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Abstract

Introducing the Brownian motion in the way of Einstein and Wiener we find the
connection between a Wiener Process and the Heat Diffusion PDE. We solve the
PDE analytically for some boundary conditions and then use the connection to
the Wiener Process to solve more complex BVP’s using Monte Carlo simulations
in Matlab.
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1 Introduction

This MSc thesis focuses on the solutions of the heat diffusion partial differential
equation (PDE) for different, often very complicated, boundary value problems
(BVP’s) with the Dirac delta operator as initial condition. Some BVP’s are
solved analytically using standard PDE-solving techniques whilst most of the
solutions are found using Monte Carlo simulations of random walks.

We describe briefly the elegant connection between random walks and the
diffusion equation, which is due mainly to research carried out by Einstein
and Wiener. Throughout the thesis we use only basic Monte Carlo algorithms
derived by the author in an attempt to emphasize the extreme ease with which
one can solve very complicated BVP’s on a normal PC. We are not trying to
solve a particular real life problem, but rather derive (from scratch) a computer
intense method that one can apply to solve different BVP’s. In the scope of this
thesis, we are only interested in proof of concept, rather than in dept study.

The Wiener process used throughout this thesis is commonly used in Math-
ematical Finance and as such the repeated use of this process hopefully aim to
give a better understanding of the processes behind the models for Derivative
Pricing, Risk analysis etc...

The source code for the simulations are presented in the appendix, where I
also include an introduction to the Black-Scholes (BS) framework along with a
transformation from BS formula to the diffusion equation. Thus showing that
the above Monte Carlo solutions could actually solve the BS formula and be
used to price Financial Derivatives.

In the context below the heat diffusion PDE is often referred to as simply
the diffusion equation.

In chapter 2 we solve the diffusion equation analytically for three different
BVP’s: unbound, with terminating boundaries (cold walls) and with bouncing
boundaries (isolated walls).

Chapter 3 is devoted to solving the above problems using Monte Carlo sim-
ulations of random walks, and in chapter 4 we show how easy it is to modify
the Monte Carlo simulations to solve problems that would be very hard indeed
to solve using analytical methods. In chapter 4 we also introduce drifts when
bouncing on the walls, whilst in chapter 5 the drift is introduced at deterministic
time intervals.

Stochastic slalom is dealt with in chapter 6, where we first explain how one
could solve this kind of problems analytically using convolution. But since the
convolutions would get increasingly complicated we solve the problems using
Monte Carlo simulations.
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2 The heat-diffusion PDE

The heat-diffusion PDE, sometimes referred to simply as the diffusion equation,
is probably the most well-studied of all PDE’s, and its name derives from the
use to describe the evolution and transmission of heat in a metal rod. The
diffusion equation was first discovered in the 1820’s by Fourier and Laplace.

In the year 1900 Louis Bachelier presented his Ph.D. thesis Théorie de la
Spéculation which was the beginning of mathematical finance as we know it
today. The content was not fully mathematically rigorous but it was intuitively
correct, and many of the included ideas amazed, amongst others, his supervisor
Poincaré. The most striking ideas were:

• The market assumes that a stock-price process evolves under a martingale
measure (i.e that the Brownian motion governing the stock price has no
drift except possibly that of the riskless asset).

• The stock-price evolves as a continuous Markov Process and this process
satisfies what is now know as the Chapman-Kolmogorov equation.

• The Normal distribution function solves the Chapman-Kolmogorov equa-
tion.

Bachelier also observed that the distribution functions of the stock price pro-
cess and hence, by the above, the Gaussian distribution function, satisfies the
diffusion-equation [ea00].

Section 4 in Einsteins paper on Brownian Motion (1905) is titled On the
Irregular Movement of Particles Suspended in a Liquid and the Relation of this
to Diffusion and within Einstein assumes that the irregular movement generated
by thermal molecular movement is a Brownian motion. Einstein then derives
the heat-diffusion equation from the Brownian motion and hence demonstrating
that they are essentially the same thing [Ein05].

The great research carried out by of Bachelier and Einstein in the early
20th century connects the diffusion equation with the Brownian motion, but it
took another 30 years before Paley and Wiener found the connection between
a discrete random walk and the normal distribution. These two connections
together will let us simulate PDE’s1 and Brownian motion by repeatedly tossing
of a coin. As such, these are key elements in the theory behind stochastic
simulations.

1It is a well known fact in the theory of stochastic calculus (and hence mathematical
finance) that under some chosen martingale measure one often obtains a PDE when equating
the drift coefficient under the ’observed’ dynamics equal to that of the chosen martingale
measure. For example we can take the geometrical Brownian motion which, when equating
the drift under the objective martingale measure to that of the risk-free martingale measure,
generates the famous Black-Scholes PDE.
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2.1 Diffusion Equation and the Gaussian Distribution

As demonstrated by Einstein, we shall now show that the normal distribution
function may solve the diffusion equation, based on the following definitions:

Definition 2.1.1 (Stationary Increments) A stochastic process is said to
have stationary increments if the events that occur in the time interval (t, t+ s)
have the same distribution ∀t, where s and t ≥ 0. Stationary increments thus
mean that the events that occur in an interval does not depend on when the
interval occurs but only on its length. In formulae this means that (W (t + s)−
W (t)) is dependent on s only.

Definition 2.1.2 (Independent Increments) A stochastic process is said to
have independent increments if the events that occur in different adjoint time
intervals are independent. I.e. that ∀t1 < t2 < t3 < t4 (W (t2) − W (t1)) is
independent of (W (t4) − W (t3)).

Definition 2.1.3 (The Wiener Process) A stochastic process W = {W (t) :
t ≥ 0} is called a Wiener Process if

1. W (0) = 0

2. W has stationary and independent increments

3. ∀ t > 0, W (t) follows a normal distribution with zero mean and variance
σ2.

The process is called a Normalized Wiener Process if σ = 1.

It it important to note that part 3 in the above definition can be interpreted
as

W (t + s) − W (t) ∼ N(0, σ2s), or

Prob(W (t + s) = y|W (t) = x) ∼ N(x, σ2s) (2.1)

where the ”|” reads conditional on.
Most of the highlights in Einsteins research was in the Physical theory. But

in one of his Annus Mirablis Papers, more specifically the paper on Brown-
ian Motion, he also demonstrated (from a mathematical point of view) that a
connection between the Brownian motion and the diffusion equation. See also
[NW34] p. 157 for a further discussion.

I will shortly describe Einsteins realisation of this connection, but then an-
other proof of the connection will be demonstrated which is a little more math-
ematically straightforward.

Einstein models the ”irregular movement caused by thermal molecular move-
ment” by using a Gaussian process. He finds the number of particles (n), which
moves the distance (∆, ∆ + ∂∆) under the time interval (t, t + τ) as

dn = nφ(∆)d∆,
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where
∫ ∞

−∞
φ(∆)d∆ = 1, and

φ(∆) = φ(−∆)

and ”φ only differs from zero for very small values of ∆”. τ is chosen as a
small number and hence φ will be recognized as the distribution function of a
Gaussian random variable with the variance τ .

In investigating how the coefficient of diffusion depends on φ, Einstein defines
v = f(x, t) the number of particles per unit volume (assuming v depends only
on x, t), and calculates the distribution of the particles at time t+ τ conditional
on the distribution at time t. He finds the number of particles that are located
between two planes perpendicular to the x-axis, the first plane at x = x and the
second at x = x + ∂x, at a future time t + τ as

f(x, t + τ)dx = dx

∫ ∞

−∞
f(x + ∆)φ(∆)∂∆.

Einstein uses the fact that τ is really small and then finds the Taylor expansion
for f , which he then integrate over d∆. Every other term of the Taylor series
will disappear due to fact that φ(∆) is an even function, and terms of O(∆3) or
higher will disappear since ∆ is small. After doing these manipulations Einstein
arrives at the equation

∂f

∂t
= D

∂2f

∂x2

which is the diffusion equation with diffusion coefficient D:

D =
1

τ

∫ ∞

−∞

∆2

2
φ(∆)∂∆.

The above derivation was useful to physicists, but the latter parts of it are
complex. The following version is an attempt to provide a clarification.

Consider a Wiener process W such that W (t) = x for some t. Starting off
just like Einstein, we want to find the probability that, after a short time δt,
the process will be in state y, where y = x+ δx, and δx small. From probability
theory, we know that

P (W (t + δt) ≤ y|W (t) = x) = F (t + δt, y|t, x)

where F is the joint probability distribution function for t+δt and y, conditional
on t and x. We also know that

∂

∂y
F (t + δt, y|t, x) = f(t + δt, y|t, x),

where f is the joint probability density function for t+δt and y. This probability
density function is the same as the one Einstein defined as ”number of particles
per unit volume”. By (2.1) we get

W (t + δt) − W (t) ∼ N(x, σ2(t + δt − t)) = N(x, σ2δt)
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and the density function for such a normal distribution is given by

f(ξ, t) =
1√

2πσ2δt
e−(ξ−x)2/2σ2δt. (2.2)

Accurately combining partial derivatives lead us to discover the desired PDE.
In differentiating, it might help to look at δt as δt = δ ∗ t, where δ is almost
zero. By using the chain-rule and the fact that ∂

∂tf
n(t) = nfn−1 ∂f

∂t we get

ft(ξ, t) =
1

2
e

−(ξ−x)2

2σ2δt

( −1√
2π

3
√

σ2δt
+

(ξ − x)2√
2π

5
√

σ2δt

)

, (2.3)

fx(ξ, t) = e
−(ξ−x)2

2σ2δt
(ξ − x)√
2π

3
√

σ2δt
, and

fxx(ξ, t) = e
−(ξ−x)2

2σ2δt

( −1√
2π

3
√

σ2δt
+

(ξ − x)2√
2π

5
√

σ2δt

)

. (2.4)

Equating equations (2.3) and (2.4) above gives us the relation

ft =
1

2
fxx. (2.5)

Equation (2.5) is the same, up to a constant, as the equation that Einstein
found.

Important to note is that the f used in the above is a probability density
function and should in no way be confused with the f(x, 0) used in later sections
to denote the initial condition. In sections where confusion might arise we denote
the probability density function by u.
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2.2 Discrete Random Walks and Gaussian Distribution

The fact that Brownian motion can be ”created” using a random sequence
of ±1’s, essentially dates back to 1934 and the work on Random Functions by
Norbert Wiener and Raymond E. A. C. Paley. The authors showed that by using
a denumerable2 set of random numbers they could create a random variable
(approximately Gaussian in the X-direction via The Central Limit Theorem)
with a continuous range. The proof is rather deep and can be found in [NW34].

As curiosa can be mentioned that the proof was based on a transformation
from a random variable uniformly distributed over the interval (0, 1) to a com-
plex random variable with independent and Gaussian real and imaginary parts.
The result was the following:

Suppose that αi, αj ∼ Un(0, 1) and consider

ρ =
√

−log(αj)e
2πiαj .

Then both the real and the imaginary parts of ρ have independent, Gaussian
(and hence distributed on (−∞,∞)) distributions. For a proof of this transfor-
mation see [NW34] page 146.

2A set is denumerable, or countably infinite, if there exists a bijective function from the
set to a subset of the natural numbers.
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2.3 Solutions to the Heat Diffusion Equation

According to Einstein’s results of Einstein we have derived the heat-diffusion
equation (2.5) and now we aim to solve it for a few different boundary conditions.
If no boundaries are present, we already know that (2.2) is a solution to (2.5),
but in order to find the solution when BC’s are present, we will seek the general
solution to (2.5) by using the method of separation of variables.

Suppose that u could be written in the form

u(t, x) = Θ(t) ∗ Ξ(x).

Then we get the derivatives as

ut = Θ′(t)Ξ(x), and

uxx = Θ(t)Ξ′′(x).

Via (2.5) we get

Θ′(t)Ξ(x) =
1

2
Θ(t)Ξ′′(x)

⇒ Θ′(t)

Θ(t)
=

Ξ′′(x)

2Ξ(x)
.

The left hand side of the above equation depends only on t and the right hand
side depends only on x. One can not vary one without the other, thus they
must be constant, and we can rearrange to get

Θ′(t)

Θ(t)
=

Ξ′′(x)

2Ξ(x)
= −λ,

where λ is an arbitrary constant and we assume λ > 0. This reduces the PDE
problem into two ODE’s, which we now aim to solve.

The first ODE,
Θ′(t) + λΘ(t) = 0, (2.6)

is a first order linear homogeneous ODE with constant coefficients and it’s gen-
eral solution takes the form

Θ(t) = Ce−λt, (2.7)

where C is some constant.
The second ODE,

Ξ′′(x) + λΞ(x) = 0, (2.8)

is a second order linear homogenous ODE with constant coefficients. Since we
assumed λ > 0 we get the solution

Ξ(x) = De±i
√

λx, (2.9)

where D is some constant.
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With the relation −i = 1
i in mind, consider the following standard definitions

sin x =
ie−ix − ieix

2
, and (2.10)

cosx =
eix + e−ix

2
. (2.11)

The Principle of Superposition (see, for example [Hab04], page 37) states that if
two functions satisfy a linear homogeneous equation, then any linear combina-
tion of these two functions also satisfy the same linear homogeneous equation.
We now try

c1 cos
√

λx + c2 sin
√

λx

as a solution for the PDE. Inserting (2.10) and (2.11) into this gives

c1e
i
√

λx + c1e
−i

√
λx

2
+

ic2e
−i

√
λx + ic2e

i
√

λx

2
,

which can be re-arranged as

1

2

(

(c1 − ic2)e
i
√

λx + (c1 + ic2)e
−i

√
λx

)

,

which is a linear combination of (2.9). So by the Principle of Superposition

Ξ(x) = c1 cos
√

λx + c2 sin
√

λx (2.12)

is also a solution to the ODE (2.8).
We started by assuming u(t, x) = Θ(t) ∗Ξ(x) and then went on to find Θ(t)

(2.12) and Ξ(x) (2.7), and so we get the solution for the PDE (2.5) as

Ξ(x)Θ(t) = uλ(x, t) =
(

c1 cos
√

λx + c2 sin
√

λx
)

Ce−λt, (2.13)

where we add the subscript λ to emphasize the dependency of λ.
To finish this section we conclude that for each λ > 0 the function uλ(x, t)

solves the Diffusion-Equation ut = 1
2uxx, where c1, c2 and C can be chosen to

suit ones purpose. This is easily checked by differentiating uλ once w.r.t t and
twice w.r.t. x and then equating the resulting equations.

2.3.1 Dirac-Delta Function

uλ(x, t) can be interpreted as the probability to be at position x, at time t, for
a particle moving according to a standardized Wiener process. This is a useful
and general result which can be built upon to solve more specific problems, such
as bound processes with either terminating or ”bouncing” boundaries. First,
however, we need to familiarize ourselves with Initial Conditions.

Initial conditions define, as the name implies, what happens initially with
the process. We want to model a process that starts at some specific point
x = x0 at time t = 0. There should only be one process in the system at every
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time, for else they might crash into each other and interact, and it turns out
it is a good idea to use the initial condition u(x, 0) = f(x) = δ(x − x0), where
δ(x − x0) is known as the Dirac Delta function, to achieve this.

It is important to note that the ’crashing’ of atoms that gave the process it’s
name Brownian Motion is not what we are trying to model. We assume that
every single one of our processes move according to Brownian motion when run
separately, and we do not know what would happened if we let many of them
run at the same time. Maybe they would interact and arrive in a fashion not
independent of each other? Then our calculations would be inaccurate.

Briefly, the Dirac Delta function is a function that is virtually zero every-
where apart from at xo where it is ∞. However δ(x−x0) is not really a function,
since a function can not be defined to equal infinity at any point, and instead
the Dirac Delta function can be thought of as an operator. The nature of this
operator is quite valuable and is defined as follows:

Definition 2.3.1 (Dirac Delta Function) The Dirac Delta function is an
operator defined as

δ(x − x0) =

{
0 if x 6= x0

∞ if x = x0.

It has the properties that

∫ ∞

−∞
δ(x − x0)dx = 1, (2.14)

∫ ∞

−∞
g(x)δ(x − x0)dx = g(x0), and (2.15)

∫ ∞

γ

δ(x − x0)dx = 0 ∀ γ > x0. (2.16)

Since the Dirac Delta function is defined to be symmetric about x0 equation
(2.16) is also true when limA→−∞

∫ γ

A
, γ < x0. For convenience, we sometimes

write δ(x − x0) = δx0 .

By using the Dirac Delta operator as the Initial Condition, we tell the Heat-
Diffusion equation that all processes shall start at x = x0 at t = 0, and hence the
drunken man Erik will commence his drunken stroll at the same pub, at the same
time, many times around3. We shall also apply Boundary Conditions to tell the
process what shall happen when some specified boundaries (walls, ditches) are
used, but to fully understand this some more theory will be explained in the
paragraphs below.

3The number of times Erik will walk drunken equals the number of independent universii
he lives within.
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2.3.2 Fourier Series

In his famous work on heat flow ”Théorie analytique de la chaleur” (1822),
Joseph Fourier developed what is today known as the Fourier Series. The re-
sults, although somewhat faulty4, was a scientific breakthrough at the time but
are today considered standard techniques: techniques taught at undergradu-
ate levels in mathematics and engineering on how to solve Partial Differential
Equations.

A definition of the Fourier Series is provided below. For an in-depth expla-
nation, please consult [Hab04] chapter 3, and [Rud76] chapter 8.

Definition 2.3.2 (Fourier Series) The Fourier series of a function f(x) on
the interval (-A,A), where A∈ R, is written as

Fourier series = A0 +

∞∑

n=1

An cos
(nπx

A

)

e−λt +

∞∑

n=1

Bn sin
(nπx

A

)

e−λt (2.17)

with the Fourier coefficients defined as

A0 =
1

2A

∫ A

−A

f(x)dx (2.18)

An =
1

A

∫ A

−A

f(x) cos
(nπx

A

)

dx (2.19)

Bn =
1

A

∫ A

−A

f(x) sin
(nπx

A

)

dx. (2.20)

It should be noted that the Fourier Series of f(x) and the function f(x) are
not equal. The Fourier series may not converge at all (it is, after all, quite a
general infinite series), and if it does converge it may not converge to f(x). Only
if the series converge are the Fourier Coefficients above valid.

The aim of the next few sections is to find Fourier Series for u(x, t), with
special restrictions (BC’s and IC), and that does indeed converge to u(x, t).

4According to the article on J. Fourier on wikipedia.org. The internet certainly holds a
lot of erroneous facts, but since it does not really matter in what follows whether Fourier was
right or wrong I will not dwell any further on the topic.
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2.4 Scenario I: No Boundaries

It is important to first find the solution to the diffusion equation with no bound-
aries using the Dirac Delta function as the initial condition. As Einstein showed
us, in section 2.1, the Normal distribution can be a solution to the diffusion
equation in general. However, we know nothing about the particular case, when
using the Dirac Delta as the initial condition.

I came across a very good solution, using Fourier Transforms, to this problem
explained in chapter 10 of [Hab04]. This solution was applied using matlab’s
plotNoBoundriesFourierSer.m to illustrate this solution at different times (see
2.4). To better explain this solution the following theorem and proof is included.

Theorem 2.4.1 (No Boundaries) The solution to the diffusion equation ut =
1
2uxx, with the initial condition u(x, 0) = δx̄, is given by

u(x, t) =
1√
2πt

e
−(x−x̄)2

2t . (2.21)

This is called the fundamental solution of the diffusion equation.

