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Abstract. The purpose of this paper is to give a brief introduc-
tion to wavelets and the wavelet transform. In order to reach this
goal the paper starts with some basic properties Hilbert spaces.
The wavelet transform has a lot in common with the windowed
Fourier transform but while the Fourier window is rigid the wavelet
varies depending on the time/frequency ratio. In applications
wavelets are often used together with a multiresolution analysis
(MRA) and towards the end it will be shown how a wavelet basis
is constructed from a MRA.
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1. Introduction

The main purpose of this paper is to define wavelets. In brief a
wavelet can be described as a "‘helping"’ function that is used to ex-
tract information specific in time and frequency from a more complex
function.
Let us say that you have a sound signal with a lot of buzz or unwanted
noise. If you use wavelets you can divide the signal into wavelet co-
efficients with a decomposition algorithm, throw away the coefficients
corresponding to the unwanted frequencies, put the modified signal
back together with the reconstruction algorithm and achieve a much
cleaner sound, without loosing any vital information.
To be able to do this, this so-called wavelet has to be both time- and
frequency oriented. Here comes wavelets’ big advantage in application
like this to other similar algorithms: their ability to zoom in on both
time and frequency so that they are able to adjust to sudden irregular-
ities.
One definition of wavelets is that a wavelet is a function with zero mean∫ ∞

−∞
ψ(x)dx = 0

which can be scaled by a parameter a and translated by another pa-
rameter b

ψb:a(x) =
1√
a
ψ

(
t− b
a

)

so that it by translation and scaling can cover the whole time-frequency
plane. A wavelet is only allowed to exist for a short period of time, like
a wave appearing from nowhere on the ocean, only to grow over a reef
and then to break and disappear. This is also where the name comes
from. It is an English modification of the french word "‘ondelette"’,
meaning small wave. It was first introduced by the french geophysicist
Jean Morlet in the 1970’s. He needed a function that was localized
in both time and frequency and that could adjust its time interval to
sudden peaks in the seismic signals. He found a group of functions
constructed by Alfred Haar in the beginning of the 20th century and
started to use them for his seismic data. This was the start of the
development in wavelet theory which today is applied in a wide range
of areas, from solving differential equations to compressing data.

To be able to define wavelets and describe some of their applications,
this paper will start with a detour in the world of functional analysis.
We need to get familiar with Hilbert spaces in general and the space
L2(R) in particular since that is the space where most of the theory of
wavelets take place.
Then some approximation theories are described, mostly in order to
motivate the need of wavelets, but also to describe Fourier analysis
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which is vital in the wavelet theory.
Then it is time to describe window functions in general only to move
on and describe the wavelet transforms. With the chapter of multires-
olution analysis the construction of wavelets are implemented and with
the decomposition and reconstruction some use of multiresolution and
wavelets are described.

2. The space L2(R)

In this first section we introduce the space L2(R) and some of its
important properties. This is since the wavelets studied in this paper
are defined in this space. The space L2(R) is the normed space of
square-integrable functions, and to be able to understand what that
means some essential concepts in functional analysis will be listed. For
a total review of these concepts, see [7].

Definition 2.1. Norm

A norm is a real-valued function on linear space X such that, for x ∈ X
it takes x to ‖x‖. The norm ‖x‖ of x has the following properties

• ‖x‖ ≥ 0

• ‖x‖ = 0⇔ x = 0

• ‖αx‖ = |α| ‖x‖
• ‖x+ y‖ ≤ ‖x‖ + ‖y‖

The norm gives a metric on X defined by d(x, y) = ‖x− y‖.

Definition 2.2. Normed space

A normed space X is a vector space with a norm.

Definition 2.3. Complete space

A metric space X is complete if every Cauchy sequence in X converges
to a point in X.

Definition 2.4. Banach space

A Banach space is a complete normed space. Note that it has to be
complete in the metric defined by the norm.

Example 2.5. ℓp is the space of all sequences x = (x1, x2, ..) such that∑
|xi|p <∞.

ℓp has the norm

‖x‖ = (
∑
|xi|p)

1
p (2.1)

and the metric

d(x, y) = (
∑
|xi − yi|p)1/p (2.2)

so the space is a normed space. To see whether or not it is a Banach
space, let us check if any Cauchy sequence in ℓp converges.
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Let {xn} be any Cauchy sequence in ℓp.
Then for every ǫ there exists an Nǫ so that for all m,n > N

d(xm, xn) = (
∑
|x(m)

i − x(n)

i |p)1/p < ǫ. (2.3)

For this to hold |x(m)

i −x
(n)

i | must be smaller than < ǫ for every i = 1, 2..,

so let us take a fixed i and consider the sequence (x
(1)

i , x
(2)

i , ..). It is a
Cauchy sequence of numbers and it converges for both real and complex
numbers since both R and C are complete metric spaces.

Let x
(m)

i → xi as m→∞.
Put x = (x1, x2, ..). Let n→∞ in (2.3), then for m > N

k∑

i=1

|x(m)

i − xi|p ≤ ǫp (2.4)

Preceding and letting k →∞, for m > N
∞∑

i=1

|x(m)

i − xi|p ≤ ǫp (2.5)

which is the same as (d(xm − x))p ≤ ǫp. So xm → x. It is necessary

that x is in ℓp, but (2.5) shows that xm−x = (x
(m)

i −xi) ∈ ℓp and since
xm ∈ ℓp the Minkowski inequality (later introduced as theorem 2.19)
says that x also is in ℓp.
Since (xn) was an arbitrary Cauchy sequence in ℓp this example has
showed that the space is complete, hence it is a Banach space.

Example 2.6. Denote by Q,the set of all rational numbers . It has a
norm ‖x‖ = |x| that induces the metric d(x, y) = |x − y|. So Q is a
normed space but it is not complete and hence not a Banach space.

Definition 2.7. Inner product, inner product space

An inner product on a vector space X is a function that to each pair
(x, y) associates a number denoted 〈x, y〉 ∈ X that satisfies

• 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉
• 〈αx, y〉 = α 〈x, y〉
• 〈x, y〉 = 〈y, x〉. (If X is a real space then 〈x, y〉 = 〈y, x〉)
• 〈x, x〉 ≥ 0, 〈x, x〉 = 0⇔ x = 0.

An inner product space is a vector space X with an inner product de-
fined on X.

The inner product defines a norm on X

‖x‖ =
√
〈x, x〉 (2.6)

and a metric

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉. (2.7)

Hence it is possible to conclude that spaces with inner products are
normed spaces. For the converse to be true it is necessary that the
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norm can be obtained from an inner product, so observe that not all
normed spaces are inner product spaces.

Theorem 2.8. Let ‖∗‖ be any norm on a vector space X. Then the
following are equivalent:

(1) ‖∗‖ is induced by a unique inner product on X.
(2) ‖a + b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2) for all a,b ∈ X.

The first part of this proof is straightforward. The second part will
require some additional information in form of a lemma which will be
left unproven. (See[5].) The proof of the theorem itself illustrates many
properties of inner product spaces.

Lemma 2.9. Let ‖∗‖ be any norm on a vector space X over the field K

such that ‖a + b‖2 +‖a− b‖2 = 2(‖a‖2 +‖b‖2), for all a,b ∈ X. Define
a function F : X2 → R as

F (x, y) =
1

4
(‖x+ y‖2 + ‖x− y‖2) for all (x, y) ∈ X2

Then, for all x, y, z ∈ X and λ ∈ K

(1) F (x+ y, z) = F (x, z) + F (y, z);

(2) 8(F (λx, y)+F (x, λy)) = (|λ+1|2−|λ−1|2)(‖x+ y‖2+‖x− y‖2).
Proof. (Of theorem 2.8)

(1) Let ‖∗‖ be a norm induced by an inner product, then

‖a+ b‖2 + ‖a− b‖2 = 〈a + b, a+ b〉 + 〈a− b, a− b〉
= ‖a‖2 + ‖b‖2 + 〈a, b〉 + 〈b, a〉 + ‖a‖2 + ‖b‖2 − 〈a, b〉 − 〈b, a〉
= 2(‖a‖2 + ‖b‖2).

(2) Let F be defined as in Lemma 2.9 and begin to consider the
case K = R. Let us check that F is an inner product and that
the norm is induced by F . Take x, y, z ∈ X and α ∈ R. By
definition of F it is possible to check that F (x, y) = F (y, x) and
F (x, x) = ‖x‖2 ≥ 0, with the equality only when x = 0. The
first part in Lemma shows that F is bilinear so that

F (αx, y) = αF (x, y) (2.8)

Hence it is an inner product onX and the norm is induced by F .

Let K = C, let F be as above (note that it is realvalued).
Define a function G: G(x, y) = F (x, y) + iF (x, iy).
By Lemma 2 and by equation (2.8)

G(x+ z, y) = G(x, y) +G(z, y)
G(αx, y) = αG(x, y) for every α ∈ R.

Use the second part of Lemma 2 and set λ = i. Then

F (ix, y) = −F (x, iy) (2.9)
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and

F (ix, iy) = F (x, y) (2.10)

so that

F (ix, y) + iF (ix, iy) = iF (x, y)− F (x, iy)

and

G(ix, y) = iG(x, y).

Let t = α+ βi for (α, β) ∈ R2. Then

G(tx, y) = G(αx, y) +G(βix, y)

= αG(x, y) + βG(ix, y) = tG(x, y).

Recall that F is real valued, so that

F (u, v) = F (v, u) = F (v, u) for all u, v ∈ X.
Together with (2.9) this gives

G(y, x) = F (y, x) + iF (y, ix) = F (x, y)− iF (x, iy) = G(x, y).

Since F (x, ix) = 0 then

G(x, x) = F (x, x) + iF (x, ix) = ‖x‖2

so that G(x, x) ≥ 0 with equality only if x = 0. This shows
that G is an inner product and that the norm ‖∗‖ is induced
by G.

The uniqueness follows from the fact that a norm on a vector space
only can be induced by at most one inner product. �

The second part of Theorem 2.8 is called the parallellogram law and
it gives an easy way to check whether a norm can be obtained from an
inner product or not.

Example 2.10. As seen in the previous example, the space ℓp is a
normed space, but for p 6= 2 it is not an inner product space.
To check this, let us use Theorem 2.8 and set

x = (1, 1, 0, 0, ...) and y = (1,−1, 0, 0, ...)

then x, y ∈ ℓp but

‖x‖ = ‖y‖ = 21/p 6= ‖x+ y‖ = ‖x− y‖ = 2 when p 6= 2. (2.11)

The parallelogram equality is not satisfied when p 6= 2 which shows that
the space ℓp with p 6= 2 is not an inner product space.

Definition 2.11. Hilbert space

A Hilbert space is a complete inner product space with the norm defined
by the inner product.
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Example 2.12. As we checked above the space ℓ2 is both an inner
product space and complete, hence it is a Hilbert space. It is in fact the
prototype Hilbert spaces. Hilbert himself used it in his work.

The following theorem states that any normed space can be com-
pleted into an Hilbert space. There is a similar theorem regarding
Banach spaces which can be found in [7] where also the proof of this
theorem can be found. This theorem is important since the space L2(R)

is the completion of a normed space.

Theorem 2.13. For any inner product space X there exists a Hilbert
space H and an isomorphism A from X onto a dense subspace W of
H. H is unique up to isomorphism.

Example 2.14. The space L2[a, b] has the norm

‖x‖ = (

∫ b

a

|x(t)|2dt)1/2 (2.12)

which can be obtained from the inner product

〈x, y〉 =

∫ b

a

x(t)y(t)dt. (2.13)

So it is an inner product space, and since L2[a, b] is complete with this
norm (as the completion of the space X with the same norm) it is also
a Hilbert space.

