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Abstract

There are several different notions of entropy in mathematics. Chris Hillman
discusses a couple of these in his paper “All Entropies Agree for an SFT”, and
presents the result that they all agree numerically on shifts of finite type.

The focus in this report is on shift spaces in general and two notions of
entropy in particular - topological and probabilistic - and their relationship
will be shown more thoroughly. In order to do this we will begin with an
overview of shift spaces and continue with basic graph theory. After presenting
proof of some results for shift spaces and shift dynamical systems the report is
concluded with one section on topological entropy and one on probabilistic
entropy.
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Notes
First and foremost I have relied on three different sources when writing this
report. The sections on shift spaces and graph theory is mainly from [1], the
section on topological entropy is mainly from [2] and the section on
probabilistic entropy is mainly from [3] (for details, see the Reference Notes).
When relying on a different source this will be noted in the text or in a
footnote.

Regarding the proofs: I have chosen to move some of the proofs to the
Appendix. This is done because I think they are tedious.
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1 Fundamental Properties of Shift Spaces
Simplifying assumptions are frequently made in mathematics. For example,
continuity is often assumed when dealing with a discrete case of some sort. In
information theory a similar assumption is often made: Information is
commonly represented as strings of ones and zeroes and even though these
strings are finite it is in general useful to treat long strings as infinite in both
directions.

Basically, a shift space is a compact space where every point is a bi-infinite
sequence of symbols taken from a finite set. Associated with each shift space is
a shift map that moves every sequence “one step to the left” and together, as
will be seen later in the report, these form an elementary dynamical system.

1.1 Basic Definitions
Definition An alphabet A is a non-empty, finite set. The elements in A are
called symbols or letters. A bi-infinite sequence of symbols xi ∈ A, i ∈ Z will be
denoted by

x = {xi}i∈Z or x = . . . x−1
∗
x0x1 . . . .

and referred to as a point. The symbol xj is the jth coordinate of x and the
symbol “∗” always occurs over the 0th coordinate of each point.

Definition The full A-shift, AZ = {(xi)i∈Z : xi ∈ A for all i ∈ Z} is the
collection of all bi-infinite sequences of symbols from A.

Finite strings of symbols, or blocks, will play an important part in
characterizing the special subsets of the full shift, called shift spaces.

Definition A block, or word, over A is a finite sequence of symbols from A.
The sequence of no symbols, the empty block, is denoted by ε. The lenght of a
block u, denoted by |u|, is the number of symbols it contains. |ε| = 0 and if u
is a non-empty block of k symbols

u = a1a2 . . . ak, |u| = k.

A k-block is a block of lenght k.

Definition For x ∈ AZ and i 6 j, define x[i,j] = xixi+1 . . . xj . If i>j, define
x[i,j] = ε. If x[i,j] = w we say that w occurs in x.

Remark Two blocks u, v can be put together forming new blocks uv and vu,
|uv| = |vu| = |u|+ |v|. If u is a letter or a block, the point . . . uuuuu . . . is
denoted by u∞.

Using this notation it is easy to define shift spaces.

Definition Let F be a collection of blocks over A. For any such F , define

XF = {x ∈ AZ : no blocks in F occurs in x}.

A shift space or shift is a subset X ⊂ AZ such that X = XF , for some F .
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Example Let A = {0, 1} and X be all sequences in AZ with no two 1’s next
to each other. Then X = XF , where F = {11}. The shift X is called the
golden mean shift. The reason for the name will surface in section 5.3.

Up to this point shift spaces are static spaces. The shift map, now
introduced, will add dynamics to the shift spaces and turn them into
dynamical systems.

Definition Let X be a shift space and x = . . . x−1
∗
x0x1 . . . ∈ X. The shift map

or shift operator σX : X → X is defined by (σXx)i = xi+1 or

σX(. . . x−1
∗
x0x1 . . .) = . . . x−1x0

∗
x1x2 . . . , for all x ∈ X.

In other words, σX shifts each sequence one step to the left. There is also the
inverse operation σ−1

X of shifting one step to the right. When X is understood
from the context we will denote σX by σ.

Thinking of time as discrete and x as a message emitted by some sort of
permanent source1, the ith coordinate of x can then be thought of as the
symbol emitted by the source at time i. Analogically, shifting the sequence one
step to the left can be thought of as the passage of time by one time-unit.

Definition A point x is periodic for σ if σn(x) = x for some n > 1. If
σn(x) = x, x is said to have period n under σ.

The allowed blocks of a shift space are similar to the words of a language.
When pursuing this analogy further the notion of languages of shift spaces is
obtained; instead of describing a shift space by specifying which blocks are
forbidden, the language specifies which blocks are allowed.

Definition Let X ⊂ AZ and let Bn(X) denote the set of all n-blocks that
occur in points in X. The language of X is the collection

B(X) =
∞⋃
n=0

Bn(X).

Example The golden mean shift X has language

{ε, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, . . .},

and if fn denotes the nth Fibonacci number (f1 = 0, f2 = 1, f3 = 1, . . .) then
the number of blocks of length n, |Bn(X)| = fn+3.

1.2 The Higher Block Presentation
Visualize an alphabet in which each symbol is a block of symbols from another
alphabet. By using this “block”-alphabet it is possible to transform shift spaces
into more complex ones.

This is the concept of higher block presentations of shift spaces and it
provides a useful alternative description of a shift space.

1For a more comprehensive view on the subject, ct. Chapter II of [3].
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Definition Let u = u1u2 . . . uN and v = v1v2 . . . vN be N -blocks (N > 2). We
say that u and v overlap progressively if u2u3 . . . uN = v1v2 . . . vN−1. For the
sake of simplicity we say that all 1-blocks overlap progressively.

Definition Let X be a shift space over the alphabet A. Then we can
construct a new alphabet A[N ]

X by using blocks from X such that
A[N ]
X = BN (X). The “new” full shift is denoted (A[N ]

X )Z. Define the Nth higher
block code βN : X → (A[N ]

X )Z by

(βN (x))i = x[i,i+N−1], for all x ∈ X.

Basically, βN replaces the ith coordinate of x with the N -block starting at
position i. It might be easier to picture this if we imagine the symbols of A[N ]

X

written vertically.

Example

β4(x) = . . .


x1

x0

x−1

x−2



x2

x1

x0

x−1


∗
x3

x2

x1

x0



x4

x3

x2

x1



x5

x4

x3

x2

 . . . . (1.1)

Having defined the higher block code, we use this to transform a whole shift
space into a new one.

Definition Let X be a shift space over the alphabet A. The Nth higher block
shift X [N ] or higher block presentation of X is the image X [N ] = βN (X) in the
full shift over the alphabet A[N ]

X .

Remark Equation 2.1 emphasize two important characteristics of X [N ]:

1. The consecutive symbols of x ∈ X [N ] overlap progressively.

2. The “bottom” letters in the symbols of βN (x) constitues the original
point x. In this sense X [N ] is simply another description of X.

Since the higher block code more or less just switches one symbol for
another, the next proposition should not come as a surprise. The proof of it
can be found in the appendix.

Proposition 1.1 Let X be a shift space. The higher block presentations of X
are shift spaces.

Example Let X be the golden mean shift. Then

A[2]
X = B2(X) = {a = 00, b = 01, c = 10}

and X [2] = XF , where F = {ac, ba, bb, cc}. The 2-blocks in F are forbidden
since they fail to overlap progressively.
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1.3 Sliding Block Codes
A sliding block code is a rule that transforms one string of symbols into
another. The basic concept is that applying this rule to one sequence x will
transform it into another sequence y, where each coordinate yi is determined
by a block surrounding the coordinate xi. How big this surrounding block is,
and exactly how the transformation presents itself depends on the sliding
block code.

The main result of this section is a formal proof of that X and X [N ] are two
equivalent representations of the same “structure”.

Definition Let X be a shift space, A′ an alphabet and Φ: Bm+n+1(X)→ A′.
Then the map φ : X → A′Z defined by y = φ(x) with

yi = Φ(x[i−m,i+n])

is called the sliding block code with memory m and anticipation n induced by Φ.
We write φ = Φ[−m,n]

∞ or φ = Φ∞ if the memory and anticiption of φ are
understood.

Remark The shift map σ is a sliding block code.

Proof Let X be a shift space over the alphabet A, m = 0, n = 1, x ∈ X and

Φ: Bm+n+1(X)→ A such that Φ(xixi+1) = xi+1.

Then φ = Φ[0,1]
∞ is the shift map σ.

Definition Let φ : X → Y be a sliding block code. Then φ is a factor code
from X onto Y if it is onto. A shift space Y is a factor of X if there is a factor
code from X onto Y . If φ is invertible, φ is said to be a conjugacy from X to
Y . Two shift spaces X and Y are conjugate, denoted X ∼= Y , if there is a
conjugacy from X to Y .

Remark If X ∼= Y , X is simply a recoded version of Y and vice versa. They
share the same properties and are essentially the same.

Sometimes it is hard to tell two shift spaces from each other. As Proposition
1.3 will show and as was hinted in the remark on the previous page, even
though X and X [N ] “look” quite different, they are merely recoded versions of
each other. One way to find out if two shift spaces are not conjugate is to look
at certain properties of them that do not change under conjugacies.

Definition A conjugacy invariant or invariant, assignes values to shift spaces in
such a manner that conjugate shifts will obtain the same value.

Defined below is the notion of irreducibility and as shown in the following
proposition, irreducibility is a conjugacy invariant.

Definition A shift space is irreducible if for all ordered pair of blocks
u, v ∈ B(X) there exists a w ∈ B(X) such that uwv ∈ B(X).
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Proposition 1.2 Let X and Y be two shift spaces such that X ∼= Y . If X is
irreducible then so is Y .

