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Introduction

A Schwarz-Christoffel mapping is a conformal mapping from the upper half plane to a
polygon. According to wikipedia; “Schwarz-Christoffel mappings are used in potential theory
and some of its applications, including minimal surfaces and fluid dynamics.”

Searching the internet will produce results that would take a lifetime to exhaust. So let us
only mention a few. There are many texts written about Schwarz-Christoffel transformation
searching Amazon online bookshop will at the writing time produce 48 hits that contains
“Schwarz-Christoffel” in its search word. Further there are computer programs that find these
equations for different polygons. Let us only here mention the free Matlab Schwarz-
Christoffel toolbox [5] written by Toby Driscoll. This is a big library that will find the
equations for numerous polygons. We shall use this toolbox at the end to see an example in
which we compare our results with the ones the toolbox produces.

In this text we will start by taking the general form of the equation and analytically
develop this by numerous steps to something that can be implemented into a computer
program. The second section will cover the idea of the implementation without going into
specifics in the programming. This will be followed by a few examples of the use of this
program, some tests and a little further work to solve related problems.

Further according to wikipedia; Karl Hermann Amandus Schwarz was born 1843 in
Hermsdorf, Silesia then a part of Germany. (Nowadays Jerzmanowa, Poland.) He worked in
Halle, Gottingen and Berlin in subjects of functional theory, differential geometry and
calculus of variations. He was a student of Karl Weierstrass and became a professor at the
University of Berlin in 1892. He died in Berlin in 1921.

Elwin Bruno Christoffel was born in 1829 in Montjoie, now called Monschau. He lived in
Cologne at a younger age and attended at the University of Berlin with Dirichlet. He received
a doctorate at this University in 1856 for a thesis on the motion of electricity in homogenous
bodies. A few years later he became “Privatdozent” before moving on to Gewerbeakademie in
Berlin (now part of Technical University of Berlin) in 1869. In 1872 he became a professor at
the University of Strasbourg. A position he retired a few years before he’s demise in
Strasbourg in 1900.



Analytic preparations

The general Schwarz-Christoffel equation has the form:
f(z) = AJ(& -x0)" (€ -x1) *(E x2) ... (€ -xn2) " 'dE+ B £=107]

for all z members of the upper half plane u. The properties of this equation can be read from
several introductory texts on complex analysis [2].. But for our purpose it’s enough to realize
that f(z) and the “constants” that appear in it has by definition the following properties:

f(z) maps u conformally onto a closed polygon P with N corners.

e The 0’s (k=1, 2,3, ... N-1) are the negations of the outer angles, of P, divided by .
Consequently (3 0x)+ On = -2. (Where 0y is set as the negation of the outer last angle
divided by m.)

e P convex corresponds to all 8;’s < 0.

e 0O’s are always larger then -1 since otherwise f(z) would not be conformal at all.

e The complex constants A and B merely rotate resize and move the polygon P in the
complex plane.

® Xo<X1<X»2<...XN-2
The xi’s (k =0, 1, 2, 3, ... N-2) are elements on the real line that are successively
mapped to each of the second to last corners of P. Furthermore the whole real line is
mapped to the contour of P and consequently both real infinities are mapped to the
first corner.

Actually the last property could be stated that the line from - to Xx( is mapped to a
continuous line from the first corner to the second. The line from x( to X; is mapped to a
continuous line from the second to the third corner and so on until « is yet again mapped to
the first corner. So we only need to have N-1 arguments of P since the last will be decided as
2w subtracted by the sum of the others. Furthermore the mapped lengths of the lines from both
infinities to the closest xx will be automatically adjusted so as to close P with all the correct
arguments at all corners.

Now if the xi’s where known for some P then we could implement this pretty
straightforward into a computer program and find out the mapping of each individual z in u.
Also if we arbitrary chose the xi’s so that each is greater then it’s predecessors, then we
would get a closed polygon P. However we want to map u onto a specific P. Now since the
arguments are known we will always have a P with correct angles at the corners. But to obtain
the correct side length’s we have to do some numerical manipulation to find the correct xy’s.

For a problem like N = 4 one could solve this by inserting values until one gets the correct
P. But for N larger then five we have to use numerical methods to solve the inverse problem
to find the xi’s or “breakpoints” that will be mapped with the correct distance in between.

In order to solve all the xi’s simultaneously we want to utilise Newton’s method for
nonlinear multivariable systems [1]. This method utilises a start guess vector vy that in each
successive step is improved by subtracting J¢(vi) 'f(vi) from vi. Until f converges to zero, and
hence gives us the final vector that satisfies the system. Here f is a system of n-equations and
n-variables, and J is the jacobian of this system.

To accomplish this we notice that we first need to create a system of equations with as
many equations as there are unknowns. Secondly we need to take the derivative of each of
these equations with respect to each variable. And thirdly we need to remove eventual
singularities since computers don’t deal well with these.



The six corner case;

To illustrate our method in the general case we shall give here a fairly detailed explanation
in the six corner case that will prove instructive. We start by noticing that we can simplify the
equation somewhat. As we noticed before the constant B merely moves P around in the
complex plane. Furthermore B can easily be adjusted after the mapping is done, so we might
just as well set B = 0 from now on. One might be tempted to say the same about A = 1, since
this only guards the scaling and orientation of P. However for convenience we want a
standard base, so let’s set A = Ap. Also the orientation and scaling of P can be adjusted later
by multiplying a complex constant to the integral part of f(z).

Now we see that we actually have two degrees of freedom when it comes to the xi’s. Even
if we had all the breakpoints at this moment the second corner could be mapped from any
point on the real line (except the infinities) since we can move this sequence on the line.
Remember, the first corner was mapped from both infinities. Furthermore if we had this one
point fixed then we could still map the remaining corners of P from a number of different
points on the real line. We can rescale the differences between any two points as long as all
relations between all successive points remain the same. So for convenience we take xo = 0,
this implies that this point will be mapped to the origin. Further we set x; = b. For the analytic
part we could have chosen b = 1 but for numerical reasons we want to be able to rescale as
discussed above. Most often we will set b = 100. The remaining xi’s are relabelled a;, a, and
as.

So now the problem is finding Ay and the ay’s so that they map u conformally onto P. The
first step is to find the corners of P. For convenience we chose the first two corners to be
c;=-1 and ¢, = 0. Since all c,’s must be mapped from certain points of the real axis, we have
a system of equations for the six cornered case;

AJE" (& -b)(E -a) (& -a)™(E -a3)PdE=c;  E=[0D]
AJE" (& -b)7(E -a) (€ -a)™(E -an)PdE=cs  E=[0al]
AJE" (& -b)7(E -a) (€ -a)™(E -an)PdE=cs  E=[0ay)
AJE" (& -b)(E -a) (€ -a)™(E -an)PdE=ce  E=[0a3]

that must be satisfied. We might notice now that if we subtract the right side from each
equation we actually have a system of 4-variables and 4-equations just as we wanted for
Newton’s method. However we want to work on this a little bit more first. Now every cy is
dependent of it’s predecessors since a corner in the figure has equations;

-mif1 -mi(01 +62) -mi(01 + 62 + 03) -mi(01 + 02 + 63 + 64)

c3=lie cs=c3+ hhe cs=ca+ lse Ce=Cs5+ l4e
where the I’s are the lengths of the sides of P. Now we see that in each equation the previous
integral is fully contained in the subsequent equation. Furthermore the right hand side falls out
as an expression where we have the previous right hand side plus a new part. If we now
realize that €™ = -1 and for each but the first of these “mapping equations” subtract the

previous from the next one, the system becomes;



Aole" (& -b) (& -a1)™(& -a2)™(§ a3 dE = (- 1)™ £=[0b]
AJJE" (€ b)P(E -an (g -a)™(§ -a)MdE = LD g=[bay]
AdJg" (€ b)(E -an (G -a)™(§ -a)"dE = -1 g = [ay ay]
A()J.(t:,el((t:, _b)OZ((t:‘ _a1)93(§ _a2)94(§ _a3)95d§ — 14(_1)—(91+92+93+94) é — [a2 a3]
Now we want to get rid of the imaginary parts of the integrals, since we see that some of
the factors inside parenthesis in the integral will be negative and we know that the sums of the
0 will be less then -2. We can accomplish this by simply taking the negative of the factors that

have potentiality to become complex, and we can single these out in each of the equations.
We get;

(—1)(92+93+e4+95)Aof§91(b—c“;)ez(al—&)93(a2—§)e4(a3—§)65d§ — 11(_1)—61 Ct, — [0 b]

(—1)(63+e4+65)A0f§91(&—b)ez(al—&)93(a2—§)94(a3—§)95d§ — 12(_1)—(91+92) Ct, — [b al]
(_1)(64+65)A0J'é;61(é_b)SZ(g_al)93(a2_§)94(a3_§)65dé; — 13(_1)—(61+62+63) Ct, — [al az]
(—1)GSAOIF;GI(c“;—b)ez(f;—al)93(§—a2)e4(a3—§)95d§ — 14(_1)—(91+92+63+94) Ct, — [3.2 a3]

Notice that we get the factor -1¢' 92+ B +8+859 45 each of the equations, if we divide both

sides of each equation with all but the length of the right side of the equation. We now put
C = (-1 +92+B+8+0A | The system becomes;

Cle™ (b-8)"(a1-6) " (ar-6)" (a3-€)"dE =1, g=[0b]

Cle™ (&-b)?(a1-6) " (ar-6)™ (a3-8)dE = 1 ¢=[ba
Cle™ (&-b) " (E-a) ™ (@r-8)™ (a3-8) dg = 15 &= [a a]
Cle™ (&b) " (E-a) ™ (E-a)™ (@3-6) dg = s & = [ay a3]

Here the lengths are real positive and the integrals are always real, so C must now be a
real number. Next we want to get rid of the restrictions that b < a; < a < az. This is
accomplished by replacing these by; a;=b + edl, a=b+ el + e and a=b+ edl 4 e®? 4 B,
Here the di’s have only one restriction, they must be real, and hence we have a similar
4-equation 4-variable problem, as the original one. But now we are free from other
restrictions except that all variables must be real. The system now looks as follows;



CIE™ (b-8)2(b+e1-6) " (bretl+e-5)M (b +e4e®-8)%dE =1, E=[0 b]

ClE™ (£-b) P (b+e1-6) 3 (bret! +e2-6) M (bl e Zae®-£)%dE = 1, E=[b be!]

ClE™ (£-b)2(E-bre) 3 (et +e2-6) M (bred e Pae®-£)%dE = 15 & = [bre! bretl+e®]

ClE™ (£-b)2(E-bre) 3 (E-bretl+e )M (bred e Zae®-£)%dE = 1, & = [brel+e? bed+eZ4e®]
One advantage with this notation is that we can now move the integrals so that they are all

taken over an interval from O to something. We shall make the substitution & - b= p in the
second equation, & — b — e®' = p in the third and & — b — e®' — e =  in the fourth.