Definition 2.15. L2(R)

The space L2(R) is the completion of the vector space of all continuous
functions on R.

Using inner product in an inner product space it is possible to de-
fine the notion of orthogonality. This concept will be used applied to
wavelet bases.

Definition 2.16. Orthogonality

Let X be an inner product space, then for x, y ∈ X, we say that they
are orthogonal if

〈x, y〉 = 0.

(The orthogonality is denoted x⊥y.)

Example 2.17. Let X = L2[0, 1] and let

φ(x) =

{
1 if 0 ≤ x < 1

0 otherwise
(2.14)

and

ψ(x) =





1 if 0 ≤ x < 1/2
−1 if 1/2 ≤ x < 1

0 otherwise.
(2.15)
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Figure 1. The Haar wavelet and its scaling function.

Then φ and ψ are orthogonal in L2[0, 1] since

〈φ, ψ〉 =

∫ 1/2

0

1dx−
∫ 1

1/2

1dx = 0.

We will get back to these functions since, as we will see in section 8, ψ
is the wavelet function and φ is the corresponding scaling function for
the Haar system. (See also Figure 1.)

2.1. Properties of L2(R). In the remaining part of this section some
important properties of Hilbert spaces will be listed. Their proofs can
be found in [7].

Theorem 2.18. (Hölder inequality for series)
For p > 1 and 1

p
+ 1

q
= 1

∞∑

j=1

|xjyj| ≤
( ∞∑

k=1

|xk|p
)1/p( ∞∑

m=1

|ym|q
)1/q

. (2.16)

For p = 2 this is the Cauchy-Schwartz Theorem.

Theorem 2.19. (Minkowski inequality for sums)
Let x, y ∈ ℓp and p ≥ 1, then

( ∞∑

j=1

|xj − yj|
)1/p

≤
( ∞∑

k=1

|xk|p
)1/p( ∞∑

m=1

|ym|p
)1/p

. (2.17)

Theorem 2.20. (Schwartz inequality)
Let 〈x, y〉 be an inner product and let ‖∗‖ be its corresponding norm.

Then
|〈x, y〉| ≤ ‖x‖ ‖y‖ . (2.18)

Equality if and only if {x, y} is linearly independent.

Theorem 2.21. (Continuity of inner product)
Let X be an inner product space and let x, y ∈ X.

If xn → x and yn → y as n→∞ then

〈 xn, yn〉 → 〈 x, y〉 . (2.19)

The proof of this result is so elegant and short that it is included.
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Proof.

|〈 xn, yn〉 − 〈 x, y〉|
= |〈 xn, yn〉 − 〈 xn, y〉+ 〈 x, yn〉 − 〈 x, y〉|
≤ |〈 xn, yn − y〉|+ |〈 xn − x, y〉|
≤ ‖xn‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖ → 0 as n→∞.

(2.20)

since xn → x and yn → y as n→∞
�

2.2. Direct sum. The theory of direct sums is used for the multires-
olution analysis and for the decomposition algorithm.
The aim of the first part of this subsection is to provide the definition
of the direct sum. For proofs and further explanation of the theorems
and definitions, see [7].

Theorem 2.22. Let X be a complete metric space. Then a subspace
Y of X is complete if and only if Y is closed in X.

Definition 2.23. The distance to a subspace.

Let X be a metric space, then the distance δ from X to a nonempty
subset Y is given by

δ = inf
ỹ∈Y

d(x, ỹ). (2.21)

If X is a normed space, equation (2.21) coincides with

δ = inf
ỹ∈Y
‖x− ỹ‖ .

The following theorem states that for subspaces which fulfill certain
criteria, there exists an unique point y in a subspace which is closest to
the point x in the space X. For a proof of this existence and uniqueness
problem, see Theorem 3.3-1 in [7].

Theorem 2.24. Let X be an inner product space. Let Y be a nonempty,
convex subset which is complete. Then for every x ∈ X there exists a
unique y ∈ Y such that

δ = inf
ỹ∈Y
‖x− ỹ‖ = ‖x− y‖ .

Lemma 2.25. Let Y be as in the previous theorem.
Take x ∈ X. Then z = x− y is orthonormal to Y .

Definition 2.26. Direct sum

Let X be a vector space. Then X is said to be the direct sum of the
subspaces Y and Z of X if each x ∈ X has the unique representation

x = y + z

The direct sum is then denoted by

X = Y ⊕ Z (2.22)

and Y , Z is said to be a complementary pair of subspaces in X.
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Example 2.27. Let φ be the function in (2.14), where

φj,k = 2j/2φ(2jx− k).
Then {φj,k : j, k ∈ Z} generate the space Vj. If φ(x) ∈ Vj, then
φ(2x) ∈ Vj+1, and if φ(x) ∈ Vj then φ(x + 2−j) ∈ Vj. Hence the
sequence

...Vj−1 ⊂ Vj ⊂ Vj+1

is a nested sequence. The space Vj is a proper subspace of Vj+1, which
means that Vj 6= Vj+1. Let us call this quotent space Wj. It is generated
by {ψj,k : j, k ∈ Z}, where ψj,k = 2j/2ψ(2jx − k). The Wj-spaces are
mutually orthogonal and

Vj ∩Wj = {0}
Vj+1 = Vj ⊕Wj .

Theorem 2.28. Let H be a Hilbert space and let Y be any closed
subspace of H. Then

H = Y ⊕ Y ⊥ (2.23)

where Y ⊥ = {x ∈ H | x⊥Y }.
Proof. Since H is complete and Y is closed then Y is complete.
There exists a y ∈ Y for every x ∈ H such that

x = y + z , z ∈ Y ⊥.

The uniqueness is proved as follows. Assume that

x = y + z = y′ + z′ where y, y′ ∈ X and z, z′ ∈ Y ⊥

Then

y − y′ ∈ Y and z′ − z ∈ Y ⊥

so

y − y′ = z′ − z.
Y and Y ⊥ are orthogonal, so Y ∩ Y ⊥ = {0}. Since y − y′ ∈ Y ∩ Y ⊥,
y − y′ = 0 and hence y = y′. The same procedure is used to show that
z = z′. �

3. Frames and Riesz basis.

A non-precise definition of a wavelet is that a wavelet is a function ψ
such that {ψj,k}j,k∈Z, with

ψj,k = 2j/2ψ(2jx− k)
forms an orthonormal basis of L2(R), which also can be relaxed so that
{ψj,k}j,k∈Z only has to constitute a Riesz basis of L2(R). The aim of
this section is to understand how those two definitions correspond to
each other but also to introduce the concepts of frames and Riesz basis.
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3.1. Orthonormal and dual basis.

Definition 3.1. Orthonormal basis

A basis {ej} is an orthonormal basis if ‖ej‖ = 1 for all j and if

〈ei, ej〉 = δij =

{
0 if i 6= j
1 if i = j.

(3.1)

The symbol δ is called the Kronecker delta.

Dual bases are needed for example to define R-wavelets.

Definition 3.2. Dual basis

Let X be a vector space and {e1, e2, ..., en} be a basis of X. Then the
set of all linear functionals on X constitutes the algebraic dual space
X∗ of X. For every functional f and every x =

∑
xiei ∈ X such a

functional can be written as

f(x) =
∑

xif(ei)

Every set f(e1), ..., f(en) determines a linear functional on X, so with

fj(ei) = δij =

{
0 if i 6= j
1 if i = j

there will be n functionals denoted by f1, f2, ..., fn. The basis {f1, f2, ..., fn}
is called the dual basis to {e1, e2, ..., en} in X.

Definition 3.3. Unconditional basis

If
∑

n µnen ∈ X implies that
∑

n |µn|en ∈ X, then the basis {en}n∈Z
is

said to be unconditional.

In an unconditional basis the convergence of a series with this basis
does not depend on the order of summation of entries in this series.

3.2. Frames. The theory of frames is needed for the discrete form of
wavelet transforms and for dyadic wavelets.
Frames can be thought of as a more general form of a basis. Vectors
that constitutes a frame spans a Hilbert space H but they do not have
to be linearly independent. If a function can be represented by a frame,
then the function has a stable representation.

Definition 3.4. Frames

Let H be a Hilbert space and let 0 < A ≤ B <∞ be positive constants.
Then ψ = {ψj : j ∈ J}is said to generate a frame of H if

A ‖f‖2 ≤
∑

j∈J
| 〈f, ψj〉 |2 ≤ B ‖f‖2 for all f ∈ H. (3.2)

A and B are called the frame bounds.
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If H is the space L2(R) then the summation is made for j, k ∈ Z.
If A = B the frame is called tight and then (3.2) gives

∑

j∈J
| 〈f, ψj〉 |2 = A ‖f‖2 .

Given some extra assumptions a tight frame constitutes an orthonormal
basis.

Proposition 3.5. Let {ψj : j ∈ J} be a tight frame and let A = B = 1.
If ‖ψj‖ = 1 for all j ∈ J , then ψj generates an orthonormal basis.

Proof. If 〈f, ψj〉 = 0 for all f , then f = 0 by the properties of the inner
product, so ψj span H . For any j ∈ J

‖ψj‖2 =
∑

j′∈J
| 〈ψj , ψj′〉 |2 = ‖ψj‖4 +

∑

j′ 6=j∈J
| 〈ψj , ψj′〉 |2.

Since ‖ψj‖ = 1 the 〈ψj, ψj′〉 has to be 0 for all j′ 6= j which makes
{ψj : j ∈ J} orthonormal. �

To show that extra conditions on ‖ψj‖ and A,B are necessary in order
to get an orthonormal basis, lets consider an example.

Example 3.6. Let H = C2 and set

e1 = (0, 1) e2 =
(
−

√
3

2
,−1

2

)
and e3 =

(√
3

2
,−1

2

)
.

Then e1, e2, e3 are not linearly independent but for any v = (v1, v2) ∈ H
we get ∑

j | 〈v, ej〉 |2

= |v2|2 +

∣∣∣−
√

3
2
v1 − 1

2
v2

∣∣∣
2

+

∣∣∣
√

3
2
v1 + 1

2
v2

∣∣∣
2

= 3
2
(|v1|2 + |v2|2) = 3

2
‖v‖2

which shows that {e1, e2, e3} is a tight frame with frame bounds A = 3
2
.

But since the ej’s are not linearly independent they can not give an
orthonormal basis.

For further use the notion of a dual frame will be needed. The easiest
way to define the dual frame is to use the ‘frame operator’.

Definition 3.7. Frame operator

Let {ψj : j ∈ J} be a frame of H. Then the linear operator F from H
to ℓ2(J) defined by

(Ff)(j) = 〈f, ψj〉
is called the frame operator.

Definition 3.8. Adjoint operator

Let F : H1 → H2 be a bounded linear operator from one Hilbert space
to another. Then the adjoint operator F ∗ is the operator

F ∗ : H2 → H1
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such that for all x ∈ H1 and all y ∈ H2

〈Fx, y〉 = 〈x, F ∗y〉 .
Remark: F is bounded since by definition (3.7)

‖Ff‖2 = B ‖f‖2 .
By theorem 3.9-2 in [7] the adjoint operator F ∗ of F always exists and
is unique and it is a bounded linear operator with the same norm as
F . That is

‖F ∗‖ = ‖F‖ .
Moreover, for every positive bounded linear operator F in a Hilbert
space which is bounded from below by C, there exists an inversion F−1

of F such that F−1 is bounded by C−1 from above (see [7]).
By A ≤ ‖FF ∗‖ ≤ B it is obvious that (FF ∗) is bounded below and

hence it is invertible.