Proof Let φ = Φ[−m,k]
∞ be a sliding block code from X onto Y . Then every

block in Bn(Y ) is the image of a block in Bn+m+k(X). I will denote this
u′ = Φ(u) for u ∈ Bn+m+k(X) and u′ ∈ Bn(Y ).

Now, assume that X is irreducible and let u′, v′ ∈ B(Y ) with
u′ = Φ(u), v′ = Φ(v) for some u, v ∈ B(X). Since X is irreducible there exists
a w ∈ B(X) such that uwv ∈ B(X).

Φ(uwv) = Φ(u)Φ(u[|u|−m−k+1,|u|]wv[1,k+m])Φ(v) =

= u′w′v′, for some w′ ∈ B(Y ).

Thus for all ordered pair of blocks u′, v′ ∈ B(Y ) there exists a w′ ∈ B(Y ) such
that u′w′v′ ∈ B(Y ) and Y is irreducible.

Using the definition to determine whether a shift space is irreducible or not
might seem a bit tiresome. Another, more functional way of determining this
is presented in section 2.2.

The following proposition is essential for the report and will later on enable
an extensive use of graphs to analyze the special kind of shift spaces covered in
in 1.4, shifts of finite type.

Proposition 1.3 Let X be a shift space over A and N ∈ N. Then X ∼= X [N ].

Proof Let x ∈ X and define Φ: BN (X)→ A[N ]
X by

Φ(x[i,i+N−1]) = x[i,i+N−1].

Then φ = Φ∞ : X → X [N ] is the Nth higher block code βN . Now define
Ψ: A[N ]

X → A by
Ψ(x[i,i+N−1]) = xi

then ψ = Ψ∞ : X [N ] → X and ψ = β−1
N . Thus βN : X → X [N ] is a conjugacy

and X ∼= X [N ]. �

1.4 Shifts of Finite Type
Perhaps the most widely studied class of shift spaces are the shifts of finite
type, or SFT for short. The SFT are the shifts that can be described by a
finite set of forbidden blocks.

One reason why these shifts are so useful is that they are represented by
finite directed graphs. Questions about a shift can be answered by examining
the graph and its adjacency matrix. Because of this property they will be the
main study for the rest of this report.

Definition Let X = XF be a shift space. If F is finite, X is called a shift of
finite type.

Note that it might be possible for a shift of finite type to be described by
an infinite set of forbidden blocks.
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Definition A shift of finite type is M -step (or has memory M) if it can be
described by a collection of forbidden blocks all of which have length M + 1.

The notion of memory for a shift of finite type can be thought of as the
number of symbols necessary to keep in mind in order to determine whether a
string is allowed or not. Consider a M -step shift of finite type and a block
a = a1a2...an, where n much larger than M . One way of deciding whether a is
allowed or not is to check every (M + 1)-block that occurs in a. To do this
successfully one needs to remember the first M symbols in every
(M + 1)-block.

Example The golden mean shift is a shift of finite type since it can be
described by the forbidden set {11}. It is also a 1-step shift.

Not surprisingly, all shifts of finite type are M -step shifts, for some
non-negative integer M .

Remark If X is a shift of finite type, then there is an M > 0 such that X is
M -step.

Proof Let X = XF , where F is finite. If F = ∅ then X is a full shift and
M = 0 since the forbidden blocks are letters (which have length 1).

If F 6= ∅: Let M + 1 be the lenght of the longest block in F and create a
new collection of forbidden blocks F ′ by replacing each w ∈ F with all blocks
of lenght M + 1 such that w occurs in them. Then XF ′ = XF . �
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2 Graphs and Their Shifts
The main results of this section is that every shift of finite type can be
represented by a directed graph and is conjugate to a shift on this graph - the
edge shift. Not only does this help to prove many important results but it also
shows the connection between shifts of finite type and Markov chains.

2.1 Basic Definitions
Definition A directed graph G consists of a finite set V(G) of vertices together
with a finite set E(G) of edges. Each edge e ∈ E(G) is an ordered set
(i(e), t(e)) of two vertices called initial state and terminal state of e.

When G is understood from the context we will denote V(G) by V and
E(G) by E .

Note that the definition does not allow one edge to start or end at multiple
vertices.

Example figure

f

e

21 g h

(2.1)

Example graph.

This graph has vertex set V = {1, 2} and edge set E = {e, f, g, h}.

Another, perhaps more convenient way to describe a graph is in matrix
form.

Definition Let G be a graph with vertex set V. For i, j ∈ V, let aij denote
the number of edges in G with initial state i and terminal state j. The
adjacency matrix of G, AG = [aij ].

Note that the adjacency matrix gives no information whatsoever of which
one of the edges that start or end at a specific vertex.

Example The graph (2.1) has the adjacency matrix

A =
(

0 1
1 2

)
.

Similar to the construction of the adjacency matrix from a graph is the
construction of a graph from a square matrix.
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Definition Let A = [aij ] be an r× r matrix with non-negative integer entries.
Then the graph of A, G = GA, is the graph with vertex set V = {1, 2, . . . , r},
and with aij distinct edges with initial state i and terminal state j.

Note that if G1 is a graph with adjacency matrix A and G2 is another
graph constructed from A, G1 and G2 will only differ by the names of the
vertices and edges.

2.2 The Edge Shift
By letting all the edges in a graph represent different letters, it is possible to
turn a graph into a shift space over the alphabet composed of the edges of the
graph. Every block belonging to a point in this shift space will correspond to a
walk on the graph. Every point will correspond to a bi-infinite walk.
Depending on the graph’s appearance, some imaginable blocks might not be
the product of any walk on the graph. These blocks correspond to the
forbidden blocks.

In this paragraph it is shown that every shift of finite type is conjugate to a
shift on a graph.

Definition Let G be a graph with edge set E and adjacency matrix A. The
edge shift XG or XA is the shift space over the alphabet E defined by

XG = XA = {(ei)i∈Z : t(en) = i(en+1), for all n ∈ Z},

where en are the ordered sets of edges of the graph G, for n ∈ Z.

In other words, a bi-infinite sequence of edges is in XG exactly when the
terminal state of each edge is the initial state of the following one. We say that
each sequence in XG describes a bi-infinite walk on G

Proposition 2.1 If G is a graph with adjacency matrix A, then the associated
edge shift XG = XA is a 1-step shift of finite type.

Proof Let A = E be the alphabet of XG. Define

F = {ef : e, f ∈ A, t(e) 6= i(f)}

Then XG = XF which is 1-step of finite type. �

So every edge shift is a 1-step shift of finite type. This result should not
come as a surprise since a graph has “no memory”. During a random walk on a
graph the current position (vertex) is always known, but the path traveled up
to that point could be impossible to tell.

Example The edge shift XG constructed from the graph (2.1) is a 1-step shift
of finite type:

XG = XF , F = {fg, fh, ge, he}.

A graph with vertices that are impossible to walk to or from, obviously
generates the same edge shift as a graph without these “stranded” vertices.
The following definitions and remark states this in a more formal way.

8



Definition A graph is essential if all vertices has at least one edge starting at
it and at least one edge terminating at it.

Definition Let G and H be a graphs, eG ∈ E(G) and eH ∈ E(H). A graph H
is a subgraph of G if

V(H) ⊂ V(G), E(H) ⊂ E(G),

and for each eH there exists eG such that

i(eH) = i(eG) and t(eH) = t(eG).

Remark If G is a graph, then there exists a unique subgraph H of G such
that H is essential and XH = XG.

Proof Let E(H) consist of the union of edges that appear in the bi-infinite
walks on G and let V(H) be the union of the vertices visited on such walks.
Then H is an essential subgraph of G and any bi-infinite walk on G is a walk
on H and vice versa. By definition H is the largest essential subgraph of G
and since every edge in H occurs in XH , XH 6= XH′ , for any other essential
subgraph H ′. �

From now on, when dealing with edge shifts it can always be assumed that
the graph generating the edge shift is essential.

Definition A path π = e1e2 . . . em on a graph G is a finite sequence of edges
ej ∈ E such that t(ej) = i(ej+1) for 1 6 j 6 m− 1. The lenght of π, |π| is the
number of edges it traverses. The path π starts at vertex i(π) = i(e1),
terminates at vertex t(π) = t(em) and is a path from i(π) to t(π). π is a cycle if
i(π) = t(π). For each vertex k there is an empty path εk such that |εk| = 0 and
i(εk) = t(εk) = k.

Remark There is a one-to-one correspondence between the paths on G and
the blocks in XG.

Proposition 2.2 Let G be a graph with adjacency matrix A and let m > 0.
Then:

1. The number of paths of lenght m from i to j is (Am)ij, the (i, j)th entry
of Am.

2. The number of cycles of lenght m in G equals the number of points in XG
with period m.

Proof A proof is presented in the appendix. �

Recall that a shift space is irreducible if for all ordered pair of blocks
u, v ∈ B(X) there exists a w ∈ B(X) such that uwv ∈ B(X). The
corresponding property of a graph (and its matrix) is both less technical to
define and easier to visualize.

Definition A graph G is irreducible if for every ordered pair of vertices i, j
there is a path in G from i to j.

9



Corollary 2.3 An essential graph is irreducible if and only if its edge shift is
irreducible.

Proof This is a direct consequence of the previous remark. A more detailed
proof is presented in the appendix. �

Note that an irreducible graph is essential.

Definition A non-negative, square matrix A is irreducible if for each ordered
pair of indices i, j there exists n > 0 such that (An)ij > 0. Since A0 by
definition equals Id for any matrix A, the 1× 1-matrix [0] is irreducible. A
non-negative matrix is essential if none of its rows or columns is zero.

