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Abstract

The four plane geometrical theorems Inscribed angle theorem, the for-

mulae for sin(x±y) and cos(x±y), the Nine-point Circle and Morley’s

trisector theorem are presented, as well as several proofs of each the-

orem. At least one proof of each theorem makes use of complex num-

bers. We analyse what we might benefit from this usage, and figure

out what properties of complex numbers make this benefit possible.

The conclusion is that often when complex numbers are used to

prove plane geometrical theorems, if the problem is arranged in a suit-

able way, we will not have to rely on genuine ideas in as great extent,

but rather the result follows from algebraic calculations. The main

reason for this is the result connecting the modulus and arguments in

the product of two complex numbers.
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1 INTRODUCTION

1 Introduction

This paper is a Master’s thesis in mathematics, submitted to the Department

of Mathematics at Stockholm university. The topic is geometry – plain plane

geometry, and one striking thing about it is that at university level, geometry

(or at least euclidean such) is hardly taught at all any more, courses for

education students excepted. That alone is reason enough to devote some

time to the subject, but to compose something on just geometry would be

difficult since it is a very widespread subject, so we need some delimitation,

which takes the form of usage of complex numbers in geometry. Also this

would provide more material than what could be contained in a paper such

as this, so we will look at a limited number of theorems chosen mainly by

the interest awaken within the author at a first glance.

As the title suggests, we will interest ourselves in benefits from usage of com-

plex numbers in the presentation of the proofs, from a pedagogical point of

view. Hence the purpose of this thesis is not to present any new mathemat-

ical results, but rather to discuss different (and perhaps new) presentations

of known ones. However, nor is it a thesis in pure pedagogy of mathematics.

It is something in between – an analysis and discussion of some theorems in

plane geometry and their proofs.

We begin by looking at the background of the two main subjects, geome-

try and complex numbers, in Section 2. Brief history is presented, in order

to give context, and also the introduction of complex numbers is discussed.

Section 3 Preliminaries is a presentation of important notation and the pre-

requisite theory that might not be known to the reader. The reader well

conversant with the subject might want to skip these two sections. Then, in

Section 4 Analysis, the four theorems are given a subsection each. Several

proofs of each theorem is presented and discussed from a pedagogical point

of view. The last section sums up the results in the analysis, and we draw

conclusions.
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2 BACKGROUND

2 Background

In this section we will look shortly at the historical background of geometry

and complex numbers. The purpose of this is to better understand the theo-

rems and proofs we will encounter later, as well as gaining some perspective

on these subjects and the teaching of them.

2.1 Geometry

All facts in this section have been collected from [13] Stillwell (2005, chapters

1 and 2) and [18] Wikipedia - The Free Encyclopedia (2007). The word

geometry is originally Greek, roughly meaning earth measurement. It is the

branch of mathematics concerning figures (lines, points, curves, etcetera) in

a space – in our case the plane – and their size, shape and relative position.

When telling the story of geometry it is almost inevitable not to begin with

what may be the most famous and significant work in mathematics of all

time – Elements1 by Euclid. This is a collection of, by then mostly already

known, lore and an introduction of axioms as a foundation of geometry. It

was written about 300 BC, but was used as textbook in school mathematics

until the 20th century, and has, without doubt, been a great influence on

Western science over the centuries.

In Elements Euclid begin by stating a number of axioms (or postulates),

then formulating and proving some propositions, basically saying we have

access to a straightedge, used only to draw lines between points or extend

existing line segments – not measuring, like we can do with a ruler – and a

compass to draw (part of) a circle with given center and radius. The compass

can also store the length between two points and transfer it elsewhere, and

hence lengths can be added and subtracted. It is then proved that from these

axioms it is possible to accomplish lots of useful results, for instance we can

1The reader wishing to study Euclid’s Elements deeper is recommended to visit [17]

http://aleph0.clarku.edu/˜djoyce/java/elements/elements.html
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2.1 Geometry 2 BACKGROUND

construct a scale on a given line segment by dividing it into n parts of equal

length, basically creating a ruler.

The creation of a ruler, along with most other results in geometry, is based

on the parallel axiom, also stated by Euclid. In order to illustrate how

construction with straightedge and compass are made, and since parallel

lines have shown to be so vital, we will look at an example in Figure 1. The

formulation is not the same Euclid would have used. We have a given line l

and a given point P and intend to construct the unique line passing through

P being parallel to l.

ll l

P
P

Q R

S

T

P

mm

Figure 1: The construction of a parallel line through a given point

Step 1 Use the compass to draw a circle with center in P and radius large

enough to intersect with l.2 We call these points of intersection Q and

R.

Step 2 Once again we use our compass, this time to draw the two circles with

radii |QR| and center in Q and R respectively.

Step 3 Draw the line passing through the two points of intersection of the two

2In fact, Euclid’s axioms are not enough to show that such a point common for the

circle and the line exists, but this gap was filled by David Hilbert in 1899 according to

[13] Stillwell (2005, chapters 1.2 and 2.9).
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2.1 Geometry 2 BACKGROUND

circles drawn in Step 2 and call it m. This is done with the straightedge.

Note that the line will pass through P and is perpendicular to l.

Step 4 Draw a new smaller circle with center in P (or use the existing one,

which is more bulky though) and call the points where m intersects

with this circle S and T respectively.

Step 5 Two more circles are drawn, both with radius |ST | and one with center

in S and the other with center in T .

Step 6 The pursued line is the one passing through the points of intersection

of the two circles from Step 5.

As mentioned, with similar techniques it is easy to show many results; for

example we can bisect an angle or, if we choose a length to be the unit length,

multiply and divide lengths with one another. Now leaving Euclid, there are

a few more selected contributions to geometry where we will make a stop.

Pappus of Alexandria, a greek mathematician born in the Egypt city Alexan-

dria about 300 AD, developed geometry even further and his results on par-

allel lines, along with the results of Girard Desargues in the 17th century,

became vital in the development of projective geometry in the 19th century.

The theorems of Pappus and Desargues also play an important role in David

Hilbert’s development of Euclid’s axioms in 1899. He expands the number

of axioms in order to fill in the blanks left by Euclid and also develops an

arithmetic where the product of two lengths does not have to be interpreted

as an area, something that would have been unacceptable in the days of

Euclid. ”He wants numbers to come from ’inside’ geometry rather than from

’outside’. (. . . ) It is generally easier to build geometry on numbers than the

reverse”.3 ([13] Stillwell 2005, page 42 f)

3The Theorem of Pappus is needed to prove the commutative law for multiplication

and Theorem of Desargue is needed to prove the associative law.
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2.2 Complex numbers 2 BACKGROUND

The milestones presented above have all taken geometry a great deal forward,

but yet they are not even close to the tip of an iceberg, mere enough ice to cool

a glass of water. However, this is as deep as this paper will dig. In modern

mathematics, geometry has developed into a number of different fields, like

algebraic geometry, complex geometry, differential geometry and topology,

each with its roots in the work of Euclid. We are now leaving geometry for

the moment, moving on to the other main subject of this thesis.

2.2 Complex numbers

First of all we shall clarify the purpose of this section. The intention is not to

introduce complex numbers to the reader unfamiliar with them, but rather

to present the author’s view on complex numbers to the initiated reader.

This is necessary because part of the objective of this entire thesis is to give

the author’s subjective opinion on proofs using complex numbers, and hence

the reader will benefit from knowing his point of view. Despite the above,

the reader who is unfamiliar with complex numbers do not have to stop the

reading here, since we will develop an introduction to them.

When students first are introduced to complex numbers, it is most common

([14] Sundelin 2005, chapter 6 and [9] Ngo and Watson 1998) that the intro-

duction is either of the form what do we need to be able to solve equations

like

x2 + 1 = 0 (1)

or via a discussion of the known numbersystems Natural numbers (N), In-

tegers (Z), Rational numbers (Q) and Real numbers (R), followed by an

expansion of R into the Complex numbers (C). Either way, the textbooks

seem to give the impression that Complex numbers from the beginning were

constructed in order to be able to solve equations like (1), a statement that

according to [14] Sundelin (2005, chapter 5) and [8] Kleiner (1988) is incor-
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2.2 Complex numbers 2 BACKGROUND

rect.

A legitimate question about (1) is: why should we bother solving equations

like this? The real story behind the origination of complex numbers ([8]

Kleiner 1988) relieves us from such questions. It was in the middle of the

16th century that the Italian mathematician Cardan presented the following

solution to the cubic equation x3 = ax + b,

x =
3

√
b

2
+

√
(
b

2
)2 − (

a

3
)3 +

3

√
b

2
−
√

(
b

2
)2 − (

a

3
)3.

As an example this yields, in the case a = 15 and b = 4, x = 3
√

2 + 11
√
−1+

3
√

2− 11
√
−1, which involves square roots of negative numbers but in fact is

equal to the real number 4. Also the other two roots of x3 = 15x+4 are real

and equal to 2 ±
√

3. This is the short version of the story about the birth

of complex numbers which continued to evolve through the next centuries,

although their relevance was questioned as late as 1825 by the great German

mathematician Carl Friedrich Gauss.

Now back to the textbooks and their introduction of complex numbers. An-

other thing they seem to have in common is the early introduction of the

imaginary unit (i), with the property4 that i2 = −1. This has one obvious

drawback in the lack of intuition of the imaginary unit. The crucial thing, in

my opinion, is that there is a one-to-one relationship between every positive

real number and a distance (say the length of a stick, very substantial). No

such easy-to-relate-to relationship exists for complex numbers. Altogether

this effects in a way of looking at a complex number as something very

abstract and probably useless when it comes to applications from the real

world. Imaginary numbers give imaginary solutions – which we have seen is

not true.

The way we are going to use complex numbers troughout this text is not

to solve equations involving square roots of negative numbers. Therefore

we may, and will, introduce complex numbers in a less mysterious way and

4Note that x = i is a solution to (1)
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2.2 Complex numbers 2 BACKGROUND

never bother about the interpretation or relevance of the imaginary unit.

The justification of it is its usefulness. One purpose of this text is to give

examples showing that complex numbers are not useless when it comes to

solving real problems, like geometrical ones, but let us begin even earlier.