Definition 3.9. Dual frame

The dual frame ψ̃j of ψj is defined by ψ̃j = (FF ∗)−1(ψj) and

B−1 ‖f‖2 ≤
∑

j∈J
|
〈
f, ψ̃j

〉
|2 ≤ A−1 ‖f‖2 for all f ∈ H. (3.3)

3.3. Riesz basis. The notion af a Riesz basis is crucial to describe
wavelets. A Riesz basis is a stronger formulation of a frame but is still
weaker than an orthogonal basis. Even though orthogonal wavelets are
the most convinient it is often enough to use wavelets which constitute
a Riesz basis only.

Definition 3.10. Riesz basis

A set {βj,k} is called a Riesz basis if

(1) the linear span 〈βj,k : j, k ∈ Z〉 is dense in L2(R), and
(2)

A ‖{cj,k}‖2ℓ2 ≤
∥∥∥∥∥
∑

j,k∈Z

cj,kβj,k

∥∥∥∥∥

2

≤ B ‖{cj,k}‖2ℓ2 (3.4)

for all cj,k ∈ ℓ2 and for 0 < A ≤ B < ∞, where A and B are
called Riesz bounds.

As is the case of frames in Proposition 3.5; if one has A = B = 1, then
the Riesz basis is orthonormal.
A Riesz basis can also be defined as an unconditional basis in a Hilbert
space.

Example 3.11. The function φ(t) = sinπt
πt

is called the Shannon scal-

ing function. The sequence {φj,k} spans a family of the nested spaces
Vj given in example 2.27. A Shannon basis is an orthonormal Riesz
basis.
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If A is a bounded operator with a bounded inverse, then A maps any
orthonormal basis to a Riesz’s basis. That is, if a Hilbert space H is
finite dimensional, every basis in H is a Riesz basis. Since our space
L2(R) is not finite, this does not apply to that space.

Definition 3.12. R-function

Let β be a function which satisfies equation (3.4). Then β is called an
R-function.

As seen from their definitions frames and Riesz basis have a lot in
common. The following theorem clarifies the difference between them.

Theorem 3.13. Let ψ ∈ L2(R), then the following statements are
equivalent:

: (i) {ψj,k} is a Riesz basis of L2(R)

: (ii) {ψj,k} is a frame of L2(R) which is also an linearly indepen-
dent family in ℓ2.

The frame bounds and the Riesz bounds do agree.

Proof. (i)⇒ (ii):
Because of (3.4), any Riesz basis is ℓ2-linearly independent.
Let {ψj,k} be a Riesz basis with bounds A and B.
Let M = [γl,m:j,k](l,m)(j,k)∈Z2 be a linear operator where

γl,m:j,k = 〈ψl,m, ψj,k〉 . (3.5)

Put M in (3.4)

A ‖{cj,k}‖2ℓ2 ≤
∥∥∥∥∥
∑

j,k∈Z

cl,mγl,m:j,kc̄j,k

∥∥∥∥∥

2

≤ B ‖{cj,k}‖2ℓ2

to show that M is positive definite. Then

M−1 = [ρl,m:j,k](l,m)(j,k)∈Z2

is the inverse of M and∑

r,s

ρl,m:r,sγr,s:j,k = δl,jδm,k (3.6)

and

B−1 ‖{cj,k}‖2ℓ2 ≤
∥∥∥∥∥
∑

j,k∈Z

cl,mρl,m:j,kc̄j,k

∥∥∥∥∥

2

≤ A−1 ‖{cj,k}‖2ℓ2 (3.7)

holds, so it is possible to write

ψl,m(x) =
∑

ρl,m:j,kψj,k(x).

Since ψl,m is in L2(R) then (3.5) and (3.6) give that
〈
ψl,mψj,k

〉
= δl,jδm,k.



18

Thus {ψl,m} is the dual basis to {ψj,k} in L2(R). Now (3.6) and (3.7)
gives that 〈

ψl,m, ψj,k
〉

= ρl,m:j,k

so that the Riesz bounds of {ψl,m} are A−1 and B−1.
Any f ∈ L2(R) can be written

f(x) =
∑
〈f, ψj,k〉ψj,k(x)

and

B−1
∑
| 〈f, ψj,k〉 |2 ≤ ‖f‖2 ≤ A−1

∑
| 〈f, ψj,k〉 |2

which is the same as (3.3).

For the implication (ii)⇒ (i), see the proof of Theorem 3.20 in [3]. �

The conclution of this theorem is that a Riesz basis is a frame of linearly
independent vectors.

4. Approximation theories

Approximation can be used in a huge area of applications. One is to
compress or filter data with the help of wavelets. To do it we need to
find a wavelet that can be used to represent a more complicated func-
tion. Also in other application of approximation the goal is to represent
complicated functions by simpler functions. Once this is achieved, the
function can be represented by this simple function and after some
modifications hopefully there exists a way to reconstruct the original
data as close to the original as desired.
Approximation theory is a big field but the aim of this section is to
motivate the need of wavelets.

4.1. Weierstrass approximation. The Weierstrass theorem says that
any continuous function on a closed and bounded interval can be ap-
proximated by a polynomial. More exactly:

Theorem 4.1. Let f be a continuous function on a closed and bounded
interval I ∈ R. Then, for any ǫ > 0 there exists a polynomial P such
that

|f(x)− P (x)| ≤ ǫ for all x ∈ I.

The Weierstrass theorem only states the existence of a polynomial
P , but it is still interesting that no matter how small ǫ is, there will
always exist some P corresponding to it.
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4.2. Power series. The following theorem is one form of the Taylor
theorem that can be found in any undergraduate textbook on calculus.
(See for example [6].)

Theorem 4.2. Let f be a smooth function defined on an interval I. If
there exists C > 0 such that |f (n)(x)| ≤ C for all n ∈ N and for all
x ∈ I, then for x0 ∈ I

f(x) =

∞∑

n=0

f (n)(x0)

n!
(x− x0)

n for all x ∈ I.

Remark: It is convenient that it is so easy to find the approxikating
polynomial even though it limits the set of functions that can be ap-
proximated pretty hard. The power series can only represent functions
that are smooth.

5. Fourier Analysis

With the approximation theory described so far, only really well-
behaved functions can be approximated.
Using Fourier analysis it is possible to approximate a larger class of
functions by means of trigonometric functions. Fourier analysis de-
scribes the spectral behavior of a function, if there is a function in a
time-frequency plane for example, then it is convenient to use Fourier
analysis to find out what happens on the frequency axis. Since Fourier
analysis is a necessary tool for wavelets, its role in this paper is not only
as another version of approximation theory. As a general reference for
this section, see [1] and [3].

5.1. Fourier series. Fourier series is often used to describe the be-
havior of discrete functions. It describes a trigonometric expansion of
a function f(x) in a series.
The expansion of f will be on the form

F (x) = a0 +
∑

an cos(nx) + bn sin(nx). (5.1)

Here f is 2π periodic so that f(x+2π) = f(x) for x ∈ R and f ∈ L2(R).
Since ∫ π+c

π+c

f(x)dx =

∫ π

π

f(x)dx (5.2)

it does not matter what the interval looks like as long as its length is
2π.

Theorem 5.1. Let f(x) = a0+
∑∞

n=1

(
an cos(nπx

a
) + bn sin(nπx

a
)
)
. Then

for x ∈ (−a, a) one has

a0 =
1

2a

∫ a

−a
f(t)dt (5.3)
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and

an =
1

a

∫ a

−a
f(t) cos

(
nπt

a

)
dt (5.4)

bn =
1

a

∫ a

−a
f(t) sin

(
nπt

a

)
dt (5.5)

This is a generalization of the normal form with x = tπ
a

and dx = πdt
a

.

If S = f(x), then SN (x) = a0 +
∑N

n=1 (an cos(nπx
a

) + bn sin(nπx
a

) is
the partial sum of f(x).

Example 5.2. Set

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

Let a = 2 so that the Fourier series of f is valid on the interval [−2, 2].
Then

a0 =
1

4

∫ 2

−2

f(t)dt =
1

4

∫ 1

0

1dt =
1

4

and for n ≥ 1

an =
1

2

∫ 2

−2

f(t) cos

(
nπt

2

)
dt

1

a

∫ 1

0

cos

(
nπt

2

)
dt =

sin(nπ/2)

nπ
.

If n is even, an = 0 and if n is odd then an = sin
(
nπ
2

)
= (−1)k so that

an =
(−1)k

(2k + 1)π
, n = 2k + 1.

bn =
1

2

∫ 2

−2

f(t) sin

(
nπt

2

)
dt =

1

2

∫ 1

0

sin

(
nπt

2

)
dt =

−1

nπ
(cos(

nπ

2
)−1)

Totally
n = 4j ⇒ bn = 0

n = 4j + 1⇒ bn =
1

(4j + 1)π

n = 4j + 2⇒ bn =
1

(2j + 1)π

n = 4j + 3⇒ bn =
1

(4j + 3)π

Hence the Fourier series of f can be written as in (5.1).

An even function is a function f : R→ R such that f(x) = f(−x).
An odd function is a function such that f(−x) = −f(x). Examples of
even functions are x2 or cos(x) and odd functions could be x3 or sin(x).
For even functions one has∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx, for all a > 0 (5.6)
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and for odd functions∫ a

−a
f(x)dx = 0, for all a > 0. (5.7)

The above properties gives some simple consequences for their Fourier
series since cos(x) is even and sin(x) is odd and since for functions

Odd×Odd = Even

Even × Even = Even

Even ×Odd = Odd.

This gives the following

• The Fourier series of even functions can only contain cosines
since bn = 0 for all n so that

f(x) = a0 +
∑

an cos
(nπx

a

)
and an =

2

a

∫ a

0

f(x) cos
(nπx

a

)
dx

• Analoguesly: the Fourier series of odd functions only contain
sines since an = 0 for all n so that

f(x) =
∑

bn sin
(nπx

a

)
and bn =

2

a

∫ a

0

f(x) sin
(nπx

a

)
dx.

Example 5.3. Let f(x) = x for x ∈ [−π, π].
Since f is an odd function, then only the sine-coefficients are to be
computed. One has

bn =
1

π

∫ π

−π
x sin(nx)dx =

2(−1)k+1

k
,

which gives the Fourier series expansion

F (x) =
∑ 2(−1)k+1

k
sin(kx).

Fourier series approximate the original function well as long as it is
continuous.
In the points where the function jumps (is discontinuous) the Fourier
series will overshoot. This is called the Gibb’s phenomena (see for
example [1]). If f is approximated by SN the overshooting will get
smaller as N gets bigger.
To achieve a pointwise match between the Fourier series and the func-
tion f it is necessary to assume that f is continuous .

Definition 5.4. Piecewise smooth

Let f be a continuous function. Then f is called piecewise smooth if its
derivatives are defined everywhere except for on a discrete set of points.

Lemma 5.5. Let f(x) be as in (5.1) and let
∑∞

n=1 (|an|+ |bn|) < ∞.
Then the Fourier series of f(x) converges uniformly and absolutely to
f(x).
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This lemma will be used to show the following result.

Theorem 5.6. Let f(x) be a piecewise smooth, and 2π-periodic func-
tion. Then its Fourier series converges uniformly to f(x) on [−π, π]

and

|f(x)− SN(x)| ≤ 1√
N

1√
π

√∫ π

−π
|f ′(t)|2dt.

