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Paradoxes in Intuitionistic Type Theory

Susanne Thon

Abstract

One of the most famous paradoxes in mathematics is Russell’s paradox. It considers the set of all
sets that do not contain themselves. Does this set contain itself or not? Whatever answer we give,
we get a contradiction.
Paradoxes in mathematical systems indicate inconsistency. An early version of Intuitionistic type
theory developed by Martin-Löf turned out to be inconsistent and had to be revised. In this paper
we will present formalizations of Girard’s paradox and Coquand’s paradox of trees, which can be seen
as versions of Russell’s paradox, in the inconsistent version of Intuitionistic type theory.
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1 Introduction

Imagine a village barber who shaves those and only those men in the village who do not shave
themselves. Does the barber shave himself or not?

Whatever answer we give, it leads to a contradiction.

This paradox can be seen as an everyday version of the famous paradox that was discovered by
Bertrand Russell in 1902 and shook the logician’s world. Cantor’s set theory, that served as a basis of
all mathematics, did not hold anymore, neither did Frege’s just completed work ”Foundations of
Arithmetic”.1

Several attempts were made to solve paradoxes like the one of Russell. One approach was taken by
Russell himself by introducing a theory of types.

A type theory that is based on intuitionistic ideas, the Intuitionistic type theory, was developed in the
1970’s by Martin-Löf. An early version of this type theory however turned out to be inconsistent;
paradoxes could be formalized in it.

In this paper we will present formalizations of two paradoxes that can be seen as versions of Russell’s
paradox in the inconsistent version of Martin-Löf’s type theory: Girard’s paradox and Coquand’s
paradox of trees.
We will start by giving an introduction to these paradoxes and the different attempts to solve them in
chapter 2. In chapter 3 we then present type theory in the version of Martin-Löf. A formalization of
Girard’s paradox is presented in chapter 4, Coquand’s paradox of trees in chapter 5.

1van Heijenoort 1967, p. 124

5



2 Paradoxes

The encyclopedia of mathematics defines a paradox as ”a situation in which two mutual contradictory
statements are demonstrated, each one having been deduced by means that are convincing from the
point of view of the same theory.”2

What does it mean for a system or a theory to contain a paradox?

Because it is known from classical logic that from a contradiction anything can be deduced, proofs of
theorems in a system that contains a paradox are not convincing. A paradox indicates that one or
several basic assumptions made in the theory in question are wrong and often leads to a fundamental
revision of the system as a whole.3

In the latter part of the nineteenth century Cantor introduced set theory, which soon came to be seen
as a fundamental branch of mathematics. The work of Dedekind, Weierstrass, and others showed that
from the arithmetic of natural numbers much of classical mathematics can be derived. The concept of
natural numbers in its turn can be obtained from the basic principles of set theory.4 The following is a
modern way to do this:

0 is defined to be the empty set, 1 is defined to be the set that contains the empty set as its only
element, 2 is defined to be the set that contains the empty set and the set that contains the empty set
and so on. Using these definitions, we can prove propositions of natural numbers.5

Set theory however turned out to contain a number of contradictions, which were discovered between
1895 and 1910. The Burali-Forti paradox, which was discovered in 1897, is one of them. It deals with
the existence of the greatest ordinal number.
An ordinal number is a ranking number; it designates the rank or position of an object in a linearly
ordered array.6 Ordinal numbers are represented by well-ordered sets. Thus the above concept of
natural numbers describes ordinal numbers.
We consider an ordinal number as being the set of all preceding ordinals. For each ordinal a we can
construct a strictly greater one by forming the set that contains all preceding ordinals of a together
with a itself. The paradox is derived if we consider the greatest ordinal number, that is, the set of all
ordinal numbers. Such a set would be an ordinal number greater than or equal to every ordinal number.
But for every ordinal number there exists a strictly greater one and we get a contradiction.

At first it was not paid much attention to the paradoxes because it was hoped that they could be
corrected by some alternation of the basic definitions. But when in 1902 Russell’s paradox involved
elementary aspects of set theory they could no longer be ignored.
Russell’s paradox can be seen as a version of the Burali-Forti paradox and can be described as follows:
We can consider two types of sets: sets that contain themselves and sets that do not contain themselves.
Most sets we use do not contain themselves, but the set of all sets must be a member of itself.
We now define M as the set of all sets that do not contain themselves. Does M contain itself? Suppose
M is not a member of itself, then it satisfies the condition to be a member of M and hence contains
itself. If we suppose that M is a member of itself it does not satisfy the condition to be a member of M
and hence does not contain itself. Thus M contains itself if and only if it does not contain itself, which
is a contradiction of the most fundamental sort.7

When these paradoxes were discovered, the conception of a set as represented in Cantor’s definition did
no longer provide a satisfactory basis neither for set theory nor for mathematics as a whole.8 New
approaches were needed.

One approach was made by Zermelo in 1908.9 Zermelo’s system, modified by Skolem and Fraenkel, is
widely used still today.
Zermelo conceived a restriction that is called the axiom of selection. It states that a property of objects
can only be used to select objects from a set that already exists, but not to form a new set. This means

2Encyclopedia of mathematics 1993, p. 205
3ibid. p. 205
4Pinter 1971, p. 2
5ibid. p. 2
6ibid. p. 166
7ibid. p. 3
8ibid. p. 3
9ibid. pp. 10–11
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that if A is a set and S(x) is a property, we can form a set that consists of exactly those elements x in
A that satisfy S(x). But we cannot form a set that consists of all x that satisfy S(x). Thus Russell’s
construction of a paradox cannot be carried out.

Another approach was made by von Neumann.
Von Neumann noted that the paradoxes are caused by two facts:

1. The crucial sets, like the set of all sets that do not contain themselves, are too large, they include
too much.

2. These large sets are allowed to be elements of sets, as for example elements of themselves.

In Zermelo’s approach the known constructions of paradoxes are blocked by prohibiting to form these
large sets. Von Neumann’s approach permits the existence of large sets but does not allow them to be
elements of sets.10

Both Zermelo’s and von Neumann’s systems reached their aim of providing a firm foundation for a
system of set theory which include Cantor’s basic results. But as they had to give up a considerable
amount of näıve set theory, many mathematicians pointed out that they should be seen as provisional
solutions.11

In the early 1900’s Russell developed a theory of types from the idea of considering sets to be ordered in
a hierarchy of levels, which means that if we have two sets A and B and A is an element of B then B is
one level higher than A. Every level represents a type or a range of significance. The theory can be
described as follows:12

Every set has a level, i.e. a natural number. The simplest sets are of level 0, they are called individuals
and do not have elements. A set of level 1 contains such individuals, a set of level 2 contains sets of
level 1 and so on. An expression like a ∈ A is only meaningful if a is of level n and A is of level n + 1 for
some n ∈ N .
Thus a statement like x ∈ x is not meaningful in the theory of types and as a result, Russell’s paradox
cannot even be formulated.

Another quite different approach was made by the intuitionists. In intuitionistic mathematics every
proof must be constructive, which means that to prove that a mathematical object exists a method for
actually constructing the object must be given.
Cantor assumed that if we can name a property of objects, there exists a set of all objects with this
property. In intuitionistic set theory a set exists only if we can describe how to build it. Therefore a set
of all sets cannot be formed.13

Based on the principles of constructive mathematics, Marin-Löf developed intuitionistic type theory, in
the 1970’s. In his theory every mathematical object has a certain type and is always given together
with this type. This can be seen as a both simpler and more general version of Russell’s formulation.14

An early version of type theory was, however, inconsistent. This was discovered by Girard, who
formulated a type theoretic version of the Burali-Forti paradox in it. As a consequence, the theory was
modified several times.
We will present Girard’s paradox in chapter 4.
Some years later, Coquand formalized a less extensive version of the paradox in the inconsistent version
of Martin-Löf’s type theory. Coquand’s paradox of tree will be presented in chapter 5.
We will start with a presentation of Martin-Löf’s type theory in the following chapter.

10Pinter 1971, p. 13
11ibid. p. 15
12ibid. pp. 16–17
13ibid. pp. 17–19
14Martin-Löf 1998, p. 127
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3 Intuitionistic type theory

Martin-Löf developed Intuitionistic type theory (from now on type theory) with the aim to provide a
constructive foundation of mathematics as an alternative to the usual foundation of mathematics based
on classical set theory. Type theory is not based on first order predicate logic; predicate logic is
interpreted within type theory.15

A type is defined by prescribing how to construct an object of that type. This corresponds to the
definition of a set, and from now on we will refer to types as sets. In an analogous way, a proposition is
defined by prescribing how it can be proved. This leads us to one of the basic ideas in type theory: the
interpretation of propositions as sets.
A proposition is proved to be true by constructing an element of the corresponding set. An empty set
corresponds to a false proposition.
If we decide whether a proposition is true, we make a judgement.
We can make judgements of four forms with the following notation in type theory:

(1) A is a set A : set
(2) A and B are equal sets A = B : set
(3) a is an element in the set A a : A
(4) a and b are equal elements in the set A a = b : A

These judgements are explained in the following way:

(1) We know that A is a set if we know how a canonical element of A is formed and under what
conditions two canonical elements of A are equal.

