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Abstract

This article is about repeated iterations of rational functions in the complex
plane, Fatou sets and Julia sets. While exploring some properties of the
Fatou set by computer simulations, I encountered an interesting pattern.
After generating more data, I became even more convinced that there was a
correlation between the Fatou set of a rational function, and its derivatives
on the iterated functions. In conclusion; my research strongly suggests that
in most cases, the points in the Fatou set that does not converge to infinity
under iteration lie in the limit of the points where the absolute value of the
derivative of the iterated function is at most one as the number of iterations
grows.
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Introduction

A rational function f(z) is a map from C̄ → C̄, where C̄ is the extended
complex plane, and f(z) = P (z)

Q(z) where P,Q are polynomials. We may as-
sume that common zeros have been cancelled out, i.e. P and Q are coprime.
The degree of a rational function, deg(f) is defined as max(deg(P ), deg(Q)).

Definition

Define fk as f ◦ f ◦ ... ◦ f︸ ︷︷ ︸
k

, f0(z) = z, and let zk = fk(z0).

Obviously, zn will for some f and z0 diverge to infinity as n grows, (f(z) =
z2 + 1, z0 = 1 will do the job), but the sequence behaves quite differently
with different choices of z0.

Definition of the Fatou and Julia sets

A sequence of functions {fn} is said to be equicontinuous in a set X if there
for every ε > 0 and every z ∈ X exists a δ > 0 such that for ζ : |ζ − z| < δ
we have that |fn(ζ)− fn(z)| < ε for all n.

The Fatou set, F(f), is defined to be the maximum open subset in C̄ where
the family of functions f1, f2, f3, . . . is equicontinuous. This means that fn

will preserve the proximity of points, i.e. two points near each other will
behave quite similar when iterated under f .

The Julia set J (f) is defined as the complement to F(f). This means that
the Julia set is closed and compact by definition.

Definitions

A set D is forward invariant if f(D) = D, and backward invariant if
f−1(D) = D. A set is completely invariant if it is both forward and back-
ward invariant.

It is clear that F(f) = F(fk) and J (f) = J (fk) and one can show 1 that
both these sets are completely invariant under f .

1p 54 in Alan F. Beardon, Iterations of Rational Functions
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Definition of periodic points

A point z0 is called a periodic point of f with period p if z0 = fp(z0) and
z0 6= fk(z0) for k < p.

Furthermore, a point z0 is
a) attracting if |f ′(z0)| < 1
b) indifferent if |f ′(z0)| = 1
c) repelling if |f ′(z0)| > 1

A point z0 is called preperiodic if fm(z0) is periodic for some m.
It is easy to show that if z0 is periodic, then f(z0) is also a periodic point
of the same type. For rational maps, it is shown that all attracting periodic
points lies in the Fatou set, and the repelling ones in the Julia set 2.

Definition of Fatou Component

A Fatou component is a maximum subset in the Fatou set such that there
exists a path between any two points in the subset.

A Fatou component Ω is called a limited component of the Fatou set F(f)
if the point at infinity is not a point in fn(Ω) for any n. The union of all
the limited components is denoted by L(f).

Main hypothesis

Define Ak = {z0 : |f ′k(z0)| ≤ 1}, i.e. where the absolute value of the deriva-
tive of the iterated function in z0 is less than or equal to one, and define A∞
as {z0 : lim supk→∞ |f ′k(z0)| ≤ 1}.

The hypothesis is that if deg(f) ≥ 2, and if f is not an analytic conjugate
to a Euclidean rotation of the unit disc or some annulus onto itself, then

L(f) ⊂ A∞

Computer simulations point towards this statement and an abundance of
data strengthens the hypothesis. The following lemmas and sketches will
show that the hypothesis seems intuitively true for some cases.

2p 104,109 in Alan F. Beardon, Iterations of Rational Functions
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Method towards a proof of the main hypothesis

Definitions

A Fatou component Ω of f is:
a) periodic if fk(Ω) = Ω for some positive integer k;
b) eventually periodic if fm(Ω) is periodic for some positive integer m;
c) wandering if Ω, f(Ω), f2(Ω), . . . are all pairwise disjoint.

Lemma 1: No wandering domain theorem

If Ω is a Fatou component of a rational map f , where deg(f) ≥ 2, then it is
either periodic or eventually periodic.

The lemma follows directly from The No wandering domain theorem
(Sullivan’s Theorem) 3 but as the proof is very complicated it has been
excluded from this article.

Lemma 2: Fixed points in Fatou components

Let Ω be a forward invariant Fatou component of the rational function f
such that it contains an attracting fixed point α 6= ∞. Then lim

n→∞
fn(z) = α

for all z ∈ Ω and |f ′(α)| < 1.