Cf&el(b—&)ez(b+ed1—&)93(b+ed1+ed2—§)e4(b+edl+ed2+ed3—§)95d§ — 11 &‘ — [0 b]

Cj(u+b)91u92(edl_u) 93(6d1+ed2-u)94 (ed1+ed2+ed3—u)95du — 12 = [0 edl]
Cj(u+b+ed1)91(u+ed1)92u93(ed2—u)e4(ed2+ed3—u)95du — 13 w= [0 ed2]
Cj(u+b+ed1+ed2)91(u+ed1+ed2)92(u+ed2)93u94(ed3—u)95du — 14 = [0 ed?)]

Now, again for convenience we make another substitution. When we start dealing with
these integrals numerically it would be an advantage if the integration limits were fixed and
equal therefore we want to deform the function under the integral sign so that all integrals are
taken over [0 1]. So we want to do the substitution & = bp, d§ = bdp in the first equation and
= e%p, du=e®™dp in the other equations.

ed1(1+91++95)CI(p+b/edl)91p92(1_p)93(1_p+ed2/ed1)94(1_p+(ed2+ed3)/edl)95dp=12

where all integrals now are taken over [0, 1]. Weset D=1+ 0; + 0, + 05 + 64 + 05. Notice that
for later numerical implementation we have two problems the p™(1-p)™*' factors, that will
cause singularities at 0 and 1. In order to reduce this we split each of the integrals at the
halfway point 0.5. Thus the left hand side in each equation is an integral taken from O to 0.5
which is added to an integral taken from 0.5 to 1. In the later integral we make the substitution
p=1-p’ thus dp = -dp’ in each equation. Now all integrals are taken over O to 0.5 and the
system becomes:



b°C [p”" (1-p)™ (1-p+e*'/b)*® (1-p+(e"+e)/b)™ (1-p+(e*+e”+e®)/b) dp +

eDdlc J(p+b/edl)el pSZ (l_p)93 (1_p+ed2/edl)94 (1_p+(ed2+ed3)/edl)95dp +
+ eDdIC J'(l_p’_i_b/edl)el (l_p’)62p’63 (p’+ed2/edl)94 (p’+(ed2+ed3)/edl)95dp’ — 12

eDdZC J(p_'_(b_'_edl)/edz)el (p+edl/ed2)92 p63 (l_p)94 (1_p+ed3/ed2)95dp +
+ eDd2(j J'(l_p’_l_(b_'_edl)/edz)el (1_pa+edl/ed2)92(1_p’)63 p964 (pa+ed3/ed2)65dp’ — 13

ePBC [(p+(bre+e2)/e™) ! (p(e +e2)/e®)™ (pre/e™)® p™ (1-p)™ dp +
+ ePBC [(1-p +(b+e e )/e®) " (1-p+(e +e2)/e™)2 (1-p +e2/e®)® (1-p)* B dp” = 1,

The equations become quite cumbersome so we want some kind of a functional shorthand
notation to deal with these equations. First we drop the apostroph from all the second integrals
since this don’t really effect our calculations as long as we realize that a variable substitution
was done earlier. Now all we need to achieve is to find a nice expression for the factors under
the integral signs. For this we introduce two functions gu(...) gns(...) for each equation n,
where n is b for the first equation and 1 to 3 for the remaining. In each equation g(...) and
gns(...) 1s all but the potential singular pe factor under the first respectively second integral
sign. This might seem a bit strange but we are soon going to see one reason why we want it
this way and we’ll get benefit of this notation later on. Now the system is as follows;

b°Clp" goe(....)dp + b°Clp”gps(...)dp =1,

e™'Cl(pgur(...)dp + ™' Cl(pgus(..)dp =1,

e"Cl(p"gar( ... )dp + e Cl(p™gas(...)dp =15

eDd3Cf(pe4g3f(. .odp + eDd3Cf(p95g3S(. .odp=1
All integrals taken over [0 0.5]

For instructive purposes and later use let’s write down these g’s too;

goi(...) = (1-p)” (1-p+e?' /D) (1-p+(e ' +e®)/b)™ (1-p+(e' +e"+e)/b)*
gbs(o ) ) — (1_p)91 (p+ed1/b)93 (p+(ed1+ed2)/b)94 (p+(ed1+ed2+ed3)/b)95

gir(...) = (p+bre™)" (1-p)™ (1-pre/e?)™ (1-p+(e+ePye™)*
gis(--) = (L-pbre®™ (1-p) (pre /)™ (pr(e+e e

224(...) = (L-p+(b+e™ e (1-p+e'7e™)™ (1-p)” (p+eF/e®)®

g3f(. ) ) — (p+(b+ed1+ed2)/ed3)91 (p+(ed1+ed2)/ed3)92( +ed2/ed3)93 (1_5)65
235(...) = (L-p+(b+e’ +e®)/e™)" (1-p+(e*'+e™)/e™)” (1-p+e/e®)® (1-p)™

Now we are ready to remove the remaining singularity from the mapping equations by
partial integration of each of the eight integrals, in the system. If we integrate each integral
with respect to the pe factor and differentiate with respect to the function g, then the
singularity is removed. This follows since then the argument of the p factor becomes 1+60,



which is always positive. Furthermore the derivatives of each g-function is well defined
functions since b and all e*‘s are positive. We could perform it all in one step, but again for
later use and clarity in notation let’s first write down the derivatives of each g, we obtain;

dgpe(.. )dp=gpi(...)*(-0:/(1-p)-05/(1-p+e*'/b)-0.,/(1-p+(e* +e**/b)-05/(1-p+(e* +e+e)/b))=gpi( ... ) ¥hpg(....)
dgps(.. )dp=gps(...)*(-0,/(1-p)+0:/(p+e*' 1b)+0,/(p+(e* +*)/b)+05/(p+(e* +e*+e)/b))=gps(. .. ) *h p(...)

dg(.. )dp=gii(...)*(0,/(p+ble®)-0:/(1-p)-04/(1-p+e*/e®")-05/(1-p+(e+e L) e =g (... ) *hy(....)
dgo(.. )dp=g;i(...)*(-0,/(1-p+b/e™)-0,/(1-p)+0./(p+e*/e)-0s/(p+(e+e®) /e ))=g (... ) *h (...

dgo(.. Mdp=goi(...)*(0,/(p+(b+e")/e™)+0,/(p+e* /e2)-0,/(1-p)-0s/(1-p+e/e™))=gar( ... ) *hae(...)
dga(.. )dp=goy(...)*(-0,/(1-p+(b+e®)/e®)-0,/(1-p+e*'/e™)-05/(1-p)+0s/(p+e/e™) )=gsi(...) *hay(...)

dgs(.. Mdp=gsi(... ) (0,/(p+(b+e+e2)/e)+0,/(p+(e +e2)/e™)+0/(p+e/e®)-05/(1-p))=gs(...)*hs(..)
dgs(.. )dp=gss(...)*(-0,/(1-p+(b+e +e22/e)-0,/(1-p+(e!+e2)/e®)-0,/(1-p+e/e®)-0,/(1-p))=gs(...) *hsy(...)

(Remark! It’s the h’s at the far right that are the interesting parts)

So the original system now becomes;

bPC* (p1+91gbf(...)/(1+91) | ) fp”elgbf(-~~)*hbf("‘)/(l+el)dp +
+ p1+62gbs(---)/(1+92) | - _[p“engs()*hbs()/(1+92)dp) =1

ePICH (p"*Pg (.. )/(14+6)) | - [p i ). )/(1+6,)dp +
+p P (L IA403) | - [p P ) #hyCL(14+035)dp) = 1,

P20 (p"Pgr(.. )/(14+03) | - [p"* P ga(.. ) ¥ho .. )(1405)dp +
+p" (A0 [ - [p M) Fha()/(1409)dp) = 1y

ePPCH (" My )/(140,) | - [p" M gsi(.. ) ¥ha( .. )(1+0,)dp +
+ 0" Py (L (1405) | - Ip"* s ) *hay(.. )/(1+05)dp) = 1y

where all the limits are taken over 0 and 0.5. Now one could of course count the limits of the eight
parts we partially integrated. The lower limit of these will always be zero, however this would still
lead to a cumbersome function of the di’s. Also we will see that numerically we actually will get these
value for free while evaluating the integral that remains. So just leave it as it is and remember that
| means that we evaluate the function at p = 0.5 and all integrals are taken over [0, 0.5].

Now we can reduce this system to one of 3 unknowns and 3 equations by solving the first equation
for C and then setting this into all other equations:

1P ( [plljfngOK1+ez>+p“9fglso/<1+63>] |-1 [pf:zglfo*h1f<>/<1+ez>+pj+§jglso*hls 0/(1+63)] dp) -
-1 ([p"* g /(140 )+p" P20 O/(1402)] | + T 1" 200 *ho)/(14+0,)+p" g ) *his /(14+0,)] dp) = 0

1P+ [p" P aa/(1405)+p " 2o, O/(140,)] | - | [p"* P garO*hai )/ (1405)+p g, *ho )/(1+04)] dp) -
-1 ([p"* g /(140 )+p P2 O/(1402)] | + 1 1" 200 *hor)/(14+0,)+p" g ) *h, 0/(14+0,)] dp) = 0

1,eP%%( [plj“gsf()/(1+e4>+p19+“g3so/<1+es>] |-1 [plj“gm*h3f<>/<1+e4>+p‘;“g3so*hss 0/(1+65)] dp) -
L # ([ gpO/(140)+p P O/(1+0)] | + [ [p"*" 2u) *hpi /(140 +p" P g ) *his 0/(140,)] dp) = 0

Notice that if we can solve this equation system for the di’s we can easily solve C, so we
don’t bother with that for a while.



The general case;

Now let’s briefly consider the general system thus far by dealing similarly step by step as
in the six corner case. For every N > 6 the basic system is;

AE"(E-b)P(E-an®.. (€ -ans) N dE=c;  E=[0D]
AE"(E-b)PE-an®.. (E-ans) NdE=cs  E=[0ay]

AE" (& -b)PE-an®.. (€ ans) NdE=cs  E=[0ay]

AJE (& b)Y 2 -a) P -ann) NdE=on  E=[0aya]

-mi(01+ 62) -mi(01+ 62 + ... + ON-2)

ci=1lie™ ci=ci+ e ... CN=Cn.1 + Inoe

Removing the potentially complex parts from under the integral, setting in the corner
values and setting C = (-1)%* %+ +0D A ojves;

Cle (b-8) *(a1-8) P(ar-&)™ ... (ans-§) N dE= 1y &=[0b]
Cle (& -b)P(a1-8) P(ar-8) ™ ... (ans-8) e =1, &=1[ba]
Cle" (& 02 -a)P(@-0)™ ... (ans-8) ™ dE =15 & =[a; ag]

ClE" (& b) 2 -a)® ... € -anp) N ans- O N'E =1nn £ = [ans anal.