(2) Two sets A and B are equal if an arbitrary canonical element of A is also a canonical element of
B and vice versa.

(3) If A is a set then a is an element in A if a yields a canonical element in A as value when evaluated.
(4) Two arbitrary elements a and b in a set A are equal if a and b yield equal canonical elements of A

as values when they are evaluated.

Identifying sets with propositions and elements of sets with proofs of propositions, A : set is interpreted
as A is a proposition and a : A is interpreted as a is a proof of A i.e. A is true.

Families of sets
In general judgements are made under assumptions.
An expression of the form

B(x1, ..., xn) : set [x1 : A1, ..., xn : An(x1, ..., xn)]

is called a hypothetical judgement or a family of sets with n indices.
Judgements with an empty context, that is, judgements without assumptions, are called categorical
judgements.
We will take a closer look at what the four forms of judgements mean if they are made under one
assumption.

(1) B(x) : set [x : A] expresses that B(x) is a set under the assumption x : A, or that B(x) is a family
of sets over A. A judgement of this form means that for an arbitrary element a in A, B(a) is a set
and if a and b are equal elements in A, then B(a) and B(b) are equal sets.

(2) B(x) = C(x) [x : A] expresses that B(x) and C(x) are equal families of sets over the set A. A
judgement of this form means that for any arbitrary element a : A, B(a) and C(a) are equal sets.

(3) b(x) : B(x) [x : A] expresses that b(x) is an element of B(x) under the assumption x : A. A
judgement of this form means that for an arbitrary element a : A, b(a) is an element in B(a), and
if a and d are equal elements in A, then b(a) and b(d) are equal elements in B(a).

(4) b(x) = c(x) : B(x) [x : A] expresses that b(x) and c(x) are equal elements of B(x) under the
assumption x : A. A judgement of this form means that, for an arbitrary element a : A, b(a) and
c(a) are equal elements in the set B(a).

Judgements made under n assumptions are generalizations of judgements made under one assumption.
The meanings of these judgements follow by induction.

15In the following presentation of type theory we mainly follow Martin-Löf 1984 and the part about polymorphic sets in
Nordström, Petersson, Smith 1990
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Equality rules
From the meanings of judgements of the form A = B, a : A and a = b : A the rules for set equality
follow immediately.

Set equality
a : A A = B : set

a : B
a = b : A A = B : set

a = b : B

We have the following general equality rules, which, by definition, hold for canonical elements:

Reflexivity
a : A

a = a : A
A : set

A = A : set

Symmetry
a = b : A
b = a : A

A = B : set
B = A : set

Transitivity
a = b : A b = c : A

a = c : A
A = B : set B = C : set

A = C : set

Substitution
From the verification of the meanings of judgements for families of sets the substitution rules follow
immediately:

Substitution in sets
a : A C(x) : set [x : A]

C(a) : set
a = b : A C(x) : set [x : A]

C(a) = C(b) : set

Substitution in elements
a : A c(x) : C(x) [x : A]

c(a) : C(a)
a = b : A c(x) : C(x) [x : A]

c(a) = c(b) : C(a)

Substitution in equal sets
a : A B(x) = C(x) : set [x : A]

B(a) = C(a) : set

Substitution in equal elements
a : A b(x) = c(x) : B(x) [x : A]

b(a) = c(a) : B(a)
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We will now give the rules for the different set-forming operations we use.
For each operation there are four kinds of rules:

• The set formation rule describes under which conditions we can form a set A

• The introduction rule defines the set A by describing how the canonical elements of the set are
formed

• The elimination rule shows how to define functions on the set

• The equality rule shows how a function defined by the elimination rule operates on canonical
elements of the set

To each rule of set formation, introduction and elimination there are corresponding rules that allow us
to substitute equal elements for equal elements and equal sets for equal sets. These rules are left out
here since they are of immediate inference.

Each element of a set can be evaluated to canonical form. The value of a canonical element is the
canonical element itself, whereas a non-canonical element has a canonical element as its value.

The rules are presented in a natural deduction style

P1 P2 ... Pn

C

where P1, P2, ..., Pn are the premises and C the conclusion. In general they are all hypothetical
judgements.

We then relate to each set the corresponding proposition it is identified with.

10



Cartesian Product of a family of sets
If A ist a set and B is a family of sets over A, then (Πx : A)B(x) denotes the cartesian product of the
sets in the family. The corresponding proposition is the universal quantifier; (Πx : A)B(x) is identified
with (∀x : A)B(x).
The canonical elements in (Πx : A)B(x) are of the form (λx)b(x), where b(x) : B(x) under the
assumption x : A. When applied to an element a : A, they give an element in the set B(a).

Π-formation:
A : set

[x : A]
B(x) : set

(Πx : A)B(x) : set ∀-formation:
A : prop

[x : A]
B(x) : prop

(∀x : A)B(x) : prop

Π-introduction:

[x : A]
b(x) : B(x)

(λx)b(x) : (Πx : A)B(x) ∀-introduction:

[x : A]
B(x) true

(∀x : A)B(x) true

Π-elimination:
f : (Πx : A)B(x) a : A

ap(f, a) : B(a) ∀-elimination:
(∀x : A)B(x) true a : A

B(a) true

We presuppose the premises A : set and B(x) : set [x : A], which are not written out explicitly.

ap(f, a) is evaluated as follows:
First evaluate f .
If the value of f is (λx)b(x), then the value of ap(f, a) is the value of b(a).
We then get the rule

Π-equality:

[x : A]
b(x) : B(x) a : A

ap((λx)b(x), a) = b(a) : B(a)

The function set
If B does not depend on x, A → B ≡ (Πx : A)B is the set of functions from A to B. The corresponding
proposition is implication; A → B is identified with A ⊃ B.
The canonical elements of A → B are of the form (λx)b(x), where b(x) : B under the assumption x : A
and x must not occur free in B. When applied to an element a : A, they give an element in the set B.
We get, as special cases

→-formation:
A : set

[x : A]
B : set

A → B : set ⊃-formation:
A : prop

[A true]
B : prop

A ⊃ B : prop

where x must not occur free in B

→-introduction:

[x : A]
b(x) : B

(λx)b(x) : A → B ⊃-introduction:

[A true]
B true

A ⊃ B true

where x must not occur free in B

→-elimination:
f : A → B a : A

ap(f, a) : B ⊃-elimination:
A ⊃ B true A true

B true

→-equality:

[x : A]
b(x) : B a : A

ap((λx)b(x), a) = b(a) : B

where x must not occur free in B or f
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Disjoint union of a family of sets
If A is a set and B(x) is a family of sets over A, then (Σx : A)B(x) denotes the disjoint union of the
sets in the family B(x). The corresponding proposition is the existential quantifier; (Σx : A)B(x) is
identified with (∃x : A)B(x).
The canonical elements in (Σx : A)B(x) are pairs of the form 〈a, b〉, where a : A and b : B(a).

