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Abstract. In this thesis we study linear operators on the polynomial
space C[z] that preserve the set of hyperbolic polynomials. A hyper-
bolic polynomial is one with all real zeros (hence an element of the
Laguerre-Pólya class). We present some well known results such as the
Gauss-Lucas Theorem and the Laguerre separation Theorem and we
discuss their importance in view of our topic. The main purpose of
this thesis is to describe all finite order linear differential operators with
polynomial coefficients that are hyperbolicity preserving (HPO). Quite
recently some breakthrough results regarding this have been made by
Borcea, Brändén and Shapiro. This has been accomplished by using
properties of the Weyl algebra and the well known example of a Hilbert
space - the Fischer-Fock space. Finally experiments are made to test
a conjecture that states that all HPOs also preserve the property of
classical majorization. We also give some attention to similar results
concerning stability preserving operators - SPOs - i.e. operators that
preserve stable polynomials. A stable polynomial is one with all zeros
in the left half of the complex plane. This study will be restricted to
the one-variable case even if a lot of the theory that we present extends
to the multivariate case.

Acknowledgement. I am deeply thankful to my advisor Julius Borcea!
I would like to thank him, not only for introducing me to this fascinating
area in an excellent way, but also for his valuable point of view on
all kinds of thoughts and questions I might have had along the way.
I am also in dept to Hans Rullg̊ard - thank you for helping me out
with details regarding Mathematica. Tanja Bergkvist is a source of
inspiration both in my work and private life, thank you Tanja for being
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4.2. The Borcea-Brändén-Shapiro Curve Theorem 32
4.3. Proof of Theorem 24 33
4.4. The HPO Dual Operator Theorem 39
5. Testing the spectral order conjecture 41
5.1. A short introduction to Classical Majorization Theory 41
5.2. Description of the experiment 42
5.3. Results from the experiment 44
Appendix A. Mixed results 46
Appendix B. The Fischer-Fock space and Weyl Algebra 49
B.1. The Fischer-Fock space 49
B.2. The Weyl Algebra 51
References 52



LINEAR PRESERVERS OF HYPERBOLIC AND STABLE POLYNOMIALS 3

1. Introduction to the problem

We shall begin our exposé by giving some well known results. The motiva-
tion for reviewing the well-established theory of the geometry of polynomials
is to build a solid and comprehensive structure before we initiate the reader
to some recent results on so called hyperbolistic preservers due to Borcea,
Brändén and Shapiro. It is crucial that we emphasize in what sense these
known results that we present will be of great importance for the problems
we encounter later on. To this day some very fundamental questions and
problems in the area considered are still open. We now take a look at some
of these, so far, open problems.

Let S ⊆ C denote a certain set of interest and πn the vector space of all
polynomials, p(x) of at most degree n, then by πn(S) we mean the class of
all polynomials of degree at most n whose zeros lie in S.

Problem 1. Characterize all linear operators T on C that preserve the set
πn(S). Or with the notation above, characterize all linear operator T s.t.

T : πn(S) → πn(S)

assuming, for simplicity, that degT [p] ≤ deg p(x).

Despite its long history and numerous efforts Problem 1 has not yet been
solved when the set containing the zeros, let us call it S, is given by im-
portant convex sets such as a sector centered in the origin or a strip. Only
very recently this problem was solved in the case when S is a closed cir-
cular domain (defined in next section) or the boundary of such a domain
[5]. The classical Gauss-Lucas Theorem addresses this problem in the spe-
cial case where T = d

dx
and S is a convex region in C. If S is the open

upper halfplane the Hermite-Biehler Theorem provides a characterization of
polynomials whose zeros lies in S and if S is the left halfplane the Hurwitz
polynomials (all real polynomials whose zeros lies in the left halfplane) are
of relevance. New results in this last case would be of importance for a lot
of areas in applied mathematics such as for example the theory of dynamic
stability. Another open problem is this:

Problem 2. Characterize all linear operators T on C s.t. the number of
nonreal zeros of T (P (x)) are less then or equal to the numbers of nonreal
zeros of P (x) for any real polynomial P (x) (i.e the Taylor coefficients are
real).

When T = D as above this follows from Rolle’s Theorem and if q(x) is a
polynomial with only real zeros and T = q(D) this is a consequence of the
classical Hermite-Poulain-Jensen Theorem.
We could go on in this birds-eye-view manner to get to our goal faster, but
as promised we shall investigate the foundations on which we shall rely on
as we go further down this path. We assume the reader to be familiar with
some complex analysis, so let us, without further ado, go ahead with some
important basic definitions and results.
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2. The Gauss-Lucas Theorem and its
consequences

We begin this section by giving some preliminaries. First of all we define
the Möbius transformations.

Definition 1. A one-to-one mapping of the extended complex plane of the
form

µ(z) : z 7→
αz + β

γz + δ
with the restriction αδ 6= βγ is known as a Möbius transformation. Some-
times f(z) is also referred to as a fractional linear transformation or a bi-
linear transformation

The Möbius transformation is one of the most important conformal map-
pings. A conformal mapping is a mapping that preserves angles and can
be interpreted as compositions of translations, magnifications, rotations or
inversions. The Möbius transformations are bijective and form a group and
even more surprisingly it maps the set of all lines and circles on itself. Finally
we mention that the inverse or composition of any Möbius transformation
is again a Möbius transformation. We use the Möbius mappings to define
Circular domains.

Definition 2. Any subset of C ∪∞ is called a circular domain if it is the
image of the closed or open unit disc under a Möbius transformation.

Hence, a circular domain is either a the interior or the exterior of a disc
or a halfplane so the complement of any circular domain is again a circular
domain. Next we take a look at the concept of critical points. Consider a
polynomial f of degree n and let ζ ∈ C then by Taylor’s theorem we have

f(z) = f(ζ) + (z − ζ)f ′(ζ) + g(z)

where g is a polynomial and g(ζ) = g′(ζ) = 0. If f ′(ζ) 6= 0 we can choose
r > 0 such that for any two points z1 and z2 in the disc

D = {z ∈ C : |z − ζ| < r}

we have

|g(z1) − g(z2)| =

∣

∣

∣

∣

∫ z2

z1

g′(z)dz

∣

∣

∣

∣

< |f ′(ζ)| · |z1 − z2|

since g′ is continuous and g′(ζ) = 0 and f ′(ζ) 6= 0. This implies that f
is univalent in D and maps it conformally onto f(D). If indeed f(z1) =
f(z2) for two distinct points z1, z2 ∈ D it would imply that g(z1) − g(z2) =
(z1 − z2)f

′(ζ) which would contradict the assumption that |g(z1)− g(z2)| <
|f ′(ζ)| · |z1 − z2|.
Hence the local conformity breaks down when ζ is a zero of f ′ and this is
the reason why ζ is called a critical point.
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A more formal definition of critical points is the following:

Definition 3. Let f be a polynomial (or more generally a meromorfic func-
tion), we then call the points where f ′ vanishes (i.e zeros of the derivative)
critical points.
A type I critical point is also a zero of f and a type II critical point is only
a zero of f ′, o if ζ is a type II critical point f(ζ) 6= 0.

In view of the above we are ready to state the famous Gauss-Lucas theo-
rem already mentioned in the beginning of this section.
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2.1. The Gauss-Lucas Theorem. The Gauss-Lucas theorem is of great
importance and many of the results following in this survey will be based
on it.

Theorem 1 (Gauss-Lucas theorem). Every convex set containing all the
zeros of a polynomial also contains all its critical points.

Proof. We begin by showing that if the zeros of a polynomial lie in a closed
half-plane H then so do all the critical points. Let this half-plane be

H := {z ∈ C : ℜ(eiαz) ≤ b}

If z /∈ H then

ℜ
(

e−iα f
′(z)

f(z)

)

= ℜ
n
∑

ν=1

eiα

z̄ − z̄ν
=

n
∑

ν=1

ℜ
eiα(z − zν)

|z − zν |2

=

n
∑

ν=1

ℜ
(eiαz − b) − (eiαzν − b)

|z − zν |2
> 0.

Hence f ′(z) 6= 0 for z /∈ H, and so all the critical points must lie in H. If z
belongs to to the boundary of H and is not a zero of f but there is at least
one zero of f in the interior of H then f ′(z) 6= 0 as well.
Having proved that the statement applies when the convex set mentioned is
a half-plane we consider the smallest convex set containing all the zeros of
f . Now this set is exactly a polytope, i.e. the intersection of all half-planes
which contains the zeros. Thus the statement holds. �

Recall that a set is convex if it contains the line segment between any two
points in the set. The convex hull (of a set of point) is the smallest convex
set that contains the given set. If we denote the convex hull of the zeros of
f by K(f) we may reformulate the theorem by the following statement:

Theorem 2. For every polynomial f , we have K(f ′) ⊆ K(f).

If we think of an arbitrary point in K(f) as a convex linear combination of
its extreme points (i.e the zeros of f) it should be obvious that any critical
point of f can be expressed as a convex linear combination of its zeros.
Furthermore a critical point that is not a zero of f is an interior point of
K(f) unless K(f) is a line segment.

Theorem 3. The notion of circular domains provides the following equiva-
lent formulation of the results above.

(i) Every circular domain containing all the zeros of a polynomial f ,
but not the point at ∞, contains all the critical points of f .

(ii) Let f be a polynomial of degree n ≥ 2 and ζ a type II critical point
(i.e. f ′(ζ) = 0 but f(ζ) 6= 0). Furthermore let L be any straight line
passing through ζ. Then the open half-planes whose boundary is L
both contain at least one zero of f unless the zeros all lie on L.

In the special case when the polynomial considered has real coefficients,
we may state some results similar to the Gauss-Lucas theorem. For example
a zero of multiplicity m ≥ 2 is obviously also a critical point of multiplicity
m− 1. Moreover, if f is real-valued on the real line then by Rolle’s theorem
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there is at least one real critical point between any two consecutive real
zeros. Thus the number of non-real critical points of a polynomial with real
coefficients cannot be larger then the number of non-real zeros.
We will use the fact that non-real zeros occur in conjugate pairs to derive
an interesting result not covered by the Gauss-Lucas theorem. To be able
to do that we define Jensen discs.

Definition 4 (Jensen discs). Let f be a polynomial with real coefficients
and let z1, ...zn be the zeros of f which lie in the open upper halfplane. The
discs

Dν := {z ∈ C : |z −ℜ(zν)| ≤ ℑ(zν)}, ν = 1, ...,m

are called the Jensen discs of f .

Theorem 4 (Jensen). Let f be a polynomial with real coefficients. Then
the non-real critical points of f lie in the union of all Jensen discs of f .

Proof. Let f(z) := c
∏n

ν=1(z − zν). Denoting the real and imaginary parts
of zν by xν and yν respectively, and those of z by x and y, we find that

ℑ
(f ′(z)

f(z)

)

=
∑

ℑzν=0

ℑ
( 1

z − zν

)

+
∑

ℑzν>0

ℑ
( 1

z − zν
+

1

z − z̄ν

)

= −y
(

∑

ℑzν=0

1

|z − zν |2
+ 2

∑

ℑzν>0

(x− xν)
2 + y2 − y2

ν

|z − zν |2 · |z − z̄ν |2

)

.

As such, if z is a non-real point outside all the Jensen discs of f , then

sgnℑ
(f ′(z)

f(z)

)

= −sgn y

and hence f ′(z) 6= 0. This completes the proof of the theorem. �

A consequence that can be derived from the equations above is that a
non-real critical point of the second kind lies in the interior of at least one of
the Jensen discs unless it is a boundary point of each of them. In the latter
case f cannot have any real zeros.
We now state some results with nice geometric interpretation. The following
corollaries can be regarded as separation theorems.