Now we set a;= b+ed1, a = b+ed1+ed2, a3 = b+ed'+e® +e and so on. And do the same
variable substitutions for the first four equations, as in the six corner case, and continue in a
similar way for the rest. Thus, & - b= p for the second, & — b — ¢! = p in the third and so on.
Followed by & = bp, d& = bdp in the first equation and p = e™p, du=e"dp in the other
equations. We get;

b(l+91+...+9N-1)cJ‘p91(1_p)92(1+ed1/b_p)93(1+(edl+ed2)/b)_p)94. . .(1+(edl+. . .+edN-3)/b_p)9N>ldp=11

ed2(1+91++9N>1)C‘[(p+(b+edl)/ed2)9l(p+ed1/6d2)92p93(1_p)94. . .(1+(ed3+. . .+edN>3/ed2_p)9N-ldp=l3

edN'3(1+el+'"+6N'1CJ(p+(b+edl+. . ‘+edN—4)/edN—3)61(p+(edl+‘ ) ‘+edN—4)/edN—3)62. . ‘(p+edN—4/edN—3)9N—3p9N—2*

#(1-p)™'dp =ly.,

where all integrals now are taken over [0 1]. In order to remove one of the two singularities
we proceed as before and split each integral at the 0.5 point and make the substitution p =1 —
p’ dp =-dp’ in the later integral in each equation. After setting 1+>0,=D n =[1, N-1] and
defining the two functions gu(...) gns(...) as above we get.
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bPClp" goi(...)dp + b°Clp®gpg(...)dp =1,
' Cl(p™gi(...)dp + ™' Cl(p™gis(..)dp =1,

e"Cl(p"gor( ... )dp + ePCl(p™ga(...)dp =I5
P (p™ gy )dp + € Cl(p™ (.. ) dp =y

PN3CT(p™ 2oy 3. )dp + €PN (p™ ey )dp =lns

All integrals taken over [0 0.5]
where;

2oi(...) = (1-p) (1 +e* /b-p) P (1+(e" +e)/b)-p)™ ... (1+(e"+.. . +e™)/b-p) ™!
2os(..) = (1-p)" (4 /D) P (+(e" +e™)bN™ .. . (p+(e+.. .+™?)/b) ™!

gii(...) = (p+b/e®Y' A-p) B (1+ee-p) ... (1+(e®+... 46N /e -p)™N!
g15(...) = (14b/e™-p) ' (1-p) (p+e®e )™ . (p+(e+.. .+ 7)™

g )=(p+(b+e+.. + ™™ (p+e+.. . +e™)/e™™. . (p+e™ )/e™*(1-p) (14 /e p) 3
(1™ 46T p) N

2. )=(1+b+e+.. . +e™ /e p)" (1+(e+.. +e™")/e™p)*? ... (14+e™ )™ p)®™ (1-p)™*'*
*( +edk+1/edk]9k+3 . (1+(edk+1+' . .+edN»3)/edk_p)9N-l

gnai( . )=(p+b+et .+ e ™™ pre+. . +e™ N H2 | (pre™He™HMN3(1-p)"N!
(. )=(1+bre .+ e™H/e™ - 0) (14 +.. . +e™)/e™ -p) . (1+e™)/e™-p) N3 (1-p) ™2

(a)

Derivating a with respect to p we get;

dgp(.. )dp=gp(.. ) *¥(-0o/(1-p)=03/ (14 1b-p)-. . =01 /(1 +( +. . .+ )/b)-p))=gui(... ) *h pi(...)
dgpe(.. )/dp=gpy(.. ) (-0,/(1-p)+05/(p+eX /b)+. . +0y 1/ (p+( +. .. +e™N)b)=gp (... ) *h 1s(...)

dgi (.. )dp=g;(...)*(0,/(p+b/e*)=0:/(1-p)-04/(1+e®/e -p)-. . —On.1/(1+(™+. .. +e™2)/b-p))=g, (.. ) *h;(...)
dg(.. )dp=g(.. ) *(-0,/(1+b/e ! -p)—0,/(1-p)+04/(p+e™/e)- .. +0y1/(p+(e™+.. . +e™2)b))=g (... )*hy(...)

dg.. )dp=gi(.. ) ¥ O/ (p+(b+...+e™)/e™) + 0/(p+e+...+e™ ) e™)+. .. +0/(p+e®™ 1 /6™)-04,2/(1-p)-Opia/(1+e™ /e -p)-. .

O /™ 4™ e p) Y=g ) ()

dgi(.. )dp=gis(.. ) *(-01/(1+(b+...+e™ V/e™-p)-0,/(1+(+...+e™ ) e™-p)-.. -0 /(1+e™ 6™ )-8, 1/(1-p)+01s 3/ (p+e ™+ /e ™)+

O/ (pHE™ e ™) Y=gy (L) Fh( L)

dgnos. . )dp=gnai(.. ) * O/ (p+b+. . .+ e™ )10,/ (p+(e +. . .+ H)/e™ )+ 4004/ (PN e ™) —0n1/(1-p))
=gn3(- - ) Fhnae( L)

dgnoss(.. )dp=gnas(.. )0,/ (1+(b+. .. +e NV e™3p)-0,/(1 4+ +.. .+ *)/e™3-p)-.. .- Ona/(1+e™*e™N3p)— -0y./(1-p))
=gn-3s(- - ) *hnes( L)

REMARK! Notice the h’s on the right are the intresting parts. (b)
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This gives us all the functions g and h for the general case. And we get, as above after
solving the first equation for C and inserting this in the rest, the system we want to solve as;

lleD";*< [pl“ef"’glfo«1+ez>+q“efglso/<1+e3)] |-1 [pf:fglfo*h1f<)/<1+ez>+pj*§jglso*hls 0/(1+65)] dp) -
- LbP#([p" " gp /(140 +p" P o O/(140)] | + 1 [P 2u) *hosO/(14+01)+p"* g *his )/(146,)] dp) = 0

lleD"]j*< [q“ngf()/(1+e3>+q“62“g230/<1+e4)] |-1 [pf:jngo*hzfo«1+e3>+pj*§;‘gzso*h28 0/(1+64)] dp) -
- L3bP#([p" " gp /(140 +p" P o O/(140)] | + 1 [P 2u) *hosO/(14+01)+p"* g *his 0/(140,)] dp) = 0

L ([ g /(1404 )+ @i /(1401 | - 21O *hig O/ 140, D+p 2 O *his 0/(140412)1dp) -
LD H ([P 2t O/(140,)4p " P2 O/(14+0)] | + [ 19" 2o #hier )/(140,)+p " P 2O *hiyg V/(1+0,)] dp) = 0

1leDdN;j*([p:*gf’ng,af()/(1+6Nl,232+p“9N’1gN,350/<1+6Nl,lg; |- [p‘*‘*N’ng,ax)*th,agp/<1+6N,2>+p“SN*gN&()*hN,sS O/(1+0x.)1dp)-
- InabPH(p g /(140 +p P /(1401 | + [ [p" " o) *hi /(140 +p ) ¥he (/(146,)] dp) = 0

All limits taken over [0 0.5] 1)

So this is the system of nonlinear equations we want to solve numerically. We want to use
Newton’s method for this. In order to do this we need to find the jacobian of the system with
respect to each of the di’s. This might appear as a formidable task but we actually get a
control.

First we’ll notice that all di’s # oo, -co. If this wouldn’t be the case two or more
breakpoints would be equal. Hence the functions under the integral signs are defined for
0<p<0.5 and for each specific di if the rest are considered fixed. Furthermore the functions
under the integral signs are integrable for all di’s # o, -0. Moreover since the functions under
the integral signs must converge in the Christoffel-Schwarz equations we may take the partial
derivatives under the integral sign. It’s enough to take the partial derivatives of the g’s and h’s
and then combine these in different ways to get the jacobians. For example in the six corner
case we get the partial derivatives;

Ogpi(.. )0d 1 =gp( ... ) *(05(e* 1b)/(1-p+e /b)+04(e* b)/(1-p+(e* +e)/b)+05(e" /b)/(1-p+(e* +e**+e*)/b)
Ogs( .. )10 1=gps( .. ) (0" /b)/(p+e”'/b) + 04(e” /b)/(p+(e +e)/b)+05(e"' /b)/(p+(e +e+e)/b)
Ohpi(...)/0d;=(05(e"/b) /(1-p+e* /b)*+0,4(e” /b) /(1-p+(e® +e)/b)*+05(e* /b)/(1-p+(e*' +e+e*)/b)*
Ohpg(...)/0d,=(-05(e" /b)/(p+e” /b)*-04(e” )/ (p+(e* +e™)/b)%-05(e" /b)/(p+(e* +e+e)/b)>

Ogui(.. )Ody=gpe(...)*(0,(e™/b)(1-p+(e+e*)/b)+05(e™/b)/(1-p+(e* +e+e*)/b)
Ogps(.. NAdr=gpy( .. ) ¥(04(e™/b)/(p+(e*+e")/b)+05(e™/b)/ (p+(e +e+eP)/b)
Ohpe( ... )/0dy=(04(e"/b) /(1-p+(e +e)/b)*+05(e*/b)/(1-p+(e* +e*+e)/b)?
Ohpg(.. )10dr=(-04(e™ /D) (p+(e*"+e*)/b)%-05(e™/b)/(p+(e* +e+e)/b)>

Ogpi(.. )0ds=gp( ... ) *(05(e/b)/(1-p+(e* +e*+e)/b)
Ogps( .. )0d3=gpy( .. )*(05(e® /D) (p+(e* +e*+e)/b)
Ohpi(...)/0d3=(05(eP/b)/(1-p+(e+e+e)/b)*
Ohpy(...)/0d5=(-05(e“/b)/ (p+(e* +e*+e)/b)*

0gy(.. )16d =g (... *(-0,(b/e ) (p+ble®)-0,4(e™/e ) /(1-p+e®/e®)-05((e+e®) /e )/(1-p+(e+eP)/e))
0g1(.. )ad =g (... ) *(-0,(b/e)/(1-p+ble®)-0,(e® /e /(p+e®/e™)-05((e™+e™) /e ) (p+(eP+eP)/e))
Ohy(...)/0d;=(0,(b/e)/(p+ble®)2-0,(e /e )/(1-p+e /e )-05((e+e™) /e )/(1-p+(e™+e®)/eh)?)
Ohu(.. )10d,=(-0,(ble®)/(1-p+ble®)*+0,(e™/e™)/(p+e™ /e ) *+05((e“+e ) e )/ (p+(e™+e®)/e)?)
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6g1f(
6g15(..
ohy..
(..

ogie(..
agls(-~
Ohy(..
ohy(..

ﬁng( .
6g25( ..
Ohog(...
ol ..

Ogor(...
agZS( ..
Oho(..
Ohyy(..

0go(...
ang( ..
Ohy(..
Ohy(..

ogsi(...
ag3s( ..
Oha(..
Ohsg(..

0gsi(...
ag3s( ..
Oha(..
Ohs(..

oga(...
agSs(- .
Ohs(...
ohs(...

Mady=g (... ¥ (04(e /e )/ (1-p+e™/e)+05(e /e )/(1-p+(e“+e®)/e))
Mady=g(.. ) (04" (p+e/e)+05(e/e )/ (p+(eP+eP)/e))
MEdy=(04(e®/e)/(1-p+e ey +05(e /e )/(1-p+(e®+e™)/e™)?)
)ody=(-04(e e/ (p+e®/e™)2-05(e e )/ (p+(e+eP) ey

Mads=gi(...)*(05(e™)e)/(1-p+(e®+e®)/e™))
Mods=g (.. )*(0s(eP /e (p+(e®+eP)eh))
)ads=(05(e® /e )/(1-p+(eP+e®)/e™)?)
)0ds=(-05(eP /ey (p+(e+eP) /ey

)adi= gor.. ) *(0,(e /e ™) (p+b+e /e +0,(e /e ™)/ (p+e /™))
)adi= 2o )* (0, /e™)/(1-p +b+e /e™)+0,(e" /e)/(1-p+e?' /e™)
)odi=(-0,(e* /e™)/(p+(b+e? /") 2-0,(e /e™)/(p+e” /"))
)6d;=(0,(e"/e™)/(1-p +(b+e? /") 2+0,(e ' /e™)/(1-p+e'/e®)?)