Σ-formation:

A : set

[x : A]

B(x) : set

(Σx : A)B(x) : set ∃-formation:

A : prop

[x : A]

B(x) : prop

(∃x : A)B(x) : prop

Σ-introduction:

a : A b : B(a)

〈a, b〉 : (Σx : A)B(x) ∃-introduction:

a : A B(a) true

(∃x : A)B(x) true

Σ-elimination:

c : (Σx : A)B(x)

[v : (Σx : A)B(x)]

C(v) : set

[x : A, y : B(x)]

d(x, y) : C(〈x, y〉)
E(c, (x, y)d(x, y)) : C(c) ∃-elimination:

(∃x : A)B(x) true
[x : A, B(x) true]

C true

C true

E(c, (x, y)d(x, y)) is evaluated in the following way:
First evaluate c.
If the value of c is 〈a, b〉, then the value of E(c, (x, y)d(x, y)) is the value of d(a, b), which is a canonical
element of C(〈a, b〉).
This gives the rule

Σ-equality:

a : A b : B(a)
[v : (Σx : A)B(x)]

C(v) : set
[x : A, y : B(x)]
d(x, y) : C(〈x, y〉)

E(〈a, b〉, (x, y)d(x, y)) = d(a, b) : C(〈a, b〉)

The projections p and q, which select the left and the right component of a pair, respectively, are
special cases of E(c, (x, y)d(x, y)):

p(c) ≡ E(c, (x, y)x) : A
q(c) ≡ E(c, (x, y)y) : B(p(c))

We then have the elimination rules

c : (Σx : A)B(x)
p(c) : A

c : (Σx : A)B(x)
q(c) : B(p(c))

and the equality rules
a : A b : B(a)
p(〈a, b〉) = a : A

a : A b : B(a)
q(〈a, b〉) = b : B(a)

Cartesian product of two sets
If B does not depend on x, A×B ≡ (Σx : A)B denotes the cartesian product of A and B. The
corresponding proposition is conjunction; A×B is identified with A & B.
The canonical elements in A×B are thus pairs of the form 〈a, b〉, where a : A and b : B.
We get, as special cases

×-formation:
A : set B : set

A×B : set &-formation:

A : prop B : prop

A & B : prop

×-introduction:
a : A b : B
〈a, b〉 : A×B &-introduction:

A true B true
A & B true

×-elimination:

c : A×B
[v : A×B]
C(v) : set

[x : A, y : B]
d(x, y) : C(〈x, y〉)

E(c, (x, y)d(x, y)) : C(c) &-elimination:
A & B true

[A true, B true]
C true

C true

×-equality:

a : A b : B
[v : A×B]
C(v) : set

[x : A, y : B]
d(x, y) : C(〈x, y〉)

E(〈a, b〉, (x, y)d(x, y)) = d(a, b) : C(〈a, b〉)
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Disjoint union of two sets
If A is a set and B is a set, then A + B denotes the disjoint union of A and B. The corresponding
proposition is disjunction; A + B is identified with A ∨B.
The canonical elements in A + B are of the form i(a) and j(b), where i and j give the information
about which of the sets A or B the elements come from.

+-formation:
A : set B : set

A + B : set ∨-formation:

A : prop B : prop

A ∨B : prop

+-introduction 1:

a : A

i(a) : A + B ∨-introduction 1:
A true

A ∨B true

+-introduction 2:

b : B

j(b) : A + B ∨-introduction 2:
B true

A ∨B true

+-elimination:

c : A + B
[v : A + B]
C(v) : set

[x : A]
d(x) : C(i(x))

[y : B]
e(y) : C(j(y))

D(c, (x)d(x), (y)e(y)) : C(c) ∨-elimination:
A ∨B true

[A true]
C true

[B true]
C true

C true

D(c, (x)d(x), (y)e(y)) is evaluated as follows:
First evaluate c.
If the value of c is of the form i(a), then the value of D(c, (x)d(x), (y)e(y)) is the value of d(a).
If the value of c is of the form j(b), then the value of D(c, (x)d(x), (y)e(y)) is the value of e(b).
This gives the rules

+-equality 1:

a : A
[v : A + B]
C(v) : set

[x : A]
d(x) : C(i(x))

[y : B]
e(y) : C(j(y))

D(i(a), (x)d(x), (y)e(y)) = d(a) : C(i(a))

+-equality 2:

b : B
[v : A + B]
C(v) : set

[x : A]
d(x) : C(i(x))

[y : B]
e(y) : C(j(y))

D(j(b), (x)d(x), (y)e(y)) = e(b) : C(j(b))

Propositional equality
If A is a set, then the proposition Id(A, a, b) is similar to the judgement a = b : A.
The canonical elements of Id(A, a, b) have the form ref(a).
Id(A, a, b) can be seen as the smallest reflexive relation on A, as its only elements are reflexivity proofs.

Id-formation:
A : set a : A b : A

Id(A, a, b) : set

Id-introduction:
a : A

ref(a) : Id(A, a, a)

Id-elimination:
a : A b : A c : Id(A, a, b)

[x : A y : A z : Id(A, x, y)]
C(x, y, z) : set

[x : A]
d(x) : C(x, x, ref(x))

idpeel(c, (x)d(x)) : C(a, b, c)

idpeel(c, (x)d(x)) is evaluated as follows:
First evaluate c.
If c has the value ref(a), then the value of idpeel(c, (x)d(x)) is the value of d(a).
This gives the rule

Id-equality:
a : A

[x : A y : A z : Id(A, x, y)]
C(x, y, z) : set

[x : A]
d(x) : C(x, x, ref(x))

idpeel(ref(a), (x)d(x)) = d(a) : C(a, a, ref(a))

13



Enumeration sets
Given n canonical constants i1, ..., in we introduce the enumeration set {i1, ..., in}.
The canonical elements of {i1, ..., in} are i1, i2, ... and in.

{i1, ..., in}-formation: {i1, ..., in} : set

We have n introduction rules (n ≥ 0):

{i1, ..., in}-introduction 1: i1 : {i1, ..., in}

...

{i1, ..., in}-introduction n: in : {i1, ..., in}

{i1, ..., in}-elimination:
a : {i1, ..., in}

[x : {i1, ..., in}]
C(x) : set b1 : C(i1), ... , bn : C(in)

case(a, b1, ..., bn) : C(a)

case(a, b1, ..., bn) is evaluated in the following way:
First evaluate a.
If the value of a is ik (1 ≤ k ≤ n) then the value of case(a, b1, ..., bn) is the value of bk.
This gives the rule

{i1, ..., in}-equality:

[x : {i1, ..., in}]
C(x) : set b1 : C(i1), ..., bn : C(in)

case(ik, b1, ..., bn) = bk : C(ik)

The empty set
For n = 0 we get the empty set {} as a special case. The corresponding proposition is absurdity; {} is
identified with ⊥.
The empty set has no introduction rule as it has no elements.

{}-formation: {} : set ⊥-formation: ⊥ : prop

{}-elimination:
a : {}

[x : {}]
C(x) : set

case(a) : C(a) ⊥-elimination:
⊥ true C : prop

C true

For any proposition A we define a negation by ¬A ≡ A → ⊥

Natural numbers
N denotes the set of natural numbers.
0 is a canonical element in N and if a is an element in N , then s(a) is a canonical element in N .

N -formation: N : set

N -introduction 1: 0 : N

N -introduction 2:
a : N

s(a) : N

14



N -elimination:
c : N

[v : N ]
C(v) : set d : C(0)

[x : N, y : C(x)]
e(x, y) : C(s(x))

R(c, d, (x, y)e(x, y)) : C(c)

R(c, d, (x, y)e(x, y)) is evaluated in the following way:
First evaluate c.
If the value of c is 0 then the value of R(c, d, (x, y)e(x, y)) is the value of d.
If the value of c is s(a) for some a : N then the value of R(c, d, (x, y)e(x, y)) is the value of
e(a,R(a, d, (x, y)e(x, y))).
This gives the rules

N -equality 1:

[v : N ]
C(v) : set d : C(0)

[x : N, y : C(x)]
e(x, y) : C(s(x))

R(0, d, (x, y)e(x, y)) = d : C(0)

N -equality 2:
a : N

[v : N ]
C(v) : set d : C(0)

[x : N, y : C(x)]
e(x, y) : C(s(x))

R(s(a), d, (x, y)e(x, y)) = e(a,R(a, d, (x, y)e(x, y))) : C(s(a))

Well-orderings
If A is a set and if B is a family of sets over A, then (W x : A)B(x) is a well-ordering, or a well-founded
tree. The constructor set A represents the different ways to form a tree and the selector family B(x)
represents the parts of a tree formed by x : A.
The canonical elements in (W x : A)B(x) are of the form sup(a, (t)b(t)), where a : A is a particular form
we want the tree to have and b is a function from B(a) to (W x : A)B(x), i.e. a collection of subtrees.