Note that irreducibility of a graph is equivalent to irreducibility of its
adjacency matrix. The same thing is true for essentiality.

The following theorem is the main theorem of this section. It shows that
every shift of finite type is conjugate to an edge shift. This is a fundamental
result and will be the core of many of the following ideas and proofs.

Theorem 2.4 If X is an M -step shift of finite type, then there is a graph G
such that X [M+1] = XG.

Proof If M = 0, then X is a full shift and we can take G to have a single
vertex and one edge for each symbol appearing in X. If M > 1, let
V(G) = BM (X) and define E(G) as follows: Suppose that a = a1a2 . . . aM and
b = b1b2 . . . bM are two vertices in V. If

a and b overlap progressively and if a1a2 . . . aMbM ∈ B(X)

then draw one edge in G from a to b named a1a2 . . . aMbM = a1b1b2 . . . bM .
Otherwise, there is no edge from a to b. A bi-infinite walk on G is precisely a
sequence of blocks in BM+1(X) which overlap progressively. Whence
XG = X [M+1]. �

Remark

1. Let M > 1 and G be a graph created using the method from the previous
proof. If A is the adjacency matrix of G then A = [aij ] with aij ∈ {0, 1}.

2. If X is an (n− 1)-step shift of finite type, then X ∼= X [n] = XG for some
G. The matrix Ã that Hillman defines on page 3 in [4] is the adjacency
matrix AG.

Example The golden mean shift is 1-step but is not itself an edge shift2.
Carrying out the process described in the above proof shows that X [2] = XG,
where G is the graph (2.2). The adjacency matrix of the recoded golden mean
shift is3

AG =
(

1 1
1 0

)
.

2A proof of this is presented on page 41 in [1].
3cf. [4] page 3.
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Example figure

00

01

10

01

(2.2)

The recoded golden mean shift.

The following remark summarizes some important facts and illuminates the
connection between irreducible shifts of finite type and irreducible graphs.

Remark Assume that X is a shift of finite type. Then X is conjugate to
some edge shift (Proposition 1.3 and Theorem 2.4) and if X is irreducible then
so is the edge shift (Proposition 1.2). Then, according to Corollary 2.3, the
essential graph that generates the edge shift is also irreducible. A similar
revers argument is also true. In this sense there is a correspondence between
the irreducible shifts of finite type and the irreducible graphs.

We conclude this paragraph by trying to use irreducibility to prove that two
shift spaces are not conjugate.

Example Let A = {e, f, g} and let X = XF be the shift space over A
described by the forbidden set F = {eg, fe, ff, gg} and the graph below

ee
ge

fg

gf

ef

e g

f

(2.3)

Obviously X is a 1-step shift of finite type, just like the golden mean shift, but
comparing the graphs it is not obvious whether this is a recoded version of the
golden mean shift or not. Unfortunately, both graphs are irreducible so this
will not help telling the shifts apart.
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Example The full 2-shift is the full shift space over the alphabet A = {0, 1}.
Since there do not exist any forbidden strings, this shift too is irreducible.
Even though we do not expect this shift to be conjugate the golden mean
shift, we can not use this property to tell them apart.

The next section will show a correspondence between another type of shifts
and graphs.
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3 Further Properties of Shift Spaces
The focus in section 3.1 is on the adjacency matrix and periodicity. Also an
important theorem is stated, which in section 3.2 leads to a special class of
shift spaces called mixing shifts.

3.1 Periods of states, matrices and graphs
Definition Let A be a non-negative matrix. The period of state i,

per(i) = gcd{n > 1: (An)ii > 0}.

If no such integers exist we define per(i)=∞. The period of a matrix A,

per(A) =
{

gcd{finite per(i), where i are states of A},
∞, if per(i) =∞ for all states i of A.

A matrix is aperiodic if it has period 1. The period of a graph, per(G) is the
period of its adjacency matrix.

Definition Let X be a shift space and let pn(X) denote the number of points
in X with period n. The period of X,

per(X) =

 gcd{n > 1: pn(X) > 0},

∞, if pn(X) = 0 for all n ∈ N.

Remark Let G be a graph. Every block in XG with period n corresponds to a
cycle on G of length n and vice versa, thus

per(XG) = per(G).

Definition A matrix is primitive if it is irreducible and aperiodic. A graph is
primitive if its adjacency matrix is primitive.

If A is a matrix such that every element of A is positive, we write A > 0.
The following theorem will be needed to gain a deeper understanding of the

shifts presented in the next section.

Theorem 3.1 Let A be a non-negative matrix. The following are equivalent:

1. A is primitive.

2. AN > 0 for some N > 1.

3. AN > 0 for all sufficiently large N.

Proof A proof is presented in the appendix.

13



3.2 Mixing Shifts
As seen earlier in 2.2, and as the name suggests, irreducible shifts of finite type
correspond to irreducible graphs. This fact might raise the question: Which
class of shifts of finite type correspond to the primitive graphs? The answer is
the “mixing” shifts. The results of this section will be used in section 4.3 to
prove some of the claims made by Hillman in [4].

Definition A shift space X is mixing if for every ordered pair u, v ∈ B(X),
there exists an N such that for each n > N there exists a w ∈ Bn(X) such that
uwv ∈ B(X).

The next proposition is the “mixing analogue” of Proposition 1.2, Corollary
2.3 and the final remark on page 11.

Proposition 3.2

1. Let X and Y be two shift spaces such that X ∼= Y . If X is mixing then
so is Y .

2. If G is an essential graph, then the edge shift XG is mixing if and only if
G is primitive.

3. A shift of finite type is mixing if and only if it is conjugate to an edge
shift XG where G is primitive.

Proof

1. The proof of this is almost identical to the proof of Proposition 1.2 and
is therefor omitted.

2. Suppose that XG is mixing and let π, τ ∈ B(XG) such that

t(π) = k, i(τ) = l, where k, l ∈ V.

Let ω(n) ∈ Bn(XG) such that πω(n)τ ∈ B(XG), for all n > N(k, l). Then
there is a path from k to l of lenght n for all n > N(k, l). Let

M = max
i,j∈V

N(i, j),

then AM > 0 and G is primitive.

Conversely, suppose that G = GA is primitive and let π, τ be paths on
G such that

t(π) = k, i(τ) = l, where k, l ∈ V.

Since An > 0 for all n > N there exists a path ω ∈ Bn(XG), for all
n > N such that

i(ω) = k, t(ω) = l.

Then πωτ ∈ B(XG) and XG is mixing.

3. The result follows from 1, 2 and Theorem 2.4.

14



Hence, analogue of the correspondence between irreducible shifts of finite
type and irreducible graphs, there exists a correspondence between mixing
shifts of finite type and primitive graphs. The reason why mixing shifts are
called “mixing” will surface in the next section.

Since mixing is another conjugacy invariant, and a more “narrow” one than
irreducibility, it is possible that it could help proving that the full 2-shift, the
golden mean shift and the shift described by (2.3) are not conjugate.
Unfortunately this can not be done since all three of them are mixing.
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4 Dynamical Systems
By combining a shift space and its shift map with a metric, they form a
dynamical system. Of course, the problem to distinguish different dynamical
systems from each other persists and in 4.2 the topological analogues of
“irreducibility” and “mixing” are presented. Later on their connection with the
adjacency matrix are showed.

Definition A dynamical system (M,φ) consists of a compact metric space M
together with a continuous map φ : M →M. If φ is a homeomorphism4 we call
(M,φ) an invertible dynamical system.

4.1 Shift Dynamical Systems
Using a plausible metric, a shift space together with its shift map form an
invertible dynamical system.

Definition Let x, y ∈ AZ. A metric on AZ is given by

d(x, y) =
{

2−n, if x 6= y, where n = min{k : x[−k,k] 6= y[−k,k]},
0, if x = y.

(4.1)

We will use this as the default metric for all shift spaces. Note that this
definition is equal to the one given on page 3 in [4]5 since inf(∅) =∞.

Proposition 4.1 Let X be a shift space and σ the shift operator. Then (X,σ)
is an invertible dynamical system.

Proof X is compact: Let x(n) be a sequence in X and let aj be arbitrary but
fixed members of A. Since A is finite it is possible to choose an a0 such that

S0 = {i : x(i)
0 = a0}, is infinite.

For the same reason it is possible to choose a−k, . . . , ak such that

Sk = {i : x(i)
[−k,k] = a−ka−k+1 . . . a−1a0a1 . . . ak−1ak}, is infinite.

A sequence of sets such that S0 ⊃ S1 ⊃ S2 ⊃ . . . is now obtained. Let

(i) x[−k,k] = x
(n)
[−k,k], for all n ∈ Sk,

(ii) n0 ∈ S0, and

(iii) nk ∈ Sk be the smallest element greater than nk−1.

Then, n0 < n1 < . . . < nk < . . . and

x = lim
t→∞

x(nt) ∈ X.

Thus, every sequence in X has a convergent subsequence and X is compact.

4A function φ is a homeomorphism if it is continuous, one-to-one, onto and has a continuous
inverse.

5d(x, y) = 2−n, n = inf{|k| : xk 6= yk}
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Moreover, σ is continuous6: Let x ∈ X and let ε > 0. Choose n such that
2−n < ε and let δ = 2−(n+1). Then

d(σ(x), σ(y)) < 2−n < ε,

for all y ∈ X such that d(x, y) < δ. This is also true for σ−1. Thus (X,σ) is an
invertible dynamical system. �

Note that all sliding block codes are continuous, since if two points are close
to each other they agree on a large block centered around the 0th coordinate.
This means that their images under a sliding block code will agree on a large
(but smaller) central block.