MNady=goi(...) (-0, ((b+e*ye)/(p+(b+e)/e®)-0,(e" /e ™)/ (p+e' 1e)-05(e ™ /e™)/(1-p+eP/e™))
MNada=goy(...)*(-0,((b+e)/e®)/(1-p+(b+e)/e®)-0,(e" /e™)/(1-p+e® /e®)-05(e /e ™)/ (p+e®/e™))
)3dy=(0,((b+e*)/e™)/(p+(b+e?)/e™)2+0,(e" /e )/ (p+e' /6" *-05(e P /e™)/(1-p+e/e?®)?)
)0dy=(-0,((b+e")/e®)/(1-p+(b+e™)/e™)2-0,(e /e)/(1-p+e' 1e7) +05(e /e ™)/ (p+e/e™)?)

Mods=goi(...)*(0s(e“/eD)/(1-p+e©/e™))
Nods=gs(.. ) *(0s(eP /™) (p+e/e™))
8ds=(05(e®/e™)/(1-p+e/e)?)
)ods=(-05(eP /ey (p+e®/e™)?)

odi= gyl .. )*(0,(e /e ) (p+(b+e +e*)/e™)+0,(e" /6™ /(p+(e +e)/e™))
)adi= g3 )*(0,(e /e®)/(1-p+(b+e +e)/e®)+0,(e" /e®)/(1-p+(e +e)/e™))
)odi=(-0,(e" /e®)/(p+(b+e +e*)/e®)?-0,(e /e P)/(p+(e* +e)/e™)?)
)6d;=(0,(e"/e®)/(1-p+(b+e +e)/e™-p)+0,(e* 1)/ (1-p+(e ' +e)/e™)?)

MAdo=gsi(...)*(0,(e™/e ) (p+(b+e +e)/eP)+0,(e /e ™)/ (p+(e® +e ™) /e®)+05(e /e D) /(p+e /™))
Nody=gsi(.. ) *(0,(ee®)/(1-p+(b+e’ +e)/e™)+(0,(e™/eP)/(1-p+(e® +e*)/e®)+05(e /™) /(1-p+e /™)
M0dy=(-0,(e™/e™)/(p+(b+e" +e)/e®)>-0,(e™/e®)/(p+(e! +e)/e®)*-05(e /e ™) /(p+e*/e®)?)
)0dy=(0,(e"/e®)/(1-p+(b+e +e)/e™)?+0,(e™/eP)/(1-p+(e” +e™)/e® ) +0;(e /e P)/(1-p+e*)/e®)?)

Vods=gs(...) (-0, ((b+e +e®)/e®)/(p+(b+et +e%)/e)-0,((e! +e®)/e®)/(p+(e +e?)/e®)-05(e*/e®)/(p+e/e™))
MWads=gay(...)*(-0,((b+e +e*)/e™)/(1-p+(b+e +2)/e®)-0,( (e +e)/e®)/(1-p+(e +)/e)-05(e /e )/ (1-p+e™2/e®))

)/8d;=(0,((b+e" +e)/e®)/(p+(b+e!+e)/e PV’ +0,((e" +e ) /e (p+(e! +e)/e ™) +05(e /e P )/ (p+e/e®)?)
1ods=(-0,((b+e* +e")/e®)/(1-p+(b+e+e)/e™)%-0,((e"+e*%)/e)/(1-p+(e® +e)/e™)%-05(e™/eP)/(1-p+e/e)?)

Similarly in the general case we have the partial derivatives according to;

Ogor(.-
agbs( ..
Ohpy(..
Ohyg(...

0. -
agbs( ..
Ohye(..
Ohyg(..

Ogor(.-
agbs( ..
Ohye(..
Ohy(..

Madi=gu(...) ¥ (03" /b)/(1+e* b-p)+0,4(e® /b)/(1+(e* +e*)/b-p)+... +0n.1(e*' /b)/(1+(e" +...+e™)/b-p)
)od =g )03 ) (p+e ' /b) + 04 1b)/(p+(e +eD)/b)+... +0x. (' /D) (p+(e*'+...+4e™7)/b)
)8d;=(05(e'/b) /(14" /b-p)*+0,4(e”' /b) /(1+(e +e™)/b-p)*+...+0x.1 (e /b)/(1+(e* +.. . +e™)/b-p)*
)0d;=(-05(e" D)/ (p+e" /b)*-0,(e" /b)/(p+(e +e)/b)*-.. .-On.1 (e /D) (p+(e+. . .+e™ ) /b)?

Moda=gpe( .. ) * (04 /b) 1+ +e ) /b-p)+... +0x.1(e D)/ (1+(e"+.. .+ )/b-p)
Noda=gp(... )04 D) (p+(e +e™)/b)+... +05.1(e /D) (p+(e+. ..+ )/b)
MEda=(04(e™/b) /(1+(e"+e)/b-p)*+. .. +0x.1(/b)/(1+(e+. . .+e™3)/b-p)?
)ody=(-04(e D)/ (p+(e +e)/b)*-. . .-0n.1 (/D) (p+(e" +. . .+ P)/b)?

Vod =) On 1 €D+ 4.+ bop)
NAdna=gos(.. ) F(On1 (€N D) (p+(e +. . .+ )/b)

MWodn =01 (™) (14 +. . .+e™N2)/b-p)>
)odna=(-On1 (e D) (p+ (e +. . .+ /b)?
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if m<k

0gi(.. )0d = g )*(0,(e™™e™)/(p+(b+e +...+ e Ne™)+. . 40,1 (™) (p+(e™+...+ e™)/e™)
0gis(.. )0 = g )*(0,(™/e™)/(1+(b+e +...+ ™) e™ p)+.. 40,1 (™™™ +(e™™+. ..+ e™)e™-p)
Ohye(..)/0d= (-0,(e™/e™)/(p+(b+e +.. .+ ™) e™) . -0, (™™ (p+(e™™+...+ e™)e™)?)

Ohy(.. )/0d = (0,(™e™)/(1+(b+e"+...+ ™) e™p)+. . 40, (e™™/e™/(1+(E™+...+ e e™-p)?)

if m=k

0gi(.. )odi=gi(.. ) * (-0, (b+e +. .. +e™ ™)/ (p+(b+e’ +. . .+e® ) /e™)-. . -0 (™ /e™)/(p+e™ ! /e™)-
B3 ey (1+e™ /6™ p)-. . -On1 (€™ ... 4+e™ ) ™) /(14 ™ +.. .+ ) e -p))
0gis( .. )odi=gio(.. ) (-0, ((b+e " +... 4™ )/e™)/(1+(b+e+.. . +e™ ) e™p)-.. -0 (™ /e™)/(1+e" /e -p)-
B3 ™) (p+e™ /™). 001 (€™ +... 4™ ) ™)/ (p+ (™ +.. .+ ) e))
Ohye(..)0d=(0,(b+e" +. . .+ e™)/(p+(b+e +. . .+e™)/e™) 2. . +0, (™ /e™)/(p+e™ /™) -
B3 (€™ ey /(1+e™ /o™ p) - On 1 (€™ +. . .4+e™ ) ™) /(14 ™ +.. 4™ ) e®-p)?)
Ohi(.. )10di=(-01((b+e +. ..+ )/e™/(1+(b+e+.. . +e™ ) e™p) 2. . -0 (™ /e™)/(1+e™ /e™-p)*+
03 (€™ /e (p+e ™ /e ™)t 401 (€™ 4. .+ ™) e (™ +. . +e NP e™)?)

if m>k

0. ) =i ... ) * (Ormaa(€™e™)/(1+(e™ ' +. ..+ ™)/e™-p)+...+05.1(e™™/e™)/(1+(e™ +... 4+ )™ p))
08k N m=gis(. . ) ¥ (O (e™/e™)(p+(e™ .. +e™)/e™)+. . +0n1 (™ /e™)/(p+(e™ +.. . +e™)/e™))
(.. )0 =B mea (€ ™/e™)/(1 4™ +. . .+e™/e™-p)*+. . . +0x.1(™e™)/(1+(™ +. . +e™ ) /e p)?)

(. )10 n=(-0men (€™ ™)/ (p+(e™ 4. .+ ™)/e™) .. -0n1 (™™™ (p+(e ™ +. . .+ P)/e™)?)

(0

where e® is considered equal to b. Now if we consider the equation;

lleD"kﬂg[p“fk;gkfo«1+ek+1)+1p;j“2gkso/<1+ek+2)] | -II [eg“ek“gkfo*hm/<1+qué>+p“e“2gkso*hks O/(146y,2)1dp) -
L abH ([ g /(140 +p" P o /(1401 | + I [p"*" 2 *hor /(140 +p" s O ¥his 0/(146,)] dp) = 0

which is the k:th row in the general equation system (1), here it doesn’t give any more clarity
to study the six corner case. Now if we in this equation take the derivative of this system with
respect to dy, where m # k we notice that the first term (upper line) obviously becomes;

1P ([p"* ™ agy( . WOdw/ (14+0s)+p" "0 WO/ (14+642)] |
I (Bgi(. . A (. D+ ) Oy O (14+0y41)+
+p Ok (. MO Fhyg (. )+l ) *Ohy (... ) Od ) (14+01.2)1dp)
The second term (lower line) becomes;

lk+1bD*([pll+e;16gbf(. O/ (140))+p " P0gy( .. )Od/(140,)] |
+ [p1 +92(agbf(...)/adm*hbf(...)+gbf(...)*ahbf(...)/adm)/(1+el)+
9 2(0ghs( . O (. ) +Eps( .. ) *Ohig(...)/0d)/(146,)] dp)

Now if we consider the case when k = m; the second term must become the same as in the
case m # k. However the first term has an di outside the parentheses so we must get an extra
term to add;

D1 #([p"" ™ g O/(1401. )+ ™2 O/(1 40,1 | -1p "™ i) #hig /(1404 )+p P i O ¥hig O/(140442) 1dp+
+1,eP%([p" " g1 ()/0d o/ (1401, )+p 021 (1O o/ (1404,2)] | -
1" (0gis()/0d sy * i)+ i) Oy ()/Ed ) (140, )+ (0 2iis /0 *hiy )+ 21 () 0Ny //0d )/ (14+6442) 1dp)

where the second and third line is exactly what the first term becomes in the case m # k and
the first line is exactly the first term in the equation system multiplied by D.
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So each element of the jacobian J for row k and column m becomes;

Jiw= 1P ([p" ™ (Bgi( ... )+0gie( - . )/Ad ) (140 +p " (Egie( ... ) +0gis( . /Od ) (14+0)] | -
P (@i )y )H0e( )0 i . )H () FO(. . )0 ) (140, )+
+p 2 (g (L) i) FOZis( A Fhig( . )H s ) Oy )/Ed)/(140,2)1dp)-
- LD ([ " O )/ Od o/ (140, )4p O (... )0/ (1+0)] | -
Ip ™ (Bgpe(. . A F (.. )Ho(...)*Ohpg( ... )/Odm)/(140,)+
+0" 2005 (. ANy (. . )Hos(.. ) ¥y )Bd)/(140,)] dp)
(2

where E = D if k = m and E = 0 otherwise. Now we are done with our analytic work. All these
equations might seem quite overwhelming for a novice programmer but it’s not hard to
implement the system of equations in (1) and the jacobian (2) if we first have the equations
(a), (b) and (c). And in the next section we shall see that the equations (a), (b) and (c) actually
can be created through loops. Also if we can calculate (1) and (2) then this is all we need to
find the roots of the original equation system. So we are now ready to start our work on the
numerical implementation of these equations.
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Implementing a program

Now we want to implement what we learned from our analytic preparation, into a
program. We will not go into detail since our aim is only to offer a description of the main
steps in the program. So let’s without writing any code in any language just consider the
major issues that will arise. In some instances we will consider briefly how a syntax could be
created. But we won’t move into dealing in any language.

