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Abstract 
 
Mathematics has history, but mathematical concepts, theorems and methods are often 
taught as if they were eternal truths independent of people and culture.  The purpose 
of this paper is to show how calculus education can benefit with inspiration from the 
history of calculus. 
 
There are two main parts in this paper. The first part deals with the history of calculus 
starting with functions and continuing with limits and continuity, differentiation, and 
integration.  In the second part I suggest some reasons and methods for, as well as 
problems with, integrating the history of calculus with education.  
 
 
 
 
 

Sammanfattning 
 
Matematik har historia, men matematiska begrepp, satser och metoder undervisas ofta 
som om de vore eviga sanningar oberoende av människor och kultur. Syftet med den 
här uppsatsen är att undersöka hur undervisning av grundläggande analys kan 
förbättras med hjälp av inspiration från analysens historia.  
 
Uppsatsen är tvådelad.  I den första delen behandlas analysens historia utifrån 
utvecklingen av funktionsbegreppet, gränsvärden och kontinuitet, derivator och 
differentierbarhet, och slutligen integraler och integrerbarhet.  I den andra delen 
föreslås anledningar till, metoder för och problem med att integrera analysens historia 
i undervisning.  
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1. Introduction 
 
 
The mathematics education in Swedish post-compulsory (pre-university as well as university) 
education lacks almost any element of historical development.  This is true as much of the 
goal of mathematical education as it is of the design of the courses.  For instance, in the 
“goal” section of the course plans there is a complete lack of any mention of history or 
development of mathematics.  It is only when discussing the criteria for the highest marks that 
Skolverket (the National Agency for Education) suggests that: 
 

The student gives examples of how mathematics developed, how it has been used 
throughout history and what its influence is in our time and in some different 
areas.1 
 
The student explains something of how mathematics is and has been affecting the 
development of our working and societal life and our culture.2 
 

At the university level this absence is as conspicuous.  Glancing through the course 
descriptions of mathematical departments at Stockholm and Gothenburg universities the only 
reference to history is an optional course in the development of mathematics.  Obviously 
concerns about the history of mathematics do not figure in ordinary mathematics education.  

This is also seen when one looks at the design of the courses in calculus.  With few 
exceptions, the topics treated are in this sequence: function, limits and continuity, 
differentiation, and integration. Within these topics, new definitions and theorems are often 
introduced with barely any motivation. As I shall show below, this is in clear opposition to the 
historical development of calculus.  

Regarding the explicit use of history, in Swedish textbooks history is sometimes 
mentioned by way of giving a face and a name to the concept taught.  There are also brief 
biographical notices of prominent mathematicians. This approach does tend to humanize 
mathematics somewhat but it lacks the potential to show the students how mathematics came 
into being: how it is continuously created and why.  

I believe that this leads to emphasis on memorization and routine solving of uninspiring 
exercises, with little attention to creativity, logic, and the balanced use of formal and informal 
reasoning. Without these core tools, or perhaps “aspects”, of mathematics, students are unable 
to understand even the necessity of stringency in mathematical proofs.  This gives rise to 
difficulties for the students when they attempt to understand how to use formal and informal 
reasoning when thinking about mathematics.  In the worst case this might lead to the feeling 
that mathematics consists of formulas and is dry, shallow and inhuman.  

Manya Raman discusses this when she examines how American textbooks in different 
levels of mathematical analysis present mathematical concepts and theorems.  She studies 
textbooks in precalculus, calculus, and analysis, observing the differences between them.  She 

                                                 
1 “Eleven ger exempel på hur matematiken utvecklats och använts genom historien och vilken betydelse den har 
i vår tid inom några olika områden.” Skolverkets criteria for “Väl Godkänt” in high school courses Matematics 
A – E. Nov 2006. 
2 “Eleven redogör för något av det inflytande matematiken har och har haft för utvecklingen av vårt arbets- och 
samhällsliv samt för vår kultur.” Skolverkets criteria for “Mycket Väl Godkänt” in high school courses 
Matematics A – E. Nov 2006. 
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focuses on how the textbooks present the concept of continuity, but I consider her discussion 
to be equally valid concerning other topics in calculus.   

From her criticism I have selected three main points to which I will return later: 
 

1. There is little motivation for the introduction of new concepts, theorems and methods. 
2. The change from informal to formal reasoning is sharp and unmotivated.  
3. The role of the problems that the students are intended to solve is unclear. 

 
There are many examples of these issues.  One main, which will serve to illustrate the ideas 
ahead, is how teachers motivate the students to accept that a positive derivative implies an 
increasing function.  The actual theorem is:  
 
Main Theorem:   Suppose f is differentiable in (a, b). 

a. If for all 0)(' ≥xf ),( bax ∈ , then f is monotonically increasing. 
b. If for all 0)(' ≤xf ),( bax ∈ , then f is monotonically decreasing. 
c. If for all 0)(' =xf ),( bax ∈ , then f is constant. 

 
In Swedish high school textbooks today, this fact is presented excluding the cases where 

.  The theorem is motivated intuitively, by pointing to the relationship between a 
positive derivative and an upward-tilted tangent, which implies that the graph is slanted 
upwards.  One textbook states that:  

0)(' =xf

 
From the geometrical interpretation of the derivative as slope of a tangent 
follows that if the derivative is positive then the graph is rising.3  
 

Then the textbooks attempts to make the argument more “precise”4 by showing an increasing 
graph with tangents and stating that “Apparently one can use the derivative to decide whether 
a function is increasing or decreasing.  Generally it is true that:” and then follows the 
statements of the theorem without any mention of the word “theorem”.5  Other textbooks skip 
even this basic motivation, and simply imply that because an increasing graph has a non-
negative derivative,6 the reverse is true as well.  Of course, anyone familiar with the 
difference between “if” and “if and only if” would object to such reasoning.  The fact that 
today’s students do not object I consider due to their lack of understanding of basic logic and 
the necessity for formality in proofs.  The formal proof of this theorem, however, is much 
more elaborate and, depending on level of desired strictness, requires knowledge of the Real 
Number system and the details of continuity. Different formal proofs will be outlined below. 

Given the situation described above, my purpose is to suggest in what way the integration 
of the history of calculus into calculus education can improve the students’ learning of 
calculus. I will first describe some essentials in the development of calculus.  Subsequently I 
will discuss the potential benefits of using the history of calculus in education, as well as 
some ways in which one might approach such an integration.  I will also attempt an outline of 
calculus education, ranging from the very elementary to the more theoretical and complex.  
Neither this outline nor any other sections on education are specifically intended for either 

                                                 
3 Björk, Brolin & Munther s 134: ”Av derivatans geometriska tolkning som riktningskoefficient för en tangent 
följer att om derivatan är positiv så stiger grafen.” 
4 Björk, Brolin & Munther s 134: “Vi ska nu försöka precisera detta resonemang.” 
5 Björk, Brolin & Munther s 134: “Man kan tydligen med hjälp av derivatan avgöra om en funktion växer eller 
avtar. Allmänt gäller:” 
6 Since for an increasing graph f(x-h)-f(x) is positive, and the derivative is defined in terms of the secant as it 
approaches the tangent, the derivative is positive as well. 
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secondary or university level but rather are meant to be flexible to accomodate the particular 
goals and needs of individual educational institutions and situations. 

I have limited my research to include only texts on the history of mathematics published 
in the last 40 years.  It would have been interesting to compare different approaches to the 
history of mathematics throughout the last century, or even to use original texts from the 
mathematicians themselves, but the time constraints of this paper made that option too 
ambitious.  My main source for the chapter on history is the anthology History of Analysis 
edited by Jahnke.  Regarding education, I have relied primarily on the ICMI study History in 
Mathematics Education, which covers a broad spectra of issues related to this topic.  Also 
Toeplitz’ The Calculus: a Genetic Approach and Bressoud’s A Radical Approach to Real 
Analysis have been very helpful not least in elucidating the practical aspects of integrating 
history in calculus education. 

 4
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2. Historical context  
 
 
In this section I will present some aspects of the history of calculus that I feel are pertinent to 
the education of calculus.  I will use the traditional sequence of instruction; starting with 
functions and miscellaneous ideas, I will continue first to limits and continuity, then to 
derivatives and differentiation, and finally conclude with some history of the integral and 
integration. 
 

2.1 Functions and general development  

2.1.1 Numerical tables, proportions and curves – early mathematics 
 
Though the concept of function is quite recent, the idea of one quantity being dependent on 
another is ancient.  The Babylonians constructed tables of squares, cubes, and many more 
relationships between values.7  One such table of reciprocals looked like this:8 
 
 
    2    30           16    3, 45          45    1, 20 
    3    20           18    3, 20          48    1, 15 
    4    15           20    3              50    1, 12 
    5    12           24    2, 30          54    1,  6, 40 
    6    10           25    2, 24         
    8     7, 30       27    2, 13, 20      
    9     6, 40       30    2            
   10     6           32    1, 52, 30      
   12     5           36    1, 40         
   15     4           40    1, 30             
 
 
It tells us that, for instance, the reciprocal of 2 is 30/60, the reciprocal of 40 is  
and the reciprocal of 54 is .9   

260/160/1 +
32 60/4060/660/1 ++

The Greeks thought in terms of proportions, considering for example that given two 
strings with the shorter being half the length of the longer, the note produced by the shorter is 
the same sound but with a higher pitch than that of the longer.10  The Greeks also studied the 
relationships of the sides of triangles to each other and to the angles in the triangle.  In this 
way, they arrived at the elements of what now is called trigonometry.11  Curves were also 
analysed by the Greeks, who interpreted curves in terms of kinematics.  Thus, for instance, 
Archimedes thought of a spiral as being produced by a point moving on a half-line which in 
turn is rotating about its origin.12  Following an understanding based on mechanics, the 
Greeks then formally proved the property being investigated. 

                                                 
7 Kleiner, 1993 
8 Melville 
9 Kleiner 184 
10 Kleiner 184  
11 Kleiner 184 
12 Thiele 29 
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During the 13th and 14th centuries mathematics became an important tool in the study of 
natural phenomena.  An important development is attributed to the philosopher Oresme, who 
was the first to represent physical processes in terms of graphs.  For instance, when it came to 
graphing velocity, he represented time on the horizontal axis and for each moment of time 
drew vertical lines the height of which represented the velocity at that moment.13   Then, in 
the 16th and 17th centuries men like Kepler and Galileo brought mathematics into many more 
questions in physics.  The mathematical tools used were curves and proportions (similar to 
today’s equations) to describe physical events and relations.  At the same time analytic 
geometry was invented by Fermat and Descartes.  They developed the art of representing 
curves by analytic expressions, which in turn led to the invention of an infinite number of 
curves where only a dozen had previously existed.14 One could perhaps say that a shift was 
taking place; mathematics was once again becoming independent of the natural sciences and 
pursued for its own rewards.  
 

2.1.2 The calculus of Newton and Leibniz 
 
Newton and Leibniz are two names intimately associated with the mathematics of the 17th and 
18th centuries.  Commonly it is stated that these two men invented the calculus.  Guicciardini 
points out that this simplification is unrealistic, and discusses their work instead in terms of 
three major contributions: reducing a myriad of problems to the two cases of quadrature and 
tangents, realizing the inverse relationship between these, and the creation of algorithms in 
general and especially for calculating differentials and integrals.15 Some of these contributions 
will be discussed elsewhere in this paper; for now I want to focus on foundational questions 
having to do with notions of “functions” – though the term is premature at this stage.   

Newton’s contribution to what later would be called functions was primarily his 
recognition of the fact that infinite series are useful for describing curves, in particular 
difficult ones hard to handle directly in their closed form.16  He interpreted curves and other 
geometric objects at first in terms of fluents and fluxions, moments and time – thus continuing 
the trend of interpreting mathematical objects through intuition related to physical processes.  
Newton imagined that geometrical objects were created by the movement of other such 
objects through the process of flow.17  Thus, a curve was generated by the movement of a 
point in space, and a plane was generated by the movement of a line.  The generated quantity 
was what Newton referred to as the fluent, and the instantaneous speeds were the fluxions.18 
The moments were infinitely small additions to the fluent generated in infinitely small 
intervals of time.19  These moments were infinitesimals, and Newton operated with them 
haphazardly – sometimes dividing by them and at other times discarding them because of 
their supposed equality with zero.20  Though at first Newton employed algebraic symbols and 
equations freely, later he decided, partly because of his doubts concerning infinitesimals, in 
favour of geometry.  He abandoned infinitesimals, and insisted that all mathematical objects 
be easily interpreted in concrete terms.21 

                                                 
13 Kline 210, 211 
14 Kline 210, 211 
15 Guicciardini 73 
16 Guicciardini 76 
17 Guicciardini 78 
18 Guicciardini 78 
19 Guicciardini 78 
20 Guicciardini 80 
21 Guicciardini 84, 98 
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Leibniz shared neither Newton’s emphasis on geometry nor his use of flow and other 
metaphors from the physical world.  Instead, he preferred algebraic expressions and was very 
careful with notation, effectively creating the notation of derivation and integration that we 
use today.  He conceived not of functions but of variable quantities related to one another.  He 
was also interested in their differentials, which are the variables’ infinitely small increments.  
Simplifying matters somewhat, it is also possible to contrast Leibniz’ approach to Newton’s 
by noting that where Newton’s variables varied in time and space, Leibniz’ variables were 
thought to vary only over sequences of values infinitely close to each other.  This would put 
Leibniz’ approach a little ahead of its time, but it should be noted that both men changed their 
interpretations repeatedly.22  In general, it can be said that their approaches were in most ways 
equivalent.23 

 

2.1.3 Euler and the concept of “function”  
 
During the early part of the 18th century calculus was still regarded as relating primarily to 
geometry.  Then, during the middle decades of the century, there was a shift towards implicit 
algebra, and Euler in his Introductio referred to quantities in the sense of numbers rather than 
in terms of geometrical quantities.24  Finally, in the late 18th century, Lagrange made his 
calculus explicitly algebraic.  At the same time, less focus was given to physical problems and 
more to pure analysis, uninvolved with applications to geometry and the natural world.25  

This development also brought changes in the ontological basis of analysis.  Mathematics, 
according to Euler, was the science of quantity, but what was meant by this term changed 
during the 18th century.  With Euler, “quantity” referred to “that which is capable of increase 
or diminution”.26 Jahnke gives examples such as money, area, and speed.27  Increasingly, 
“quantity” was made more abstract and in calculations represented by letters of the alphabet.  
With this development came the possibility of including in the notion of “quantity” objects 
such as square roots of negative numbers, whose relation to the concrete world is far from 
obvious.  