If X is a shift space and σ is the shift operator, we call (X,σ) shift
dynamical system.

4.2 Invariants
In the same way that irreducibility and mixing divided shift spaces into two
different classes each (irreducible and reducible, mixing and not mixing), there
are invariants that divide dynamical system into similar classes. Here are three
different invariants introduced: Topological transitive, topologically mixing
and chaotic. The Curtis-Lyndon-Hedlund Theorem is also mentioned, which
shows a link between sliding block codes and homomorphisms.

Definition Let (M,φ) and (N,ψ) be dynamical systems. A homomorphism
θ : (M,φ)→ (N,ψ) is a continuous function θ : M → N satisfying the
commuting property that ψ ◦ θ = θ ◦ φ.

Remark Let φ be a sliding block code between two shift dynamical systems,
then φ is a homomorphism. In fact according to the Curtis-Lyndon-Hedlund
Theorem7 all homomorphisms between shift dynamical systems are sliding
block codes.

The following two definitions introduce the “dynamical system”-notion of
conjugacy and conjugacy invariant.

Definition Let (M,φ) and (N,ψ) be dynamical systems and let
θ : (M,φ)→ (N,ψ) be a homomorphism. Then θ is called a topological
conjugacy, denoted θ : (M,φ) ∼= (N,ψ), if it is one-to-one and onto. Two
dynamical systems are topologically conjugate if there is a topological
conjugacy between them.

Remark Two shift dynamical systems that are conjugate are topological
conjugate and vice versa. This is a consequence of the Curtis-Lyndon-Hedlund
Theorem.

Definition A conjugacy invariant or invariant, assignes values to dynamical
systems in such a manner that topologically conjugate systems will obtain the
same value.

6This proof is almost a direct copy of the one found on page 41 in [5]
7The complete theorem and proof can be found on page 186 in [1].
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Three examples of conjugacy invariants are topologically transitive,
topologically mixing and chaotic. Only two of these will be of interest for this
report of reasons soon presented.

Definition Let (M,φ) be a dynamical system. Then (M,φ) is

1. topologically transitive if, for all ordered pair U, V of non-empty, open sets
in M there exists an n > 0 such that φn(U) ∩ V 6= ∅.

2. topologically mixing if, for all ordered pair U, V of non-empty, open sets
in M there exists an n0 such that φn(U) ∩ V 6= ∅ for all n > n0.

3. chaotic if it is topologically transitive and the periodic points of φ are
dense in M .

The reason of the name “mixing” is that any two non-empty, open sets are
eventually mixed up by φ.

Proposition 4.2 Topological transitivity, topological mixing and chaos are
invariants of topological conjugacy.

Proof Let (M,φ) and (N,ψ) be dynamical systems and let
θ : (M,φ) ∼= (N,ψ). Then θ establishes a one-to-one correspondence between
open sets of M with those of N . Since θ is a homomorphism it also establishes
a one-to-one correspondence between the periodic points of φ with those of ψ.
Thus, topological transitivity, topological mixing and chaos are invariants of
topological conjugacy. �

As a consequence of the definition, any two non-empty, open sets in a
topologically transitive system will intersect each other infinitely many times.

Remark Let (M,φ) be topologically transitive and let U, V ⊂M be an
ordered pair of non-empty, open sets. Since φ is continuous, onto and
one-to-one, φ(U) is also open. Thus, there is an infinite number of ni ∈ N such
that φni(U) ∩ V 6= ∅.

4.3 Equivalences
There is a strong connection between the invariants of shift spaces introduced
earlier and the ones introduced in the preceding section. This fact is stated in
[4] but not proved. There is also another claim made in [4], that in at least one
case does not seem to be true to me.

First of all, it is necessary to introduce the notion of cylinder sets.

Definition Let X be a shift space, let u ∈ B(X) and k ∈ Z. The cylinder set
Ck(u) is defined as

Ck(u) = {x ∈ X : x[k,k+|u|−1] = u}.

In the following lemma and later on in section 5, B(x; r) [B̄(x; r)] will
denote the open [closed] ball of radius r centered around x.
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Lemma 4.3 Cylinder sets are open.

Proof First, observe that for any x ∈ X

C−n(x[−n,n]) = B(x; 2−n).

Let z ∈ Ck(u) and n = max{|k|, |k + |u| − 1|}. Then

B(z; 2−n) ⊂ Ck(u).

�

The following proposition shows that irreducibility [mixing] of a shift of
finite type is equivalent to transitivity [mixing] of the corresponding shift
dynamical system.

Proposition 4.4 Let X ∼= XG be a shift of finite type and let (X,σ) be a shift
dynamical system. Then the following three statements are equivalent:

1. AG is irreducible,

2. (X,σ) is topologically transitive,

3. (X,σ) is chaotic.

The following two statements are also equivalent:

4. AG is primitive,

5. (X,σ) is topologically mixing.

Proof

1 ⇒ 2 First note that irreducibility of AG is equivalent to irreducibility of
X ∼= XG. Let U, V ⊂ X be non-empty, open sets. Then there exists
k, l ∈ Z such that

Ck(u) = σ−k(C0(u)) ⊂ U, u ∈ B(X),

Cl(v) = σ−l(C0(v)) ⊂ V, v ∈ B(X).

Since X is irreducible it is possible to find a sequence w(i) ∈ B(X) such
that uw(i)v ∈ B(X) and |w(i)| → ∞ as i→∞. Define
ni = |uw(i)|+ k − l. Since

z(i) = . . . uw(i)v . . . ∈ Ck(u), z(i)
k = u1,

it is easy to see that
σni(U) ∩ V 6= ∅

where ni > 0 for sufficiently large i. Thus (X,σ) is topologically
transitive.
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1 ⇐ 2 Since (X,σ) is topologically transitive, given an ordered pair u, v ∈ B(X)
there exists n ∈ N > |u| such that8

σn(C0(u)) ∩ C0(v) 6= ∅

⇔

C0(u) ∩ σ−n(C0(v)) 6= ∅.

For z ∈ C0(u) ∩ σ−n(C0(v)), we have

z[0,n+|v|−1] = uz[|u|,n−1]v = uwv ∈ B(X).

Thus, X is irreducible.

2 ⇔ 3 This follows from the definition of chaotic and the fact that the periodic
points of (X,σ) are dense in X9.

4 ⇔ 5 The proof of this is very similar to the proof of 1⇔ 2 and is therefore
presented in the appendix.

A statement is made in [4] about a relationship between an adjacency
matrix and its characteristic polynomial. In at least one case, it seems to me
that this statement is not true.

Remark Let

(i) X be an M -step shift of finite type,

(ii) G be a graph such that X ∼= X [M+1] = XG and

(iii) A = AG.

The following are also claimed to be equivalent in [4]:

1. The characteristic polynomial χA(λ) is irreducible,

2. A is irreducible.

Counter example Let X = XF , where F = {000} and let G be the graph
below.

00

01

11

10

001 011

110100

101 010 111

8This fact is noted in the Remark on page 18.
9For every x ∈ X there exist a periodic point y = (x[−n,n])

∞ ∈ C−n(x[−n,n]) that is
arbitrarily close to x.
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Then X ∼= X [3] = XG and

A =


0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .
A is irreducible but χA(λ) = λ4 − λ3 − λ2 − λ is not.

Even though (topological) transitivity and mixing are conjugacy invariants,
we might suspect that they are not the best ones available. Especially since
they only have two values each: “Yes” and “No”. In the following section,
another more accurate conjugacy invariant will be defined: topological entropy.
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5 Topological Entropy
Topological entropy was introduced in 1965 by Adler, Konheim and
McAndrew as an invariant of topological conjugacy. The definition presented
here is another but equivalent definition (due to Dinaburg and Bowen). The
advantage of the Dinaburg and Bowen definition, as will be seen in section 6,
is that it leads to proofs of the results connecting topological entropy with
probabilistic. After defining topological entropy for metric spaces in general,
this section is concluded with two paragraphs discussing topological entropy of
shift dynamical systems and its properties.

5.1 Definition
In this section (X, d) will be a metric space and T a fixed, uniformly
continuous function on (X, d). We will define a new metric dn on X by
dn(x, y) = max06i6n−1 d(T i(x), T i(y)). Using the metric dn, the ball of radius
r centered around x equals

n−1⋂
i=0

T−iB(T ix; r).

Definition Let K be a compact subset of X, n ∈ N and ε > 0. A subset
F ⊂ X (n, ε)-spans K with respect to T if for all x ∈ K there exists y ∈ F
such that dn(x, y) 6 ε. This condition is equivalent to

K ⊂
⋃
y∈F

n−1⋂
i=0

T−iB̄(T iy; ε).

Definition If K is a compact subset of X, n ∈ N and ε > 0 let rn(ε,K)
denote the smallest cardinality of any (n, ε)-spanning set for K with respect to
T . If we wish to emphasise the dependance on T we will write rn(ε,K, T ).

Remark

1. rn(ε,K) <∞ for all n ∈ N and ε > 0. According to the Heine-Borel
Theorem, since K is compact the covering of K by open sets⋂n−1
i=0 T

−iB(T ix; r), x ∈ X has a finite subcover.

2. If ε1 < ε2 then rn(ε1,K) > rn(ε2,K).

Definition If K ⊂ X is compact and ε > 0 let

r(ε,K, T ) = lim sup
n→∞

1
n

log rn(ε,K).

We will write r(ε,K, T, d) whenever we wish to emphasise the dependance on
d.