Proof: see [Hab04] chapter 10.
The equation (2.21) is nothing but the probability density function of a

Normally distributed random variable with mean x̄ and variance t > 0, and, at
least intuitively, it is possible to see how, as ∆ → 0, the normal distribution
with variance ∆ will tend to the Dirac Delta function.
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Figure 1: Plotting the solution for Theorem 2.4.1 for discrete times t ∈
(.1, 1.1, · · · , 5.1).
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2.5 Scenario II: Boundries make Erik Fall off a Bridge

Let us get back to imagining the drunken man Erik and his Friday evening walk
home from the local pub. Somewhere along this road there is an un-fenced
bridge, acting as the boundry, that Erik has to pass over in order to get back to
the comfort of indoors. We now focus on this bridge and the horrible scenario
that Erik would fall over the edge of the bridge.

2.5.1 Boundary Conditions

The edges of the bridge constitute our boundaries and by scaling the width of
the road to be π wide, the boundary conditions u(0, t) = u(π, t) = 0 are defined.
We now apply these BC’s to equation (2.12) to get the solution to the PDE for
these specific boundaries:

Ξ(0) = 0 ⇒ 0 = c1 cos 0 + c2 sin 0

∴ c1 = 0.

Ξ(π) = 0 ⇒ 0 = c2 sin
√

λπ

⇒
√

λ = n, n ∈ N

∴ λ = n2.

We have

Θ(t) = Ce−λt (2.22)

Ξ(x) = c2 sin(nx). (2.23)

c1 is the cosine-coefficient and setting this to zero thus corresponds to zeroing
all the A′

ns in equation (2.19). The product solution of the heat-diffusion PDE,
with boundary conditions Ξ(0) = 0 and Ξ(π) = 0, is thus

u(x, t) = c2 sin(nx)e−n2t,

and the Fourier Series solution is given as

uF (x, t) =

∞∑

n=1

Bn sin(nx)e−n2t, (2.24)

with Bn as in equation (2.20). This is a correct solution for the diffusion-
equation with given BC’s, but it can be narrowed down further in order to fit
the Dirac-Delta initial condition as explained in the next paragraph.

2.5.2 Initial Condition (IC)

We want to find the Fourier series uF of a function u that, at t = 0, should equal
δπ

2
. Initially we have t = 0 and equating (2.24) with the Dirac Delta function
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δπ
2

we are looking for a series of the form

∞∑

n=1

an sin(nx) ≈ δπ
2
. (2.25)

Using (2.15) we get

g
(π

2

)

=

∫ π

0

δπ
2
g(x)dx, and via (2.25)

=

∞∑

n=1

an

∫ π

0

g(x) sin(nx)dx, (2.26)

which is valid ∀g ∈ C [0, π] : g(0) = g(π) = 0, where C denotes the set of all
once differentiable functions. We have infinitely many different g to choose from
and so let us try a g of a form similar to (2.25):

g(x) = ak sin(kx),

where k is some integer and trivially g(0) = g(π) = 0∀x. Further, we put
g(x) ≈ δπ

2
and get

∞∑

n=1

an sin(nx) ≈ ak sin(kx)

which means that an = 0∀n 6= k and ak is yet to be found. Via (2.26) we get

g
(π

2

)

= sin

(
kπ

2

)

=

{
0 if k = 2n (even)
(−1)n if k = 2n + 1 (odd).

ak is defined as

ak =
2

π

∫ ∞

0

g(x) sin(kx)dx, and since g(x) ≈ δπ
2

=
2

π
sin

(
kπ

2

)

and via (2.15)

=

{
0 if k = 2n (even)
2
π (−1)n if k = 2n + 1 (odd).

Using these coefficients would give us

u(x, 0) =
2

π
(sin(x) − sin(3x) + sin(5x) − · · · ) .

In order for this series to represent a Dirac-Delta condition, we require that
∫ π

0
u(x, 0)dx = 1. Since integration can be split over the sum, we can integrate

each of the above sine functions separately as follows:

∫ π

0

sin(x)dx = 2,

∫ π

0

sin(3x)dx =
2

3
,

∫ π

0

sin(5x)dx =
2

5
, · · ·
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Plugging in all the integrals and their respective coefficients we now get

I =

∫ π

0

u(x, 0)dx =
2

π

[

2 − 2

3
+

2

5
− 2

7
+ · · ·

]

=
4

π

∞∑

m=0

(−1)m

2m + 1

∑∞
m=0

(−1)m

2m+1 → π
4 as n → ∞ and thus I = 1.

We summarize the results of this section in a Theorem:

Theorem 2.5.1 (Terminating Boundaries) The diffusion equation ut = 1
2uxx,

with boundary conditions u(0, t) = u(π, t) = 0∀t, and initial condition u(x, 0) =
δπ

2
, x ∈ (0, π), is given by

u(x, t) =
2

π

∞∑

m=0

(−1)m sin ((2m + 1)x) e−(m+1)2t. (2.27)

As an extra confirmation, and also illustration, of the results of Theorem
2.5.1, MATLAB was used to plot the solution for a few different discreete times
t. The plots are shown in figure 2 and produced using
plotTerminatingFourierSer.m and sumTerminatingFourierSer.m.

The plots in figure 2 express conditional probability in order for the process
to be alive at the end of the time interval. As a result of this condition the
area of the probability distributions tend to zero as T gets larger. To find the
survival percentage one simply integrates (2.27):

∫ π

0

u(x, t)dx =
2

π

∞∑

m=0

(−1)m 2

2m + 1
e−(m+1)2t

This is plotted in figure 3, using plotIntegratedFourierSer.m and
sumIntegratedFourierSer.m, to show how rapidly the chance of survival tends
to zero.

Remark: From a mathematical point of view it is interesting also to observe
only the surviving processes on 0 ≤ x ≤ π. This would be a distribution with
total mass 1 and as t grows this would be (if it exists) the normalized stationary
arrival distribution for the process.

The normalized arrival distribution is u/
∫ π

0
udx and to find the stationary

distribution let
u(x, t)

∫ π

0 u(x, t)dx
= ρ(x, t)

and seek
lim

t→∞
ρ(x, t). (2.28)
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Figure 2: Plotting the solution in Theorem 2.5.1 for m=0,. . .,1000, and at dif-
ferent discrete times t ∈ {0.1, 0.6, 1.1, · · · , 3.1}.
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Figure 3: Plot showing how the survival chance decrease in time.
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Trick: ∀t ≫ 0 let δ = e−t. Then δ ≪ 1 and e−(m+1)2t ≈ δ(m+1)2 . By theorem
2.5.1 we conclude

u(x, t)

δ
=

2

π

[
sin(x) − δ3 sin(3x) + δ8 sin(5x) − . . .

]

≈ 2

π
sin(x), since when t ≫ 0 (2.29)

Plug (2.29) into (2.28) and recall that
∫ π

0 sin(x) = 2 to get

lim
t→∞

ρ(x, t) =
2
π sin(x)

∫ π

0
2
π sin(x)dx

=
1

2
sin(x) (2.30)

Thus, (2.30) is the normalized stationary arrival distribution of the survival
percentage when t ≫ 0. We plot this convergence in figure 4, which is generated
using plotNormalizedFourierSer.m
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Figure 4: Plot showing normalized arrival distributions u/
∫ π

0
udx. The thick red

line is the function sin(x)/2, and we see that convergence towards this function
is rather quick (plotting for t ∈ {0.1, 0.2, 0.3, · · · , 3.1}).
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2.6 Scenario III: Bouncing Boundary Conditions

2.6.1 Boundary Conditions

In the last section the process is terminated when reaching any of the edges,
and this termination is achieved by choosing certain boundary conditions. We
will now choose different BC’s to make the process bounce at the boundaries
rather than being terminated. The basic set-up is still the same and once again
we refer to the solutions of the ODE’s given in (2.7) and (2.12), obtained by
assuming that the heat diffusion PDE have a separable solution. We shall now
choose new boundary conditions to impose the bounce, as cleverly proposed by
professor Jan Boman of Stockholm University, during a conversation at the coffe
table.

By differentiating (2.12) w.r.t. x we readily get

Ξ′(x) = −c3 sin(
√

λx) + c4 cos(
√

λx), (2.31)

where c3 =
√

λc1 & c4 =
√

λc2 and the ′ represent the x-derivative. Assuming
that the process is bound by straight lines at x = L and x = −L, we need to
force the process never to cross these lines (boundaries). The way to do this is
to put the process’ x-derivative equal to zero at the boundaries, thus making
the process change direction whenever it hits these boundaries. We also need to
make sure the upper boundary produces a maximum and the lower boundary
produces a minimum (not a saddle point).

In mathematical terms the above conditions can be written as Ξ′(L) =
Ξ′(−L) = 0. Setting L = π we get the BC’s as Ξ′(π) = Ξ′(−π) = 0.

The first BC, Ξ′(π) = 0, together with (2.31) gives

−c3 sin(
√

λπ) + c4 cos(
√

λπ) = 0. (2.32)

For this equation to be true it is required that either both the sin and the cos
term above are equal to zero, or that c3 sin(

√
λπ) = c4 cos(

√
λπ).

The latter case is trivial, since cos and sin are equal only when
√

λ =
(
n + 1

4

)
,

n ∈ N . This choice of λ would mean that the original function (2.12) is al-
ways zero, and would give the rather simple zero-everywhere-∀t solution to the
diffusion-equation. Although simple, it is nonetheless a valid solution.

Of more interest is the case when the sine and cosine terms above are both
zero. For the sine term we have

c3 sin(
√

λπ) = 0 if

{
either λ = n2, n ∈ N
or c3 = 0,

and similarly for the cosine term

c4 cos(
√

λπ) = 0 if

{

either λ = (2n+1)2

4 , n ∈ N
or c4 = 0.

The second BC, Ξ′(−π) = 0, gives the same results.
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There are two5 options to chose the coefficients from, and we have to figure

out which one to use. Either we set λ = n2 and c4 = 0, or we set λ = (2n+1)2

4
and c3 = 0.

The first case gives

Ξ′(x) = −c3 sin(nx), and

Ξ(x) = c1 cos(nx).

while the latter case gives

Ξ′(x) = c4 cos(nx), and

Ξ(x) = c2 sin(nx).

2.6.2 Initial Condition

Both of the choices above satisfy the diffusion-equation with the given BC’s, but
it turns out only one of them will also satisfy the Dirac-Delta Initial Condition.
To explain this we need the Fourier Series for the diffusion equation, and setting
A = π, this is given as

uλ(x, t) = a0 +

∞∑

n=1

an cos(
√

λx)eλt +

∞∑

n=1

bn sin(
√

λx)eλt. (2.33)

To reinforce that the IC is satisfied we require that (2.33)→ f(x) as t → 0.
That is, we want

f(x) = a0 +

∞∑

n=1

an cos(
√

λx) +

∞∑

n=1

bn sin(
√

λx). (2.34)

f(x) is chosen to be the Dirac delta function and thus we want f(0) = ∞6 and
f(x) = 0∀x 6= 0. With a proper IC in place, we now have enough information
to proceed to choose the correct values for λ.

We start by forcing the series to satisfy the condition f(0) = ∞. Since the
sine series are always zero at x = 0 it makes sense to set also the bn = 0. Setting
bn = 0 in the Fourier series cancels out the sine series and thus corresponds to
setting c2 (and c4) to zero in the product solution. Then, in order to avoid the
aforementioned zero-everywhere-∀t solution we are forced to choose c1 (and c3)
to be non-zeros, which means setting λ = n2.

Choosing λ = n2 and bn = 0 is all we need to do in order to make sure f(0)
6= 0. The sine series vanish and we are left with

f(x) = a0 +
∞∑

n=1

an cosnx. (2.35)

5Disregarding the case c3 = c4 = 0 since this produces the same simple zero-everywhere-∀t

solution as the
√

λ =
`

n + 1

4

´

case.
6This is not a correct notation, and what I really mean is that f(0) → ∞ as n → ∞.
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Approaching an acceptable solution: cos 0 = 1 and
∑∞

n=1 an → ∞ for many
sequences an. It now only remains to find these an and make sure they are not
of O

(
1

n2

)
or less, since that would make the series converge.

Finding a0 is easy; remembering that f(x) = δ0 we use (2.16) to see that

∫ ∞

π

δ0dx =

∫ −π

−∞
δ0dx = 0

⇒
∫ ∞

−∞
δ0dx = 1, (2.36)

and combining (2.36) and (2.18) we get

a0 =
1

2π
. (2.37)

To find the rest of the an’s we again look towards the result in (2.16). f(x) is
defined ∀ x ∈ (−π, π) and integrating (2.35) between γ and π gives

∫ π

γ

f(x)dx =

∫ π

γ

1

2π
dx +

∞∑

n=1

an

∫ π

γ

cos(nx)dx

⇒ 0 =
π − γ

2π
−

∞∑

n=1

an

n
sin(nγ)

Rearranging this and putting g(γ) = π−γ
2π and cn = an

n we can apply the results
in (2.20)7. We get

cn =
2

π

∫ π

0

π − γ

2π
sin(nγ)dγ

=
1

nπ
(via integration by parts)

∴ an =
1

π
. (2.38)

Plugging (2.38) and (2.37) into (2.35) we get

f(x) =
1

2π
+

∞∑

n=1

1

π
cosnx,

and this immediately gives us the equation for uλ(x, t) as

uλ(x, t) =
1

2π
+

∞∑

n=1

1

π
cos(nx)e−tn2

. (2.39)

This solution behaves as required at x ∈ {−π, 0, π}, but let us now confirm
that it behaves as we want elsewhere.

7Note that g(x) and sinx are both odd functions, so g(x) sinx is an even function and
R

π

−π
g(x) sin x = 2

R

π

0
g(x) sinx.
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Extrema. The solution in (2.39) clearly satisfy the divergence criteria (page
29), since 1

π > 1
n2 ∀ n > 1. But we also require the process to turn direction

and bounce at x = ±π, and thus we need to make sure that the process attains
its maximum at π and minimum at −π. This is easily checked with some
elementary calculus: First we verify what happens with the x-derivative at ±π

ux(x, t) =

∞∑

n=1

−n

π
sin(nx)e−tn2

⇒ ux(±π, t) = 0 ⇒ turning point.

Thus ±π is a turning point. To verify maxima and minima, we look at the sign
of the second derivative

uxx(x, t) =

∞∑

n=1

−n2

π
cos(nx)e−tn2

⇒ uxx(π, t) =

∞∑

n=1

−n2

π
cos(nπ)e−tn2

< 0 ∀ x ⇒ maximum at π.

⇒ uxx(−π, t) =
∞∑

n=1

−n2

π
cos(−nπ)e−tn2

, and cosine is even so

=

∞∑

n=1

n2

π
cos(nπ)e−tn2

> 0 ∀ x ⇒ minimum at -π.

Total probability. The last criterium is the law of total probability should
always be satisfied. Since this process bounces whenever it reaches a wall the
total probability implies that, for every 0 < t < T , the integral between the
boundaries, x = ±π, shall equal one. Again, this is easily verified using simple
calculus;

∫ π

−π

u(x, t)dx =

∫ π

−π

1

2π
dx +

∞∑

n=1

1

π

[∫ π

−π

cos(nx)dx

]

e−tn2

.

=
[ x

2π

]π

−π
+

∞∑

n=1

1

π

[
sin(nx)

n

]π

−π
︸ ︷︷ ︸

=0

e−tn2

.

= 1.

Thus, equation (2.39) satisfies all our requirements and is therefore a accu-
rate solution for the heat diffusion PDE with given BC’s and IC.

Let us formulate the above as a theorem:

Theorem 2.6.1 (Bouncing Boundaries) A non-trivial solution of the equa-
tion ut = 1

2uxx, with boundary conditions ux(−π) = ux(π) = 0 and initial
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condition u(x, 0) = δ0, is given by

u(x, t) =
1

2π
+

∞∑

n=1

1

π
cos(nx)e−tn2

.

This final solution can be interpreted as the probability of being at position
x at time t, and it is illustrated in Figure 58.

Remark: All processes survive and thus the area under the the distribution
functions displayed in figure 5 are already normalized. The limiting distribution
is easily found, since if t ≫ 0 the sum

∑∞
n=1

1
π cos(nx)e−tn2 ≪ 1 and hence

u(x, t ≫ 0) → 1
2π . (This is very reasonable since a unit size rectangle of width

2π must have height 1/2π.)

8Generated via sumBouncingFourierSer.m and plotBouncingFourierSer.m
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Figure 5: Plotting the solution in Theorem 2.6.1 for n=1,. . .,1000, and for dis-
crete times t ∈ {0.1, 0.6, 1.1, . . . , 3.1}.



2 THE HEAT-DIFFUSION PDE 33



3 MONTE CARLO SOLUTIONS TO PREVIOUS BVP’S. 34

3 Monte Carlo Solutions to Previous BVP’s.

In chapter 2 we described the connection between the random walk and the
diffusion equation and managed to solve the diffusion equation analytically for
three distinct sets of BC’s. Through this we know that a large number of random
walks will generate essentially the same arrival probabilities as the corresponding
diffusion equation. Thus, we do not really need to solve the diffusion equation
analytically, since it suffices to simulate a large enough9 number of drunken
men.

If the large enough is small enough to fit in the computer memory, typically
a few hundred thousand simulations on a field that is 1000 steps long can be
computed in only a few minutes on an ordinary PC. In what follows, I will show
a few examples of stochastic simulations of such boundary value problems, and
for the three cases solved in chapter 2, I also perform and compare to the Monte
Carlo counterpart solution.

When performing the simulations I have been using either my laptop with
512mb memory and a 1,3GHz processor, or my home PC with 1024 megabyte
memory and 1,8GHz processor. The MATLAB student version, release 14, was
used for the simulations and the source code can be found in the appendix.

It should be noted that the code and design ideas within are derived from first
principle. This might seem as drawback to some, but I wanted to experiment
how well one could solve these problems without expert knowledge. Hence, the
methods within should be easy to follow for anyone with a little knowledge in
programming and mathematics.

The point I try to emphasize by these simulations is the possibility of solving
PDE’s by doing repeated stochastic experiments. The main focus will be on the
arrival distributions of the process which, after normalization, can be interpreted
as the probability distribution of the arrivals at the far end of the street.

3.1 Basic Design Ideas.

Let me start by guiding you through the general structure of the MATLAB
code, and then the specific’s will be given when I deal with the matching simu-
lation. The code begins with the definition of the crucial variables. If there are
boundaries, they will be defined as N+&N−, where N± can be either a constant
or a function of t. Often the length of the road, field or whatever you like to call
it, will be predetermined and we denote this by T 10. The number of simulations
to be run is set to S. The time-spatial location on the road is often referred to
in coordinates (x, t), where x is the spatial distance from the center line and t

is the time the process has been running since the start. Setting x0 = N++N
−

2
the center line is defined as (x0, t), where t ∈ (0, T ).

9Exactly how large large enough is, is not given too much thought in this text. I just chose
a ”large enough” that I think will do the job

10For simplicity I also set the number of time steps to equal T . This may not be normal
practise, but it makes the binomial tree-structure of the process easier to explain and the code
will be much clearer.
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We create a vector named Pos of length S. Each element in Pos represents
the current spatial position (± the distance from the center line) of the corre-
sponding simulation. At t = 0 all processes will start at x0 and thus we get the
position vector in the first time step as Pos = x0 ∗ (1, 1, 1, . . . , 1)T ∈ R(1 × S).