When starting school, or even before that, we are introduced to natural

numbers. We are taught to interpret them as how many objects, for example

oranges. We learn how to interpret equals (=), as just as many as and

about the operations addition (+) and multiplication (·) and how to interpret

these:5

Let A and B be two natural numbers, we write A, B ∈ N.

(+) A+B equals the total number of oranges in one pile with A oranges

and one pile with B oranges.

(·) A ·B equals the total number of oranges in A piles with B oranges

in each pile.

Note how both these operations are mappings from an ordered pair (the

Cartesian product) of natural numbers into the set of natural numbers itself.

We write N× N −→ N. From this we form subtraction

A, B ∈ N, (A−B) = C ⇐⇒ A = B + C if such a C ∈ N exists

and division

A, B ∈ N
A

B
= C ⇐⇒ A = C ·B if such a C ∈ N exists

and also generalise without any substantial effort to all real numbers.6 This

generalisation is worth an extra moment of thought; it can be done although

we do not know how to interpret for example −21
3

oranges or
√

two oranges .

5This can be done more rigorously, see [3] Carlström (2006, chapter 2.2) and [2] Beachy

and Blair (2006, chapter A.2)
6Division is not always as trivial as one might first think. One example is that in Z5

we get 1
3 = 2 since 2 · 3 = 6 ≡ 1 (mod 5).
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2.2 Complex numbers 2 BACKGROUND

This is the effect of two things. First of all we are typically very young, and

hence our minds suggestible to great extent, when we encounter this type of

reasoning. The other reason for accepting the generalisation is the one-to-one

relationship between positive real numbers and a distance, mentioned above.

The framework of real numbers is enough to make a lot of mathematics, one

example being the introduction of vectors in a euclidean space. A vector, at

least in R2 and R3, is quite easy to relate to, and the reason therefore is the

existence of a one-to-one relationship between every vector and a distance in

a certain direction, so the direction part is news. Here we are neglecting the

problem of the 0-vector not having any distinct direction. Based upon this

we claim that vectors are easy, as in not very abstract, to work with.

A reasonable question at this point would be: can we expand the known

real numbers into an even wider set of numbers in a natural way? Natural

here meaning that addition, subtraction, multiplication and division should

work ’as usual’. One suggestion would be to introduce an ordered pair of

real numbers.7 Let us call these kind of numbers New numbers. We already

have a natural interpretation of a new number as a vector (see above), and

therefor also a natural interpretation of (=), i.e. two new numbers are equal

if they represent the same distance in the same direction, i.e. (a, b) = (c, d)

if and only if a = c and b = d. The question is, can we find natural ways

to interpret (+) and (·)? (Subtraction and division will follow from these.)

Addition of vectors in R2 is already well defined by

(a, b) + (c, d) = (a + b, c + d)

where the ’+’ on the left hand side is addition of New numbers while the ’+’

on the right hand side is the common addition of real numbers.

What about multiplication? At least two types of products for vectors al-

ready exists, the inner product (dot product) and the cross product, each with

7This is not very different from the introduction of rational (non-integer) numbers,

which consists of the pair of integers: numerator and denominator, see [2] Beachy and

Blair (2006, chapter A.2)
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2.2 Complex numbers 2 BACKGROUND

its flaws. The inner product results in a scalar (real number), and is hence

a mapping from the set of New numbers to the set of real numbers. The

problem with the crossproduct is of similar nature. Although this product

results in a vector, it is perpendicular to both factor vectors and hence is not

in the same plane as these. Therefore the mapping is from R2 × R2 to R3.

The conclusion is that neither of the above will do as products for our New

numbers. Inspired by the simplicity of the addition operator one suggestion

might be that the product is defined by

(a, b) · (c, d) = (a · b, c · d) (2)

where the ’·’ on the left hand side is product with respect to New numbers

while the ’·’ on the right hand side is the common product with respect

to real numbers. This is obviously a mapping from the Cartesian product

of New numbers into the New numbers themselves, just as we want. The

remaining question is whether this gives natural results? Unfortunately the

answer is no. The short answer is that with multiplication defined this way,

we would not always be able to find a multiplicative inverse of every non-zero

New number,8 something that would be needed in order for the set of New

numbers to be a field (see [11] Rudin 1976, chapter 1). If our set of New

numbers fail of being a field, it would also fail being a natural expansion of

the set of real numbers. The longer answer to the question is to diffuse to

present here.

We need a better definition of multiplication of New numbers, and the sug-

gested one is9

(a, b) · (c, d) =
(
(a · c− b · d), (a · d + b · c)

)
(3)

8The multiplicative inverse of the real number r is another real number s with the

property r · s = 1 = s · r. This number is usually written r−1. Note that a unique such

number, namely r−1 = 1
r , exists for all real numbers except r = 0.

9The reader curious about how one can pursue such a construction in a structured way

is referred to [2] Beachy and Blair (2006, chapter 4.3).
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2.2 Complex numbers 2 BACKGROUND

with multiplicative inverse element

(a, b)−1 := (
a

a2 + b2
,

−b

a2 + b2
).

Note that the multiplicative inverse is well defined as long as (a, b) 6= (0, 0)

and that we get

(a, b) · (a, b)−1 = (a, b) · ( a

a2 + b2
,

−b

a2 + b2
) =

= (
a2

a2 + b2
− −b2

a2 + b2
,
−b · a
a2 + b2

+
b · a

a2 + b2
) = (

a2 + b2

a2 + b2
,

a · b− a · b
a2 + b2

) = (1, 0)

and hence we define a real number r as (r, 0) in the new number system.10

If we define subtraction and division in the same manner as above, we have

reasoned our way to a natural expansion of the real numbers into R × R.

This expansion coincide with the complex numbers (C) and we are ready to

make following definition.

Definition 1 (Complex number). A complex number is a number (a, b) where

a ∈ R and b ∈ R with the following rules for addition (sum)

(a, b) + (c, d) = (a + b, c + d)

and multiplication (product)

(a, b) · (c, d) =
(
(a · c− b · d), (a · d + b · c)

)
Two complex numbers (a, b) and (c, d) are equal if and only if a = c and

b = d. Any real number r is defined as (r, 0).

We note that
(
(r1, 0) + (r2, 0)

)
· (r3, 0) = (r1 · r3 + r2 · r3, 0) just as we would

expect, so multiplication and addition of real numbers work alright in C. It

is also easy to verify the commutative-, associative- and distributive laws.

Furthermore we see that x = (0, 1) is a solution to (1) since (0, 1)2 + (1, 0) =

(0, 1) · (0, 1)+(1, 0) = (0− (1 ·1), 0)+(1, 0) = (−1, 0)+(1, 0) = (−1)+1 = 0.

10Another suggestion that might have seemed reasonable would have been to define the

real number r as (r, r).

12



3 PRELIMINARIES

The number (0, 1) is the imaginary unit i mentioned above, and from time to

time we will use the notation i for this number for the sake of convenience.

To sum up this section, what we have seen is that accepting complex numbers

as actual, non-imaginary numbers need not be more abstract than accepting

negative numbers or non-integers. Admittedly though, maybe we accept the

latter type of numbers to easily. . .

3 Preliminaries

Before we buckle to the main task of this thesis we will need some more tools

in our toolbox. In this section we will introduce some notation as well as

results in geometry and the theory of complex numbers. These results will

then be used and referred to in the analysis done in Section 4.

Geometry

We will mainly concern ourselves with triangles, and to some extent circles

connected to these triangles. A triangle consists of three points in the plane,

and the three line segments connecting these points two by two. The points

are called the triangle’s vertices and the line segments are called the sides of

the triangle. Typically the vertices of a triangle will be denoted with capital

letters, and if we refer to, say, the triangle ABC we will mean the (unique)

triangle with vertex in A, B and C respectively. Note the difference between

a line, which extends infinitely in two directions, and a line segment, which

is the limited part that lies between two points of a line. We will denote the

(unique) linesegment between the points A and B with either AB,
−→
AB or

B−A. The latter two are common in vector geometry and has the direction

from A to B, whilst the former has no direction, so AB = BA.11 Hence, the

directed linesegment from B to A is
−→
BA or A−B.

11Not to be misinterpreted as the product between two numbers A and B.

13



3 PRELIMINARIES

The principle of a regular coordinate system in the plane is considered pre-

requisite in this thesis, and we remind of the well known formula for the eu-

clidean (ordinary) distance between two points A = (a1, a2) and B = (b1, b2),

here stated without proof,

|AB| =
√

(a1 − b1)2 + (a2 − b2)2. (4)

The distance between the two points A and B is also equal to the length of

the line segment between them.

In a triangle there is an angle at each vertex, hence the name tri-angle. If

the two sides meeting at the vertex are perpendicular, we say that the angle

is right = 90◦ = π
2

radians. The angle at vertex A in triangle ABC will be

denoted ]BAC or equivalently ]CAB. Note the position of A in the middle.

If there is no risk of misinterpretation, we may denote this angle by ]A. An

angle bisector is a line dividing the angle in two equal angles, see Figure 2.

A
Figure 2: The angle ]A and its bisector

Another statement we will not prove but nonetheless use, is that the sum of

the three angles in any triangle is equal to 180◦, which we will refer to as the

angle sum of a triangle. There are some special types of triangles we need to

know about. An equilateral triangle is one where all three sides are of equal

length. One effect of this is that all three angles are equal and 60◦. Another

special kind of triangle is where two of the three sides are of equal length,

called an isosceles triangle. The last special case of triangle we will come

across is the right triangle, where one of the angles is right. These spacial

cases appear in Figure 3

Two very important concepts of geometry are congruent and similar tri-

angles. Two triangles are congruent if they are equal in both shape and

14



3 PRELIMINARIES

(a)                       (b)                       (c)

Figure 3: (a) an equilateral triangle, (b) an isosceles triangle and (c) a right

triangle

distance, i.e. all corresponding angles are equal and all corresponding sides

are equal. This makes a total of six conditions on congruence. However, three

of these, if the right ones, are enough to ensure congruence ([15] Tambour

2002, chapter 2). These are

SAS Side-Angle-Side. If, in the two triangles ABC and DEF , the following

holds, |AB| = |DE|, |AC| = |DF | and ]A = ]D, then the two

triangles are congruent.

SSS Side-Side-Side. If, in the two triangles ABC and DEF , the following

holds, |AB| = |DE|, |AC| = |DF | and |BC| = |EF |, then the two

triangles are congruent.