Proof. To make life easier, assume that f is twice continuously differen-
tiable. Let f(x) =

∑
(an cos(nx)+bn sin(x)) and f ′′(x) =

∑
(a′′n cos(nx)+

b′′n sin(x)), then an = −a′′n
n2 and bn = − b′′n

n2 since

an = 1
π

∫ π
−π f(x) cos(nx)dx

=
[
f(x) sin(nx)

n

]π
−π
− 1

π

∫ π
−π f

′(x) sin(nx)
n

dx

= 0− b′n = −1
n2π

∫ π
−π f

′′(x) cos(nx)dx = −a′′n
n2

(5.8)

b′′n is derived in the same manner. Since f ′′ is continuous, the Riemann-
Lebesgue theorem gives that a′′n and b′′n converges to zero as n → ∞.
This means that

∞∑

n=1

|an|+ |bn| =
∞∑

n=1

|a′′n|+ |b′′n|
n2

≤
∞∑

n=1

M +M

n2
<∞

and the proof follows from Lemma 5.5. �

The next theorem describes how to get a value of the Fourier trans-
form at points where f is discontinuous.

Theorem 5.7. Let f be a piecewise continuous and 2π-periodic func-
tion. Let F (x) be its Fourier series.

• If f is continuous at a point x, then F (x) converges and

F (x) = f(x).

• If f is discontinuous at xj but is left- and right-differentiable at
xj, then

F (x) =
1

2

(
lim
x→x+

j

f(x) + lim
x→x−j

f(x)

)

A proof of both parts of the theorem can be found in [1], Theorems
1.22 and 1.28.

Example 5.8. Let f(x) be the 2π-periodic extension of y = x, −π ≤
x ≤ π as in Example 5.3.Then f is discontinuous at x = ... − π, π...,
and the left and right limits at x = π are equal

f(π − 0) = lim
x→π+

f(x) = π

f(π + 0) = lim
x→π−

f(x) = −π.
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Since the derivatives

f ′(π − 0) = 1

and

f ′(π + 0) = 1

exist, f is left- and right-differentiable at x = π.

The average of the limits are π+(−π)

2
= 0, so that F (πk) = 0.

Consider the expansion F (x) =
∑ 2(−1)k+1

k
sin(kx) from Example 5.3.

It is also zero for x = π.

The following proposition shows that the Fourier series for functions
in L2[−π, π] converges almost everywhere. This also implies that any
function in L2[−π, π] can be approximated arbitrarily close by a smooth
2π-periodic function.

Proposition 5.9. Let f ∈ L2[−π, π] be a continuous, piecewise differ-
entiable and 2π-periodic function. Let an and bn be the Fourier coeffi-
cients of f . Then,

|f(x)− SN (x)| ≤
∞∑

n=N+1

(|an|+ |bn|) for all x ∈ R.

Proof. By Theorem 5.7 the assumptions implies that the Fourier series
tends to f(x) for all x ∈ R. Hence

|f(x)− SN(x)| ≤∣∣∣a0 +
∑∞

n=1 (an cos(nx) + bn sin(nx))−
(
a0 +

∑N
n=1 (an cos(nx) + bn sin(nx))

)∣∣∣
=
∣∣∑∞

n=N+1 (an cos(nx) + bn sin(nx))
∣∣

≤
∑∞

n=N+1 |an cos(nx) + bn sin(nx)|
≤∑∞

n=N+1 (|an|+ |bn|).
�

Even though Fourier series are a very useful tool when approximat-
ing periodic functions it is not useful for represention of non-periodic
functions.

5.2. Fourier transform. Fourier transform can be thought of as a
continuous version of Fourier series. It describes the spectral behavior
of continuous functions.
Even though the focus has and will be on the space L2(R), this section
start with Fourier transform in the space L1(R) simply to make things
easier.

Definition 5.10. For f ∈ L1(R) its Fourier transform is defined by

f̂(ω) = (Ff)(ω) =
∫∞
−∞ e−iωxf(x)dx.
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Example 5.11. Let

f(x) =

{
1 if − π ≤ x ≤ π
0 otherwise

(5.9)

f(x)e−λx = f(x)(cosλx− i sin λx).
Since f is even, so f(x) sinλx becomes odd and the integral of f(x) sinλx
over the real line vanishes. Thus

f̂(λ) =
1√
2π

∫
f(x) cos(λx)dx

=
1√
2π

∫ π

−π
cos(λx)dx =

√
2 sin(λπ)√

πλ
.

The Fourier transform has the following properties.

Theorem 5.12. Let f ∈ L1(R). Then the Fourier transform f̂ of f
satisfies

(1) f̂ ∈ L∞ and
∥∥∥f̂
∥∥∥
∞
≤ ‖f‖1

(2) f̂ is uniformly continuous on R

(3) if f ′ exists and is in L1(R), then

f̂ ′(ω) = iωf̂(ω) (5.10)

(4) f̂(ω)→ 0 as ω → ±∞.

It is not clear that f̂(ω) ∈ L1(R) just because f̂ tends to zero as
ω → ±∞, as shown by the following example.

Example 5.13. Let f(x) = e−xu0(x) with

u0(x) =

{
1 if x ≥ a
0 if x < a

Then f(x) ∈ L1(R) but,

f̂(x) =
∫∞
0
e−xcos(ωx)dx− i

∫∞
0
e−xsin(ωx)dx

= 1
1+ω2 − iω

1+ω2 = 1
1−ω

Since 1
1−ω is not in L1(R), neither is f̂(x).

However, we will soon see that when both f and its Fourier transform
are in L1(R) it is possible to reconstruct, or recover, f from f̂ .

Definition 5.14. Inverse Fourier transform

Let f̂ ∈ L1(R) be the Fourier transform of a function f ∈ L1(R). Then

(F−1f̂)(x) =
1

2π

∫ ∞

−∞
eiωxf̂(ω) (5.11)

is the inverse Fourier transform of f̂ .
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The interesting part will be to check when (F−1f̂) = f . We prove it
in the inverse Fourier series theorem below. To be able to state that
theorem we will need some definitions.

Definition 5.15. Convolution

Let f, g ∈ L1(R) then the convolution f ∗ g is given by

(f ∗ g)(x) =

∫ ∞

−∞
f(x− y)g(y)dy. (5.12)

The convolution has the property that when f, g ∈ Lp(R), the con-
volution f ∗ g is in Lp(R) as well.

Definition 5.16. Gaussian function

The function on the form f(x) = e−x
2

is called Gaussian. A special
family of Gaussian functions are defined as

gα(t) =
1

2
√
πα

e
t2

4α (5.13)

With convolution the Gaussian functions has the property that if
f ∈ L1(R) and f is continuous in x, then

(f ∗ gα)(x)→ f(x) as α→ 0+.

For the proof of the following theorem about invertibility of the
Fourier transform the identity

∫ ∞

−∞
f(x)ĝ(x) =

∫ ∞

−∞
f̂(x)g(x) (5.14)

for functions f, g ∈ L1(R) will be needed.

It holds since f̂ , ĝ ∈ L∞(R) by Theorem 5.12 and the integrals are
finite by Hölder inequality.

Theorem 5.17. Take f, f̂ ∈ L1(R) and let f be continuous in x. Then

f(x) =
(
F
−f̂
)

(x).

Proof. Fix an x ∈ L1(R) and set

g(y) =
1

2π
eiyxe−αy

2

.

Then

ĝ(y) = 1
2π

∫
e−iyteitxe−αt

2
dt

= 1
2π

∫
e−i(y−x)te−αt

2
dt

= 1
2π

√
π
α
e−

(y−x)2

4α = gα(x− y),
where gα is of the form (5.13).

From Theorem 5.12 we know that f̂ , ĝ ∈ L∞(R) so that the identity
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(5.14) holds. Then the convolution in (5.12) can be used together with
the Fubini theorem (see [9]) so that

(f ∗ g)(x) =
∫
f(y)gα(x− y)dy

=
∫
f(y)ĝ(y)dy =

∫
f̂(y)g(y)dy

= 1
2π

∫
eiyxf̂(y)e−αy

2
dy.

Since f is continuous in x, the right-hand side tends to (F−f̂)(x) and
the left-hand side converges to f(x) as α→ 0+. �

By this theorem it is clear that the inverse of the Fourier transform in
L1(R) exist only of the points where f is continuous.

The Fourier transform in L1(R) satisfies the following properties.

Function Fourier transform

f(t) f̂(ω)

f ∗ g(t) f̂(ω)ĝ(ω)

fg(t) 1
2π
f̂ ∗ ĝ(ω)

f(t− u) e−iωuf̂(ω)

f(t/s) |s|f̂(sω)

f̄(t) f̂(−ω)

(5.15)

Even though the possibility of extension of the Fourier transform to
L2(R) has not yet been proved, it can be mentioned that all the prop-
erties above holds for the Fourier transform in that space as well.

5.3. Fourier transform in L2(R). In L1(R) the function f has to be
continuous in order to get the inverse. In L2(R), the Fourier transform

f̂ is a one-to-one and onto mapping which means that it maps L2(R)

to itself which makes it easy to find the inverse (F−1f).
The following theorem has two parts where the first part is known as
the Parseval theorem and the second as the Plancherel theorem.
This theorem makes it clear that the Fourier transform can be extended
to L2(R).

Theorem 5.18. (1) If f, g ∈ L1(R) ∩ L2(R) then
∫
f(t)g(t)dt =

1

2π

∫
f̂(ω)ĝ(ω)dω or 〈f, g〉 =

1

2π

〈
f̂ , ĝ
〉

(5.16)

(2)
∫
|f(t)|2 dt =

1

2π

∫ ∣∣∣f̂(ω)

∣∣∣
2

dω or
∥∥∥f̂
∥∥∥

2
= 2π ‖f‖2 . (5.17)

Proof. Let h = f ∗ g as in (5.12).

One property of the Fourier transform is that ĥ(ω) = f̂(ω)ĝ(ω).
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Use the Fourier inverse formula (5.11) with h(0).∫
f(t)g(t)dt = h(0) =

1

2π

∫
ĥ(ω)dω =

1

2π

∫
f̂(ω)ĝ(ω)dω.

The second part of the theorem follows by simply letting g = f . �

Consider a function f ∈ L2(R), such that f /∈ L1(R) since f(t)eiωt is
not integrable it is not possible to calculate the Fourier transform of f
with the Fourier integral.
Instead it is necessary to consider functions f ∈ L1(R) ∩ L2(R).
L1(R)∩L2(R) is dense in L2(R) so let {fn}n∈Z

be a family of functions
in L1(R) ∩ L2(R), then there must exists a function f such that

‖f − fn‖ → 0 as n→∞ (5.18)

(5.18) implies that {fn}n∈Z
is Cauchy, so that for n,m > N

‖fn − fm‖ < ǫ.

f̂ is well-defined since f ∈ L1(R), so by the means of Theorem 5.18

it is possible to show that
{
f̂n

}
n∈Z

is also Cauchy:
∥∥∥f̂n − f̂m

∥∥∥ =
√

2π ‖fn − fm‖ ≤
√

2πǫ when n,m > N. (5.19)

L2(R) is complete so there must exist f̂ ∈ L2(R) such that∥∥∥f̂ − f̂n
∥∥∥→ 0 as n→∞. (5.20)

This shows that f̂ is the Fourier transform of f in L2(R).