The infinitesimal and differential calculus of Newton and Leibniz was being reinterpreted 
as well.  Euler argued that it is not the actual increments, differentials, of the variables that are 
interesting, but instead what should be examined are the ratios between different variables’ 
differentials.28  It proved difficult to operate with differentials in this way, with none being 
considered independent.  Therefore, for the sake of easing calculations, mathematicians came 
to view some variables as independent and some as dependent.  In the words of Jahnke:  

 
It became more and more accepted that one should calculate with functions and 
their “derivatives” rather than with variable quantities and their differentials.29 

  
Kleiner suggests that the concept of function was introduced during the 18th century 

because there were by then enough examples of functions from which to give abstract 
generalisation.30  What then did “function” actually mean?  Johann Bernoulli was the first to 
                                                 
22 Guicciardini 95, 96 
23 Guicciardini 96 
24 Jahnke 106, 107 
25 Jahnke 106 
26 Jahnke 107 
27  Jahnke 107 
28 Jahnke s 108 
29 Jahnke s 108 
30 Kleiner 187 
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use this term in mathematics, referring to arbitrary expressions containing variables relating to 
curves.31  Leibniz liked this usage, and together they discussed how to designate functions by 
symbols.32  Euler used the definition of Bernoulli, and gave it, in his 1748 Introductio as:  

 
A function of a variable is an analytic expression composed in any way 
whatsoever of the variable quantity and numbers of constant quantities.33  

 
Here, analytic expression refers to all expressions formed by applying finitely or infinitely 
many times the algebraic operations.  Euler also categorized functions into algebraic and 
transcendental, and algebraic functions into further subcategories.   

Already in the 18th century some limitations were seen with this concept of function.   
One such limitation was that Euler wanted the solutions to the vibrating string problem to 
include those solutions which were not formed by a single analytic expression, in his words: 
“discontinuous” functions, such as curves drawn freely by hand.34 The controversy about this 
problem continued for the last half of the 18th century, but the issue of which functions to 
admit is perhaps even more obvious in another of Euler’s problems – the partial differential 

equation 0),(
=

∂
∂

x
yxu which admits any  regardless of shape and coefficients.35  This 

example shows the full scope of Euler’s 1755 revised definition of function:  

)(yf

 
Those quantities that depend on others in this way, namely, those that undergo 
change when others change, are called functions of these quantities.  This 
definition applies rather widely and includes all ways in which one quantity can 
be determined by others.36 

 
General though this definition might seem, Euler continued to refer the term function only to 
those functions which he had included in his earlier definition.37  Nevertheless, Jahnke finds 
it likely that this later definition of Euler’s influenced later generalisations of the function 
concept.38  

 

2.1.4 Pathological functions and generalisation in the 19th century 
 
The 19th century was the century of rigorisation, in which analysis was given the foundation 
that we know today.  Cauchy’s Cours d’Analyse of 1821 was the first sign of this process, 
and in it Cauchy presented the concept of function explicitly and exclusively as the 
dependence of some variables upon others: 

 
If variable quantities are so joined between themselves that, the value of one of 
these being given, one can conclude the values of all the others, one ordinarily 
conceives these diverse quantities expressed by means of one among them, which 
then takes the name independent variable; and the other quantities expressed by 

                                                 
31 Jahnke 114 
32 Jahnke 114 
33 Jahnke  114 
34 Jahnke s 124 
35 Jahnke s 127 
36 Jahnke s 126 
37 Jahnke 127 
38 Jahnke 127 
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means of the independent variable are those which one calls functions of this 
variable.39  

 
But once again, the formal definition does not tell us everything about how the concept of 
function was used.  Cauchy immediately after the definition remarks that functions can be 
categorized as either explicit or implicit; explicit meaning that the equations giving the 
relations between the functions and the variables are algebraically solved and implicit 
meaning that these equations are not algebraically solved.40 This implies that Cauchy still 
thought of functions as given by analytic expressions.  

At the same time, Fourier was being careful not to assume anything about analytic 
expressions pertaining to functions.  In 1822 he wrote:  

 
In general, the function f(x) represents a succession of values or ordinates each of 
which is arbitrary.  An infinity of values being given to the abscissa x, there are 
an equal number of ordinates f(x).  All have actual numerical values, either 
positive or negative or nul.  We do not suppose these ordinates to be subject to a 
common law; they succeed each other in any manner whatever, and each of them 
is given as it were a single quantity.41  

 
Yet speaking of the convergence of Fourier series, Fourier assumed that arbitrary functions 
are continuous, which is not required by the definition of function.  It was only with Dirichlet 
that continuity as well as analytic expression parted from the concept of function.42  
Dirichlet’s definition was: 
 

y is a function of a variable x, defined in the interval a<x<b, if to every value of 
the variable x in this interval there corresponds a definite value of the variable y.   
Also, it is irrelevant in what way this correspondence is established.43  

 
Another development was the change in desired generality.  Whereas Euler had relied on 

the generality of algebra, assuming analytic expressions to be in some way meaningful 
everywhere, Cauchy insisted that such expressions be valid only where they are defined.  
Also, Gauss thought that algebraic formulas should only be used under the right conditions 
and with suitable limitations.44  One example of the previous condition of calculus is that 
infinite series were employed carelessly with no concern as to their potential divergence.45 
Reasoning against such use of series, Cauchy moved calculus out of the generality of algebra. 
Much of this development was spurred by the development of Fourier series.  These coincide 
with the function that they represent only on certain intervals, which necessitated a closer 
look at how functions, and the relationships of functions to each other, are limited to 
intervals.46   

With Weierstrass, in the second half of the 19th century, came further rigorisation.  Where 
Cauchy had used long-winding and vague language, Weierstrass insisted on more formal 
symbolic language now commonly referred to as his “epsilonic” style.47 He also made 
important steps towards basing calculus on the real number system, which he properly 
                                                 
39 Lützen 156 
40 Lützen 157 
41 Lützen 157 
42 Lützen 158 
43 Kleiner 204 
44 Kleiner 173,174 
45 Lützen 161.162 
46 Kleiner 198,199 
47 Kleiner 185 

 9



Julia Tsygan – On the Use of History in Calculus Education 

constructed.  Weierstrass also worked with “pathological” functions, which are functions that 
seem very strange.  For instance, a function that is everywhere continuous but nowhere 
differentiable was, based on these properties, deemed pathological. This trend of inventing 
new and strange functions was very different from former years, when functions had been 
invented from the modelling of physical processes.  Some mathematicians were highly critical 
of this development.  For instance, Poincaré commented that:  

 
In former times when one invented a new function, it was for a practical purpose; 
today one invents them purposely to show up the defects in the reasoning of our 
fathers and one will deduce from them only that.48  

 
But the pathological functions did serve to show that Dirichlet’s concept of functions was 

too general to be useful for the foundation of analysis.49 Increasingly, mathematicians were 
obliged in their theorems and proofs to explicitly state the (sometimes numerous) 
assumptions.  The simple and elegant statements of the past were replaced by complicated 
formulations reminiscent of legal jargon.  

The 20th century brought rescue to the almost extinct infinitesimals and divergent series.  
Robinson constructed in the early 1960s a field extension50 of ℜ  in which infinitesimals were 
included.  He was then able to rigorously prove many of the theorems used by Cauchy and 
others who had employed infinitesimals.51  Other mathematicians generalised functions so 
that some non-differentiable functions could be differentiable.52  This development might 
seem to mean that the rigorisation of the 19th century was unnecessary. Yet this so-called non-
standard analysis rests on the rigorous foundations set up during the 19th century.  What is 
spectacular about the developments of the 20th century is not that it cancels the work of 
Cauchy and Weierstrass but that it shows us that mathematics need not be predestined to 
develop in only one direction but is subject, like so many other things, to the creative 
impulses of the human mind.  
 

2.2 Limits and continuity 

2.2.1 Early limits and continuity: motion and infinitesimals 
 
From antiquity limits have been intimately connected with physical processes.  Zeno was one 
of the first to create an infinite series53 and he did this partially to illustrate the problems with 
applying mathematical concepts such as “discrete” and “continuous” to intuitive physical 
processes.54  Yet later, with graphs, came a new geometrical interpretation of limits.  Newton, 
with his theory of fluxions and fluents, conceived of limits in terms of flow of variables 
through geometrical objects.55  It seems that, not heeding the many voices of dissent, 
mathematicians until the 19th century at least privately thought in terms of motion and 
physical processes.  This is not surprising especially considering that for large periods of time 
mathematics was intimately concerned with the applied sciences and the methods were, after 
all, surprisingly effective.  
                                                 
48 Poincaré (1899) quoted in Lützen 187, 188 
49 Lützen 188 
50 That is, a field encompassing a smaller field.  
51 Lützen 191 
52 Lützen 190, 191 
53 In the Achilles and tortoise paradox, for example. 
54 Kline 35 
55 Guicciardini 82 
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One aspect of 17th century mathematics blocking the development of rigour was the use of 
infinitesimals, already extensively used by the Greeks who already in antiquity had great 
doubts about their validity.56  Infinitesimals were infinitely small quantities that were used 
alternatively as non-zero and zero quantities. Newton and Leibniz both disbelieved the 
existence of infinitesimals, and considered their work lacking mathematical rigor because of 
them, but commented repeatedly that infinitesimals were just a convenient way of denoting 
variables whose limits are zero. They agreed with each other that if one exchanged 
infinitesimals for limits the calculus would have solid foundations.57  Newton, disenchanted 
with algebraic analysis, abandoned infinitesimals but Leibniz, whose analysis later developed 
into the one of today, continued to use infinitesimals freely.  One example of how 
infinitesimals were used during the 17th and 18th century is the following calculation of the 
derivative of : 2xy =
 

xdxx
dx

dxxdx
dx

xdxxy 222)( 222

=+=
+

=
−+

=&   

 
where dx is an infinitesimal.  The division above is possible because dx is not identical to zero 
but the removal of the last term is allowed because dx is considered to be zero.  Not 
surprisingly, this approach gave rise to a number of contradictions and questions about rigor.  
  

2.2.2 The changing definitions of limit and continuity 
 
A prize problem was proposed in 1784 asking for an explanation of how it is possible that the 
contradictory theory of infinitesimals has given so many correct theorems, and for a 
mathematical principle to substitute instead of the infinitesimals.  The answer came from 
Simon Lhuiller, who, like d’Alembert, defined limits as the value such that a variable can be 
made to differ from the value by an arbitrarily small amount. Though he also proved the 
product and division theorems for limits, introduced the notation “lim”, defined dy/dx in the 
modern sense as the limit of the difference quotient, and remarked upon the important fact 
that variables need not monotonously approach the limit; Lhuiller’s work did not become 
influential.  One reason is that the definition of limits in terms of variables, physically and 
geometrically intuitive though it was, still carried some uncertainties.  What could it mean, for 
instance, for a quantity to approach a given limit? It was not until limits were defined in terms 
of functions that the major contributions were achieved.  Another reason, according to 
Grattan-Guinness, was simply that Lhuiller had written poorly and laboriously.58  

Also in the 18th century, Euler gave a definition of continuity in which a function was 
continuous if it was given by a single analytic expression and discontinuous otherwise.59  This 
understanding of continuity meant that for Euler,  

 
=)(xf { 3x for all  and –x for all0>x }0<x  

 
is a discontinuous function, while  

xxf 1)( =  

                                                 
56 Toeplitz 61, 62 
57 Guicciardini 97 
58 Grattan-Guinness 101,102 
59 Kleiner 200 
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is continuous.  When Fourier showed that many functions like the above could be represented 
by Fourier series, which are single analytic expressions, it became obvious that with Euler’s 
definition of continuity some functions were continuous as well as discontinuous 
simultaneously.  This motivated Cauchy and others to try to find a better definition of 
continuity.60 

Whereas Euler thought of continuity as relating to algebra and the analytic expression of a 
function, Cauchy considered continuity by observing the graph of the function.  Perhaps 
because Cauchy was very critical of the understanding of functions as global (see section 
2.1.4 above), he was also open to interpreting continuity as a local, rather than global, 
quality.61 Abrogast had previously investigated different ways in which the Euler-continuity 
could be broken, and he argued that one such way was by discontiguity of the function, by 
which he means jumps in the graph.62  Cauchy had already observed that the proof of the 
fundamental theorem of calculus depended on the contiguity (or “no-jumps”) property of 
some functions, so he knew that this property was worth investigating further.63  It therefore 
became the focal point for Cauchy’s understanding of continuity.   