Estimating an integral

Since by the Riemann definition a real one variable integral is the area between the
function line and the coordinate axis of the variable, it comes quite naturally that we should
try to utilize this fact to estimate an integral. All integrals we have to deal with will certainly
meet this criterion. Since all integrals where taken between 0 and 0.5 we need to make a
partitioning of this closed interval. Let’s call this partitioning x and for sake of argument give
it a constant step size of 0.1. In reality this step size will be considerably smaller, usually
0.0001. Then x is the vector [0.1 0.2 0.3 0.4 0.5].

Now if we consider the equations of (1) and (2) the estimates of the pek factors at these
points will all be term wise powers of the vector x. The 0’s are all fixed and all the d’s will
have constant guess values each time we want to estimate an integral. Furthermore if we have
two bounded functions g(x) and h(x) the estimate at a point Xy should be the same no matter if
we choose to multiply the functions and then setting x = X or if we first set this value into the
two functions and then multiply the two estimates. So now we see that if we have means to
get estimates at the points of our partitioning of the functions (a), (b) and (c) then by simple
term wise utilization of our four basic operators we will have estimates of everything under
the integral sign in both (1) and (2).

Now let’s for one second assume that we can estimate the equations of (a) (b) and (c) at
all points of this partitioning. Then we simply estimate all our functions under each integral
sign at each point of our partitioning and put them together according to (1) and (2). Now we
can estimate the area between two successive points in our partitioning by the midpoint rule,
I.e. we take the estimate at both points divide it by two and multiply with the difference
between the points. Summing all these areas will finally give us the estimates of the integrals.

Now this is not quite enough though, remember we partially integrated out a part to get rid
of the singularities. However now we will actually get this value for free. Now this term will
include 0gi(...)/0dm, Ogs(...)/0dy, some powers of p and on the main diagonal gi(...) and
gks(...). But we only want the estimates at the endpoints, that is at 0 and 0.5 (actually only 0.5
since the power of p will be 0 at the point 0). So now we simply take the first and last values
of our vectors that are the estimates of (a) and (c) at the points of our partitioning. Now we
can build our entire jacobian matrix with the four basic operators.

Of course we still don’t know if we can get the estimates of the three functions. We’ll get
to that in one second but let’s now just realize that if we can get these estimates we do have
the estimates of all equations in (1) and the matrix (2). Notice that now these are functions of
d-variables only, which we have as quess values and are seeking to improve. Now (1) will
become a vector of numbers and (2) will become a matrix of numbers. So if we can find the
inverse of the jacobian and multiply on the right side by the result vector of (1) we only need
to create a loop that keeps running until we are satisfied or the loop runs out of bound. So now
all that remains to be done is to find the estimates of (a), (b) and (c) at the points of our
partitioning.
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Estimating (a), (b) and (c)

We return to six corner case because it is instructive. Let’s rewrite the equivalents of (a)
and (b), but let’s use a different grouping;

gor(...) = (1-p)” (1-p+e?'/b)” (1-p+(e®'+e®)/b)™ (1-p+(e +e"+e)/b)*
_ 01 dl 03 dl, d2 04 dl, d2, d3 05
8os(-..) = (1-p)" (p+e7/b)™ (pH(e~ +e™)/b)™ (p+(e +e "+e™")/b)
hoi(....) = (-0/(1-p)-03/(1-p+e* /b)-04/(1-p+(e* +e"/b)-05/(1-p+(e* +e**+e*)/b))
his(....) = (-01/(1-p)+03/(p+e®! 1b)+0,/(p+(e! +e)/b)+05/(p+(e" +e*+e)/b))
gir(...) = (p+b/e™’! (1-p)* (1-p+e®/eH™ (1-p+(e+eP)e®)?
gls(o ) ) — (1_p+b/edl)91 (1_p)92 (p+ed2/edl)94 (p+(ed2+ed3)/ed1)95
hig(...) = (01/(p+b/e®")-05/(1-p)-0/(1-p+e®/e®)-05/(1-p+(e+eP)/e™))
hig(...) = (-01/(1-p+ble®)-0,/(1-p)+0./(p+e™/e™)-05/(p+(e+e ) /e ))
ng(‘ ) ) — (p+(b+ed1)/ed2)91 (p+ed1/ed2)92 (1_p)94 (1_p+ed3/ed2)95
224(...) = (L-p+(b+e™ye™” (1-p+e'/e™)™ (1-p)” (p+e/e?)®
hot(....) = (01/(p+(b+e )e™)+0,/(p+e! /9)-04/(1-p)-05/(1-p+e®/e®))
hao(...) = (-01/(1-p+(b+e?)/e)-0/(1-p+e? /92)-05/(1-p)+0s/(p+e/e??) )
ng(. ) ) — (p+(b+ed1+ed2)/ed3)91 (p+(edl+ed2)/ed3)62 (p+ed2/ed3)63 (1_p)95
234(...) = (L-p+(b+e’ +e)e™) (1-p+(e*'+e™)/e®)” (1-p+e/e®)® (1-p)™
hai(...) = (01/(p+(b+e +e™)/e®)+0,/(p+(e! +e)/e™ > )+0:/(p+e*/e™)-05/(1-p))
hig(...) = (-01/(1-p+(b+e® +e/e®)-0,/(1-p+(e* +e*)/e®)-0:/(1-p+e**/e®)-04/(1-p))

Here some of the subscripts will make more sense. First, notice that the 1-p term/factor moves
down on the diagonal above. Thus in the first group it has powers/nominators of the first two
arguments, in the second group of the second and the third arguments and so on. Furthermore
these arguments never appear anywhere elsewhere in the groups. Secondly, notice that in each
equation of the same group inside the parentheses of the same position, we have something
plus a constant term. For example, second position of the first group 1-p or p is added to e!/b.
Furthermore all parentheses in the same position and same group share the same argument
that never elsewhere comes up in the particular group.

Now if we consider the first group we see an increasing term. Namely first position
nothing, second position e*'/b, third position (e?'+¢**)/b and fourth position (e*'+e“+e*)/b.
But this doesn’t seem to be right in the second grouping. Here we start with b/e" and then
e®/e!! followed by (e™+e®)/e!!. But here we see that after the 1-p term we will have an
increasing term. If we look at the last group we see that we get (b+e+e)/e®, (e +e®)/e®,
¢®/e®. Here it seems that we drop a term with each step, indeed the third and second groups
seem to agree with this observation. Furthermore we see that the nominators before the 1-p
term are b+d;+d,+ ... + up to one less then the subscript of the equations group we are
considering. The denominator is of course the d with the same subscript as the equation
group.

Finally we should notice that in the equations with subscript f the factors/terms before the
1-p factor/term contain the decreasing terms we just discussed and the term p. The factors
after the 1-p factor/term contain the increasing terms and one 1-p term. While for the
equations with subscript s this fact is reversed.

If we consider the general case in (a) and (b) we notice that these observations actually do
hold. So we notice that we have regularity in these equations. Furthermore the equations in (c)
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are just the partial derivatives of the above groups with respect to each d, so we state that
similar rules will apply to these.

This discussion can seem a bit redundant since we probably did all the same realizations
while we first counted the general equations in (a) and (b). However in this compact view we
get an idea how to implement these equations. If we first consider the group with subscript b,
it is a decent idea to create a vector that contains the terms e%'/b, (ed1+ed2)/b and
(e*"+e"+eP)/b. This is easily achieved since all we have to do is a loop with three iterations
that in each loop counts e®*/b with k as the same number as the iteration we are running and
then add what we had in the previous position to this value. In general, if we have a P with N
corners then we have a loop of N-3 iterations and we get the correct term-vector.

Before we move on using the vector we just created let us consider how we could deal
with creating similar vectors for the other groups above. I.e. consider the group with subscript
3. Here we get the opposite problem we got to remove one term in each point of the vector.
This could be accomplished but would be unnecessary since we can create this vector
backwards i.e. we calculate e*/e® where k is three minus the number of the iteration. Here we
only loop twice and once this is done, we create the last term by adding b/e® to the second
term to get the third. Now we could reverse it to get the correct vector but why bother, this
only exists as a temporary step in the computer and we can just as well work with this. Also
this can easily be expanded to an arbitrary problem since for an N corner problem we loop N-
4 times and we start with ™ /g™~

How about the other groups? Well we might want to use something in between. It might
be tempting to have two vectors. If we have the group subscript as k the decreasing vector
must by our discussion on the general case just discussed have di in the denominator, it must
start with the e®'/e®™ term and obviously if we loop k-1 times we will have what we wanted.
This will work for any case in the general case. The growing vector is then created by starting
with the e®*'/e? term and then loop from k+1 to N-3. Also this applies to the general case. So
now we have vectors containing the terms that will appear in our equations. Now what do we
do with it?

Well we start by reviewing the first group, i.e. the one with subscript b. We see that by the
vector we created, we can make a loop that creates the estimates of this group at the points of
the partitioning x. First we define four vectors as the term wise estimates of the factors/term
only containing 1-p and an argument. Then we loop this N-3 times. 1-p or p is added to the
element in the previously created term-vector that is contained at the same position as the
number of the loop. The argument we want to use is two plus the number of the loop. Then
we simply term wise multiply/add these to the estimate vectors. And hence we got the
estimates for (a) and (b) for the equation group with subscript b. Note this will solve the
general case and (c) is done in a similar fashion.

Now we could solve a fixed problem say the six corner case since we can solve each
group individually in a similar fashion as above. Remember, having two vectors one with the
terms before the 1-p and one with the terms after, we can first work from the first vector and
then by the other. However we want to create a code that will solve the general case. But then
we know that there are N-3 groups to be created so we create a loop that corresponds to each
one of the groups. And it’s now a simple matter of keeping your indices right. The increasing
and decreasing vectors have elements from k+1 to N-3 and 1 to k-1 respectively.

18



Some examples

One little extra feature

Before we start to utilize the program in the computer it would be nice to have some way
to see if we are even close to the correct result. Mathematically this seems quite a task. But as
we have the breakpoints we can implement these straight forward in the equation and
numerically solve the corners and plot these out.