W -formation:

A : set
[x : A]

B(x) : set

(W x : A)B(x) : set

W -introduction:

a : A
[t : B(a)]

b(t) : (W x : A)B(x)

sup(a, (t)b(t)) : (W x : A)B(x)

W -elimination:

a : (W x : A)B(x)
[v : (W x : A)B(x)]

C(v) : set
[y : A, z(t) : (W x : A)B(x)[t : B(y)], u(t) : C(z(t))[t : B(y)]]

b(y, z, u) : C(sup(y, (t)z(t)))

wrec(a, (y, z, u)b(y, z, u)) : C(a)

wrec(a, (y, z, u)b(y, z, u)) is evaluated as follows:
First evaluate a.
If a has the value sup(d, (t)e(t)) then the value of wrec(a, (y, z, u)b(y, z, u)) is the value of
b(d, (t)e(t), (t) wrec(e(t), (y, z, u)b(y, z, u))).
This gives the rule

W -equality:

d : A
[t : B(d)]

e(t) : (W x : A)B(x)
[v : (W x : A)B(x)]

C(v) : set
[y : A, z(t) : (W x : A)B(x)[t : B(y)], u(t) : C(z(t))[t : B(y)]]

b(y, z, u) : C(sup(y, (t)z(t)))

wrec(sup(d, (t)e(t)), (y, z, u)b(y, z, u)) = b(d, (t)e(t), (t)wrec(e(t), (y, z, u)b(y, z, u))) : C(sup(d, (t)e(t)))

15



Universes
We define a universe as the least set closed under the representatives of certain set-forming operators.
The first universe, or the set of small sets, is the least set that is closed under the operations we have
introduced so far. These are Π, Σ, +, Id, {i1, ..., in}, N and W .
The canonical elements of the first universe are codes for the sets that are formed by the set-forming
operators.
We further define a familiy of sets T (x) : set [x : U ], which decodes the elements in the universe to the
sets they represent.

U -formation: U : set T -elimination:

a : U

T (a) : set

U -introduction π:

a : U

[x : T (a)]

b(x) : U

π(a, (x)b(x)) : U T -equality π:

a : U

[x : T (a)]

b(x) : U

T (π(a, (x)b(x))) = (Πx : T (a))T (b(x)) : set

U -introduction σ:

a : U
[x : T (a)]
b(x) : U

σ(a, (x)b(x)) : U T -equality σ:

a : U
[x : T (a)]
b(x) : U

T (σ(a, (x)b(x))) = (Σx : T (a))T (b(x)) : set

U -introduction +̂:

a : U b : U

a+̂b : U T -equality +̂:

a : U b : U

T (a+̂b) = T (a) + T (b) : set

U -introduction Îd:

a : U x : T (a) y : T (a)

Îd(a, x, y) : U T -equality Îd:

a : U x : T (a) y : T (a)

T (Îd(a, x, y)) = Id(T (a), x, y) : set

U -introduction ̂{i1, ..., in}: ̂{i1, ..., in} : U T -equality ̂{i1, ..., in}: T ( ̂{i1, ..., in}) = {i1, ..., in} : set

U -introduction N̂ : N̂ : U T -equality N̂ : T (N̂) = N : set

U -introduction w:

a : U
[x : T (a)]
b(x) : U

w(a, (x)b(x)) : U T -equality w:

a : U
[x : T (a)]
b(x) : U

T (w(a, (x)b(x))) = (W x : T (a))T (b(x)) : set

A first version of Martin-Löf’s type theory contained the additional rules

u : U T (u) = U : set

If we add these rules, the system becomes inconsistent, as we will show in the following chapters:
In chapter 4 we will formalize the paradox that was discovered by Girard and in chapter 5 we will
explain Coquand’s paradox of trees.
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4 Girard’s paradox

Recall the Burali-Forti paradox. We consider an ordinal number as the well-ordered set that contains all
preceding ordinal numbers. To each ordinal number a strictly greater one can be constructed. We then
form the set of all ordinal numbers. This set is an ordinal number that is greater than all ordinal numbers.
But to each ordinal number a strictly greater one can be constructed. This gives the contradiction.

Girard’s paradox may be considered as a type-theoretic version of this argument.16 Ordinal numbers are
replaced by well-ordered sets. An ordered set is a set M with an order relation < which is transitive, i.e.
x < y and y < z implies x < z for all x, y, z : M . An ordered set is well-ordered if there is no infinitely
descending chain x1 > x2 > ... > xn > ... of elements in M .17

We will use the notation A∗ to denote a well-ordered set, where A∗ consists of the name a : U of a set T (a)
that has a binary relation < on it, a proof of transitivity of < and a proof of T (a) having no infinitely
descending chains. The greatest ordinal number, that is, the set of all ordinal numbers, is represented by
Ω. We will show that such a set can indeed be defined using u : U with T (u) = U . The empty set will
be denoted by ⊥.

The paradox is constructed as follows:

Let a : U and suppose there is a binary relation < on T (a) such that <: T (a) → T (a) → U . Applying
this relation to any two elements x : T (a) and y : T (a), we get the name ap(ap(<, x), y) in U and define
the corresponding set as x < y ≡ T (ap(ap(<, x), y)).

We formulate the properties

P (a,<) = (∀x, y, z : T (a))[x < y → (y < z → x < z)]

and
Q(a,<) = (∀f : N → T (a))¬[(∀n : N)(ap(f, s(n)) < ap(f, n))]

P (a,<) expresses transitivity of <, Q(a,<) expresses that there are no infinitely descending chains in
T (a).

We then form the set

Ω = (∃a : U,<: T (a) → T (a) → U)[P (a,<) & Q(a,<)]

as the set of all sets that have a name a in U and a relation < with the properties P (a,<) and Q(a,<).

For A∗ : Ω we define a ≡ p(A∗) as the name of a set T (a), <a≡ p(q(A∗)) as the binary relation on T (a)
and pa ≡ p(q(q(A∗))) and qa ≡ q(q(q(A∗))) as proofs of the properties P (a,<a) and Q(a,<a).

We define a binary relation <ω: Ω → Ω → U such that applying this relation to any two elements A∗ : Ω
and B∗ : Ω gives the name of the set

A∗ <ω B∗ ≡ (∃f : T (a) → T (b), z : T (b))[(∀x, y : T (a))(x <a y → ap(f, x) <b ap(f, y))&(∀x : T (a))(ap(f, x) <b z)]

which expresses that there exists an order-preserving bounded function f : T (a) → T (b).

We will show that Ω has a name ω in U and the properties P (ω, <ω) and Q(ω, <ω). Here we essentially
need the assumptions u : U , T (u) = U . Then we can show that Ω∗ ≡ 〈ω, 〈<ω, 〈pω, qω〉〉〉 is itself an
element of Ω.

Further we can show that A∗ <ω Ω∗ for any A∗ : Ω. As Ω∗ : Ω, we get Ω∗ <ω Ω∗. But this gives an
infinitely descending chain in Ω, which yields a contradiction.

16We will formalize the idea that is sketched in Troelstra, v.Dalen 1988, vol II, p. 614 and Martin-Löf 1998 pp. 133–135
17v. Mangoldt/Knopp 1973, pp. 53–54
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We start by showing in U1 and U2 that P (a,<) and Q(a,<) are sets with names in U for a : U and
<: T (a) → T (a) → U . In U3 we show that Ω is a set with a name in U under the assumption u : U with
T (u) = U . In U4 we define the binary relation <ω on Ω.

We then construct a proof of absurdity.

We will sometimes carry out several steps at the same time, for example when we use repeated substitu-
tion.
The sign ≡ will be used for definitions as well as for abbreviations in the trees.
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In U1 and U2 we presuppose A → A → U : set, which follows from

a : U
a : U u : U
π(a, (x)u) : U

π(a, (y)π(a, (x)u)) : U

T (π(a, (y)π(a, (x)u))) = A → A → U : set

We will not explicitly write out premises like this in the following.

U 3

u : U

[a : U ]7
[a : U ]7 u : U

π(a, (x)u) : U

π(a, (y)π(a, (x)u)) : U

[a : U ]7 [<: A → A → U ]6

U1

P̂ (a, <) : U

[a : U ]7 [<: A → A → U ]6

U2

Q̂(a, <) : U

σ(P̂ (a, <), (z)Q̂(a, <)) : U

σ(π(a, (y)π(a, (x)u)), (<)σ(P̂ (a, <), (z)Q̂(a, <))) : U
(6)

ω ≡ σ(u, (a)σ(π(a, (y)π(a, (x)u)), (<)σ(P̂ (a, <), (z)Q̂(a, <)))) : U
(7)

Here we close the open assumptions a : U and <: A → A → U in U1 and U2.

We have Ω = T (ω) = T (σ(u, (a)σ(π(a, (y)π(a, (x)u)), (<)σ(P̂ (a,<), (z)Q̂(a,<)))))
= (Σa : U)(Σ <: A → A → U)[P (a,<)×Q(a,<)]
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We suppose that we have A∗ : Ω. We define a ≡ p(A∗), <a≡ p(q(A∗)), pa ≡ p(q(q(A∗))) and
qa ≡ q(q(q(A∗))). We also define A ≡ T (a) and B ≡ T (b).
The premises which show that the sets we use really are sets will as usual not be written out explicitly.
They follow from U1, U2, U3, and U : set.