Next we prove the invertibility of the Fourier transform in L2(R).
As mentioned before the inversion in L2(R) will be much easier to find.
Another good thing is that in L2(R) all nice properties of Hilbert spaces
can be applied.
Also, note that the identity (5.14) for functions in L1(R) also applies
to functions in L2(R)

Definition 5.19. Reflection of f
For every f defined on R, the reflection f− of f relative to the origin
is defined as

f−(x) = f(−x). (5.21)

The reflection has the following property

f̂(x) = ̂̄(f−)(x) ; (̂̄f−)(x) = (f̂)−(x). (5.22)

Theorem 5.20. For every g ∈ L2(R) there is one and only one f ∈
L2(R) such that f̂ = g. This means that

f(x) = (F−1g)(x) = ǧ(x) (5.23)

is the inverse Fourier transform of g.
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Proof. This proof will use equations (5.14) and (5.22). By (5.14) we
see that if g ∈ L2(R) then ĝ ∈ L2(R). The following calculations will

show that the function f(x) = 1
2π

(̂g−) is in L2(R) and that it satisfy

the relation f̂ = g.
∥∥∥g − f̂

∥∥∥
2

2
= ‖g‖22 − 2Re

〈
g, f̂
〉

+

∥∥∥f̂
∥∥∥

2

2

= ‖g‖22 − 2Re 〈ĝ, f−〉+
∥∥∥f̂
∥∥∥

2

2

= ‖g‖22 − 2Re
〈
ĝ, 1

2π
ĝ
〉

+

∥∥∥f̂
∥∥∥

2

2

= 1
2π
‖ĝ‖22 − 2

2π
‖ĝ‖22 + 2π ‖f‖22

= − 1
2π
‖ĝ‖22 + 1

2π

∥∥∥ĝ−
∥∥∥

2

2
= 0.

(5.24)

That is f̂ = g as required.
Uniqueness:
If f is the only function in L2(R) that satisfies f̂ = g then f̂ = 0 ⇒
f = 0.
Using the Parseval Theorem, assume f̂ = 0. Then

〈f, f〉 =
1

2π

〈
f̂ , f̂

〉
= 0

and

〈f, f〉 = 0⇔ f = 0.

�

At the end of the section let us state the Poisson theorem. The
Poisson sum is used when constructing wavelets and the proof gives a
nice relation between Fourier series and the Fourier transform.

Theorem 5.21. Let both the series
∞∑

n=−∞
f(t+ 2πn)

and
∞∑

k=−∞
f̂(k)eikt

be convergent. Then
∞∑

n=−∞
f(t+ 2πn) =

1

2π

∞∑

k=−∞
f̂(k)eikt (5.25)

Proof. Let f(t) ∈ L2(R) and let

fp(t) =

∞∑

n=−∞
f(t+ 2πn)
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be the 2π-periodic version of f(t). Let the period be 2π, then the
Fourier series of f(t) becomes

fp(t) =

∞∑

k=−∞
cke

ikt

with

ck =
1

2π

∫ 2π

0

fp(t)e
−iktdt =

1

2π

∫ 2π

0

∑

n∈Z

f(t+ 2πn)e−iktdt

Put x = t+ 2πn. Then

1

2π

∑

n∈Z

∫ 2π(n+1)

2πn

f(x)e−ik(x−2πn)dx.

This can be extended to get

ck =
1

2π

∫
f(x)e−iktdx =

1

2π
f̂(k)

which gives the Poisson formula. �

6. Windowed transforms

6.1. Windowed Fourier Transform. To be able to analyze such
functions as sound signals it is necessary to localize events in time
or frequency. To do this a window function is used. A schematic de-
scription of a window function is like a rectangle in the time-frequency
plane (or the x-y plane). Sometimes it is enough to have a window that
is limited on the time (t-, or x-)axis, this is called a time window. A

function f whose Fourier transform f̂ is limited in the frequency (ω-,or
y-)axis is called a frequency window.

Example 6.1. Let φ be a time window function and f(t) be a function
that we want to analyze at the interval [t− b, t+ b]. Then

f(t)φ(t− b) = fb(t) (6.1)

gives us information about f close to t = b. By changing b it is possible
to get parts of information from the entire t-axis. To get information
regarding the frequency we take the Fourier transform φ̂ of φ and use
the interval [ω − b, ω + b].

To qualify as a window function φ(t) has to vanish, or decay, suffi-
ciently fast. Hence for a time-window φ ∈ L2(R) the following property
is common to use:

tφ(t) ∈ L2(R) (6.2)

and for a frequency-window the Fourier transform ˆφ(ω) of φ(t) should
satisfy

ωφ̂(ω) ∈ L2(R). (6.3)
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When both (6.2) and (6.3) are satisfied simultaneously, the function φ
can be used as a time-frequency window.

Example 6.2. The Gabor transform

The Gabor transform uses a Gaussian function, as in (5.13) to localize
the information from the Fourier transform.

Let f ∈ L2(R). Then the Gabor transform of f is defined by

(Gα
b f)(ω) =

∫ ∞

−∞
(e−iωxf(t))gα(t− b)db (6.4)

Gaussian functions have the nice properties that the Fourier trans-
form of it is again a Gaussian and that both gα and ĝα satisfies the
window-function property in (6.2) and (6.3), so it can be used both for
time and frequency analysis.
Using a Gabor transform helps us to localize the Fourier transform
around t = b, and by changing b it can cover the whole time-axis.
We will see later that the Gaussian function is the window function of
minimal area.

Example 6.3. The Haar function in (2.15) can be used as a time win-
dow function.
However, by Theorems 5.12 and inverse FT, since ψ is not continu-
ous, ψ̂ is not in L1(R) and then ωψ̂(ω) can not be in L2(R). Hence

the Fourier transform ψ̂(ω) does not satisfy the window property, which
means that the function is no good as frequency window.

For a function to be able to serve as a window function it is necessary
that it has a radius and a center.

Definition 6.4. Center

For a time window function φ the center t∗ is given by

t∗ =
1

‖φ‖2
∫ ∞

−∞
t |φ(t)|2dt. (6.5)

Definition 6.5. Radius

The radius ∆φ for a window function φ is given by

∆φ =
1

‖φ‖

(∫ ∞

−∞
(t− t2) |φ(t)|2

)1/2

(6.6)

For a frequency window, the frequency center ω∗ and radius ∆φ̂ is de-

fined in the same way, using φ̂ instead of φ.

If a function is a time-window centered in t∗ and has the radius b, then
the window will be the interval [t∗ − b, t∗ + b] as in example 6.1, and
the width of the function will be 2b.
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Example 6.6. For a Gaussian function, with α > 0, the radius of the
function is given by

∆gα
=
√
α (6.7)

That means that the width of the window is 2
√
α

For any time-frequency window the time-frequency area is given by
∆φ∆φ̂.

The following “Uncertainty principle” provides that ∆φ∆φ̂ ≥ 1
2
.

Theorem 6.7. For a function φ ∈ L2(R) such that both φ and φ̂ satisfy
the condition (6.2) the inequality

∆φ∆φ̂ ≥
1

2
(6.8)

holds. Equality will occur if and only if φ is a Gaussian function. That
is φ(t) = ceiatgα(t− b), where c 6= 0, α > 0 and a, b ∈ R.

The proof of the theorem can be found in [3]. The theorem says that
the only window function that can achieve minimal area is a Gaussian
and, as will be seen later, a Gaussian function can not be a wavelet.
Since the smaller the area is the more precise the time-frequency local-
ization will be it is important to search for wavelets with as close to
minimal area as possible.

When applying a window function to a Fourier transform the result
will be a windowed Fourier transform.

Definition 6.8. Windowed Fourier transform

Let φ ∈ L2(R) be a time-frequency window. Then

(Sf)(b, ω) =

∫ ∞

−∞
(e−iωxf(t))φ(t− b)db = 〈f, φb,ω〉 (6.9)

is the windowed Fourier transform of f(t) at the point (b, ω).

Definition 6.9. STFT

Let φ be a function such that both φ and φ̂ fulfill the criterium for
window functions. Then the window Fourier transform with φ as its
window function is called a "Short-time Fourier transform" or STFT.

The windowed Fourier transform with φ = gα will be the Gabor
transform, which is an STFT. In addition, the Gabor transform is the
STFT with the smallest window, since it is the only function that can
give the equality in the uncertainty principle (theorem 6.7).
Depending on what the goal is the optimal size of the window can
differ. Sometimes a bigger window than the Gaussian one is required,
and then can for example any B-spline be used, see below.
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Example 6.10. For m = 1, the B-spline is defined as

N1(x) =

{
1 when 0 ≤ x < 1

0 otherwise.

It is not continuous, so the situation is the same as for the Haar func-
tion. Actually N1 is the function

φ(x) =

{
1 if 0 ≤ x < 1

0 otherwise .
(6.10)

in (2.14).
The mth-order B-spline is denoted

Nm(x) =

∫ 1

0

Nm−1(x− t)dt , m ≥ 2

Its Fourier transform is given by

N̂m(ω) =

(
1− e−iω
iω

)m
= e−

imω
2

(
sin(ω/2)

ω/2

)m
.

Nm has compact support so it is a time window and ωN̂m(ω) ∈ L2(R),
so Nm can be used for an STFT.

By changing b and ω it is possible to cover the whole time-frequency
plane. When the plane is covered the function f can be recovered from
the windowed Fourier transform.

Theorem 6.11. Let f ∈ L2(R) then,

f(t) =
1

2π

∫ ∫
(Sf)(b, ω)φ(t− b)eiωtdωdb (6.11)

and ∫
|f(t)|2dt =

1

2π

∫ ∫
|(Sf)(b, ω)|2 dωdb. (6.12)

Proof. We use Theorem 5.18.
Start with observation that

(Sf)(b, ω) = e−ibω
∫
f(t)φ(t− b)eiω(b− t)dt = e−ibωf ∗ φω(b)

where φω(t) = φ(t)eiωt.
Let (Sf)(b, ω) = fω(b), then

f̂ω(x) = f̂(x+ ω)φ̂ω(x+ ω) = f̂(x+ ω)φ̂(x).

The Fourier transform of φ(t− b) is φ̂(x)e−itω, so

1
2π

(∫ ∫
(Sf)(b, ω)φ(t− b)eiωtdbdω

)

= 1
2π

∫ (
1
2π

∫
f̂(x+ ω)|φ̂(x)|2eit(x+ω)dx

)
dω
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When f ∈ L2(R), the Fubini theorem (again, see [9]) gives that the
integration can be reversed. The inverse Fourier transform gives

1

2π

∫
f̂(x+ ω)eit(x+ω)dω = f(t).

Since 1
2π

∫
|φ̂(x)|2dω = 1 the formula (6.11) is proved. The Fourier

transform of (Sf)(b, ω) is f̂(x+ ω)φ̂(x).
Apply Plancherel to the right-hand side of (6.12):

1

2π

∫ ∫
|(Sf)(b, ω)|2dbdω =

1

2π

∫
1

2π

∫
|f̂(x+ ω)φ̂(x)|2dxdω.

If the Fubini theorem and Plancherel is used again the following implies
formula (6.12).

1

2π

∫
|f̂(x+ ω)|2dω = ‖f‖2

�

7. Wavelet transform

Remember the story of Jean Morlet and his seismic signals from
the introduction. For him it was necessary to have a window that
could vary in its time-radius. The frequency of a function stands in
direct proportion to the length of the time interval and to get as good
information as possible when using a window function it is desirable
that the time interval shortens for high and widens for low frequencies.
If you use a windowed Fourier transform you have to re-calculate a new
window every time the time-frequency ratio changes and that makes
the calculations time demanding and heavy. What Morlet found in his
search for a function that could adapt to diffent ratios was the first type
of wavelet constructed by Haar. A wavelet is a function ψ that satisfy
the window conditions both for ψ and ψ̂. It also has zero average, i.e.