We have also quite many singularities to deal with here, but we can actually evade these.
Namely by taking the integral steps up in the upper plane instead on the real line we only need
to concern our self with the ones at 0 and the particular corner we are considering at the time.
Thus we first partially integrate the integral with respect to the singular factor at 0. Now this
equation is well defined here and we estimate the integral along the imaginary axis to some
arbitrary point say from 0+0i to 0+100i. Now up here along a line parallel to the real axis the
original equation must be well defined so we estimate the integral from 0+100i to x,+100i,
where xy is the current breakpoint we consider. Then we partially integrate the equation with
respect to the (&-xx) factor and then count this integral from x,+100i to x,+0i. Finally adding
these three integrals together we get an approximation of the point in the complex plane to
which the point xy is mapped.

One must notice though that this is not a formal proof but only an estimate. It’s just a
“self- check™ to see that one has not made any mistakes in writing the code. We will also be
using this to illustrate our problems. In all the following pictures the x’s mark the actual hit
points and the lines are drawn between points that are estimated by this method.

The convex regular case

Now as mentioned above for a convex case all 8’s must be less then 0 and of course for a
regular P they must be equal. Let’s start by considering a five corner case. That is P has all
0 =-2/5 and all 1 = 1. As mentioned this will be mapped from two fixed points 0, 100 and two
more points that converge according to;

114.3942 129.2384
143.2214 197.9051
159.3032 250.7233
161.7583 261.5371
161.8034 261.8033
161.8034 261.8034
161.8034 261.8034

A =2.7406 - 8.4348i

We notice that difference between the first two points equals the distance between the two
last, this is a motif that will be repeating it self throughout the convex regular cases. We also
notice that the convergence is pretty fast.
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We next consider the twenty corner case, which after seven loops converges to;

0 100.0000  134.4577  152.5731 164.2040  172.6543
179.3604  185.0651 190.2113  195.1056  200.0000  205.1462  210.8509
217.5570  226.0073  237.6382  255.7536  290.2113  390.2113

A =91.3980 -29.69701

The fifty corner case converges after seven loops to;

0 100.0000  133.5095  150.3974  160.6379  167.5559  172.5768
176.4134  179.4621 181.9608  184.0613  185.8648  187.4419  188.8430
190.1055  191.2576  192.3212  193.3137  194.2492  195.1391 195.9935
196.8206  197.6281 198.4229  199.2115  200.0000  200.7948  201.6023
202.4295  203.2838  204.1738  205.1092  206.1017  207.1654  208.3175
209.5799 2109810  212.5581 2143617  216.4621  218.9608  222.0095
225.8461  230.8670  237.7851  248.0255  264.9134  298.4229  398.4229

A =148.6727 -18.78171

The fifty corner cases figure will be included as figure 1 at the end of this text. As will the
spread of the twenty and fifty corner cases breakpoints as figures 2 and 3. The middle points
of these lists are underlined. If we work backwards from the end and forward from the
beginning until this point we notice that the steps are of equal size at both ends.

Actually all of our basic breakpoint finding calculations is made by the same Matlab
program. The only change made between all examples is that we define the number of
corners, a vector with the arguments and a vector with the side lengths. This is not completely
true but we will get to the two other changes made as we come to an appropriate point. Of
which this is the first. If we try making a regular convex polygon with more corners we will
be able to get to something between 60 and 75. Then Matlab will complain about a singular
matrix. However this is due to that the points in the middle will be squeezed together. Notice
already in the 50-corner case above the difference is less then 0.8. Now this is why we wanted
an easily changeable b. If we change this value to 1000, we will be able to count over 100-
corner cases. The 100-corner case will take about 15-30 minutes on a well managed average
PC. Drawing the figure will however take half the night.

Note! That in these specific examples the A’s are quite irrelevant since these just guard
the size and rotation. Furthermore if one wants the breakpoints for the fixed points 0 and 1
instead for 0and 100, one could just divide all the figures by 100. If one wants the
“midpoint” to be mapped from the origin one just needs to subtract this value from all in the
list. This will also be valid for the other cases not just the regular convex ones.

Non convex and non regular five corner case

Now let’s consider a square with side length 1 and then step by step perturb the middle
point of the upper side by pulling it down. See figure 4 at the end for reference. Now 0, = -2/4
and 1; = 1 always. But the remaining two angles and side lengths obviously differs from case
to case. For this we had to create a simple program that counts the angles and lengths from the
corners. This way it’s a simple matter of lowering the middle point in each of the 18 runs
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from c3 = - 0.5 + 0.951 to ¢3 = - 0.5 + 0.10i. However this loop is so simple that it will be
omitted.

A X3 X4 C3
- 0.38791 1.4574 2.1240 -0.5000 + 0.95001
- 0.39601 1.5111 2.2835 -0.5000 + 0.9000i
- 0.40601 1.5781 2.4904 -0.5000 + 0.85001
- 0.41861 1.6620 2.7621 -0.5000 + 0.8000i
- 0.43431 1.7676 3.1244 -0.5000 + 0.75001
- 0.45431 1.9017 3.6166 -0.5000 + 0.7000i
-0.47971 2.0740 4.3013 -0.5000 + 0.65001
-0.51271 2.2983 5.2820 -0.5000 + 0.6000i
- 0.55611 2.5959 6.7385 -0.5000 + 0.55001
-0.61471 3.0001 9.0003 -0.5000 + 0.5000i
- 0.69611 3.5656 12.7136 -0.5000 + 0.45001
- 0.81331 4.3876 19.2503 -0.5000 + 0.4000i
- 0.99031 5.6423 31.8340 -0.5000 + 0.35001
- 1.27531 7.6866 59.0795 -0.5000 + 0.3000i
-1.77631  11.3288 128.3294 -0.5000 + 0.2500i
-2.77641  18.7133 350.1083 -0.5000 + 0.20001
-5.21551  37.0465 1371.6896 -0.5000 + 0.1500i
-13.81771 103.0724 10603.2503 -0.5000 + 0.10001

NOTE! In this example we used x, = 0 and x;= 1.

One might ask the question why we didn’t take one more step i.e. ¢z = - 0.5 4+ 0.051, well
we did see figure 5. We see that the program might have failed. Now we get to the other
change one would want to make. The step size in the integral should be easily accessible.
Changing this to something smaller might make big changes in the results. Now this is why
we chose the smaller first breakpoint for this example since the amount of steps grow so fast
and with this there is at least some hope that the partitioning vector won’t be too big.
However in this case now matter what we do, it will either run out of bound or it will
converge at 631.2031 and 397953.4697. Now remember that the drawing feature was only an
estimate as well. And it seems that this is actually a part of what went wrong. Even if we in
the drawing feature took steps of size 1 there would still be almost 400000 steps. Trying
something smaller will cause the program to fail due to insufficient memory. Now one could
of course make an attempt with a weight partitioning.

Some stars

Now we consider a five edged star with 0 values of 2/5 and -4/5 altering, See  figure 6.
This star will have the following breakpoints after 9 loops;

0 100.0000  138.1965  161.8028  180.9007  199.9987  223.6050
261.8015  361.8015

A =166.2938+511.79971
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Next we consider the ten edged star that will have 20 corners, and use 0 values of 2/10 and
-4/10 altering. See figure 7. This star will have the argument -2/10 as the sum of arguments in
two consecutive corners, the same as the regular convex 20 cornered case above. The side
lengths are obviously the same. We will get;

0 100.0000  134.4577  152.5731 164.2040  172.6543
179.3604  185.0651 190.2113  195.1056  200.0000  205.1462  210.8509
217.5570  226.0073  237.6382  255.7536  290.2113  390.2113

A =377.5230+274.2865i
Now let’s review the breakpoints from regular convex case;

0 100.0000  134.4577  152.5731 164.2040  172.6543
179.3604  185.0651 190.2113  195.1056  200.0000  205.1462  210.8509
217.5570  226.0073  237.6382  255.7536  290.2113  390.2113

They seem to be identical. However the numbers above are rounded. Actually if one takes the
complete results in Matlab one gets a difference in the fifth or sixth decimal in some of the
positions. However the question remains if the break points are truly identical in the cases star
(non-convex) and the regular convex 20-corner. Figure 8 shows the spread of this star.

Slightly perturbed half unit disc

See figure 9. Our aim here is to demonstrate how one can use the program to approximate
the mapping to an arbitrary P. Obviously this won’t be exactly true, because there will be a
computer limit for the number of corners. Furthermore above there was an example that might
have gone haywire. But let’s consider that the arc of the half unit disc can be approximated by
a polygonal path and then perturb the base. Now as we said earlier the size and rotation can be
adjusted later by manipulating the A value, so we will do as before. We map the base from -1
to 0 and then when the mapping is done we shrink the figure.

0 100.0000  169.2165 192.0817  202.5784  208.3560  211.9187
214.2900  215.9533  217.1606  218.0514  218.7043  219.1587  219.4204
219.4645  225.7922
A =4.2742 -21.3713i
Now the half disc in this P has the diameter 17.7786 but if we divide A by this value, the
diameter of the mapping will be 1.

Square divided to four equal squares

Now we will have to deal with some further theory to find the lines that cut the square in
figure 10. But this will be relatively easy after the work we already done. We have the

equation;

f(z) = 3.81381 [ (£ -100) (£ —200) - d& £=1[02]
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We know that this equation is going to map u onto a square in the complex plane. So we only
need to deal with one unknown in this case. We start by finding out the points in which the
cutting lines hit’s the sides of the big square. We know that these must be some points on the
real line. The middle point of the lower line must be mapped from some point < 0. The middle
point of the right line must be mapped from some point strictly between 0 and 100. The upper
midpoint, from some point between 100 and 200. The left side’s midpoint, from a point >
200.

We will only consider how one finds the point that maps to the midpoint on the upper line.
The rest will follow in a similar fashion. So the problem is solving the equation;

- 0.5 +1=3.8138i [£%° (£ -100) 7 (£ —200) *° d& £ =10 zo]
but we know that f(100) =i. So the equation reduces to;
— 0.5 =3.81381 ] (£ -100) (£ —200) 7~ d& £ =100 zo]

we know that zg will be between one and two hundred. So the two first factors will be real and
the third imaginary so we divide the last factor with -1;

—0.5=3.8138 [£°° (£-100) ™ (200 - £ ) d¢ £ =100 zo]
now we make the substitution p + 100 = &;

~0.5=3.8138 [(u+ 100)* p % (u-100)""dp  E=[0 z,-100]
we set ¢ = zp-100 and make the variable substitution p=c *n du=c * dn;

— 0.5 =3.8138 [(cn+100)° (c) ™ (en-100) * ¢ dn E=[0 1]

we now have an singularity at 0, but we know from earlier how to deal with this. We partially
integrate;

[(en+100)Y" (en) 2 (en-100) ¢ dn =
= c*c™(c+100) **(c-100) /0.5 - Je(en)™*(en+100)**(en-100)*(-0.5¢/(cn+100) - 0.5¢/(cn-100)

now it’s a simple matter of utilising the bisection method to find the c. In this way we get the
points that map to the side-midpoints of the square to be;

-141.4254 58.5785  141.4214  341.4254
now ones we got these points we start to examine the original equation again. For the vertical
line in the middle of the square we know this line is -0.5 + yi for 0 <y < 1. From our above
discussion we know that -0.5 + 1 was mapped from zo= 141.4214. Hence we get the equation;

(1-y)i = 3.8138i [£° (£ -100) 7 (£ —200) *~ d& £ = [z 2]

from this we see that the integral must be real for all z that map to the line we are considering.
Le;
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Im (J&* (£ -100) *° (£ —200) *7 d&) = 0

now all we need to do is considering the point zy= 141.4214. In u there must be at least one
point at a distance of € from z that satisfies the criterion above for 0 < & <2*141.4214. And
furthermore any point satisfying this will be mapped to this line. In a similar fashion we can
get the horizontal line. The resulting vectors that map to these cutting lines are presented in
figure 11. We notice that these are actually semicircles or otherwise something really close to
semicircles with radius V2%1007 that get mapped to the cutting lines. The numbers 1, 2, 3 and
4 represents the areas in figure 11 that are mapped to the corresponding squares in figure 10.