We iterate through all the discrete trime steps, which means we will go
through the loop T times. At each time step t ∈ (0, 1, · · · , T ), we create a
vector vt of length S where each element is either a +1 or a −1 such that
P (vt) = 1 = P (vt) = −1 = 0.5. Each element of vt represents whether the
corresponding simulation is to step up one, or down one, at this time step.
We then add this vector to the position-vector Pos and receive a new position
vector that we again call Pos. We repeat this T times. The last version of Pos
to come out of the iteration contains the arrival positions for each and every
simulation after T time steps. If there are boundary conditions, we perform a
check in every iteration to see if any process have reached a boundary, and if it
has we apply the corresponding action.

It can also be noted that for the most trivial case of random walks, the
case without boundaries, one can simply generate a large matrix of ±1’s and
then sum all the columns11. This way do not need any iterations, which makes
for a very fast code, but it only works good for matrices small enough to fit
comfortably in the computer memory.

To obtain vt = ±1 I have been using two different methods: the first using
uniform and the second using binomial random variables:

Uniform:Take θ ∼ Un(0, 2) and then truncate the decimals, leaving only ones
and zeroes. These will occur with the same probability so we need to take
2 ∗ θ − 1 to obtain ±1 with equal probabilities of 0.5.

Binomial: θ ∼ Bin(1, .5) will give us 0’s and 1’s. 2θ − 1 will then be ±1 with
probability .5 respectively.

Through rather unsophisticated experiments I have come to the conclusion that
the binomial method is a bit less computer intense, and hence a bit faster, than
the uniform method.

In MATLAB it is possible to randomize whole vectors at the time, which is
very effective to minimize computational time.

Even though some of the examples contained are Markovian and thus could
be simulated using transition probability matrices, I chose to use the same style
for all the simulations.

3.2 1D Random Walk - Scenario I

The most basic and traditional example is the one dimensional random walk.
The drunken man starting at a point (t = 0, x = 0) to walk a pre-specified
number of steps until he arrives at some location at the final time T . According
to chapter 2 the probability of arriving at (ξ, T ) is equal f(ξ, t), where f is the

11Using, for example, the cumsum function in matlab



3 MONTE CARLO SOLUTIONS TO PREVIOUS BVP’S. 36

probability density function of a normally distributed random variable with zero
mean and variance

√
T .

One can actually simulate the above random walk without iterating through
the code: Create a matrix with the size #simulations×T and fill it with ran-
domly chosen ±1 : Prb(+1) = .5 = Prb(−1). By taking the cumulative sum12

in the T direction we add the T ±1’s onto each other, just as the case of a
discrete random walk.

Storing the paths in a matrix makes the calculation in MATLAB very effi-
cient, but the amount of memory used by the computer will increase quadrat-
ically with the number of simulations, and thus the computer will eventually
run out of memory. It seems that the best way would be to generate a matrix
that is a bit below what the computer can handle, and then iterate this many
times.

I did a simulation of the process and at the same time compared it with
the corresponding solution to the unbound diffusion equation, using the density
function for N(0,

√
T ). The solutions are illustrated in figure 6, generated by

simulate1dRandomWalk.m.

3.3 1D Random Walk with Terminating Boundaries - Sce-

nario II

Recall the boundary conditions for the diffusion PDE with terminating bound-
aries were defined for x = {0, π} and ∀t. This BVP is very simple to solve using
Monte Carlo random walks and the algorithm will now be presented.

After defining the variables(a number of discretee timesteps T , the distance
from the centre line to the boundries ±N , the number of simulations Sim) we
create a Sim × N size matrix called Pos that contains random ±1’s. We take
the cummulative sum, in the T direction, of the Pos matrix and then take the
cummulative sum (still in the T direction) of all the elements of Pos that does
not exceed the boundary values ±N . Then we plot the arrival-locations against
the arrival percentages. The plot is shown in figure 7 and is generated using
simulate1dRandomWalkTermBC1.m.

3.4 1D Random Walk with One-step Bounce - Scenario

III

When solving the diffusion PDE for the bouncing boundary conditions, we put
the spatial derivative ux = 0 at the boundaries to make sure the process stays
within the boundaries. For the stochastic simulations, I solve the analogous
problem by forcing the process to have the probability 1 of stepping away from
the boundary, whenever it hits the boundary. This is illustrated in figure 8,
which is generated by simulate1dRandomWalkBounceBC1.m. It shows how the
arrivals do indeed converge towards the uniform distribution, as T gets larger.

12In MATLAB the command cumsum does this without iteration.
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Figure 6: Random Walk versus Normal distribution. Computational time:
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Figure 7: Terminating boundaries. I chose the field to be 2N wide where
N = 30, and plotted for T ∈ {51, 101, 351, 601}. The un-smoothness of the
curves is due to the fact that we use unit steps, which could be compensated for
by using a much wider field. Computational time for 30000 simulations =141
seconds (on my laptop).
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The ups and downs retain the Markovian property13 and are independent
of each other. We start as above and generate a matrix of ±1’s and then take
the cumulative sum of these to obtain the unbound random walk. Then we
iterate through all time steps and check at each time step, whether or not, the
process is at (or exceeds) the boundary level ±N . If so, we subtract/add 1 to
all the remaining time steps of this process, thus pulling the process up/down
according to the bounce.

Since the drift is introduced for one step only, I call this process a one-
step bounce process. Obviously, when T < N this would be exactly the same
as in Scenario I (since it is impossible for the process to reach the boundary
for T < N). As time increases, the arrival probabilities will converge towards
the uniform distribution in accordance with the corresponding solution of the
boundary value problem.

13A process is called a Markov process if the next step is completely determined by the
current position of the process. This is true in this process since we step up/down one step
only if we are at the boundary, and otherwise we keep going as usual. This property is also
called the memory-less property and one think of the drunken man Erik hitting a wall next
to the street. He takes one step away from the wall, but he is so drunk that he immediately
forgets the existence of the wall, and might step right back into it.
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Figure 8: Bouncing boundaries. I chose the field to be 2N wide where N = 30,
and plotted for T ∈ {50, 100, 350, 600}. The un-smoothness of the curves is due
to the fact that we use unit steps, we could compensate for this using a much
wider field. However, this plot illustrates the main point. Only 10000 simula-
tions were done and thus the graphs are rather stochastic. The code used for
this application is ”raw” and not optimized in any way, and thus computational
time = 650 seconds on my laptop.
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4 Drifts, Bounce Counting and 1.5D.

4.1 1D Random Walk with a Target Fixation Drift

Imagine that we want to introduce a drift to the random process. The most
common solutions are to consider a stochastic differential equation (SDE) of the
form

dX(t) = α(t)dt + σ(t)dW (t), (4.1)

where dX(t) represents the change in X (distance from the center line) as the
process takes a tiny deterministic step α(t)dt, plus some stochastic diffusion term
σ(t)dW (t). For some systems this can be solved rather easily using standard
techniques of SDE’s, but it is often easier to solve the problems using Monte
Carlo simulation, where the drift will correspond to changes in the probabilities
of stepping up and down.

Imagine that the drunken Erik walks along a road and all of a sudden he
stumbles into the sidewalk. In the confusion, he looks up and sees the beer can
at the end of the street. From now on Erik knows where the beer can is and
he is aiming for it. Although still walking very drunkenly, we have introduced
what we choose call a target fixation drift, i.e. a drift in the direction of the
beer can.

Assume that x0 = 0 and |N−| = |N+| = N , where N is the distance from the
barrier to the center line. In the model of target fixation the drift is introduced
when the process hits the barrier, and therefore denote by t the hitting time
of the barrier. The target fixation drift would then equal the slope the process
need to walk along to arrive at (0, T ). This slope would be −N

T−t , as shown in
figure 9.

Note: Due to the structure of the binomial tree this would only be accu-
rately described, when considering the first T −N steps. If the process hits the
boundary in any of the last N steps the process would have zero possibility of
reaching (0, T ), even though the diffusion equation describing the process would
allow this, and thus we would have introduced an extra constraint on the system
which is not compatible with the diffusion equation.

In what is not the limit, but the unit (since we simulate discretely) we
introduce the drift by altering the simulated probabilities according to the rea-
soning above. This is explained in figure 10. We no longer want P (vt+1 =
1) = P (vt+1 = −1) = 0.5 as was used in the previous, non drifted, cases. In-

stead, we choose P (vt+1 = −1) = 1+N/(T−t)
2 and P (vt+1 = +1) = 1−N/(T−t)

2 ,
where vt is the step vector for time t. The law of total probability holds, since

P (vt+1 = 1) + P (vt+1 = −1) = 1+N/(T−t)
2 + 1−N/(T−t)

2 = 1, which is the first
check one should perform when dealing with anything probabilistic, just to make
sure one is not outside, riding a bike.

I have simulated the solution of two different systems, one where the drift
is taken away when the process crosses the center line, and one where the
target fixation drift is still intact. See figure 11, which was generated by
RandomWalkLookBackVect1.m.
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Figure 9: The slope of the line β from (t,N) to (T,0) is −N
T−t . This is chosen to

represent the drift of the process, i.e. would the process behave deterministically
(σ(τ) = 0∀τ ∈ (t, T ) in (4.1)) it would arrive at (T, 0). When σ(τ) 6= 0∀τ
this drift would imply that the mean of a large sample of arrivals would be
approximately (T,0).
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Figure 10: Altering the probabilities of stepping left and right to match up with
the drift-line β. Basically what we want is for half of the simulations to end up
beneath the β line and half of them above. So, P(above β)=P(below β)=0.5.
However, we are using discrete time steps and we only have the two choices,
either we end up in +1 or we land at −1. Therefore, we need to alter the

probabilities so that P (vt+1 = −1) = 1+N/(T−t)
2 and P (vt+1 = 1) = 1−N/(T−t)

2 .
By doing this, we essentially make sure that half of the time we land above β
and thus at +1, and half of the times we land below β at −1. To understand
that this is correct, recall that the β-line is the drift for the process, and half
of the processes should end up on each side of β. Essentially all we are doing is
adding an extra probability (equal to the drift coefficient) to follow the direction
we are drifting.
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4.2 1D Random Walk with a Look-back Drift

Let the process, when reaching the wall, look back to where it started and then
introduce a drift equal to the angle at which the process reaches the wall - just
like a rubber ball would bounce on the wall if thrown from the starting point14.
If the process reaches the wall again a new drift is calculated, still based on the
angle from the start position. Thus, if the process reaches the wall at time t the
angle would be N/t (and hence the drift coefficient should be −N/t).

Two results are presented: one where the drift is taken away when (if) the
process crosses the middle-line, and one where the drift is left until the end (or
when the process reaches a wall again). Obviously, if the drift is taken away at
the center line the process would be re-set and again have zero expected value,
hence this process ought to be more centered than the process whose drift is
never taken away.

Important Remark: Due to the nature of the drifts these processes no
longer attain the Markovian Property15 and can thus not be modeled using a
transition probability matrix as described in appendix A. However, after some
modification,the Monte Carlo simulation approach is still applicable and valid.

The graphs of the look back drift cases are shown in figure 12 (generated via
RandomWalkLookBackVect1.m).

4.3 Bounce Counting Function for Target Fixation

We now alter our setup in a new fashion, according to a later study of the
lighthouse (see chapter 5) . Instead of just adding new walls (BC’s) we want to
gather data from the process. So using the target fixation drift case above, and
introduce a function calculating the number of times a process reaches the wall.

We set the field to d wide and T long. Our aim is to find a function Φ(d, T )
describing the average number of bounces for a process in a field of this size.
The way this is done is by simply iterating through the above code for different
values of T and recording the average number of bounces for each T . The results
are shown in Fig. 13 and were generated using the files countBounces2.m and
plotBounces2.m.

Above the number of bounces varies with the length of the field for a fixed
width, whereas now the relation will be fixed between the length and the width.
We define the length to be T = 10 ∗ N and then we vary the N . The results
of this experiment are shown in Fig. 14 and were generated using the files
countBounces2.m and plotBouncesCTSapprox.m.2

14Of course the actual angle at which the process reaches the wall will always be 45 degrees
since we simulate using a binomial structure. Clearly this infinitesimal angle is of no impor-
tance to us. Instead we consider the average angle at which the process have been traveling
since the start.

15A process is said to be Markovian, or a Markov Chain, if the next step is dependent on
the current position only. Since the drift introduced here (as well as in the target fixation
case) depends on when (if) the process hits the wall this is no longer a Markov Chain
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Figure 11: Random Walk target fixation drift. We see that if the drift is taken
away when the process crosses the centre line we get a more centralized arrival
distribution. 2000 steps and 15000 simulations, took about 15sec each on my
PC.
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Figure 12: Random Walk look-back drift. There is not a great deal of difference
when we take away the drift at x = 0 and when we leave it be. 999 steps and
30000 simulations took about 15 sec per graph on my PC
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Figure 13: Plot of Φ(N, T ) with fixed N = 2 ∗ 20 and varying T . As one might
expect, the longer the field is, the more times the process will bounce.
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Figure 14: Plot of the number of bounces when we change the width N and the
number of time steps according to T = 10 ∗ N .
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4.4 1.5D Random Walk

So far the processes treated has been moving according to a 1D Brownian Motion
which basically means one step forward at and one step either up or down for
every time step. We have been concerned with the distribution of the arrival
locations of these processes whilst the arrival times have been fixed. Let us now
change the process so that at each time step the process either goes straight
forward (Prb = 1

3 ), left (Prb = 1
3 ) or right (Prb = 1

3 ). We also define the
field in which the process is moving in to be twice as wide as it is long and the
boundaries to be terminating. The process starts at (x = field width

2 , t = 0) and
due to this new setup it will take far longer than the earlier setups, in fact in
average three times longer than before, to reach the end of the field.16

To begin with let us plot the arrivals at the far end of the street. This 1.5D
Monte Carlo simulation is much more computer intense than the 1D version
and thus we constrain ourselves to a field that has size 100 × 50 steps and let
the process start at (x = 50, t = 0). Figure 15 shows a plot of both the arrival
positions and the time it takes to arrival. The arrival positions assume a normal
distribution (just as for 1D case) while the arrival times seem to be skewed.

Two arbitrary boundary intervals are chose, one at the far end of the box
and one at the left side of the box.

First we choose a segment somewhere on one of the walls and record the
processes that reaches that wall-segment. Both the time and the location are
recorded and are plotted in 16.

After extending the field to be twice as long as it is wide, that is (100,50), I
counted the processes being terminated in a segment on the left side, and the
results are presented in Figure 17. The length of the field had to be extended to
increase the standard deviation of the field enough to let a sufficient number of
processes pass the chosen segment. However, there’s still not a lot of processes
passing through, but there is at least some processes passing the gates (in con-
trast to when tried with the field size used in the above examples, where zero
processes passed through the selected interval).

16Please note that I will not do any further analysis on the results in this section as the
1.5D Brownian motion is included only as an illustration of the concept.
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Figure 15: 1.5D random walk, when hitting the far end of the box. The box is
50steps long and 100steps wide and the process starts at (50,0). We count all
processes hitting the far end and as you can see there’s only a 0.001% chance
that the process doest not arrive at the far end of the street, and instead hits a
wall somewhere on the way.
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Figure 16: 1.5D random walk, when hitting the far end of the box. The box is
100steps wide, 50 steps long and the process starts at (50,0). Where only count
processes that arrive within the interval [25, 45].



4 DRIFTS, BOUNCE COUNTING AND 1.5D. 47

−20 0 20 40 60 80 100 120
0

1

2

3

4
100000 simulations, 36 in goal. Arrival Positions: σ = 7.7021& µ = 83.6389

200 220 240 260 280 300 320 340
0

0.5

1

1.5

2
Arrival Times: σ = 26.6419& µ = 269.5833. Calcualtion time: 470.957

Figure 17: 1.5D random walk, when hitting the left side interval [55, 95] of the
box. The box now has size 100 × 100 and the process starts at (50,0). As you
can see there’s not too many processes passing this interval and to be able to
get any accuracy one needs to do substantially more simulations.
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5 The Lighthouse

5.1 Coastal Harbour

Let us travel by imagination back to the olden days: the sun has set and we
are out at sea, on our way to a harbour on shore. After nightfall it is dark
, but luckily the old lighthouse-keeper Bill has just finished his breakfast and
every now and then the gas-light flashes before our eyes and we can steer in
its direction. The lighthouse is situated just outside the harbour and if we
can make it to the lighthouse we are safe and sound. Unfortunately, there are
currents and waves and our route towards the lighthouse is rather stochastic.
An immediate question is ”how often would Bill have to flash the lights for us
to arrive in the harbour?” and we now seek to find the answer using stochastic
simulation.

We can make a Monte Carlo simulation of the night-sailing-scenario by using
a mind framework similar to that above; Let us have a field of length T that has
no boundaries. Whenever the lighthouse flashes a drift towards the lighthouse
is introduced, and this drift is calculated in the same manner as in the target
fixation case above. The aim of the simulation is to find a value of how often
the lighthouse should flash (drift be re-calculated) for us to have a 95% chance
of arriving in the harbour.

This simulation and the results can be found in Figure 18. The Matlab code
used is found in firehouse1.m and plotFirehouse1.m.

5.2 Harbour at the end of a Norwegian Fjord

Not all sailors have the luxury of harbouring directly by the seaside. Sometimes,
especially in Norway with it’s lovely landscape, the sailors have to sail through
a long channel before anchoring. If we imagine this channel to be straight
and having the harbour centralized at the far end, we can perform simulations
similar to those of the drunken man walking on the bridge, but with the extra
feature that the lighthouse is flashing every so often. The aim is once again to
find the required flashing frequence to safely get into the harbour.

This is easily found using the well defined framework, by plotting the arrival-
percentage in the harbour against the number of lighthouse-flashes, as shown in
figure 19. The plots are generated by firehouseFjord1.m and
plotFirehouseFjord1.m.

5.3 A wider fjord is easier to sail through

In the last section we choose a fjord-width ad-hoc and used the same width N
for all times T . Clearly a more narrow fjord would need more flashes in order
for the boat to arrive safe and sound into the harbour than the wider fjord
would need. We are led to investigate some sort of relationship between the
probability of arriving at the end of a fjord and the width of the fjord (for some
specified length T ).
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Plotting harbour−arrivals. Calculation time  50.797sec for 20000 simulations.

Figure 18: Plot of harbour arrivals. There are no boundaries but drift is intro-
duced, in the direction of the lighthouse, every time the light flashes. We see
that in order to arrive in the harbour with a probability of 95% or more, we need
to have a bit more than 50 flashes. This time around we did 20000 simulations
and the distance from the ship and the harbour was initially 400 trime steps,
and the ship was initially located right outside of the harbour. (The simulations
took 50 seconds on my home PC.)
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Plotting fjord−arrivals, the fjord is 2*45 wide,calc time 85.453sec for 10000 simulations.