ASA Angle-Side-Angle. If, in the two triangles ABC and DEF , the following

holds, ]A = ]D, ]B = ]E and |AB| = |DE|, then the two triangles

are congruent.

The above conditions for congruence will not be proved. If the triangles ABC

and DEF are congruent we will write ABC ∼= DEF .

Two triangles are said to be similar if they are equal in shape but not neces-

sarily in size, so two congruent triangles are also similar, but triangles may

be similar without being congruent. The definition is that ABC is similar to

15



3 PRELIMINARIES

E’

F’ D’

B

A C

B’

C’

A’

E

D

F

Figure 4: Two congruent triangles, ABC ∼= A′B′C ′, and two similar triangles

DEF ∼ D′E ′F ′

DEF if and only if

|AB|
|DE|

=
|AC|
|DF |

=
|BC|
|EF |

and ]A = ]D, ]B = ]E, ]C = ]F.

As in the case of congruence there exist sufficient conditions for triangles to

be similar([15] Tambour 2002, chapter 3), of which we will state, but not

prove, two.

SAS Side-Angle-Side. If, in the two triangles ABC and DEF , the following

holds, |AB|
|DE| = |AC|

|DF | and ]A = ]D, then the two triangles are similar.

SSS Side-Side-Side.12 If, in the two triangles ABC and DEF , the following

holds, |AB|
|DE| = |AC|

|DF | = |BC|
|EF | , then the two triangles are similar.

If the triangles ABC and DEF are similar we will write ABC ∼ DEF .

To each triangle there are a number of interesting points we will need to

investigate further. These are points of concurrence, meaning that three

specific lines meet there. We formulate the concurrence as a lemma.

Lemma 1. In any triangle the following line-triplets are concurrent, three

by three. (color and line type referring to Figure 5):

(a) The perpendicular side bisectors (yellow solid),

12Note that SSS, as well as SAS, has two meanings, one arguing two triangles are

congruent and one arguing they are similar. The context will determine which is referred

to.
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B

A

N

O

H

G

A

C BC

Figure 5: Left - the circumcenter (O) and incenter (N), as well as the cir-

cumcircle and incircle, of ABC. Right - the orthocenter (H) and centroid

(G) of ABC

(b) The angle bisectors (blue dashed),

(c) The altitudes (green solid),

(d) The medians (red dashed).

The points of concurrence are called the circumcenter (O), incenter (N),

orthocenter (H) and centroid (G) of the triangle.

Since we will only make use of (a), (b) and (c), these are the only ones we

will prove. Elementary vector geometry is prerequisite for the proof of (c).

Proof of Lemma 1 (a)-(c). Let ABC be an arbitrary triangle.

(a) The definition of a perpendicular side bisector is the (unique) line

equidistant from the two vertices of that side, so the point where the

perpendicular side bisectors of AB and AC meet, is equidistant from A

and B as well as from A and C. Hence it is also equidistant from B and

C, and therefore on the perpendicular bisector of the side BC. Since

17



3 PRELIMINARIES

all vertices are equidistant from this point of concurrence, there is a

circle that contains all three vertices and has the point of concurrence

as its center. This circle is called the circumcircle of the triangle.

(b) An angle bisector is by definition the line being equidistant at every

point to both sides of the vertex. Hence the point where the two lines

bisecting A and B meet, is equidistant to AB and AC, but also equidis-

tant to BA and BC, and therefore also equidistant to AC and BC

meaning it is on the angle bisector of vertex C. The proof is done and

the inscribed circle with center in the incenter is called the incircle of

the triangle.

(c) Let us place ABC in R2 so that its circumcenter is in the origin. We

then have |
−→
A | = |

−→
B | = |

−→
C | = r, where

−→
A is short hand for the

vector
−→
OA etcetera and r is the radius of the circumcircle. Define H

as the point H :=
−→
A +

−→
B +

−→
C . Note that

−→
B +

−→
C is, by definition,

perpendicular to
−→
B −

−→
C . But

−→
H −

−→
A =

−→
B +

−→
C , and hence H is on

the altitude from A. Analogous reasoning gives that H is also on the

altitudes from B and C, and the proof is complete.

Now we are equipped with all the elementary plane geometry we will need in

this thesis. The next step is to investigate what the complex numbers might

contribute with.

Geometrical properties of complex numbers

From Section 2.2 we have a definition of complex numbers, but this thesis

is supposed to be about geometry. What is the connection? The purpose of

this section is to supply tools in theory of complex numbers, making it easier

to work with geometry.

18



3 PRELIMINARIES

In Definition 1, complex numbers are defined as the ordered pair of two real

numbers. It is easily verified that we might as well look at the complex

number (a, b) as a + bi, where i := (0, 1) is to be treated as a number with

the property i2 = −1. As an example

(1, 1) · (2, 3) = (1 + i) · (2 + 3i) = 1 · 2 + 1 · 3i + i · 2 + i · 3i =

= 2 + 3i + 2i + 3i2 = 2 + (−1) · 3 + 5i = −1 + 5i = (−1, 5)

where the distributive law has been used. One might check the result using

the multiplication rule presented in Definition 1. The notation a + bi is

usually more convenient when calculating, while it has the above mentioned

drawback in the mystery of the symbol i.

Let z = (a, b) ∈ C. The first coordinate, a, is called the real part of z, and

we write <z = a. Likewise the second coordinate is called the imaginary

part, and we write =z = b. Note that both the real and imaginary part of a

complex number are real numbers! We see that it is sufficient to know the

real and imaginary part of a complex number in order for it to be totally

revealed. However, this description of a complex number might seem a little

strange. Just as, if we are looking for something, we prefer to get directions

as a distance in a certain direction instead of the longitude and latitude, it

might sometimes be more convenient to have a complex number described

as a distance (from the origin) in a certain direction. The description of a

complex number in such a manner is called polar form. The distance to the

origin is called the modulus of the complex number, while the direction is

called the argument. If we let the modulus of z = (a, b) ∈ C be denoted by

|z| and the argument by arg z, the polar representation is given by the simple

applications of the Pythagorean theorem and the definitions of cos and sin

z = (a, b) = (|z| · cos(arg z), |z| · sin(arg z)), where

|z| =
√

a2 + b2 and arg z is given by the solution to{
cos(arg z) = a

|z|

sin(arg z) = b
|z|

0 ≤ arg z ≤ 2π. (5)
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3 PRELIMINARIES

a=   zℜ

b=   zℑ

ℜ

ℑ

z=(a,b)

arg z

|z|

Figure 6: The complex plane and some properties of z ∈ C

The concept of real and imaginary part as well as polar form is illustrated in

Figure 6, where also the complex plane is introduced, which will be frequently

used later on.

Next we introduce the complex conjugate of a complex number. To each

complex number z there is a unique number called the complex conjugate

of z, denoted z̄. In the complex plane this number is a reflection in the real

axis, and hence if z = (a, b) then z̄ = (a,−b). We now make the observations

that, for any z = (a, b) ∈ C,

z + z̄ = (a, b) + (a,−b) = (a + a, b− b) = (2a, 0)

∴ z + z̄ = 2<z ∈ R, (6)

zz̄ = (a, b) · (a,−b) =
(
a2 − b(−b), ab + a(−b)

)
= (a2 + b2, 0)

∴ zz̄ = |z|2 ∈ R+, (7)

z 6= (0, 0), z̄ =
z

z
z̄ =

zz̄

z

by(7)
= |z|2 1

z

∴ z̄ = |z|2 1

z
if z 6= (0, 0). (8)

We have now come to what, for our purposes, may be the most important

result on complex numbers, namely how multiplication of complex numbers

is to be interpreted geometrically in the complex plane. We formulate this

as a lemma.
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ℜ

ℑ

cz

d(iz)

a

zb

d

a

w
iz

zw

c
−b

Figure 7: The product zw

Lemma 2. If z, w ∈ C, then

(a) arg(z · w) = arg z + arg w,

(b) |z · w| = |z| · |w|.

Usually this lemma is proved using the addition formulas for sin and cos (see

[10] and [12]), but this is not the way we will proceed. The reason for this is

that in Section 4.2 we will do the other way around, use Lemma 2 to prove

the addition formulas for sin and cos, and therefore we will need another

proof of the lemma. The elegant proof presented below is from [5] Gottlieb

(2002, chapter 1).

Proof. The proof relies to great extent on Figure 7, where the vectors z =

(a, b) and w = (c, d) represent two arbitrary complex numbers with no re-

strictions whatsoever on neither modulus nor arguments. First note that

z · w = z · (c, d) = z
(
(c, 0) + (0, d)

)
= c · z + d · (0, 1) · z = c · z + d · iz.
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3 PRELIMINARIES

Now, iz = i(a + bi) = −b + ai = (−b, a) is obviously perpendicular to

z. In other words z and iz makes a right angle. Further we have |iz| =√
(−b)2 + a2 = |z| and looking at the right triangle with hypotenuse z · w

and legs c · z and d · iz we realise that it is similar, since the legs have

the same proportion, to the right triangle with one leg on the real axis and

w as hypotenuse. We also note that the scaling factor of the two similar

triangles is |z|. Since the two triangles are similar, their two angles at the

origin (marked in Figure 7) are both equal to arg w, and the length of their

hypotenuse differ with a factor |z|. It is now obvious from the figure that

arg(zw) = arg z + arg w and |zw| = |z| · |w|.

One consequence of Lemma 2 is that arg z
w

= arg z − arg w and
∣∣ z
w

∣∣ = |z|
|w| .

The following reasoning is inspired by different parts of chapter 2 in [6] Hahn

(1994). In order not mix up with the product, we refer to the triangle with

vertices in the complex numbers z1, z2 and z3 as 4z1z2z3. When looking

at triangles in the complex plane we have reason to sharpen our definition

of similar (and congruent) triangles. So far we have defined all angles to

be positive, but the argument of a complex number, which we interpret as

an angle, may well be negative. So far we have considered ]ABC as being

equal to ]CBA, but from now on we will look at it as ]ABC = −]CBA

when dealing with complex numbers. This narrowing has the effect that two

triangles are similar (congruent) if and only if they are in the manner defined

above and if they have the same orientation, i.e. the order, clockwise or

counterclockwise, of the corresponding vertices are the same in both triangles.