Corollary 1. Let f be a polynomial with real coefficients. Suppose that x∗ is
a point on the real line lying outside all of the Jensen discs of f . If f(x∗ = 0
then, in each of the halfplanes

H1 := {z ∈ C : ℜz < x∗} and H2 := {z ∈ C : ℜz > x∗}

the number of zeros is the same as the number of critical points.

Corollary 2. Let f be a polynomial with real coefficients. Suppose that x∗ is
a point on the real line lying outside all of the Jensen discs of f . If f(x∗ 6= 0
then, in each of the halfplanes

H1 := {z ∈ C : ℜz < x∗} and H2 := {z ∈ C : ℜz > x∗}

the number of zeros is at least as large as the number of critical points, but
can exceed it only by one.
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Corollary 3. Let f be a polynomial with real coefficients, let a and b, where
a < b, be two points on R lying outside all the Jensen discs of f . Denote
by m the number of zeros and m′ the number of critical points in the strip
{z ∈ C : a < ℜz < b}. Then

(i) m′ = m+ 1 if f(a) = 0 and f(b) = 0.
(ii) m ≤ m′ ≤ m+ 1 if f(a) = 0 or f(b) = 0.
(iii) m− 1 ≤ m′ ≤ m+ 1 if f(a) 6= 0 and f(b) 6= 0.

There is more to be said about this type of results. For example we
mention the analogue of Jensen’s theorem for finite differences due to de
Brujin. However we won’t examine them now but skip ahead in our survey
of results necessary for our goal. In the next section we will come across a
useful result due to Laguerre.
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2.2. Laguerre’s separation theorem. The Gauss-Lucas theorem and
the definition of critical points motivates us to introduce the notion of the
polar derivative.

Consider a polynomial f(z) of degree n ≥ 1. If ψ is a Möbius mapping
that is not affine then f(ψ(z)) is no longer a polynomial. Since ψ is not an
affine mapping it can be written as

ψ(z) =
αz + β

z + δ
.

Thus we define
g(z) = (z + δ)nf(ψ(z))

to avoid difficulties dealing with a meromorfic function that is not a poly-
nomial. The derivative of g (after simplifications) is:

g′(z) = n(z + δ)n−1(nf(ψ(z)) − (ψ(z) − α)f ′(ψ(z)).

If ζ is a critical point of g then either ψ(ζ) is a zero of F (α, z) := nf(z) −
(z − α)f ′(z) or ζ = −δ.
Hence the operator of relevance is

Dα := n− (z − α)
d

dz
.

Thus we make the following definition

Definition 5. F (α, z) := nf(z)− (z−α)f ′(z) is known as Laguerre’s polar
derivative of f with respect to α.

We have the following properties for F (α, z).

Proposition 1. Let f be a polynomial, f of degree n ≥ 1 and F (α, z) its
polar derivative with respect to α as given above. Let ψ and g be as given
above. Then the following statements hold:

(i) If z∗ is a zero of g then ψ(z∗) must be a zero of f .
(ii) If ω is a zero of f then either ψ−1(ω) is a zero of g or ω = α and

f(α) = 0.
(iii) If ζ is a critical point of g then either ψ(z) is a zero of F (α, •) or

ζ = −δ and f (n−1)(α) = 0.
(iv) If ω is a zero of F (α, •) then either ψ−1(ω) is a critical point of g

or ω = α and f(α) = 0.

Theorem 5 (Laguerre’s separation theorem). Let f be a polynomial of de-
gree n ≥ 2 and α ∈ C

(i) A circular domain, K, containing the zeros of f but not α also con-
tains the zeros of the polar derivative, F (α, z) = nf(z)−(z−α)f ′(z)

(ii) Let ζ 6= α be a zero of F (α, z) such that f(α) 6= 0. Then every circle
C passing through α and ζ separates at least two zeros of f unless
the zeros all lie on C.

In other words the first part of this theorem states that if the complement,
Kc of K is devoid of zeros of f , and if α lies in Kc then Kc is also devoid of
zeros of the polar derivative with respect to α.
We can reformulate this theorem in an equivalent form as follows:
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Theorem 6 (Laguerre’s theorem reformulated). If f is a polynomial of
degree n ≥ 2 and K is a arbitrary circular domain devoid of zeros we have
that:

nf(z) − (z − α)f ′(z) 6= 0

when z, α ∈ K

Furthermore, if ζ ∈ C is neither a zero nor a critical point of f , then every

circle C that passes through ζ and ζ − n f(ζ)
f ′(ζ) separates at least two zeros of

f unless all zeros lie on the circle C (the proof of the latter is omitted).

Proof. Let µ : z 7→ 1
ζ−w

and E = µ(C \ K) (i.e the image of the complement

of K under the Möbius map µ). Now E is of course a circular domain and
hence one of the following must be true:

(1) E is the interior of a disc
(2) E is the exterior of a disc
(3) E is a halfplane

The image of K under µ, µ(K), can not be limited since

w → ζ ⇒
1

ζ − w
→ ∞.

Furthermore µ is a one-to-one map and hence µ(C \ K) = C \ µ(K). So if
we assume that (2) is true we have that µ(K) is the interior of a disc and
this is of course a contradiction. This means that E is a convex set and as
such it contains its arithmetic mean.
Let z1, ..., zn denote the zeros of f . Of course the points 1

ζ−zi
lies in E for

i = 1, ..., n and for some w ∈ C \ K we have that

1

ζ − w
=

1

n

n
∑

i=1

1

ζ − zi
∈ E

. We also observe that

f ′(z)

f(z)
=

d

dz
ln f(z) =

d

dz
ln

n
∏

i=1

ci(z − zi) =

n
∑

i=1

1

z − zi

and so

∃w ∈ C \ K :
1

n

f ′(ζ)

f(ζ)
=

1

n

n
∑

i=1

1

ζ − zi
=

1

ζ − w

this means that for α, ζ ∈ K the statement holds when α 6= ζ Since this
gives that

1

ζ − w
6=

1

ζ − α
⇒

1

n

f ′(ζ)

f(ζ)
6=

1

ζ − α
⇒

nf(ζ)− (α− ζ)f ′(ζ) 6= 0.

If on the other hand

α = ζ ⇒ F (α, ζ) = nf(ζ) 6= 0

according to what we assumed. �

We now give the proof of the original statement above (Theorem 5).
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Proof. We consider the mapping ψ : z 7→ (αz+1)
z

which is a special case of a
Möbius map. Define

g(z) := znf(ψ(z)).

Under the hypothesis of (i) it will follow that f(α) 6= 0 and according to
property (ii) in the proposition above we have that the zeros of g must lie
in the circular domain D := ψ−1(K). Furthermore D does not contain the
point at infinity since α is not in K. According to the Gauss-Lucas theorem,
all the critical points of g also lie in D and so by the third property of the
above proposition the the zeros of F (α, z) lie in ψ(D), but this is exactly
the set K and so the first part holds.
The second part of the theorem holds if α is a zero of f of order n since
the zeros of f in that case all lie on the circle C. Suppose that f has a zero
β 6= α and that ζ is a zero of F (α, •) such that ζ 6= α and f(ζ) 6= 0. Then by
the fourth property of the above proposition ψ−1(ζ) is a critical point, but
not a zero, of g. But g can not be a non-zero constant since it vanishes for
ψ−1(β). This means that g must be of at least degree 2. Since ψ−1(α) = ∞,
a circle passing through α and ζ is mapped by ψ−1 onto a straight line
passing through ψ−1(ζ). Hence by the second part of Gauss-Lucas and the
proposition above the results follows. �

The Laguerre theorem implies an alternative way of looking at the loga-

rithmic derivative f ′(z)
f(z) . Since whenever a ζ is outside the circular domain

containing all the zeros of f the α defined as α := ζ − n f(ζ)
f ′(ζ) will satisfy the

following statement.

Theorem 7 (Walsh). Let f be a polynomial of degree n with all its zeros
in a circular domain K. Then to every ζ in the extended complex plane, but
not in K there exist an α ∈ K such that:

f ′(ζ)

f(ζ)
=

n

ζ + α
.

I.e the Walsh theorem states that the value of the logarithmic derivative
outside the circular domain K are coincident at an appropriately chosen
point α ∈ K. Thanks to apolarity, which we will define further ahead, we
will be able to state a more general result called the Walsh coincidence
theorem.

Proof. Let α = ζ − n f(ζ)
f ′(ζ) . If ζ is a zero of F (α, z) lying in the extended

complex plane, but not in K, then, according to Laguerre, we have that if
α /∈ K, all the zeros of F (α, z) are in K and from our assumption if follows
that ζ can not be one of them, but this is a contradiction. Hence α as above
must lie in K and ζ does not. �

The next theorem gives us information about the function ψ : ζ 7→ 1
α

in
the case where K is the exterior of the unit disc, D.

Theorem 8 (Dieudonné). Let f be a polynomial of degree n without zeros
in the open unit disc D. Then

f ′(z)

f(z)
=

n

z − (φ(z))−1
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where φ is analytic and |φ(z)| ≤ 1

Proof. According to Walsh’s theorem this statement is true for |α| ≥ 1|
when ζ ∈ D thus we obtain:

φ(ζ) :=
1

α
=

f ′(ζ

ζf ′(ζ) − nf(ζ)
.

So φ is a rational function bounded by 1 in D and in particular it is analytic
in D. �

These results illustrate examples of a solutions to special cases of the
open problems mention in the introduction. In this special case we consider
the polar derivative as the operator T and a circular domain as the set S.
Before we go on to the next section we define a recursive sequence of the
polar derivative and an extension of the Laguerre theorem.

Definition 6. Let f be a polynomial of degree n, the sequence of polar
derivatives corresponding to f is then given by:

fk(z) = (n− k + 1)fk−1(z) + (ζk − z)f ′k−1(z)f0(z) = f(z).

With this definition f1(z) is precisely the polar derivative with α = ζk as
above. The poles ζk may be equal or unequal, the important thing is that
the they are not in the circular domain containing the zeros of f .

Theorem 9 (Extended Laguerre). Let f be a polynomial of degree n with
all its zeros in a circular domain C. Further assume that none of the points
ζ1, ..., ζn lies in C. Then all the zeros of each one of the polar derivatives,
fk, in the sequence above also lies in C.

The statement obviously holds for for k = 1 according to the original
statement of Laguerre above and so it follows that the rest of the polar
derivatives will also have their zeros in C.
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2.3. Apolarity and Grace’s theorem. In this section we will present a
consequence of Laguerre’s separation theorem - Grace’s apolarity theorem.
The importance of this theorem reaches far beyond the theory of localizing
critical points and generalizations of Grace’s theorem (as well as the La-
guerre theorem) to abstract spaces were established by Hörmander (1954).
In the next section we will also present equivalent formulations of Grace’s
theorem which will be of great use further ahead. We skip the proofs since
they are quite technical, but details are to be found in [17].

Definition 7. Let f and g be polynomials of degree n. Then f and g are
said to be apolar if:

n
∑

ν=0

(−1)νf (ν)(0)gn−ν(0) = 0.

The apolarity condition has a geometrical interpretation in the theory
of algebraic curves and surfaces and the term apolar was first introduced
by Reyes (1874). There are a lot of useful results that follows from this
definition. First of all we notice that if f and g are given by:

f(z) =

n
∑

ν=0

aνz
ν ⇒ f ν(0) = ν!aν

g(z) =
n
∑

ν=0

bνz
ν ⇒ gn−ν(0) = (n− ν)!ban−ν

then the apolarity condition is given by:
n
∑

ν=0

aνbn−ν
(

n
k

) = 0.

Furthermore the statement below follows from the definition:

Proposition 2. The apolarity relation has the following properties:

(i) It is a symmetric relation, that is the roles of f and g can be inter-
changed.

(ii) It is essentially a linear relation in the sense that if f1 and f2 are
apolar to g and λ1, λ2 ∈ C, then f = λ1f1 +λ2f2 is also apolar to g.