D1

[A∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]84

a ≡ p(A∗) : U

D1b

[B∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]83

b ≡ p(B∗) : U

D2

[A∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]84

q(A∗) : (Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]
<a≡ p(q(A∗)) : A → A → U

D2b

[B∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]83

q(B∗) : (Σ <b: B → B → U)[P (b, <b)×Q(b, <b)]
<b≡ p(q(B∗)) : B → B → U

D3

[A∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]84

q(A∗) : (Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]
q(q(A∗)) : P (a,<a)×Q(a,<a)

pa ≡ p(q(q(A∗))) : P (a,<a)

D4

[A∗ : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]]84

q(A∗) : (Σ <a: A → A → U)[P (a,<a)×Q(a,<a)]
q(q(A∗)) : P (a,<a)×Q(a,<a)

qa ≡ q(q(q(A∗))) : Q(a,<a)
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In H we will now construct a proof tω of Ω∗ <ω Ω∗ and then deduce a proof of absurdity.
These proofs consist of several parts:

Suppose we have A∗ : Ω with a ≡ p(A∗), A ≡ T (a), <a≡ p(q(A∗)), pa ≡ p(q(q(A∗))) and qa ≡
q(q(q(A∗))).

In H1 we define a function g ≡ (λx)A∗
x : A → Ω, so that ap(g, x) = ap((λx)A∗

x, x) = A∗
x, where we have

A∗
x ≡ 〈ax, 〈<ax

, 〈pax
, qax

〉〉〉 and ax is the name of the set Ax that contains all v : A such that v <a x.
We show in H2 that this function is order-preserving and in H3 that it is bounded by A∗. This combines
to a proof of A∗ <ω Ω∗ and as A∗ was an arbitrary element of Ω, A∗ <ω Ω∗ is true for all A∗ : Ω. But
as Ω∗ : Ω, which is shown in H4, we get a proof tω of Ω∗ <ω Ω∗.

In H5 we prove that the binary relation <ω defined on Ω is transitive and in H6 that Ω contains no
infinitely descending chains.

To deduce absurdity, we then define the function (λn)Ω∗ : N → Ω, that, applied to any n : N , yields
Ω∗ : Ω, so that we have ap((λn)Ω∗, s(n)) = Ω∗ and ap((λn)Ω∗, n) = Ω∗ for any n : N and thus
ap((λn)Ω∗, s(n)) <ω ap((λn)Ω∗, n) for all n : N , which is an infinitely descending chain in Ω. But as we
have shown in H6, Ω has no infinitely descending chains and we get a contradiction.
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H1

As before we have A∗ : Ω with a ≡ p(A∗), A ≡ T (a), <a≡ p(q(A∗)), pa ≡ p(q(q(A∗))) and qa ≡
q(q(q(A∗))).

We define the function g : A → Ω that maps an element x : A into A∗
x ≡ 〈ax, 〈<ax , 〈pax , qax〉〉〉 : Ω, where

ax is defined as the name of the set Ax which contains all v : A such that v <a x. Formally this becomes

ax ≡ σ(a, (v) ap(ap(<a, v), x))

Ax = T (ax) = (Σv : A)(v <a x))

To show that A∗
x ≡ 〈ax, 〈<ax

, 〈pax
, qax

〉〉〉 : Ω, we have to show that ax : U , that <ax
, the binary relation

<a with restricton to Ax, is a binary relation on Ax, and that the properties P (ax, <ax) and Q(ax, <ax)
are fulfilled, i.e. that <a is transitive and that there are no infinitely descending chains in Ax. This
follows from the fact that <a is transitive and that A does not contain any infinitely descending chains.
We give the formal proofs pax

: P (ax, <ax
) and qax

: Q(ax, <ax
) in H1.1 and H1.2.

25



H
1

D
1

a
:U

D
2

<
a
:A

→
A
→

U
[v

:A
]1

3

ap
(<

a
,v

)
:A

→
U

[x
:A

]3
3

ap
(a

p(
<

a
,v

),
x
)

:U
a

x
≡

σ
(a

,(
v
)a

p(
ap

(<
a
,v

),
x
))

:U
(1

3)

D
2

<
a
:A

→
A
→

U

[a
x

:A
x
]1

5

p
(a

x
)

:A
ap

(<
a
,p

(a
x
))

:A
→

U

[b
x

:A
x
]1

4

p
(b

x
)

:A
ap

(a
p(

<
a
,p

(a
x
))

,p
(b

x
))

:U
(λ

bx
)a

p(
ap

(<
a
,p

(a
x
))

,p
(b

x
))

:A
x
→

U
(1

4)

<
a

x
≡

(λ
a
x
)(

λ
bx

)a
p(

ap
(<

a
,p

(a
x
))

,p
(b

x
))

:A
x
→

A
x
→

U
(1

5)

H
1
.1

p
a

x
:P

(a
x
,<

a
x
)

H
1
.2

q a
x

:Q
(a

x
,<

a
x
)

〈p
a

x
,q

a
x
〉:

P
(a

x
,<

a
x
)
×

Q
(a

x
,<

a
x
)

〈<
a

x
,〈

p
a

x
,q

a
x
〉〉

:(
Σ

<
a

x
:A

x
→

A
x
→

U
)[

P
(a

x
,<

a
x
)
×

Q
(a

x
,<

a
x
)]

〈a
x
,〈

<
a

x
,〈

p
a

x
,q

a
x
〉〉
〉:

(Σ
a

:U
)(

Σ
<

a
:A

→
A
→

U
)[

P
(a

,<
a
)
×

Q
(a

,<
a
)]

=
Ω

g
≡

(λ
x
)〈

a
x
,〈

<
a

x
,〈

p
a

x
,q

a
x
〉〉
〉:

A
→

Ω
(3

3)

H
1.

1

D
3

p
a

:
(Π

u
:
A

)(
Π

v
:
A

)(
Π

w
:
A

)[
u

<
a

v
→

(v
<

a
w
→

u
<

a
w

)]

[a
x

:
A

x
]2

6

p
(a

x
)

:
A

a
p
(p

a
,p

(a
x
))

:
(Π

v
:
A

)(
Π

w
:
A

)[
p
(a

x
)

<
a

v
→

(v
<

a
w
→

p
(a

x
)

<
a

w
)]

[b
x

:
A

x
]2

5

p
(b

x
)

:
A

a
p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

:
(Π

w
:
A

)[
p
(a

x
)

<
a

p
(b

x
)
→

(p
(b

x
)

<
a

w
→

p
(a

x
)

<
a

w
)]

[c
x

:
A

x
]2

4

p
(c

x
)

:
A

a
p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

:
p
(a

x
)

<
a

p
(b

x
)
→

(p
(b

x
)

<
a

p
(c

x
)
→

p
(a

x
)

<
a

p
(c

x
))

H
1
.1

.1

�
:
p
(a

x
)

<
a

p
(b

x
)

a
p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
)

:
p
(b

x
)

<
a

p
(c

x
)
→

p
(a

x
)

<
a

p
(c

x
)

H
1
.1

.2

∇
:
p
(b

x
)

<
a

p
(c

x
)

a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
p
(a

x
)

<
a

p
(c

x
)

H
1
.1

.3

a
x

<
a

x
cx

=
p
(a

x
)

<
a

p
(c

x
)

:
se

t

a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
a
x

<
a

x
cx

(λ
∇

)
a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
bx

<
a

x
cx
→

a
x

<
a

x
cx

(2
2
)

(λ
�)

(λ
∇

)
a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
a
x

<
a

x
bx
→

(b
x

<
a

x
cx
→

a
x

<
a

x
cx

)
(2

3
)

(λ
cx

)(
λ
�)

(λ
∇

)
a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
(Π

w
:
A

x
)[

a
x

<
a

x
bx
→

(b
x

<
a

x
w
→

a
x

<
a

x
w

)]
(2

4
)

(λ
bx

)(
λ
cx

)(
λ
�)

(λ
∇

)
a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
(Π

v
:
A

x
)(

Π
w

:
A

x
)[

a
x

<
a

x
v
→

(v
<

a
x

w
→

a
x

<
a

x
w

)]
(2

5
)

p
a

x
≡

(λ
a
x
)(

λ
bx

)(
λ
cx

)(
λ
�)

(λ
∇

)
a
p
(a

p
(a

p
(a

p
(a

p
(p

a
,p

(a
x
))

,p
(b

x
))

,p
(c

x
))

,�
),
∇

)
:
(Π

u
:
A

x
)(

Π
v

:
A

x
)(

Π
w

:
A

x
)[

u
<

a
x

v
→

(v
<

a
x

w
→

u
<

a
x

w
)]

=
P

(a
x
,<

a
x
)

(2
6
)

26



H
1.