If the orientation is not the same (only two options are possible) we say that

the two triangles are reversed similar (reversed congruent). Returning to

Figure 4 at page 16, we now see that ABC ∼= A′B′C ′, but DEF
reversed∼

D′E ′F ′.
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Now, by SAS, we write for two triangles in the complex plane,

4z1z2z3 ∼ 4w1w2w3

⇐⇒∣∣∣z2 − z1

z3 − z1

∣∣∣ =
∣∣∣w2 − w1

w3 − w1

∣∣∣ and arg
(z2 − z1

z3 − z1

)
= arg

(w2 − w1

w3 − w1

)
⇐⇒

z2 − z1

z3 − z1

=
w2 − w1

w3 − w1

⇐⇒ (z2 − z1)(w3 − w1) = (z3 − z1)(w2 − w1)

⇐⇒

z1(w2 − w3) + z2(w3 − w1) + z3(w1 − w2) = 0 ⇐⇒

⇐⇒

∣∣∣∣∣∣∣∣
z1 w1 1

z2 w2 1

z3 w3 1

∣∣∣∣∣∣∣∣ = 0. (9)

Equation (9) is very useful. We may, as an example, receive the equation

of a line through two given points from it. Three points z1, z2 and z3 are

collinear (on the same line) if and only if 4z1z2z3 ∼ 4z̄1z̄2z̄3

⇐⇒

∣∣∣∣∣∣∣∣
z1 z̄1 1

z2 z̄2 1

z3 z̄3 1

∣∣∣∣∣∣∣∣ = 0,

which means that if two points, z1 and z2, are known, the line through these

points are given by all z ∈ C fulfilling the equation∣∣∣∣∣∣∣∣
z z̄ 1

z1 z̄1 1

z2 z̄2 1

∣∣∣∣∣∣∣∣ = 0 ⇐⇒ z(z̄1 − z̄2) + z̄(z2 − z1) + z1z̄2 − z2z̄1 = 0. (10)

This is the equation of a line through the points z1 and z2.

Equation (9) is also useful if we want to study equilateral triangles. The

simplest equilateral triangle in the complex plane is the one with all vertices
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on the unit circle and one vertex in (1, 0). We see that if we define the

complex number ω as

|ω| := 1 arg ω := 120◦,

it follows easily that 41ωω2 in Figure 8 is exactly this triangle.

ω
2

1

ω

ℑ

ℜ

Figure 8: The equilateral triangle formed by the cubic roots of one in the

complex plane

This definition gives ω2 = ω̄, since arg ω2 = 2 arg ω = 240◦, <ω2 = cos 240◦ =

cos 120◦ = <ω and =ω2 = sin 240◦ = − sin 120◦ = −=ω. Further we have

ω3 = 1 = (ω2)3, so 1, ω and ω2 are the cubic roots of one.13 Noting that

=ω = sin 120◦ = −1
2

and using (6) we get that ω fulfils the equation

ω2 + ω + 1 = 0. (11)

The conclusion is that 4z1z2z3 is equilateral if and only if it is similar to

41ωω2 or 41ω2ω depending on the orientation of 4z1z2z3, i.e. if and only

if ∣∣∣∣∣∣∣∣
z1 1 1

z2 ω 1

z3 ω2 1

∣∣∣∣∣∣∣∣ = 0 or

∣∣∣∣∣∣∣∣
z1 1 1

z2 ω2 1

z3 ω 1

∣∣∣∣∣∣∣∣ = 0

13According to the factorisation theorem ([2] Beachy and Blair 2006, chapter 4.2) these

are the only roots.
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4 ANALYSIS

which in turn is equivalent to

z1 + z2ω + z3ω
2 = 0 or z1 + z2ω

2 + z3ω = 0. (12)

Now we are ready to face the theorems this thesis set out to deal with.

4 Analysis

In this section, the main one of this thesis, we will look at four theorems in

plane geometry and several proofs of each theorem. The proofs will differ

in their main idea, and at least one proof of each theorem will use theory

of complex numbers. We will analyse the proofs in the sense of looking at

what theory is prerequisite knowledge and discuss how easy the proof is to

grasp. The arrangement of the theorems is such that the level of difficulty is

increasing.

4.1 The Inscribed angle theorem

This is a theorem which students encounter early in upper secondary school

mathematics. Since the theorem concerns angles only, and hence is indepen-

dent of the use of a length unit, we may without loss of generality consider

only circles of radius one, which might simplify the calculations a little. How-

ever, this insight might demand a higher ability of abstraction and therefore

we will regard the radius as arbitrary.

Theorem 1 (The Inscribed angle theorem). Given a circle with center O

and radius r, and two points A and B on the circle. The central angle ]AOB

is twice the inscribed (peripheral) angle ]APB, where P is any point on the

longer arc from A to B on the circle.

The first proof we will look at is done in two steps, first a special case is

proved and the we generalise the proof to all possible cases. The special case

is the one where the line AP (or BP ) passes through the midpoint O.
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A

O

P

B

α

γ

β

β

Figure 9: The central and one inscribed angle of the two points A and B

Proof (special case) by identifying angles. The situation is as in Fig-

ure 9, and we wish to show that α = 2β. Since the triangle BOP is isosce-

les (two of the sides are of the same length as the circle’s radius) we have

β represented twice. Due to the angle sum of a triangle being 180◦, we

get γ = 180◦ − 2β, which can be rewritten as β = 180◦−γ
2

. But we obvi-

ously have α + γ = 180◦, in turn equivalent to γ = 180◦ − α, and therefor

β = 180◦−(180◦−α)
2

= α
2

and the special case has been proved.

Let us now proceed to the general case presented in Figure 10, where the

point P ′ is any point on the circle.

Generalisation of the proof. We want to show that ]AP ′B = β and

know from the special case that ]AOB = 2β. With the helping line segments

AB and OP ′ we get three more isosceles triangles AOB, AOP ′ and BOP ′

and hence δ, θ and ω are represented twice each. From the angle sum in

AOB we know 2β + 2δ = 180◦ which is equivalent to β = 90◦ − δ. We need
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P

P’

B
A

θ

2β

ω

θ
ω

δ
δ

β

O

Figure 10: Two inscribed angles of the two points A and B

to show that ω + θ = β. The angle sum in AP ′B gives us 2δ + 2θ + 2ω =

180◦ ⇐⇒ ω +θ = 90◦− δ, but since we know β = 90◦− δ, we get ω +θ = β.

Figure 10 shows only the situation where BP ′ is situated between BO and

BP . Strictly we have two more situations to consider, when BP ′ is on the

other side of BP and when BP ′ is on the other side of BO (but still in the

circle of course). These situations can be handled in a similar way as the one

above. The difference is in the expression for the angle sum in AP ′B, where

some signs change. The reasoning of extracting an expression for the angle

]AP ′B and conclude that it is equal to β is still valid, and hence also the

proof.

Theorem 1 can also be proved using complex numbers and the idea that led

to the following proof was inspired by [14] Sundelin (2005), although it is not

to be found there, and was simplified with great aid from Christian Gottlieb.

In this case we do not have to identify any isosceles triangles or similar angles

27



4.1 The Inscribed angle theorem 4 ANALYSIS

z−

z−
P

−

z

P

α

β

ℜ

ℑ

z−P

Figure 11: Circle and angles in the complex plane

using known geometry. The result follows from algebraic calculations. The

key is to realise that regardless of the arrangement of A, B and P , we can

always place the circle in the complex plane in such a way that the centre

of the circle O is in the origin and the points A and B corresponds to the

complex numbers z and its complex conjugate z̄, see Figure 11. This gives

us the situation arg z̄ = − arg z and |P | = |z| = r.

Proof using complex numbers. Place the circle in the complex plane as

described above. We see in Figure 11 that our task is to prove α = β. We

have

α = β ⇐⇒ arg z = arg(z − P )− arg(z̄ − P )

and by Lemma 2 (a) in Section 3 we get

α = β ⇐⇒ arg z = arg(
z − P

z̄ − P
) ⇐⇒ z − P

z̄ − P
= tz

for some t ∈ R+. A negative t would mean arg z = 180◦ + arg(z − P ) −
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arg(z̄ − P ) which is not what we are trying to prove. So let us look closely

on z−P
z̄−P

to see if we can prove it to equal tz for some t ∈ R.

z − P

z̄ − P
=

(z − P )(z̄ − P )

(z̄ − P )(z̄ − P )
=

(z − P )(z̄ − P )

|z̄ − P |2

and we see that the denominator is real and positive, so we can focus on the

numerator.

(z − P )(z̄ − P ) = (z − P )(¯̄z − P̄ ) = (z − P )(z − P̄ ) = z2 − z(P + P̄ ) + PP̄

Now, since by (7) on page 20, PP̄ = |P |2 = |z|2 = zz̄, we further get

(z−P )(z̄ − P ) = z2−z(P +P̄ )+zz̄ = z
(
z−(P +P̄ )+z̄

)
= z 2(<z −<P )︸ ︷︷ ︸

∈R by (6) on page 20.

We see that we need <z > <P , which can always be made sure by the choice

of A or B as z. Since t = 2(<z−<P )
|z̄−P |2 ∈ R+, the proof is complete.

Maybe the most difficult part of the above proof is to realise we can use

PP̄ = zz̄. If one wishes to avoid this problem it is possible to come to the

same conclusion by regarding the coordinates of each point, say z = (x, y),

z̄ = (x,−y) and P = (a, b) where x2 + y2 = a2 + b2, and do the calculations.

A warning, however, this approach is more cumbersome.

Corollary 1. The triangle with one vertex on the half circle combining the

other two is a right triangle.

Proof. In this special case z is purely imaginary and hence β = arg z =

90◦.

Theorem 1 has now been proved twice. The first proof relies much on the

idea of identifying or constructing isosceles triangles. It is not very difficult

to understand that such triangles exists due to the fact that one angle in

focus is the one in the midpoint of the circle. This makes sure that every
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triangle with the midpoint as one of its vertices (and of course the other two

vertices on the circle) in fact has to be isosceles. Another important part of

the proof is that the third angle in a triangle is known if the other two are

so. This is basic knowledge in intermediate school mathematics and should

be known to anyone facing this problem. Altogether we can conclude that

the prerequisite for this proof is very basic, but some creativity is needed in

order to come up with it.