Remark r(ε,K, T ) is nondecreasing as ε→ 0. This follows from the previous
remark.
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Definition If K is a compact subset of X let h(T ;K) = limε→0 r(ε,K, T ).
The topological entropy of T is

h(T ) = sup
K
h(T ;K),

where the supremum is taken over the collection of all compact subsets K ⊂ X.
If we wish to emphasise the dependance on the metric d we will write hd(T ).

Topological entropy is not dependent on the metric chosen as long as the
metrics are uniformly equivalent.

Definition Two metrics d and d′ are [uniformly] equivalent if

id. : (X, d)→ (X, d′) and id. : (X, d′)→ (X, d)

are both [uniformly] continuous.

Theorem 5.1 If d and d′ are uniformly equivalent then hd(T ) = hd′(T )

Proof Let ε1 > 0 and choose ε2 > 0 such that

d′(x, y) < ε2 ⇒ d(x, y) < ε1.

Furthermore, choose ε3 > 0 such that

d(x, y) < ε3 ⇒ d′(x, y) < ε2.

Let K be compact and assume that F (n, ε2)-spans K in the metric d′. Then
for all x ∈ K there exists y ∈ F such that

max
i
d′(T ix, T iy) 6 ε2 ⇒ max

i
d(T ix, T iy) 6 ε1.

Thus F (n, ε1)-spans K in the metric d and

rn(ε1,K, d) 6 rn(ε2,K, d
′).

Arguing in a similar fashion gives

rn(ε2,K, d
′) 6 rn(ε3,K, d).

Hence r(ε1,K, T, d) 6 r(ε2,K, T, d
′) 6 r(ε3,K, T, d). If ε1 → 0, then since the

metrics are uniformly equivalent, d′(x, y)→ 0 and we can let ε2 → 0. For the
same reason, when ε2 → 0 it is possible to let ε3 → 0 and

hd(T ;K) = hd′(T ;K).

�

Remark If X is compact and the two metrics d and d′ are equivalent, then
they are uniformly equivalent. Therefore, given a compact metric space X the
entropy of T is independent of the metric chosen (as long as they generate the
same topology10).

10Two equivalent metrics generates the same topology.
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The following theorem allows a simplification of the definition of h(T ) when
X is compact.

Theorem 5.2 If K ⊂ K1 ∪ . . . ∪Km are all compact subsets of X then

h(T ;K) 6 max
16i6m

h(T ;Ki)

Proof To begin with, rn(ε,K) 6 rn(ε,K1) + . . .+ rn(ε,Km). Let ε > 0 and
for all n ∈ N choose Ki(n,ε) such that

rn(ε,Ki(n,ε)) = max
j
rn(ε,Kj).

Then rn(ε,K) 6 m · rn(ε,Ki(n,ε)) and

log rn(ε,K) 6 logm+ log rn(ε,Ki(n,ε)).

Let nj be a subsequence to the natural numbers such that

lim
j→∞

1
nj

log rnj (ε,K) = lim sup
n→∞

1
n

log rn(ε,K). (5.1)

Then there exists a subsequence mj to nj such that Ki(mj ,ε) is independent of
j (i.e. Ki(mj ,ε) = Ki(ε), ∀j). This is possible since there are only a finite
number of Ki’s. Of course (6.1) holds with mj substituted for nj . Thus

r(ε,K, T ) 6 r(ε,Ki(ε), T ).

Choose εq → 0 such that Ki(εq) is constant (Ki(εq) = Ki(c)), then

h(T ;K) 6 h(T ;Ki(c)) 6 max
j
h(T ;Kj)

�

Corollary 5.3 If (X, d) is a compact metric space then hd(T ) = hd(T ;X).

Proof If K ⊂ X is compact then hd(T ;K) 6 hd(T ;X). �

Thus
h(T ) = lim

ε→0
lim sup
n→∞

1
n

log rn(ε,X).

5.2 Topological Entropy of Shift Spaces
As it turns out, the notion of topological entropy of a shift dynamical system
is much less complicated.

In this section X will be a shift space, σ the shift operator and (X,σ) a
shift dynamical system. The metric used will be the one defined in (4.1).

First of all we need the following lemma.

Lemma 5.4 If X is a shift space, then

lim
n→∞

1
n

log |Bn(X)|

exists, and equals

inf
n>1

1
n

log |Bn(X)|
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Proof 11 Let m,n > 1 then

|Bn(X)| 6 |Bn+m(X)| 6 |Bn(X)| · |Bm(X)|

If bn = log |Bn(X)| then,

bn 6 bn+m 6 bn + bm.

Let ε > 0, infn>1
bn

n = a and choose q such that bq

q < a+ ε. For n > q choose
k ∈ N such that

(k − 1)q < n 6 kq.

Then
bn
n
<

bkq
(k − 1)q

6
k

(k − 1)
bq
q
<

k

(k − 1)
(a+ ε)

For large enough n (and hence large k)

a 6
bn
n
<

k

(k − 1)
(a+ ε) < a+ 2ε

=⇒ lim
n→∞

1
n

log |Bn(X)| = a

�

Since X is compact and σ is continuous, σ is uniformly continuous. Thus
the definition of topological entropy given in the former paragraph applies to
(X,σ).

Proposition 5.5 Let (X,σ) be a shift dynamical system. Then the topological
entropy

h(σ) = lim
n→∞

1
n

log |Bn(X)|.

Proof Let ε = 2−(k+1) and let F ⊂ X (n, ε)-span X. Then for all x ∈ X there
exists y ∈ F such that max06i6n−1 d(σi(x), σi(y)) 6 ε. This is equivalent to:

x[−k,k] = y[−k,k]

x[−k+1,k+1] = y[−k+1,k+1]

...

x[−k+n−1,k+n−1] = y[−k+n−1,k+n−1].

This in turn is equivalent to x[−k,k+n−1] = y[−k,k+n−1]. Thus F must have at
least |Bn+2k(X)| number of elements and

rn(2−(k+1), X, σ) = |Bn+2k(X)|.

Using the result from the previous lemma we get:

h(σ) = lim
ε→0

lim sup
n→∞

1
n

log rn(ε,X, σ) = lim
k→∞

lim
n→∞

1
n

log |Bn+2k(X)| =

= lim
k→∞

lim
n→∞

n+ 2k
n

1
n+ 2k

log |Bn+2k(X)| = lim
m→∞

1
m

log |Bm(X)|.

�
11This proof is almost a direct copy of the one found on pages 48-49 in [3].
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From now on the topological entropy of a shift dynamical system (X,σ) is
denoted by h(X) and since it solely (explicitly) depends on the number of
blocks in X, this will sometimes be referred to as the entropy of a shift space.

Finding an upper limit for h(X) is easy.

Remark If X is a shift space over the alphabet A then |Bn(X)| 6 |A|n and

1
n

log |Bn(X)| 6 log |A|.

Thus h(X) 6 log |A|. Also, if X 6= ∅, h(X) > 0. For X = ∅ we set
h(X) = −∞.

As stated earlier, topological entropy is a conjugacy invariant and despite
that it is difficult utilizing the definition to calculate it, there is an easy way to
compute it.

Proposition 5.6 If Y is a factor of X, then h(Y ) 6 h(X).

Proof Let φ = Φ[−m,k]
∞ be a sliding block code from X onto Y . As stated

before, every block in Bn(Y ) is the image of a block in Bn+m+k(X). Hence
|Bn(Y )| 6 |Bn+m+k(X)| and

h(Y ) = lim
n→∞

1
n

log |Bn(Y )| 6 lim
n→∞

1
n
| logBn+m+k(X)| =

= lim
n→∞

n+m+ k

n

1
n+m+ k

log |Bn+m+k(X)| = h(X).

�

Corollary 5.7 Topological entropy of shift spaces is an invariant of
topological conjugacy

Proof Let X and Y be shift spaces and X ∼= Y . Then Y is a factor of X and
X is a factor of Y . �

Actually, this result is not only true for shift spaces. A more general
theorem and proof can be found on page 167 in [2].

5.3 Calculating Topological Entropy
Even if the appearance of entropy of a shift space is much less involved than
for a general compact space, the definition do not give much assistance when
computing this invariant. In this paragraph a simple method for computing
the topological entropy of a shift of finite type is developed. This result will
also help proving the relationship between topological and probabilistic
entropy later in the report.

There is a fundamental connection between the adjacency matrix of a
graph and the number of allowed blocks in the corresponding edge shift. As
the following proposition and corollary shows, this fact enables an easy
computation of the entropy of an edge shift.
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Proposition 5.8 Let A 6= 0 be a non-negative matrix having an eigenvector
v > 0 and a corresponding eigenvalue λ > 0.12 Then there are constants
c0, d0 > 0 such that

c0λ
n 6

∑
i,j

(An)ij 6 d0λ
n

Proof Anv = λnv, for n > 1. Hence, for every non-negative integer i∑
j

(An)ijvj = λnvi.

Let
c = min

i
{vi} and d = max

i
{vi}

Then
c
∑
j

(An)ij 6
∑
j

(An)ijvj = λnvi 6 dλ
n. (5.2)

To estimate
∑
i,j(A

n)ij from above, divide (5.2) by c and sum over i,

∑
i,j

(An)ij 6
∑
i

d

c
λn = d0λ

n, d0 > 0.

To estimate
∑
i,j(A

n)ij from below, note that

cλn 6 λnvi =
∑
j

(An)ijvj 6 d
∑
j

(An)ij 6 d
∑
i,j

(An)ij

=⇒

c0λ
n 6

∑
i,j

(An)ij , c0 =
c

d
> 0.