The breakthrough came with the understanding that limits need to be applied to functions 
of variables instead of to the variables themselves.  Cauchy’s definition of limit was:  

 
When the values successively attributed to a particular variable approach 
indefinitely a fixed value, so as to finish by differing from it by as little as one 
wishes, this latter is called the limit of all the others.64 

 
While this definition seems to imply that the variable is in motion, Lützen points 
out that Cauchy seems always to have thought of variables in sequences  with 
n going to infinity.65  Also in Cauchy’s other definitions, the definition of 
continuity for example:  

ns

 
The function f(x) will remain continuous with respect to x between given limits, if 
between these limits an infinitely small increase of the variable always produces 
an infinitely small increase of the function itself.66 

 
It seems that Cauchy is thinking in terms of two variables where one changes in response to 
the other.  Lützen therefore reaches the conclusion that Cauchy was already interpreting the 
limit in the way that we do today, giving meaning to statements like  for  but 
not to statements like  by themselves.67 

axf →)( bx →
ax →

The phrasing in these definitions still includes terms like “infinitely small increase”, and 
does not specify the order of increasing the variable or the function.  As mentioned above, it 
was not until Weierstrass’ re-interpretation of the variable as a letter symbolising any one of a 
set of values that the intuitive notions of time, motion and infinitely small quantities were 
eliminated from the calculus.  During his time as a high school teacher Weierstrass formalised 
the definitions of continuity and limits into the δε , -notation that we are familiar with today.68   
                                                 
60 Lützen 165 
61 Lützen 164 
62 Lützen 165 
63 Lützen 165, 166 
64 Grattan-Guinness 109, 110 
65 Lützen 162 
66 Grattan-Guinness 110 
67 Lützen 162, 163 
68 Kline p 950-956 
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2.2.3 Misconceptions about and problems with continuity  
 
At the same time continuity was a very different concept then from what it is today.  
Originally continuity was a taken for granted property of functions, though no definition of 
function ever implied anything of the sort.  Then, as the use of the concept of function became 
more inclusive, continuity was considered a property of some functions but not others.  What 
this property meant was still somewhat ambiguous.  Kleiner lists some misconceptions which 
seemed as natural to mathematicians of the 19th century as they must do to students today:  

 
• Continuity was confused with the idea of traceability, the ability to draw a curve without 

lifting the pen from the paper.   This was remedied by the invention of pathological 
functions which met the formal requirements of the definition of continuity but failed to 
be traceable.  One such function is )1sin()( xxxf = around x = 0. 

• Another misconception was that continuity was dependent on the Intermediate Value 
Property which was the property of some functions defined on closed intervals to assume 
every value intermediate the values at the endpoints.  Again a pathological function, 

{ )1sin()( xxf = for , and 0 for 0≠x }0=x , showed that a function having the 
Intermediate Value Property on any closed interval may still fail to be continuous.69  

• Continuity was believed to imply differentiability.  This assumption was disproved to the 
mathematical community by Weierstrass, who introduced his everywhere continuous and 
yet nowhere differential function.  

• Uniform continuity and uniform convergence were not fully developed concepts in the 
19th century. Cauchy believed himself to have proven that infinite series of continuous 
functions were themselves continuous.70  Once again a pathological function, 

xxf
2
1)( = over [ ,71 this time provided by Abel, served as counterexample.72  ]π,0

• Also problems of clarity with upper and lower limits, particularly important for the 
concept of integral, took a long time to be resolved. 
 
The development of the concept of limits proved to be crucial to the development of the 

calculus.  Already Newton and Leibniz were convinced that the rigour of calculus could be 
given by the theory of limits. What was needed as well was unambiguous language and 
notation. This trend of careful notation was introduced by Leibniz and developed into the 
formal δε , -notation by Weierstrass.  

 

2.3 Derivation 
 
The history of derivatives starts with the history of tangents.  These were used by the Greeks 
primarily for the description of objects when the objects were easier to analyse in terms of 

                                                 
69 Kleiner 201 
70 Grattan-Guinness 120, 121 

71 This function has fourier series representation ...3sin
3
12sin

2
1sin −+− xxx , which has 

discontinuities for exery π)12( += mx  
72 Jahnke 178 
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tangents than in terms of area.73 For instance, the tangent to the circumference of a circle is 
simply and statically given as the line which is perpendicular to the radius.74 Likewise, the 
Greeks calculated tangents for ellipses, parabolas, and other curves.  

So while in antiquity the tangents were primarily conceived of as static lines, relating to 
fixed geometric objects75, with the advent of graphs of physical processes mathematicians 
became interested in tangents as a way to measure instantaneous velocity, acceleration and 
much more pertaining to physics.76 Already by 1637 Fermat had developed a method of 
finding the extreme values of an algebraic expression I(x) which was very similar to the 
methods of today.  He considered that infinitely nearby such a point I(x) would be constant.  
With e being an infinitesimal, Fermat set )()( xIexI =+ . He then cancelled the common 
terms, divided by e and then cancelled all terms including e.  The remaining equation was 
solved for x, giving the x-coordinate of the critical point.77 Because the method yielded 
correct results, Fermat was not worried about the inconsistent use of e.78  

 

2.3.1 Derivation in the 17th and 18th centuries 
 
As mentioned above, Newton thought of curves in terms of fluents and fluxions.  The instants 
of time, denoted by o, were combined with the fluxions  into which would then represent 
the incremental increases or moments.  Then, given an algebraic expression, for instance 

 Newton would proceed as follows: 

x& ox&

,1=yx
 
He included the moments in the expression:     1))(( =+++=++ ooyxoyxoxyyxoxxoyy &&&&&&  

 
Because the expression reduces to:    ,1=yx 0=++ ooyxoyxxox &&&&  
 
Dividing through by o, Newton arrived at:           0=++ oyxyxxx &&&&  
 

Cancelling the remaining term containing o and shifting terms, he arrived at:        21 x
x
y

−=
&

&
 

 
Concerning the vanishing of terms containing o, Newton later had this to say:  
 

Ultimate ratios in which quantities vanish are not, strictly speaking, ratios of 
ultimate quantities, but limits to which the ratios of these quantities, decreasing 
without limit, approach, and which, though they can come nearer than any given 
difference whatever, they can neither pass nor attain before the quantities have 
diminished indefinitely.79 

 
This seems to imply that Newton had an understanding of the difference quotient in terms of 
the limit of a quotient, much like we think of it today. 

                                                 
73 Thiele 32 
74 Thiele 32  
75 Thiele 32 
76 Kline 342 
77 Van Maanen 49 
78 Kline 348 
79 Kline 365 
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While Newton dealt with infinitesimals for the purpose of calculating fluxions, Leibniz 
was interested in the ratios of the infinitesimals themselves.80  He handled the differentials dy 
and dx directly, and thought of them as infinitesimal differences between two close values of 
y and x. During this time, Leibniz also correctly calculated (but gave no proofs) the 
differentials of sums, differences, products, quotients, powers and roots of functions.  He 
attempted some explanations, but his writing was so muddled, fragmented and difficult to 
comprehend that it was only with the work of the Bernoulli brothers, who were taken with 
Leibniz’ ideas, that his calculus took intelligible form.81 

Other developments took place at about the same time.  Michel Rolle stated (without 
proof) in 1691 what is now called Rolle’s Theorem82 which I will have reason to mention 
again further on.  Newton and Raphson developed the Newton-Raphson method for the 
approximation of roots of .83  The Bernoulli brothers used the second differentials in 
a theorem concerning the radius of the curvature of a curve,84 and by Johann Bernoulli and 
l’Hospital was developed a method of calculating the limit of a fraction whose numerator and 
denominator both approach zero.85   

0)( =xf

Yet the main contribution of the time was to formally establish the relationship, until then 
only intuitively suspected, between differentials and integrals.  Leibniz, influenced by the 
work of Barrow, argued at first for the inverse relationship of differentials and integrals by 
reasoning that “But is a sum and d a difference.”86 Newton’s approach was more 
empirical; he was led to believe in the inverse relationship by calculating the rate of change 
for areas under curves and finding them to be equal to the expression of the curve itself.87  In 
1669 Newton also proved that the derivative of the integral of y equals y, as well as the 
reverse.88  

∫

The calculus of the 17th century did not escape criticism.  Among those who could not 
accept the contradictions and lack of formal proofs was Bishop Berkeley, who already in the 
title of his criticism spoke his mind: The Analyst; or a Discourse Addressed to an Infidel 
Mathematician.  Wherein it is examined whether the object, principles, and inferences of the 
modern Analysis are more distinctly conceived, or more evidently deduced, than religious 
Mysteries and points of Faith.   Berkeley was aware that this calculus led to correct results, 
and commented that the mathematicians arrive 

 
Though not at Science, yet at Truth, for Science it cannot be called, when you 
proceed blindfold and arrive at the Truth not knowing how or by what means.89  

 
Among those who heeded this criticism were Mclaurin, of the English school, whose 

response was to strip Newton’s theories of fluxions of all references to infinitesimals and 
return it to the Archimedean method of exhaustion and the proofs by double contradiction.  
True to English mathematics following Newton, McLaurin stuck to reasoning based on 
geometry and intuitive concepts of motion in time.90  On the continental side, where 
mathematicians were busy developing the calculus of Leibniz, d’Alembert had the idea to 
                                                 
80 Kline 379 
81 Kline 378 
82 Kline 381 
83 Kline 381 
84 Kline 382, 383 
85 Kline 383 
86 Kline 374 
87 Guicciardini 76 
88 Guicciardini 76, 77 
89 Bos 89 
90 Jahnke 127, 128 
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base differential analysis on limits, but he continued to operate with differentials in the way of 
his predecessors.91  

It was not until the late 18th century, already in the middle of the age of algebraic analysis, 
that the terms “derivative”, “derived function” and “primitive function” were introduced by 
Lagrange.92  He was adamant that the derivative was a function in its own right, instead of just 
a ratio of differentials.  Because of the limited idea of the concept of function at the time, 
Lagrange felt sure that most functions could be expressed by power series.  He stated that it 
was possible to give the derivatives of a function by looking at the coefficients of the power 
series representation.93 Lagrange put much work into founding the differential analysis on 
power series, but eventually the expanding concept of function made power series as a 
foundation impossible.  

 

2.3.2 The rigorisation of derivation under Cauchy in the 19th century 
 
In the 19th century differentiation was more rigorously described.  Cauchy stated in 1823 the 
following about derivatives:  

 
When the function   is continuous between two given limits of the 
variable x, and one assigns a value between these limits to the variable, an 
infinitely small increment of the variable produces an infinitely small increment 
in the function itself.  Consequently, if we then set 

)(xfy =

ix =∆ , the two terms of the 
difference quotient  
 

i
xfixf

x
y )()( −+
=

∆
∆

 

 
will be infinitesimals.  But while these terms tend to zero simultaneously, the 
ratio itself may converge to another limit, either positive or negative.  This limit, 
when it exists, has a definite value for each particular value of x; but it varies with 
x …. The form of the new function which serves as the limit of the ratio 

i
xfixf )()( −+

 will depend upon the form of the given function . In 

order to indicate this dependence, we give to the new function the name 
derivative and we designate it using a prime, by the notation y’ of  f’(x).94  

)(xfy =

 
Here Cauchy seems to create the difference quotient for a random continuous function, 

and only afterwards reflect that that the limit might or might not exist.  According to Lützen, 
Cauchy rarely stated his assumptions about the functions he dealt with, and when he did he 
often assumed continuity and then proceeded to differentiate.95  Later on, the invention of 
pathological functions of course necessitated a clearer distinction between differentiability 
and continuity.  One reason for the difficulties in separating differentiation and continuity was 
because of the un-rigorous use of infinitesimals.  As Grattan-Guinness points out, some 

                                                 
91 Jahnke 128 
92 Jahnke 128 
93 Jahnke 128 
94 Lützen 159 
95 Lützen 169 
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mathematicians believed that sharp corners in continuous functions could be interpreted as 
infinitely tight smooth curves.96  

Cauchy bases the derivative upon the difference quotient, rejecting Lagrange’s proposal 
about finding the derivative by calculating the power series.  Cauchy objected that not only 
might a power series not exist, even if it does exist it might not converge, and even if it does 
converge it need not converge to the correct function.97   

Cauchy also tried to rigorously prove important theorems like the Intermediate Value 
Theorem and the mean value theorem.  His proofs are not today viewed as rigorous 
particularly because he lacked the necessary distinction of terms such as continuity and 
uniform continuity, as well as an understanding of the real numbers.98   

 

2.4 Integration 
 
The oldest problems of analysis are problems concerning the calculation of lengths, areas and 
volumes.99  From antiquity until the 17th century the calculation of areas was done 
geometrically by either transforming an object into another whose area was more easily 
calculated, or by exhausting or filling the figure with objects such as many-sided polygons 
whose areas were easily given. The Greeks considered the problem of finding the area of a 
figure solved only when they, using only simple geometrical tools, could create a square 
having the same area as the figure; hence the term “quadrature”.100 But they ran into problems 
when trying to calculate the areas of circles, ellipses, and similar figures for which they 
instead used approximation. Some thought that the circle, because it can be approximated as 
closely as one likes by polygons on both sides, must have an area of the same type as the 
polygon.101  The atomistic worldview at the time hardly allowed for the existence of infinite 
decimal expansions, and even less so for different types of quantities.  In any case, the solving 
of areas demanded an ingenuous new method for each new figure; there was no general 
algorithm.  The solving of areas and volumes, particularly by using the method of exhaustion, 
did have some striking similarities with modern integration.  But the differences are greater: 
besides the lack of algorithms there were also no limits and exhaustion was not used to 
actually arrive at the quantities themselves, but rather to prove statements about proportions.   