The second proof, based on theory of complex numbers, has its fundamental

part in the idea to place the circle in the complex plane so that A and B

correspond to each others conjugates. Then the powerful results (6) and (7)

can be used. The great advantage of this proof compared to the first one is

that once the placement of the circle is done, almost no creativity at all is

needed. We can easily see, using Lemma 2, what we are looking for, and we

get there by simply ’counting on’. The identification of PP̄ = zz̄ can be a

problem, but as commented above this identification is not necessary – mere

time saving.

So, where exactly are we using the properties of A, B and P being repre-

sented by complex numbers? First of all when we use Lemma 2 to get the

simplification arg(z − P ) − arg(z̄ − P ) = arg z−P
z̄−P

of the angle between two

vectors as the angle of one vector (relative one basic vector). There is no

such tool available when dealing with vectors in R2 not considered as complex

numbers. Also the special property (7) is unique for the complex numbers

and is essential in the proof. If we, for example, would try to prove the the-

orem using dot product14, which also deals with angles between two vectors,

we would run into trouble trying to express the lengths of
−→
PA and

−−→
PB.

14Se Section 4.2 for definition.
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4.2 The formulae for sin(x± y) and cos(x± y)

Our next theorem, the addition formulae for the trigonometric functions sin

and cos, are introduced to students taking higher mathematics courses in

upper secondary school, but is also part of the first university course in cal-

culus. Since the theorem mainly belongs to the analysis field of mathematics,

radians rather than degrees will be used when dealing with angles.

Theorem 2 (Addition and subtraction formulas). The following equalities

hold

sin(x + y) = sin x cos y + cos x sin y (13)

sin(x− y) = sin x cos y − cos x sin y (14)

cos(x + y) = cos x cos y − sin x sin y (15)

cos(x− y) = cos x cos y + sin x sin y. (16)

Before looking at an actual proof, let us just note that if we can prove one of

these formulae, the other three will follow easily from the known equalities

cos(−x) = cos x, sin(−x) = − sin x, cos(π
2
−x) = sin x and sin(π

2
−x) = cos x,

which we do not prove but, however, are easy to accept when a picture is

drawn. As an example (15) is obtained from (13) as

cos(x + y) = sin
(π
2
− (x + y)

)
= sin

(
(
π

2
− x) + (−y)

) use (13)
=

= sin(
π

2
− x) cos(−y) + cos(

π

2
− x) sin(−y) = cos x cos y − sin x sin y

and with the exact same technique any of (13) - (16) can be obtained from

any of the others.
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x−y A
x

yx−y

P

Q

B

O

Figure 12: The unit circle

Now, let us take a look at some ways to prove one of the equalities. The first

one seems to be the one most common in textbooks to a first (university)

course in calculus. It can be found in [1] and [7].

Proof using coordinates on the unit circle. In Figure 12 we have A =

(1, 0) and, by definition of cos and sin, P = (cos x, sin x), Q = (cos y, sin y)

and B =
(
cos(x − y), sin(x − y)

)
. From the figure we also realise that the

two distances PQ and BA are equal since, by SAS, POQ ∼= BOA, so (4) on

page 14 gives

(cos x− cos y)2 + (sin x− sin y)2 =
(
1− cos(x− y)

)2
+
(
0− sin(x− y)

)2
and further we have the following equivalences,

cos2 x + cos2 y − 2 cos x cos y + sin2 x + sin2 y − 2 sin x sin y =

= 12 + cos2(x− y)− 2 cos(x− y) + sin2(x− y)

⇐⇒
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cos2 x + sin2 x︸ ︷︷ ︸
=1

+ cos2 y + sin2 y︸ ︷︷ ︸
=1

+2 cos x cos y + 2 sin x sin y =

= 1 + cos2(x− y) + sin2(x− y)︸ ︷︷ ︸
=1

+2 cos(x− y)

⇐⇒

2 + 2 cos x cos y + 2 sin x sin y = 2 + cos(x− y)

⇐⇒

cos x cos y + sin x sin y = cos(x− y)

and we are done.

The next proof we shall look at also makes use of Figure 12, but this time

the tool dot product from linear algebra is used to shorten the details. [16]

Tengstrand (2005, chapter 4) makes the following definition.

If u and v are two vectors in the plane not equal to the zero vector, we define

u · v := |u||v| cos α

where α is the angle between u and v. u · v is called the dot product of u and

v.

Note how u, v ∈ R2 but u · v ∈ R. Now we easily see in Figure 12 that
−→
OP ·

−→
OQ = |

−→
OP ||

−→
OQ| cos(x−y) = 1 ·1 ·cos(x−y). (From now on we write P

for the vector
−→
OP and so on.) So if we can somehow get another expression

for P · Q, this might help. In [16] Tengstrand we also find the following

theorem, which we here will use as a lemma.

Lemma 3. If the vectors u and v have the coordinates (u1, u2) and (v1, v2)

respectively in an orthonormal basis in the plane, then

u · v = u1v1 + u2v2.

Lemma 3 will not be proved here, but follows from the definition of an or-

thonormal basis and the following rules for vectors u, v, w and scalar λ.
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(1) u · v = v · u

(2) u · (v + w) = u · v + u · w

(3) u · (λv) = λ(u · v)

(4) u · u ≥ 0 and u · u = 0 =⇒ u = 0

which in turn can be shown to follow from the definition of dot product. Now

we are ready to prove Theorem 2.

Proof using dot product. As we have already seen the following holds

cos(x− y) = P ·Q

and using Lemma 3 and remembering the coordinates for P = (cos x, sin x)

and Q = (cos y, sin y) we get

cos(x− y) = P ·Q = cos x cos y + sin x sin y

which is exactly what we were seeking.

The next proof we will encounter, mainly inspired by [13] Stillwell (2005,

chapters 3.6 and 4.7), also makes use of some linear algebra. The idea is to

note that the rotation of the point (1, 0) in the plane x + y radians around

the origin is, of course, the same as first rotating it x and then y radians,

and finding out how the matrix looks for a rotation. Last we can use the

result from linear algebra that a linear mapping of a point in the plane is

the same as multiplying the vector representing the point with the matrix

representing the mapping. Let us do this heuristically in some detail.

Proof using linear mapping. If a mapping is given by f : R2 −→ R2,

then it is linear if and only if f(λ1u1 + λ2u2) = λ1f(u1) + λ2f(u2) for all
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Figure 13: Rotation 180◦. λ1 = 1
2

and λ2 = 2

λ1, λ2 ∈ R and u1, u2 ∈ R2. That a rotation around any point is a lin-

ear mapping is realised easily when a picture is drawn, see Figure 13 for a

simplified example.

Let us find out how to construct the matrix for rotation α radians around

the origin. We are looking for a function φ : R2 −→ R2. If we consider the

standard basis (e1, e2) of the plane and use the properties of a linear mapping

we see that

φ
(
(a, b)

)
= φ(ae1 + be2) = aφ(e1) + bφ(e2).

Now, by the definition of sin and cos, we get that φ(e1) = φ
(
(1, 0)

)
=

(cos α, sin α) and, from the known equalities cos(α+ π
2
) = − sin α and sin(α+

π
2
) = cos α, φ(e2) = φ

(
(0, 1)

)
= (− sin α, cos α), i.e.

φ
(
(a, b)

)
= a(cos α, sin α)+b(− sin α, cos α) = (a cos α−b sin α, a sin α+b cos α).

With matrix notation we have

φ

(
a

b

)
=

(
cos α − sin α

sin α cos α

)(
a

b

)
.

Beginning in (1, 0) and first rotating x radians takes us, by definition of sin

and cos, to the point (cos x, sin x). Further rotation of this point y radians

is given by(
cos y − sin y

sin y cos y

)(
cos x

sin x

)
=

(
cos y cos x− sin y sin x

sin y cos x + cos y sin x

)
,
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and once again by definition of sin and cos we get

cos(x + y) = cos x cos y − sin x sin y

sin(x + y) = cos x sin y + sin x cos y

and the proof is complete.

An alternative proof would be to regard the rotation of x + y radians as the

composite of the two linear mappings rotating x and y radians respectively,

and use that the composite of two linear mappings is represented by the

matrix product of the two matrices. We would get(
cos(x + y) − sin(x + y)

sin(x + y) cos(x + y)

)
=

(
cos x − sin x

sin x cos x

)(
cos y − sin y

sin y cos y

)
=

=

(
cos x cos y − sin x sin y − cos x sin y − sin x cos y

cos x sin y + sin x cos y cos x cos y − sin x sin y

)
and by equating the entries in the first column of the first and last matrices

we reach our goal.

The last proof we look at is the only one involving complex numbers. The

main idea is to make use of Lemma 2 in Section 3.

Proof using complex numbers. Let z = (a, b) and w = (c, d) be complex

numbers such that |z| = |w| = 1, arg z = x and arg w = y. By (5) on page

19 we have

sin x =
b

1
= b, cos x =

a

1
= a, sin y =

d

1
= d and cos y =

c

1
= c,

and we are interested in

sin(x + y) = sin
(
arg(zw)

)
=
=(zw)

|zw|
=
=(zw)

|z||w|
=
=(zw)

1
= =(zw).

But zw = (a, b) · (c, d) = (see Definition 1) = (ac− bd, ad + bc), so we get

sin(x + y) = =(zw) = ad + bc = cos x sin y + sin x cos y
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and analogously

cos(x + y) = <(zw) = ac− bd = cos x cos y − sin x sin y

and we are done.

We have now seen four different proofs of Theorem 2. The main idea in the

proof using coordinates on the unit circle is to construct two distances we

know to be equal, each involving the angle x − y, and plug the expressions

of the two distances into an equation. The reason we are able to express the

two distances in a bountiful way is that the necessary coordinates are known

from the definition of sin and cos.

The prerequisite for this proof is only the definition of sin and cos, how the

coordinates of a point on the unit circle is connected with these and how to

calculate the euclidean distance between two points in the plane with given

coordinates. All of this is basic mathematics from upper secondary school.

The difficult part in grasping the proof is probably to come up with the idea

of constructing the two equal distances, which might not be a natural first

approach to the problem.

The second proof, the one using dot product, is only available to the reader

who has knowledge of dot product, and therefor the concept of vectors.