This result deserves some extra attention. Now in order to see if these vectors truly are
semicircles we simply take hundred equally spaced points on the “real” semicircular vectors
and calculate the original equation for these points. (Now obviously we made some rewriting
of this equation to get better estimates, but these steps are some of the above mentioned.) The
results are shown in figure 10, as this figure is drawn with these estimates. Also for
mathematical considerations we list each tenth estimate here;

0.00000000000000 + 0.49999889588398i
-0.25996854547006 + 0.499998895899721
-0.43484184241095 + 0.499998896098691
-0.55564883699446 + 0.499998896903741
-0.64758577926513 + 0.49999889849722i
-0.72275585548992 + 0.499998900837861
-0.78748080743678 + 0.499998903676711
-0.84546513791567 + 0.499998906610261
-0.89911814421131 + 0.49999890916668i
-0.95017006284764 + 0.499998910907891

and;

-0.49999889675005 + 0.740029249343251
-0.49999889833996 + 0.565155952802331
-0.49999889913000 + 0.444348958222201
-0.49999889896242 + 0.35241201565118i
-0.49999889786983 + 0.277241938874831
-0.49999889608876 + 0.212516986170971
-0.49999889400679 + 0.154532654775251
-0.49999889207750 + 0.100879647447761
-0.49999889072133 + 0.049827727706351
-0.49999889023387 + 0.00000000000000i

Comparing results with other solutions

Now as an attempt to see how good our program is in getting the correct breakpoints we
are going to make a mobius transform of the regular convex 50-corner case we had above. We
are going to assume that this can be used to approximate a circle. We know that the three first
corners of this P is 0, 0.9921 + 0.1253i and 1.9607 + 0.3740i as well we know that the three
first points are mapped from 0, 100 and 133.5095. Inserting these values in we get;
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a=-0.9921-0.12531  b=1.9607-0.37401 c=-0.3351 d=133.5095

zc/(z-d) = wa/(w-b)
this leads to;
z = d/(1-c(1-b/w)/a) and w = b/(1-a(1-d/z)/c)

using the first with all corners in the regular convex 50-corner case and then subtracting the
breakpoints of the 50 - corner case we get;

1.0e-005 *
0 0 0.0037 0.0077 0.0112 0.0142 0.0167
0.0190  0.0209 0.0226 0.0242 0.0256 0.0269 0.0280
0.0291  0.0302 0.0312 0.0321 0.0331 0.0340 0.0349

0.0358 0.0366 0.0375 0.0384 0.0393 0.0403 0.0413
0.0423  0.0434 0.0446 0.0458 0.0472 0.0487 0.0504
0.0524 0.0546 0.0572 0.0603 0.0642 0.0691 0.0757
0.0848 0.0984 0.1211 0.1651 0.2805.

Note! The five extra decimal points. Also remember that we used 100 as the first

breakpoint.

Finally, let us compare our program with the Schwarz-Christoffel Matlab
Toolbox, mentioned earlier in the introduction. Running this will give us the results;

-1.000000000000e+000
-2.450364529870e-001
-1.337004760233e-001
-8.659461305144e-002
-5.908080762888e-002
-3.992686449340e-002
-2.490968150282¢-002
-1.200161724772e-002
-2.608165092422e-009
1.200161201780e-002
2.490967624186e-002
3.992685918817e-002
5.908080229539e-002
8.659460774263e-002
1.337004707914e-001
2.450364479929¢-001
1.000000000000e+000

-4.980208739803e-001
-1.936314379788e-001
-1.144413573541e-001
-7.605077103113e-002
-5.204754175901e-002
-3.458763357308e-002
-2.044221715523e-002
-7.947973413962e-003
3.958252744457e-003
1.615373833112e-002
2.960539246427e-002
4.571017862888e-002
6.699731300130e-002
9.913764948687¢-002
1.589043077204e-001
3.298102330069e-001

-3.298102377429e-001
-1.589043129071e-001
-9.913765477643e-002
-6.699731833259¢-002
-4.571018394810e-002
-2.960539773878e-002
-1.615374356997e-002
-3.958257962444¢-003
7.947968191199¢-003
2.044221190605e-002
3.458762828344e-002
5.204753642978e-002
7.605076570828e-002
1.144413520895e-001
1.936314328617e-001
4.980208699724¢-001

Here the breakpoints are between -1 and 1. This is not what we had above. However by
our earlier discussion this is easily modified. First we divide through our vector with half of
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the final element, thus getting the difference 2 between the first and last element. Next we
simply subtract -1 and then we have our vector in the same format as in the toolbox. However
the toolbox result is not in a format that we can immediately use, so we have to cut and paste.
Removing the toolbox result from our result will finally obtain, (i.e my results — toolbox
results);

1.0e-006 *
0 0.4014 0.3156 0.2479 0.2011 0.1676 0.1425
0.1229 0.1072 0.0942 0.0832 0.0737 0.0653 0.0579
0.0512 0.0451 0.0394 0.0341 0.0291 0.0244 0.0198
0.0154 0.0111 0.0068 0.0026 -0.0016 -0.0059 -0.0102
-0.0146 -0.0191 -0.0239 -0.0288 -0.0341 -0.0398 -0.0459

-0.0526 -0.0600 -0.0683 -0.0778 -0.0888 -0.1019 -0.1176
-0.1372 -0.1624 -0.1960 -0.2429 -0.3109 -0.3974 0

Note! The six extra decimal points.
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Figures from the examples

Figure 1. Regular convex 50-cornered case
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Figure 2: Spread of 20-corner convex
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Figure 3: Spread of 50-corner convex
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Figure 4: Nonconcex five corner
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Figure 5; Non-convex 5-corner with one extra point
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Figure 7. Ten edged star
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Figure &: Spread ten edged star
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Figure 9: Slightly perturbed half unit disc
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Figure 10; Square divided to four equal squares
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Figure 11; Vectors that cut a square
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The code used in the examples

The program that finds the breakpoints;

clear
hold on
format compact

9o % Yo %0 %o To Fo To Yo Yo Fo T To Fo Fo %o Yo Yo Yo Yo Jo Fo %o %o Yo P rog ram headerJo %o %o %o Yo %o Jo To %o Yo Yo %o Yo Yo Jo Yo Yo

% All changes betwene the examples are done here %

Go % %o Yo %o To Fo To To Yo To T Fo To Fo To Yo Yo To To To Fo Fo Yo Yo To To To To Fo Fo Yo T Fo To Fo Fo Fo Fo o T o To Fo Fo Fo Yo o Yo Fo Fo Yo
Yo% Yo Yo

N=50;

first=100; % b in the text

arg=-2/N*ones(1, N-1); % the theta values
leng=ones(1, N-2);

dt=0.001; % stepsize in evaluation of integrals
vek=zeros(1, (N-3)); % start quess vector

9o % Yo %o %o To Fo To Yo Yo Yo Yo Fo To Fo To Yo Yo Yo Yo To Fo Fo Fo Yo T To Fo To Fo Fo Yo T Yo To Fo Fo Fo Fo T Yo Yo Yo Fo Fo Fo Yo Yo Yo Yo Yo Yo
Yo% Yo Yo

% For these values given, the rest is kept fixed %

% for all examples in this text %

Go % %o Yo %o To Fo To To Yo Fo T Fo Fo Fo To Yo Yo To To To Fo Fo Yo Yo To To To To Fo Fo Yo T Fo To Fo Fo Fo Fo T To o To Fo Fo Fo Yo o Yo Fo Fo Yo
Yo% Yo Yo

x=0:dt:0.5;

change=1;

X=ones(1,N-3)"*x;

while change>0.0000000001
ed=exp(vek);
row=cumsum(ed/first);

ARG=(ones(1,length(x)) *arg(3:N-1))';
ROW=(ones(1,length(x)) *row)";
ONE=I1+ROW-X;

TWO=ROW+X;

gbf=arg(2)*log(1-x)+sum(ARG.*log(ONE));
gbs=arg(1)*log(1-x)+sum(ARG.*log(TWO));
dgbfdx=-arg(2)./(1-x)-sum(ARG./ONE);
dgbsdx=-arg(1)./(1-x)+sum(ARG./TWO);

gbf=(exp(gbf)). *(x.Narg(1)+1))/arg(1)+1);
gbs=(exp(gbs)).*(x.Narg(2)+1))/(arg(2)+1);

Int=(gbf(length(gbf))-gbf(1)+gbs(length(gbs))-gbs(1))*(first(1+sum(arg)));
G=-(gbf.*dgbfdx)-(gbs. *dgbsdx);

for m=1:N-3
dgbfdm=((ARG(m:N-3,1:length(x)). *ed(m)/first)./ONE(m:N-3,1:length(x)));
dgbsdm=((ARG(m:N-3,1:length(x)). *ed(m)/first)./ TWO(m:N-3,1:length(x)));
ddgbfdxdm=((ARG(m:N-3,1:length(x)). *ed(m)/first)./(((ONE(m:N-3,1:length(x))))."2));
ddgbsdxdm=-((ARG(m:N-3,1:length(x)). *ed(m)/first)./(((TWO(m:N-3,1:length(x))))."2));
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if m<N-3
dgbfdm=sum(dgbfdm);
dgbsdm=sum(dgbsdm);
ddgbfdxdm=sum(ddgbfdxdm);
ddgbsdxdm=sum(ddgbsdxdm);

end

gbfid=gbf.*dgbfdm;
gbsid=gbs. *dgbsdm;
Int(m+1)=(gbfid(length(gbfid))-gbfid(1)+gbsid(length(gbsid))-gbsid(1))*(first\(1+sum(arg)));
G(m+1,:)=-gbf. *ddgbfdxdm-gbfid. *dgbfdx-gbs. *ddgbsdxdm-gbsid. *dgbsdx;

end

H=G*(first\(1+sum(arg)));
Int=Int";
ARG=(ones(1,length(x)) *arg(1:N-1))’;

for k=1:N-3
clear G

rowl=cumsum(ed(k-1:-1:1)/ed(k));
ifk ==

terml =first/ed(k);
else

terml=rowl(k-1)+first/ed(k);
end
rowl=[rowl terml];
row2=cumsum(ed(k+1:N-3)/ed(k));