 
Illustration of a Greek approach to calculating area 

                                           
96 Grattan-Guinness 121 
97 Lützen 169 
98 Grattan-Guinness 113,114 
99 Thiele 14 
100 Thiele 15 
101 Thiele 17 
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2.4.1 Cavalieri and Wallis 
 
In the 17th century several novel methods of integration were developed or invented.  One of 
these, the method of indivisibles, is credited to Cavalieri who published this method in 
1647.102  The method of indivisibles builds on the idea that a geometrical object of two or 
three dimensions, for instance a parallelogram, can be thought of as consisting of indivisible 
lines or planes.  By comparing these lines to the lines of another object, the area of which is 
easier to calculate, Cavalieri was able to give the area of the first object.103   The case of the 
parallelogram is illustrated below: 
 

 
Here, corresponding lines in the two figures are equal; hence the figures have equal areas. 

 
 

Useful though it was, there were some serious potential problems with Cavalieri's method. 
When applied to some figures it would yield an answer entirely wrong.  This was because of 
difficulties with comparing one infinity to another.  It seems that Cavalieri’s idea can be 
rephrased to say that if there is a one-to-one relationship between the equivalent indivisible 
lines of a geometric object, then these objects have equal area.  

C 
D 

B 

A 

Although the corresponding lines are equal, the triangle on the 
left does not have the same area as that on the right. 

 
Observe, for instance, the figure above.  Let us define the left triangle as smaller than the right 
one.  Yet for each line in each triangle there is a corresponding line in the other triangle, so 
according to Cavalieri the triangles should be equal. This kind of problems arises from the 
difficulties with infinities, which were not sufficiently understood at the time.104 
A different method, the unrigorous Arithmetical integration, was developed John Wallis who 
relied primarily of the convergence of infinite series.  Van Maanen gives an example of how 
Wallis would calculate the area under the curve axy 2=  between 0=x  and .   ax =

                                                 
102 Van Maanen 58 
103 Van Maanen 58, 59 
104 Toeplitz 60 

 18



Julia Tsygan – On the Use of History in Calculus Education 

 
 
First, Wallis would split the interval into n smaller intervals, each having the length na .   

He would then sum the areas of the small rectangles formed by sides na  and anma 2)( , 
obtaining: 
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Letting n go to infinity Wallis arrived at 
3

2a  which we recognize as the integral of y.105 

 

y 

x a 

y = (ma/n)²/a 

a/n 3a/n ma/n 

Graph illustrating Wallis’ method of integration 
 
 
Wallis expanded this technique to many more curves and published the results in his work, 
the Arithmetica infinitorum, in 1656.  It was this method, rather than the previous geometrical 
methods, that influenced Newton and Leibniz and developed into the integration of today.  
 

2.4.2 Integration under Newton, Leibniz and the Bernoullis 
 
Newton used primarily two methods for integration; he changed variables so that the 
expression was reduced to one in his table of fluents, or, if this proved too difficult, he used 
series-expansion and integrated term by term.106  He did have some intuitive grasp of the 
importance of the convergence of series, but did not formalise his ideas on the subject.107 At 
the same time, Leibniz and other mathematicians were struggling to understand how to move 
from the sum of rectangles under a curve to the area under the curve.  Popular at the time was 
to consider the area as a sum of y-values, but some also considered the area to be a sum of 

                                                 
105 Van Maanen 66 
106 Guicciardini 81 
107 Kline 361 
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infinitesimal rectangles.108  In 1680, Leibniz describes the calculation of area as the sum of 
rectangles and comments that the remaining triangles are negligible because they are 
“infinitely small compared to the rectangles”.109  The Bernoulli brothers continued to develop 
the Leibnizian style of integration in the 18th century, but where Leibniz had relied on 
infinitesimal rectangles, the Bernoulli’s defined the integral as the inverse of 
differentiation.110 
 

2.4.3 Integration in the 19th century 
 
This definition proved unhelpful, however, when it came to obtaining the coefficients of 
Fourier series.  The problem was that differential calculus could hardly apply to non-
differentiable functions.  Instead, Fourier chose to obtain the coefficients by using the definite 
integral which he interpreted as the area underneath a curve.111  In 1822 Fourier introduced 
the notation that we have today, with the bounds of integration below and above the 

integral:112   ∫
b

a

dxxf )(

 Cauchy agreed with Fourier that the basis of integration needs to be the definite integral, but 
instead of interpreting it in terms of area (in fact, later Cauchy defined area, arc length and 
volume in terms of the integral113) Cauchy preferred to define it as the limit of a “left sum”.  

 
Suppose that the function y = f(x) is continuous with respect to the variable x 
between the two finite limits 0xx =  and x = X.  We designate by  
new values of x placed between these limits and suppose that they either always 
increase or always decrease between the first limit and the second.  We can use 
these values to divide the difference X -  into elements 

 which all have the same sign.  Once this has been 
done, let us multiply each element by the value of f (x) corresponding to the left-
hand end point of that element [….] and let  

121 ,...,, −nxxx

0x

11201 ,...,, −−−− nxXxxxx

 
)()(...)()()()( 11112001 −−−++−+−= nn xfxXxfxxxfxxS  

 
be the sum of the products so obtained [….] if we let the numerical values of 
these elements decrease while their number increases, the value of S ultimately 
[…] reaches a certain limit that depends uniquely on the form of the function f (x) 
and on the bounding values of the variable x.  This limit is what is called a 
definite integral.114  

Xx ,0

 
 We need not here go into the details of his definition except to notice that the emphasis is 

on the existence (rather than on the use) of the integral, and that this is the first time that the 
integral is defined in terms of a limit.  Cauchy also went on to prove that the sum converges to 

                                                 
108 Kline 374, 375 
109 Kline 376, 377 
110 Lützen 170 
111 Lützen 170 
112 Lützen 170 
113 Kline 958 
114 Lützen 159, 160 
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the integral and to prove the fundamental theorem of calculus (assuming continuous 
derivatives).115  He also defined integrals for functions discontinuous at isolated points, as 
well as for integrals over unbounded intervals.  His method in both cases was to take the limit 
as the variable approached the discontinuity and infinity. 116 

While Cauchy showed (without proper rigour because of the absence of the notion of 
uniform continuity) that his definition of the integral is meaningful for continuous functions, 
Fourier was asking whether the integrals used for finding the coefficients of Fourier series 
made sense for all functions. This necessitated a further discussion about the meaning of the 
integral.  In his work on trigonometric representation, Riemann included, more or less as an 
appendix, his thoughts on the integral.117 His definition was similar to Cauchy’s.  He 
partitioned the interval (a, b) in the way of Cauchy, and then constructed the sum 

 

)( 1
1
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i xfS εδδ +∑= −

=
 

 
where iδ  is  and 1−− ii xx iε  is a rational number between 0 and 1.  Riemann then stated that 
if, taking iδ  diminishing to 0, the above sum approaches the same limit A no matter how the 
partition is created or what values of iε  are chosen, then the integral exists and 
 

 118 .)( Adxxf
b

a
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In this way, Riemann introduced a whole new class of functions: the integrable functions. He 
also went on to prove necessary and sufficient conditions for integrability.119 As a finishing 
touch, Riemann amazed the mathematical community by presenting an integrable function 
discontinuous on infinitely many points in any finite interval.120   

Darboux, whose definition of the integral in terms of the convergence of upper and lower 
sums was more precise than and directly equivalent to Riemann’s, proved the fundamental 
theorem of calculus for his definition.  The theorem was now stated as:  

 
If a function on an interval F [ ]ba,  is differentiable with a bounded and 

integrable derivative , then  for 

all .121 

)(' xFf = ∫=−
x

a

dyyfaFxF )()()(

[ bax ,∈ ]

]

                                                

 
This meant that Riemann’s criterion of integrability was enough to arrive at the fundamental 
theorem of calculus.  Nevertheless, some mathematicians argued that the existence of non-
constant differentiable functions on [ , whose derivatives have zeros dense in , shows 
that Riemann’s notion of the integral is not general enough to allow differentiation and 

ba, ),( ba

 
115 Lützen 171 
116 Lützen 172 
117 Hochkirchen 264 
118 Hochkirchen 264 
119 Hochkirchen 265 
120 Hochkirchen 265, 266 
121 Hochkirchen 271 
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integration to be reversible.122 The problem is that these functions, though they are 
differentiable, have derivatives which are not integrable.  This problem inspired Lebesgue, 
who wrote:  
 

It thus seems natural to search for a definition of the integral which makes 
integration the inverse operation of differentiation in as large a range as 
possible.123 

 
Lebesgue went on to create a more general notion of the integral, but his work is beyond the 
scope of this paper.  
 
 
 
 

                                                 
122 Hochkirchen 271 
123 Hochkirchen 272 
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3 Using the history of analysis to improve education 
 
 
I will now turn to the topic of why and how history should be integrated with education.  
First, I will describe some of the reasons proposed in the literature on the subject.  I will then 
proceed to account for how the integration of history in education can ameliorate the three 
points of criticism mentioned in the background section.  Following this, I continue with the 
question of how history can be used in teaching calculus.  Starting by describing some general 
categories, I will gradually focus more on the indirect genetic approach.  Finally, I will 
suggest an outline of calculus education and describe two books to which my approach is 
similar. 
 

3.1 The “Why?” of using history in mathematics education 

3.1.1 Some views from the literature 
 
In what way may the history of analysis be useful in mathematical education?  According to 
Barbin, the way in which integration of history with mathematics education works is that it 
first changes the way the teacher thinks of mathematics, then this teacher will change the way 
of teaching, and finally the students’ view of mathematics will be influenced.124  She therefore 
claims that due to the scope and complexity of this process, the evaluation of the approach to 
use history in mathematical teaching must so far be of a qualitative rather than a quantitative 
kind.  While this may be true, there are some more or less fixed goals set by different 
educational institutions.  I therefore hope that it should be possible as well as necessary to 
find ways to evaluate to what extent the integration of history into mathematical education 
helps students reach these goals.  But until further developments give more quantitative 
evaluations, there is little to rely on other than the testimonies of teachers and students.  

Specifically, several writers claim that using the history of calculus in its teaching makes 
both teachers and students aware of mathematics as a dynamic part of culture.  Barbin quotes 
an article written by a group of French teachers:  
 

Mathematics becomes alive; it is no longer a rigid object. It is the object of enquiry, 
controversy, contains mistakes and uses methods of trial and error.125  
 

and one of their students:  
 

…mathematics has for me passed from the status of a dead science to that of a living 
science, with an historical development and practical applications.126 
 

Others point out that the role of the teacher changes dramatically.  Instead of the traditional 
role of lecturer, a teacher who uses the history of calculus globally in his or her teaching may 

                                                 
124 Barbin 63 
125 Barbin 67 
126 Barbin 67 
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act more as a guide, helping the students construct calculus by solving key problems.127 
Barbin puts it this way:  
 

This difference corresponds to a contrast in pedagogic style: that of the traditional 
teacher, where knowledge is handed out by the teacher, and a learning process 
based on mathematical activity by the student. 

 
Tzanakis et al. give five main areas in which they feel that mathematics teaching may be 

improved by the use of history.  Briefly, these areas are: 
 
a. The learning of mathematics.  This is in part essentially the main point of this paper, 

namely that the reorganizing of the curriculum to better reflect historical developments 
helps provide insights in and motivation for new concepts and methods.  Other 
positive aspects are that using history may provide interesting curricular 
enhancements, create a natural bridge to other subjects, and help the students improve 
a variety of non-mathematical skills such as evaluating resources and documenting.128 

b. The understanding of the nature of mathematics.  By being exposed to original texts 
students may learn that mistakes, doubts, intuition, blind alleys and controversies are 
all integral parts of mathematics.129  This might give the students more confidence in 
their own attempts to solve problems or understand tricky concepts.   

c. The teacher’s understanding of didactics. By understanding the historical development 
the teacher is better equipped to use a wide variety of relevant examples.130  Another 
important point is, I think, that the teacher is more able to gage the difficulty of a 
given topic.131  Often some concepts (like “function”, for instance) may seem obvious 
to someone who has had time to digest and work with the concept for a long time, and 
the teacher might therefore need to be reminded of how difficult the concept was for 
brilliant mathematicians of the past in order to understand the difficulties experienced 
by the students.  

d. The students’ feelings towards mathematics.  Seeing mathematics as described in 
point “b” above might give the students more tolerance with their own mistakes and 
confidence in their own attempts to solve problems or understand tricky concepts.132  
Students may also learn to be persistent with difficult problems and feel free to search 
for novel and creative solutions.133  Interestingly, Tzanakis et al. do not mention it, but 
other authors are convinced that the students actually seem to like mathematics more 
when it is taught with its history. 

e. Mathematics as within cultural context.  Exposure to different types of texts and 
historical examples might give the students insight into how mathematics is tied with 
culture as a whole and how the mathematical communities have functioned 
historically.  An interesting example given by Radford is the difficulties in the West, 
compared to the relative ease in China, with negative numbers.  According to Radford, 
philosophical, by today’s standards almost religious, differences were apparently very 
important in the understanding of negative numbers.134  Regarding mathematical 
communities, examples like the priority dispute between Leibniz and Newton and the 

                                                 
127 Barbin 64 
128 Tzanakis et al. 204.  
129 Tzanakis et al. 204, 205. 
130 Tzanakis et al. 206 
131 Tzanakis et al. 206 
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133 Tzanakis et al. 207 
134 Radford 37, 38 
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resulting rift within the European mathematical community may not only illustrate 
problems with publication, but also serves to humanize mathematicians as well as 
mathematics itself. 