Proof:
Because there is an attracting fixed point α in Ω, |f ′(α)| < 1 and there
exists an r such that r < 1 and a disc D centred in α where we have that
|f(z)−α| = |f(z)−f(α)| < r|z−α|. This shows that fn maps D into itself,
and Vitali’s Theorem 4 gives the limit fn → α in Ω.

3p 176 in Alan F. Beardon, Iterations of Rational Functions,
p 69 in Lennart Carleson, Theodore W Gamelin, Complex Dynamics

4p 56 in Alan F. Beardon, Iterations of Rational Functions
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The Classification theorem

One can show that a forward invariant component F0 of F(f) where f is a
rational function is exacly one of the following:

(a) an attracting component if it contains an attracting fixed point of f ;
(b) a parabolic domain if there exists a fixed point ζ on the boundary of F0

such that f ′(ζ) is a root of unity and if fn → ζ on F0.
(c) a Siegel disc if f : F0 → F0 is analytically conjugate to a Euclidean
rotation of the unit disc onto itself;
(c) a Herman ring if f : F0 → F0 is analytically conjugate to a Euclidean
rotation of some annulus onto itself.

Having this in our minds, we have come to a critical step in the proof, and
the following lemma is crucial; the lemma is certainly true if f is a polyno-
mial and the Fatou component has an attracting fixed point, but it might
be possible to extend the theorem to include the parabolic domains.

The reason why this lemma feels intuitively true is that the chain rule gives
that f ′k(z0) = f ′(z0) · f ′(z1) · · · · · f ′(zk−1). Furthermore since each zk lie
closer and closer to the fixed point α, the derivative f ′(zk) must be close to
f ′(α) which is less than one if α ∈ Ω.

Lemma 3: Convergence of the derivatives

If Ω is a forward invariant Fatou component of f which contains an attract-
ing fixed point α 6= ∞, where f is holomorphic in Ω, then

lim
n→∞

|f ′(zn)| = |f ′(α)| < 1 for all z0 ∈ Ω

and
lim

n→∞
f ′n(z0) = 0 for all z0 ∈ Ω

Proof:
Let ζ ∈ Ω, and choose ε > 0. Then there exists an r > 0 such that |ζ−α| < r
implies that |f ′(ζ)− f ′(α)| < ε, since f is holomorphic in Ω.

But Lemma 2 gives that for each r > 0, there exists N , such that n ≥ N
implies that |fn(z0)− α| < r, since fn(z0) → α as n grows.

Hence for each ε > 0, there exists N such that n ≥ N ⇒ |f ′(fn(z0)) −
f ′(α)| < ε, and this gives that |f ′(fn(z0))| = |f ′(zn)| converges to |f ′(α)| <

8



1, and thus the first limit is proved.

Using the chain rule on f ′n(z0), we get f ′(zn−1) · f ′(zn−2) · · · · · f ′(z1) · f ′(z0)
and because of the limit we just proved only a finite number of factors have
an absolute value that is greater than or equal to 1, and hence the second
limit is proved.

Theorem: Convergence in components

Let f be a rational function where deg(f) ≥ 2 and let Ω be a Fatou compo-
nent in L(f) such that fm(Ω) contains an attracting periodic point for some
m. Then Ω ⊂ A∞.

Proof:
Define Ωk as fk(Ω), and Ω0 = Ω. By Lemma 1, there exists a number M
such that Ωm1 is periodic under f with period n if m1 ≥ M . We also know
that there exists an m2 such that fm2(Ω) contains an attracting periodic
point. Let m = max(m1,m2). Then Ωm is periodic and contains an attract-
ing periodic point with period n.

This gives us that fn(Ωm) = Ωm and it must then contain an attracting
fixed point α0 of fn.

For each point z ∈ Ω, |fk(z)| < ∞ for all k since Ω ⊂ L(f). Ωm is the image
of Ω under fm so each z ∈ Ωm is finite. The attracting fixed point in Ωm

must therefore also be finite and Ωm is therefore also free from poles. We
can thus be sure that fn is holomorphic in Ωm.

The conditions in Lemma 3 are now satisfied because Ωm is forward invariant
under fn. Hence limk→∞ f ′nk = 0 in Ωm. But if Ωm is forward invariant
for fn, then are Ωm+1,Ωm+2, . . . forward invariant as well, so in all these
components, Lemma 2 and 3 are true, since they all have finite fixed points
of fn. Hence limk→∞ f ′nk = 0 in Ωm+i.
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For k large enough, we can write k = nq + r where m ≤ r < m + n. Then
for an arbitrary point z0 ∈ Ω we have by the chain rule that f ′k(z0) =
f ′nq+r(z0) = f ′r(z0) · f ′nq(zr).

As k →∞, we have that q →∞ which implies that f ′nq(zr) → 0 since zr lies
in some Ωm+i and we have already established that this limit is 0 in Ωm+i.