Figure 19: Plot of harbour arrivals at the far end of the Fjord. There are
boundaries, rocks and such, at ±45. Drift is introduced in the direction of the
lighthouse every time a the lighthouse flashes. We see that in order to arrive
in the harbour with a probability of 95% or more, we need to have about 70
flashes. This time around we did 10000 simulations and the distance from the
ship and the harbour was initially 1000 time steps. (It took 85 seconds on my
home computer. Note that in the unbound case we had only 400 time steps
whilst here we have 1000.)
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Suppose that we want a 95% probability that the process (boat) will make it
through the fjord and into the harbour. How many flashes are then required to
satisfy this 95% condition for different width fjords? Let us call the obtained re-
sult the optimal flash interval curve. The results are obtained by simply looping
through the code for the previous example and quit as soon as we reach a prob-
ability of survival ≥ 0.95. This is a very time consuming calculation. The plot
can be seen in figure 20, and was generated by plotFirehouseFjordWidthCI.m

and firehouseFjordWidthCI.m.
It seems reasonable that the number of flashes should be monotonically

decreasing as the field width increases. The curve in figure 20, however, is
not always decreasing why we are led to doubt it’s accuracy. However, testing
accuracy is outside the scope of this thesis.

5.4 The boundaries are linear but at an angle

Up to now we have concentrated on linear boundaries parallel to the center-
line. These boundaries are sometimes easy to model with the differential equa-
tion approach used above. In reality one often wants to use other boundaries,
boundaries that might be more complicated to model with non-computational
mathematics, and thus we refer, once again, to the drunken old man Erik for
our results.

We start by assuming the road is 10 times as long as it is wide at the start,
the width of the beginning of the road to be 2N (and thus it is 20N long). We
also define a goal, in the same fashion as in the 1.5D case above, of width 2M .
For a process to survive we require that it passes through (−M, M) at t = T .
See Figure 21 (generated by plotSmallerGoalRW.m and smallerGoalRW.m) for
a plot of survivals for different goal-widths when there is no terminating barrier.

By introducing a terminating barrier from (0, N) to (T, M) (and one from
(0,−N) to (T,−M)) we aim to find the probability for a process to survive
until time T . Obviously we expect that more processes are being terminated
when there are terminating boundaries than when there are no terminating
boundaries. Hence we require the solution curve for this setup always to be
below the unbound-case-curve obtained above. Of course the survival rate is
dependent not only on N and T but also on the width of the goal M , hence we
aim to plot the survival percentage as a function Ψ from M = 0 to M = N . The
plot is shown in Figure 22, which is generated with the files angleBarrier.m

and plotAngleBarrier.m.
It is clear that the function Ψ(M) is an increasing function in M and that

it will reach its max as M = N . I.e. the wider the goal, the more processes will
score.
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Figure 20: Plot of how many flashes is needed to have a 95% chance of arriving
in the harbour for fjords of different width. I simulated 10000 ships for each
number of flashes and each fjord width. I’ve used a fixed time T = 1000, and it
took 24 minutes to run on my PC.
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Plotting non−barrier goals, start field is 2*50 wide,calc time 15.047sec for 10000 simulations.

Figure 21: Plot of survival-percentage for different widths of the goal when
there is no terminating barrier. The Field is 100 wide and 1000 long, and the
goal-sizes range from 10,30,...,90.
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Figure 22: Plot of survival-percentage for different widths of the goal when there
is a terminating barrier from ±N to ±M , where 2 · N is the width of the field
at the start and 2 · M is the width of the goal. The Field is 100 steps wide at
the start, 1000 steps long, and the goal-sizes range from 10 to 90 in intervals of
10.
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6 Stochastic slalom

The previous sections dealt with different examples of how Stochastic simula-
tions can be used to solve problems related to the diffusion equation, and in
some cases we have also shown the equivalence between the solution obtained
via Monte Carlo simulation and the analytical one. This chapter will continue
in the same manner, and as the title implies deal with Stochastic Slalom. To
explain the principles of Stochastic Slalom I use one of my childhood friends,
Filip. Filip is a professional, Olympic, snowboarder who specializes in Slalom
snowboarding. In the rules of the International Olympic Committee (IOC) it
clearly states that one have to be sober when participating in the competitions,
but if Filip, for some strange reason, would choose to break these rules and get
awfully drunk before a competition he might constitute a good example of a
stochastic slalom.

Simply put Stochastic Slalom is when there are obstacles on the course that
will terminate the process if hit - much like the drunken slalom-snowboarder
who would loose his race if he was drunk and missed a gate. This chapter will
start by explaining mathematically how to solve the simplest case and then
expand to more complex cases using Monte Carlo.

6.1 Unbound Field of Snow

6.1.1 Preamble: One Obstacle

Imagine a side-wise unbound field of the length T and a process starting at
(t = 0, x = 0). Between (t = T/2, x = −1) and (t = T/2, x = 1) there is a
terminating obstacle (perpendicular to the (zero) drift of the process).

Let us start by deriving an analytical solution which will later be confirmed
via some Quasi Monte Carlo simulations17.

Mathematical Statistics Approach

Recall the fact from mathematical statistics stating that ”The probability distri-
bution of the sum of independent random variables is equal to the convolution of
their individual probability distributions”. We start by decomposing the process
into two parts, the first being t ∈ (0, T

2 ) and the latter being t ∈ (T
2 , T ). The

second part will then be independent of the first in the sense that the processes
are Wiener processes and as such future movement is dependent only on the
current location of the process and not on how it got there.

At t = T
2 the process will arrive according to a normal distribution with mean

zero and variance σ2 = T
2 , i.e. with a density function Φ(x, T/2) = 1

σ
√

2π
e

−x2

2σ2 .

To figure out what will happen at t = T we consider the shape of the water grave.
Since the random walk has zero drift we can assume that those processes that

17We have already performed a bunch of ”normal” Monte Carlo simulations, and so I figured
it might be more fun to do some clever abbreviation of the algorithm. The ”clever algorithm
abbreviation” is what i call Quasi Monte Carlo.
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miss the barrier, i.e ∀t = T
2 , x ∈ (−∞,−1]

⋃
[1,∞), will re-start as a random

walk in (T
2 , x). If the process falls in the water grave it is terminated.

The definition for a convolution of two functions is shown below (from
[Ros03], page 58);

Definition 6.1.1 (Convolution) Assuming X, Y are continuous and inde-
pendent random variables having probability density functions (pdf) f(x) and
g(y) respectively. Let FX+Y be the cumulative distribution function (CDF) for
X and Y . We have:

FX+Y = P (X + Y ≤ a)

=

∫ ∫

X+Y ≤a

f(x)g(y)dxdy

=

∫ ∞

−∞

∫ a−y

−∞
f(x)g(y)dxdy

=

∫ ∞

−∞

(∫ a−y

−∞
f(x)dx

)

g(y)dy

=

∫ ∞

−∞
F (a − y)g(y)dy.

FX+Y is the cumulative distribution function of X and Y and is called the
convolution of the distribution of FX and FY . Differentiate this and obtain the
probability distribution function of X + Y .

fX+Y =
d

da

∫ ∞

−∞
F (a − y)g(y)dy

=

∫ ∞

−∞

d

da
F (a − y)g(y)dy

=

∫ ∞

−∞
f(a − y)g(y)dy.

Let us now get back to where we started and our Normal distribution at
t = T

2 . W.l.o.g we can normalize and set T
2 = 1, and we get that σ2 = 1. Let

ξ = x and let ⋉t=1(ξ) be the distribution function for the random walk at t = 1
and we have ⋉(ξ) ∼ N(0, 1):

⇒ ⋉t=1(ξ) =
1√
2π

e
−ξ2

2 .

We now split the function ⋉t=1(ξ) in two parts, one for the left tail and one for
the right. The left tail is ∀ξ ∈ (−∞,−1] and the right tail ∀ξ ∈ [1,∞).

The distribution for t ∈ (1, 2) is denoted by ρ(t=2−1)(y) and is a normal

distribution with mean=ξ and variance one, i.e ρ(t=2−1)(y) = 1√
2π

e
−y2

2 . The

subindex t = 2 − 1 serves as a reminder that this part of the process start at
t = 1 and arrive at t = 2 (and hence the variance is one).
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By Definition 6.1.1 we get the convolution of the right hand tail as

fright tail(t) =

∫ ∞

1

f(a − y)g(y)dy

=

∫ ∞

1

⋉t=1(a − y)ρ(t=2−1)(y)dy

=

∫ ∞

1

1√
2π

e
−(a−y)2

2
1√
2π

e
−y2

2 dy

=
1

2π

∫ ∞

1

e
−a2+2ay−y2

2 e
−y2

2 dy

=
1

2π
e

−a2

2

∫ ∞

1

e
2ay−2y2

2 dy

=
1

2π
e

−a2

2

∫ ∞

1

eay−y2

dy (6.1)

For the left tail we get similar, but mirrored, results;

fleft tail(t) =

∫ −1

−∞
⋉t=1(a − y)ρ(t=2−1)(y)dy

=

∫ −1

−∞

1√
2π

e
−(a−y)2

2
1√
2π

e
−y2

2 dy

=
1

2π
e

−a2

2

∫ −1

−∞
eay−y2

dy (6.2)

The total solution for the problem at T = 2 is simply the sum of the left
and the right tails:

fX+Y (t) = fright tail(t) + fleft tail(t)

=
1

2π
e

−a2

2

(∫ ∞

1

eay−y2

dy +

∫ −1

−∞
eay−y2

dy

)

(6.3)

Instead of solving the integrals in equation (6.3) by hand MATLAB was used
to find the solutions. A plot can be found in figure 23.

Quasi Monte Carlo Approach

As mentioned above, the full random walk simulations for this setup will not be
carried out, but instead the result of the analytical solution for the simulation
is considered. That is, first we simulate a large number of random variables
from a N(0,1) distribution to arrive at the water grave. Then ∀ the processes
who survived the water grave and arrived outside the barrier, we do a new
simulation, again from the N(µ, 1) distribution, where µ is the place of arrival
(outside of the barrier). The arrival positions of the second lot of drunken men
should compare rather well with the analytical results obtained above.

Comparing the two solutions
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Just to show that the two solutions, the theoretical and the simulated, does
indeed coincide, figure 23 shows both plots. I chose to plot both the left and
right tail arrivals and the total (sum) arrivals. The smooth and nice paths
are from the analytical results (generated using plottaMatlabIntegral.m)
whilst the not so smooth paths come from the drunken men (generated using
quasiMCRightAndLeftOfTheWater1.m).

The two solutions does not coincide exactly, but the general trend is similar
and one can assume (via some central limit theorem) that the Quasi Monte Carlo
method will converge to the Analytical method, as the number of simulations
grows.

6.1.2 Proper slalom, with more than one obstacle.

In the last section there was only one obstacle, at a determined location, that
the process might hit. If Filip did compete drunk, he would probably have
more than one obstacle (gate) to hit. Thus we extend our model to contain
more obstacles.

The set up is as follows: We have a random process, the same old drunken
man as we always have, and we put him out on a big football field. On the
field there are a number Γ of barriers, such that when the drunken man walks
in to these he will fall over and never walk again, simulating the termination
of the process. In the T direction these are evenly spread out with a distance
T
Γ between them. In the x direction they are randomly placed according to
a normal distribution with mean around the center line (we assume that the
drunken man has zero drift), and variance equal to the time the obstacle is
reached18.

We realize that it is possible to find the probabilities of this by using the
mathematical framework demonstrated in the last section, but it would be
rather tedious. Instead we apply a Monte Carlo simulations to find the re-
sulting probabilities. The results are found using noEdgesSlalomObstacles.m

and slalomObstaclesTimeNoEdge.m and are plotted in figure 24.
Intuitively one could imagine that ρ(T ) would be an increasing function since

as T increases so does the variances, and hence spread, of the process and thus
the probability of hitting a fixed-width object would decrease. As seen in the
aforementioned figure, this is also the case.

6.1.3 Bigger obstacles implies less drunken men

Let us now fix the time T and vary the width δ of the terminating obsta-
cles. The obstacles are placed in the same manner as above (evenly in the
T direction and according to a normal distribution with mean at the center
line and variance= T ). This is plotted in figure 25 which is generated by
slalomObstaclesNoEdgeDifferentSizeRocks.m and
noEdgesSlalomObstacles.m.

18We say the drunken man reaches an obstacle when he either passes next to it or hits it.
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Figure 23: Plot showing both the Quasi Monte Carlo result versus the The-
oretical result on the x-interval (−6.6). The Analytical solutions come from
equations (6.2), (6.1) and (6.3). The Quasi Monte Carlo solutions used 250 000
simulations and took 7.03 sec on my PC.
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Figure 24: Plot of ρ(T ), the probability that the process survives a field with
10 obstacles, of width 10, for different values of T. (Computational time: 69
seconds on my PC, using 10000 simulations on each time step.)
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6.1.4 Ramdom gates rather than obstacles

Let us invert the whole scenario and instead of having terminating objects
that would terminate the process if hit, we now have gates that allows pass-
ing through, however, if the gate is missed, the process is terminated. The
gates are rather small and thus this would mean that there is a substantially
smaller chance for the process to survive than it would be when solid obstacles
are in the way.

Let us imagine that the setup is the same as in the last scenario with
the only difference that the obstacles have been inverted to gates. We plot
this scenario in figure 26, which was generated by noEdgesSlalomGates.m and
slalomGatesNoEdges.m, and the plot shows the process probability of passing
through the ten gates.

6.1.5 Nice slalom is easy, hard slalom is hard.

Up until now the gates and obstacles have been randomly placed according
to some normal distribution. In this example we change this and introduce
deterministically placed gates. The gates are still evenly spread out in the
T direction, but now every second gate is placed a distance ∆ right of the
center line, while the other gates are placed the same distance left of the cen-
ter line. To illustrate the results we plot in figure 27, which was generated by
slalomGatesNicenessNoEdges.mand noEdgesSlalomGatesNiceness.m, the sur-
vival function ρ for different values of ∆.

6.2 On a bridge

6.2.1 Terminating obstacles

Consider a field with terminating boundaries (i.e. the corresponding pde would
have BC’s of the type X(±N) = 0). In this field there are a number of small
obstacles s.t. when the process hits these obstacles, it is terminated. We seek
to find the probability of survival of the process, i.e. what is the probability
that the process does not hit an obstacle, and does not fall off the bridge?

Let Γ denote the number of obstacles we place on the bridge, δi denote the
width of obstacle i, i = (1, ..., Γ), and αi be the distance from obstacle i to the
top (or left) barrier. For simplicity we start by giving all the obstacles the same
width δ. We have an analogous, but unbound, problem in section 6.1.2 where
we placed the obstacles, in the x-direction, according to a normal distribution.
When we have boundaries and a normal distribution does no longer seems like
the most natural choice19, and hence we use a uniform distribution. For each

19According to the properties of a normal distribution this would mean that there is a
possibility for the obstacles to be placed outside of the boundaries, and then they would be
pointless. One could, of course, use either a truncated normal distribution, or not bother
about those gates outside of the boundaries. None of those methods seemed too pleasing to
me.
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Figure 25: Plot of ρ(T ), the probability that the process survives a field with
10 obstacles of width 10 and T = 1000. Computational time: 16 seconds on my
PC, using 10000 simulations on each time step.
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Figure 26: Plot of ρ(T ), the probability that the process survives a field with
10 gates of width 10 and T = 1000. (Computational time: 15 seconds on my
PC, using 10000 simulations on each time step.)
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simulated process we simulate a new and fresh set of αi’s uniformly between the
boundaries.

The first thing we are interested in finding is a function ρ(T ), which describes
how many (in percent) of the processes survive a walk along this slalom-like
bridge. In figure 28, generated from slalomObstaclesTime.m and
terminateEdgesSlalomObstacles.m, is shown how such a function might look
like for certain values of N,δ and Γ.

6.2.2 The bigger the obstacles, the harder to survive.

How dependent is the above function ρ(T ) of the width of the obstacles? Why
did we choose the obstacles to be 1/10’th of the field-width? In figure 29 is
shown how the survival rates depend on the obstacle widths, and it is clear that
a 10unit wide obstacle is about 25% of the processes survive and should thus be a
good choice. The Matlab code for the plot can be found in slalomObstacles.m

and terminateEdgesSlalomObstacles.m.

6.2.3 Stochastic Slalom with gates.

Let us now make a bounded analogy of the process described in section 6.1.4.
We have Γ gates of width δ, they are uniformly placed in the x-direction and
evenly spread in the T direction. If the process fail to pass through these gates
it will be terminated. Filip Fisher, the snowboarder who broke the IOC rules
and got really drunk before his race, will now be disqualified not if he hits a
rock, but he fails to pass through the randomly placed gates on the ski-slope.
If the gates are narrow this will be hard, and if the gates are wider it will be
easier.

We seek a function ρ(δ), which is the probability of survival when the
gates are δ wide. This is shown in Fig. 30 and the graph is obtained from
slalomGates.m and terminateEdgesSlalomGates.m.

6.2.4 Hard vs. Easy slalom

In the last example we simulated αi from a uniform distribution, so that the
gates could be anywhere in (−N, N). It would also be interesting, however,
to see how the survival rate depends on the ”niceness” on the slalom. A nice
course is defined as one where all the gates are centered about the center-line,
and a nasty course is one where the gates are really close to the boundaries. We
let ∆ denote the distance between the gate and the center-line of the field, and
thus we want to plot a function ρ(∆) of the survival percent of the processes.
Every second gate is placed ∆ above the center-line and every second is placed
∆ below the center-line.

The function ρ(∆) is plotted in figure 31, and the figure is generated via
slalomGatesNiceness.m and terminateEdgesSlalomGatesNiceness.m.
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Figure 27: Plot of ρ(∆), the probability that the process survives a field with
10 gates, of width 10, with alternating gate-offset ±∆ from the center line.
(Computational time: 19 seconds on my PC, using 10000 simulations for each
∆.)
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Figure 28: Plot of ρ(T ), the probability that the process survives a road (bridge)
with Γ = 10 obstacles of width δ = 10 for different values of T. The road was
2N = 100 units wide and it took the my PC about 55 seconds to do 10000
simulations for each time step.
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Figure 29: Plot of ρ(δ), the probability that the process survives a road (bridge)
with Γ = 10 obstacles. We set the road to be T = 1000 discrete trime steps
long, and 2N = 100 steps wide (so T = 10 ∗ (2N)). It took my computer about
23 seconds to make 10000 simulations for each obstacle width.
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Figure 30: Plot of ρ(δ), the probability that the process survives a road (bridge)
with 10 gates. We set the road to be 1000 discrete trime steps long, and 100 steps
wide (so T=10*N). It took my computer 53 seconds to make 10000 simulations
for each gate width. The gates are placed, in the T direction, with equal distance
from each other and in the N direction they are randomly (uniformly between
the barriers) laid out for each simulation. By missing any of the gates the
process is terminated.
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6.3 How easy is easy?

In figure 31 it is clear that the smaller the gate-offset the more processes will
survive. If we look upon the problem the other way around we could ask our-
selves ”how much easier is it to pass through a road of width 2N and Γ gates of
width δ (distributed around the center line), than it is to pass through a road
of width δ?”. To aid in the understanding of the question figure 32 was plotted.

The two different scenarios have been solved separately before - the first
scenario in section 6.2.4, and the latter in section 3.3. We now combime the
solutions to compare the difference between the δ wide gates case and the δ
wide field case. In other words are we trying to figure out how much you are
helped by the possibility of slaloming in between the walls.