Lemma 3, which we again emphasise has not been shown, also need to be

known, but is probably what most students taking a first course in linear

algebra considers the definition of dot product in the plane. With these tools

available the proof is rather straightforward, and the key is to identify the

angle x − y as the angle between two vectors with angles x and y respec-

tively from the positive part of the horizontal axis. Note that the point B

in Figure 12 is superfluous in this proof, which might be an advantage in

understanding or constructing it.

In the proof based on linear mappings the reader has to be familiar with the

concept and definition of matrices and matrix multiplication. Furthermore
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some theory about linear mappings is necessary, and the ability to identify a

rotation as a linear mapping along with the knowledge of how to construct

the corresponding matrix. All of this is usually included in a first course in

linear algebra. A step one has to take in ones mind is that of regarding an

angle as a rotation, and specifically to regard the sum of two angles as the

effect of two rotations. This is the idea of the proof, and from it the result

follows easily.

When complex numbers are used to prove the theorem, the thing is to con-

sider x + y as the sum of arguments of two complex numbers – something

that should be natural. Then one has to think of the sum of arguments as

being the argument of another complex number, namely the product of two

complex numbers. This should not be a major difficulty to anyone enough

familiar with complex numbers. The only difficulty left is to consider sin

and cos of the arguments of the complex numbers involved. Once again we

emphasise the importance of finding an independent proof of Lemma 2. As

mentioned, familiarity with complex numbers is a prerequisite. This is taught

the last year of some upper secondary school programmes.

Of all the proofs presented above, the one based on dot product is the shortest

and probably the easiest to remember. Yet, the availability of this proof is

limited since it is based on some linear algebra which is not trivial.

4.3 The Nine-point Circle

This theorem states that in any triangle, nine specific points are cocyclic, i.e.

on the same circle (or line, but that is not the case here). The points appear

to be unrelated at a first sight. In triangle ABC in Figure 14 we denote the

midpoints of the sides by A′, B′ and C ′; the feet of the altitudes by D, E

and F ; the orthocenter by H and the midpoints of the line segments from H

to the vertices by K, L and M .

Theorem 3 (The Nine-point Circle). In any triangle, the following points
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Figure 14: The nine points of the Nine-point Circle

are on the same circle with half the radius of the circumcircle:

• The midpoints of the sides.

• The feet of the altitudes.

• The midpoints of the segments joining each vertex with the orthocenter.

This circle is called the Nine-point Circle and has its center in the middle of

the segment joining the orthocenter with the circumcenter of the triangle.15

Note how the orthocenter is constructed in Lemma 1 in Section 3. We will

look at two proofs of the theorem, of which the first, inspired by [4] Coxeter

and Greitzer (1967, chapter 1.8) and by [15] Tambour (2002, chapter 16), uses

classic geometry only whilst the second, found in [6] Hahn (1994, chapter 2.4),

uses complex numbers. Before looking at the first one we remember that all

four vertices of a rectangle lie on the same circle, with diameter equal to the

length of any of the diagonals of the rectangle and center on the midpoint of

15This line segment is called the Euler line, and also contains the centroid.
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Figure 15: Three quadrangles in ABC

any of the diagonals of the rectangle (the lengths are equal and the midpoints

coincide).

Proof using classic geometry. First we wish to prove that the quadran-

gles B′A′LK, MLC ′B′ and A′C ′KM (see Figure 15) are rectangles. If this is

the case then they all have the same circumcircle since they have one diagonal

in common with each of the others.

To prove that B′A′LK is a rectangle we start by noting that, by SAS,

B′CA′ ∼ ACB, since the two triangles have ]C in common and B′ and

C ′ bisects the sides CA and CB respectively. Hence B′A′ is parallel to AB

and half as long. By exactly the same reasoning we conclude that KL is

parallel to AB and half as long, this time considering the similar triangles

KHL and AHB. We now know that B′A′ and KL are parallel and of the

same length, and hence B′A′LK is a parallelogram. It remains to show that

B′K (and A′L) are perpendicular to B′A′ (and KL).

The same reasoning as above gives us that CAH ∼ B′AK and CBH ∼
A′BL. This shows that B′K as well as A′L is parallel to CH, but by definition

CH is perpendicular to AB. We have proved that the parallelogram B′A′LK
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Figure 16: Two triangles in ABC

is in fact a rectangle. The same reasoning holds for MLC ′B′ and A′C ′KM

as well, and we know that the points A′, L, C ′, K, B′ and M are on the

same circle. We also know that A′K, B′L and C ′M are three diameters of

this circle.

The next step is to show that the three remaining points, D, E and F , are

also on the same circle. Since A′K is a diameter of the circle and ]A′DK

by definition is right, it follows immediately from Corollary 1 in Section 4.1

(or actually from its converse, which can also be shown is true) that D is on

the circle. Likewise it follows that E and F are on the circle from the fact

that B′L and C ′M are diameters of the circle and ]B′EL and ]C ′FM are

right angles.

We have now proved the existence of the Nine-point Circle, but still remaining

is its radius and center. Concider the two triangles A′B′C ′ and KLM in

Figure 16. According to SSS, A′B′C ′ ∼ ABC and KLM ∼ ABC (in length

scale 1:2), since every side in each is exactly half the length of a corresponding

side in ABC, and hence A′B′C ′ ∼= KLM . We have proved above that they

both have the Nine-point Circle of ABC as their circumcircle. We realise that
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one is derived from the other by a rotation through 180◦ about the center

of the circle, since the sides B′A′ and KL are parallel. But this rotation

through 180◦ must interchange the orthocenters of the two triangles, so the

center of the Nine-point Circle must be situated in the midpoint between the

two orthocenters. From Figure 16 it should be obvious that the orthocenter

of KLM is H – the same as the orthocenter of ABC, whilst the orthocenter

of A′B′C ′ is O – the same as the circumcenter of ABC.

From this we conclude that the center of the Nine-point Circle is the midpoint

of the segment joining the orthocenter with the circumcenter of the triangle,

i.e. the Euler line. Further, since the Nine-point Circle is also the circumcircle

of a triangle with sides half as long as the original triangle, the radius of the

Nine-point Circle is half that of the circumcircle, and the proof is complete.

Our next goal is to prove the theorem using complex numbers.

Proof using complex numbers. Let ABC be any triangle and place it in

the complex plane such that its circumcenter is in the origin. Now all possible

points concerning the triangle correspond to a certain complex number. As

before we have |A| = |B| = |C| = r ∈ R, where r equals the radius of the

circumcircle. We define H := A + B + C (which we know from the proof

of Lemma 1 (c) in Section 3 to be the orthocenter of ABC) and by simple

(real) vector geometry we get the following definitions, if we let the points

A′, B′, C ′, D, E, F , K, L and M have the same meaning as above.

A′ :=
B + C

2
(and analogous for B′ and C ′)

K :=
A + H

2
(and analogous for L and M).

We wish to prove that the distance from 1
2
H to each of these points are 1

2
r,

but note that D, E and F lacks obvious definitions. We begin with the

distance between 1
2
H and A′, B′ and C ′ respectively.
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Figure 17: The triangle ABC and its circumcircle in the complex plane

First of all, note that the three cases are completely analogous, so it is enough

to consider one of them. Let us choose the distance from 1
2
H to A′.∣∣∣∣A′ − 1

2
H

∣∣∣∣ =

∣∣∣∣B + C

2
− A + B + C

2

∣∣∣∣ =

∣∣∣∣−A

2

∣∣∣∣ =
1

2
r

and this part of the proof is done.

Our next goal is to show that the distance from 1
2
H to each of K, L and M

is 1
2
r. As above the three cases are analogous, and we may consider only one.

Let us choose the distance
∣∣K − 1

2
H
∣∣.∣∣∣∣K − 1

2
H

∣∣∣∣ =

∣∣∣∣A + H

2
− H

2

∣∣∣∣ =

∣∣∣∣A2
∣∣∣∣ =

1

2
r

and also this part of the proof is done with only very simple calculations so

far. Yet to come though, is the tricky part – to show that also the distance

from 1
2
H to D, E and F equals 1

2
r.

Of course also these three cases are completely analogous, so we only need

to consider one, say
∣∣D − 1

2
H
∣∣ = 1

2
r. The tricky part is that we have no easy
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definition of D. Before we consider D further, let us look at another complex

number, namely the one where the extension of the altitude from vertex A

meets the circumcircle again. Let us call this number D′ (see Figure 17).

About D′ we know that
−−→
AD′ ⊥

−−→
BC and that |D′| = r. As a consequence of

first Lemma 2 (a) in Section 3 and then (8) on page 20

−−→
AD′ ⊥

−−→
BC ⇐⇒ D′ − A

C −B
purely imaginary ⇐⇒ D′ − A

C −B
+

D̄′ − Ā

C̄ − B̄
= 0 ⇐⇒

⇐⇒ D′ − A

C −B
+

r2

r2
·

1
D′ − 1

A
1
C
− 1

B

= 0 ⇐⇒ D′ − A

C −B
+

C

D′ ·
B

A
· A−D′

B − C
= 0 ⇐⇒

⇐⇒ D′ − A

C −B
(1 +

C

D′ ·
B

A
) = 0 ⇐⇒ C

D′ ·
B

A
= −1 ⇐⇒

D′ = −C ·B
A

. (17)

Now we note the interesting fact that D′ and H are equidistant from B (and

C) since

|B −D′| =
∣∣∣∣B +

C ·B
A

∣∣∣∣ =

∣∣∣∣BA (C + A)

∣∣∣∣ =
1

1
|C + A| = |C + A|

and

|B −H| = |B − (A + B + C)| = |A + C|

and therefore the triangle HBD′ is isosceles. Since DB by definition is

perpendicular to HD′, we know that D is the midpoint of the segment joining

H with D′. Hence

D =
1

2
(H + D′) =

1

2
(H − C ·B

A
)

and ∣∣∣∣D − 1

2
H

∣∣∣∣ =

∣∣∣∣12(H − C ·B
A

)− 1

2
H

∣∣∣∣ =
1

2

∣∣∣∣−C ·B
A

∣∣∣∣ =
1

2
· r

2

r
=

1

2
r.

We have shown that all nine points are at the distance 1
2
r from the midpoint of

the segment joining the orthocenter with the circumcenter, hence the theorem

is proved.
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If we choose to place the triangle so that =B = =C, which implies C = −B̄

and D′ = Ā, we can simplify the proof further. Note that this is possible

without loss of generality. In this case we get the following proof of HBD′

being isosceles.