(iii) Every polynomial with odd degree is apolar to itself.

We will not go into detail concerning further results on apolarity but
simply state that apolarity is preserved under an affine transformation of
the complex plane. With special conditions on f and g apolarity is also
preserved under a Möbius transformation. We are now ready to move on
to Grace’s apolarity theorem that has to do with apolarity and the zeros of
the polynomials we consider.

Theorem 10 (Grace). Let f and g be apolar polynomials. Then every
circular domain containing the all the zeros of one of them contains at least
one zero of the other.

The geometric interpretation of this theorem is that two apolar polyno-
mials cannot be separated by the boundary of a circular domain. I.e no line
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or circle cuts through the two circular domains containing the zeros of each
of the polynomials considered if they are apolar.

For the interested reader this result should appear as somewhat surprising
since the algebraic construction of apolarity is indeed a far more general
formulation of the operator T (as in the introduction) than the operators in
previous results.

One might raise an eyebrow since the apolarity condition as stated above
takes the derivatives at the origin. But the statement that apolarity is pre-
served under affine transformation implies that the derivatives can actually
be taken at an arbitrary point c ∈ C. (For further details we refer to [21]).
We end this section with a corollary to Grace’s theorem that makes this
statement somewhat clearer.

Corollary 4. Let f(z) and g(z) be apolar polynomials and A be the convex
region enclosing all the zeros of f and B the convex region enclosing all the
zeros of g. Then A ∩B 6= ∅.

Proof. If not, then there would exist a straight line separating A and B.
Hence the zeros of f would lie in a circular domain, namely a halfplane
which is devoid of zeros of g. �
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2.4. Equivalent formulations of Grace’s theorem. We now state
several equivalent forms of Graces theorem. One can either prove each
of these results directly or show that they (amongst some other results)
successively imply each other. The proofs however are not of interest for
our purpose. We refer to [21] or [17] for further details. We now introduce
the functions f, g and h that will be used through out this section.

f(z) =
n
∑

ν=0

(

n

ν

)

aνz
ν , g(z) =

n
∑

ν=0

(

n

ν

)

bνz
ν , h(z) =

n
∑

ν=0

(

n

ν

)

aνbνz
nu.

Theorem 11 (Walsh coincidence theorem). Let P (z1, ..., zn) be a polynomial
in z1, ..., zn of total degree n symmetric in its variables, and of degree at most
one in each of them. Then every circular domain containing the points
ζ1, ..., ζn contains at least one point ζ such that

P (ζ1, ζ2, ..., ζn) = P (ζ, ζ, ..., ζ).

Theorem 12 (Schur-Szegö composition theorem). Let f(z) be a polynomial
of degree n as given above , whose coefficients, ai, i = 1, ..., n satisfy the
linear relation

lna0 + ln−1a1 + ...+ l0an = 0, ln 6= 0.

Then f has at least one zero in every circular domain that contains all the
zeros of

ψ(z) :=
n
∑

ν=0

(−1)ν
(

n

ν

)

lνz
ν .

Theorem 13 (Walsh representation theorem). Let f(z) be a polynomial of
degree n as given above with all its zeros in a circular domain K, and let
λ0, ..., λn ∈ C. Then, to every z ∈ C, there exists an α ∈ K such that
n
∑

ν=0

λνf
ν(z) = an

n
∑

ν=0

λν

[

∂ν

∂ων(ω − α)n

]

ω=z

= anλ0(z − α)n + an

n
∑

ν=1

λνn(n− 1) · · · (n− ν + 1)(z − α)n−ν .

In the next theorem due to Schur and Szegö the polynomial h can be seen
as a perturbation of the polynomial g in the case where all the coefficients
{ai} are close to 1 which means that the zeros of f are close to −1.

Theorem 14 (Schur-Szegö convolution theorem). Let K be a circular do-
main containing all the zeros of the nth degree polynomial f as given above.
Then each zero γ of h is of the form

γ = −αβ, α ∈ K, g(β) = 0.

It is remarkable how geometric results such as the Grace’s theorem can
be deduced from the very algebraic formulation of apolarity. The following
theorem due to De Brujin (1947) was deduced from the Schur-Szegö compo-
sition theorem and provides yet another geometric interpretation of Grace’s
theorem.
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Theorem 15. Let f, g and h be polynomials of degree n given as above. If

g(z) 6= 0, g(0) = 1

for |z| < 1. Then

{h(z) : |z| ≤ 1} ⊆ {f(z) : |z| ≤ 1}.
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2.5. Complex analogues of Rolle’s theorem. We complete this sec-
tion short note on how to locate the critical points of a complexed-valued
polynomial of degree n ≥ 2. The results presented here origins from the clas-
sical theorem of Rolle. We recall that this theorem states that if f : [a, b] →
C is a differentiable function and f(a) = f(b) then there exists a ε ∈ [a, b]
such that f ′(ε) = 0. This result obviously no longer holds when f is allowed
to be complex-valued. Consider for example the function f(z) = eizπ. For
this function we have f(−1) = f(1) but there is no critical point in [−1, 1],
in fact there is no critical point at all. If we instead consider polynomials of
degree n ≥ 2 there will be at least one critical point for these. The problem
is that we can easily construct such an example where f(a) = f(b) but there
are no critical points in the interval [a, b]. The question that arise from
this is: how far away from a given interval [a, b] can the critical points of a
polynomial f of degree n lie if f(a) = f(b)? The following theorem gives
the answer.

Theorem 16 (Grace-Heawood). Let f be a polynomial of degree n ≥ 2. If
z1, z2 ∈ C are any two distinct points at which f takes the same value, then
the disc

D(z1, z2, n) :=

{

z ∈ C :

∣

∣

∣

∣

z −
z1 + z2

2

∣

∣

∣

∣

≤

∣

∣

∣

∣

z1 − z2
2

∣

∣

∣

∣

· cot
π

n

}

contains at least one critical point of f .

This theorem implies that a polynomial of degree n ≥ 3 with no criti-
cal points in a closed disc of radius r cannot take the same value at two
diametrically opposed points of a concentric disc of radius r tan(π

n
). Thus

the determination of a concentric disc such that a polynomial cannot take
on the same value at any two points is of great interest since it would lead
to a sufficient condition for this polynomial to be univalent in a disc. The
following theorem provides this.

Theorem 17 (Alexander-Kakeya). If a polynomial of degree n has no crit-
ical points in a closed disc of radius r, then it is univalent in the concentric
closed disc of radius r sin(π

n
).

For the proofs of these two theorems we refer to [21].
We are now familiar with some very important results concerning the special
case where our operator is the differential operator. Next we will see how
these results in some sense can be extended.
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3. The Laguerre-Pólya class and multiplier
sequences

In our efforts to try to generalize the operator T and the set S we have
so far been dealing with the task of describing the zeros of f ′ relative to a
polynomial f . In this section we extend the theory and consider a polynomial
h instead of f ′, where h is constructed from one polynomial f or even several
polynomials f1, ..., fk by the following operations:

(i) Linear Combinations:

h(z) :=

k
∑

j=1

λjfj(z).

(ii) Multiplicative Compositions:

f(z) :=

k
∑

j=1

ajz
j , h(z) :=

k
∑

j=1

ajbjz
j , bj ∈ C.

It is especially interesting to consider the linear combination where fj(x) :=
f(z)−wj and wj are the zeros of f . For the multiplicative composition above
one may think of the bjs as the coefficients of another polynomial g(z) and
employ the notation h = f ⋆ g.

Recall the results by Grace concerning apolarity and employ the notation

f(z) =
n
∑

ν=0

aν
zν

ν!

g(z) =

n
∑

ν=0

bν
zν

ν!

where aν = f (ν)(0) and bν = g(ν)(0). Walsh’s representation theorem now
allows us to describe the zeros of the linear combination of the derivatives
of f :

λ0f(z) + λ1f
′(z) + ...+ λnf

(n)(z)

relative to those of the polynomials f and

g(z) :=
n
∑

ν=0

λnn(n− 1)...(n − ν + 1)zn−ν

since the linear combinations above is equal to h(z)/n! where

h(z) =
n
∑

ν=0

bνf
(n−ν)(z) =

n
∑

ν=0

aνg
(n−ν)(z).

So with the polynomials f , g and h (of degree n ≥ 1) given as above we
obtain the following result as an immediate consequence of Walsh’s repre-
sentation theorem:

Theorem 18. Suppose that f has all its zeros in a circular domain K. Then
each of the zeros of h is of the form α+ β where α ∈ K and g(β) = 0.
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From this we can deduce results for certain linear combinations, for ex-
ample this corollary:

Corollary 5. Let f be a polynomial of positive degree n with all its zeros in
a closed disc of radius ρ and center at origin denoted by D(ρ). Suppose that

ψ(z) :=

n
∑

ν=0

(

n

k

)

λνz
ν

has all its zeros in the half-plane H := {z ∈ C : |z| ≤ |z−τ |} where τ ∈ C\0.
Then

h(z) =
n
∑

ν=0

λνf
(ν)(z)

(τz)ν

ν!

has all its zeros in D(ρ).

Proof. Let ζ be a zero of h and consider the polynomial

χ :=

n
∑

ν=0

λν
(τζ)ν

ν!
f (ν)(z)

this polynomial is of the same form as h above and if we let the role of g be
taken by:

g(z) :=
1

n!

n
∑

ν=0

(

n

k

)

λn−ν(τζ)
n−νzν =

znn!

ψ

(

τζ

z

)

we get that ζ = α + β where α ∈ D(ρ) and g(β) = 0. If β 6= 0 the latter

equation means that τζ
β

is a zero of ψ and thus τζ
β

∈ H i.e |ζ| ≤ |ζ−β|. But

ζ − β = α and hence |ζ| ≤ |α| so ζ ∈ D(ρ). �

Furthermore we have by a result due to Takagi that states that K(h) ⊆
K(f) + K(g) where f , g and h again is as above. So if the roles g and
f are interchanged the theorem above provides two ways of describing the

location of zeros of a polynomial h(z)
n! and the Takagi result gives a third one.

If we consider the polynomials:

ψ(z) :=

n
∑

ν=0

g(ν)(0)zn−ν =

n
∑

ν=0

bνz
n−ν = bn−m

m
∏

µ=1

(z − ζµ)

we find that it is of degree m = n−k, where k is the multiplicity of a possible
zero of g at the origin. Furthermore it has non-vanishing zeros and we can
obtain h by applying the differential operator

ψ

(

d

dz

)

=

n
∑

ν=0

bν
dn−ν

dzn−ν
.

Using the factorization of ψ and defining

f0 := f

fµ(z) :=

(

d

dz
− ζµ

)

fµ−1 = f ′µ−1(z) − ζfµ−1(z)

we find that h(z) = bn−mfm(z).
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3.1. The Hermite-Poulain-Jensen Theorem. We are now ready to
approach a very central result of this paper. As we shall see in the next
section this result can be made even more general. First of all we define a
recursive formula and then we use three lemmas to prove the main result of
this section.

Definition 8. Let f be a polynomial of degree n ≥ 1 with real coefficient
and ψ(z) =

∑m
ν=0 βνz

ν a polynomial of degree m with only real zeros. Fur-
ther more let ζk, k = 1, ...,m be the zeros of the polynomial ψ. Then we
define the recursive formula:

f0 := 0

fk := (
d

dz
− ζk)fk−1(z)

for the sequence of polynomials f1, ..., fm.