1.
1

D
2

<
a
:A

→
A
→

U

[u
:A

x
]1

7

p
(u

)
:A

ap
(<

a
,p

(u
))

:A
→

U

[v
:A

x
]1

6

p
(v

)
:A

ap
(a

p(
<

a
,p

(u
))

,p
(v

))
:U

(λ
v
)a

p(
ap

(<
a
,p

(u
))

,p
(v

))
:A

x
→

U
(1

6)

<
a

x
≡

(λ
u
)(

λ
v
)a

p(
ap

(<
a
,p

(u
))

,p
(v

))
:A

x
→

A
x
→

U
(1

7)
[a

x
:A

x
]2

6

ap
(<

a
x
,a

x
)

=
ap

((
λ
u
)(

λ
v
)a

p(
ap

(<
a
,p

(u
))

,p
(v

))
,a

x
)

=
(λ

v
)a

p(
ap

(<
a
,p

(a
x
))

,p
(v

))
:A

x
→

U
[b

x
:A

x
]2

5

ap
(a

p(
<

a
x
,a

x
),

bx
)

=
ap

((
λ
v
)a

p(
ap

(<
a
,p

(a
x
))

,p
(v

))
,b

x
)

=
ap

(a
p(

<
a
,p

(a
x
))

,p
(b

x
))

:U
a
x

<
a

x
bx
≡

T
(a

p(
ap

(<
a

x
,a

x
),

bx
))

=
T

(a
p(

ap
(<

a
,p

(a
x
))

,p
(b

x
))

)
:s

et

D
2

<
a
:A

→
A
→

U

[a
x

:A
x
]2

6

p
(a

x
)

:A
ap

(<
a
,p

(a
x
))

:A
→

U

[b
x

:A
x
]2

5

p
(b

x
)

:A
ap

(a
p(

<
a
,p

(a
x
))

,p
(b

x
))

:U
p
(a

x
)

<
a

p
(b

x
)
≡

T
(a

p(
ap

(<
a
,p

(a
x
))

,p
(b

x
))

)
:s

et
a
x

<
a

x
bx

=
p
(a

x
)

<
a

p
(b

x
)

:s
et

[�
:a

x
<

a
x

bx
]2

3

�
:p

(a
x
)

<
a

p
(b

x
)

H
1.

1.
2

D
2

<
a
:A

→
A
→

U

[v
:A

x
]1

9

p
(v

)
:A

ap
(<

a
,p

(v
))

:A
→

U

[w
:A

x
]1

8

p
(w

)
:A

ap
(a

p(
<

a
,p

(v
))

,p
(w

))
:U

(λ
w

)a
p(

ap
(<

a
,p

(v
))

,p
(w

))
:A

x
→

U
(1

8)

<
a

x
≡

(λ
v
)(

λ
w

)a
p(

ap
(<

a
,p

(v
))

,p
(w

))
:A

x
→

A
x
→

U
(1

9)
[b

x
:A

x
]2

5

ap
(<

a
x
,b

x
)

=
ap

((
λ
v
)(

λ
w

)a
p(

ap
(<

a
,p

(v
))

,p
(w

))
,b

x
)

=
(λ

w
)a

p(
ap

(<
a
,p

(b
x
))

,p
(w

))
:A

x
→

U
[c

x
:A

x
]2

4

ap
(a

p(
<

a
x
,b

x
),

cx
)

=
ap

((
λ
w

)a
p(

ap
(<

a
,p

(b
x
))

,p
(w

))
,c

x
)

=
ap

(a
p(

<
a
,p

(b
x
))

,p
(c

x
))

:U
bx

<
a

x
cx
≡

T
(a

p(
ap

(<
a

x
,b

x
),

cx
))

=
T

(a
p(

ap
(<

a
,p

(b
x
))

,p
(c

x
))

)
:s

et

D
2

<
a
:A

→
A
→

U

[b
x

:A
x
]2

5

p
(b

x
)

:A
ap

(<
a
,p

(b
x
))

:A
→

U

[c
x

:A
x
]2

4

p
(c

x
)

:A
ap

(a
p(

<
a
,p

(b
x
))

,p
(c

x
))

:U
p
(b

x
)

<
a

p
(c

x
)
≡

T
(a

p(
ap

(<
a
,p

(b
x
))

,p
(c

x
))

)
:s

et
bx

<
a

x
cx

=
p
(b

x
)

<
a

p
(c

x
)

:s
et

[∇
:b

x
<

a
x

cx
]2

2

∇
:p

(b
x
)

<
a

p
(c

x
)

27



H
1.

1.
3

D
2

<
a
:A

→
A
→

U

[u
:A

x
]2

1

p
(u

)
:A

ap
(<

a
,p

(u
))

:A
→

U

[w
:A

x
]2

0

p
(w

)
:A

ap
(a

p(
<

a
,p

(u
))

,p
(w

))
:U

(λ
w

)a
p(

ap
(<

a
,p

(u
))

,p
(w

))
:A

x
→

U
(2

0)

<
a

x
≡

(λ
u
)(

λ
w

)a
p(

ap
(<

a
,p

(u
))

,p
(w

))
:A

x
→

A
x
→

U
(2

1)
[a

x
:A

x
]2

6

ap
(<

a
x
,a

x
)

=
ap

((
λ
u
)(

λ
w

)a
p(

ap
(<

a
,p

(u
))

,p
(w

))
,a

x
)

=
(λ

w
)a

p(
ap

(<
a
,p

(a
x
))

,p
(w

))
:A

x
→

U
[c

x
:A

x
]2

4

ap
(a

p(
<

a
x
,a

x
),

cx
)

=
ap

((
λ
w

)a
p(

ap
(<

a
,p

(a
x
))

,p
(w

))
,c

x
)

=
ap

(a
p(

<
a
,p

(a
x
))

,p
(c

x
))

:U
a
x

<
a

x
cx
≡

T
(a

p(
ap

(<
a

x
,a

x
),

cx
))

=
T

(a
p(

ap
(<

a
,p

(a
x
))

,p
(c

x
))

)
:s

et

D
2

<
a
:A

→
A
→

U

[a
x

:A
x
]2

6

p
(a

x
)

:A
ap

(<
a
,p

(a
x
))

:A
→

U

[c
x

:A
x
]2

4

p
(c

x
)

:A
ap

(a
p(

<
a
,p

(a
x
))

,p
(c

x
))

:U
p
(a

x
)

<
a

p
(c

x
)
≡

T
(a

p(
ap

(<
a
,p

(a
x
))

,p
(c

x
))

)
:s

et
a
x

<
a

x
cx

=
p
(a

x
)

<
a

p
(c

x
)

:s
et

H
1.

2

D
4

q a
:(

Π
f

:N
→

A
)[

(Π
n

:N
)(

ap
(f

,s
(n

))
<

a
ap

(f
,n

))
→
⊥

]

[f
q

:N
→

A
x
]3

2
[n

:N
]2

7

ap
(f

q
,n

)
:A

x

p
(a

p(
f q

,n
))

:A
(λ

n
)p

(a
p(

f q
,n

))
:N

→
A

(2
7)

ap
(q

a
,(

λ
n
)p

(a
p(

f q
,n

))
)

:(
Π

n
:N

)(
p
(a

p(
f q

,s
(n

))
)

<
a

p
(a

p(
f q

,n
))

)
→
⊥

H
1
.2

.1

(λ
n
)a

p(
r,

n
)

:(
Π

n
:N

)(
p
(a

p(
f q

,s
(n

))
)

<
a

p
(a

p(
f q

,n
))

)
ap

(a
p(

q a
,(

λ
n
)p

(a
p(

f q
,n

))
),

(λ
n
)a

p(
r,

n
))

:⊥
(λ

r)
ap

(a
p(

q a
,(

λ
n
)p

(a
p(

f q
,n

))
),

(λ
n
)a

p(
r,

n
))

:(
Π

n
:N

)(
ap

(f
q
,s

(n
))

<
a

x
ap

(f
q
,n

))
→
⊥

(3
1)

q a
x
≡

(λ
f q

)(
λ
r)

ap
(a

p(
q a

,(
λ
n
)p

(a
p(

f q
,n

))
),

(λ
n
)a

p(
r,

n
))

:(
Π

f
:N

→
A

x
)[

(Π
n

:N
)(

ap
(f

,s
(n

))
<

a
x

ap
(f

,n
))
→
⊥

]=
Q

(a
x
,<

a
x
)

(3
2)

H
1.