I have plotted a solution curve in figure 33, which was generated by
slalomGatesVSwalls.m, terminateEdgesSlalomWOGates.m and
terminateEdgesSlalomGates.m.



6 STOCHASTIC SLALOM 65

0 5 10 15 20 25 30 35 40
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Gate offset from centre−line.

Su
rviv

al−
per

cen
t

Plot of survival−function ρ(∆) .

Figure 31: Plot of ρ(∆), the probability that the process survives a road (bridge)
with 10 gates of width 10. We set the road to be T = 1000 discrete trime steps
long, and 2N = 100 steps wide (so T=10*2N). It took my computer 23 seconds
to make 10000 simulations for each ∆ offset. The gates are placed, in the T
direction, with equal distance from each other and in the N direction they are
put (alternating) at ±∆.

Figure 32: The Scenario. The green processes are terminated by the yellow
boundary whilst the blue are terminated by the black and red boundaries.
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Figure 33: 1200 processes on a road that is 2N = 100 steps wide with Γ = 10
gates. We see that the two solutions approach each other as the with of the
gates tends to the width of the field (δ → 2N). Computational time: 105sek on
my PC
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7 Conclusion

By using Monte Carlo simulations we have demonstrated the extreme powers
of a modern day PC to solve complicated BVP’s for the heat diffusion PDE.
Even though some of the examples could be solved analytically the bulk would
be very hard.

Remark 1: There remain many problems of finding confidence intervals
(and other matters that arise when Monte Carlo simulations are used) that
might please a mathematical statistician. However, these problems are outside
the scope of this thesis.

Remark 2: For future work I would do some sort of speed-optimization of
the simulations. In the present work I have only used rather standard vectoriza-
tion ideas to speed up the code, but I am sure there are many more things that
could be implemented. It would also be interesting to compare the matlab code
to a C++ equivalent to see which is the fastest. The object oriented approach
made possible in a language like C++ would permit for a much more elegant
code. In the present matlab code I have used ”copy and paste” to re-use the
code, something most programmers strongly disapprove of.
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A Another approach using Transition Probabil-

ities

This section will be a very brief introduction to how one can model a bounded
random walk using Markov chains. Markov chains are easy to simulate using
a computer, but unfortunately a lot of the processes mentioned earlier (for
instance those introducing a drift) do not retain the Markovian property.

As we know from the above the bounded random walk can be modelled using
the repeated toss of a coin: If you get a head you step right, and if you get tails
you you step left. At each toss there is an equal, binomial 0.5, probability of
getting heads or tails. after a large number of tosses the amount one has earned
follows a normal distribution with zero mean and variance equal to the square
root of the number of tosses (via The Central Limit Theorem).

A.1 Markov Chains

By standard definition, a Markov chain is a random process where the next state
depends only on the current state and not on any other, older, information.
The bounded random walk is a good example of a discrete time Markov chain -
independent of how far away from the middle of the road Erik is, he still have
the same chance of taking a step to the right as taking a step to the left.

When (if) Erik hits the edge of the road he might bounce back or fall off the
bridge. Clearly if he falls off (cf Scenario II above) he will go into an absorbing
state, and if he bounces (cf Scenario III) this bounce is introduced so it depends
only on the current state. I.e the process will go on as before, but if Erik reaches
the edge of the bridge it will move him one step away from the edge.

A well-known way to deal with Markov Chains is to create a so-called Tran-
sition Probability Matrix. A Transition Probability Matrix is the same,up to a
scalar vector, as the Adjacency Matrix used in Graph Theory.

To exemplify let us model Scenario III above. Define A to be a transition
Probability Matrix. The Elements of A, aij , then describe the probability that
when the process is in state i the next state the process enters will be j. So in
the case with the random walk one can let

aij =

{
1/2 if |i − j| = 1
0 otherwise

(A.1)

a12 = a(n−1)n = 1 (A.2)

The last line, equation (A.2), forces the process to bounce on the wall and
not to escape outside the matrix . This is called an irreducible Markov Chain
where all states communicates. All states are positive recurrent, i.e. when the
process have been in i the expected time until it returns to i is finite, and have
period of 2, since it is a binomial tree there are always places we cannot get to
if we are at an even number of steps (the same applies for odd step-numbers).

So we have a matrix looking like
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a00 a01 a02 . . . a0k . . . a0n

a10 a11 a12 . . . a1k . . . a1n

a20 a21 a22 . . . a2k . . . a2n

...
...

...
. . .

ak0 ak1 ak2 . . . akk . . . akn

...
...

...
. . .

...
an0 an1 an2 . . . ank . . . ann


















=



















0 .5 0 . . . 0 . . . 0
1 0 .5 . . . 0 . . . 0
0 .5 0 . . . 0 . . . 0
...

...
...

. . .

0 . . . .5 0 .5 . . . 0
...

...
...

. . .

0 . . . 0 . . . 0 .5 0
0 . . . 0 . . . .5 0 1
0 . . . 0 . . . 0 .5 0



















This is called a one-step probability matrix, and totally defines how Erik can
walk in one step. Assuming that n is an odd number akk is defined to be the
central element of the array and this is where Erik starts. To the left of akk is
the left of the road, and to the right is the right part of the road. For example,
a(k−1)k is the probability that Erik will, when at a distance 1 from the middle
of the road take one step and end up in the middle of the road.

The diagonal symmetry is obvious, since Erik have to take a step either
right or left there is probability 0 that he will stay in the same place, and the
probability that he will walk one step either left or right is 0.5. The upper-right
and lower-left corners are zero because there is no chance for Erik to walk, in
only one step, from the far left of the road to the far right.

By taking the n-th power of A we get the n-step probability matrix. So an
ij

signifies the probability that a process in state i will, after n steps, be in state
j. For example, A600 is the matrix holding the probabilities that starting in
state i the process will be in state j after 600 steps. As the powers increase the
matrix is spreading to the upper-left and lower-right corners.

By summing all these powers of matrices we can get the cumulative n-step
probability matrices. Then

∑n
k=1 ak

ij determines the probability that the process
starting in state i has ever been in state j after n steps. Since these values quite
often exceeds one, one can use them as the expected number of times the process
hits a certain level.

For example, a random walk on a road that is 201 steps wide and 600 steps
wide we get the values in the table below. To verify that this technique generates
the same results as the Monte Carlo simulations of above I made a comparison
of the two methods aswell. The simulated values are to be found next to the
purely theoretical values.
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Distance from Centre Theoretical Values Simulated Values
0 a00 = 18.5685 18.6187
10 a010 = 11.1726 11.1882
20 a020 = 5.7358 5.7358
30 a030 = 2.6215 2.5564
40 a040 = 1.0575 1.0031
50 a050 = 0.3738 0.3673
60 a060 = 0.1151 0.1209
70 a070 = 0.0307 0.0278
80 a080 = 0.0071 0.0063

As you can see the simulated values match the ones from the Cumulative 600-
step transition probability matrix quite well. As i only did 40 000 simulations of
the process it is not strange that the simulated results does not exactly match
the Markov Chain values.

A.2 Is there an end?

As the number of steps increases it seems likely that the n-step probability
matrix would converge to a limiting probability matrix - that it would spread
out and converge towards a uniform distribution. The crudest way to prove a
result like this would be to let n grow until An −An−1 = 0, where 0 is the zero
matrix. I have not done this but it seems, by looking at the Fig. 34 that a
result like this might be true.

In figure (Fig. 34) is shown a typical convergence sequence for a random
walk with N = 201. The first (blue) is when the road is only 2 steps long, and
then the road is extended 300 steps 40 times. The source code for this can be
found elsewhere in the appendix (fiveTransProb1.m).
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Figure 34: Convergence of Transition Probabilities. N = 100 and T starts at 2
and goes up, in increments of 300 steps, 40 times.
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B Introducing the Black-Scholes framework

In the latter part of my rather exciting life I have become interested in Financial
Markets in general and in option pricing in particular. Thus I chose to include an
appendix where I quickly go through the basics of the Black-Scholes framework
and then show how one can transform the solution of the Black-Scholes equation
(for European Calls) into the diffusion equation - thus linking the topic of the
thesis to my personal interest. The bulk of the text is a rewrite of my notes
from a lecture by Professor Peter Vamos at University of Exeter in 2004, and
the calculations arose as part of a homework assignment of that same lecture.

B.1 Black, Scholes and Merton

The most famous formula for the valuation of stock options is the Black-Scholes
(B-S) Model. The model was first published in 1973 by Fisher Black and Mer-
ton Scholes, Robert Merton devised another way of deriving the formula and
generalized it in many directions. Black passed away in 1995 whilst Merton
and Scholes got the Nobel Prize in Economics in 1997 for their work on the
Black-Scholes formula.

B.1.1 Bank interest

Let us define a risk free asset as an asset that changes in the same way as the
money would do if they were in the bank, i.e according to the interest rate.
Let us therefore define the interest rate20 to be proportional, by the amount of
money, to the rate of growth of the money in the bank.

Definition B.1.1 (Interest Rate) We let M = amount of money in the bank
and r = rate of interest, we then define r as

dM

dt
= r·M . (B.1)

Equation (B.1) is easy to solve and has the General Solution (G.S)

M(t) = C·ert,

where C is some constant. An immediate question that arise is how much money
M should we put in the bank today, if we want an amount E in some future
time T≥t ? We find this via the Particular Solution (P.S) to equation (B.1);

E = C·erT

⇒ C = E·e−rT

⇒ M(t) = E·e−r(T−t). (B.2)

Plugging in t = T in the last equation we see that M(T ) = E as we wished.
This leads on to the definition of the No free lunch principle.

20To be precise, the constant continuous compounding/instantaneous interest rate.
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Definition B.1.2 (The No Free Lunch Principle (NFL)) There is no op-
portunity, for any length of time for a risk-free profit above the bank (instanta-
neous) interest rate.

I will not prove the NFL, but will give a justification as to why it should
work. Suppose there would be such an risk-free arbitrage opportunity. We could
then borrow money from the bank at rate r and then invest in this other asset
and earn a rate n > r. Since it is risk free to invest in this new investment,
everybody would do so. The result of this would be that the bank interest goes
up and the gap closes. In the modern society world this will happened, due to
the principle of the efficient market, practically instantaneously.

B.2 European Put- and Call options

An option is a contract giving the buyer the right to buy or sell a specified
amount of a specified product to a specified price at a specified future time.
There are many different kinds of options and the two major are called European
and American. The European option can only be exercised at the specified date
whilst the American Option can be exercised up to and including the specified
date. A put option is one where you buy the right to sell an underlying (i.e.
stock) in the future, and a call option is one where you buy the right to buy an
underlying in the future.

To exemplify the European Call option let us imagine there is a company
called Björks Mathematics Consultants AB (BMC), with a current stock price
of $10 per stock unit. Let us assume that Erik buys a call option with the strike
price $12 and the expiry date three months in ahead. So in three months time,
if the stock price is above $12 then Erik will exercise his option and earn the
difference between the stock price and $12. If, however, the stock price is below
$12 Erik will not have to exercise the option which is thus worth $0.

B.2.1 Boundary Conditions

To be able to price the derivatives we need to translate how they work into
mathematics. So let us derive the Boundary Conditions (BC’s) for the European
Call (and Put) Options. We denote the value of a call option C(S, t), where S is
the current value of the underlying (stock), and t is the current time. The expiry
date (length of contract) is denoted T and the exercise price in the contract is
denoted E. Since E is a price, and prices here are always positive, we get E > 0.

The value of the option at any time t is easily seen from the example with
Erik and the BMC above.

C(S, t) =

{
S − E if S > E
0 if S ≤ E

= max(S − E, 0) (B.3)

If the underlying cost nothing the option has no value, so it is worth max(0 −
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E, 0) = 0 since E > 0. We get the BC as

C(0, t) = 0∀(0 ≤ t ≤ T ). (B.4)

If the price of the stock goes off towards infinity, we want the value of the option
to follow. In other words we can say that we want the price of the option to be
asymptotic to the price of the underlying, as the price of the underlying tends
towards infinity. In mathematics we see that limS→∞ max(S − E, 0) → ∞, so

limS→∞ C(S, t)

S
= 1. (B.5)

Similarly for the European Put option we get the price of the option as

P (S, t) =

{
E − S if S > E
0 if S ≤ E

= max(E − S, 0)

If P (0, t) then this gives holder risk-free guaranteed return of E at the future
time T. We can use the NFL to conclude that this has to equal the amount of
money in the bank which return E at time t=T. Hence, via equation (B.2), we
get

P (0, t) = E·e−r(T−t) = E·er(t−T ).

By arguments similar to those of the European Call option we also have that

P (S, t) → 0 as S → ∞.

B.2.2 Put-Call Parity Rule

By using methods of hedging one can create portfolios with different levels of
risk. The most basic risk-free portfolio is used to derive the Put-Call Parity
Rule. Consider a portfolio of 1 share of underlying, 1 Call-option on 1 share of
the underlying (with specified T and E), and one Put option on 1 share of the
underlying (with the same T and E as the Call-option). A Call option gives us
the right to buy and underlying and so it is a ”+”, a Put option on the other
hand gives us the right to sell an underlying and thus there is a ”-”. Denoting
the value of the portfolio V (S, t) we get the value of the portfolio at time t = T ,
the time of expiry of the options, as

V (S, T ) =







S + 0
︸︷︷︸

put

− (S − E)
︸ ︷︷ ︸

call

= E if S ≥ E

S + (E − S)
︸ ︷︷ ︸

put

− 0
︸︷︷︸

call

= E if S < E







= E.

(B.6)

We see that whatever happens in the stock market the portfolio is still worth
E at time t = T , so by the NFL we get that

V (S, T ) = E·er(t−T ) (B.7)

and so we get the rule:
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Proposition B.2.1 (The Put-Call Parity Rule) By taking one unit of stock,
one call option and one stock option, we get the Put-Call parity rule:

S + P (S, t) − C(S, t) = E·er(t−T ). (B.8)

B.2.3 Black-Scholes Equation

In order to price derivatives and options, we need to make some further assump-
tions about how the market works, so let us start with the following assumptions:

1. Asset prices follow a log-normal random walk (history tell us this)

2. Parameters (S,T,E) are known functions of time

3. There are no transaction costs (frictionless trade)

4. The underlying asset pays no dividend during the life of the portfolio/option

5. The NFL principle applies (i.e. no arbitrage opportunity)

As a results of these assumptions we get the Black-Scholes equation (for a
derivation, see for example [Bjo04]).

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (B.9)

This equation is always the same, for all options. What differs from option to
option is the BC’s, and through the BC’s a solution is found. For simple options
like the European Put and Calls the BC’s are easy to come by, but for more
complicated ”exotic” options it might be much harder to find the BC’s - and
thus making solving the Black-Scholes equation very hard indeed. In that case
you have to rely on computer intense methods of finding the option price - and
Monte Carlo is one such method. For the European Put/Call options, however,
the BC’s are given above and the solution to the Call option is given by

C(S, t) = SN(l1) − Ee−r(T−t)N(l2),

where

N(l) =
1√
2π

∫ l

−∞
e−(1/2)x2

dx

is the density function for the Normal distribution and

l1,2 =
ln(S/E) + (r ± σ2/2)(T − t)

σ
√

T − t
.
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B.2.4 Black-Scholes versus Heat-diffusion PDE

We have the Black-Scholes (B-S) formula and it’s solutions for the European
call option, but we have yet not figured out how and why we can apply the
technique of Stochastic Simulation to this set up. In this section I will show
how we can, via a few clever choices, transform the Black-Scholes formula to the
Heat-Diffusion equation. And the heat-diffusion equation is what we’ve been
dealing with in the previous sections of this text.

The aim of the transformation is to transform the B-S equation into some-
thing simpler that we can solve, and then do the reverse transformation on the
solution to obtain the solution to the B-S equation. We divide the first trans-
formation into two steps. The aim of the first step is to get rid of the variable S
as a coefficient in the equation, leaving us with a constant coefficient PDE. The
aim of the second step is to get rid of the first order partial and the function
itself.

Step 1 - get rid of variable S as coefficient. We start by introducing
new variables (x, τ) 7→ (S, t). We know that 0 ≤ S ≤ ∞ and 0 ≤ t ≤ T and we
now let

S = Eex, and (B.10)

t = T − τ
1
2σ2

, (B.11)

where −∞ < x < ∞ and 0 ≤ τ ≤ 1
2σ2T (time reversal since τ = 0 corresponds

to t = T ). We also introduce a new function f of these variables such that

V (S, t) = E·f(x, τ),

and we now want to find the B-S PDE for this new function f . It will turn out
later that we will need to know some derivatives, so let us start by calculating
these:

(B.10) ⇒ dS

dx
= Eex ⇒ dx

dS
=

1

Eex
=

1

S

(B.11) ⇒ dt

dτ
= − 1

1
2σ2

⇒ dτ

dt
=

−σ2

2

Remembering the order of dependence, V → S → x and V → r → τ , we use
the chain rule of differentiation along with the derivatives above to compute the
various partial derivatives required for the B-S equation:

∂V

∂t
= E· ∂

∂t
·f(x, τ) = E· ∂t

∂τ
·∂τ

∂t
= E·∂f

∂τ

(

−1

2
·σ2

)

, and

∂V

∂S
= E·∂f

∂x
· ∂x

∂S
= E·∂f

∂x
· 1
S

=
E

S
·∂f

∂x
, and
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∂2V

∂S2
=

−E

S2
·∂f

∂x
+

E

S
· ∂

∂S
·∂f

∂x
=

−E

S2
·∂f

∂x
+

E

S
·∂

2f

∂S2
· ∂x

∂S

=
−E

S2
·∂f

∂x
+

E

S2
·∂

2f

∂x2
.

Plug all these into the B-S equation (B.9) and we get

E·∂f

∂t

(

−1

2
σ2

)

+
1

2
σ2S2

(−E

S2

∂f

∂x
+

E

S2

∂2t

∂x2

)

+ rS
E

S

∂f

∂x
− rEf = 0.

Cancel with E and divide by − 1
2σ2 to get

∂f

∂τ
=

∂2f

∂x2
+ (k − 1)

∂f

∂x
− kf , (B.12)

where k = r
1
2σ2 . This is a PDE with constant coefficients!

Boundary Transforms To be able to solve the resulting PDE we also need
to transform the Boundary Conditions. For the European Call Option these are
given in (B.3)-(B.5), and the transforms are given in (B.10) and (B.11).21

BC 1: V (S, t) = max(S − E, 0). We first note that at time t = T we have
(via (B.11))

t = T = T − τ
1
2σ2

⇒ τ = 0.

So, V (S, T ) = Ef(x, 0). We have V (S, t) = max(S − E, 0) so we investigate
what happens at S − E and 0.

At V (S, T ) = S − E:

V (S, T ) = S − E = Ef(x, o)

Eex − E = Ef(x, 0), via (B.10)

ex − 1 = f(x, 0)

At V (S, T ) = 0:

V (S, T ) = 0 = Ef(x, o)

0 = f(x, 0).

So V (S, t) = max(S − E, 0) becomes f(x, 0) = max(ex − 1, 0) under the
given transformation.

BC 2: V (0, t) = 0. (B.10) together with the fact that E 6= 0 (actually,
E > 0) ∴ S = 0 ⇐⇒ x → −∞.