HBD′ isosceles ⇐⇒ ]HBC = ]D′BC ⇐⇒

⇐⇒ arg(
−B̄ −B

H −B
) = − arg(

−B̄ −B

Ā−B
) ⇐= (

−B̄ −B

H −B
) = (

−B̄ −B

Ā−B
) ⇐⇒

H −B = A− B̄ ⇐⇒ A + C = A + C

which is obviously the case.

So we have seen two proofs of Theorem 3. One based on similar triangles,

where the proof is two-parted. The first part is the proof of all nine points

being on the same circle, a part where the main thought is to identify three

quadrangles connecting six of the nine points as vertices in rectangles. This

is done by, through similar triangles, identifying the sides of the quadrangles

as being parallel to either a side or an altitude in the triangle.

The second part of the proof is the one identifying the center and radius of

the circle. This part is based upon finding two triangles partly being similar

to (and in length scale 1:2 of) the original triangle, partly having all vertices

on the Nine-point Circle and partly being rotated 180◦ from each other. Then

we must realise what this means for the center of the Nine-point Circle.

In the other proof, based on complex numbers, the approach is quite different.

Instead of first finding the circle and then its radius and center, we suppose

the center is known (or can be intelligently guessed) and try to show that

all nine points are equidistant to the center. If we do not know it from the

beginning, how do we come up with the idea of this point being an important

one in the triangle? This is one of the tricky parts of this proofs. The idea

of placing the circumcenter in the origin of the complex plane is not equally

tricky, partly since that is already done in the proof of Lemma 1 and partly

since this gives the property of all vertices in the triangle having the same

modulus.
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Once this is accomplished, the only obstacle left is really the crucial iden-

tification of the isosceles triangle. This is the only place we use properties

of complex numbers, when we make use of the fact that the ratio of two

perpendicular vectors is purely imaginary, and hence can be expressed as an

equation using the complex conjugate. This way any of the endpoints of the

two vectors can be expressed from the other three. This step would be very

difficult not looking at the points as complex numbers.

Note how, in the first proof, the points A′, B′, C ′, K, L and M seem to be

the tricky ones to handle, while D, E and F are easy to show the property

for when the others are known. In the second proof it is the other way

around. Could we combine the two proofs in a way to simplify them both?

The answer is yes, and the crucial thing is to identify the diameters known

in the first proof also in the second one. This combining proof is not to be

found in any of the references.

Proof by combining the other two. Place any triangle ABC in R2 with

its circumcenter in the origin. Note the following:

|A| = |B| = |C| = r,

H := A + B + C,

A′ :=
B + C

2
(and analogous for B′ and C ′),

K :=
A + H

2
(and analogous for L and M).

Now we investigate distances from 1
2
H.∣∣∣∣A′ − 1

2
H

∣∣∣∣ =

∣∣∣∣B + C

2
− A + B + C

2

∣∣∣∣ =

∣∣∣∣−A

2

∣∣∣∣ =
1

2
r,

∣∣∣∣K − 1

2
H

∣∣∣∣ =

∣∣∣∣A + H

2
− H

2

∣∣∣∣ =

∣∣∣∣A2
∣∣∣∣ =

1

2
r.

∴ A′, B′, C ′, K, L and M are on the pursued circle.
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Further note that A′K (and B′L and C ′M) are diagonals of the circle since

|A′ −K| =
∣∣∣∣B + C

2
− A + H

2

∣∣∣∣ =
1

2
|−2A| = |A| = r,

and hence D (and E and F ) are on the circle by the reversion of Corollary

1 since ]A′DK is right (as well as ]B′EL and ]C ′FM).

This last proof requires neither identification of similar or isosceles triangles

nor any knowledge of complex numbers. It is very straightforward when

Lemma 1 and Corollary 1 are used. Still it requires an intelligent guessing

of where the center of the Nine-point Circle should be and some very basic

knowledge of vector geometry.

4.4 The Morley trisector theorem

This theorem, the last one we will encounter in this thesis, was first discovered

in the early 20th century16 by Frank Morley (1860-1934), an English math-

ematician active at Cambridge university at the time. It was not published

immediately after the discovery, but several years later. One interesting thing

about this theorem is that it involves the trisection of an arbitrary angle, a

construction that has been proved to be impossible using only straightedge

and compass ([2] Beachy and Blair, 2006 chapter 6.3). So the equilateral

triangle mentioned in the theorem can not be constructed, but nevertheless

the theorem holds.

Theorem 4 (Morley’s theorem). In any triangle, the intersections of the

adjacent pairs of angle trisectors are vertices in an equilateral triangle.

As with most theorems, there are several proofs of this one. We will only

look at two of these, of which none is Morley’s original one. The first is found

16Late 19th century, according to some sources.
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Figure 18: The filled equilateral triangle in Morley’s theorem

in [4] Coxeter and Greitzer (1967, chapter 2.9) but was discovered by M. T.

Naraniengar in 1909. Before we can look at the actual proof, however, we

need a lemma.

Lemma 4. If four points A, B, C and D satisfy

|AB| = |BC| = |CD| (18)

and

]ABC = ]BCD > 60◦ (19)

then they are cocyclic. Let us denote ]ABC (= ]BCD) by 180◦ − 2α (this

seems strange, but will eventually facilitate things). If another point, P ,

satisfies

]APD = 3α

and is on the opposite side of AD as B and C, then P is also on the same

circle as A, B, C and D.

Before proving the lemma, let us do some heuristic reasoning as to why it is

true. Concider the two middle points B and C. There are infinitely many

circles passing through these points, but all of them are symmetric with

respect to the perpendicular bisector of the segment BC. If we choose a

point on one side of this perpendicular bisector we can always find a circle

passing through it. Due to the construction of the uttermost points A and D,

these are symmetric with respect to the perpendicular bisector mentioned,
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A

B

C

D

P

O

3α

2α 2α

2α

Figure 19: Five cocyclic points

and hence both are on the constructed circle. To find the fifth point P , we

only need to choose one so that the angle ]APD is adequate.

Proof of Lemma 4. Let the points A, B, C and D satisfy (18) and (19), and

let the angle bisectors of ]ABC and ]BCD meet at O. Draw the segments

OA and OD. The triangles AOB, BOC and COD are congruent by SAS.

Furthermore they are isosceles since BOC obviously is so. The angles at O

are 180◦ − 2(90◦ − α) = 2α. Since |OA| = |OB| = |OC| = |OD| the first

part of the lemma is proved, and the second part follows from the reversion

of the Inscribed angle theorem (Theorem 1 in Section 4.1).

In fact we will also need the Inscribed angle theorem itself as a lemma when

proving Theorem 4. The structure of the proof is to first construct an equi-

lateral triangle with one vertex in the intersection of two trisectors, and then

prove that the other two vertices are on the trisectors of the third angle.

Proof by Naraniengar. Let ABC be any triangle and let the intersections

of the trisectors of A and B be called P and Q (Q being the the intersection
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Figure 20: Construction of the equilateral triangle in Morley’s theorem

of the adjacent trisectors). Note how Q is on the bisectors of ]PAB and

]PBA, and hence is the incenter of ABP . Lemma 1 (b) in Section 3 now

gives that PQ is the angle bisector of ]APB. Now construct the points

R and S, on the line segments AP and BP respectively, so that ]PQR =

]PQS = 30◦.17 By ASA we have that PQR ∼= PQS, and hence QRS is an

equilateral triangle since ]RQS = 60◦.

Another result is that RPS is isosceles, and by regarding the angle sum

in APB and RPS (and noting that ]RPS = ]APB) we get ]SRP =

]RSP = α + β. We can define the angle C to be 3γ, and then get, from the

angle sum in ABC, 3α + 3β + 3γ = 180◦, or equivalently α + β = 60◦ − γ.

So we know ]SRP = 60◦ − γ and therefore

]QRP = ]QSP = 120◦ − γ.

Next we define the points R′ and S ′, on AC and BC respectively, so that

17Note how this is possible if and only if ]AQP > 30◦ and ]BQP > 30◦. This is the

case since ]AQP = 180◦ −]QPA− α, and ]QPA < 90◦ (since P is vertex in a triangle

and PQ is the angle bisector of that vertex) and 3α < 180◦ so α < 60◦, and analogously

for ]BQP .
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|AR′| = |AQ| and |BS ′| = |BQ|. By SAS we get that ARQ ∼= ARR′ and

BSQ ∼= BSS ′, and hence |R′R| = |RS| = |SS ′|. What we further need, in

order to use Lemma 4, is an evaluation of the angles ]R′RS and ]RSS ′.

Since ARQ ∼= ARR′, and P is on the extension of AR, also APQ ∼= APR′,

and then obviously also PRQ ∼= PRR′. Hence ]SRR′ = ]PRR′+]SRP =

]PRQ + ]SRP = (120◦ − γ) + (60◦ − γ) = 180◦ − 2γ, and by the same

reasoning ]RSS ′ = 180◦−2γ. Now Lemma 4 gives that the points R′, R, S,

S ′ and C are cocyclic, and further Theorem 1 gives that ]R′CR = ]RCS =

]SCS ′ = γ, since all the chords R′R, RS and SS ′ are of the same length.

The proof is complete.

Next we will prove the theorem with aid from complex numbers as done in

[6] Hahn (1994, chapter 2.9). The calculations will be longer than in the

proof above, but we will not let this discourage us since they are also quite

straight ahead. In fact the resolving ideas in this proof is simpler than the

ones in Naraniengar’s proof above. First we need a lemma.

Equation (10) on page 23 gives us the equation of the line through z1 and z2.

If z1 and z2 further are on the unit circle, we may use that, by (8) on page

20, z̄i = 1
zi

, i = 1, 2, which reduces (10) to

z + z1z2z̄ = z1 + z2.

So, if the four points z1, z2, z3 and z4 are on the unit circle, the point of

intersection of the lines (extension of the chords) through z1 and z2 and

through z3 and z4 is the solution to the system{
z + z1z2z̄ = z1 + z2

z + z3z4z̄ = z3 + z4

.

Subtracting the second equation from the first gives

z̄(z1z2 − z3z4) = z1 + z2 − z3 − z4 ⇐⇒ z̄ =
z1 + z2 − z3 − z4

z1z2 − z3z4

,
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Figure 21: An arbitrary triangle in the complex plane

and by taking the complex conjugate of each side we have come to the fol-

lowing lemma.