This shows that if z0 ∈ Ω, |f ′k(z0)| → 0 ≤ 1, and the proof is complete.

Corollary:

Let f be a rational function where deg(f) ≥ 2. If F(f) is free from parabolic
domains, Siegel discs and Herman rings, then L(f) ⊂ A∞.

The Classification Theorem gives any forward invariant component Ω ∈ L(f)
must be attracting. No Wandering Domain Theorem says that Ω is even-
tually periodic and hence there exists m and n such that fm(Ω) is forward
invariant under fn. We conclude that fm(Ω) contains an attracting periodic
point, and we apply the theorem about convergence in components. This
implies that Ω ⊂ A∞.

Remarks:
This result does not state how fast An converges to a set that contains L(f),
although I will briefly touch that subject later on. Since the Fatou set can
have only 0, 1, 2 or infinitely many components 5, the hypothesis is only
proved when every limited component converges to a cycle of components

5p 94 in Alan F. Beardon, Iterations of Rational Functions
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that contains attracting periodic points and f is holomorphic. One such
example is page 13 in reference [1].

Figure 1: f(z) = z2−1 : from left to right: The Fatou set (black), the Fatou
set and |f ′5(z0)| ≤ 1 (white), the Fatou set and |f ′10(z0)| ≤ 1 (white).

Another example where one can eaisly would be f(z) = z2 − 1/2 which has
only two Fatou components; one limited, and one unbounded. The limited
component contains an attracting fixpoint z = 1−

√
3

2 .

Figure 2: f(z) = z2 − 1/2 : from left to right: The Fatou set (black), the
Fatou set and |f ′10(z0)| ≤ 1 (white).
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Working with the computer

The algorithm I use to find the limited components of the Fatou set is the
usual; iterate a maximum of 400 iterations and if |f400(z)| < 100, then z is
most probably in L(f), (or in the Julia set, but this set has almost always
zero area, and can be omitted). The polynomials I have examined have zeros
a + ib : a, b ∈ [−1, 1] in the numerator and the denominator to make sure
that the limited Fatou set is roughly in the center of my image. By simply
calculating the pixels I compute the different areas (letting the resolution
be about 800x800 pixels).

The pseudo-code for my algorithm is the following;

MAX_ITERATIONS := 400
FOR each point z DO

i:=0
WHILE abs(z)<100 AND i<MAX_ITERATIONS DO

z := f(z)
i := i+1

IF i = 400 THEN point is in the limited components
ELSE point is not in the limited components

Remark
This algorithm clearly gives an overestimation of the Fatou set; pixels that
diverge towards infinity really slowly might be included. No pixels that
should be in the Fatou set are excluded assuming all points z in the Fatou
set fulfils |z| < 100.

12



Some images and examples

The leftmost image below shows the Fatou set (greyscale) and Julia set
(black), and thereafter the sets A1, A4, A9 (white). As we can see, Ak con-
verges rapidly towards L(f), the difference between the area of L(f) and A9

is only 3%.

Figure 3: f(z) = (z − 0.052 + 0.391i) · (z − 0.314− 0.332i)

The images in Figure 4 show that even when L(f) is infinitely disconnected
(right), Ak (left) will eventually converge to L(f).
In the example, the difference between L(f) and A300 is less than 0.2%.

Figure 4: f(z) = (z − 0.146 + 0.612i) · (z − 0.325 − 0.993i) · (z + 0.482 +
0.82i)/(z − 0.913 + 0.02i)
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The following image is the first function I found which had a really slow
convergence; the difference between A15 and L(f) is usually only a few
percents. (The picture shows A1 to A40, then L(f), and the last square is
A400)

Figure 5: f(z) = (z−0.507+0.055i) ·(z−0.932−0.665i) ·(z+0.378−0.707i)
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Practical uses

What new methods can be developed using the above results? It is only
possible to approximate the Fatou set because of the infinite number of iter-
ations needed, so instead of using the regular algorithm (which I described
about approximating the Fatou set), it is sometimes more accurate to com-
pute the derivatives. Computer simulations indicate that if the limited Fatou
components of a rational map have an area close to zero and is infinitely
disconnected, it is more accurate to compute the derivative instead of the
absolute value of fn(z0).

The following image shows the different results; The leftmost frame is the Fa-
tou set, computed with 400 iterations. The second one is the same algorithm
using 10 iterations. The last frame is A10 (white). A10 is an underestimate
which happened in most cases, but the interesting part is that A10 is about
79% of the Fatou set, while the one with 10 iterations is an overestimation
of about 33%.

Future work might show that an interpolation between the regular algorithm
and using the derivatives gives the most accurate approximation of the Fatou
set.

Figure 6: f(z) = (z+0.566+0.795i) ·(z+0.185+0.101i) ·(z+0.753+0.714i)
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