Now, t ∈ [0, T ] and t = T − τ
1
2σ2 so we see that τ = 1

2σ2[T − t] and ∴ τ ∈
[o, 1

2σ2T ]. So we get
V (0, t) = lim

x→−∞
Ef(x, τ) = 0

21We have a portfolio of only one Call Option, so V (S, t) = C(S, t)∀S, t.
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⇒ lim
x→−∞

f(x, τ) = 0∀τ ∈
[

0,
1

2
σ2T

]

BC 3: limS→∞
V (S,t)

S = 1. According to the transform we have V (S, t) =
Ef(x, τ) and S = Eex, so we get

lim
S→∞

Ef(x, τ)

Eex
= lim

S→∞
e−xf(x, τ) = 1.

Step 2 - Get rid of ∂f
∂x and f . To get rid of the partial and the function

it self we introduce a suitable exponential multiplier:

f(x, τ) = eαx+βτg(x, τ), (B.13)

where we choose α, β to achieve our aim. Taking the partial derivatives required
in the Black-Scholes formula we get

∂f

∂τ
= βeαx+βτg(x, τ)

∂g

∂τ
,

∂f

∂x
= αeαx+βτg(x, τ) + eαx+βτ ∂g

∂x
, and

∂2f

∂x2
= α2eαx+βτg(x, τ) + αeαx+βτ ∂g

∂x
+ αeαx+βτ ∂g

∂x
+ eαx+βτ ∂2g

∂x2

= α2eαx+βτg(x, τ) + 2αeαx+βτ ∂g

∂x
+ eαx+βτ ∂2g

∂x2
.

Plugging these equations into (B.12) and cancel with eαx+βτ we get

∂g

∂τ
=

∂2g

∂x2
+ (2α + k − 1)

∂g

∂x
+

[
(α2 + α(k − 1) − (k + β)

]
g.

The aim is to get rid of the partials and the non-differentiated function, so
we want to choose α and β such that

2α + k − 1 = 0, and

α2 + α(k − 1) − (k + β) = 0.

From the first of these equations we see that

α =
1 − k

2
,

and plugging this into the second equation and re-arranging we get

β = α2 + α(k − 1) − k =
(1 − k)2

4
+

(1 − k)(k − 1)

2
− k = − (k + 1)2

4
.

With the above values of α and β we have rewritten the Black-Scholes equa-
tion as

∂g

∂τ
=

∂2g

∂x2
(B.14)
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which is of course the Heat-Diffusion equation!
Boundary Transforms. Using the European Call option boundaries as

before, we now transform the boundary conditions.
BC 1:

f(x, 0) = eαxg(x, 0) = max (ex − 1, 0)

⇒ g(x, 0) = max
(
e−αx (ex − 1) , 0

)

= max
(

e
k+1
2 x − e

k−1
2 x, 0

)

, since α = −k − 1

2
.

BC 2: α and β are constants, so

lim
x→−∞

f(x, τ) = 0 becomes

lim
x→−∞

eαx+βτg(x, τ) = 0 ∀τ ∈ [o, 1
2σ2T ]

BC 3:

e−xf(x, τ) = e−xeαx+βτg(x, τ)

= e(α−1)x+βτg(x, τ)

so the boundary condition becomes

lim
x→∞

(

e(α−1)x+βτg(x, τ)
)

= 1.

Step 3 - solve the heat-diffusion PDE with transformed boundary
conditions. We have transformed the Black Scholes PDE into the diffusion
equation. The solution to the diffusion equation (with given BC’s) is given by:

g(x, τ) =
1

2
√

πτ

∫ ∞

−∞
g(y, 0)e−

(x−y)2

4τ dy

Step 4 - Reverse transformation for solution Remembering the way
we did the transformation, we now only need to reverse this for the solution
for the Call Option BC. We have then solve the complex looking Black-Scholes
SDE using the well studied diffusion PDE!
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C Source Code for chapter 2

C.1 Plotting solution to diffusion equation without bound-

aries

plotNoBoundriesFourierSer.m

clear; clf;

xStepLength=0.05;

xM=6;

x=[-xM:xStepLength:xM];

n=10;

t=10;

tSteps=[.1:1:5.1];

fourierX=zeros(length(x),length(tSteps));

for tStep=1:length(tSteps)

for xStep=1:length(x)

fourierX(xStep,tStep)=1/sqrt(2*pi*tSteps(tStep))*exp(-(x(xStep)^2)/(2*tSteps(tStep

end

end

figure(1)

subplot(1,2,1)

grid on

plot(x,fourierX)

xlabel(’x’,’FontSize’,15);

ylabel(’probability’,’FontSize’,15);

axis([-xM xM 0 max(max(fourierX))])

subplot(1,2,2)

%surface(fourierX)

surface(’XData’,tSteps,’YData’,x,’ZData’,fourierX,’CData’,fourierX)

xlabel(’time’,’FontSize’,15);

ylabel(’x’,’FontSize’,15);

zlabel(’probability’,’FontSize’,15);

axis([0 tSteps(end) -xM xM 0 max(max(fourierX))])

view(-55,25)

C.2 Plotting solution to diffusion equation with terminat-

ing boundaries

plotTerminatingFourierSer.m

clear; clf;

xStepLength=0.05;
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x=[0:xStepLength:pi];

n=100;

t=10;

tSteps=[.1:.5:3.1];

fourierX=zeros(length(x),length(tSteps));

for tStep=1:length(tSteps)

for xStep=1:length(x)

fourierX(xStep,tStep)=sumTerminatingFourierSer(x(xStep),tSteps(tStep),n);

end

end

figure(1)

subplot(1,2,1)

plot(x,fourierX)

xlabel(’x’,’FontSize’,15);

ylabel(’probability’,’FontSize’,15);

axis([0 pi 0 1.5])

subplot(1,2,2)

%surface(fourierX)

surface(’XData’,tSteps,’YData’,x,’ZData’,fourierX,’CData’,fourierX)

xlabel(’time’,’FontSize’,15);

ylabel(’x’,’FontSize’,15);

zlabel(’probability’,’FontSize’,15);

axis([0 tSteps(end) 0 pi 0 1.5])

view(-55,25)

%text(10,10,[’Plot of Analytical solution to the diffusion eqn with given BC and IC.’],’FontSize’,

sumTerminatingFourierSer.m

function serSoln = sumTerminatingFourierSer(x,t,n)

%this is a function for summing up all rest in the cosine term

%of the fourier series solution we got.

%t - the time is fixed. We want to calculte for a specified time.

series = 0;

for count=0:n

thisTime = ((-1)^(-count))*sin((2*count+1)*x)*exp(-((count+1)^2)*t);

series = series + thisTime;

end

serSoln = (2/pi)*series;

%remember the 1/pi.

plotIntegratedFourierSer.m

clear;% clf;

n=1000;

t=10;
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tSteps=[.1:.5:4];

fourierX=zeros(length(tSteps),1);

for tStep=1:length(tSteps)

fourierX(tStep)=sumIntegratedFourierSer(tSteps(tStep),n);

end

figure(1)

%subplot(1,2,1)

hold on

plot(tSteps,fourierX, ’Color’,’Red’)

xlabel(’t’,’FontSize’,15);

ylabel(’probability’,’FontSize’,15);

title(’Survival chance decays in time’,’FontSize’,15);

axis([0 t 0 1])

% subplot(1,2,2)

% surface(fourierX)

% %surface(’XData’,tSteps,’YData’,x,’ZData’,fourierX,’CData’,fourierX)

% xlabel(’time’,’FontSize’,15);

% ylabel(’x’,’FontSize’,15);

% zlabel(’probability’,’FontSize’,15);

% %axis([0 tSteps(end) 0 pi 0 1.5])

% view(-55,25)

% %text(10,10,[’Plot of Analytical solution to the diffusion eqn with given BC and IC.’],’FontSize’,

sumIntegratedFourierSer.m

function serSoln = sumIntegratedFourierSer(t,n)

%this is a function for summing up all rest in the cosine term

%of the fourier series solution we got.

%t - the time is fixed. We want to calculte for a specified time.

series = 0;

n=100;

for count=0:n

thisTime = ((-1)^(-count))*(2/(2*count+1))*exp(-((count+1)^2)*t);

series = series + thisTime;

end

serSoln = (2/pi)*series;

%remember the 1/pi.

plotNormalizedFourierSer.m

clear; clf;

xStepLength=0.05;

x=[0:xStepLength:pi+xStepLength];

n=100;

t=10;

tSteps=[.1:.1:3.1];



C SOURCE CODE FOR CHAPTER 2 87

fourierX=zeros(length(x),length(tSteps));

fourierXi=zeros(length(tSteps),1);

for tStep=1:length(tSteps)

for xStep=1:length(x)

fourierX(xStep,tStep)=sumTerminatingFourierSer(x(xStep),tSteps(tStep),n);

end

fourierXi(tStep)=sumIntegratedFourierSer(tSteps(tStep),n);

end

figure(1)

normX=zeros(length(x),length(tSteps));

for jh=1:length(tSteps)

normX(:,jh)=fourierX(:,jh)./fourierXi(jh,1);

end

plot(x,normX)

hold on

plot(x,.5*sin(x),’Color’,’red’,’LineWidth’,2);

xlabel(’x’,’FontSize’,15);

ylabel(’normalized probability’,’FontSize’,15);

axis([0 pi 0 .6])

C.3 Plotting solution to diffusion equation with bouncing

boundaries

plotBouncinfFourierSer.m

clear; clf;

xStepLength=0.05;

x=[-pi:xStepLength:pi];

n=10;

t=10;

tSteps=[.1:.5:3.1];

fourierX=zeros(length(x),length(tSteps));

for tStep=1:length(tSteps)

for xStep=1:length(x)

fourierX(xStep,tStep)=sumBouncingFourierSer(x(xStep),tSteps(tStep),n);

end

end

figure(1)

subplot(1,2,1)

grid on

plot(x,fourierX)

xlabel(’x’,’FontSize’,15);

ylabel(’probability’,’FontSize’,15);
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axis([-pi pi 0 1])

subplot(1,2,2)

%surface(fourierX)

surface(’XData’,tSteps,’YData’,x,’ZData’,fourierX,’CData’,fourierX)

xlabel(’time’,’FontSize’,15);

ylabel(’x’,’FontSize’,15);

zlabel(’probability’,’FontSize’,15);

axis([0 tSteps(end) -pi pi 0 1])

view(-55,25)

sumBouncingFourierSer.m

function serSoln = sumBouncingFourierSer(x,t,n)

%this is a function for summing up all rest in the cosine term

%of the fourier series solution we got.

%t - the time is fixed. We want to calculte for a specified time.

series = 0;

for count=1:n

thisTime = cos((count)*x)*exp(-((count)^2)*t);

series = series + thisTime;

end

serSoln = 1/(2*pi)+(1/pi)*series;

%remember the 1/pi.
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D Source Code for chapter 3

D.1 Unbounded 1D random walk

simulate1dRandomWalk.m

clear, clf;

tic

T=600;

sim=2000;

simX=100;

arrivals=[];

for simme=1:simX

paths=2*binornd(1,.5,sim,T)-1;

paths=cumsum(paths,2);

arrivals=[arrivals; paths(:,end)];

clear paths;

end

y=ceil(4*sqrt(T));

x=[-y:2:y];% if misplaced try x=[-y+1:2:y-1]

figure(1)

plot(x,histc(arrivals(1:end),x)/(2*sim*simX),’Color’,’blue’)

%(the 2 in the denominator comes from the step-length 2 in x.)

title([’1D Random Walk, T=’ num2str(T) ’, Sim=’ num2str(sim*simX) ’.’],’FontSize’,15);

xlabel([’arrival position’],’FontSize’,15);

ylabel([’percentage’],’FontSize’,15);

hold on

plot(x,normpdf(x,0,(sqrt(T))),’Color’,’red’)

legend(’Random Walks’,’Normal PDF’);

toc

D.2 Terminating boundaries 1D random walk

D.3 1D random walk with one-step bounce

fiveRandomWalkBounce1.m

%\begin{verbatim}

% Monte Carlo simulations of the 1D random walk.

% Because many of the cases are so similar I have

% put most of the files in the same place and just commented

% out the parts you need to add in order to get the file

% working for your particular need.
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clear;

%set t0 for the clocktimer and c0 for the cputimer.

t0 = clock;

%Define the total number of simulations

Simulations = 200;

%define the width (N) and the time (T) of the river

N = 20;

T = 201;

%the witdh to use in the distrubation histogram for the arrivals

distrW = N;

%how many simulations to plot. to plot the whole lot uses a whole lot of

%memmory.

plottingCurves = 5;

%Allocate memmory for the array that will contain the path it will be a 1

%by T array since t=’the place in the array’ it needs not be incorporated:

path = zeros(T, Simulations);

for sim = 1:Simulations

%(re)Set the starting positions for each run, x is the displacement

%in the N-direction and t in the T-direction.

x = 0;

t = 0;

%now, need reset the bounce parameter for each simulation

%%%normal random walk has no bounce so set it always equal to zero

bounce = 0;

%We have to start at t=2 since t=0 can not be used matrix indexing

%and t=1 would mean x=+-1 and we want x=0.

for t = 2:T

y = rand;

%-with one-step bounce.

%now we want drift. Want drift to aim at 0 at end. i.e. add a

%stochastic drift of N/(T-t).

%this drif is not to be introduced if we are already on the

%last probability. So;

if t < T

if x >= N

bounce = 1/2;

elseif x <= -N

bounce = -1/2;
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%elseif x == 0

else

bounce = 0;

end

elseif t == T

bounce = 0;

end

%-end of with bounce.

if y > (1/2 + bounce)

x = x + 1;

%its a very small probability that y == 0.5 but it might

%actually make a tiny difference and thus i added this

%extra bit. There should not really be possible

%for y==0.5 twice!

elseif y == (1/2 + bounce)

y = rand;

if y > (1/2 + bounce)

x = x + 1;

else

x = x - 1

end

else

x = x - 1;

end

%Save the data in the path matrix.

path(t,sim) = x;

%end of this step.

end

%end of this Simulation, save the arrival location.

arrivals = path(T,:);

end

allarrivals = [transpose(arrivals)];

subplot(2,2,1:2)

plot(path(:,1:plottingCurves));

axis([0 T -N N]);

%had to add a line-break here for the LaTeX. take it away to run

title([int2str(Simulations) ’ simulations (plotting ’ int2str(plottingCurves) ’), T=’ int2str(T)

subplot(2,2,4)

%to generate the uniform sample to compare with in the qqplot.

for apa=1:Simulations

apan(apa)=rand;

end
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qqplot(arrivals, apan)

subplot(2,2,3)

binsN = -distrW:2:distrW;

hist(allarrivals,binsN);

%had to add a line-break here for the LaTeX. take it away to run

title([’Arrival spread. \sigma = ’ num2str(mean(std(allarrivals))) ’& \mu = ’ num2str(mean(mean

%h = 0 if there is a good fit to any normal distribution.

[h p l c] = jbtest(arrivals);

%prints the spot estimates and 95% confidence intervalls for

%std and mean.

[mu,sigma,muci,sigmaci] = normfit(arrivals)

%timing - just to see how fast the computer is! ;)

etime(clock,t0)

%\end{verbatim}
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E Source Code for chapter 4

E.1 1D random walk with target fixation drift

change the bounce on line 53 and 60 in the fiveRandomWalkLookBack1.m be-
low.

E.2 1D random walk with look-back drift

RandomWalkLookBackVect1.m

%by Anders Österling, University of Stockholm, 2007.

tic

clear;

Simulations = 30000;

T = 999;

N = 20;%this is only half the field.

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

countBounce = zeros(Simulations,1);

drift = P;%.5 is means no drift.

saving=zeros(Simulations,1);

one = ones(Simulations,1);%for application speed, define ones.

for stepping=1:T-N;

bouncing = zeros(Simulations,1);%reset the bounce.

bouncing = -(Pos<=(-N)) + (Pos>=N);%bounce coefficients. for the drift.

%Now we have to choose - uncomment the one that you want to use:

%TARGET FIXATION

%bounceDrift = .5.*abs(bouncing) - (bouncing.*N)./(2*(T-stepping));%Probabilities of

%LOOK BACK

bounceDrift = .5.*abs(bouncing) - (bouncing.*N)./(2*(stepping));%Probabilities of stepping

drift = drift.*(one-abs(bouncing)) + bounceDrift;

%if process crosses middle - take away drift - i.e. set drift =.5.

%uncomment the next line if you want drift taken away at x=0.

%drift=(1-(Pos==0)).*drift+(Pos==0)*.5;

upDown = 2*binornd(1,drift,Simulations,1) -1;

Pos = Pos + upDown;

Pos = Pos.*(one-(Pos>N))+(N-1)*(Pos>N);%bouncing down
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Pos = Pos.*(one-(Pos<-N))-(N-1)*(Pos<-N);%bouncing up

end

aa=[-N:2:N];

histogram=histc(Pos(:,end),aa)/Simulations;

plot(aa,histogram, ’Color’,’green’)

hold on

axis([-N N 0 .1])

legend(’drift taken away at x=0’,’drift intact’)

xlabel(’arrival position’,’FontSize’,15)

ylabel(’probability’,’FontSize’,15)

toc

E.3 Bounce counting function for target fixation

countBounces2.m

%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.

function output = countBounces2(Simulations, T, N)

% clear;

% Simulations = 100;

% T = 1000;

% N = 10;%twice the width of the field!

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

countBounce = zeros(Simulations,1);

drift = P;%.5 is means no drift.

saving=zeros(Simulations,1);

for stepping=0:T-N;

one = ones(Simulations,1);%for application speed, define ones.

bouncing = zeros(Simulations,1);%reset the bounce.

bouncing = -(Pos<=(-N)) + (Pos>=N);%bounce coefficients. for the drift.
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countBounce = countBounce + abs(bouncing);

bounceDrift = .5.*abs(bouncing) - (bouncing.*N)./(2*(T-stepping));%Probabilities

drift = drift.*(one-abs(bouncing)) + bounceDrift;

upDown = 2*binornd(1,drift,Simulations,1) -1;

Pos = Pos + upDown;

Pos = Pos.*(one-(Pos>N))+(N-1)*(Pos>N);%bouncing down

Pos = Pos.*(one-(Pos<-N))-(N-1)*(Pos<-N);%bouncing up

%saving = [saving Pos];

end

output = countBounce;

plotBounces2.m

clear, clf;

Simulations = 4000; %number of simulations to run for every timestep

N = 20; % width of the field

times = [100:200:2000];%vector with the different timesteps to try

means=zeros(length(times),3);

tic;

for loop = 1:length(times)

data = countBounces2(Simulations,times(loop),N);

means(loop,1)=mean(data);

sorted = sort(data);

% means(loop,2)=sorted(round(length(sorted)/100*2.5));

% means(loop,3)=sorted(round(length(sorted)/100*97.5));

end

toc

figure(1)

plot(times,means(:,1),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’Ma

hold on

%plot(times,means(:,2),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’re

%plot(times,means(:,3),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’green’,’MarkerFaceColor’,’b

xlabel([’Number of discretee timesteps’]);

ylabel([’Average number of bounces’]);

title([’Plotting Bounces for fixed witdh N=2*’ num2str(20) ’ and varying the Timesteps. Calculation

E.4 1.5D random walk

seven2dWalk1.m

\begin{verbatim}

clear;
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t0 = clock;

Simulations = 100000;

N = 100;

T = N;

%when using N direction, note that max(intervalN)==N/2.