∫ ∞

−∞
ψ(x)dx = 0 (7.1)

which makes it possible to use a dilation parameter that scales the
function so that the corresponding window can zoom in or out for dif-
ferent frequencies.

Example 7.1. A Gaussian function does not have zero average.
Consider for example

∫ ∞

−∞
e−ax

2

dx =

√(π
a

)
.
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For a Gabor transform the area is 4∆gα
∆ĝα

= 2 and the window has
the Cartesian product

[
b−
√
α, b+

√
α
]
×
[
ω − 1

2
√
α
, ω +

1

2
√
α

]
. (7.2)

The Gaussian window is good for very high frequencies, but it can not
change its ratio in order to analyze low frequencies.
For a wavelet the area still will be 4∆ψ∆ψ̂ but the Cartesian product
is

[b+ at∗ − a∆ψ, b+ at∗ + a∆ψ]×
[
ω∗

a
− 1

a
∆ψ̂,

ω∗

a
+

1

a
∆ψ̂

]
, (7.3)

so that when the scaling parameter a gets bigger, the window nar-
rows. It can be worth to note that the ratio between the frequency
center ω∗ and the frequency width ∆ψ̂ is independent of the location
of the frequency center which is given by a, i.e.

ω∗/a

2∆ψ̂/a
=

ω∗

2∆ψ̂

.

With ω∗

a
= ω the window will adapt to the frequency so that it

widens for low and narrows for high frequencies.

Example 7.2. The Mexican hat is a well known wavelet. It is the
second derivative of a Gaussian function and is used a lot in geophysics.
The normalized form of the Mexican wavelet is

ψ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
e

“

− t2

sσ2

”

(7.4)

The Fourier transform of ψ is

ψ̂(ω) = −
√

8σ5/2π1/4

√
3

ω2e

“

−σ2ω2

2

”

(7.5)

Figure 2. The Mexican Hat-wavelet.
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We have already seen that the wavelet can be scaled by a and trans-
lated by b, so that it is possible to write ψ as

ψb:a =
1√
a
ψ

(
t− b
a

)
. (7.6)

Definition 7.3. Basic wavelet

Let ψ ∈ L2(R). If

Cψ =

∫ ∞

−∞

|ψ(ω)|2
|ω| dω <∞. (7.7)

then ψ is called a basic wavelet.

Definition 7.4. Integral Wavelet Transform

Let ψ ∈ L2(R) be a basic wavelet, then the integral wavelet transform
Wψ of a function f is

(Wψf)(b, a) =
1√
|a|

∫ ∞

−∞
f(t)ψ

(
t− b
a

)
dt = 〈f, ψb:a〉 (7.8)

As with the windowed Fourier transform it is possible to reconstruct
the function f if the Integral wavelet transform is known. In order to
do so the wavelet has to satisfy (7.7).

Theorem 7.5. Let ψ be a basic wavelet which defines an integral
wavelet transform Wψ.
Then for all functions f, g ∈ L2(R)

∫ ∞

−∞

∫ ∞

−∞

[
(Wψf)(b, a)(Wψg)(b, a)

] da
a2
db = Cψ 〈f, g〉 .

Let, in addition, f ∈ L2(R) be continuous in x ∈ R. Then

f(x) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
[(Wψf)(b, a)]ψb:a(x)

da

a2
db.

Proof. First

1

2π
ψ̂b:a(ω) =

1

2π
√
|a|

∫
e−iωtψ

(
t− b
a

)
dt =

a

2π
√
|a|
e−ibωψ̂(aω).

Set
F (x) = f̂(x)ψ̂(ax)

G(x) = ĝ(x)ψ̂(ax)

and use Theorem 5.18 to derive
∫ [

(Wψf)(b, a)(Wψg)(b, a)
]
db

= 1
|a|
∫ {∫

f(t)ψ
(
t−b
a

)
dt
∫
g(s)ψ

(
s−b
a

)
ds
}
db

= a2

|a|
∫ {

1
2π

∫
F̄ (x)e−ibxdx

}{
1
2π

∫
Ḡ(y)e−ibydy

}
db

= a2

2π|a|
∫
Ḡ(x)F (x)dx.
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Use F (x), G(x) as above and Cψ from (7.7). Then
∫ {∫ [

(Wψf)(b, a)(Wψg)(b, a)
]
db
}

da
a2

= 1
2π

∫ {
f̂(x)ĝ(x)

∫ |ψ̂(ax)|2
|a| da

}
dx

= 1
2π

∫ {
f̂(x)ĝ(x)

∫ |ψ̂(y)|2
|y| dy

}
dx

= 1
2π

〈
f̂ , ĝ
〉
Cψ = Cψ 〈f, g〉 .

When f is continuous at x it is possible to use g = gα and letting
α→ 0+ in order to therefore obtain

f(x) =
1

Cψ
lim
α→0+

∫ ∫ [
(Wψf)(b, a)

〈
gα(−̇x), ψb:a

〉]da
a2
db

=
1

Cψ

∫ ∫
[(Wψf)(b, a)]ψb:a(x)

da

a2
bd.

�

7.1. Wavelet series. For example when working with image process-
ing it is convenient to use discrete samples of the integral wavelet trans-
form. This can be done with wavelet series. Before the wavelet series
can be defined we need different classes of wavelets.

Definition 7.6. Orthonormal and Semi-orthonormal wavelets

Let ψj,k(x) = 2j/2ψ(2jx − k) be an R-function as in Definition 3.12
that generates a basis {ψj,k}. Then

(1) ψ is an orthonormal wavelet if {ψj,k} satisfies

〈ψj,k, ψl.m〉 = δj,lδk,m (7.9)

(2) ψ is a semi-orthonormal wavelet if {ψj,k} satisfies

〈ψj,k, ψl.m〉 = 0, (7.10)

An orthonormal wavelet is self dual so that ψj,k = ψj,k.

For the Riesz basis {ψj.k} in Definition 3.10 the dual is denoted by{
ψj.k

}
. We will need the dual of a semi-orthonormal wavelet to be able

to define both wavelet series and the important R-wavelet. The dual
is given by the following theorem.

Theorem 7.7. Let ψ be a semi-orthonormal wavelet, and define the
dual ψ̃ of ψ by its Fourier transform;

ˆ̃ψ(ω) =
ψ̂(ω)

∑∣∣∣ψ̂(ω + 2πk)
∣∣∣
2
. (7.11)

Then 〈
ψj,k, ψ̃l.m

〉
= δj,lδk,m (7.12)

where
ψ̃l,m(x) = 2l/2ψ̃(2lx−m). (7.13)
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Proof. Note that {ψj,k} is a Riesz basis of L2(R) since ψ is a semi-
orthogonal wavelet.
Let the Riesz bounds be A,B
Let {cj,k} be in ℓ2(Z2) and let cj,k = ckδj,0. Then (3.4) holds with
β = ψ.
Since

A ≤
∑
|ψ̂(x+ 2πk)|2 ≤ B

the denominator in (7.11) will be bounded which means that ψ̃ is in
L2(R) and if

ψ̃(x) =
∑

akψ(x− k)
with

ak =
1

2π

∫ 2π

0

a−ikx
1

∑ |ψ̂(x+ 2πj)|2
dx

then {ak} will be in ℓ2. By definition of semi-orthogonal wavelets and
(7.12) we get 〈

ψj,k, ψ̃l,m

〉
= 0 when j 6= l.

For j = l, let p = k −m. Then〈
ψj,k, ψ̃j,m

〉
= 2j

∫
ψ(2jx− k)ψ̃(2jx−m)dx

=
∫
ψ(y − p)ψ̃(y)dy

= 1
2π

∫
e−ipωψ̃(ω)

ˆ̃ψ(ω)dω

= 1
2π

∫ 2π

0
e−ipω

(∑
k ψ̃(ω + 2πk) ˆ̃ψ(ω)

)
dω

= 1
2π

∫ 2π

0
e−ipωdω = δp,0 = δk,m.

�

In this way the dual basis
{
ψj.k
}

can be written as
{
ψ̃j.k

}

By the above theorem it is possible to construct an orthonormal
wavelet from a semi-orthonormal wavelet. Simply let

ψ̂⊥(ω) =
ψ̂(ω)

(∑∣∣∣ψ̂(ω + 2πk)
∣∣∣
2
)1/2

then the dual ψ̃⊥ of ψ⊥ is given by

ˆ̃
ψ⊥(ω) =

ψ̂⊥(ω)
∑∣∣∣ψ̂⊥(ω + 2πk)

∣∣∣
2

= ψ̂⊥(ω)

so that ψ⊥ is self dual and hence orthonormal.
It is however not clear that every R-function has a dual such that the

Riesz basis {ψj.k} is given by
{
ψ̃j.k

}
. But when this is the case we can

call the function an R-wavelet.
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Definition 7.8. R-wavelet

Let ψ be an R-function with a dual ψ̃ such that {ψj.k} and
{
ψ̃j.k

}

satisfies (7.12). Then ψ is called an R-wavelet.

Example 7.9. Let η ∈ L2(R) be any orthogonal wavelet.
Consider for every z satisfying |z| < 1 the function

ψ(x) = ψz(x) = η(x)− z̄
√

2η(2x).

{ψj,k} is then a Riesz basis of L2(R).
Let

{
ψj,k

}
be the dual basis of {ψj,k} and consider

ψ0,0(x) =

∞∑

j=0

η−j,0(x)z
j and ψ0,1(x) = η0,1(x).

Assume that there exists a function ψ̃ = ψ̃z ∈ L2(R) such that

ψj,kz = ψ̃z and ψ̃j,k = 2j/2ψ̃(2jx− k).
Then

η(x) = η0,1(x+ 1) = ψ0,1(x+ 1)

= ψ̃0,1(x+ 1) = ψ̃0,0(x) = ψ0,0(x) =
∑∞

j=0 η−j,0(x)z
j

and
∞∑

j=0

η−j,0(x)z
j = 0.

But this only holds for some values of z in |z| < r, 0 < r < 1, so ψ̃
does not exist in general.

If ψ̃ does exist, it is an R-wavelet itself.

Now it is time to introduce the wavelet series.

Definition 7.10. Wavelet series

If ψ is an R-function with dual ψ̃. Then

f =
∑

j,k∈Z

cj,kψj,k(x) =
∑

j,k∈Z

dj,kψ̃j,k(x) (7.14)

with

cj,k =
〈
f, ψ̃j,k

〉
and dj,k = 〈f, ψj,k〉

is the wavelet series of f .

This is a way to discretize the integral wavelet transform which gives
more possibilities to recover a function f from its transform. In L2(R)

the functions can actually be recovered from either {cj.k} or {dj.k} as
shown by the following theorem.
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Theorem 7.11. Let ψ be a wavelet with the dual ψ̃. Let f ∈ L2(R)

and let ψ and ψ̃ be basic wavelets on (a, b) =
(
k
2j ,

1
2j

)
. Then the Integral

Wavelet transform gives

dj,k = 〈f, ψj,k〉 = (Wψf)

(
k

2j
,

1

2j

)

cj,k =
〈
f, ψ̃j,k

〉
= (Wψ̃f)

(
k

2j
,

1

2j

)

and f can be recovered from dj,k or cj,k

An informal proof of this statement can be found in [3].
For two functions f, g ∈ L2(R) the inner product can be recovered

from a discrete sample of the integral wavelet transform as follows

〈f, g〉 =
∑

j,k∈Z

〈f, ψj,k〉
〈
ψ̃j,k, g

〉
.