Thus
c0λ

n 6
∑
i,j

(An)ij 6 d0λ
n (5.3)

�

Corollary 5.9 Let A and λ be the same as in Proposition 5.8. If G is a graph
with adjacency matrix A, then h(XG) = log λ.

Proof Note that the central term of (5.3)∑
i,j

(An)ij = |Bn(XG)|.

Applying the result from the previous theorem we get

1
n

log c0λn 6
1
n

log |Bn(X)| 6 1
n

log d0λ
n.

Letting n→∞ completes the proof. �

12Actually if A 6= 0 is non-negative matrix having an eigenvector v > 0 the corresponding
eigenvalue will be positive.
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Step by step, the restraints on what classes of shifts the above corollary
applies to, will loosen. Next, the parts of the Perron-Frobenius Theorem
important to this paper is presented. The proof is omitted but the interested
reader can find the complete theorem and proof in the beginning of [6].
Thanks to this theorem, the result from Corollary 5.9 will be shown for all
irreducible shifts of finite type.

Theorem 5.10 (Perron-Frobenius Theorem) Let A 6= 0 be an irreducible
matrix. Then there is a positive eigenvalue λA such that if µ is a another
eigenvalue of A, then |µ| 6 λA. Corresponding to λA is a left eigenvector
uA > 0 and a right eigenvector vA > 0.

For an irreducible matrix A, we call λA the Perron eigenvalue of A.

Corollary 5.11 If G is an irreducible graph with adjacency matrix A, then
h(XG) = log λA.

Proof Irreducibility of G implies irreducibility of A. The Perron-Frobenius
Theorem tells us that A has a positive eigenvector with corresponding
eigenvalue λA > 0. The result follows from Corollary 5.9. �

Corollary 5.12 If X is an irreducible M -step shift of finite type and G is the
essential graph for which X [M+1] = XG, then

h(X) = log λAG
.

Proof Since topological entropy is a conjugacy invariant and X ∼= X [M+1]

h(X) = h(X [M+1]) = h(XG).

Since irreducibility is also an invariant, irreducibility of X implies
irreducibility of XG which in turn implies irreducibility of G (Corollary 2.3).
The result follows from the previous corollary. �

Computing the entropy of irreducible shifts thus breaks down to the
computing of the eigenvalues of A. But how about the rest of the shifts, the
reducible ones? As will be shown, by breaking down reducible graphs into
irreducible subgraphs, a similar result applies to the reducible shifts.

The following passage states some important properties of graphs and
matrices with irreducible components. I have chosen to omit the proofs since
it would slow down the report considerably.

Definition Let A be a square matrix and n,m ∈ N. If we permute row n and
m and column n and m we call it a simultaneous permutations of rows and
columns.

A result from the theory of Markov chains is that every essential and
reducible matrix A - by simultaneous permutations of rows and columns - can
assume a block triangular form13

A =


A1 0 0 . . . 0
∗ A2 0 . . . 0
∗ ∗ A3 . . . 0
. . . . . . . . . . . . . . .
∗ ∗ ∗ . . . An


13ct. [8] or Example 4.4.1. in [1] for an idea how to do this.
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where the ∗’s represent possibly nonzero matrices and the Ai’s are irreducible
matrices. Let Gi = GAi

. The Ai’s are called the irreducible components of A
and the Gi’s are called the irreducible components of G.

Note that it is only possible to “walk” from a vertex in Ga to a vertex in Gb
when a > b.

Remark Since the characteristic polynomial χA(t) of A is unchanged by
simultaneous permutations of rows and columns it equals

χA(t) = χA1(t)χA2(t) . . . χAn(t).

Thus the eigenvalues of A are the eigenvalues of the Ai’s.

Example figure

A1 A2

A4

A3 B1 B2

C1 D4

D1

D3 D2

D5

Reducible graph with irreducible subgraphs.

The Perron eigenvalue of a reducible matrix is the largest Perron eigenvalue
of its irreducible submatrices.

Definition Let A be a non-negative matrix with irreducible components
A1, . . . , An. The Perron eigenvalue λA of A is

λA = max
16i6n

λAi
.

Corollary 5.13 For an arbitrary non-negative, essential matrix A, its Perron
eigenvalue λA is the largest eigenvalue of A.

Proof The proof follows from the Perron-Frobenius Theorem, the previous
remark and the definition. �

This section is concluded with the final theorem which shows that all shifts
of finite type have an entropy equal to log λA.

Theorem 5.14 Let G be an essential graph with adjacency matrix A, then

h(XG) = log λA
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Proof Let A have irreducible components A1, . . . , Ap and let

λA = λAq
= max

16i6p
λAi

.

If λA = 0, then each Ai = [0]. Thus GA has no bi-infinite walks and XGA
= ∅,

which gives the result. Let λA > 0. Since |Bn(XG)| > |Bn(XGq )|,

h(XG) > h(XGq
) = log λAq

= log λA.

To prove that h(XG) 6 log λA we will estimate the number of paths of
lenght n in G. Such a path breaks down into subpaths on the irreducible
components Gi of G and transitional edges between the Gi’s. Thus any
π ∈ Bn(XG) has the form

π = π1e1π2e2 . . . πj−1ej−1πj , (5.4)

where πi is a path in Gq(i) of length ni and ei is a transitional edge from a
vector in Gq(i) to one in Gq(i+1). Thus

q(1) > q(2) > . . . > q(j) where j 6 p,

the number of irreducible submatrices of A. Let T be the total number of
transitional edges between subgraphs of G. Then there are at most T possible
choices for each ei in (5.4), and at most n places where each could occur.
Hence the number of arrangements of transitional edges in π is bounded above
by (Tn)p. Also, the number of ways to choose πi is bounded above by
|Bni(XGq(i))|. By the Perron-Frobenius Theorem and Proposition 5.8 there
exists a d > 0, such that for every Gq(i)

|Bni
(XGq(i))| 6 dλ

ni

Aq(i)
6 dλni

A .

Hence the total number of ways to choose the πi’s is bounded above by
j∏
i=1

|Bni(XGq(i))| 6 d
jλ
n1+...+nj

A 6 dpλnA.

Since we can choose the ei’s in π in less than (Tn)p different ways and the πi’s
in less than dpλnA different ways, π can be chosen in less than (Tn)pdpλnA
different ways and

|Bn(XG)| 6 (Tn)pdpλnA.

Hence
h(XG) = lim

n→∞

1
n

log |Bn(XG)|

6 lim
n→∞

(
1
n

log(Td)p +
p

n
log n+ log λA

)
= log λA.

Which gives the result. �

This paragraph can be summed up in the following way: Let X be a
M -step shift of finite type. Since X ∼= X [M+1] = XG for some essential graph
G with adjacency matrix A and entropy is a conjugacy invariant:

h(X) = log λA.

Following example shows that entropy somehow is a better conjugacy
invariant than irreducibility and mixing.
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Example Let X be the golden mean shift and recall that X ∼= XG, where G is
the graph (2.2) with adjacency matrix

A =
(

1 1
1 0

)
.

Then χA(λ) = λ2 − λ− 1, λA = (1 +
√

5)/2 and

h(X) = log
1 +
√

5
2

.

The origin of the name “the golden mean shift” is of course the fact that λA
equals “the golden mean”. But the golden mean shift is far from the only shift
with this property.

Let Y be the shift described by the graph (2.3), then

A =

 1 1 0
0 0 1
1 1 0

 ,

which in turn gives χA(λ) = λ(λ2 − λ− 1) and thus

h(Y ) = log
1 +
√

5
2

.

It turns out that this shift too has the entropy log(1 +
√

5)/2 and even though
one could speculate about whether or not these shifts are merely two different
representations of the same underlying object, we can not answer this question
by looking at the entropy alone. However, by changing the name of e to 00, f
to 01 and g to 10 it is easy to see that these two shifts actually are conjugate.

The entropy of the full 2-shift (here denoted Z) is easiest calculated by
using the definition. Since |Bn(Z)| = 2n we see that

h(Z) = log 2

and thus it is not conjugate to the shift above.
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6 Probabilistic Entropy
In 1948 Shannon introduced the information entropy, his work was later on
continued by McMillan and Feinstein. In 1953 Khinchin refined their work and
the following section is based on his two papers gathered in [3]. The
relationship with information theory will not be the focus, instead the focus
will be on the relationship with topological entropy.

6.1 Definition and Basic Properties
Let A be a finite probability space consisting of the elementary events
A1, A2, . . . , An with probabilities p1, p2, . . . , pn (pi > 0,

∑
i pi = 1). We write

A =
(
A1 A2 · · · An
p1 p2 · · · pn

)
.

Sometimes we will refer to A as a finite scheme or a system.

Example Let A and B be two finite schemes where

A =
(

A1 A2

0.99 0.01

)
, B =

(
B1 B2

0.5 0.5

)
.

Obviously the system B represents more uncertainty than A. If we were to
predict the outcome of a random trial in system A we would without
hesitation pick A1, while if we were to do the same thing with B we would be
indifferent in choosing between B1 and B2.

So, what is expected of a measure of uncertainty? First of all, it is natural
to expect the measure to be equal to 0 when there is no uncertainty. Second,
the uncertainty of a system is expected to assume its largest value when all n
events has the same probability 1/n. Another plausible property is that the
measure somehow should increase with the number of events.

With these properties in thought, entropy of a finite probability space is
now introduced. Not only does the probabilistic entropy fulfill the attributes
mentioned above, but given a set of modest axioms it is the only reasonable
way of measuring the uncertainty inherent in such a space. Note, since
removing uncertainty can be considered equivalent to obtaining information
we will also use entropy as a measure of information obtained.