 
 

3.1.2 How does the use of history with education solve the three problems?  
 
In this paper I will not discuss further the alternative role of the teacher or the students’ 
overall change in interest and appreciation of mathematics.  Instead, I want to examine how 
integrating the history of calculus with calculus education solves the three problems presented 
in the background section above. 
 

3.1.2.1 There is little motivation for the introduction of new concepts and methods 
 
There is ample motivation historically for the introduction of new definitions, theorems and 
methods. For instance, one may progress from a narrow to a wide definition of function by 
pointing to different pathological functions and to the fact that functions can be expressed 
both by single analytic expressions and by multiple expressions over several intervals. This is,  
in fact, exactly what has happened historically from the Bernoullis and Euler to Cauchy, 
Fourier and Dirichlet.   

Also the concepts of continuity and limits are easily justified by introducing the students 
to the problems encountered by using infinitesimals.  Starting with the infinitesimals, one 
might ask the students to try to formalize their intuitive understanding of these concepts.  
Pointing to the discrepancies in alternatingly using infinitesimals as non-zeros and zeros to 
suit ones purpose, and perhaps quoting Bishop Berkeley, the students might be convinced that 
something stricter is necessary. The limit as motion is probably familiar to the students, and it 
is not difficult to argue that this implies a dependence on time. Instead of time, one might 
argue, we can look at an expression containing the variable and see what happens to the 
expression when the variable is allowed to change values.  In this way we have followed 
Newton and Leibniz, through Lhuiller to Cauchy, Bolzano and Weierstrass.   

Concerning continuity one might introduce Euler’s definitions and then show that these 
definitions in terms of the functions’ expressions makes no intuitive sense, as well as being 
contradicted by the fact that functions can be written in a variety of ways.  The students might 
prefer Cauchy’s definition of continuity and because they have already been convinced of the 
problems with infinitesimals they will readily wish to rephrase Cauchy’s definition in terms 
of limits.  

Regarding derivatives, I believe that students quite often wonder why they are considered 
important.  Introducing students to a wide variety of physical problems involving tangents, 
such as problems of speed and distance, might provide motivation.  The students may perhaps 
also be convinced that when faced with the problem of drawing a curve for which one does 
not know the algebraic expression, it can be very helpful to at every point know the slope of 
the curve.  

The integral is easy to motivate by connecting it to area. Successive improvements can be 
motivated by connecting them to the developments in the theory of functions and limits.  
Finally the tables can be turned and area be defined in terms of the integral, much in the way 
of Cauchy.  
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3.1.2.2 The change from informal to formal reasoning is sharp and unmotivated 
 
The change from informal to formal reasoning can be achieved by attempting to be as formal 
as was possible at the time of the development of the concepts taught. Pointing out the 
vagueness of the language used, perhaps even showing the students texts from the past 
(maybe even citing Lhuiller as example) and asking them to interpret these texts, should 
convince the students of the advantages of formality.  Cauchy’s assumption that continuous 
functions also possessed the qualities of uniformly continuous functions, and other similar 
examples, can be given to show the need for clear definitions and the importance of adhering 
to formal reasoning even while using intuitive understanding.  Thus, the striving to increased 
formality becomes a motivation for change, encouraging students to advance from intuitive 
definitions of things like limits to formal definitions, aware of why, when and how this 
happens in their own and the historical development of the understanding of mathematics.  
 

3.1.2.3 The role of the problems that the students are intended to solve is unclear 
 
Problems also take on a different role in this context. Instead of presenting students with the 
same problems as before the new concept was introduced, and ask them to solve it in a new 
way, problems can be used to illustrate the power of the concepts the students are asked to 
accept and understand. 

One instance of this is the transition from early definitions of function to later definitions.  
The function defined as an algebraic expression relating two variables does not, for example, 
allow us to decide immediately whether a given graph corresponds to a function or not. 
Dirichlet’s definition, on the other hand, does allow the standard way of identification by 
examining whether a vertical line will anywhere intersect the graph more than once.  This 
improved usefulness of the new definition should be pointed out so that the students may also 
learn about what constitutes good theory and what does not.  

Another example is of course, as previously stated, that of the definition of continuity.  A 
definition in terms of traceability does not allow some graphs to be classified as continuous or 
discontinuous.  With improved definition of continuity students should practice on such 
functions which elude the use of earlier definitions. 

With derivatives the case is already quite acceptable in my opinion.  Derivation is usually 
introduced with cumbersome tangents and limits, and the students are happy to exchange this 
for the standard rules of derivation.  The use of derivatives for drawing graphs of unknown 
functions, for solving differential equations as well as for simplifying integration also let the 
students use their new knowledge on novel problems.  

The same is true of integration, which must to many seem to be a wonderful tool allowing 
one to calculate areas under the strangest of curves, find the distance covered while 
accelerating, and even confirm the unintuitive formulas of volume and area of geometric 
figures.  

 

3.1.3 Epistemological frameworks 
 
I will now say something about the epistemological background and the different 
epistemological interpretations and frameworks behind using history in mathematics 
education.  The first framework used was based on the concept of recapitulation, inspired by 
evolution and genetic heritage.  In the last 20 years several more suggestions have been 

 26



Julia Tsygan – On the Use of History in Calculus Education 

forwarded and I will mention two: the concept of epistemological obstacle, and the socio-
cultural theory of Luis Radford.  

The idea of recapitulation first stems from the late 19th century and is influenced by 
Darwin’s theories of the evolution of species.  The idea is that the individual’s development 
(ontogenesis) recapitulates mankind’s development (phylogenesis).   According to Radford et 
al., a German biologist named Haeckel first applied this principle to psychology.135  He 
claimed that “the psychic development of the child is but a brief repetition of the phylogenetic 
evolution.”136 

Piaget and Garcia proposed instead something a little less simplistic, namely that people’s 
psychological development mirrors historical development. Their hypothesis is that 
historically people have progressed from the intra-operational stage of mental development 
(during which one can reflect on individual objects, but not on the connections between the 
objects), through the inter-operational (when one is able to perceive the interactions between 
objects) to the trans-operational stage (in which one can reflect abstractly on the interactions 
as parts of larger systems), and that the same thing happens in an individual acquiring 
knowledge.137  Though Piaget and Garcia were sure that cultural context deeply influenced 
the meaning of knowledge, they firmly believed that the actual process of acquiring 
knowledge is hardwired into the biology of humans and therefore insensitive to cultural 
differences.  “Society can modify the latter, but not the former” Piaget and Garcia said when 
speaking of the mechanisms of learning and the way in which the learned matter is conceived 
by the person.138  Piaget’s and Garcia’s ideas have been interpreted by some researchers in 
mathematical epistemology as “ontogenesis mirrors phylogenesis”, which in this context 
means that the development of an idea in an individual mirrors that idea’s historical 
development.139  

It is not at all obvious that this interpretation of Piaget’s work is correct, especially since 
Piaget never used the word “recapitulation” himself.   Also, a number of criticisms have been 
directed at the idea of “ontogenesis mirrors phylogenesis”.  One such criticism is simply that 
children today are neither like the children nor like the adults of past generations, so it is 
unclear why the development of their knowledge should mirror the past.140  Also, the idea of 
recapitulation does not go well with the influential developmental psychologist Vygotsky’s 
approach to epistemology.  In his view culture has the power to influence the person’s 
acquisition of knowledge by providing the person with different tools like language, 
computers, etc., which changes the mental functions of the person.  Regarding recapitulation, 
Vygotsky had this to say:  “We do not mean to say that ontogenesis in any form or degree 
repeats or produces phylogenesis or its parallel.”  

An alternative idea, that of the epistemological obstacle, has therefore by many been 
preferred to the idea of recapitulation.   The concept of epistemological obstacle suggests that 
students today are faced with the same obstacles or difficulties as mathematicians of the past 
because of the inherent inadequacies of the mathematical knowledge they possess.  The key 
here is the idea of inherent properties of knowledge; knowledge is understood as an objective 
entity with given strengths and limitations.  Because knowledge is objective, the students will 
face the same difficulties as the mathematicians of the past, given that they are using the same 
knowledge.  

                                                 
135 Radford et al. 145 
136 Haeckel quoted in Radford et al. 145 
137 Radford et al. 146 
138 Radford et al. 146 
139 Radford 31 
140 Radford 32 
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The socio-cultural perspective disagrees with the concept of epistemological obstacle.  
According to Radford, knowledge can never be defined outside of the given cultural 
parameters.  His claims that knowledge: 

 
“…can only be understood in reference to the rationality from which it arises and the 
way the activities of the individuals are imbricated in their social, historical material 
and symbolic dimensions.”141 

 
It is obvious even from Radford’s definition of knowledge, “a culturally mediated cognitive 
praxis resulting from the activities in which people engage”,142  that is nonsensical to assume 
that today’s students can ever have the same knowledge as mathematicians of the past, and it 
makes even less sense that this knowledge would be used in the same way. Given different 
socio-cultural contexts the seemingly same knowledge will be used in different ways and have 
different strengths and weaknesses.   Radford gives the example, already mentioned above, of 
how easily Chinese mathematicians dealt with negative numbers while Greek and Western 
mathematicians had great difficulties - though they all started out with the knowledge of 
positive numbers.143  

Given that the student appropriates knowledge by interiorising cultural concepts and 
methods, the classroom thus becomes “a micro-scape of the general space of culture” in 
which the students gains understanding of mathematics by “a process of cultural intellectual 
appropriation of meanings and concepts along the lines of student and teacher activities.”144 
Instead of the epistemological obstacle, Radford and other advocates of the socio-cultural 
perspective propose viewing history of mathematics as:  

 
a rather wonderful locus in which to reconstruct and interpret the past, in order to 
open new possibilities for designing activities for our students.145 
 

Though I find the theory of the socio-cultural perspective very compelling, it seems unclear 
to me how the theory is put into practice.  Radford is unclear on this point, and my 
interpretation from the above quotes is that the teacher uses history explicitly, bringing into 
light the very real and very different historical contexts of mathematics while using the 
concepts of the culture surrounding the students today.  Thus, I suppose that one would 
analyse the mathematics of the Greeks by considering at length the culture of ancient Greece, 
but not hesitate to express the Greek mathematics with modern notation.   

In my opinion, there is also something to be said for not going to extremes.  The criticism 
of the epistemological obstacle is valid, of course, but though knowledge is understood 
differently in different cultures, it is also possible that the similarities between cultures and 
people across these cultures, gives rise in similarities of knowledge.  Therefore it might not 
be far fetched to seek inspiration from mathematicians of the past in order to understand the 
difficulties of the students of today.  Also, it seems to me that history has more to show us 
than what has been mentioned in the three perspectives outlined above.  The benefits 
described in section 5 above do not fit nicely within any one, or even all, of the 
epistemological frameworks.  It certainly seems possible to teach mathematics without an 
underlying solid epistemological theory.  
 
 
                                                 
141 Radford et al. 164 
142 Radford et al. 163 
143 Radford 37 
144 Radford et al. 164 
145 Radford et al. 165 
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3.2 The “How?” of using history in mathematics education 
 
 

Integrating the history of mathematics with education can be done in several different 
ways.  Tzanakis et al. consider three such ways.  One is giving direct historical information, 
for instance by using whole books or mere snippets on the history of mathematics focused on 
teaching history rather than mathematics.146  Another way is a teaching approach inspired by 
history,147,which I shall elucidate below.  The third way is by increasing mathematical 
awareness by using historical sources or other methods to further students’ understanding of 
the intrinsic and extrinsic nature of mathematics.148  There are many options afforded by this 
third way of using history.  Tzanakis et al. list and in detail describe an impressive number of 
methods, including: using primary sources, research projects based on historical texts, 
historical worksheets, the use of historical packages, using mechanical instruments, solving 
historical problems, and experiential mathematical activities.149  

Among these, the main categories commonly used in the literature150 are the “global” and 
the “local” use of history.  To integrate history globally is to design the course so that it 
parallels historical developments.  In contrast, to integrate history locally means to use 
individual problems that have historic context.  Whether globally or locally used, history may 
be presented explicitly, by reading historical texts or in other ways use materials from the 
past, or implicitly, where the teacher might be the only one in the classroom who knows that 
the education is influenced by the history of mathematics.  In this paper, I am interested in the 
global semi-explicit integration of history with mathematics education.  This is very similar to 
the “indirect genetic approach to calculus” presented in the ICMI study.151  
 

3.2.1 The genetic approach to calculus 
 
Otto Toeplitz, a German mathematician active in the first half of the 20th century, 

advocated teaching calculus by the “genetic” (which implies heritage and evolution) 
approach.  His book, The Calculus: A Genetic Approach was published posthumously in 
German in 1949 and the first translation to English came in 1963.  Since Toeplitz others have 
worked to popularize the genetic approach in different ways. Bressoud’s A Radical Approach 
to Real Analysis seems to be a good and perhaps the only actual textbook strongly based on 
this approach.  