To prove the third statement in Lemma 2 below we need an auxiliary
result known as Laguerre’s inequality:

Lemma 1. Let f be a polynomial of degree n ≥ 1 with real coefficients and
only real zeros. If x ∈ R and f (k)(x) 6= 0 for some k ∈ {0, ..., n − 1} then

f (k)f (k+2)(x) −
(

f (k+1)(x)
)2
< 0

Proof. Since f has only real zeros then so has f (k). let us denote the zeros
of f (k) by ξ1, ..., ξn−k. Then, under our hypothesis

f (k+1)(x)

f (k)(x)
=

n−k
∑

ν=1

1

x− ξν
.

Differentiation yields

f (k)f (k+2)(x) −
(

f (k+1)(x)
)2

(

f (k)(x)
)2 = −

n−k
∑

ν=0

1

(x− ξν)2
< 0

which gives the statement. �

We are now ready to state and prove the two lemmas that will give the
Hermite-Poulain-Jensen theorem.

Lemma 2. Let f be a polynomial of degree n ≥ 1 with real coefficients and
let ǫ ∈ R. Then the following holds:

(i) f1(z) := f ′(z) − ǫf(z) cannot have more non-real zeros than f .
(ii) The non-real zeros of f1 lie in the union of the Jensen discs of f .
(iii) Let f have only real zeros and let ǫ 6= 0. Then x∗ ∈ R is a multiple

zero of f1 of order k if and only if k ≥ 2 and x∗ is a multiple zero
of f of order k + 1.

Proof. (i) In particular we emphasize that the zeros of f1 are the crit-
ical points of F (z) := e−ξzf(z) since F ′(z) = e−ξz(f ′(z) − ξf(z)).
Let x1, ..., xk be the distinct real zeros of f with the multiplicities

m1, ...mk respectively. Furthermore define m :=
∑k

i=1mj We then
have that each xj is a critical point of F of multiplicity mj − 1. By
Rolle’s theorem we also have that F has at least one real critical point
in each of the intervals (xj , xj+1) j = 1, .., k−1. So when ξ = 0 there
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are a total of at least
∑k

j=1(mj − 1)+ k− 1 = m− k+ k− 1 = m− 1
real critical points. In the case when ξ 6= 0 we have that F → 0 as
x → ∞ or x → −∞ depending on the sign of ξ. Hence there is a
critical point outside the interval [x1, xk] in addition to the m−1 in-
side the same interval. Thus there are at least m real critical points
in that case. Since f1 either has at least as many real zeros as f or
at least one less than f . In the case when it has at least as many
zeros it follows that it cannot have more non-real zeros than f . In
the other case ξ = 0 and hence f1 = f ′ since f ′ has one zero less
than f (i) follows in this case as well.

(ii) Consider a non-real z lying outside the union of Jensen discs of f .
Then as in the proof of the Jensen Theorem (Theorem 6) we have

that ℑf ′(z)
f(z) 6= 0 and since ξ is real we also have that ℑ

(

f ′(z)
f(z) −ξ

)

6= 0

and so f1(z) 6= 0.
(iii) Suppose that x∗ is a multiple zero of f1. Then the order of x∗ must

be at least two since it would be simple otherwise. Let k be the
order of x∗. We have that

f (ν+1)(x∗) − ξf (ν)(x∗) = 0, ν = 0, ..., k − 1

Eliminating ξ from the first two of these equations yields

f(x∗)f ′′(x∗) −
(

f ′(x∗)
)2

= 0

and by lemma 1 this is only possible if f(x∗) = 0. So the equations

above imply successively that f (ν)(x∗) = 0 for ν = 0, ..., k. Hence
the multiplicity of x∗ as a zero of f is at least k+1. If it were higher,
then the multiplicity of x∗ as a zero of f1 would be larger then k.
This completes the proof.

�

For the next lemma we need to generalize the Jensen discs in Definition
4.

Definition 9 (Generalization of Jensen). Let f be a polynomial with real
coefficients. Suppose that z1, ..., zk are its non-real zeros lying in the upper
half-plane. Then, for ν ∈ N, the elliptical domains

D
[ν]
j :=

{

z ∈ C :
(

ℜ(z − zj)
)2

+ ν(ℑz)2 ≤ ν(ℑzj)
2

}

are called the ν-th Jensen domains of f .

Lemma 3. Let f and ψ be polynomials with real coefficients. If the non-real
zeros of ψ lie in the ν-th Jensens domain of f , then the Jensen discs of ψ
are covered by the union of the (ν + 1)-th Jensen domains of f .

Proof. A Jensen disc D of ψ consists of all points u + iv ∈ C with real
coordinates u and v satisfying

(u− ξ)2 + v2 ≤ η2
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where ξ ± iη is a pair of non-real conjugate zeros of ψ. By the hypothesis,

there exists a ν-th Jensen domain D
[ν]
j of f containing ξ± iη. The boundary

of D
[ν]
j is an ellipse given by an equation of the form

(x− s)2 + νy2 + νr2 = 0 (r, s ∈ R, r > 0)

Since ξ± iη ∈ D
[ν]
j we find that |η| ≤

√

r2 − (ξ−s)2

ν
. Hence the points u+ iv

of the Jensen disc D given by Lemma 1 also satisfy

(u− ξ)2 + v2 ≤ r2 −
(s− ξ)2

ν
.

Multiplying this inequality by ν+ 1 and splitting u− ξ into (u− s)+ (s− ξ)
a short calculation gives that

(u− s)2 + (ν + 1)v2 − (ν + 1)r2 ≤ −ν

(

(x− s) +
ν + 1

ν
(x− ξ)

)2

.

The right-hand side is certainly not positive, which means that ξ ± iη ∈

D
[ν+1]
j and hence that D ⊂ D

[ν+1]
j . �

Theorem 19 (Hermite-Poulain-Jensen Theorem). Let f be a polynomial of
degree n ≥ 1 with real coefficients ψ(z) =

∑m
ν=0 βνz

ν a polynomial of degree
m with only real zeros. Then the following statements hold:

(i) The polynomial

h(z) :=
m
∑

ν=0

βνf
(ν)(z)

cannot have more non-real zeros than f
(ii) The non-real zeros of h lie in the union of the m-th Jensen domains

of f .
(iii) Let f have only real zeros. Suppose that βj is the first non-vanishing

coefficient of ψ. Then x∗ ∈ R is a multiple zero of h order k if and
only if k ≥ 2 and x∗ is a multiple zero of f (j) of order m− j+ k. In
particular, if m ≥ n− 1, then h has only real simple zeros.

Proof. If we write ψ(z) = βm

∏m
ν=1(z − ζν) we find that

h(z) =

(

m
∑

ν=0

βν
dν

dzν

)

f(z) = βm

m
∏

ν=1

( d

dz
− ζν

)

f(z)

Using the recurrence formula above we obtain a sequence of polynomials
f1, f2, .. such that fm = βmf

(m). Successive use of the lemmas now gives
the result. �

If we assume that f has only real zeros then statement (i) implies that h
has only real zeros as well. Letting

h(z) =

m
∑

ν=0

βν
dν

dzν
=

m
∑

ν=0

βνn(n− 1) · · · (n− ν + 1)zn.ν
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then h has only real zeros since f(z) ≡ zn has only real zeros. Hence the
same must be true for the polynomial

( z

n

)n
h
(n

z

)

=

m
∑

ν=0

βν

(

1 −
1

n

)

· · ·

(

1 −
ν − 1

n

)

zν .

Letting n → ∞ and by Hurwitz Theorem (Theorem 30, Appendix A) we
have that ψ also only have real zeros.
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3.2. The Laguerre-Pólya class. In the Hermite-Poulain-Jensen theo-
rem there is no point taking m > n since h cannot have more than n + 1
terms. But as we shall see in this section we can replace ψ with certain entire
functions Ψ by letting m→ ∞. To do this we introduce the Laguerre-Pólya
class and establish some results that go beyond the class of polynomials.

Definition 10 (The Laguerre-Pólya class). An entire function Ψ belongs
to the Laguerre-Pólya class if it has a representation of the form

Ψ(z) = czκe−az2+bz
∞
∏

ν=1

(1 − tνz)e
−λtnuz

where c ∈ R \ {0}, κ is a non-negative integer, a, b ∈ R, a ≥ 0, λ ∈ {0, 1}
and tν ∈ R with

∑∞
ν=1 |tν |

λ+1 < ∞. Within the Laguerre-Pólya class those
functions Ψ for which λ = 0, a = 0, b ≥ 0 and tν ≥ 0 for ν ∈ N are said to
be of type I.

We note that the Laguerre-Pólya class includes all polynomials with real
zeros. A polynomial with a κ-fold zero at the origin and non-vanishing real
zeros x1, .., xn can be represented in the form above by setting a = b = λ = 0,
tν = − 1

xν
for ν1, .., n and tν = 0 for ν > n. An important result in this new

terminology is the following:

Theorem 20. A sequence of polynomials with real coefficients and zeros
converge uniformly to a entire function not identically zero if and only if
this entire function belongs to the Laguerre-Pólya class.

We omit the proof and go ahead with the extension of the Hermite-
Poulain-Jensen theorem as follows.

Theorem 21 (Pólya). Let f be a polynomial of degree n ≥ 1 with real
coefficients, and let Ψ be an entire function in the Laguerre-Pólya class.
Then the following statements hold:

(i) The polynomial

h(z) =
n
∑

ν=0

Ψ(ν)(0)

ν!
f (ν)(z)

cannot have more non-real zeros than f.
(ii) Every strip B := z ∈ C : |ℑz| ≤ ρ containing all the zeros of f also

contains those of h.
(iii) Let f have only real zeros. If Ψ has at least n− 1 zeros, then h has

only simple, real zeros.

Proof. Let Ψ be as in definition 10 and

Ψj(z) = czκ

(

1 −
az2

j

)j(

1 +
λjz

nj

)nj
j
∏

ν=1

(1 + tνz)

then the statements of theorem 21 holds with ψ replaces by Ψj and h re-
placed by

hj(z) :=

n
∑

ν=0

Ψν
j (0)

ν!
f ν(z).
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(u) By the famous theorem by Weierstrass on sequences of analytic func-

tions the convergence Ψj → Ψ also implies Ψ
(ν)
j → Ψ(ν). Thus the

first statement follows by Hurwitz’s theorem and by letting j → ∞.
(ii) The second statement follow since the Jensen domains of f , of any

order, are subsets of B.
(iii) Since the simple zeros of hj might coalesce as j → ∞ we use the a

little trick. If the function Ψ has at least n − 1 zeros we may write
it as Ψ(z) = ψ(z)Φ(z) where ψ is a polynomial of degree n− 1 and
Φ is a function in the Laguerre-Pólya class. Now we can construct
h in the following two steps:

g(z) :=

n
∑

ν=0

Φ(ν(0)

ν!
f (ν)(z), h(z) :=

n
∑

ν=0

ψ(ν(0)

ν!
g(ν)(z).

In the first step statement (i) ensures that g has only real zeros.
Therefore in the second step statement (iii) of theorem 10 applies
and therefor h has simple, real zeros.

�

Example 1. Under the general hypothesis of Theorem 23 the polynomial
n
2
∑

ν=0

(−1)ν
f (2ν)(z)

ν!

cannot have more non-real zeros than f . This follows from the fact that

e−z2

belongs to the Laguerre-Pólya class. This does not follow directly from
Theorem 21 since the polynomials

ψ(z) =
m
∑

µ=0

(−1)µ
z2µ

µ!

have at most two real zeros.
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3.3. Multiplier sequences. We now introduce the concept of a multi-
plier sequence that was first introduced by Pólya and Schur. Let γ0, γ1, ..., γn, ..,
be an arbitrary sequence of real numbers and let T be the operator which
takes the arbitrary polynomials p(x) = a0 + a1x + a2x

2 + ... + anx
n to

the polynomial T [p(x)] = γ0a0 + γ1a1x + γ2a2x
2 + ... + γnanx

n. The se-
quence γ0, γ1, ..., γn, .., is called a multiplier sequence of the first kind if the
corresponding operator takes every polynomial whose zeros are real into a
polynomial of the same class. If the operator takes a polynomial whose zeros
are positive into a polynomial whose zeros are real it we call it a multiplier
sequence of the second kind.
Multiplier sequences have the following properties:

(i) If γ0, γ1, ..., γn, .., is a multiplier sequence of the first or second kind,
then γk, γk+1, ..., γk+n, .., is of the same kind.