Definition Let A be a finite probability space composed of elementary events
A1, A2, . . . , An with probabilities p1, p2, . . . , pn > 0;

∑n
i=1 pi = 1. The entropy

of A is defined as

H(A) = H(p1, p2, . . . , pn) = −
n∑
k=1

pk log pk,

where we take pi log pi = 0 if pi = 0. The logarithms are taken in an
arbitrarily but fixed basis.
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Remark

1. H(A) = 0 iff pj = 1 for some 1 6 j 6 n. This is reasonable since if every
“random” trial has the same outcome Aj there is no uncertainty
whatsoever what the outcome will be.

2. H(A) assumes its largest value when pi = 1
n for all 1 6 i 6 n. This too is

reasonable since we expect the system with equally likely outcomes to be
the one with most uncertainty.

Proof A result of Jensen’s inequality14 is that for every continuous, convex
function f(x) and non-negative numbers ai we have

f

(
1
n

n∑
k=1

ak

)
6

1
n

n∑
k=1

f(ak).

Since H(1/n, 1/n, . . . , 1/n) = log n, then setting f(x) = x log x, ai = pi and
bearing in mind that pi > 0;

∑
i pi = 1 we get

− log n = nf(
1
n

∑
k

pk) 6
∑
k

f(pk) = −H(p1, p2, . . . , pn).

Thus
H

(
1
n
,

1
n
, . . . ,

1
n

)
= log n > H(p1, p2, . . . , pn).

�

Example To illustrate the previous two remarks, consider flipping a coin with
the probability of heads ranging between 0 and 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Entropy of Coin Toss

P(Heads)

En
tr

o
p

y

14ct. Theorem 1.1.14. in [7]
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Here the entropy of the coin toss is plotted against the probability of heads.
When computing the entropy, logarithms with base 2 have been used (for
aesthetic reasons only). As expected, the maximum value of the entropy is
obtained when the coin is fair. In the degenerated case with only one possible
outcome the entropy is 0.

Having looked at the entropy of a single probability space, it is intuitive to
proceed with the entropy of product spaces.

Definition Let A and B be two finite schemes such that

A =
(
A1 A2 · · · Am
p1 p2 · · · pm

)
, B|Ai =

(
B1 B2 · · · Bn
q1|i q2|i · · · qn|i

)
.

Where B|Ai is the scheme B when the event Ai of A has occurred and
qj|i = P (Bj |Ai). The product of A and B is the system AB composed of the
elementary events AiBj with probabilities piqj|i.

For the rest of section 6, A and B will denote two finite schemes.
Obviously the entropy of a product space is closely related to the entropy of

the individual spaces that make up the product system. The following remark
shows the simple, expected relationship when the two systems are independent.

Remark If A and B are mutually independent, H(AB) = H(A) +H(B).
This is also something we would expect from a measure of uncertainty since a
random trial in AB is equivalent to one in A and one in B.

Proof A straightforward calculation gives the result:

−H(AB) =
∑
i,j

piqj log piqj =
∑
i,j

piqj(log pi + log qj) =

=
∑
j

qj
∑
i

pi log pi +
∑
i

pi
∑
j

qj log qj = −H(A)−H(B).

�

Definition We will let Hi(B) denote the conditional entropy of B given the
event Ai of A occurred. Thus

Hi(B) = H(B|Ai) = −
∑
j

P (Bj |Ai) logP (Bj |Ai).

Further we let HA(B) denote the expected value of Hk(B):

HA(B) = E(Hk(B)) =
∑
i

P (Ai)Hi(B).

We can interpret HA(B) as the average additional amount of uncertainty
removed (or information obtained) from a random trial in B performed after a
random trial in A.

In the independent case, the entropy of a product system equals the sum of
the entropies, the general case is a straightforward extension of this result.
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Remark

1. H(AB) = H(A) +HA(B).

Proof Let pi = P (Ai) and qj|i = P (Bj |Ai). Then P (AiBj) = piqj|i and

−H(AB) =
∑
i,j

piqj|i(log pi + log qj|i) =
∑
i

pi log pi ·
∑
j

qj|i+

+
∑
i

pi
∑
j

qj|i log qj|i = −H(A)−
∑
i

piHi(B).

�

2. HA(B) 6 H(B). This is the same as saying that knowledge of the
outcome of a random trial in A can only decrease the uncertainty of B.

Proof For every continuous convex function f(x) and non-negative numbers
ai;

∑
i ai = 1 we have

∑
k

akf(xk) > f

(∑
k

akxk

)
.

Setting f(x) = x log x, ai = pi and xi = qj|i we find for arbitrary l that∑
k

pkql|k log ql|k >
∑
k

pkql|k log
∑
k

pkql|k = ql log ql.

Summing both sides over l gives the result. �

6.2 The Uniqueness Theorem
We will now prove the statement made in the previous section that entropy is
the only reasonable way to measure the uncertainty inherent in a finite
probability space.

Remember that A and B denotes two finite schemes.

Theorem 6.1 Let ∆n = {(p1, p2, . . . , pn) ∈ Rn : pi > 0,
∑n
i=1 pi = 1} and

suppose H :
⋃∞
n=1 ∆n → R has the following properties:

(i) For each n > 1, H|∆n
is continuous.

(ii) H(p1, p2, . . . , pn) = 0 iff some pi = 1.

(iii) H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0).

(iv) For each n > 1, H|∆n
has its largest value at (1/n, 1/n, . . . , 1/n).

(v) H(AB) = H(A) +HA(B).

Then

H(p1, p2, . . . , pn) = −λ
n∑
k=1

pk log pk

where λ > 0.

35



Remark Property (iii) is just the statement that adding the impossible event
(or any number of impossible events) does not change the uncertainty of the
system.

Proof of Theorem 6.1 Let L(n) = H(1/n, 1/n, . . . , 1/n). Then

L(n) = H

(
1
n
, · · · , 1

n
, 0
)
6 H

(
1

(n+ 1)
, · · · , 1

(n+ 1)

)
= L(n+ 1)

by (iii) and (iv), so L(n) is non-decreasing with respect to n. Let m and r be
positive integers and let

Si =
(

Si1 Si2 · · · Sir
1/r 1/r · · · 1/r

)
, (1 6 i 6 m)

be mutually independent. Then H(Si) = L(r) and by (v) we have

H(S1S2 . . . Sm) =
m∑
i=1

H(Si) = mL(r).

The product space S1S2 . . . Sm obviously consists of rm equally likely events so
H(S1S2 . . . Sm) = L(rm) and

L(rm) = mL(r), for all m, r ∈ N.

Now let 1 < r 6 s, n ∈ N and m = max{k : rk 6 sn} so that

rm 6 sn < rm+1.

Then
m log r 6 n log s < (m+ 1) log r

and
m

n
6

log s
log r

<
m

n
+

1
n
.

Since L is non-decreasing we also have that

L(rm) 6 L(sn) 6 L(rm+1)

which is equivalent to

mL(r) 6 nL(s) 6 (m+ 1)L(r),

so
m

n
6
L(s)
L(r)

6
m

n
+

1
n
.

Thus ∣∣∣∣L(s)
L(r)

− log s
log r

∣∣∣∣ 6 1
n
,

and since the left side is independent of m, n can be chosen arbitrarily large in
the right side and

L(s)
log s

=
L(r)
log r

.
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Whence L(n) = λ log n and by the monotonicity of L and (ii) we have λ > 0.
Note that this also holds for n = 1 since by (ii) L(1) = 0.

To prove the general case consider the rational numbers pk, k = 1, 2, . . . , n:

pk =
gk
g

; gk > 0,
n∑
k=1

gk = g

and let A consist of n events with probabilities p1, p2, . . . , pn. To define H(A),
consider the scheme B,

B =
(
B1 B2 . . . Bg
q1 q2 . . . qg

)
and divide the g events of B into n groups containing g1, g2, . . . , gn events
respectively.

Now let B be dependent on A in the following fashion: If the event Ak of A
occurred we reduce B to the gk events in group k, all with probability 1/gk.
Then B|Ak is a system containing gk equally likely events and

Hk(B) = H(B|Ak) = H(1/gk, 1/gk, . . . , 1/gk) = λ log gk.

Also

HA(B) =
n∑
i=1

piHi(B) = λ

n∑
i=1

pi log gi = λ

n∑
i=1

pi log pi + λ log g. (6.1)

If we now consider the system AB composed of the events AiBj , we see
that such an event only is possible if Bj belongs to the ith group. Thus AB|Ai
consists of gi events and the total number of possible events in AB is∑
gi = g. Furthermore, the probability of the event AiBj is pi/gi = 1/g. Thus

AB consists of g equally likely events and H(AB) = λ log g. Using property
(v) and (6.1) we find

λ log g = H(A) + λ

n∑
i=1

pi log pi + λ log g

m

H(A) = H(p1, p2, . . . , pn) = −λ
n∑
k=1

pk log pk.

This result is also true for all real pi since H is continuous by (i). �

Having made it clear that the measure of uncertainty sought is in fact
entropy, the section is continued with the entropy of Markov chains. As
mentioned earlier, there is a strong connection between Markov chains and
shifts of finite type, and this will be helpful when proving the relationship
between topological and probabilistic entropy.
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6.3 Markov Chains
Let X be a Markov chain with a finite number of states S1, S2, . . . , Sn and
transition probabilities pij . If the system is in state Sk, then the one step
transitions of X form the finite scheme

X|Sk =
(

S1 S2 . . . Sn
pk1 pk2 . . . pkn

)
.

The entropy of X|Sk

Hk(X) = H(X|Sk) = −
n∑
l=1

pkl log pkl

is a measure of the amount of information obtained when the Markov chain
moves one step ahead from Sk.