The idea behind the genetic approach is to learn from history how mathematics has 
developed, and then use this knowledge in teaching.  For instance, if the concept of function 
was at first quite simple and narrow, it makes sense that students first encounter functions in a 
similar way.  Also, if the development of mathematics has been fuelled by the necessity 
arising from unsolvable problems, then the genetic approach to calculus should have as a 
main principle that “a subject is studied only after one has been motivated enough to do so, 
and learned only at the right time in one’s mental development.”152 Because of this, the 
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genetic approach is more focused on understanding the “why?” of mathematical theory rather 
than the “how?” of computational techniques.153  

Tzanakis et al. propose a general schema of implementing the genetic approach to 
teaching calculus.  They recommend that the teacher first should acquire a sufficient 
knowledge of history so that (s)he may identify the “crucial steps…key ideas, questions and 
problems which opened new research perspectives.”154  Then these crucial steps etc. are 
reformulated so that they are didactically suitable for the mathematical classroom.  They are 
then presented to the students in sequence, each problem building on previous problems and 
increasingly difficult.  Tzanakis et al. distinguish here between a “direct” and “indirect” 
genetic approach; the direct being an explicit use of history, the problems appearing in 
historical order not only for didactical purposes but also to illustrate the actual historical 
development of mathematics.  The indirect method, on the other hand, uses history more 
implicitly and determines the sequence of problems more on didactical grounds than 
historical.155   

The advantages of the indirect genetic approach to integrating history are several.  One 
main is that it is very flexible regarding how much explicit historical material is imported into 
the classroom. Another advantage is that the teacher requires only a little training in the 
history of mathematics. Yet another advantage is that the teacher might from history be 
inspired to present the class with motivating problems connected to natural or social sciences, 
philosophy and religion. Thus the students would understand mathematics to be connected 
with and useful to some of their other interests, which in turn would increase the students’ 
interest in mathematics.  Victor Katz designed and for several years taught a course fitting the 
description of the indirect genetic approach.  He claims that teaching calculus in this way  

 
[…] helps to provide not only a motivation for its study but also a reason for the 
students to further explore the connections between their studies and the world 
around them.156 

 
The many epistemological difficulties of course create some problems for the direct 

genetic approach which tries to be historically accurate and didactically sound.  At the very 
least the teacher whose goal it is to be faithful to both history and didactics needs to work 
hard to fully understand the complex social-cultural contexts of mathematics and it probably 
requires considerable didactical skill to craft from this knowledge ideas that lend themselves 
to teaching within the restrictions on time and resources imposed on most teachers.  The 
indirect genetic approach is not as vulnerable to the criticisms mentioned above.  Since the 
goal is more modest than in the direct genetic approach, the teacher needs not be so concerned 
with historical accuracy or epistemological formality and can feel free to take and rework 
from history whatever suits the students’ needs. 

 

3.2.1.1 Classics of the genetic approach 
 
Otto Toeplitz’ The Calculus: A Genetic Approach was the first book designed to teach 
calculus with history in the “genetic” fashion which has also been my inspiration.  Toeplitz’ 
described his goal as different from that of an historian:  
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The historian – the mathematical historian as well – must record all that has been, 
whether good or bad.  I, on the contrary, want to select and utilize from mathematical 
history only the origins of those ideas which came to prove their value…. It is not 
history for its own sake in which I am interested, but the genesis, at its cardinal 
points, of problems, facts, and proofs.157  
 

Toeplitz worked on his Calculus for much of the 1920’s and 30’s, and before he died in 1940 
he had finished the first semester part of the course, covering mathematical content roughly 
from the Greeks to (and including) Newton and Leibniz.158   

Toeplitz starts the course with an investigation of the infinite, beginning with the Zeno’s 
paradoxes and the Greek method of exhaustion, and continuing through the modern definition 
of limit and infinite series.  He follows this chapter with one on the integral, starting with 
Archimedes’ quadrature of the parabola and ending with the definition of, and some theorems 
on, the definite integral.  Next comes a chapter on “differential and integral calculus” wherein 
Toeplitz describes tangents and derivatives, many techniques (such as integration by parts) of 
the calculus, as well as the fundamental theorem of calculus.  The end chapter covers 
applications to problems of motion.  

Throughout the book Toeplitz uses modern notation, at times seeming very anachronistic 
as he does so.  For instance, he does not hesitate to describe Greek geometry using algebra, 
and does not in any way apologize for doing so.159  He also does not in all or even most cases  
illuminate the historical background of a concept or method.  An illustrating point here is the 
product rule, of which he states:  

 
…it would be interesting to tell how it was discovered; but here lies the thin line 
between history for its own sake and history for the sake of illuminating the 
development of mathematical thought. The history of the discovery of the 
fundamental theorem served to illuminate aspects which usually do not stand out 
clearly at all, and this could hardly have been achieved by any other method. About 
the product rule, however, there is nothing to be illuminated.  Hence the history of its 
discovery does not concern us.160  
 

Apparently, Toeplitz did not appreciate the “humanizing” effect of the history of mathematics 
in education.  Though he often gives explicit descriptions of historical contexts, he does so 
only to elucidate the development of particular mathematical ideas.  

Bressoud’s A Radical Approach to Real Analysis is much more recent (1994) and the 
focus seems to be on introductory real analysis rather than calculus.   

 
It is designed to be a first encounter with real analysis, laying out its context and 
motivation in terms of the transition from power series to those that are less 
predictable, especially Fourier series, and marking some of the traps into which even 
great mathematicians have fallen.161 

 
 

The course starts with infinite series and these figure as a unifying topic throughout the rest of 
the book.  Different problems in analysis, such as questions about continuity and 
differentiation, are first introduced as questions concerning operations on or convergence of 
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infinite series.  The questions are then answered, and the answers are used to enhance the 
understanding of infinite series.   

The level of difficulty of the text varies incredibly.  The first chapter presupposes 
familiarity with Fourier series and partial differential equations.  Yet only later is the student 
gently introduced to the δε , -notation and formal definition of continuity and differentiation. 
Bressoud recognizes this variation in difficulty, and explains that the aim is that 

 
…every student in the classroom and each individual reader striking out alone should 
be able to read through this book and come away with an understanding of analysis.  
At the same time, they should be able to return to explore certain topics at greater 
depth.162  

 
The order of topics is not sequential; instead Bressoud alternates integration, differentiation 
and continuity with increasing exactification and difficulty.  The impression is of a tightly 
held together and very interesting course.  Yet I miss some key topics that I associate with a 
course in real analysis.  For instance, there is nothing on topology in Bressoud’s book, and 
nothing on the real numbers.  A Radical Approach seems more as a guide to mathematical 
theory for engineers than as a comprehensive course in real analysis for students of pure 
mathematics.  

What he does teach, Bressoud teaches magnificently.  For every idea that he presents, 
Bressoud gives ample motivation.  He uses Mathematica as a tool for exploration, letting the 
reader develop an intuitive idea of the problem or solution at hand before continuing to the 
formal mathematics.  For instance, in my opinion Bressoud’s handling of differentiation is 
masterful: he introduces the chapter with the Newton-Raphson method and shows 
numerically that it is unreliable for many functions.163  This leads him into error estimation, 

which motivates the more complicated definition of derivative: ),()()()(' axE
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with E(x,a) going to 0 as x goes to approaches a.164  Bressoud states this definition in terms of 
δε , -notation, and, understanding that the epsilonics might be difficult for some students, he 

continues to explain the δε , -process of determining continuity, differentiability and limits by 
presenting it as a game between two opponents.165 Bressoud also gives two of Cauchy’s 
proofs of the mean value theorems and points out the dubious assumptions (particularly the 
assumption of uniform convergence) and faulty reasoning in these proofs.  Bressoud states 
that:  
 

There is an intentional emphasis on the mistakes that have been made.  These 
highlight difficult conceptual points.  That Cauchy had so much trouble proving the 
mean value theorem or coming to terms with the notion of uniform convergence 
should alert us to the fact that these ideas are not easily assimilated. The student needs 
time with them.166  

 
The exploration of Cauchy’s proofs brings Bressoud to the main theorem used as an 
example in my paper, the statement that a positive derivative implies an upward 
graph.  Apparently, Cauchy first used this idea to prove the mean value theorem 
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instead of the other way around. Bressoud bases his proof of the theorem of positive 
derivative on the existence of supremum, and presents the proof in an exercise.167  

 

3.2.2 Outline for programme of calculus education  
 
To illustrate how history can be used in the teaching of calculus I propose the following 
outline, inspired in part Katz and Bressoud, but to the greatest part consisting of my own 
ideas. 
 
3.2.2.1 Early integration – finding the areas of geometric objects 
 
Before being introduced to calculus, students frequently learn some geometry, especially the 
finding of areas.  Building on this knowledge, one might introduce the students to a method 
of integration by approximating the area with polygons.  The areas of polygons can be 
cumbersome to calculate, and the students will most likely find it difficult to creatively 
discover new constellations of polygons for each new problem – but the method seems 
intuitive enough.  Because of the difficulties with using strange new polygons for each new 
problem, the motivation for a single method, perhaps that of using rectangles, arises.  Then, 
one divides some area, the circle for instance,168 into rectangles in such a way that it is not 
completely exhausted, but it is obvious to the students that if one divided the circle into more 
and smaller rectangles, the difference between the sum of the rectangles and the circle 
becomes as small as one wishes.  Yet it is difficult to calculate the area of some objects,  
 

Area of circle calculated first by polygons, then by rectangles 
 
 
circles for instance, using rectangles because one does not know the height of the rectangles 
at a given point.  “If only we had a way of expressing the circle in such a way that any point 
on its circumference is readily given by some formula” the students might wish.  This of 
course opens the door to introducing circles and other figures as graphs of equations. 
 

                                                 
167 Bressoud 117 
168 The circle is a handy illustration only.  In practice one should stay true to the principle that students should 
practice new methods on problems that were difficult or impossible to treat with old methods. 

 33



Julia Tsygan – On the Use of History in Calculus Education 

3.2.2.2 Interlude – functions and algebraic expressions 
 

 It is probably a good idea at this stage to stick to curves that can be motivated physically; 
otherwise the students’ interest might wane because they do not see the relevance of the task.  
Also, when increasingly relying on algebraic symbols instead of geometric objects or 
arithmetic, one might discuss at length what the algebraic symbols are and what they stand 
for.  This understanding took a very long time to develop and students can hardly be expected 
to intuit it after only a quick explanation.  One might also take the opportunity to review the 
different quantities that one accepts and uses for calculations, starting from natural numbers 
and ending with either irrationals or complex numbers depending on the knowledge of the 
students.  

When (re)-introducing the students to graphical interpretations of algebraic expressions 
there is the possibility of letting the students experiment.  On one hand there are perhaps 
many ways of representing algebraic expressions graphically (see the methods of Oresme, for 
examples).  Showing the students one or two such methods, and asking them to come up with 
own ideas, might be rather enjoyable – but probably the students have already been exposed 
to the Cartesian system and will therefore be unwilling to experiment further.   

On the other hand, it is not obvious how to represent 
geometrical objects algebraically, and not all geometrical 
objects can easily be interpreted as functions.  One might a
for an algebraic representation of the circle, for example, 
perhaps calling the students’ attention to the Pythagorean 
theorem in order to elicit the formula .  Asking 
the students’ to draw the circle from the formula, giving 
them a random r, will show them that using one of the 
variables as a dependent variable is much easier than not 
doing so.  Yet it seems that easier geometrical objects like 
rectangles are more complicated to express algebraically.  
This is an interesting topic to explore.   

sk 

f 

222 ryx =+
y

x 

r 

Motivation for   222 ryx =+

One might tentatively introduce Euler’s first definition o
function and ask the students to reflect on it.  Given how much easier calculations become 
when one variable is dependent, the students might prefer Euler’s second definition or 
Cauchy’s definition.  Also, the distinction (in the manner of Cauchy) between explicit and 
implicit functions may be useful to talk about so that the students are not discouraged when 
they later find that some functions are not readily given in terms of one dependent and one 
independent variable. 

 

3.2.2.3 Integration and derivation of simple curves 
 

The students have also learned to solve polynomial equations, as well as graph these 
equations.   One can now apply the method in 3.2.1.1 to find the areas under polynomial 
curves.  This requires the ability to calculate sums so now is the time to introduce the new 

notation (∑ ) and spend some time exploring sums.  
=

n

x

mx
1

Once this is done, it is effectful to show what the area of the rectangles becomes for very high 
n’s. The students will see that for such n’s, the sum seems not to change very much as n 
increases.  It is possible to mention an intuitive concept of infinite series as well as 
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convergence at this point while remaining honest about the limitations of the approach at 
hand.  

