


0 if t < 0
Du[0](t) +

∫ t

0
Ce(t−τ)ABu[0](τ)dτ if 0 ≤ t < h∫ h

0
Ce(t−τ)ABu[0](τ)dτ if t ≥ h

(3.62)
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For G, the lifted input and output corresponding to (3.61) and (3.62) are

u = Whu = {u[0], 0, . . .}

y = Why = {y[0], y[1], y[2], . . .}
where

y[0](t) = Du[0](t) +
∫ t

0

Ce(t−τ)ABu[0](τ)dτ

y[1](t) = y(t+ h)

=
∫ h

0

Ce(t+h−τ)ABu[0](τ)dτ

= CetA

∫ h

0

e(h−τ)ABu[0](τ)dτ (3.63)

y[2](t) = y(t+ 2h)

=
∫ h

0

Ce(t+2h−τ)ABu[0](τ)dτ

= CetAehA

∫ h

0

e(h−τ)ABu[0]dτ

y[3](t) = . . .

We now de�ne the operators as follows

A : Rn → Rn : x 7→ eAhx

B : L2[0, h) → Rn : u 7→
∫ h

0
e(h−τ)ABu(τ)dτ

C : Rn → L2[0, h) : x 7→ CetAx

D : L2[0, h) → L2[0, h) : u 7→ Du(t) +
∫ t

0
Ce(t−τ)ABu(τ)dτ

(3.64)

These de�nitions can be checked to �t nicely with (3.61), (3.62) and (3.63) into
the equations of (3.60), forming a discrete-time system, however with in�nite-
dimensional input and output. We can also see that A act on the same, �nite
dimensional, Euclidean space as A. A is thus a matrix.

4.5.2. Time invariance of the lifted system. To see that G is now indeed time-
invariant, we temporarily introduce some operators. For continuous time, let Dh

and D∗
h denote time delay by h and time advance by h respectively. On `L2[0,h) let

U and U∗ denote unit delay and unit advance. The assumption that G is h-periodic,
is then equivalent to

D∗
hGDh = G (3.65)

It is then quite evident that

U∗Wh = WhD
∗
h and W−1

h U = DhW−1
h (3.66)

Thus

U∗GU = U∗WhGW−1
h U

= WhD
∗
hGDhW−1

h

= WhGW−1
h (3.67)

= G

Reversing the argument, we see that G = W−1
h GWh must be h-periodic.

By (3.67) we can, just as for other time-invariant discrete time systems, con-
clude that (3.60) has a transfer function, and a realization

ĝ(z) =
(
A B
C D

)
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4.5.3. Matrix representation of the lifted system. Combining (3.63) and (3.64)
we get

y[0] = Du[0]
y[1] = CBu[0]
y[2] = CABu[0]
y[3] = . . .

(3.68)

The matrix representation of G is thus
D 0 0 0 · · ·
CB D 0 0 · · ·
CAB CB D 0 · · ·
CA2B CAB CB D · · ·

...
...

...
...

. . .

 (3.69)

which, in accordance with (3.50), constitutes a second argument for time invariance
of G.

4.6. Lifting feedback systems. The continuous-time system G of the pre-
ceding subsection can be feedback connected with a sampler, a digital controller
and a hold function, creating the standard sampled-data system to the left in Figure
3.8.

Figure 3.8 (feedback system lifted).
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By absorbing the sample and hold in G, and by lifting the system with regard
to input w and output z, we arrive at the system to right. A state space realization
for G could have the form  A B1 B2

C1 D11 D12

C2 0 0

 (3.70)

The matrix entry D22 is set to zero as a prerequisite for internal stability. Loosely
speaking, as internally stable, the system is supposed to �die out� if the input w is
blocked. So no �direct contribution� from u to y can be allowed. In other words,
the corresponding entry ĝ22 of the transfer matrix has to be strictly proper. The
entry D21 is also set to zero, so y is not corrupted by any direct in�uence from w
either. This is in a physical context equivalent to putting a low-pass �lter before
the sampler.

With the aid of the expressions for the operators in (3.64), it is not too di�cult
to derive corresponding expressions for a realization of a transfer from w to z in
the lifted system on the right. We refer to [2] for details.

4.7. The H∞-optimal sampled data control. In this subsection we will,
quite loosely and with very little rigor, discuss the H∞-problems and their solution
for sampled-data systems. The ambition is merely to indicate, why the lifting
technique may come handy here. For details and proofs, we refer to [2].
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4.7.1. Norms of sampled-data systems. One �rst hurdle, is that a sampled-
data system does not have a transfer in continuous time, and thereby no obvious
way of determining what is the H∞-norm. The Tustin method could of course be
considered, but we can also proceed along the path of the lifting technique.

4.7.2. Motivating a sampled data system H∞-norm. The transfer function of a
lifted sampled-data system can not be derived quite as simply as the transfers for
all-continuous or all-discrete systems. However, as has already been pointed out,

it can be done � as is shown in [2]. Such a transfer function f̂ is then operator-
valued and lives in a space that is a generalized version of H∞(D), consisting of all
operator-valued functions bounded and analytic in D. By the generalized maximum
modulus theorem, there are boundary functions of elements in this space on ∂D.