Averaging the entropies of the one step transitions gives the entropy of a
Markov chain.

Definition Let X be a irreducible Markov chain with a finite state space,
transition probabilities pij and initial probabilities πi (1 6 i, j 6 n). We define
the entropy of X as

H(X) =
n∑
k=1

πkHk(X) = −
n∑
k=1

n∑
l=1

πkpkl log pkl.

Remark The entropy of a Markov chain is a measure of the average
information obtained when moving one step ahead in the chain.

We will now define a Markov chain on a graph.

Definition A Markov chain on a graph G is an assignment of probabilities
πi > 0 for i ∈ V(G) and conditional probabilities P (e|i) > 0 for e ∈ E(G) and
i ∈ V(G) such that∑

i∈V
πi = 1,

∑
e∈Ei

P (e|i) = 1, for all i ∈ V,

where Ei denotes the edges starting at vertex i.

Remark For a Markov chain on a graph, the probability of a path
τ = e1e2 . . . en, starting at vector i is

P (τ) = πiP (e1|i)P (e2|t(e1)) . . . P (en|t(en−1))

After showing these properties for probabilistic entropy and Markov chains
it is now time for the final theorem. The statement is easy but the theory
underlying the proof is quite involved. Because of this I have chosen to prove
just the main result and not the related facts stated in the remark below the
theorem.

Remember from the Perron-Frobenius Theorem that for an irreducible
matrix A 6= [0] we let λA denote the Perron eigenvalue and u, v the
corresponding left and right eigenvector.
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Theorem 6.2 Let G be an irreducible graph, AG = [aij ], aij ∈ {0, 1} and let
X be a Markov chain on G defined by the following probabilities

πi = uivi and pij =
aijvj
λAvi

, where
∑
i

uivi = 1.

Then H(X) = log λA.

Remark This measure, the Perry measure is the unique measure with this
property. It is also the measure that maximizes H. For a proof of this, see the
pages 195-196 in [2].

Proof of Theorem 6.2 Given the Perry measure

H(X) = −
∑
i,j

πipij log pij = −
∑
i,j

uivi
aijvj
λAvi

log
aijvj
λAvi

= −
∑
i,j

ui
aijvj
λA

log
aijvj
λAvi

= −
∑
i,j

ujaijvi
λA

(log aij + log vj − log λA − log vi)

= 0−
∑
j

ujvj log vj + log λA +
∑
i

uivi log vi = log λA

where the second to last equality follows since aij ∈ {0, 1} and u and v are
eigenvectors. �

The result stated is that there exists a measure such that when applied to a
Markov chain on a graph, the entropy of the Markov chain will equal the
entropy of the shift space described by the same graph.

As an example of this result, consider the graph of the golden mean shift
with the Perry measure on it.

Example If G is the graph of the recoded golden mean shift then

AG =
(

1 1
1 0

)
, λ = λA =

1 +
√

5
2

, uA =
(
λ 1

)
, vA =

(
λ

λ2+1
1

λ2+1

)
,

and we can define a Markov chain X on G by assigning probabilities to the
edges. If we assign the Perry probabilities:

π =

(
λ2

λ2+1
1

λ2+1

)
, P =

(
1
λ

1
λ2

1 0

)
then (since λ2 = λ+ 1)

H(X) = − λ2

λ2 + 1

(
1
λ

log
1
λ

+
1
λ2

log
1
λ2

)
=

λ2

λ2 + 1
λ+ 2
λ2

log λ = log λ.
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A Appendix
Proof of Proposition 1.1 Let X be a shift space over the alphabet A and
N > 1. Then there is a collection F of blocks over A such that X =XF .
Create a new collection F ′ by replacing each block u ∈ F such that |u|<N by
all N -blocks over A containing u. Then X =XF ′ and |v| > N for all v ∈ F ′.
For each w = a1a2 . . . am ∈ F ′ let

w[N ] = (a1a2 . . . aN )(a2a3 . . . aN+1) . . . (am−N+1am−N+2 . . . am)

be the corresponding (m−N + 1)-block over BN (AZ). Let
F1 = {w[N ] : w ∈ F ′} then X [N ] ⊂ XF1 . Let

F2 = {uv : u, v ∈ BN (AZ), u and v do not overlap progressively}.

Then it follows from part 1 of the remark in section 1.2 that X [N ] ⊂ XF2 and

X [N ] ⊂ XF1 ∩ XF2 = XF1∪F2 .

Conversely, suppose that y ∈ XF1∪F2 and let x ∈ AZ be the point
reconstructed from the “bottom” letters of y (as mentioned in part 2 of the
remark in section 1.2). Then x ∈ X = XF since y satisfies the constraints from
F1 and y = βN (x) by the overlap constraints from F2. Whence
X [N ] ⊃ XF1∪F2 , and X [N ] = XF1∪F2 is a shift space. �

Proof of Proposition 2.2

1. If m = 0: The only paths of length zero are the empty paths (from i to
i). A0 = Id, verifying the result in this case. According to the definition,
it is also true for m = 1 . Suppose the result is true for m = k. Then

(Ak+1)ij =
∑
l

Ail(Ak)lj

equals the total number of paths of length k + 1 from i to j.

2. If π is a cycle in G of length m, then π∞ is a point of period m in XG.
Conversely, if x ∈ XG has period m, then x[0,m−1] must be a cycle in G
of length m.

�

Proof of Corollary 2.3. Let G be an irreducible graph, and π, τ ∈ B(XG).
Suppose that π terminates at vertex i and τ starts at vertex j. Since G is
irreducible there is a path ω ∈ B(XG) from i to j. Then πωτ is a path on G
and πωτ ∈ B(XG). Conversely, suppose that G is essential and XG is
irreducible. Let j, k be vertices of G. Since G is essential there are edges e and
f such that t(e) = j and i(f) = k. By irreducibility of XG there is a block h
such that ehf ∈ B(XG). Then h is a path in G from j to k. �

Proof of Theorem 3.1 The proof of the theorem relies on the following
lemma.

Lemma A.1 If A is irreducible, then all states have the same period.

40



Proof Let i be a state, and let p =per(i). If p =∞, then A = [0] and the
proof is completed. Assume p <∞. Let j be another state, then there exists
r, s > 1 such that

(Ar)ij > 0, (As)ji > 0.

Let (An)jj > 0, then
(Ar+s)ii > (Ar)ij(As)ji > 0,

and
(Ar+n+s)ii > (Ar)ij(An)jj(Aj)ji > 0.

Thus p divides both r + s and r + n+ s which means that p | n. Hence p
divides all n such that (An)jj > 0⇒ p | per(j). Reversing the roles of i and j
shows that per(i) =per(j). �

We are now ready to prove the theorem:

2 ⇒ 1 Since AN > 0 for some N > 1 there is a path of length N between all
states in GA. This establishes irreducibility of A. Also, since A has no
zero rows AN+1 = A ·AN > 0. Thus per(A) divides both N and N + 1
and per(A) = 1.

1 ⇒ 3 Let A be primitive. We first show that for each state i there exists an Ni
such that (An)ii > 0 for all n > Ni. Let Ri = {n > 1: (An)ii > 0}. By
definition (and lemma A.1) gcd{n ∈ Ri} =per(i) =per(A) = 1. Hence
there are numbers mk, nl ∈ Ri and ak, bl ∈ N such that

1 =
p∑
k=1

akmk︸ ︷︷ ︸−
q∑
l=1

blnl︸ ︷︷ ︸ .
K L

Let Ni = L2. If n > Ni, then n = cL+ d where c > L and 0 6 d < L.
Hence

n = cL+ d = cL+ d(K − L) = (c− d)L+ dK,

where c− d > L− d > 0 and d > 0. Thus

n =
q∑
l=1

[(c− d)bl]nl +
p∑
k=1

[dak]mk

is a linear combination of numbers in Ri, hence is in Ri. This shows that
Ri contains all n > Ni.
To complete the proof: Since A is irreducible we can choose M so that
between every pair of states there is a path of lenght less than or equal
to M . Let

N = M + max
i
Ni.

Then between any states i, j there is a path of length s 6M , and since
N − s > Nj there is a cycle of length N − s starting at j. Hence there is
a path of length N from i to j. This proves that AN > 0, and since A is
primitive no row of A can be zero so An > 0 for all n > N .
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3 ⇒ 2 Obvious.

�

Proof of Proposition 4.4

4⇒ 5 First note that mixing of X ∼= XG is equivalent to primitiveness of AG
(this follows from Proposition 3.2). Let U, V ⊂ X be non-empty, open
sets. Then there exists k, l ∈ Z such that

Ck(u) = σ−k(C0(u)) ∈ U, u ∈ B(X),

Cl(v) = σ−l(C0(v)) ∈ V, v ∈ B(X).

Since X is mixing, for every ordered pair u, v ∈ B(X) there exists an N
such that for all i > N there exists a w(i) ∈ Bi(X) such that
uw(i)v ∈ B(X). Once again, let ni = |uw(i)|+ k − l. Since

zi = . . . uw(i)v . . . ∈ Ck(u) for all i > N, zk = u1,

it is easy to see that

σni(U) ∩ V 6= ∅ for all ni > nN .

Thus, (X,σ) is topologically mixing.

4 ⇐ 5 Since (X,σ) is topologically mixing: given any ordered pair u, v ∈ B(X)
there exists an N > |u| such that

C0(u) ∩ σ−n(C0(v)) 6= ∅, for all n ≥ N.

For z ∈ C0(u) ∩ σ−n(C0(v)) we have

z[0,n+|v|−1] = uz[|u|,n−1]v ∈ B(X), for all n > N.

Thus, X is mixing. �
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