Leaving integration, it is time to discuss the problem of tangents.  A good starting point is 
with the maximum of a curve.  This point is interesting because it allows one to solve many 
real world problems of optimization.  One may easily convince the students that this point 
coincides with a “flat” tangent, meaning that the slope is 0.  This should be done as formally 
as possible and then one might show one method of finding such extreme points, perhaps by 
using Fermat’s method described in the section on history above.  Fermat’s method is of 
course quite similar to setting the slope of the tangent to zero.  )()( xIexI =+ when divided 

by e easily reduces to 0)()(
=

−+
e

xIexI .  Observing this connection with tangents, students 

might be inspired to wonder about further uses of tangents, which motivates an interpretation 
of derivatives, or slopes of tangents, as instantaneous rates of increase or decrease.  
Illustrations from problems of physics, biology and economics may be motivating.  Newton’s 
approach with infinitesimals can be used for the purpose of finding some derivatives, but 
Fermat’s and Newton’s methods must be accompanied by the observation that adding an 
“infinitely small quantity” is a dubious enterprise.   

3.2.2.4 The Fundamental Theorem of Calculus 
 
Having calculated the derivatives of common functions, the students can be asked to reflect 
on the relationship between derivatives and integrals and the possible reasons for their 
inverse relationships. One might mention Leibniz’s observation that “ ∫ is a sum and d a 
difference.” Examples from physics, particularly pertaining to distance and velocity, may be 
illuminating. The students should be happy to find that instead of the tedious and difficult 
work of calculating series, they can integrate by finding the primitive function.  
This, the fundamental theorem of calculus, needs to be proven in some basic and intuitive 
way, leaving the rigor for later. One might also motivate the fundamental theorem of calculus 
by arguing geometrically from the graphs of s and v below.   

y 

t∆  
Graph of s 

)(ts∆  

x 

∫ =∆ sts )(  

y 

x 
Graph of v 

∫ ∆= ttvArea )(total  

t∆  

ttvArea ∆= )(rectangle  

 

Geometric motivation for the intuitive proof of the fundamental theorem of calculus 
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Start from the premise that to show that this implies that s is the primitive 

function of v.  We (and hopefully the students, by now) know that 
)()(' tvts =

ttsts ∆≈∆ )(')( .  Together 
with the premise this means that ttvts ∆=∆ )()( .  Now we also have from the graph of s that 

 and we are done.   ∫∫ ∆=∆= ttvsts )()(
This very intuitive approach lacks rigour and parallels the historical development of 

understanding the integral.  Newton, Leibniz, and their predecessors first understood the 
fundamental theorem of calculus in these intuitive geometric ways.  When the students have 
learned more about limits, continuity and convergence the proof should be improved.  Now it 
is also appropriate to let the students practice on problems involving finding the integral of a 
curve whose analytic expression makes calculation by sum difficult.   

At this point, Katz prefers to introduce power series.  I am sceptical of this, especially 
since the students have just been relieved of one of the uses of series.  Instead, I propose 
returning to differentiation and proving its many rules, including the chain rule and the 
product rule.  After some examples of the power of these rules, it is time to impress the 
students with the tricks now available to solve some previously unsolvable integrals.  As far 
as I understand, differentiation and integration developed in a similar interconnected manner 
under Newton and Leibniz. 

   

3.2.2.5 Applications to graphing  
 

Next could come the applications to graphing which is still being done on a global level, 
assuming that the function is valid everywhere. One might ask what information the 
derivative gives us about the graph of the function.  Remembering the intimate connection 
between tangents and derivatives, the students will readily agree that a positive derivative 
means a graph everywhere pointing upwards. The theorem is the one I mentioned earlier:  

 
Main Theorem:   Suppose f is differentiable in (a, b). 

d. If for all 0)(' ≥xf ),( bax∈ , then f is monotonically increasing. 
e. If for all 0)(' ≤xf ),( bax∈ , then f is monotonically decreasing. 
f. If for all 0)(' =xf ),( bax∈ , then f is constant. 
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Taking the opportunity to increase the students’ awareness of rigor, the teacher may contrast 
the intuitive understanding of the connection between positive derivative and upward pointing 
graph with the formal proof that the derivative at an extreme point is zero.  Discussions may 
arise on whether the derivative can be zero even though the graph is strictly increasing. This 
would invite further reflection on what is meant by derivative, infinitesimals and limits. One 
might ask the students to formally motivate their intuitive understanding of the connection 
between the positive derivative and upward graph.  This will lead to discussion on how to 
move from local to global statements.   

For instance, if the students possess an understanding of derivatives in terms of limits, 
they will readily agree that given any starting point the function is increasing in a sufficiently 
small interval surrounding this point.  Taking a second point on the fringes of this interval, the 
function is also increasing in a small interval surrounding this second point – but the problem 
is that this interval could be much smaller than the first one. To quote Cauchy, who thought in 
a very like manner: 

 
If one increases the variable x by insensible degrees from the first limit to the second, 
the function y will grow with it as long as it has a finite derivative with positive 
value.169  

 

rogressing in like manner, the question becomes whether one ever arrives at an endpoint.   
 

ive as it is, stating that it is not  
pro

e the 
 

this:  
                                                

x 

y 

a  b   p3   p2   p1 

Illustration of progression of points within interval where derivative is positive 
 
P
This might give the students some insights into some difficulties of mathematical theory that
they probably have had limited experience with before. 

The teacher might then leave the motivation as intuit
ved with sufficient rigor and that the students will come back to it later.  Another 

possibility is to describe the mean value theorem informally and without proof becaus
students will most likely find it intuitive.  Later one may return to the mean value theorem in
order to find out what that useful intuition actually meant and how it can be better motivated.  
The proof of the main theorem can be illustrated graphically and will then run something like 

 
169 Bressoud 83 
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 the students) and ask, as did the mathematicians at the time, what
or this problem.  This leads into discussions about the ontology 
at the students have been taught.  Until this point students have 
ely well-behaved graphs, but now is the time to introduce them to 
g obviously continuous and not continuous ones.  This motivate
s well as considerations of continuity and differentiation.  
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functions should not be interpreted as general as algebra, but rather should be examined 
within the domains where these expressions make sense.  

Pathological functions are obviously valuable in widening the understanding of funct
and by examining these extremes the students should be en

ion, 
couraged to propose improved 

def

f 

d 
ed 

3.2.2.7 The concepts of limit and continuity

initions by looking for the red thread of what it means for something to be a function.  
Following such attempts, the different definitions of Euler, Cauchy, Fourier and Dirichlet 
should be compared not just in terms of formal mathematical meaning but also of clarity o
language, usefulness, etc.  Given such a broad definition of function the students should 
readily agree, as did the mathematicians of the late 19th century, that the statement “f is a 
function” actually says very little about f and that other properties should be examined an
explicitly stated.  The pathological functions are good examples of how mathematics ceas
to be restricted by the practicalities of the natural sciences where one usually only finds the 
kind functions of Euler’s first definition.  This motivates a discussion of the nature of 
mathematics and the need for concepts that are not based on practical experience.  

 

 
 

selves propose definitions of continuity.  Some 
ight, like Euler, suggest that continuity should rest on the form of the analytic expression.  

At this point it is good to let the students them
m
This can be questioned by examining the function 2)( xxf = , which is continuous because 
it is written as an analytic expression, but which can also be written as xxf =)(  and is 
therefore discontinuous. In any case, students will probably want to say that it is continuous. 

Another good example is 
x

xf 1)( =  which has a single analytic expression but, the students 

will probably agree, behaves oddly around 0.  It seems that Euler’s definition makes sense 
algebraically, but not visually.  Oth rs will prefer the geometric intuitive approach by which a 
function is continuous if its graph can be traced with a finger.  The teacher can then show th

graph of the function

e
e 

)1sin()(
x

xxf = , which is intuitively continuous though it cannot be 

traced without lifting  the paper.  Perhaps someone will bring up the proper
that a continuous function should pass through all intermediate values, but that the reverse 
isn’t necessarily true can be shown by the counter-example, 

the finger from ty 

{ )1sin()( xxf = for 0≠x , and 0 
for }0=x .  

Piecewise continuity can also be discussed in this context.  One m pos t the 
diffi s e

ight pro e tha
cultie ncountered are all concerning points at which the function may be discontinuous.  

Thu

e 
 the 

ight help the students get a firmer grasp on this concept.  I think that it would be good 
to d

s continuity is a local phenomenon.  Eventually, the teacher can define continuity by 
saying that a function is continuous in a point if the value of the function in this point 
coincides with the values to which the function approaches from both sides. This of cours
brings up the question of what “approaches” means and the time has come to formalize
limit. 

Reviewing and clarifying the early historical, as well as the students’, understanding of 
limit m

iscuss the limit as motion, giving many examples from the natural sciences, as well as 
Zeno’s paradoxes.  Given time one might even discuss the different interpretations of space 
and time as discrete or continuous, and relate these to Zeno’s paradoxes and Aristotle’s’ 
rebuttals to Zeno.   
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In any case, students will need to be convinced of two kinds of limits.  One is the limit of 
a variable, what we mean when we say “as x approaches 0…”  This necessitates a firm 
und

 The 

e 

o use their understanding of limits to improve upon his 
def

erstanding of what variables are and that they can be made to take on any value within the 
domain.  Thus this first limit can be said to be decided by us, the teacher or the student. 
second limit is that of a function as the independent variable is made to approach some given 
limit, and here I think that one can clarify by saying something like “just like previously we 
thought of a variable approaching a limit through time, now this function uses not time but 
instead it uses the independent variable.  What happens to the function as the variable is mad
to approach some given value?”  

Now we are ready for more formal definitions of continuity.  Cauchy’s definition may be 
presented and the students asked t

inition. The “as little as one wishes” of Cauchy’s definition may present a problem which 
the teacher may perhaps be able to solve by gently introducing the δε , - notation of Cauch
and Weierstrass. Depending on the level of understanding of the students one might also 
discuss global properties like uniform continuity and contrast them ontinuity by using 
Abel’s counter-example. 

The students should also be encouraged to review previous proofs, such as the intuitive
proof of the Fundamental 

y 

to c

 
Theorem, and see what tacit assumptions about functions were 

ma
? If 

tions, 

3.2.2.8 Reformulating the derivative and a new proof of the main theorem

de then, and what the difficulties are without these assumptions.  For instance, if the 
function is not continuous, can we still prove the fundamental theorem as easily as we did
not, what is the problem?  We can choose to either state the theorem for continuous func
or to find some way to isolate the points of discontinuity, given these are not too dense.  

. 

 
 

inuity, it is easy to 
how that not all continuous functions have a derivative everywhere.  If the derivative is 

Reinterpreting the derivative by using these new concepts of limit and cont
s

defined as 
h

xfhxf
h

)()(lim
0

−+
→

 it simply does not exist for xxf =)(  and many other functions. 

The step fro ct concept of differentiability is slight.   
In particu tive to show the students th ormal concepts 

in dealing with the theorem mentioned earlier about the relationship bet

m this to the distin
lar it can be instruc e power of these f

ween a positive 
der

s on 
on of the 

lternative proof of the main theorem:   

such that 

ivative and an increasing graph.  One proof proper at this time is by interval 
encapsulation.  This proof presupposes very little knowledge from the students, but relie
their understanding of the formal definition of the derivative and their appreciati
concept of limits and convergence.  
 
 
A
 
Assume that there exist points 1x  and 2x 21 xx < and on some interval in 

.  Then suppose that this interval is within the half-interval closest to b (otherwise, take the 
idpoint e suspicious interval d denote this in

Conti
ans that 

)()( 21 xfxf >
( )ba,
m in (a,b) as one endpoi  of th ), an terval [ ]ba ,1 .  

nue to half the interval, encapsulating ever smaller intervals in like manner, 
[ ] [ ] ...,...,1 ⊃⊃⊃ nk baba  which converges to a single point x*.  But 0*)(' >xf , which me

nt

within a sufficiently sm nterval )*,*(all i δδ +− xx  around x* the function is increasing.  Yet 

 40



Julia Tsygan – On the Use of History in Calculus Education 

encapsulation can be continued until the interval in which there exist points  and such that 

and is within

1x 2x

21 xx < )()( 21 xfxf > )*,*( δδ +− xx , which again is a contradiction. 

   

Illustration of proof by encapsulation

 

3.2.2.9 A proof based on a chain of theorems 
 
Actually, the students now have everything they need to appreciate the way the main theorem 
is usually proved in textbooks in calculus.  This introduces them to some powerful theorems 
in mathematics and gives them opportunity to exercise more formal and complicated 
mathematical reasoning.  The theorems are also interesting because they are based on very 
different approaches, which are important for the students to appreciate if they are going to 
design proofs by themselves in the future. Having learned something about mathematical 
rigor in theorems and definitions one by one, students now get to see how the theorems that 
previously have been accepted on an intuitive basis now are proved; how one rests upon 
another; how together they make a rigorous chain of thought that leads to elaborate and 
elegant results.  

 
Boundedness theorem 
 
If f(x) is continuous on [a,b], then f is bounded on [a,b].  
 
Proof:  
 
Suppose f(x) is not bounded.  Then for any number M there exists some x in [ ]ba,  such that f(x) > M.  
Suppose that there is such an x in the half-interval closest to b, and denote this interval . 
Continue to half the interval, encapsulating ever smaller intervals

[ ]ba ,1

[ ] [ ] ...,...,1 ⊃⊃⊃ nk baba  
This sequence of intervals converges to a single point, x*.170  Let f(x*) = N. Then f being continuous 
gives that for all [ ] 1)(,*,* <−+−∈ Nxfxxx δδ .  Thus f(x) is bounded within that given δ of x.  