ROWI=(ones(1,length(x))*rowl)’;
ROW2=(ones(1,length(x))*row2)’;

len=length(rowl);

iflen==
gkf=arg(k+2)*log(1-x)+(ARG(k:-1:1,1:length(x)). *log(x+ROWI));
gks=arg(k+1)*log(1-x)+(ARG(k:-1:1,1:length(x)).*log(1-x+ROWI));
dgkfdx=-arg(k+2)./(1-x)+(ARG(k:-1:1,1:length(x))./(x+ROWI));
dgksdx=-arg(k+1)./(1-x)-(ARG(k:-1:1,1:length(x))./(1-x+ROWI));

else
gkf=arg(k+2)*log(1-x)+sum(ARG(k:-1:1,1:length(x)).*log(X(1:k,1:length(x))+ROWI));
gks=arg(k+1)*log(1-x)+sum(ARG(k:-1:1,1:length(x)). *log(1-X(1:k, 1:length(x))+ROWI));
dgkfdx=-arg(k+2)./(1-x)+sum(ARG(k:-1:1,1:length(x))./(X(1:k, 1:length(x))+ROWI));
dgksdx=-arg(k+1)./(1-x)-sum(ARG(k:-1:1,1:length(x))./(1-X(1:k,1:length(x))+ROWI));
end

len=length(row2);

iflen==1
gkf=gkf+ARG(k+3:N-1,1:length(x)). *log(1+ROW2-x);
gks=gks+ARG(k+3:N-1,1:length(x)). *log(x+ROW?2);
dgkfdx=dgkfdx-ARG(k+3:N-1,1:length(x))./(1+ROW2-x);
dgksdx=dgksdx+ARG(k+3:N-1,1:length(x))./(x+ROW2);

else
gkf=gkf+sum(ARG(k+3:N-1,1:length(x)). *log(1+ROW2-X(1:len, I:length(x))));
gks=gks+sum(ARG(k+3:N-1,1:length(x)). *log(ROW2+X(1:len, I:length(x))));
dgkfdx=dgkfdx-sum(ARG(k+3:N-1,1:length(x))./(1+ROW2-X(1:len,1:length(x))));
dgksdx=dgksdx+sum(ARG(k+3:N-1,1:length(x))./(ROW2+X(1:len,I:length(x))));

end
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gkf=(exp(gkf)). *(x.Narg(k+1)+1))/(arg(k+1)+1);
gks=(exp(gks)). *(x.Narg(k+2)+1))/(arg(k+2)+1);

Int=[Int; (gkf(length(gkf))-gkf(1)+gks(length(gks))-gks(1))*(ed(k)1+sum(arg)))];
G=(-(gkf- *dgkfdx)-(gks.*dgksdx));

for m=1:N-3
dgkfdm=0;
dgksdm=0;
ddgkfdxdm=0;
ddgksdxdm=0;
if m==k

if k==
dgkfdm=(-ARG(k:-1:1,1:length(x)).*ROWI1./(X(1:k, I:length(x))+ROWI));
dgksdm=(-ARG(k:-1:1,1:length(x)). * ROWI1./(1-X(1:k,1:length(x))+ROWI));
ddgkfdxdm=(ARG(k:-1:1,1:length(x)). * ROWI1./(X(1:k, 1:length(x))+ROWI)."2));
ddgksdxdm=(-ARG(k:-1:1,1:length(x)). * ROWI1./((1-X(1:k,1:length(x))+ROWI). 2));
else
dgkfdm=sum(-ARG(k:-1:1,1:length(x)). * ROWI1./(X(1:k,1:length(x))+ROW1I));
dgksdm=sum(-ARG(k:-1:1,1:length(x)). *ROW1./(1-X(1:k,1:length(x))+ROWI));
ddgkfdxdm=sum(ARG(k:-1:1,1:length(x)). * ROWI1./((X(1:k,I:length(x))+ ROWI)."2));
ddgksdxdm=sum(-ARG(k:-1:1,1:length(x)). * ROW1./((1-X(1:k,1:length(x))+ ROWI)."2));
end

if k+3==N-1
dgkfdm=dgkfdm-(ARG(k+3:N-1,1:length(x)). * ROW2./(1-X(1:N-k-3,1:length(x))+ ROW2));
dgksdm=dgksdm-(ARG(k+3:N-1,1:length(x)). *\ROW2./(X(1:N-k-3,1:length(x))+ROW2)),
ddgkfdxdm=ddgkfdxdm-(ARG(k+3:N-1,1:length(x)). *ROW2./((1-X(1:N-k-
3,1:length(x))+ROW2)./2));
ddgksdxdm=ddgksdxdm+(ARG(k+3:N-1,1:length(x)). * ROW2./((X(1:N-k-
3,1:length(x))+ROW2)./2));
else
dgkfdm=dgkfdm-sum(ARG(k+3:N-1,1:length(x)). *ROW2./(1-X(1:N-k-3,1:length(x))+ROW2));
dgksdm=dgksdm-sum(ARG(k+3:N-1,1:length(x)). * ROW2./(X(1:N-k-3,1:length(x))+ROW2));
ddgkfdxdm=ddgkfdxdm-sum(ARG(k+3:N-1,1:length(x)). *ROW2./((1-X(1:N-k-
3,1:length(x))+ROW2)."2));
ddgksdxdm=ddgksdxdm+sum(ARG(k+3:N-1,1:length(x)). * ROW2./((X(1:N-k-
3,1:length(x))+ROW2)."2));
end

end

if m<k

dgkfdm=sum((ARG(1:m+1,1:length(x))*(ed(m)./ed(k)))./(X(1:m+1,1:length(x))+ROWI(length(rowl ):-1:k-
m, 1:length(x))));

dgksdm=sum((ARG(1:m+1,1:length(x))*(ed(m)./ed(k)))./(1-
X(1:m+1,1:length(x))+ROWI(length(rowl ):-1:k-m, 1:length(x))));

ddgkfdxdm=-
sum((ARG(1:m+1,1:length(x))*(ed(m)./ed(k)))./((X(1:m+1,1:length(x))+ROWI(length(rowl ):-1:k-
m,1:length(x)))."2));

ddgksdxdm=sum((ARG(1:m+1,1:length(x))*(ed(m)./ed(k)))./((1-
X(1:m+1,1:length(x))+ROWI(length(rowl ):-1:k-m, 1:length(x)))."2));

end

if k<m
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if m==N-3
dgkfdm=(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./(1+ROW2(m-k:N-3-k, 1 :length(x))-X(m:N-
3,1:length(x))));
dgksdm=(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./(ROW2(m-k:N-3-k, 1 :length(x))+X(m:N-
3,1:length(x))));
ddgkfdxdm=(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./((1+ROW2(m-k:N-3-k, 1 :length(x))-
X(m:N-3,1:length(x)))."2));
ddgksdxdm=-(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./((ROW2(m-k:N-3-
k,1:length(x))+X(m:N-3,1:length(x)))."2));
else
dgkfdm=sum(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./(1+ROW2(m-k:N-3-k, 1:length(x))-
X(m:N-3,1:length(x))));
dgksdm=sum(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./(ROW2(m-k:N-3-
k,1:length(x))+X(m:N-3,1:length(x))));
ddgkfdxdm=sum(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./((1+ROW2(m-k:N-3-
k,1:length(x))-X(m:N-3,1:length(x)))."2));
ddgksdxdm=-sum(ARG(m+2:N-1,1:length(x))*(ed(m)/ed(k))./((ROW2(m-k:N-3-
k,1:length(x))+X(m:N-3,1:length(x)))."2));

end

end
gkfid=gkf. *dgkfdm;
gksid=gks. *dgksdm;
Int=[Int; (gkfid(length(gkfid))-gkfid(1)+gksid(length(gksid))-gksid(1))*(ed(k)\(1+sum(arg)))];
G(m+1,:)=-gkf. *ddgkfdxdm-gkfid. *dgkfdx-gks. *ddgksdxdm-gksid. *dgksdx;

end

H=[H; G*(ed(k)\1+sum(arg)))];

end

Int=Int+dt*(sum(H')"-H(:,1)/2-H(:,length(x))/2);

Yo% o T %o T To To To To To T Fo Fo To To To To To To Fo Fo Fo To To To Fo Fo Fo To To To o To Fo Fo Fo To To T To Fo Fo Fo Fo To To To Yo Yo Fo Yo
Yo% o To %o To T To To To To %o Yo Yo

% Now the vector Int contains all the estimates needed for (1) %

% and (2) of the text %

Go % T Yo %o To Fo To To Yo o To Fo To Fo To Yo Yo To Fo To Fo Fo Yo Yo To To Fo To Fo Fo Yo T Fo To Fo Fo Fo Fo o To o To Fo Fo Fo Yo Yo Yo Fo Fo Yo
Go % Yo T %o Yo To Fo To Yo Yo Yo Yo Yo

F=leng(1)*Int(N-1:N-2:((N-3)*(N-1)))-leng(2:length(leng)) *Int(1);

jac=[];

run=N;

for k=1:N-3
jac(k,:)=(leng(1)*Int(run:run+N-4)-leng(k+1)"*Int(2:N-2))';
run=run+N-2;

end

run=N-1;

for k=1:N-3
term=(1+sum(arg))*Int(run);
Jjac(k,k)=jac(k,k)+leng(1)*term;
run=run+N-2;

end
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s=jac\(-F);

vekpre=vek;
vek=vek+s';

change=norm(vekpre-vek);
run=cumsum(exp(vek))+first ;

disp([run])
A=leng(1)/(Int(1)*((-1)N(sum(arg))));
end

And the drawing feature;

cor=[-10];
for k=3:N

cor=[cor cor(k-1)+leng(k-2)*exp(-i*pi*sum(arg(1:(k-2))))];
end

run=[first run];
dr=0.0001,
hit=[-1 0];

x=0:dt:first;

7=x*i;

h=arg(2)*log(z-run(1));

dhdx=arg(2)./(z-run(1));

for k=2:N-2
h=h+arg(k+1)*log(z-run(k));
dhdx=dhdx+arg(k+1)./(z-run(k));

end

h=exp(h).*(z.Narg(1)+1))arg(1)+1);

g=h.*dhdx;

int=A*h(length(h))-A*h(1);

for k=1:length(g)-1
int=int-A*dt*i*(g(k)+g(k+1))/2;

end

int2=int;

for m=1:length(run)
int=int2;
dt=run(m)/10000;
x=0:dt:run(m);
Z=x+first*i;

h=arg(1)*log(z);

for k=1:N-2
h=h+arg(k+1)*log(z-run(k));

42



end
g=exp(h);

for k=1:length(g)-1
int=int+A*dt*(g(k)+g(k+1))/2;
end

dt=0.001;

x=first:-dt:0;
z=run(m)+x*i;

h=arg(1)*log(z);
dhdx=arg(1)./(z);
for k=1:N-2
ifk==m
h=h;
else
h=h+arg(k+1)*log(z-run(k));
dhdx=dhdx+arg(k+1)./(z-run(k));
end
end
h=exp(h).*((z-run(m)).Narg(m+1)+1))/(arg(m+1)+1);
g=h.*dhdx;
int=int+A*h(length(h))-A*h(1);

for k=1:length(g)-1
int=int+A*dri*(g(k)+g(k+1))/2;

end

hit=[hit int];

end
plot(cor,’x’)

hit=[hit -1];

plot(hit);

disp([A run hit(3) hit(4) hit(5)])

disp([])
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