(ii) If a certain element in a multiplier sequence of the first kind is equal
to zero, then the subsequent elements are equal to zero.

We will mainly be concerned with multiplier sequences of the first kind.

Theorem 22 (Pólya-Schur). A sequence (γn)n∈N0
of real numbers is a mul-

tiplier sequence of the first kind if and only if all the polynomials ψn(z) :=
∑n

ν=0

(

n
k

)

γνz
ν of positive degrees have only real, non-negative zeros of, al-

ternatively, only real non-positive zeros.

A sufficient condition for a sequence (γn)n∈N0
to be of the first kind is

that those polynomials

ψn(z) :=

n
∑

ν=0

(

n

ν

)

γνz
ν (n ∈ N)

which are of positive degree have either only real, non-negative or only real,
non-positive zeros. There are some discussions left out to verify that this
observation truly holds. For further details we refer to [21] on this matter.
The polynomials ψν(z) are often referred to as Jensen polynomials.

Proof. To characterize the multiplier sequence of the first kind it remains to
prove the necessity of this condition. Since the polynomials

(z + 1)n =

n
∑

ν=0

(

n

ν

)

zν ,

for n ∈ N, have only real zeros, the polynomials ψn(z) (as above), must have
only real zeros as well unless it is a constant. So it remains to show that the
non-vanishing zeros are all of the same sign. Omitting trivial cases we may
suppose that

γm 6= 0 and γm+k 6= 0

for some m ∈ N0 and k ≥ 2. The polynomials h(z) := γmz
m − γm+2z

m+2

has only real zeros since the polynomial f(z) := zm − zm+2 has only real
zeros. No suppose that γm+2 6= 0, then the reality of the zeros of h implies
that γmγm+2 > 0 for any value of γm+1. Now assume that γm+1 = 0.
Then it follows by applying Laguerre’s inequality (Lemma 1) to ψm+k that
γmγm+2 < 0. This cannot be true when γm+2 = 0 which contradicts that
γmγm+2 > 0 for any value of γm+1. Hence γm+1 6= 0 always holds. Replacing
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m with m + 1,m + 2, ... we can successively apply the above discussion so
we conclude that

γν 6= 0 and sgnγν−1 = sgnγn+1 (ν = m+ 1, ...,m + k − 1)

whenever γm 6= 0 and γm+k 6= 0. Hence the polynomials ψn(z) can be
written as

±

(

∑

ν even

(

n

ν

)

|γν |z
ν + σ

∑

ν odd

(

n

ν

)

|γν |z
ν

)

(σ = ±1)

and if such a polynomial is not a constant, then its zeros, which are already
known to be real, are non-negative when σ = −1 and non-positive if σ =
1. �

Jensen polynomials are intimately related to so called Appell polynomials
associated to a given power series

∑∞
ν=0 cνz

ν . The Appell polynomials are
defined as:

φn(z) :=

( ∞
∑

ν

cν
dν

dzν

)

zn

n!
=

n
∑

ν=0

cν
zn−ν

(n− ν)!
.

Theorem 23. A power series
∑∞

ν=0 cνz
ν which is not identically zero rep-

resents a function Ψ of type I in the Laguerre-Pólya class if and only if, for
each n ∈ N, the Appell polynomial φn(z) has only real, non-positive zeros
unless it is a constant.

The proof of Theorem 23 uses arguments similar for those in the proof
of Theorem 21 (Pólya’s Theorem) and we refer to [21], Theorem 5.7.3 for
details.

Remark 1. Theorems 22 and 23 are both due to Pólya and Schur and
their work in 1914 and they also explored multiplier sequences of the second
kind. In 1913 Jensen pointed out a connection between the polynomial φn

in Theorem 23 with the power series
∑∞

ν=0 cνz
ν . He also indicated certain

relations between the zeros of the polynomials and those of the power series.
This would motivate us to call φn the Jensen polynomials but this term
is usually employed for the polynomials ψn in Theorem 22 and the related
power series as above with cν = γν

ν! while the ψn are referred to as the
associated Appell polynomials. We adopt this notation since it is used in
[21] and by Craven and Csordas for example. This however should not cause
any trouble since the following identity holds:

ψn(z) = n!znφn(
1

z
)

so the location of the zeros is the same as far as the studies of multiplier
sequences are concerned. Other remarkable properties for these polynomials
is the differentiation formula:

φ′n(z) = φn−1(z)

and the recovery of the power series by the limiting process:

lim
n→∞

ψ

(

z

n

)

=

∞
∑

ν=0

γν

ν!
.
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Jensen was aware of these properties even though he did not introduce the
polynomials ψn explicitly.



LINEAR PRESERVERS OF HYPERBOLIC AND STABLE POLYNOMIALS 29

4. Recent results on HPO

So far this thesis has been dealing with historical results on operators and
manipulations of polynomials that preserves certain properties of the zeros.
In this section we will take it to the next level and address the problem of
describing all linear operators T : C[z] → C[z] s.t T preserves the property
of real zeros i.e T is a hyperbolicity preserving operator (HPO). We will be
concerned with the one-variable case and refer to [4] for further studies of
the multivariate case.

4.1. Introduction and notation regarding HPOs. We need to for-
malize what we mean by hyperbolicity and provide a convenient notation.

Definition 11. The set of hyperbolic polynomials (i.e a polynomial with
real zeros) is given by

H(R) = {P ∈ R[z] : P−1(0) ⊂ R}.

Definition 12. A hyperbolicity preserving operator, HPO, is a linear oper-
ator T : C[z] → C[z] that satisfies the inclusion

T (H) ∈ H ∪ {0}

And we denote the set of all HPOs by AH .

The stability property is very similar to the hyperbolicity property.

Definition 13. The set of stable polynomials is given by

H(C) = {P ∈ C[z] : P−1(0) ⊂ {z : ℑz ≤ 0}}.

Definition 14. A stability preserving operator, SPO, is a linear operator
T : C[z] → C[z] that satisfies the inclusion

T (H(C) ∈ H(C) ∪ {0}

And we denote the set of all SPOs by AS.

An example of a HPO (SPO) is the following:

Example 2. Let α, β ∈ R and let D denote the derivative, i.e D = d
dz

.
Then α+ βD ∈ AH.
(If α, β ∈ C the operator α + βD is an example of an SPO and this is
equivalent to ℑ(βα) ≥ 0.)

The problem of classifying all HPOs (in one variable) was pointed out by
Pólya, Schur and Crelle in 1914 and this has been a open problem ever since.
A more algebraic formulation of this problem is to describe the monoid
AH and this is the approach that lead us to a solution of this problem.
We shall soon reach the breakthrough results concerning this research area
due to Borcea, Brändén and Shapiro. There are some more notions and
preliminaries that needs to be done.

We may also define stable polynomials the multivariate case:

Definition 15. A stable polynomial in n variables is given by

Hn(C) = {P ∈ C[z1, ..., zn] : P (z1, ..., zn) 6= 0 if ℑzi > 0, 0 ≤ i ≤ n}
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and the corresponding stability-preserving operators, n-SPOs, are defined
as:

Definition 16. The n-SPOs are the linear operators T on C[z1, ..., zn] that
satisfy the inclusion

T (Hn(C)) ⊆ Hn(C) ∪ {0}.

The real stable polynomials (which coincides with the set of hyperbolic
polynomials for n = 1) in n variables are given by

Hn(R) = Hn(C) ∩ R[z1, ..., zn]

and we may define real stability-preserving operators, n-RSPOs, in a similar
manner as the n-SPOs. For this article it would be sufficient to define H2(R)
but since the results we are about to encounter holds in the multivariate case
we might as well give the proper definition. Next we introduce the symbol
curve.

Suppose that every linear operator can be uniquely represented as

T =

∞
∑

k=0

Qk(z)D
k

where Qk ∈ C[z] for all k and D is the differential operator. Letting our
operator T act on the standard monomial basis we get the following:

T =
(

∞
∑

k=0

Qk(z)D
k
)

(1) = Q0(z)

T =
(

∞
∑

k=0

Qk(z)D
k
)

(z) = Q0(z) · z +Q1(z) ⇒ Q1 = T (z) − z · T (1)

T =
(

∞
∑

k=0

Qk(z)D
k
)

(z2) = Q0(z) · z
2 + 2Q1(z) · z + 2Q2(z) ⇒

⇒ Q2(z) =
1

2

(

T (z) − zT (1) − 2zT (z) + (2z − z)T (1)

)

...

Continuing in this manner we will find that Q is uniquely determined by
T and vice versa. Therefor every linear operator can be uniquely represented
as

T =

∞
∑

k=0

Qk(z)D
k

as suggested. Having established this we present define the symbol curve.

Definition 17 (Symbol Curve). Given an operator T : C[z] → C[z] with
the representation as above the symbol of T is given by the formal power
series in w with polynomial coefficients in ℑz. This polynomial is given by:

F(z,w) =
∞
∑

k=0

Qk(z)w
k ∈ C[z,w].
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Finally our main result requires that we introduce the Weyl Algebra de-
noted by A. The Weyl Algebra is defined as

A[C] =

{

N
∑

k=0

Qk(z)D
k : N ∈ N, Qk ∈ C[z], 0 ≤ k ≤ N

}

in the case where the polynomial coefficients are allowed to be complex and

A[R] =

{

N
∑

k=0

Qk(z)D
k : N ∈ N, Qk ∈ R[z], 0 ≤ k ≤ N

}

in the case with real polynomial coefficients. For more details on the Weyl
Algebra we refer the reader to the Appendix.

Now, given an operator T ∈ A[R] with symbol FT (z,w) ∈ R[z,w] of
degree d consider the real algebraic (symbol) curve of degree d given by

ΓT =

{

(z,w) ∈ R
2 : FT (z,w) = 0

}

.

This gives us a natural representation of our operators. The symbol curve
and results regarding it has very nice geometrical interpretations as we shall
see in the next section. As the reader may already have guessed the symbol
curve is of great importance regarding this theory and the great theorem
that this article evolves around.

Remark 2 (Classical theory in view of HPO). We have some results that
are interesting to mention in terms of HPO before we reach the main results
of this article. We have seen extensive theory regarding differential opera-
tors and their zero-set preserving properties such as Gauss-Lucas statement
that the derivative preserve a convex set of zeros. From Gauss-Lucas to
Laguerre and Grace we reach the result regarding multiplier sequences of
the first kind due to Polya and Schur that characterizes all operators which
are diagonal in the standard monomial basis that are HPO. Another exam-
ple worth mentioning (that we have not explored above) is a result due to
Carnicer and Peña that characterizes all unipotent, upper triangular linear
operators that are HPO [8].
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4.2. The Borcea-Brändén-Shapiro Curve Theorem. With all the
notation as given above we are now ready to state the main result of this
article. The formulation is very short and concise thanks to the the prelim-
inaries in the previous section. And as already mentioned this is where the
symbol curve plays its big part.

Theorem 24 (Borcea-Brändén-Shapiro Theorem).

T ∈ AH ∩ A[R] ⇔ FT (z,−w) ∈ H2(R).