Lemma 5. If |z1| = |z2| = |z3| = |z4| = 1, then the extension of the chords

joining z1, z2 and z3, z4 respectively meet at

z =
z̄1 + z̄2 − z̄3 − z̄4

z̄1z̄2 − z̄3z̄4

.

Now we are ready to prove the theorem.

Proof of Theorem 4 using complex numbers. Without loss of gener-

ality, we may place every vertex of the arbitrary triangle ABC on the unit

circle in the complex plane, and we choose to place vertex A in the point

(1, 0). Further the notation

]AOB = 3γ, ]AOC = 3β, ]AOB = 3α = 360◦ − (3γ + 3β)

will be used. Note how α can be expressed in terms of β and γ as

α = 120◦ − γ − β. (20)
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We are interested in the trisection of the angles at A, B and C, which is the

vector from the vertex to the points trisecting the ’opposite arc’ (another

consequence of Theorem 1). Therefore we interest ourselves in the points

trisecting the arcs
_

AB (not containing C),
_

AC (not containing B) and
_

BC

(not containing A). Let a be the trisecting point nearest to A on
_

AB. Then

the other trisecting point is a2, due to |a| = 1 and Lemma 2 in Section 3.

Analogously the points trisecting
_

AC are b and b2, and note how arg b = −β.

Note further how B = a3 and C = b3. However, the points trisecting
_

BC,

referred to as z1 and z2 in Figure 21, are not as easily expressed. We have

|z1| = |z2| = 1 and

arg z1 = 3γ + α = 2γ − β + 120◦ = 2 arg a + arg b + arg ω = arg(a2bω),

arg z2 = −3β − α = −2β + γ + 240◦ = 2 arg b + arg a + arg ω2 = arg(ab2ω2),

where we have used (20), Lemma 2 and (11) on page 24. Remember the

definition of ω from Section 3, i.e. 1 + ω + ω2 = 0. Now, since equal in both

modulus and argument, we have z1 = a2bω and z2 = ab2ω2, and all that is

left is to use Lemma 5 to calculate the interesting points of intersection and

then use (12) on page 25 to show that this triangle is equilateral.

Let D, E and F be the intersections of the adjacent trisectors of B, C; A, B

and A, C respectively. Then, by Lemma 5, we get

D =
ā2 + b̄3 − b̄2 − ā3

ā2b̄3 − b̄2ā3
=

a−2 + b−3 − b−2 − a−3

a−2b−3 − b−2a−3
=

=
b−3a−3(ab3 + a3 − a3b− b3)

b−3a−3(a− b)
=

ab3 + a3 − a3b− b3

a− b
=

=

a3−b3︷ ︸︸ ︷
(a− b)(a2 + ab + b2) +

ab3−a3b︷ ︸︸ ︷
ab(b2 − a2)

a− b
=

=
(a− b)

[
(a2 + ab + b2)− ab(a + b)

]
a− b

= (a2 + ab + b2)− ab(a + b),

E =
1̄ + a2bω − ā3 − b̄

a2bω − ā3b̄
=

1 + a−2b−1ω−1 − a−3 − b−1

a−2b−1ω−1 − a−3b−1
=
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Figure 22: The angle trisectors of an arbitrary triangle in the complex plane

=
a3b + aω2 − b− a3

aω2 − 1
=

b(a3 − ω3) + a(ω2 − a2)

ω2(a− ω)

=
b(a2 + aω + ω2)− a(a + ω)

ω2
= ω

[
b(a2 + aω + ω2)− a(a + ω)

]
F = . . . similar calculations . . . = ω2

[
a(b2 + bω2 + ω)− b(b + ω2)

]
.

According to (12), and considering the orientation, 4DEF is equilateral if

and only if D + Fω + Eω2 = 0, in turn equivalent to

a2+ab+b2−ab(a+b)+a(b2+bω2+ω)−b(b+ω2)+b(a2+aω+ω2)−a(a+ω) = 0,

which is what we need to show. Multiplying into the parenthesis and rear-

ranging the left hand side we get

a2−a2 + b2− b2 +ab(1+ω2 +ω)+a2b−a2b+ab2−ab2 +aω−aω + bω2− bω2

which is obviously equal to zero, and the proof is complete.
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The last theorem we will make acquaintance with has now been proved twice.

The proof by Naraniengar is based upon a construction of an equilateral

triangle symmetric about the line passing through the intersections of the

adjacent and remote trisectors of two vertices respectively. Once this con-

struction is at place the proof uses the theory of similar triangles (again by

contruction of new points) several times and the angle sum in a triangle, as

well as – the quite intuitive – Lemma 4. One severe pedagogical obstacle is

the lack of motivation for the contructions made. For instance, it is far from

obvious that the point P in Figure 18 should be relevant.

The motivation is far more persuasive in the second proof, with complex

numbers. The reasoning might be something like ’we know the angle bi-

sectors in any triangle are interesting since they are concurrent. Is there

anything interesting about the angle trisectors? Let us place the triangle

in the complex plane (here we have a limited number of rational choices),

extract expressions for these vectors and use our tool for calculating points

of intersection to see what wee get’, and this is basically the entire proof.

The ”tool” mentioned is of course Lemma 5. Note how easy it would be

to generalise the reasoning to the angle n-section of an arbitrary triangle,

something not possible in the proof by Naraniengar.

So, why will it not do with ordinary vector representation of the vertices in

the triangle, why is it important to use complex numbers in the last proof?

We find three striking things, first the simple expressions of the trisection

of the arcs
_

AB and
_

AC in Figure 21, then the possibility of extracting the

expressions for z1 and z2 and also the easy way presented in (12) of deter-

mining whether given points are vertices in an equilateral triangle. The first

two are variations of Lemma 2. Further there is no counterpart to Lemma 5

in the non complex case.

We have now discussed different proofs of four plane geometric theorems,

and especially the use of complex numbers. What is left is a summation of

our results to see what conclusions can be drawn.
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5 Summing up and Conclusions

The four theorems presented in the previous section have two things in com-

mon, they are of plane geometric nature and they can be proved by use

of complex numbers. We will try to generalise the solvent thought in the

different proofs, looking for patterns.

Starting with the proofs based on classic geometry, one thing is striking – the

need for constructions of new objects, may they be points, lines, triangles

or other. In the Inscribed angle theorem we start by constructing a special

case by placing a point where we need it to be. In the first proof of the

formulae for sin and cos, we construct congruent triangles with vertices in

the origin and on the unit circle. In the Nine-point Circle we construct three

rectangles by identifying similar triangles in the first part, and then two

congruent triangles are constructed in the second part. Last, in Morley’s

theorem, there are several constructions of triangles and points in the proof

by Naraniengar.

A second striking thing these proofs have in common is the identification of

similar and/or congruent triangles, either they exist in the first place or are

the results of constructions. Such identifications are present in the proofs

of the last three theorems. Also the angle sum of a triangle seems to be

reappearing.

When it comes to the proofs using some other branch of mathematics, like

linear algebra or complex numbers, the beginning is to realise we are dealing

with something familiar from that branch. Two examples are to connect the

angle between two lines of arbitrary length with the definition of dot product

of vectors in the formulae for sin and cos, and to look at the trisection of

an angle as the argument of a complex number raised to the power three as

done in the proof of Morley’s theorem. When it comes to the proofs using

complex numbers we note that Lemma 2 in Section 3, connecting the product

of two complex numbers with the sum of their arguments and product of their
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modulus, seems to be very applicable, since it is represented in proofs of all

four theorems. Further the results (6) and (7), page 20, on addition and

multiplication of a complex number with its conjugate, and thereby also the

concept of complex conjugate, are important tools.

When using complex numbers, it also seems to be fruitful to place as many

interesting points as possible in the complex plane such that they have mod-

ulus 1. If the interesting points are the vertices of a triangle, this means that

the circumcenter of the triangle is in the origin and the circumcircle is in

fact the unit circle. In doing this, we have infinitely many options of which

basically three are smarter, each represented in a proof in the previous sec-

tion. The first one, represented in the proof of the Inscribed angle theorem,

is to place two of the points such that they are the conjugates of each other,

i.e. if the points are z and w then <z = <w, giving arg z = − arg w. The

other alternative, found in the proof of the Nine-point Circle, is to place two

of the points, say z and w, such that =z = =w, resulting in z = −w̄. The

last smart positioning of the interesting points is to simply let one point be

the simplest possible, namely (1, 0). This gives simple expressions for the

arguments of the other two interesting points, something which is used in

the proof of Morley’s theorem. Which of these three alternatives is best,

is determined by the situation, but at least it leaves us with a very limited

number of options to work our way through.

Once we have identified the tool we wish to use and have placed the problem

in the complex plane in a suitable way, the rest of the proof is often just

algebraic calculations. This is definitely the case in the proof of the Inscribed

angle theorem and Morley’s theorem. One exception is the proof of the

Nine-point Circle, where some creativity is needed in the construction of yet

another point. However, we have seen how this theorem can be proved in an

even simpler way using only real vector algebra.

We conclude that when proving a plane geometric theorem, we often have

two choices. We can find a way to construct geometrical objects so that
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the theorem follows from congruence or similarity, or is obvious; or we can

identify something in the problem which we know we have a fitting tool

for, like for instance a linear mapping, dot product or product of complex

numbers. The former often claims an original idea and results in a beautiful

proof which is easy to follow but difficult to come up with or reproduce. In the

latter, complex numbers are often very powerful – mostly due to the result

presented in Lemma 2, and the proof is often based upon straightforward

calculations which might be difficult to follow but relatively easy, yet time-

consuming, to perform.

58



REFERENCES REFERENCES

References

[1] Adams, Robert A. Calculus: a complete course, Addison-Wesley,

Canada, Fourth edition, 1999

[2] Beachy, John A. and Blair, William D. Abstract Algebra, Waveland

Press, United States of America, Third edition, 2006

[3] Carlström, Jesper. Logik, Matematiska institutionen Stockholms univer-

sitet, Provisional edition: 2006-08-24

[4] Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited, The Mathe-

matical Association of America, United States of America, 1967

[5] Gottlieb, Christian. Funktionslära, Matematiska institutionen Stock-
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