2.
1

[r
:
(Π

n
:
N

)(
a
p
(f

q
,
s
(n

))
<

a
x

a
p
(f

q
,
n
))

]3
1

[n
:
N

]3
0

a
p
(r

,
n
)

:
a
p
(f

q
,
s
(n

))
<

a
x

a
p
(f

q
,
n
)

H
1

.2
.1

.1

a
p
(f

q
,
s
(n

))
<

a
x

a
p
(f

q
,
n
)

=
T

(a
p
(a

p
(<

a
,
p
(a

p
(f

q
,
s
(n

))
))

,
p
(a

p
(f

q
,
n
))

))
:
se

t
H

1
.2

.1
.2

T
(a

p
(a

p
(<

a
,
p
(a

p
(f

q
,
s
(n

))
))

,
p
(a

p
(f

q
,
n
))

))
=

p
(a

p
(f

q
,
s
(n

))
)

<
a

p
(a

p
(f

q
,
n
))

:
se

t

a
p
(f

q
,
s
(n

))
<

a
x

a
p
(f

q
,
n
)

=
p
(a

p
(f

q
,
s
(n

))
)

<
a

p
(a

p
(f

q
,
n
))

:
se

t

a
p
(r

,
n
)

:
p
(a

p
(f

q
,
s
(n

))
)

<
a

p
(a

p
(f

q
,
n
))

(λ
n
)
a
p
(r

,
n
)

:
(Π

n
:
N

)(
p
(a

p
(f

q
,
s
(n

))
)

<
a

p
(a

p
(f

q
,
n
))

)
(3

0
)

28



H
1.

2.
1.

1

D
2

<
a
:A

→
A
→

U

[w
:A

x
]2

9

p
(w

)
:A

ap
(<

a
,p

(w
))

:A
→

U

[v
:A

x
]2

8

p
(v

)
:A

ap
(a

p(
<

a
,p

(w
))

,p
(v

))
:U

(λ
v
)a

p(
ap

(<
a
,p

(w
))

,p
(v

))
:A

x
→

U
(2

8)

<
a

x
≡

(λ
w

)(
λ
v
)a

p(
ap

(<
a
,p

(w
))

,p
(v

))
:A

x
→

A
x
→

U
(2

9)
[f

q
:N

→
A

x
]3

2

[n
:N

]3
0

s(
n
)

:N
ap

(f
q
,s

(n
))

:A
x

ap
(<

a
x
,a

p(
f q

,s
(n

))
)

=
ap

((
λ
w

)(
λ
v
)a

p(
ap

(<
a
,p

(w
))

,p
(v

))
,a

p(
f q

,s
(n

))
)

=
(λ

v
)a

p(
ap

(<
a
,p

(a
p(

f q
,s

(n
))

))
,p

(v
))

:A
x
→

U

[f
q

:N
→

A
x
]3

2
[n

:N
]3

0

ap
(f

q
,n

)
:A

x

ap
(a

p(
<

a
x
,a

p(
f q

,s
(n

))
),

ap
(f

q
,n

))
=

ap
((

λ
v
)a

p(
ap

(<
a
,p

(a
p(

f q
,s

(n
))

))
,p

(v
))

,a
p(

f q
,n

))
=

ap
(a

p(
<

a
,p

(a
p(

f q
,s

(n
))

))
,p

(a
p(

f q
,n

))
)

:U
ap

(f
q
,s

(n
))

<
a

x
ap

(f
q
,n

)
≡

T
(a

p(
ap

(<
a

x
,a

p(
f q

,s
(n

))
),

ap
(f

q
,n

))
)

=
T

(a
p(

ap
(<

a
,p

(a
p(

f q
,s

(n
))

))
,p

(a
p(

f q
,n

))
))

:s
et

H
1.

2.
1.

2

D
2

<
a
:A

→
A
→

U

[f
q

:N
→

A
x
]3

2

[n
:N

]3
0

s(
n
)

:N
ap

(f
q
,s

(n
))

:A
x

p
(a

p(
f q

,s
(n

))
)

:A
ap

(<
a
,p

(a
p(

f q
,s

(n
))

))
:A

→
U

[f
q

:N
→

A
x
]3

2
[n

:N
]3

0

ap
(f

q
,n

)
:A

x

p
(a

p(
f q

,n
))

:A
ap

(a
p(

<
a
,p

(a
p(

f q
,s

(n
))

))
,p

(a
p(

f q
,n

))
)

:U
p
(a

p(
f q

,s
(n

))
)

<
a

p
(a

p(
f q

,n
))
≡

T
(a

p(
ap

(<
a
,p

(a
p(

f q
,s

(n
))

))
,p

(a
p(

f q
,n

))
))

:s
et

29



H2

Suppose we have x : A and y : A such that x <a y. Let Ax and Ay as before be the sets
Ax = (Σv : A)(v <a x) and Ay = (Σv : A)(v <a y). An element of Ax consists thus of an element w : A
together with a proof of w <a x.

In H2.1 we construct an order-preserving function f : Ax → Ay in the following way: f maps a pair in Ax

into the pair in Ay that contains the same w : A as the pair in Ax and a proof of w <a y, which follwos
from w <a x, x <a y and transitivity of <a. In H2.3 we give a formal proof of the order-preserving
property of f .

In H2.2 we define 〈x,4〉 : Ay as the pair that consists of x : A and the proof of x <a y. For this 〈x,4〉
we then have ap(f, ax) <ay

〈x,4〉 for all ax : Ax, which is proved in H2.4.

Thus, for all x : A and y : A, it follows from x <a y that A∗
x <ω A∗

y, or ap(g, x) <ω ap(g, y), where g is
the function g ≡ (λx)〈ax, 〈<ax , 〈pax , qax〉〉〉.
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H3

We show that A∗
x <ω A∗, or ap(g, x) <ω A∗, for any x : A.

Ax is the set that consists of all v : A such that v <a x, or formally, Ax = (Σv : A)(v <a x).
An element ax : Ax is thus evaluated into a pair that consists of an element w : A together with a proof
of w <a x.

We show that (λa)p(a) is an order-preserving function Ax → A, where p is the left projection; because
ax <ax bx means the same as p(ax) <a p(bx) for any ax : Ax and bx : Ax (which was formally shown in
H2.3.1.1.3), this follows immediately.

If q is the right projection, then (λa)q(a) applied to an element ax : Ax yields a proof of p(ax) <a x for
all ax : Ax. Thus (λa)p(a) is bounded by x.
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H4

We now show that Ω∗ ≡ 〈ω, 〈<ω, 〈pω, qω〉〉〉 is an element of Ω.
We have shown in U3 that ω : U , where we essentially needed the assumption u : U with T (u) = U . In
H5 we show that the binary relation <ω: Ω → Ω → U , which we have defined in U4, is transitive and in
H6 that Ω does not contain any infinitely descending chains.

U3

ω : U

U4

<ω: Ω → Ω → U

H5

pω : P (ω, <ω)
H6

qω : Q(ω, <ω)
〈pω, qω〉 : P (ω, <ω)×Q(ω, <ω)

〈<ω, 〈pω, qω〉〉 : (Σ <ω: Ω → Ω → U)[P (ω, <ω)×Q(ω, <ω)]
Ω∗ ≡ 〈ω, 〈<ω, 〈pω, qω〉〉〉 : (Σa : U)(Σ <a: A → A → U)[P (a,<a)×Q(a,<a)] = Ω
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H5

We prove the property of transitivity of the binary relation <ω on Ω, i.e. that for A∗ : Ω, B∗ : Ω and
C∗ : Ω, A∗ <ω B∗ and B∗ <ω C∗ implies A∗ <ω C∗.

This is shown in the following way:

Suppose we have A∗ <ω B∗ and B∗ <ω C∗ for A∗ : Ω, B∗ : Ω and C∗ : Ω. Then we have order-preserving
functions f : A → B and g : B → C, and bounds z : B and z′ : C. The function f is the element
p(ab), where ab is a proof of A∗ <ω B∗, as we show in H5.1. The function g is the element p(bc), where
bc is a proof of B∗ <ω C∗, as we show in a first step in H5.2. In H5.4.1 and H5.4.2 we prove that f is
order-preserving and that g is order-preserving on the range of f .

In H5.2 we then define in a second step the function gf : A → C as a composition of the functions f
and g. This function has the form (λx) ap(p(bc), ap(p(ab), x)). In H5.4 we show that this function is
order-preserving and in H5.5 that it is bounded by the element p(q(bc)), which we get in H5.3.