%the interval limits DOES include limit points.

intervaln = 65;

intervalN = 95;

%direction:

% N == 0

% Tp == 1

% Tm == 2

% ,where Tp means Tplus == when x is positive, and Tm == Tminus, x <0.

direction = 1;

arrivals = zeros(Simulations,3);

for sim = 1:Simulations

x = 0;

t = 0;

ttime = 0;

alive = 1;

while alive == 1

ttime = ttime + 1;

y = rand;

if y < (1/3)

x = x-1;

elseif (y < (2/3))

x = x+1;

else

t = t+1;

end

if x == N/2

alive = 0;

elseif x == -N/2

alive = 0;

elseif t == T

alive = 0;

end

end %alive

arrivals(sim,1) = ttime;

arrivals(sim,2) = x;

arrivals(sim,3) = t;

end %sim
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goalnr = [0];

goalarr = zeros(1,2);

if(direction == 0) % at the far end of the box.

for apa=1:Simulations

if(arrivals(apa,3)==T)

if(arrivals(apa,2) <= intervalN)

if(arrivals(apa,2) >= intervaln)

goalarr = [goalarr; arrivals(apa,1), arrivals(apa,2)];

end

end

end

end

elseif(direction == 1) % the left (positive) side of box.

’hej1’

for apa=1:Simulations

’hej 2’

goalnr = [goalnr; arrivals(apa,2)];

if(arrivals(apa,2)==(N/2))

’hej 3’

if(arrivals(apa,3) <= intervalN)

if(arrivals(apa,3) >= intervaln)

goalarr = [goalarr; arrivals(apa,1), arrivals(apa,3)];

end

end

end

end

elseif(direction == 2) % the right (negative) side of the box.

for apa=1:Simulations

if(arrivals(apa,2)==-(N/2))

if(arrivals(apa,3) <= intervalN)

if(arrivals(apa,3) >= intervaln)

goalarr = [goalarr; arrivals(apa,1), arrivals(apa,3)];

end

end

end

end

end

goalarr = goalarr(2:end,:);

compTime = (t0 - clock);

subplot(2,2,1:2)
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if(direction == 0)

limiten = round((N+1)/2)

binsW = -limiten:1:limiten;

else

binsW = 0:1:T;

end

hist(goalarr(:,2),binsW);

%add the lines together and remove %-sign

%title([num2str(Simulations) ’ simulations, ’ num2str(length(goalarr(:,2))) ’

%in goal. Arrival Positions: \sigma = ’ num2str(mean(std(goalarr(:,2))))

%’& \mu = ’ num2str(mean(mean(goalarr(:,2))))]);

subplot(2,2,3:4)

binsN = min(goalarr(:,1)):1:max(goalarr(:,1));

hist(goalarr(:,1),binsN);

%add the lines together and remove %-sign

%title([’Arrival Times: \sigma = ’ num2str(mean(std(goalarr(:,1)))) ’&

%\mu = ’ num2str(mean(mean(goalarr(:,1)))) ’. Calcualtion time: ’

%num2str(etime(clock,t0))]);

-compTime(6)

etime(clock,t0)

\end{verbatim}
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F Source Code for chapter 5

F.1 Coastal harbour

anovaAlpha.m

clear;

sim=100000;

N=20;%number of steps (flashes +2)

flashes=N-2;%no flash at beginning or at end.

endtime=400;

theta=pi/200;%degrees.

T=endtime/flashes;

ar = zeros(sim,N);

vvar= zeros(1,N);

ar(:,1)=normrnd(0,sqrt(T),sim,1);

vvar(:,1)=var(ar(:,1));

for f=2:N

xi_f=(((N-2)-(f-2))/(N-2))*ar(:,(f-1));%xi_f

theta_f=atan((ar(:,f-1)-xi_f)/T);

theta_f=(theta_f>theta)*theta+(1-(theta_f>theta)).*theta_f;

xi_f=ar(:,f-1)-T*tan(theta_f);

ar(:,f)=normrnd(xi_f,sqrt(T),sim,1);

vvar(1,f) = var(ar(:,f));

end

vvar

plot(vvar, ’Color’, ’yellow’)

xlabel(’Number of flashes’,’FontSize’,15);

ylabel(’Variance’,’FontSize’,15);

hold on

firehouse1.m

%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.

function output = firehouse1(Simulations, T,flashes)

% clear;

% Simulations = 100;

% T = 1000;
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% N = 10;%twice the width of the field!

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

countBounce = zeros(Simulations,1);

drift = P;%.5 is means no drift.

saving=zeros(Simulations,1);

flashCount = 1;

flashTimes=round([(T/(flashes+1)):(T/(flashes+1)):((flashes*T)/(flashes+1))]);

%var(T)~=sqrt(T)

% for stepping=0:round(T-sqrt(T));

for stepping=0:T;

one = ones(Simulations,1);%for application speed, define ones.

bouncing = zeros(Simulations,1);%reset the bounce.

upDown = 2*binornd(1,drift,Simulations,1) -1;

Pos = Pos + upDown;

if(stepping==flashTimes(flashCount))

%calculate new drift...

%if the angle is less than one, use it for drift

drifting = abs(Pos/(2*(T-stepping)))<1;

%if the angle is greater than one, use 1 for drift.

driftingLate = .5*(one-drifting);

drift = .5*one - drifting.*(Pos/(2*(T-stepping)))-driftingLate;

disp([num2str(stepping) ’ var’ num2str(var(drift))]);

if(flashCount<length(flashTimes))

flashCount = flashCount +1;

end

end

upDown = 2*binornd(1,drift,Simulations,1) -1;

Pos = Pos + upDown;

end

output = Pos;
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plotFirehouse1.m

clear, clf;

Simulations = 20000; %number of simulations to run for every timestep

times = 400;%[100:200:2000];%vector with the different timesteps to try

harbour = [-10 10];%the lower/upper bound to check C.I for.

means=zeros(length(times),3);

tic

flashes=[1:10:81];%number of firehouse flashes;

data=[];

for loop = 1:length(flashes)

ciCount=0;

arrivals = firehouse1(Simulations,times,flashes(loop));

outside = sum(arrivals<=harbour(1)) + sum(arrivals>=harbour(2));

inside=Simulations-outside;

data = [data inside/Simulations];

end

toc

figure(1)

plot(flashes,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’Marker

hold on

line([0:10/flashes(end):flashes(end)],0.95,’LineWidth’,2);

%plot(times,means(:,2),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’re

%plot(times,means(:,3),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’green’,’MarkerFaceColor’,’b

xlabel([’Number of flashes’]);

ylabel([’Percent ariving within (’ num2str(harbour(1)) ’,’ num2str(harbour(2)) ’).’]);

title([’Plotting harbour-arrivals. Calculation time ’ num2str(toc) ’sec for ’ num2str(Simulati

%hist(data)

%nästa steg är att kör för fixade grunkor. fett dude!

F.2 Harbour at the end of a Norwegian Fjord

firehouseFjord1.m

%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.
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function output = firehouse1(Simulations, T,N,flashes)

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

drift = P;%.5 is means no drift.

flashCount = 1;

flashTimes=round([(T/(flashes+1)):(T/(flashes+1)):((flashes*T)/(flashes+1))]);

for stepping=0:T;

one = ones(length(Pos),1);%for application speed, define ones.

if(stepping==flashTimes(flashCount))

%calculate new drift...

%if the angle is less than one, use it for drift

drifting = abs(Pos/(2*(T-stepping)))<1;

%if the angle is greater than one, use 1 for drift.

driftingLate = .5*(one-drifting);

drift = .5*one - drifting.*(Pos/(2*(T-stepping)))-driftingLate;

if(flashCount<length(flashTimes))

flashCount = flashCount +1;

end

end

%terminating at the boundries.

u=(Pos<N);%1’s for all Pos <N

u=1./u/Inf;%0’s forall Pos<N, NaN 4A Pos>=N.

l=(Pos>-N);

l=1./l/Inf;

Pos = Pos + u + l;%NaN 4A pos>N,pos<-N.

Pos=Pos(finite(Pos));

drift=drift+u+l;

drift=drift(finite(drift));

% disp([’drift ’ num2str(size(drift)) ’, pos ’ num2str(size(Pos)) ’,upDown ’ num2str(length(u

upDown = 2*binornd(1,drift,length(Pos),1) -1;

Pos = Pos + upDown;%+lower+upper;%add the NaN’s

end



F SOURCE CODE FOR CHAPTER 5 104

output = Pos;

plotFirehouseFjord1.m

clear, clf;

Simulations = 10000; %number of simulations to run for every timestep

times = 1000;%[100:200:2000];%vector with the different timesteps to try

N=45;

harbour = [-10 10];%the lower/upper bound to check C.I for.

tic

%NOTE. One needs to think about before deciding how many flashes to use

%and where to put them Putting too many in will mean they are at the

%same place and not all of them are actually used, thus getting less

%actually working lighthouses!

flashes=[1:20:101];%number of firehouse flashes;

data=[];

for loop = 1:length(flashes)

ciCount=0;

arrivals = firehouseFjord1(Simulations,times,N,flashes(loop));

outside = sum(arrivals<=harbour(1)) + sum(arrivals>=harbour(2));

length(arrivals)

inside=length(arrivals)-outside;

data = [data inside/Simulations];

end

toc

figure(1)

plot(flashes,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’Marker

hold on

line([0:10/flashes(end):flashes(end)],0.95,’LineWidth’,2);

%plot(times,means(:,2),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’re

%plot(times,means(:,3),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’green’,’MarkerFaceColor’,’b

xlabel([’Number of flashes’]);

ylabel([’Percent ariving within (’ num2str(harbour(1)) ’,’ num2str(harbour(2)) ’).’]);

title([’Plotting fjord-arrivals, the fjord is 2*’ num2str(N) ’ wide,calc time ’ num2str(toc)

%hist(data)

%nästa steg är att kör för fixade grunkor. fett dude!

F.3 A wider fjord is easier to sail through

firehouseFjordWidthCI.m
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%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.

function output = firehouse1(Simulations, T,N,flashes)

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

drift = P;%.5 is means no drift.

flashCount = 1;

flashTimes=round([(T/(flashes+1)):(T/(flashes+1)):((flashes*T)/(flashes+1))]);

for stepping=0:T;

one = ones(length(Pos),1);%for application speed, define ones.

if(stepping==flashTimes(flashCount))

%calculate new drift...

%if the angle is less than one, use it for drift

drifting = abs(Pos/(2*(T-stepping)))<1;

%if the angle is greater than one, use 1 for drift.

driftingLate = .5*(one-drifting);

drift = .5*one - drifting.*(Pos/(2*(T-stepping)))-driftingLate;

if(flashCount<length(flashTimes))

flashCount = flashCount +1;

end

end

%terminating at the boundries.

u=(Pos<N);%1’s for all Pos <N

u=1./u/Inf;%0’s forall Pos<N, NaN 4A Pos>=N.

l=(Pos>-N);

l=1./l/Inf;

Pos = Pos + u + l;%NaN 4A pos>N,pos<-N.

Pos=Pos(finite(Pos));

drift=drift+u+l;

drift=drift(finite(drift));

if(length(Pos)==0)%if all process are terminated, quit.

break;

end

upDown = 2*binornd(1,drift,length(Pos),1) -1;

Pos = Pos + upDown;%+lower+upper;%add the NaN’s
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end

output = Pos;

plotFirehouseFjordWidthCI.m

tic

clear, clf;

Simulations = 10000; %number of simulations to run for every timestep

times = 1000;%[100:200:2000];%vector with the different timesteps to try

%N=45;

widths=[45:5:85];

CI=0.95;%how many need to pass for beeing OK.

harbour = [-10 10];%the lower/upper bound to check C.I for.

flashes=[30:2:60 61:5:86];%number of firehouse flashes;

optimalFlashes=zeros(length(widths),1);

for Nloop=1:length(widths)

for loop = 1:length(flashes)

ciCount=0;

arrivals = firehouseFjord1(Simulations,times,widths(Nloop),flashes(loop));

outside = sum(arrivals<=harbour(1)) + sum(arrivals>=harbour(2));

inside=length(arrivals)-outside;

if((inside/Simulations)>CI)

optimalFlashes(Nloop)=flashes(loop);

break;

end

end

end

figure(1)

plot(2*widths,optimalFlashes,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

xlabel([’Fjord witdh’],’FontSize’,15);

ylabel([’Number of flashes’],’FontSize’,15);

toc

F.4 The boundaries are linear but at an angle

plotSmallerGoalRW.m

%This, smallerGoalRW.m plots the number of simulations that arrive within

%different sizes of the goal. There is no boundarie what so ever.

clear, clf;
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Simulations = 10000; %number of simulations to run for every timestep

times = 1000;%[100:200:2000];%vector with the different timesteps to try

N=50;

M=[5:10:45];

tic

%NOTE. One needs to think about before deciding how many flashes to use

%and where to put them Putting too many in will mean they are at the

%same place and not all of them are actually used, thus getting less

%actually working lighthouses!

%flashes=[1:20:101];%number of firehouse flashes;

data=[];

for loop = 1:length(M)

ciCount=0;

arrivals = smallerGoalRW(Simulations,times,N,0);

harbour = [-M(loop) M(loop)];%the lower/upper bound to check C.I for.

outside = sum(arrivals<=harbour(1)) + sum(arrivals>=harbour(2));

inside=length(arrivals)-outside;

data = [data inside/Simulations];

end

toc

figure(1)

plot(M./N,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSiz

hold on

%line([0:10/M(end):M(end)],0.95,’LineWidth’,2);

%plot(times,means(:,2),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’re

%plot(times,means(:,3),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’green’,’MarkerFaceColor’,’b

xlabel([’Width of goal (in percent of the start-field)’]);

ylabel([’Percent ariving in the goal’]);

title([’Plotting non-barrier goals, start field is 2*’ num2str(N) ’ wide,calc time ’ num2str(toc)

%hist(data)

%nästa steg är att kör för fixade grunkor. fett dude!

smallerGoalRW.m

%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.
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function output = smallerGoalRW(Simulations, T,N,flashes)

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

drift = P;%.5 is means no drift.

% % dubbel comment for lighthouse signals.

% % flashCount = 1;

% %

% % flashTimes=round([(T/(flashes+1)):(T/(flashes+1)):((flashes*T)/(flashes+1))]);

% %

for stepping=0:T;

one = ones(length(Pos),1);%for application speed, define ones.

% % if(stepping==flashTimes(flashCount))

% % %calculate new drift...

% % %if the angle is less than one, use it for drift

% % drifting = abs(Pos/(2*(T-stepping)))<1;

% % %if the angle is greater than one, use 1 for drift.

% % driftingLate = .5*(one-drifting);

% %

% % drift = .5*one - drifting.*(Pos/(2*(T-stepping)))-driftingLate;

% %

% % if(flashCount<length(flashTimes))

% % flashCount = flashCount +1;

% % end

% %

% % end

%terminating at the boundries.

% u=(Pos<N);%1’s for all Pos <N

% u=1./u/Inf;%0’s forall Pos<N, NaN 4A Pos>=N.

% l=(Pos>-N);

% l=1./l/Inf;

% Pos = Pos + u + l;%NaN 4A pos>N,pos<-N.

% Pos=Pos(finite(Pos));

% % drift=drift+u+l;

% % drift=drift(finite(drift));

drift =.5*one;

% disp([’drift ’ num2str(size(drift)) ’, pos ’ num2str(size(Pos)) ’,upDown ’ num2str(length(u

upDown = 2*binornd(1,drift,length(Pos),1) -1;

Pos = Pos + upDown;%+lower+upper;%add the NaN’s



F SOURCE CODE FOR CHAPTER 5 109

end

output = Pos;

angleBarrier.m

%COUNTBOUNCES - Count the number of times a process bounces

% on the walls (with target fixation drift)

%

%countBounces(Sim,T,N) returns a Sim-by-1 vector with the number of times

%each process has bounced in a field that is N units wide and T units long.

%

%by Anders Österling, University of Stockholm, 2006.

function output = angleBarrier(Simulations, T,N,flashes,barrier)

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = zeros(Simulations,1)+upDown; %setting the position at T=0. Since the lowest vector

drift = P;%.5 is means no drift.

% % dubbel comment for lighthouse signals.

% % flashCount = 1;

% %

% % flashTimes=round([(T/(flashes+1)):(T/(flashes+1)):((flashes*T)/(flashes+1))]);

% %

for stepping=0:T;

one = ones(length(Pos),1);%for application speed, define ones.

% % if(stepping==flashTimes(flashCount))

% % %calculate new drift...

% % %if the angle is less than one, use it for drift

% % drifting = abs(Pos/(2*(T-stepping)))<1;

% % %if the angle is greater than one, use 1 for drift.

% % driftingLate = .5*(one-drifting);

% %

% % drift = .5*one - drifting.*(Pos/(2*(T-stepping)))-driftingLate;

% %

% % if(flashCount<length(flashTimes))

% % flashCount = flashCount +1;

% % end

% %

% % end
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%terminating at the boundries.

u=(Pos<barrier(stepping+1));%1’s for all Pos <N

u=1./u/Inf;%0’s forall Pos<N, NaN 4A Pos>=N.

l=(Pos>-barrier(stepping+1));

l=1./l/Inf;

Pos = Pos + u + l;%NaN 4A pos>N,pos<-N.

Pos=Pos(finite(Pos));

drift=drift+u+l;

drift=drift(finite(drift));

%drift =.5*one;

% disp([’drift ’ num2str(size(drift)) ’, pos ’ num2str(size(Pos)) ’,upDown ’ num2str(length(u

length(Pos),length(drift)

upDown = 2*binornd(1,drift,length(Pos),1) -1;

Pos = Pos + upDown;%+lower+upper;%add the NaN’s

end

output = Pos;

plotAngleBarrier.m

%This, smallerGoalRW.m plots the number of simulations that arrive within

%different sizes of the goal. There is no boundarie what so ever.

clear, clf;

Simulations = 10000; %number of simulations to run for every timestep

times = 1000;%[100:200:2000];%vector with the different timesteps to try

N=50;

M=[5:10:45];

tic

%NOTE. One needs to think about before deciding how many flashes to use

%and where to put them Putting too many in will mean they are at the

%same place and not all of them are actually used, thus getting less

%actually working lighthouses!