8. Multiresolution Analysis

Multiresolution analysis is used to construct and decompose wavelets
and to decompose signals into wavelet coefficients which makes it useful
for example when compressing the data of a photo.
Consider a portrait with a single coloured background. The background
does not need the same grade of resolution as the areas around the
person and with multiresolution, or MRA, it is possible to divide the
photo into different areas and use different resolution for those areas
so that the data can be compressed.

Definition 8.1. MRA

A multiresolution analysis (MRA) is defined as a sequence of nested
spaces Vj satisfying

(1) {0} ← ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...→ L2(R)

(2)
⋃
j∈Z

Vj = L2(R)

(3)
⋂
j∈Z

Vj = {0}
(4) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

(5) Vj+1 = Vj +Wj when j ∈ Z

(6) f(x) ∈ Vj ⇔ f(x+ 1
2j ) ∈ Vj.

Definition 8.2. Scaling function

Let φj,k(x) = 2j/2(2jx− k) be in L2(R) such that it satisfies the prop-
erties 1,4,5 and 6 above. Let φ generate a Riesz basis {φ0,k : k ∈ Z} of
V0. Then φ is called a scaling function.

In an MRA there is a scaling function φ associated to every Vj.
In this section we will first use a scaling function to generate an MRA
and then show how to construct a wavelet basis from the MRA.
Assume that there exists a scaling function φ defined as in 8.2. If
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φj,k(x) generate a closed subspace Vj then this subspace satisfies the
properties 1, 4, 5 and 6 in definition 8.1. The following propositions
show that they also satisfies properties 2 and 3 and hence generate an
MRA.

Proposition 8.3. Let φ be such that

φ(x) =
∑

k

ckφ(2x− k) (8.1)

with
∑

k |ck|2 <∞ and

0 < A ≤
∑

j∈Z

∣∣∣φ̂(ω + 2πj)
∣∣∣
2

≤ B <∞. (8.2)

Set Vj = span {φj,k : k ∈ Z}. Then
⋂

j∈Z

Vj = {0}

Proof. By (8.2) we can see that φ0,k give a Riesz basis of V0, which also
means that they constitute a frame of V0. By definition of frames then
exist A and B such that

A ‖f‖2 ≤
∑

k∈Z

| 〈f, ψ0,k〉 |2 ≤ B ‖f‖2 (8.3)

Because of the scaling property of the spaces Vj, there exists a mapping
Dj sending V0 onto Vj so that

A ‖f‖2 ≤
∑

k∈Z

| 〈f, ψj,k〉 |2 ≤ B ‖f‖2 (8.4)

holds for all f in Vj.
Take an f ∈

⋂
j∈Z

Vj and choose an ǫ arbitrarily small. Then there is

a continuous f̃ such that
∥∥∥f − f̃

∥∥∥
L∞
≤ ǫ. (8.5)

Let Pj be the orthogonal projection on Vj. Since
∥∥∥f − Pj f̃

∥∥∥ =

∥∥∥Pj(f − f̃)

∥∥∥ ≤
∥∥∥f − f̃

∥∥∥ ≤ ǫ

we have

‖f‖ ≤ ǫ+

∥∥∥Pj f̃
∥∥∥ for all j ∈ Z. (8.6)

We can conclude from the properties of frames that∥∥∥Pj f̃
∥∥∥ ≤ 1√

A

(∑
k∈Z
|
〈
f̃ , φj,k

〉
|2
)1/2

.
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Set SR,j =
⋃
k∈Z

[k − R
2j , k + R

2j ] with j so large that R
2j ≤ 1

2
. Then

∑
|
〈
f̃ , φj,k

〉
|

≤ 1
2j

∑
k

(∫
|x|≤R |f̃(x)||φ(2jx− k)|dx

)2

≤ 1
2j

∥∥∥f̃
∥∥∥

2

L∞

∑
k

∫
|x|≤R |φ(2jx− k)|2dx

=

∥∥∥f̃
∥∥∥

2

L∞

2R
∫
SR,j
|φ(y)|2dy.

(8.7)

Let χj(y) be a function such that χj(y) = 1 when y ∈ SR,j and 0
otherwise, then the last part of equation (8.7) can be written as

∑
|
〈
f̃ , φj,k

〉
| ≤ 2R

∥∥∥f̃
∥∥∥

2
∫

R

χj(y)|φ(y)|2dy. (8.8)

For all non-integer j we have χj → 0 as j →∞, so (8.8) tends to 0 as
j →∞.
There is a j such that (8.7)≤ ǫ2A. Combining this with (8.6) gives
that ‖f‖ ≤ 2ǫ and since ǫ was chosen arbitrarily small this shows that
f = 0 so that

⋂
j∈Z

Vj = 0. �

Proposition 8.4. Take φ ∈ L2(R) satisfying (8.2).

Let φ̂(x) be bounded for all x and continuous near x = 0 with φ̂(0) 6= 0.
Let Vj be as in Proposition 8.3. Then

⋃

j∈Z

Vj = L2(R).

Proof. As in the previous proof φj,k build a frame and a Riesz basis
with the bounds A and B independent of j.

Take an f ∈
(⋃

j∈Z
Vj

)⊥
and fix an ǫ arbitrarily small.

For this ǫ there exists an compactly supported function f̃ ∈ C∞ such

that
∥∥∥f − f̃

∥∥∥
L2
≤ ǫ, so for all J = −j ∈ Z

∥∥∥P−J f̃
∥∥∥ =

∥∥∥Pj f̃
∥∥∥ =

∥∥∥Pj(f̃ − f)

∥∥∥ ≤ ǫ

Then ∥∥∥P−J f̃
∥∥∥

2

≥ B−1
∣∣∣
〈
f̃ , φ−J,k

〉∣∣∣
2

. (8.9)

Let |R| ≤
∥∥∥φ̂
∥∥∥

2

L∞

∑
j 6=0

∫
| ˆ̃f(x)|| ˆ̃f(x+ 2Jπj)|, then

∑∣∣∣
〈
f̃ , φ−J,k

〉∣∣∣
2

= 2π

∫
|φ̂(2−Jx)|2| ˆ̃f(x)|2 +R. (8.10)

Since f ∈ C∞ it is possible to find a konstant C so that

|f̃(x)| ≤ C(1 + |x|2)−3/2 (8.11)
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and when using

sup
x,y∈R

(1 + y2)[1 + (x− y)2]−1[1 + (x+ y)2]−1 <∞

this gives

|R| ≤ C2

∥∥∥φ̂
∥∥∥

2

L∞

∑
j 6=0

∫
(1 + |x+ 2Jπj|2)−3/2(1 + |x− 2Jπj|2)−3/2dx

≤ C ′
∥∥∥φ̂
∥∥∥

2

L∞

∑
j 6=0 (1 + π2j222J)−1/2

∫
(1 + |y|2)−1dy

≤ C ′′2−J .
(8.12)

Combining the equations (8.9),(8.10),(8.11) and (8.12) we get

2π

∫
|φ̂(2−Jx)|2| ˆ̃f(x)|2 ≤ Bǫ2 + C ′′2−J . (8.13)

The function φ̂(x) is uniformly bounded and continuous at x = 0, so

the left-hand side of equation(8.13) tends to 2π|φ̂(0)|2
∥∥∥f̃
∥∥∥

2

L2
as J →∞.

For a C independent of ǫ we have
∥∥∥f̃
∥∥∥
L2
≤ |φ̂(0)|−1Cǫ so that

‖f‖L2 ≤ ǫ+

∥∥∥f̃
∥∥∥
L2
≤ (1 + C|φ̂(0)|−1)ǫ.

ǫ was chosen arbitrarily small so f = 0, and since f ∈
(⋃

j∈Z
Vj

)⊥
this

means that
(⋃

j∈Z
Vj

)⊥
→ 0 as j →∞ which is equivalent to

(⋃
j∈Z

Vj

)
→ L2(R) as j →∞. �

As mentioned above this shows that a scaling function φ generates a
multiresolution analysis Vj of L2(R). Next we will show that if there ex-
ists an MRA, then there exists an orthonormal wavelet basis of L2(R).

If φ generates a Riesz basis of V0 then property 6 in definition 8.1 en-
sures that {φj,k : k ∈ Z} is a Riesz basis of any Vj. Recall Example 2.27
with the nested subspaces Vj and the mutually orthogonal subspaces
Wj . Whenever there exists a sequence of such subspaces as Vj it is
possible to find an orthonormal wavelet basis {ψj,k : j, k ∈ Z} of L2(R)

generated by
ψj,k = 2j/2ψ(2jx− k). (8.14)

This generates mutually orthonormal subspaces Wj such that a direct
sum decomposition of L2(R) can be written as

L2(R) = ⊕j∈ZWj. (8.15)

Also the properties that

φ(x) ∈ Vj ⊂ Vj+1

and
ψ(x) ∈Wj ⊂ Vj+1
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makes it possible to express φ and ψ in the basis of Vj+1. Hence there
exist sequences {pk} and {qk} such that the scaling function and the
wavelet can be written

φ(x) =

∞∑

k=−∞
pkφ(2k − x)

and

ψ(x) =

∞∑

k=−∞
qkφ(2k − x).

These sequences are called the two-scale relations.

Example 8.5. If φ is the Haar scaling function

φ(x) =

{
1 if 0 ≤ x < 1

0 otherwise
(8.16)

then the Haar wavelet is given by

1√
2
ψ(
x

2
) =

∑
(−1)1−kp(1−k)φ(x− k) =

1√
2

(φ(x− 1)− φ(x))

where the two-scale sequence pk is given by

pk =

{
1√
2

when k = 0, 1

0 otherwise .

The relation can also be expressed as

ψ(x) = φ(x)− φ(2x− k),
giving the function ψ in (2.15)

Example 8.6. For the class of mth order cardinal B-splines defined in
Example 6.10, the two-scale relation is given by

Nm(x) =

∞∑

k=0

2−m+1

(
m

n

)
Nm(2x− k),

with

pk = 2

∫ ∞

−∞
φ(x)φ(2x− k)dx.

These assumptions are made regarding the scaling function φ and
the corresponding {pk};

• φ ∈ L1(R)

•
∑∞

k=−∞ φ(x− k) = 1

• {pk} ∈ ℓ1
•
∑
p2k =

∑
p2k+1 = 1

Next the two-scale symbol will be introduced to show some simplifi-
cations that can be made in the construction of the wavelet spaces.
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Definition 8.7. Two-scale symbol

Let {pk} define a two-scale relation for φ. Then

P (z) =
1

2

∞∑

k=−∞
pkz

k (8.17)

is called the two-scale symbol of φ.

The Fourier transform of φ can be written by means of (8.17) as

φ̂(ω) = P (z)φ̂(
ω

2
).

Example 8.8. For the Haar scaling function in (2.14) we get p0 =

p1 = 1 and pk = 0 for k 6= 0, 1 so that the two-scale symbol becomes

P (z) =
(1 + z)

2
.

This gives the Fourier transform

φ̂(ω) = P (e−
iω
2 )φ̂(

ω

2
) =

1

2
(1 + e−iω/2)

(
e−iω/2 − 1

−i
√

2πω/2

)
=
e−iω − 1

−
√

2πiω
.

When the sequence {pk} is in ℓ1 and the two scale symbol Pφ(z) is
given by (8.17) we can associate another sequence {qk} ∈ ℓ1 with the
corresponding symbol

Q(z) =
1

2

∞∑

k=−∞
qkz

k.

as follows. If φ generates the space Vj as described above, then ψ
generates the space Wj . Thus when Pφ gives the relation Vj ⊂ Vj+1

and Q gives Wj ⊂ Vj+1 this ensures that

Vj ∩Wj = 0 and Vj+1 = Vj ⊕Wj.