This combines to a proof of A∗ <ω C∗. As A∗ <ω C∗ follows from the assumptions A∗ <ω B∗ and
B∗ <ω C∗ and as A∗, B∗ and C∗ were arbitrary elements in Ω, we get a proof pω of P (ω, <ω).
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H6

We show that Ω cannot contain infinitely descending chains:

Suppose that there is an infinitely descending chain ... <ω A∗
s(n) <ω A∗

n <ω ... in Ω, and let an = p(A∗
n),

<an
= p(q(A∗

n)), and An = T (an).

A∗
s(n) <ω A∗

n expresses that we have an order-preserving function fn : As(n) → An, which we define in
H6.5, and a range-dominating element zn : An, which we define in H6.6.

We define in H6.2 by recursion functions Rn : An → A0 such that

ap(R0, x) = x for x : A0

ap(Rs(n), x) = ap(Rn, ap(fn, x)) for x : As(n)

where for each n : N , fn : As(n) → An is the order-preserving function defined in H6.5. Thus, for each
n : N , Rn is order-preserving, which is shown by induction in H6.4.1.

In H6.3 we then define F ≡ N → A0 as the composition of Rn and (λn)zn, where (λn)zn maps each
n : N into the range-dominating element zn : An. We then get an infinitely descending chain

... <a0 ap(Rs(n), zs(n)) <a0 ap(Rn, zn) <a0 ... <a0 ap(R1, z1) <a0 z0

or
ap(F, s(n)) <a0 ap(F, n) <a0 ... <a0 ap(F, 1) <a0 ap(F, 0)

in A0, which is formalized in H6.4. But A0 does not have infinitely descending chains, as we show in
H6.1. Thus Ω cannot contain infinitely descending chains.
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In H6.2 we have e(m, y) ≡ (λx) ap(y, ap(fm, x)).

According to N -equality we have Rs(n) ≡ R(s(n), (λz)z, (m, y)e(m, y)) = e(n, R(n, (λz)z, (m, y)e(m, y))) =
e(n, Rn) = (λx) ap(Rn, ap(fn, x))

because we have F ≡ (λn) ap(Rn, zn), we get:

ap(F, n) = ap((λn) ap(Rn, zn), n) = ap(Rn, zn)

ap(F, s(n)) = ap((λn) ap(Rn, zn), s(n)) = ap(Rs(n), zs(n)) = ap((λx) ap(Rn, ap(fn, x)), zs(n)) =
ap(Rn, ap(fn, zs(n)))

Formally, we get:

H6.4.3

H6.3

F ≡ (λn) ap(Rn, zn) : N → A0

[n : N ]77

s(n) : N

ap(F, s(n)) = ap(Rn, ap(fn, zs(n))) : A0

H6.4.4

H6.3

F ≡ (λn) ap(Rn, zn) : N → A0 [n : N ]77

ap(F, n) = ap(Rn, zn) : A0

For v : As(m) and w : As(m) it also follows
ap(Rs(m), v) = ap((λx) ap(Rm, ap(fm, x)), v) = ap(Rm, ap(fm, v))
and
ap(Rs(m), w) = ap((λx) ap(Rm, ap(fm, x)), w) = ap(Rm, ap(fm, w))

Formally, we get:

H6.4.5

H6.2

Rn : An → A0

(λn)Rn : (Πn : N)(An → A0)
(69)

[m : N ]76

s(m) : N

ap((λn)Rn, s(m)) = Rs(m) : As(m) → A0 [w : As(m)]75

ap(Rs(m), w) = ap(Rm, ap(fm, w)) : A0

H6.4.6

H6.2

Rn : An → A0

(λn)Rn : (Πn : N)(An → A0)
(69)

[m : N ]76

s(m) : N

ap((λn)Rn, s(m)) = Rs(m) : As(m) → A0 [v : As(m)]74

ap(Rs(m), v) = ap(Rm, ap(fm, v)) : A0
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5 Coquand’s paradox of trees

The paradox of trees can be seen as a version of Russell’s paradox, where sets are replaced by trees and
sets that do not contain themselves by normal trees.

A tree can be formed by linking together a collection of leaves or already existing trees under a common
root. Each member of the collection is an immediate subtree of this new tree. We define a normal tree
to be a tree that is not equal to any of its immediate subtrees.

The paradox is constructed in the following way:18

Suppose that we have a collection of all normal trees. Let r be the tree that is formed by linking together
all normal trees under a common root. Is r a normal tree?
If r is a normal tree, then r is a member of the collection of all normal trees and thus an immediate
subtree of r. This contradicts the assumption of r being normal.
Suppose r is not normal, i.e. r is equal to one of its immediate subtrees. Then r must be normal, because
all immediate subtrees of r are normal, which again leads to a contradiction.

In the formalization of the paradox of trees we essentially need the rules

u : U, T (u) = U

to be able to form the tree of all normal trees.

We let ⊥ denote the empty set, which has the name ⊥̂ in U . Inconsistency means that ⊥ contains an
element.

Let a be the name of a set A. We define negation by

¬a ≡ π(a, (x)⊥̂)[a : U ]

so that
T (¬a) = T (π(a, (x)⊥̂)) = (Πx : T (a))T (⊥̂) = T (a) → T (⊥̂) = ¬T (a)

We define Tree as the well-ordering in which U represents the different ways to form a tree and the
decoding function T represents the parts of a tree formed by an element in U .

tree ≡ w(u, (t)t) : U, Tree = T (tree) = (W t : U)T (t)

In order to express the property of being normal we define

normal(t) ≡ wrec(t, (x, f, c)π(x, (y)π(Îd(tree, f(y), sup(x, f)), (z)⊥̂)))

so that

T (normal(sup(a, b))) = T (wrec(sup(a, b), (x, f, c)π(x, (y)π(Îd(tree, f(y), sup(x, f)), (z)⊥̂))))

= T (π(a, (y)π(Îd(tree, b(y), sup(a, b)), (z)⊥̂))) = (Πy : T (a))¬ Id(Tree, b(y), sup(a, b))

For better readability we here use the notations b and f instead of (y)b(y) and (y)f(y).

In D3 we formally show normal(t) : U [t : Tree].
Then we define the set of normal trees as

nt ≡ σ(tree, (x) normal(x)) : U

so that
T (nt) = T (σ(tree, (x) normal(x))) = (Σx : Tree)T (normal(x))

In D2 we then define the tree of all normal trees as sup(nt, p) : Tree, where p is the left projection.
In D1 we prove that sup(nt, p) is normal by constructing an element of the set T (normal(sup(nt, p))).
But because sup(nt, p) itself is a member of the set of normal trees, which contains all the parts sup(nt, p)
consists of, sup(nt, p) must be equal to one of its subtrees, as we show in D, and we get the contradiction.

18We follow the idea presented by Coquand 1992
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6 Conclusion

The later, presumably consistent version of Martin-Löf’s type theory does not contain the rules u : U ,
T (u) = U anymore. Instead, a second universe U ′ is introduced by

u : U ′ T ′(u) = U : set

a : U
t(a) : U ′

a : U
T ′(t(a)) = T (a) : set

where t gives every element in U a name in U ′ and T ′ decodes the elements of U ′ into the sets they
represent.
In the same way we can introduce a third universe U ′′ and iterate the process.19

Now the name of each universe is no longer contained in the universe itself but in the universe of one
level higher. Thus the constructions we presented cannot be performed anymore:

Girard’s paradox is based on the assumption that Ω has a name in U , where Ω is defined as the set of
all sets that have a name in U and the properties P and Q, that is, as the set of all ordinal numbers.
Without the rules u : U , T (u) = U , Ω does not have a name in U and can therefore not contain itself.
Ω∗ : Ω can no longer be proved and the proof of absurdity that is based on Ω∗ : Ω can no longer be
constructed.

Coquand’s paradox of trees cannot be formalized without the rules u : U , T (u) = U , because with our
definition of Tree = (W t : U)T (t) we cannot construct sup(nt, p) as the tree of all normal trees. The
rules u : U , T (u) = U are essentially needed in forming the name for the set of normal trees
nt = σ(tree, (x) normal(x)), because only with these rules Tree has a name tree = w(u, (t)t) in U .

On the background of the presumably consistent version of type theory the paradoxes we presented are
prohibited:
A tree of all normal trees does not exist, neither does a greatest ordinal number, i.e. a set of all ordinal
numbers, where an ordinal number is defined as the set of all preceding ordinals.
The same solution can be found for the village-barber paradox: There does not exist such a barber.
Finally, for Russell’s paradox we draw the conclusion that there cannot be a set of all sets that do not
contain themselves.

19Martin-Löf 1984, p. 89
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