%flashes=[1:20:101];%number of firehouse flashes;

data=[];

for loop = 1:length(M)

ciCount=0;

barrier=N-round([M(loop):(N-M(loop))/times:N])+M(loop);

arrivals = angleBarrier(Simulations,times,N,0,barrier);

harbour = [-M(loop) M(loop)];%the lower/upper bound to check C.I for.
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outside = sum(arrivals<=harbour(1)) + sum(arrivals>=harbour(2));

inside=length(arrivals)-outside;

data = [data inside/Simulations];

end

toc

figure(1)

plot(M./N,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSiz

hold on

%line([0:10/M(end):M(end)],0.95,’LineWidth’,2);

%plot(times,means(:,2),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’re

%plot(times,means(:,3),’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’green’,’MarkerFaceColor’,’b

xlabel([’Width of goal (in percent of the start-field)’]);

ylabel([’Percent ariving in goal’]);

title([’Linear barrier to the goal, start field is 2*’ num2str(N) ’ wide,calc time ’ num2str(toc)

%hist(data)

%nästa steg är att kör för fixade grunkor. fett dude!
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G Source Code for chapter 6

G.1 Unbounded Theoretical solutions

plottaMatlabIntegral.m

clear;%clf;

tic

syms y;

a=[-10:.1:10]

intEnd=20;

b=a;

c=a;

for x=1:length(a)

%This is a slow way of integrating the tails, but it was quick to

%implement and it doesnt really mater that it takes a few seconds.

b(x)=eval(int(1/(2*pi)*exp(-(a(x)^2)/2)*exp((a(x)*y-y^2)),1,intEnd));

c(x)=eval(int(1/(2*pi)*exp(-(a(x)^2)/2)*exp((a(x)*y-y^2)),-intEnd,-1));

end

plot(a,c,’color’,’blue’);

hold on

hold on

plot(a,b,’color’,’green’);

hold on

plot(a,b+c,’color’,’red’);

axis([ -6 6 0 .07])

grid on

legend(’Left tail’,’Right tail’,’Sum of tails’)

title([’Arrivals at t=T’],’FontSize’,15)

xlabel([’x values’],’FontSize’,15);

ylabel([’arival probability’],’FontSize’,15);

toc

quasiMCRightAndLeftOfTheWater1.m

clf;

tic

simulations=250000;

simulations2=1;

atOne=randn(simulations,1);

left=atOne<-1;

right=atOne>1;

noLeftOf=sum(left);

noRightOf=sum(right);
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atTwo=[];

leftTail=findnz(1*left);

a=1;

%leftAtTwo=[];

leftAtTwo=zeros(noLeftOf,1);

while(a<=length(leftTail(:,1)))

% leftAtTwo=[leftAtTwo; atOne(leftTail(a))+randn(simulations2,1)];

leftAtTwo(a)=atOne(leftTail(a))+randn(simulations2,1);

a=a+1;

end

rightTail=findnz(1*right);

a=1;

rightAtTwo=zeros(noRightOf,1);

while(a<=length(rightTail(:,1)))

% rightAtTwo=[rightAtTwo; atOne(rightTail(a))+randn(simulations2,1)];

rightAtTwo(a)=atOne(rightTail(a))+randn(simulations2,1);

a=a+1;

end

size(atTwo)

noLeftOf+noRightOf

%figure(1)

normaliseradL=histc(leftAtTwo,[-5:1:5])/(1*simulations);

plot([-5:.1:5],normaliseradL,’color’,’blue’);

hold on

normaliseradR=histc(rightAtTwo,[-5:1:5])/(1*simulations);

plot([-5:.1:5],normaliseradR,’color’,’green’);

hold on

%normaliserad=histc(atTwo,[-5:.1:5])/(simulations);

%plot([-5:.1:5],normaliserad,’color’,’red’);

%normaliserad=histc(atTwo,[-5:.1:5])/(simulations);

plot([-5:.1:5],normaliseradL+normaliseradR,’color’,’red’);

axis([ -6 6 0 .07])

grid on

legend(’Left tail’,’Right tail’,’Sum of tails’)

title([’Arrivals at t=T’],’FontSize’,15)

xlabel([’x values’],’FontSize’,15);

ylabel([’arival percentage’],’FontSize’,15);

toc
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% subplot(2,2,1)

% plot(a,(b))

% grid on

% title([’Right side tail’],’FontSize’,15);

% axis([ -5 5 0 .4])

% subplot(2,2,2)

% plot(a,(c))

% grid on

% title([’Left side tail’],’FontSize’,15);

% axis([ -5 5 0 .4])

% subplot(2,2,[3 4])

% plot(a,(1./(sqrt(2*pi).*exp((a.^2)./2+1)).*(exp(a)+exp(-a))))

% grid on

% title([’Both tails together’],’FontSize’,15);

% axis([ -5 5 0 .4])

G.1.1 Proper slalom, with more than one obstacle

noEdgesSlalomObstacles.m

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%

%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

% clear;

% Simulations = 1000;

% T = 100;

% N = 10;%twice the width of the field!

% Gamma = 8;

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

% stepCount = 0;

% delta = N/5;%witdh of the wall

%alfa=(2*N-delta)*rand(Gamma,T)-N;%could have PI instead of N...

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through
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for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

% Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%TERMINATING(bouncing down)

% Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%TERMINATING(bouncing up)

Pos=Pos(finite(Pos));

%checking the walls

%if the process is inside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=alfa(gates,process))

% Pos(process,1) = NaN;

elseif(Pos(process,1)>=alfa(gates,process)+delta)

% Pos(process,1) = NaN;

else

Pos(process,1) = NaN;

end

end

if(gates<length(gateTimes))

gates = gates +1;

end

end

end

end

output = length(Pos)/Simulations;

slalomObstaclesTimeNoEdge.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates
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% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = [500:1000:6500];%how many and which times should we check.

%times=1000;

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = 10;%round([(N/(Gamma)):(N/Gamma):(N)]); %the width of small gates;

data = [];

for loop = 1:length(times)

%loop=1;

%alfa is a matrix numberofGates*numberOfSimulations and contains the

%random gate-widths.

alfa=(2*N-delta)*rand(Gamma,Simulations)-N;%could have PI instead of N...

data = [data terminateEdgesSlalomObstacles(Simulations, times(loop), N, Gamma, delta,alfa)];

end

% data

figure(1)

plot(times,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSi

xlabel([’Length (T) of the field (discretee timesteps)’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(T) .’],’FontSize’,14);

hold off

data

toc

G.1.2 Bigger holes implies less drunken men

slalomObstaclesNoEdgeDifferentSizeRocks.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;
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Gamma = 10; %the number of small walls to use;

delta = round([(N/(Gamma)):(N/Gamma):(N)]); %the width of small gates;

%delta=10;

data = [];

for loop = 1:length(delta)

%loop=1;

alfa=(2*N-delta(loop))*rand(Gamma,Simulations)-N;%could have PI instead of N...

data = [data noEdgesSlalomObstacles(Simulations, times, N, Gamma, delta(loop),alfa)];

end

% data

figure(1)

plot(delta,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSi

xlabel([’Width (\delta) of the obstacles’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

data

toc

G.1.3 Gates rather than holes

noEdgesSlalomGates.m

% tic

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%

%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

% clear;

% Simulations = 1000;

% T = 100;

% N = 10;%twice the width of the field!

% Gamma = 8;

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

% stepCount = 0;

% delta = N/5;%witdh of the wall

%alfa=(2*N-delta)*rand(Gamma,T)-N;%could have PI instead of N...
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P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through

for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

%Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%bouncing down

%Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%bouncing up

Pos=Pos(finite(Pos));

%checking the walls

%if the process is outside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=alfa(gates,process))

Pos(process,1) = NaN;

elseif(Pos(process,1)>=alfa(gates,process)+delta)

Pos(process,1) = NaN;

end

end

end

if(gates<length(gateTimes))

gates = gates +1;

end

end

end

end

output = length(Pos)/Simulations;
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% disp([’’ num2str(length(Pos)/Simulations) ’% surviving’]);

% toc

slalomGatesNoEdges.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = [(2*N/Gamma):(2*N/Gamma):(2*N)]; %the width of small gates;

data = [];

for loop = 1:length(delta)

%loop=1;

alfa=(2*N-delta(loop))*rand(Gamma,Simulations)-N;%could have PI instead of N...

data = [data noEdgesSlalomGates(Simulations, times, N, Gamma, delta(loop),alfa)];

end

% data

figure(1)

plot(delta,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSi

xlabel([’Width (\delta) of the gates’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

toc

G.1.4 Nice slalom is easy, hard slalom is hard

noEdgesSlalomGatesNiceness.m

% tic

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%
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%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = noEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

% clear;

% Simulations = 1000;

% T = 100;

% N = 10;%twice the width of the field!

% Gamma = 8;

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

% stepCount = 0;

% delta = N/5;%witdh of the wall

%alfa=(2*N-delta)*rand(Gamma,T)-N;%could have PI instead of N...

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through

for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

%Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%bouncing down

%Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%bouncing up

Pos=Pos(finite(Pos));

%checking the walls

%if the process is outside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=(alfa(gates,1)-delta/2))

Pos(process,1) = NaN;
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elseif(Pos(process,1)>=(alfa(gates,1)+delta/2))

Pos(process,1) = NaN;

end

end

end

if(gates<length(gateTimes))

gates = gates +1;

% disp([’t

end

end

end

end

output = length(Pos)/Simulations;

% disp([’’ num2str(length(Pos)/Simulations) ’% surviving’]);

% toc

slalomGatesNicenessNoEdges.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = 10;%[(2*N/Gamma):(2*N/Gamma):(2*N)]; %the width of small gates;

data = [];

niceness=5;%number of different sigmas to use...

niceGates=[0:N/niceness:N-N/niceness];

%skapar en \pm 1 vektor...

inGates=zeros(Gamma,1);

for pm = 1:Gamma;

if(~rem(pm,2))

%even

inGates(pm,1)=1;
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else

inGates(pm,1)=-1;

end

end

alfa=zeros(length(niceGates),1);

for gate = 1:length(niceGates)

alfa=niceGates(gate).*inGates;%+(delta/2).*inGates%-delta/2

data = [data noEdgesSlalomGatesNiceness(Simulations, times, N, Gamma, delta,alfa)];

end

figure(1)

plot(niceGates,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’Mark

xlabel([’Gate offset from centre-line.’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

toc

G.2 Bounded Monte Carlo solutions

G.2.1 Hitting a rock will terminate you like a termite

slalomObstaclesTime.m terminateEdgesSlalomObstacles.m

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%

%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

% clear;

% Simulations = 1000;

% T = 100;

% N = 10;%twice the width of the field!

% Gamma = 8;

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

% stepCount = 0;

% delta = N/5;%witdh of the wall
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%alfa=(2*N-delta)*rand(Gamma,T)-N;%could have PI instead of N...

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through

for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%TERMINATING(bouncing down)

Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%TERMINATING(bouncing up)

Pos=Pos(finite(Pos));

%checking the walls

%if the process is inside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=alfa(gates,process))

% Pos(process,1) = NaN;

elseif(Pos(process,1)>=alfa(gates,process)+delta)

% Pos(process,1) = NaN;

else

Pos(process,1) = NaN;

end

end

if(gates<length(gateTimes))

gates = gates +1;

end

end

end
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end

output = length(Pos)/Simulations;

G.2.2 The bigger they get, the harder it gets

slalomObstacles.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = round([(N/(Gamma)):(N/Gamma):(N)]); %the width of small gates;

data = [];

for loop = 1:length(delta)

%loop=1;

alfa=(2*N-delta(loop))*rand(Gamma,Simulations)-N;%could have PI instead of N...

data = [data terminateEdgesSlalomObstacles(Simulations, times, N, Gamma, delta(loop),alfa

end

% data

figure(1)

plot(delta,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSi

xlabel([’Width (\delta) of the obstacles’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

data

toc

G.2.3 More on stochastic slalom with gates to pass through

slalomGates.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.
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%terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta)

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = [(2*N/Gamma):(2*N/Gamma):(2*N)]; %the width of small gates;

data = [];

for loop = 1:length(delta)

%loop=1;

alfa=(2*N-delta(loop))*rand(Gamma,Simulations)-N;%could have PI instead of N...

data = [data terminateEdgesSlalomGates(Simulations, times, N, Gamma, delta(loop),alfa)

end

% data

figure(1)

plot(delta,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerSi

xlabel([’Width (\delta) of the gates’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

toc

terminateEdgesSlalomGates.m

% tic

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%

%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through
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for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%bouncing down

Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%bouncing up

Pos=Pos(finite(Pos));

%checking the walls

%if the process is outside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=alfa(gates,process))

Pos(process,1) = NaN;

elseif(Pos(process,1)>=alfa(gates,process)+delta)

Pos(process,1) = NaN;

end

end

end

if(gates<length(gateTimes))

gates = gates +1;

% disp([’t

end

end

end

end

output = length(Pos)/Simulations;

G.2.4 Hard vs. Easy slalom

slalomGatesNiceness.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates
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% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

Simulations = 10000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = 10;%[(2*N/Gamma):(2*N/Gamma):(2*N)]; %the width of small gates;

data = [];

niceness=5;%number of different Deltas to use...

niceGates=[0:N/niceness:N-N/niceness];

%skapar en \pm 1 vektor...

inGates=zeros(Gamma,1);

for pm = 1:Gamma;

if(~rem(pm,2))

%even

inGates(pm,1)=1;

else

inGates(pm,1)=-1;

end

end

alfa=zeros(length(niceGates),1);

for gate = 1:length(niceGates)

alfa=niceGates(gate).*inGates;%+(delta/2).*inGates%-delta/2

data = [data terminateEdgesSlalomGatesNiceness(Simulations, times, N, Gamma, delta,alfa)];

end

figure(1)

plot(niceGates,data,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’Mark

xlabel([’Gate offset from centre-line.’],’FontSize’,14);

ylabel([’Survival-percent’],’FontSize’,14);

title([’Plot of survival-function \rho(\Delta) .’],’FontSize’,14);

toc

terminateEdgesSlalomGatesNiceness.m

% tic

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%

%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.
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%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomGates(Simulations, T, N, Gamma, delta, alfa)

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through

for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%bouncing down

Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%bouncing up

Pos=Pos(finite(Pos));

%checking the walls

%if the process is outside of the gate, terminate it.

if(stepping==gateTimes(gates))

for process = 1:length(Pos)

if(Pos(process,1)<=(alfa(gates,1)-delta/2))

Pos(process,1) = NaN;

elseif(Pos(process,1)>=(alfa(gates,1)+delta/2))

Pos(process,1) = NaN;

end

end

end

if(gates<length(gateTimes))

gates = gates +1;

% disp([’t

end

end
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end

output = length(Pos)/Simulations;

G.3 How easy is easy?

slalomGatesVSwalls.m

clear, clf;

tic

% slalomGates.m - program to find how the survivalrates

% depend on the length of the timefield, in a process where

% we have cold barriers and also walls that we might hit.

Simulations = 12000;%number of simulations for each run.

times = 1000;% [100:100:800];%how many and which times should we check.

N=50;%the width of the fiels is 2*N;

Gamma = 10; %the number of small walls to use;

delta = [(2*N/Gamma):(2*N/Gamma):(2*N)]; %the width of small gates;

data1 = [];

data2=[];

for loop = 1:length(delta)

alfa=-(delta(loop)/2)*ones(Gamma,Simulations);

data1 = [data1 terminateEdgesSlalomGates(Simulations, times, N, Gamma, delta(loop),alf

data2=[data2 terminateEdgesSlalomWOGates(Simulations, times, delta(loop)/2, Gamma, alfa)];

end

% data

figure(1)

plot(delta,data1,’--rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerS

hold on;

plot(delta,data2,’-.bs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’,’MarkerS

xlabel([’\delta’],’FontSize’,15);

ylabel([’Survival-percent’],’FontSize’,15);

title([’Plot of survival-function \rho(\delta) .’],’FontSize’,14);

hold off

grid on

toc

terminateEdgesSlalomWOGates.m

% tic

%TERMINATEEDGESSLALOM - Finds the percent of simulations that survives a

% slalom path where there are cold barriers and

% terminating walls.

%
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%terminateEdgesSlalom(Sim,T,N) returns a percentage of the Simulations that

% survived until the end.

%

%by Anders Österling, University of Stockholm, 2006.

function output = terminateEdgesSlalomWOGates(Simulations, T, N, Gamma, alfa)

gateTimes = round([(T/(Gamma+1)):(T/(Gamma+1)):((Gamma*T)/(Gamma+1))]);%places for the walls

P = 0.5*ones(Simulations,1);

upDown = 2*binornd(1,P,Simulations,1) -1; %Only -1 and 1 in UpDown.

Pos = upDown; %setting the position at T=0. Since the lowest vector

gates=1;%counting gates passed through

for stepping=3:T;

one = ones(length(Pos),1);%for application speed, define ones.

upDown = 2*binornd(1,P(1:length(Pos)),length(Pos),1) -1;

%If Pos=[] the UpDown is a 1-by-0 matrix and dimensions do not agree.

%thus we have to introduce this test.

if(~isempty(Pos))

Pos = Pos + upDown;

%the code below uses the MATLAB feature that if you do a divide

%by zero you get a ’Inf’. You can then delete these ’Inf’ as we

%do on the last line in the code. This way, everytime a process

%is terminated it’s taken out of the loop and we get less and less

%data to process.

Pos = Pos.*(one-(Pos>N))+1./(one-(Pos>N));%terminated

Pos = Pos.*(one-(Pos<-N))-1./(one-(Pos<-N));%terminated

Pos=Pos(finite(Pos));

%checking the walls

%if the process is outside of the gate, terminate it.

% if(stepping==gateTimes(gates))

% for process = 1:length(Pos)

% if(Pos(process,1)<=alfa(gates,process))

% Pos(process,1) = NaN;

% elseif(Pos(process,1)>=alfa(gates,process)+delta)

% Pos(process,1) = NaN;

% end

% end

%

% end

if(gates<length(gateTimes))

gates = gates +1;

% disp([’t

end
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end

end

end

output = length(Pos)/Simulations;

% disp([’’ num2str(length(Pos)/Simulations) ’% surviving’]);

% toc
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H Source Code for Appendix A

fiveTransProb1.m

%\begin{verbatim}

%This file contains the sourcecode for generating the convergence-figure of the

%transition probability matrix.

%NOTE I USE the statistical trans prob mx. in dynamics one would transpose

%the matrix.

%

%This file calculates the transition probabilities for a randomwalk.

%

%Variables;

%halfSize: This is how wide the mx will be, from the centre. so it’ll be

%2*howWide+1 broad.

%howManySteps: The number of steps to take before starting the loop.

%incrSize: how big the increments should be (i.e how many steps longer the road should be)

%incrMany: how many times one should increase the length of the road.

clear;

t0 = clock;

halfSize = 19;

% howManySteps is the variable where we strat.

howManySteps = 2;

% the increments for the 3d stuff

incrSize = 20;

incrMany = 10;

%howBroad need be an even number, so

howBroad = 2*halfSize;

A = zeros(howBroad+1 ,howBroad+1);

for row=0:howBroad

for column=0:howBroad

if abs(row-column)==1

A(row+1,column+1)=1;

end

end

end

%Now. the indexing of A is a bit screwed. since we are using the both

%positive and negative numers, we need see the centre of the matrix as the
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%centre, and then the tings on the left are the negative parts.

%

%also. the first and last entry in the mx needs be shifted. this is because

%when at the limit, it is not a 50/50 prob wether to exceed the limit or

%not.

%its a 100/0 probability that we will not exceed the wall.

%note. A is the adjacency matrix. We modify the edges to make it impossible

%for the process to go outside of A

%and divide by 2 to get the tranition probability matrix B.

% C is the matrix of the added trans prob mx’s. I.e the prb that the process

%has sometime entered a certain level.

A(2,1)=2;

B = A/2;

B(column, row+1)=1;

H = zeros(howBroad+1,1)

binsW = -(halfSize):1:(halfSize);

for eskil=1:incrMany

D = B^(howManySteps + eskil*incrSize);

F = D(:,halfSize+1);

H = [H F];

end

I = H(2:2:end,2:end)

subplot(1,2,1)

plot(I)

subplot(1,2,2)

surface(I)

view(-35,45)

etime(clock,t0)

%\end{verbatim}