This theorem essentially states any finite order HPO T is generated by a
real stable polynomial in 2 variables via the symbol map. In theorems 1-2
in [4] this result is extended to the multivariate case (for stability preserves
and real stability preservers respectively). Hence this theorem also holds
in the more general case when T is a n-SPO for example. In this article
however we focus on the theorem as stated above since we can visualize
our operators in this case. Geometrically this theorem means that a linear
operator T is an HPO if and only if each line L of negative slope intersects
the corresponding real algebraic (symbol) curve, ΓT , of degree d in exactly
d points. Below follows two examples of how ΓT may look in the case when
it is the symbol curve of a HPO and when it is not

z

w

z

w
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4.3. Proof of Theorem 24. Now remains the task of presenting the proof
of this nice result. The proof of the general formulation of this theorem is
given in [4] but we will downsize this and by that hopefully make it more
comprehensive to the novice. Note that we need prove that the statement
FT (z,−w) ∈ H2(R) (i.e every line of negative slope intersects the corre-
sponding real algebraic symbol curve) is a sufficient and necessary condition
for the operator T to be a HPO. The proof is done in two parts and requires
some auxiliary results along the way. The ideas in this proof is deduced
from [4]. We begin by proving the sufficiency condition.

4.3.1. Sufficiency. For α ∈ R, λ > 0 and f(z1, .., zn) ∈ H[R(C)] the follow-
ing holds:

(1) f(α+ λz1, .., zn) ∈ H[R(C)]
(2) f(α, .., zn) ∈ H[R(C)]
(3) f(z1, .., zn)

∣

∣

zi=zj
∈ H[R(C)], i 6= j

Since ℑzi > 0 for i = 1, ..., n, λ > 0 and α ∈ R the transformation of
the first variable will obviously not make any difference in (1) regarding
hyperbolicity. Now (1) ⇒ (2) if we let λ → 0 and obviously this reduces
one variable. Finally (3) holds since all zi, i = 1, .., n had ℑzi > 0 and we
reduce by one variable.

We now need the following result due to Lieb and Sokal and the proof of
this lemma can be found in [16] (as Lemma 2.3). We somewhat modify the
formulation and therefore give a version of the proof suitable for our needs.

Lemma 4 (Lieb-Sokal style). If P0(v), P1(v) ∈ C[v] with P0(v)+xP1(v) 6= 0
for ℑv ≥ and ℑv ≥ d then

P0(v) +

(

x−
∂

∂v

)

P1(v) 6= 0

for ℑv ≥ and ℑv ≥ d.

The main idea in this lemma is that we can replace the variable x by
(

x− ∂
∂v

)

. In [16], Lemma 2.3 it is proved that it is possible to do this if we

replace x by ∂
∂v

. However our case follows by rotating variables.
Given a, b ∈ C, 1 ≤ i < j ≤ n and

F (z1, ..., zn) =
∑

aα1,...,αnz
α1

1 · · · zαn
n ∈ C[z1, ..., zn]

let

F

(

z1, ..., azi + b
∂

∂zj
, ..., zj , ..., zn

)

denote the polynomial
∑

aα1,...,αnz
α1

1 · · ·

(

azi + b
∂

∂zj

)

· · · z
αj

j · · · zαn
n .

With this notation we are ready for the following lemma:

Lemma 5. If F (z1, ..., zn) ∈ Hn[R] and 1 ≤ i < j ≤ n then

F

(

z1, ..., zi −
∂

∂zj
, ..., zj , ..., zn

)

∈ Hn[R]
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Proof. Without loss of generality we can assume that i = j − 1 = 1. Let
c > 0 and suppose that ℑzk ≥ c∀k. Then F (z1, ..., zn) 6= 0.
Let N be the degree of F in z1 and replace each z1 in F by

(

N

m

)−1

em(x1, ..., xN )

where em is the mth elementary symmetric function (for further details on
em we refer to appendix). This yields a polynomial in 2n − 1 variables and
we denote it by G. Now Walsh’s Coincidence Theorem gives us that

G(x1, ..., xN , z2, ...zn) 6= 0

whenever all variables have imaginary part ≥ c. Fix all variables but x1 and
z2 in the prescribed regions. Then

G(x1, ..., xN , z2, ...zn) 6= 0

can be written as

P0(z2) + x1P1(z2) 6= 0, ℑz2 ≥ c,ℑx1 ≥ c.

Applying the previous lemma due to Lieb-Sokal/Grace yields

P0(z2) + x1P1(z2) 6= 0 ⇒

.

G

(

x1 −
∂

∂z2
, ..., xN , z2, ..., zn

)

6= 0

whenever all variables have imaginary part ≥ c. Repeat this procedure with
x1, ..., xN to get

G

(

x1 −
∂

∂z2
, ..., xN −

∂

∂z2
, z2, ..., zn

)

6= 0

whenever all variables have imaginary part ≥ c. Now let xi = z1, 1 6= i 6= N
to get the result:

F

(

z1 −
∂

∂z2
, z2, ..., zn

)

6= 0

if ℑzk ≥ c, 1 6= k 6= n, ∀c > 0. �

We are now ready to prove that the sufficiency condition holds. Let
T = TF ∈ A[R] with symbol F (z,w) ∈ R such that F (z,−w) ∈ H2(R) and
let f(v) ∈ H(R). Then F (z,−w)f(v) ∈ H3(R) from our second lemma we
get that

F

(

z,
∂

∂v
− w

)

f(v) ∈ H3(R)

and hence for w = 0 we get

F

(

z,
∂

∂v

)

f(v) ∈ H2(R)

and thus for any f ∈ H(R), this yields

TF (f)(z) = F

(

z,
∂

∂v

)

f(v)
∣

∣

v=z
∈ H(R).

This completes the part which proves that sufficiency holds.
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Remark 3. Yet another way to obtain results similar to the Lieb-Sokal
lemma is by using the property of polynomials that are in proper position
(see Appendix A) This approach also gives us an extension of the Hermite-
Biehler theorem and a nice set property for polynomials in proper position
that will come in handy during the process of establishing necessity. So let
us take a closer look at these results.

Theorem 25. Let f, g ∈ R[z1, ..., zn] and zn+1 be a new indeterminate.
Then f ≪ g if and only if g + zn+1f ∈ Hn+1(R). Moreover, if f ∈ Hn(R)
then f ≪ g if and only if

ℑ

(

g(z)

f(z)

)

≥ 0

whenever ℑ(z) > 0.

The proof of this can be found on p. 7 in [4].

Theorem 26. Let f ∈ Hn(R). Then the sets

{g ∈ Hn(R) : f ≪ g}

and

{g ∈ Hn(R) : f ≫ g}

are nonnegative cones, i.e., they are closed under nonnegative linear combi-
nations.

Proof. Let f ∈ Hn(R) and suppose that f ≪ g and f ≪ h. Then by our
previous result we have that

ℑ(g(z))

ℑ(f(z))
≥ 0

ℑ(h(z))

ℑ(f(z))
≥ 0

whenever ℑ(z) > 0. Hence if µ, λ ≥ 0 we have

ℑ(
(λg(z) + µh(z))

f(z)
) ≥ 0

whenever ℑ(z) > 0. Again by the previous result we have that f ≪ λg+µh.
The other part follows in a similar manner. �

The Lieb-Sokal lemma and results similar to it can now be obtained in
the following manner. Let

R(v,w) = Q0(w) + vQ1(w)

and suppose that we want to show that if R(v,w) 6= 0 the same goes for
this expression where we replace v with ∂

∂w
when ℑv > 0, ℑw > 0. So let

us assume that R(v,w) 6= 0 when ℑv > 0, ℑw > 0. This is equivalent to
R(v,w) ∈ H2(R) and according to Theorem 25 this means Q1(w) ≪ Q0(w).
On the other handQ1(w) ≪ −Q′

1(w) assume namely that −Q′
1(w)+iQ(w) =

0 whenever ℑ(w0) > 0. That is
Q′

1
(w0)

Q1(w0)
= i whenever ℑ(w0) > 0 and Q1 has

real zeros α1, ..., αn. Then we get that

n
∑

j=1

1

w0 − αj
= i⇔

n
∑

j=1

w̄0 − αj

|w0 − αj |2
= i⇒ ℑ

( n
∑

j=1

w̄0 − αj

|w0 − αj |2

)

= 1.
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But on the other hand we assumed that 0 > −ℑ(w0) so we must have that

0 > −ℑ(w0)ℑ

( n
∑

j=1

w̄0

|w0 − αj |2

)

= ℑ(w̄0)ℑ

( n
∑

j=1

1

w0 − αj

)

which contradicts the above and hence −Q′
1(w) + iQ1(w) 6= 0 and by The-

orems 25-26 this means that Q1(w) ≪ Q0(w) −Q′
1(w) ⇒ Q0(w) −Q′

1(w) ∈
H1(R) and so the statement follows.

4.3.2. Necessity. Among some auxiliary results the following Lemma is needed
to prove necessity.

Lemma 6. If F (z,w) ∈ R[z,w] is a symbol curve for an HPO, T , then so
is F (z, λw) for any w ∈ [0, 1].

Assuming the above lemma the proof goes as follows.

Proof. Let the operator T be given by

T =

N
∑

k=0

Qk(z)D
k ∈ AH ∩A1[R]

and FT (z,w) =
∑N

k=0Qk(z)w
k ∈ R[z,w] be its symbol. Given λ ∈ (0, 1) let

Tλ be the operator with symbol F (z, λw). That is

Tλ =

N
∑

k=0

Qk(z)λ
kDk

Then Lemma 6 asserts that Tλ ∈ AH. Hence

z−nTλ(z) =

N
∑

k=0

Qk(z)n · · · (n− k + 1)λkz−k

has all real zeros ∀n ∈ N. Let λ = (nµ)−1 where µ > 0 is arbitrarily fixed
and n→ ∞ (so λ ∈ (0, 1)). Since also

(

z +
α

µ

)−n

T(nµ)−1

(

(

z +
α

µ

)n
)

=

=
N
∑

k=0

Qk(z)n · · · (n− k + 1)n−k(µz + α)−k

has all real zeros ∀n ∈ N and α ∈ R we get that

F

(

z(µz + α)−1

)

=

N
∑

k=0

Qk(z)(µz + α)−k

has all real zeros for all µ > 0 and α ∈ R (or is ≡ 0).
If ℑz > 0 and ℑw < 0, then w = (µz + α)−1 for some µ > 0 and α ∈ R.

Since F (z, (µz + α)−1) has all real zeros (and coefficients) it follows that

F (z, (µz + α)−1) 6= 0

whenever ℑz > 0, and this implies that:

F (z,−w) 6= 0
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if ℑz > 0,ℑw > 0, which proves the necessity of Theorem 24. �

It remains to prove Lemma 6 and in fact this result can be extended to a
more general homotopical property for HPO symbols:

Theorem 27. If F (z,w) ∈ R[z,w] is an HPO symbol then so is F (µz, λw)
for any (µ, λ) ∈ [0, 1]2.

Lemma 6 follows from another Lemma which follows from a Proposition.
This Proposition, in turn, follows from this Lemma:

Lemma 7. Let T ∈ A[R], δ ≥ 0 and define a linear operator RδT on C[z]
by setting

RδT (f) = T (F ) + δzT (Df), f ∈ C[z].

If T ∈ AH then RδT ∈ AH .

Proof. We will show that

T ∈ AH ∩A[R] ⇒ RδT (f) := T (F ) + δzT (Df) ∈ H(R) ∪ {0}.

We have that T (Df) ≡ 0 ⇒ RδT (f) = T (f) and clearly T (f) ∈ H(R)∪ {0}
so let us assume that T (Df) 6≡ 0. By Laguerre’s inequality (Lemma 1) we
have that Df ≪ f and Theorem 34 (in Appendix A) now yields that

T (Df) ≪ T (f).

Obviously it is also true that

T (Df) ≪ zT (Df)

and these two facts together with Theorem 26 asserts that

T (Df) ≪ T (f) + δzT (Df) ∀δ ≥ 0.