For a general, stable discrete-time system � let us denote it P , with transfer p̂
� we have in equation (3.32) de�ned the norm on H∞(D) as

‖p̂‖∞ = sup
0≤θ<2π

σ̄
[
p̂(eiθ)

]
. (3.71)

In accordance with equation (3.15) and the discussion on page 48, if p̂ is regarded
as an operator on a euclidian space, σ̄(p̂) is equal to the induced norm of p̂. That
is

‖p̂‖∞ = sup
0≤θ<2π

‖p̂(eiθ)‖. (3.72)

or the peak magnitude of the transfer on the unit circle. On the other hand � for

the transfer of a lifted system f̂ , the norm is induced by L2[0, h). That is

‖f̂(eiθ)‖ = sup
w∈L2(0,h)

‖f̂(eiθ)w‖
‖w‖

, (3.73)

which, again by equation (3.15), coincides with (3.72). This motivates de�ning

the H∞-norm of f̂ as the norm in equation (3.73). Furthermore, since the lifting
operator Wh and its inverse are isometries (see equations (3.58)), for a general
sampled-data system T : w → z � like the one found to the left in �gure (3.8) � and
its lifted version T we know that ‖T‖ = ‖T‖, or more precisely that the L2(R+)-
induced norm of T equals the `L2[0,h)-induced norm of T . It also turns out, details

omitted, that ‖T‖ = ‖t̂‖∞ for the transfer of the lifted system. Thus it makes sense
to assign to the H∞-norm of a lifted system the value of the L2(+)-induced norm
of the underlying sampled-data system.

4.7.3. The problems. With T as above and the sampled data system as on the
left of Figure 3.8, we can now formulate the H∞-problems:

• The analytic � Given the internally stableG andKd, compute the L2(R+)-
induced norm for T .

• The synthetic � Given G, design Kd with (sub)minimal L2(R+)-induced
norm for T .

Recall that the lifted system T is in�nite-dimensional. This prevents us from using
T directly for �nding the norm. However, there is another way.

4.7.4. Discretization of the sampled data system. Let us de�ne the closed loop
state model for T to be

t̂ =
(
AT BT

CT DT

)
(3.74)

It is a fact (again, no motivation here) that

‖t̂‖∞ ≥ ‖DT ‖ (3.75)

The blocks in (3.74) are all possible to derive. These derivations enable something
quite remarkable: For a chosen γ > ‖DT ‖, a stable discrete-time system Teq,d can
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be created. This system is connected to an identical Kd as is T and for its de�ned
state model

t̂eq,d =
(
Aeq,d Beq,d

Ceq,d Deq,d

)
(3.76)

we have, where we refer to [2] for a proof,

Theorem 3.1. The following two statements are equivalent:

• AT is stable and ‖t̂‖∞ < γ.
• Aeq,d is stable and ‖t̂eq,d‖∞ < γ

Unlike T the system Teq,d is �nite dimensional. Standard methods can therefore
be used for the H∞-problem (and in fact the H2-problem as well). However, thanks
to Theorem (3.1), the solutions found are also valid for T , which ensures that
all inter-sampling behavior is accounted for. This makes the here hinted method
advantageous to other forms of discretization, like for example the Tustin method.

It should also be noted that the formulas for procuring the system matrix for
Teq,d involve, and depend on, the γ employed. In this way, the discretization is not
exact. Theorem (3.1) still holds, though.

4.7.5. Considerations and alternatives. Although the lifting technique is attrac-
tively simple as a theoretical construction, the computations needed for performing
the process described in the foregoing paragraphs are not elementary. The solutions
are involved and the presence of intermediate steps make it di�cult to trace the
e�ect of original parameters of the continuous-time problem.

These are comments closely resembling those put forward in [11]. In this paper
and its companion [12], Mirkin et al instead of constructing a discrete system
with equal measure, addresses the challenge of attacking the lifted system directly.
Closed form solutions for this are presented. Mirkin et al also focuses on the
sample and hold functions as design parameters, whereas they in for example [2] �
the major source to the outline of the lifting technique given above � are given less
attention. The closer study of the sampling/hold devices leads to some interesting
observations, and the authors of [11] and [12] among other things suggest that a
more sophisticated design of the sampler makes unnecessary the �lter applied above
in Subsection 4.6.

4.7.6. Other ways. A few years before [11] and [12], Toivonen and Sågfors
[19] proposed a di�erent approach, via an expression of worst-case inter-sample
disturbance in terms of classic linear-quadratic optimal control theory. The solution
to the synthetic H∞-problem, in form of a two-Riccati equation, was said to be
identical to the one acquired via lifting.

4.7.7. A real-life application. One of the coauthors in [11] and [12], H. Rotstein,
has later together with E. Rudin in [13] discussed the design of controllers for object-
tracking surveillance video-cameras, so called �active vision�. One challenge seems
to be the switching back and forth between two modes of camera movement. The
�rst a default �smooth-pursuit� of an object, the second a �saccadic� or quick
adjustment to catch up with a fast moving object on the verge of slipping out of
the camera's view. The authors explicitly use lifting to come to terms with these
problems.

4.7.8. Some historical notes. Discrete-time lifting, or methods similar thereto,
seems to have been around in electrical engineering for quite long, possibly rein-
vented several times. G.M. Kranc's �switch decomposition� from the �fties is an
early example. More recent varieties have in the seventies and eighties been pre-
sented as �blocking�.

The development of continuous-time lifting appears to coincide in time with
the emergence of H∞ Control in general, i.e. from the beginning of the 1990s and
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on. Apart from those already referred to, names often mentioned are Bamieh and
Pearson, Kabamba and Hara, and certainly Yamamoto. Chen and Francis with [2]
produced the �rst major monograph on the subject. This last section of the present
report is greatly indepted to their work.
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Chapter 2
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Chapter 3
2 [2], [22], [9], [24]
3 [24], [2], [25], [7], [22], [6]
4 [2], [22], [11], [21], [13], [19], [17]
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