                                                 
170 Strictly speaking, this should be proven by using the supremum axiom but for present purposes the students 
can be asked to accept it as intuitive, understanding meanwhile that there is a potential gap in logic in the 
argument.  
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But we had narrowed down the interval of f’s unboundedness to any interval around x*, in particular 
to an interval within [ ]δδ +− *,* xx .   This gives a contradiction, so f(x) must be bounded.  
 
This theorem uses an intricate proof by contradiction, which the students are familiar with but 
which may be further discussed at this point.  One question that should be interesting at this 
point is whether proofs by contradiction are “good” proofs compared to proofs by 
construction, and what kinds of problems are suitable for which method of proof.   

Another feature of this proof is the method of interval encapsulation.  This reduces the 
problem from a question about a global, and quite intractable, property to something one can 
handle with the familiar epsilonics-based reasoning.   
 
Extreme-value theorem 
 
If f(x) is a continuous function on [a,b], then f has a maximum and a minimum on [a,b] .  
 
Proof:  
 
We know from the above that f is bounded.  Thus there exists an M which is the least upper bound to f.  
Suppose that there is no x such that f(x) = M. Then observe the function )(

1)( Mfxg −=  which is 

continuous and therefore bounded.  But because f can be arbitrarily close to M, g cannot be bounded.  
Therefore f must have a maximum, which is M.  The argument to show that f also has a minimum is 
similar.  
 
Here we see an elegant use of the previous theorem.  This proof also works by contradiction, 
but the method is the creation of a wholly new function, g(x). Thus, the new question of 
extreme values was transformed into a question of boundedness to which we already had the 
answer.  
 
Rolle’s Theorem 
 
Let f be continuous on [a,b] and differentiable on (a,b). 
If f(a) = f(b), there exists a number   such that f’(c)=0. ( bac ,∈ )
 
Proof:   
 
If f is constant then it is clear that f’(c)=0.  
If f is not constant, suppose that there exists an x such that f(x)>f(a). Then there is a maximum of f on 
(a,b), and since the derivative of a function in a local maximum is either non-existent or zero (and the 
current function is differentiable on (a,b)), we have that there is a point c, maximum of f on (a,b), in 
which f’(c) = 0.  Of course the reasoning is the same if instead there is only an x such that f(x)<f(a). 
 
This proof has two interesting features.  First, two cases are recognised and treated separately, 
in effect creating two narrow problems instead of one wide problem. The second feature is 
that it is a proof by construction – it shows that there is a point where the derivative is zero by 
giving us such a point. This should be contrasted to the previous proofs and discussed.  
 
 
Mean-value Theorem 
 
Let f be continuous on [a,b] and differentiable on (a,b). 

Then there exists a ( )bac ,∈  such that )(
))()(()(' ab

afbfcf −
−= . 
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Proof:  

Let )()()()()( ax
ab

afbfxfxg −
−
−

−=   

Then meets the requirements stated in Rolle’s Theorem, so there must exist a number c such that )(xg

.0)()()(')(' =
−
−

−=
ab

afbfcfcg   This gives that for this c: 
ab

afbfcf
−
−

=
)()()(' and we are done.  

 
The proof of the Mean-value Theorem differs from the previous proofs in that one not only 
constructs a new function, but at the end returns to the first function again.  One can argue 
that the auxiliary function is supportive in the sense of scaffolding surrounding a building 
under construction. It serves its purpose and is then removed.  
 
 
Main Theorem 
 
Suppose f is differentiable in (a, b). 
a) If f’(x) ≥ 0 for all x ∈  (a, b), then f is monotonically increasing. 
b) If f’(x) ≤ 0 for all x ∈  (a, b), then f is monotonically decreasing. 
c) If f’(x) = 0 for all x ∈  (a, b), then f is constant. 
 
 
Proof:  
 
The mean value theorem gives that for any a* and b* (where a*<b*) inside (a, b) there exists a c 
between a* and b* such that  
 

*)*)(('*)(*)(
**

*)(*)()('

abcfafbf
ab

afbfcf

−=−⇒
−
−

=
 

 
From this all the statements of the theorem are readily derived.  
 
In this proof all that is done is that one uses a previous theorem and then manipulates the 
expressions so that they readily yield the desired properties. This “tinkering” technique is 
similar to that of solving algebraic equations, and similarities between proofs and the solving 
of other mathematical problems may be emphasized.  This might be particularly helpful 
seeing as many students freeze in fear when they encounter problems starting with “Show 
that…” or “Provide a proof that…”  If the students can learn to look at proofs as just another 
form of problem-solving perhaps this fear might dissipate.  
 

3.2.2.10 A stricter definition of the integral and the fundamental theorem of calculus 
 
Armed with a better understanding of limits and continuity, as well as perhaps a firmer 
conviction in the logic of the mean value theorem, students are now ready for a closer look at 
the integral and the fundamental theorem of calculus.  

 It makes sense to build on the students’ understanding of area as many tiny rectangles and 
present them with Cauchy’s definition of the integral: 
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))((lim 1
1

10)( 1
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−→−
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ii
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i
ixx

xxxfS
ii

 

 

)( 1−ixf

)( ixf  
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1−ix  

 
This is really very intuitive and probably the students will agree that one requisite for the 
definition to be reasonable is that the limit exists and does not depend on in what way one 
creates the rectangles.   One property which ensures that this will be the case is the property of 
uniform continuity171 because given uniform continuity it is true that for any ε , every 
partition  when it becomes increasingly finer will inevitably reach 
the point where the largest  is smaller than the 

Xxxxa n =<<<= ...10

1−− ii xx δ needed to satisfy the 
ε<− − )()( 1ii xfxf .  This would be a good time to discuss integrability, but the students have 

not yet enountered functions which are integrable but not uniformly continuous.  One can 
show that functions which are unbounded in their discontinuities are difficult to approach in 
this way, but any further discussion of integrability is too difficult at this level. 

If the students can be convinced to replace the  with  (where  is any 
number between  and , the limit now has to exist for any choice of ) in the definition 
of the integral they will be ready for the standard proof of the fundamental theorem of 
calculus.  This proof is good for all integrable functions (in the above sense) and not just for 
the uniformly continuous functions for which the definition of the integral is easily seen to be 
well-defined.   

)( 1−ixf )( #
1−ixf #

1−ix

1−ix ix #
1−ix

 
Fundamental theorem of calculus 
 
If f is an integrable function on [ , and if ]ba, )(')( xFxf = on this interval, then 

 )()()( aFbFdxxf
b

a

−=∫

                                                 
171 Actually, Cauchy showed that the integral is well defined also for continuous functions which are not 
uniformly continuous, but his proof is, in my opinion, too difficult to present to the students at this stage.  

x ix  

Geometric motivation for Cauchy’s definition of the integral
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Proof of fundamental theorem of calculus:  
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n
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The mean value theorem gives us that there exists an  between every  and  so that 
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Letting  go to 0, we arrive at  and we are done. 1−− ii xx ∫=−
b

a

dxxfaFbF )()()(

 
Only the unusual length and complexity of the theorems involved in this and the previous 
section may be problematic, suggesting the use of the alternate proofs mentioned above. The 
important thing here is the progression from intuition to strict formality, mirroring the 
historical developments of analysis.   
  
In this outline I have tried to present some concepts and theorems in relative detail, while 
others I have mentioned only in passing.  The outline has followed early integration to 
differentiation, limits and continuity, finally returning to take a closer look at derivatives and 
integrals.  Like the main theorem of this paper, other elements of the calculus can and should 
be presented several times to the students, with increasing formality and complexity.  This 
means of course that one should not separate integration from differentiation from continuity, 
but rather that one should pay close attention to how the developments and needs of one field 
fuels and motivates progress in another. 

 

3.3 Potential problems 
 
Using the history of mathematics in the teaching of calculus and analysis does pose a few 
problems.  One such problem is that of time, seeing as teachers who want to integrate history 
in their teaching must make room in an already busy educational plan.  One solution used by 
those who use history in a local way is to simply replace some standard problems with 
problems from history and ask the students to do small projects on the famous historical 
problems.   For those who use history globally the issue is more one of an immediate 
expenditure of time when redesigning the whole course, but should not require more than 
regular time and effort during the course itself.  There are also other practical problems; in 
order to use history as inspiration for education the teacher needs to be well versed in the 
history of calculus, which means that teacher-training should put more focus on this subject.  
Another problem is that there is a lack of assessment of student’s knowledge of the history of 
calculus.  If there is no assessment, students might not be interested in learning something that 
they may consider superfluous or extra.  This is primarily a problem when using history 
explicitly in the form of primary sources and the like, and does not influence the strategy I 
propose in this paper. 

A different type of issue is that of the approach to history that is used when trying to 
implement history in this instrumental way to improve another discipline.  The looming risk is 
that of Whiggism, the tendency to interpret history from a narrowly modern perspective.  The 
teacher becomes an editor of history, classifying historical ideas as “relevant”, “leading 
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nowhere”, or “an early version of today’s integral”.   Even when one has zeroed in on the 
development or obstacle that one feels elucidates the situation of the students, one can never 
avoid the fact that mathematical, as well as all other, knowledge is shaped and given meaning 
within cultural contexts that are unique and can never be reproduced or even imitated in a 
classroom.  Even within the explicit use of history, it is unavoidable to, at least in part, change 
the notation, language and formulation of old texts so as to be able to present the main ideas 
more effectively, and then the text will never be understood the same way by the students as it 
was by the mathematicians at the time the text was produced.  Fried puts it this way:  

 
So, if one is a mathematics educator, one must choose: either (1) remain true to one’s 
commitment to modern mathematics and modern techniques and risk being Whiggish, 
i.e., unhistorical in one’s approach, or, at best, trivializing history, or (2) take a 
genuinely historical approach to the history of mathematics and risk spending time on 
things irrelevant to the mathematics one has to teach.172 

 
This is one reason that I propose an implicit approach to incorporating the history of 
mathematics.  By not stressing the explicit historical aspects, one avoids conveying to the 
students a history of mathematics that is simply not historical.  Instead, one might present 
history explicitly once in a while, by showing the students old instruments of mathematics or 
occasionally studying old texts.  Indeed, the interest of the teacher is in finding the gems of 
insight into the epistemology of the problems, not in being faithful to the study of history for 
its own sake. 

 

                                                 
172 Fried, p 398 
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4.  Suggestions for further research 
 
 
In the future I hope that more systematic research will be done evaluating and meta-
evaluating the effects of letting the history of mathematics influence the way of teaching 
mathematics.  Qualitative studies, interviewing individual teachers and students, should be 
systematically collected and evaluated.  Quantitative studies, with experimental classes or 
courses, should be evaluated in relation to the existing goals of the educational system.   

In my opinion there is also a need for a thorough evaluation of the goals and standards set 
by Skolverket.  It should be examined what the purpose of mathematics education is – 
whether it is to acquaint the students with mathematics only as a tool used by other sciences, 
or whether the wish is to show mathematics as a thing in itself, with a history, philosophical 
and even literary concerns: a human enterprise embedded in human culture.  

Given the limits of this paper, I have only briefly discussed some means of integrating 
history with education.  More work needs to be done on the “details” of implementing 
different aspects of and episodes in history within the many differing needs and interests 
calculus education.  
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5. Summary  
 
 
The current state of education of calculus in Swedish upper-secondary and university levels is 
such that understanding the history of mathematics is not explicitly stated to be a goal, yet is 
expected of the students wishing to achieve the highest marks.  The education seems to follow 
the traditional deductive sequence of function, continuity, derivation, and integration, 
repeated again and again with increasing rigor for every course taken.  The main criticisms 
addressed in this paper are based on Manya Raman’s analysis of American textbooks and 
include that there is insufficient motivation for the introduction of new concepts, that the shift 
to formal reasoning is not properly motivated or explained, and that the role of the practice 
problems is unclear.  

My investigation into the history of calculus shows that the development has been very 
different from the way mathematics is taught today.  Integration and derivation have been 
developed hand-in-hand and long before the concepts of continuity and function.  
Mathematics has for a long time been closely connected to the physical sciences, either by 
being motivated by problems in these sciences, or by providing a rigorous proof of theorems 
already guessed at by observing physical processes.  There has always been a striving for 
rigor but the degree to which mathematicians have strayed beyond rigorous foundations has 
varied.  Originally what later became the calculus was purely arithmetical, then geometrical, 
then algebraic, and finally all of these and something more than the parts. The problems 
worked on at all times were problems that stretched the abilities of mathematicians – they 
were problems previously unsolvable, and problems forcing further development.    

Returning to the question of education, the reasons for including the history of 
mathematics in education are that the inclusion will humanize mathematics for the students 
and, more importantly for my purpose, improve the education by supplying the much-needed 
motivations, contexts, and a different sequence of topics. Following a discussion of various 
epistemological theories, I describe some methods of integrating history with education and 
focus on the genetic approach to calculus.  I then propose some ideas on how such an 
education of calculus would look by giving an outline of calculus education and examining 
two courses based on the genetic approach. Finally, I briefly discuss potential difficulties, 
primarily issues with time and historical accuracy, and suggest that some further avenues of 
research should include meta-studies of qualitative research, as well as attempts at 
quantitative evaluation of the use of history in education relative local educational goals. 
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