In particular this means that

RδT (f) := T (F ) + δzT (Df) ∈ H(R) ∪ {0}

and this proves Lemma 7 �

The following proposition can now be obtained from the preceding:

Proposition 3. Let T ∈ A[R], δ ≥ 0 and define a linear operator εδT on
C[z] by

εδT (f) =

∞
∑

n=0

δnznT (Dnf)

n!
, f ∈ C[z].

If T ∈ AH then εδT ∈ AH .

Proof. Let n ≥ 1. Now apply R δ
n

to T n times. This yields

Rn
δ
n

T (f) =
n
∑

k=0

(

n

k

)

n−kδkzkT (Dkf), f ∈ C[z]

and by repeated use of the previous lemma we know that Rn
δ
n

T ∈ AH∀n ≥ 1.

So for any f ∈ H(R) one has that
n
∑

k=0

(1 −
1

n
) · · · (1 −

(k − 1)

n
)
δkzkT (Dkf)

k!
=
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Rn
δ
n

T (f) ∈ H(R)

so Rn
δ
n

T (f) tends uniformly to εδT (f) on compacts sets and by Hurwitz

theorem (Theorem 30, Appendix A) this means that εδT (f) ∈ H(R) ∪ {0}
and thus εδT ∈ AH . �

The proof of Lemma 6 now follows as below:

Proof. If F (z,w) is the symbol of T and Tδ denotes the operator with symbol
F (z, (1 + δ)−1w) then a calculation shows that

Tδ(f(z)) = εδT (f((1 + δ)z)), f ∈ C[z].

Thus if f ∈ H(R) then Tδ(f) ∈ H(R) so that Tδ ∈ AH . If we set λ = (1+δ)−1

the result follows from the previous proposition. �



LINEAR PRESERVERS OF HYPERBOLIC AND STABLE POLYNOMIALS 39

4.4. The HPO Dual Operator Theorem. The second great result of
this thesis is also due to Borcea-Brändén-Shapiro and we will refer to it as
the Dual Operator Theorem. For this result we need to be able to define
a dual operator, T ∗, for every HPO operator T . As can be seen in the
Appendix the Fischer-Fock space, denoted by F , is just what we need for
this matter since we are able to define a so called Fischer-Fock dual to any
operator T ∈ A. Hence the dual T ∗ satisfy 〈T (f), g〉 = 〈f, T ∗(g)〉∀f, g ∈ F .
Geometrically this means that the algebraic symbol curve, ΓT , as mentioned
earlier is reflected by the corresponding dual symbol curve, ΓT ∗ along the
line of identity in the complex plane.

Theorem 28 (HPO Dual Operator Theorem). Let T ∈ AH then

T ∈ AH ∪A(C) ⇔ T ∗ ∈ AH ∪ A(C).

So a linear operator T is a HPO if and only if its dual operator, T ∗, is
a HPO. This result can be established geometrically. As we already know
each line of negative slope must intersect the algebraic symbol curve of a
HPO in exactly d points where d is the degree and vice versa. This property
is of course preserved when we reflect ΓT along the line of identity and hence
the same intersection property is true for the dual T ∗.

z

w

The corresponding theorem holds for SPOs in the multivariate case.
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A very nice example of how this result applies is the following:

Example 3. Let P ∈ R[z], degP = d and T = multiplication by P (z).
Then FT (z,w) = P (z) and hence ΓT =

⋃

ζ∈P−1(0)∩R
{(z,w) ∈ R

2 : z = ζ}.

Dualizing provides the Hermite-Poulain Theorem and this yields T ∗ = P (D)
where D = d

dz
and FT ∗(z,w) = P (w) ⇒

ΓT∗ =
⋃

ξ∈P−1(0)∩R
{(z,w) ∈ R

2 : z = ξ}.

z

w

z

w

This Theorem provides a criterion for how we can establish whether a
finite-order multiplier sequence is HPO.

Example 4. Simple criterion for finite-order multiplier sequences:
T =

∑N
k=0 akz

kDk is an HPO if and only if P (t) :=
∑N

k=0 akt
k has all non-

positive zeros.
Indeed, FT (z,w) =

∑N
k=0 akz

kwk so that
ΓT =

⋃

τ∈P−1(0)∩R
{(z,w) ∈ R

2 : zw = τ}.

z

w
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5. Testing the spectral order conjecture

The example in the last section encourage us to investigate if HPOs also
satisfy another property. In this section we will present results on some labo-
ratory experiments to test the following conjecture due to Borcea, Brändén
and Shapiro, see e.g. [6]. Let us define an involution ι : C[z] 7→ C[z] by
ιf(z) = f(−z).

Conjecture 1 (Spectral order conjecture). Let T be any HPO. Then either
T or T ◦ι preserves the classical majorization property (or the spectral order).

First of all let us learn something about what the classical majorization
property means.

5.1. A short introduction to Classical Majorization Theory. We
only present a minimum of theory concerning classical majorization theory.
The reader will hopefully find it quite sufficient for the contents of the rest
of this section. We refer to [18] for further details on Majorization Theory.

Let x and y be n-tuples of elements in R, i.e

x = (x1, ..., xn), y = (y1, ..., yn), xi, yi ∈ R.

Assuming that x1 ≥ ... ≥ xn and y1 ≥ ... ≥ yn we say that x is majorized
by y and write x ≺ y if the following n equalities is satisfied:

y1 ≥ x1

...
n−1
∑

i=1

yi ≥
n−1
∑

i=1

xi

n
∑

i=1

yi =

n
∑

i=1

xi

Another condition for majorization is that x = yP for a doubly sto-
chastic matrix P . There are several equivalent conditions for the classical
majorization property but the two mentioned above are the ones used in
this experiment.
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5.2. Description of the experiment. The first thing we want to do is
generate two random polynomials P (x) and Q(x) with arbitrary real zeros
Z(P ) and Z(Q) in a given interval such that Z(P ) ≺ Z(Q). To do this we
begin by letting Mathematica randomly give us the tuple Z(P ) and then
multiply it with a doubly stochastic matrix in order to obtain the zeros of
the polynomials P and Q with Z(P ) ≺ Z(Q). According to the results
of section 5 every operator is hyperbolicity preserving if and only if its
symbol polynomial,

∑n
k=0 akt

k, has non-positive zeros so we generate such
a polynomial in the same manner as we generated P and Q to obtain our
HPO, let us call it T. The only thing left to do now is to let the operator T
act on our polynomials P and Q and check if the zero set of T (P ) - Z[T (P )]
- is majorized by the zeros of T (Q). Let us take a closer look on how this
is done in the Mathematica Software. In the following code extract our
polynomials are of degree 25 and the zeros lie in the interval [−100, 100] this
is of course easily adjusted as preferred. We define the zeros of P and Q in
the following manner:

y=Sort[Table[Random[Real,{-100,100}],{25}],Greater]

RandomPermutationMatrix[n_]:= Module[{P,M,j,k},P={1};

Do[j=Random[Integer,{1,k}];P=Insert[P,k,j],{k,2,n}];

M=Table[0,{n},{n}];

Do[M[[j,P[[j]]]]=1,{j,1,n}];M];

RandomDoublyStochasticMatrix[n_]:=Module[{p=0.1,s=0,M,t},

M=Table[0,{n},{n}];

While[Random[Real,{0,1}]>p,t=Random[Real,{0,1-s}];s=s+t;

M=M+t*RandomPermutationMatrix[n]];

M+(1-s)*RandomPermutationMatrix[n]];

x=Sort[Table[y.RandomDoublyStochasticMatrix[Length[y]]],Greater]

Our polynomials are then composed like this:

Q=Expand[Product[t-y[[j]],{j,1,Length[y]}]]

t/.NSolve[Q\[Equal]0,t]

P=Expand[Product[s-x[[j]],{j,1,Length[x]}]]

s/.NSolve[P\[Equal]0,s]

To create a hyperbolic operator T recall that we can apply the symbol
curve to obtain the coefficients of T :

k=Sort[Table[Random[Real,{-100,0}],{Random[Integer,{0,100}]}]]

fT=Expand[Product[r-k[[j]],{j,1,Length[k]}]]

a=CoefficientList[fT,r]



LINEAR PRESERVERS OF HYPERBOLIC AND STABLE POLYNOMIALS 43

Next we let our operator act on P and Q and pick out the zeros of the
new polynomials T (P ) and T (Q).

TP=Expand[Simplify[Sum[a[[i]]s^(i-1)*D[P,{s,(i-1)}],

{i,1,Length[a]}]]]

zP=Sort[s/.NSolve[TP\[Equal]0,s],Greater]

TQ=Expand[Simplify[Sum[a[[i]]t^(i-1)*D[Q,{t,(i-1)}],

{i,1,Length[a]}]]]

zQ=Sort[t/.NSolve[TQ\[Equal]0,t],Greater]

Finally let us check if the spectral order conjecture holds numerically:

Table[Sum[zQ[[i]]-zP[[i]],{i,1,j}],{j,1,Length[zQ]}]

Table[Sum[y[[i]]-x[[i]],{i,1,j}],{j,1,Length[y]}]
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5.3. Results from the experiment. Let us take a look at a numerical
example to visualize this assertion. Degrees, range of zeros and our operator
may of course vary infinitely. In this example the polynomials P and Q are
both of degree 5 and the zeros range from −100 to 100. First of all we
generate the zeros of Q:

y=Sort[Table[Random[Real,{-100,100}],{5}],Greater]

This generates the set:

{68.0254,54.0586,-11.2007,-24.9176,-74.124}

and from this we get our Q like this:

Q=Expand[Product[t-y[[j]],{j,1,Length[y]}]]

and this yields

Q(t) = 76075703486.99 + 8345849.81*t + 65167.63*t^2

- 6825.13*t^3 - 11.84*t^4 + t^5

Using the doubly stochastic matrix command to generate P gives us the
set of P’s zeros

{66.296,55.2719,-22.2928,-24.6853,-62.748}

And P is therefore

P(s) = 126530645.53 + 8620267.36*s + 11345.25*s^2

- 6176.78*s^3 - 11.84*s^4 + s^5

Our operator T is obtained by the following computations:

k=Sort[Table[Random[Real,{-100,0}],{Random[Integer,{0,100}]}]]=

{-99.726,-93.2003,-89.5969,-84.686,-84.2998,-81.4396,-74.4853,-74.003,

-68.2823,-57.6073,-54.4361,-53.0949,-48.7852,-48.4883,-48.0321,-47.1922,

-46.9346,-46.2657,-43.6218,-38.8106,-33.9966,-31.8379,-31.205,-29.9167,

-29.4717,-28.1798,-27.7739,-25.8896,-23.1169,-22.6722,-22.2253,-19.5669,

-16.8949,-16.1378,-12.2691,-11.6361,-5.90262,-4.41032,-2.67206}

The symbol polynomial F is now obtain by this command

fT=Expand[Product[r-k[[j]],{j,1,Length[k]}]]

this and the following computations of T (P ) and T (Q) yields very tedious
expressions so let us skip ahead and take a look at the zeros of T (P ) and
T (Q):

z(T(P)) = {27.6656,18.8548,-6.93476,-10.1045,-24.8218}

z(T(Q))= {28.116,18.6973,-3.84931,-9.29134,-29.0133}

And the difference between these zeros are given by this set:

{0.45, 0.29, 3.38, 4.19, 3.55*10^(-15)}
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If we plot the zeros of P and Q respectively it is clear that P majorized
by Q
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The same goes for z(T (P )) and z(T (Q)) which is what the conjecture
suggests
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Remark 4. We rarely get 0 in the final position in the set of differences
between z(T (Q))and z(T (P )). This is because the computations are based
on approximations and round offs are made here and there.

Remark 5. Running through a numerous examples of polynomials and
operators has provided convincing evidence in favor of the conjecture - the
latter was actually proved in full generality quite recently by Julius Borcea
and Petter Brändén (unpublished).
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Appendix A. Mixed results

There should be no problem for the undergraduate Mathematic student
to follow the theory presented in chapters 1-3. However in chapter 4 sev-
eral well known theorems and notions are mentioned without any further
explanation. It seems motivated to provide an appendix including some def-
initions, explanations and formulation of some of these results and notions.
We give them without any particular order.

Theorem 29 (The Continuity theorem). Let f(z) =
∑n

ν=0 aνz
ν =

∏k
j=1(z−

zj)
mj , where m1 + ... + mk = m, be a monic polynomial of degree n with

distinct zeros z1, ..., zk of multiplicities m1, ...,mk. Then, given a positive

ε < min1≤i<j≤k
|zi−zj |

2 there exists a δ > 0 so that any monic polynomial
g(z) =

∑n
ν=0 bνz

ν whose coefficients satisfy |bν −aν | < δ for ν = 1, ..., n−1,
has exactly mj zeros in the disc D(zj , ε) (with radius ε and center in zj)
j = 1, .., k.

Theorem 30 (Hurwitz). Let (fn)n∈N be a sequence of analytic functions
defined in a region Ω ⊂ C. Suppose that this sequence converges to a function
f 6≡ 0, uniformly on every compact subset of Ω. Then ζ ∈ Ω is a zero of f
of multiplicity m if and only if there exists a neighbourhood V ⊂ Ω of ζ such
that, in every disc D(ζ, ε) ⊂ V, each polynomial fn whose index exceeds some
bound n(ε) has exactly m zeros, counted according to their multiplicities.

Hurwitz theorem follows from the theorem due to Rouché which says
that f + g has the same numbers of zeros as f inside a Jordan curve if
|g(z]| < |f(z)| on the Jordan curve. We also remind the reader of results
such as the maximum modulus principle, principle of the argument. Finally
we mention that every polynomial of positive degree n may be represented
as a product of (z − zj) where zj is a zero if we multiply this product with
the coefficient of the term of highest degree. If in a addition the polynomial
is symmetric we can equate the coefficients by the formula of Viète.

Theorem 31 (Implicit function theorem). Let f : R
m × R

n → R
n be con-

tinuously differentiable in the neighbourhood of the fix point (a, b) ∈ R
m×R

n

and assume that the derivative of R
n ∈ y 7→ f(a, y) ∈ R

n is invertible in b.
⇒ ∃ a continuously differentiable function ϕ defined in a neighbourhood of
a s.t b = ϕ(a) and f(x, ϕ(x)) = f(a, b) for x close to a.

The implicit function theorem so to speak convert complicated relations
to functions by representing the relation as the graph of a function. This
allows us to implicitly differentiate such relations.
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Definition 18. The elementary symmetric function in n variables is defined
as

e0(x1, ..., xn) = 1

e1(x1, ..., xn) =
∑

1≤j≤n

xj

e2(x1, ..., xn) =
∑

1≤j<k≤n

xjxk

e3(x1, ..., xn) =
∑

1≤j<k<l≤n

xjxkxl

...

en(x1, ..., xn) = x1 · · · xn

Definition 19. The so called Wronskian is given by W [f, g] := f ′g − fg′.

Definition 20 (Interlacing zeros). Let α1 ≤ α2 ≤ ... ≤ αn and β1 ≤ β2 ≤
... ≤ βm be the zeros of two given polynomials f, g ∈ H1(R). We say that the
zeros interlace if they can be ordered so that either α1 ≤ β1 ≤ α2 ≤ β2 ≤ ...
or β1 ≤ α1 ≤ β2 ≤ α2 ≤ ....

If the zeros of f and g interlace then the Wronskian is either nonnegative
or nonpositive on the whole real axis R. In the case when W [f, g] ≤ 0 we
say that f and g are in proper position and denote this by f ≪ g. If f ≪ g
and g ≪ f this implies that f and g are constant multiples of each other
and the Wronskian is equal to zero in this case. For technical reasons we
define the zeros of polynomial h ≡ 0 to interlace the zeros of any (nonzero)
hyperbolic polynomial. We even write 0 ≪ f or f ≪ 0. We now give the
classical Hermite-Biehler theorem in terms of proper position.

Theorem 32 (Hermite-Biehler). Let h := f + ig ∈ C[z], where f, g ∈ R[z].
Then h ∈ H1(C) if and only if g ≪ f .

This in turn gives us a generalization of the proper position property in
higher dimensions:

Definition 21. Two polynomials f, g ∈ R[z1, ..., zn] are in proper position
if g + if ∈ Hn(C).

Theorem 33 (Obreschkoff’s Theorem). Let f, g ∈ R[z]. Then αf + βg ∈
H(R) ∪ {0} for all α, β ∈ R if and only if either f ≪ g or f = g ≡ 0.

We now introduce the concept of an operator being sign monotone.

Definition 22. A linear operator T on C[z] is monotone if there exists
M ∈ N and d ∈ Z such that

T (zn) = 0, n < M, degT (zn) = n+ d, n ≥M

where d is the degree shift of T .

Such a T is sign monotone if either the leading coefficient of T (zn) is
≥ 0∀n ∈ N or the leading coefficient of T (zn) is ≤ 0∀n ∈ N. In the first case
we say that T is positive monotone and in the second one that it is negative
monotone. Obviously T is positive monotone if and only if −T is negative
monotone and vice versa.
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Theorem 34. If T ∈ AH ∩A[R] and f, g ∈ H(R) with f ≪ g then T (f) ≪
T (g) or T (f) = T (g) = 0.

Remark 6. This result is actually equivalent to

AH ∩ A[R] ⊂ AS ∩ A[R]

i.e the set of HPOs (hyperbolicity preservers) is a subset of the set of SPOs
(stability preservers). It is of course very nice that the inclusion of the
sets containing hyperbolic and stable polynomials applies also to the set
containing hyperbolicity and stability preservers.
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Appendix B. The Fischer-Fock space and Weyl
Algebra

Here we give some important basic notions regarding the Hilbert space
and measure theory are mentioned in this section in order to give a proper
introduction of the Weyl Algebra and Fischer-Fock space. Not in any way do
we claim this to be a full account on these matters since there are extensive
literature for the reader to consult should he or she feel the need. It is crucial
that the reader is familiar with these two concepts in order to understand
the main results given in chapter 4.

B.1. The Fischer-Fock space. The Hilbert space is a complete linear
vector space that has a norm and an inner product. We remind the reader
of the formal definition of a vector space and give the definitions a norm, an
inner product and explain the concept of completeness.

Definition 23. In order for V to be a linear vector space the following must
hold for all elements x, y, z ∈ V and scalars λ, µ ∈ C

(i) Vector addition is commutative, x+ y = y + x.
(ii) Vector addition is associative, (x+ y) + z = x+ (y + z).
(iii) There is an additive identity element, 0, s.t. 0 + x = x+ 0 = x.
(iv) For every x there is an element −x s.t. x+ (−x) = 0.
(v) Scalar multiplication is associative, λ(µx) = (λµ)x.
(vi) Scalar addition is distributive, (λ+ µ)x = λx+ µx.
(vii) Vector addition is distributive, λ(x+ y) = λx+ λy.
(viii) There is a scalar multiplication identity element, 1, s.t. 1x = x.

Definition 24. A norm ‖ · ‖ satisfy:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0
(ii) ‖λx‖ = |λ|‖x‖
(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Definition 25. And inner product, 〈·, ·〉 satisfy:

(i) 〈x, y〉 = 〈y, x〉
(ii) 〈λx, y〉 = λ〈x, y〉
(iii) 〈x, λy〉 = λ〈x, y〉
(iv) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉
(v) 〈x, x〉 ≥ 0 with equality iff x = 0.

Finally a vector space is said to be complete if every Cauchy sequence (in
that space) converges to a point in the space. (A Cauchy sequence {xn}
satisfy that ‖xn − xm‖ → 0 as m,n → ∞). The definition of the Hilbert
space is now very short and concise!

Definition 26. A Hilbert space is a complete linear vector space that has
a norm and an inner product.

The Fischer-Fock space is a well known example of a Hilbert space with
an inner product. More precisely the Fischer-Fock space is given by the
following definition:
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Definition 27. The Fischer-Fock space F is the space of all entire functions
in C which are square-integrable with respect to Gaussian measure.

F =

{

f analytic in C s.t

∫

C

|f(z)|2e−|z|2dµ <∞

}

where µ is a Lebesgue measure on C.

The inner product is given by:

〈f, g〉 =
1

π

∫

C

f(z)g(z)e−|z|2dµ

and we may also express it as

〈f, g〉 = f(D)g∗(z)

∣

∣

∣

∣

z=0

where D = d
dz

and g∗(z) =
∑

k akz
k if g∗(z) =

∑

k ak F has an reproducing

kernel: Kw(z) = ezw that is 〈f(z),Kw(z)〉 = f(w) when f ∈ F .

Using the fact than 〈f, g〉 = 〈f, g〉 the expression 〈f, g〉 = f(D)g∗(z)

∣

∣

∣

∣

z=0

the

following relations may be deduced:

〈zkf, g〉 = 〈f,Dkg〉

〈Dkf, g〉 = 〈f, zkg〉

for f, g ∈ F . Since there is a natural way to introduce the notion of a
dual in any Hilbert space we define the Fischer-Fock dual as the following:

Definition 28. Given the linear operator T on F its dual, T ∗, is given by
the unique linear operator on that satisfy 〈T (f), g〉 = 〈f, T ∗ (g)〉∀f, g ∈ F .

Remark 7. The above account on the Fischer-Fock space is of importance
in subsection 4.4 and the HPO Dual Operator Theorem since it allows us
to define the Fischer-Fock dual.
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B.2. The Weyl Algebra. Since some of the following theory assumes
that we know something about measures we will briefly try to explain this
even though the term ”measure” or ”measurable,” have very precise techni-
cal definitions that can make them appear difficult and perhaps a bit tedious
to understand. To jump ahead we give the definition of a measure space:

Definition 29. A measure space is a triple (X,Σ, µ) where X is a space, Σ
is a σ-algebra and µ is a measure with domain Σ.

This definition requires that we know what a σ-algebra and a measure is.
A σ-ring is a class R of sets such that

• ∅ ∈ R
• A,B ∈ R ⇒ A−B ∈ R
• An ∈ R for n = 1, 2... ⇒

⋃∞
n=1An ∈ R.

If in addition the whole space is in R, i.e X ∈ R, we say that R is a σ-
algebra.
A measure is an extended real-valued set function having the following prop-
erties:

• The domain Σ of µ is a σ-algebra
• µ is non-negative on Σ
• µ is completely additive on Σ
• µ(∅) = 0

A set function is a function defined on a class of sets, it is extended-
real-valued if its values are extended real numbers. This set is called the
domain of µ. To emphasize the importance of measure theory note that
every definition of an integral is based on a particular measure: the Riemann
integral is based on Jordan measure and the Lebesgue integral is based on
Lebesgue measure.
The Weyl Algebra is an important object in representation theory, quantum
mechanics etc (see [3]) and it is a famous example of a simple algebra which
is not Artinian. In algebraic terms the Weyl Algebra is the subalgebra of
all linear endomorphisms of the polynomial algebra C[z] generated by z and
D = d

dz
where the canonical commutator relation is satisfied. But it is the

following definition that will be of relevance for our purpose:

Definition 30. The Weyl Algebra is the set of all operators T on C[z] on
the form

T =
N
∑

k=M

Qk(z)D
k

where Qk ∈ C[z] for all k and M ≤ N .

I.e The Weyl Algebra is the space of all finite order linear ordinary differ-
ential operators with polynomial coefficients,

Remark 8. The Weyl Algebra is of importance through out section 4 and
both the formulation and proof of the Borcea-Brändén-Shapiro Theorem
relies on theory regarding the Weyl Algebra.
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