Example 8.9. The function ψ can also be written (with qk = (−1)kp1−k)

ψ(x) =
∑

qk = (−1)kp1−kφ(2x− k).
For the Haar case one has p0 = p1 = 1 which gives

ψ(x) = φ(x)− φ(2x− k)
as in Example 8.5.

From property 5 in Definition 8.1 it is clear that Wj is the orthogonal
complement to Vj in Vj+1 (see [4], page 131) Wj also have the scaling
property 4. Hence in order to find a basis for any Wj it is only necessary
to find a function ψ that generates a basis for W0 .
In other words, if {ψ0,k :∈ Z} is an orthonormal basis for W0 then
{ψj,k :∈ Z} will be an orthonormal basis for Wj .

Before we can continue and show when a wavelet is a basis for L2(R)

we have to define filters. Recall the notion of the continuous convolu-
tion in definition 5.15. The discrete version as follows;
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Definition 8.10. Discrete Convolution

Let hk = 1
2
(−1)kpk+1 and gk = 1

2
pk be two absolutely convergent se-

quences, then the discrete convolution Lg = h ∗ g is defined as

(h ∗ g)k =
∑

n∈Z

hk−ngn. (8.18)

A filter is defined as a convolution operator. An example is the
discrete convolution Lg above which is a discrete filter.

Definition 8.11. Impulse response function

Let Lf = f ∗ h be a filter. Then h(x) is called the impulse response
function.

Example 8.12. Let Lf(x) =
∫ infy
−∞ h(t)f(x− t) be a continuous con-

volution as in definition (5.15). If Lf(x) does not depend on the values
f(x) for x > t then h(x) = 0 for x < 0 and Lf(x) is said to be a causal
filter. A causal filter is defined as a filter where the output signal begins
after the input signal has started to arrive.

Example 8.13. In signal processing a low-pass filter is used to filter
out frequencies above a certain "‘cut-off frequency"’. An ideal low-pass
filter leaves the frequencies below this cut-off unchanged but gets rid all
frequencies above. The impulse response function of the ideal low-pass
filter is given by

h(x) =
1

2π

∫ a

−a
eiωxdω =

sin(ax)

πx
.

The filter is a convolution with a sine function in the time domain or
a multiplication with a rectangular function (like the Haar wavelet) in
the frequency domain.

Definition 8.14. Conjugate mirror filter

Let Lf be a discrete filter and let the impulse response function h(x)
satisfy

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2.

Then Lf is called a conjugate mirror filter.

Theorem 8.15. Let φ be a scaling function and let h be its conjugate
mirror filter.
Let ψ be defined by its Fourier transform as

ψ̂(ω) =
1√
2
ĝ(
ω

2
)φ̂(

ω

2
) with ĝ(ω) = e−iωĥ(ω + π). (8.19)

If ψj,k(x) = 1√
2j
ψ
(
t−2jn

2j

)
for any scale 2j then {ψj,k : k ∈ Z} is an

orthonormal basis for Wj and {ψj,k : j, k ∈ Z} is an orthonormal basis
of L2(R) for all scales.



46

Proof. First, it is possible to write ψ̂(ω) as in (8.19) since: ψ( t
2
) ∈

W1 ⊂ V0 so that the decomposition {φ(t− n)}n∈Z
is an orthonormal

basis of V0. Let

1√
2
ψ(
t

2
) =

∞∑

−∞
gnφ(t− n) where gn =

1√
2

〈
ψ

(
t

2

)
, φ(t− n)

〉

(8.20)
then the Fourier transform of it becomes

ψ̂(2ω) =
1√
2
ĝ(ω)φ̂(ω). (8.21)

To prove the rest we start with the following statement:

Lemma 8.16. The family {ψj,k}k∈Z
is an orthonormal basis of Wj if

and only if

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (8.22)

and

ĝ(ω)ĥ(ω) + ĝ(ω + π)ĥ(ω + π) = 0. (8.23)

Proof. This proof will be made for j = 0, then it can be extended by
scaling to hold for any j. The sequence {ψ(t− n)}n∈Z

is orthonormal
if and only if, for all ω ∈ R

∑

n

|ψ̂(ω + 2πn)|2 = 1. (8.24)

Since ĝ(ω) is 2π-periodic and ψ̂(ω) = 1√
2
ĝ(ω

2
)φ̂(ω

2
):

∑
n |ψ̂(ω + 2πn)|2 =

∑∞
n |ĝ

(
ω
2

+ πn
)
|2|φ̂

(
ω
2

+ πn
)
|2

= |ĝ
(
ω
2

)
|2
∑∞

p |φ̂
(
ω
2

+ 2πp
)
|2 + |ĝ

(
ω
2

+ π
)
|2
∑∞

p |φ̂
(
ω
2

+ π + 2πp
)
|2.

Since
∑
|φ̂(ω + 2πp)|2 = 1, (8.24) satisfies (8.22).

V0 and W0 are orthogonal if

〈ψ(t), φ(t− n)〉 = ψ ∗ φ(n) = 0

The Fourier transform, ψ̂φ̂(t) is equal to 0 if
∑

ψ̂(ω + 2πn)φ̂(ω + 2πn) = 0 (8.25)

Let

ψ̂(ω) =
1√
2
ĝ(
ω

2
)φ̂(

ω

2
)

and

φ̂(ω) =
1√
2
ĥ(
ω

2
)φ̂(

ω

2
)

in (8.25), then there is equality between (8.23) and (8.25). The se-
quence

{√
2φ(2t− n)

}
n∈Z

is an orthonormal basis of V1.
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To show that V1 = V0 ⊕ W0 is the same as showing that for any
an ∈ ℓ2(Z) there exists a bn ∈ ℓ2(Z) and a cn ∈ ℓ2(Z) so that

∑

n

an
√

2φ(2(t− n

2
)) =

∑

n

bnφ(π − n) +
∑

n

cnψ(t− n). (8.26)

The Fourier transform of the above becomes

1√
2
â
(ω

2

)
φ̂
(ω

2

)
= b̂(ω)φ̂(ω) + ĉ(ω)ψ̂(ω)

To be able to insert the same ψ̂(ω) and φ̂(ω) as before in this Fourier
transform it is necessary that the following relation holds:

â
(ω

2

)
= b̂(ω)ĥ

(ω
2

)
+ ĉ(ω)ĝ

(ω
2

)
. (8.27)

(8.27) holds when inserting (8.22) and (8.23) together with

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2. (8.28)

By letting

b̂(2ω) =
1

2

(
â(ω)ĥ(ω) + â(ω + π)ĥ(ω + π)

)

and

ĉ(2ω) =
1

2

(
â(ω)ĝ(ω) + â(ω + π)ĝ(ω + π)

)

we have two 2π-periodic sequences that are the Fourier series of bn and
cn in (8.26). Thus it is proved that such sequences exist. �

Because of (8.28) ĝ(ω) = e−iωĥ(ω + π) satisfies (8.22) and (8.23). So
Lemma 8.16 says that the function {ψj,k}k∈Z

is an orthogonal basis of
Wj .
Here

VJ = ⊕J−1
j=−∞Wj .

And Vj generates a multiresolution analysis, so

VJ →
{
{0} as J → −∞
L2(R) as J →∞.

The W ′
js are orthonormal and ⊕∞

−∞Wj = L2(R), so a union of or-
thonormal bases of all Wj’s is an orthonormal basis of L2(R). �

This theorem shows that if there exists an MRA, then there exists
an orthonormal wavelet basis of L2(R).
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8.1. Splines and MRA. A special kind of scaling functions which are
very useful when constructing wavelets are called splines.
Splines are piecewise polynomials which match together smoothly. How
smoothly they match depends on the order of the spline.
Let us say that we want to approximate a function x on [a,b] by a
function y. If we use splines we can represent y by polynomials in
every subinterval of a partition of [a,b] where we have one polynomial
for every subinterval. So instead of approximating x by one single
polynomial, we approximate it by as many as we have intervals. In this
way some analyticity may be lost, but instead a good approximation
is gained.
The breakpoints between the polynomials are called nodes and a spline
of order m consists of polynomials of order m between the nodes.
A special kind of splines that will be considered here are called Cardinal
splines, they are splines with equal spacing between the nodes. This
section aims to define cardinal B-splines, which for example will be
used for the Daubechies wavelets in section 10.1.

Definition 8.17. The space πn
Let πn be the space of all polynomials of degree at most n.

Definition 8.18. The space Sm
For all m > 0

Define Sm as the space of cardinal splines of order m and with the
node-sequence Z.
In other words Sm is the collection of all f ∈ Cm−2 such that the
restriction of f to any interval [k, k + 1) , k ∈ Z is in the space πm−1.

Example 8.19. A basis for S1 is {N1(x− k) : k ∈ Z}, where

N1(x) =

{
1 x ∈ [0, 1)

0 otherwise.
(8.29)

If T =
{
(x− k)m−1

+

}
is a basis for Sm, then none of the f ∈ T is

in L2(R). It is however possibly to use functions from T and create
L2(R)-functions, by using differences.

{
(∆f)(x) = f(x)− f(x− 1)

(∆nf)(x) = (∆n− 1(∆f))(x)
(8.30)

So that when f ∈ πm−1, then ∆mf = 0.
It is now possible to construct the space of cardinal splines.

Definition 8.20. The space Nm

Let N1 be as in (8.29).
For m ≥ 2, let

Nm(x) =
1

(m− 1)!
∆mxm−1

+ (8.31)
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where Nm is a linear combination of T.
This can also be written as

Nm(x) =
1

(m− 1)!

m∑

k=0

(−1)k
(
m
k

)
(x− k)m−1

+ . (8.32)

Nm has compact support (suppNm = [0, m]), so it belongs to L2(R).

Definition 8.21. Cardinal B-spline

Let B be the space B = {Nm(x− k) : k ∈ Z} of integer translations of
Nm. Then B is a basis of Sm and any spline in B is called a cardinal
B-spline.

Le us consider the space Sm. For cardinal splines with the node-
sequence 2−jZ the corresponding space is called Sjm, where

... ⊂ S−1
m ⊂ S0

m ⊂ S1
m ⊂ ... (8.33)

Let V m
j = Sjm ∩ L2(R), and construct a sequence

... ⊂ V m
−1 ⊂ V m

0 ⊂ V m
1 ⊂ ...

of closed cardinal spline subspaces.
Then, when B is a basis of V m

0 , the sequence
{
2j/2Mm(2jx− k) : k ∈ Z

}

is a Riesz basis for V m
j with the same Riesz bounds as the basis B.

8.1.1. Properties of B-splines. For the proofs of the properties in this
section, please see [3].

Definition 8.22. For m ≥ 2 the mth-order cardinal B-spline is defined
by

Nm(x) = (Nm−1 ∗N1) (x) =

∫ 1

0

Nm−1(x− t)dt. (8.34)

Theorem 8.23. Properties of B-splines

(1) For f ∈ C
∫ ∞

−∞
f(x)Nm(x)dx =

∫ 1

0

...

∫ 1

0

f(x1 + ... + xm)dx1...dxm.

(2) For g ∈ Cm

∫ ∞

−∞
g(m)(x)Nm(x)dx =

m∑

k=0

(−1)m−k
(
m
k

)
g(k) (8.35)

(3) suppNm = [0, m], so that Nm(0) = Nm(m) = 0

(4) N ′
m(x) = (∆Nm−1)(x) = Nm−1(x)−Nm−1(x− k)

(5)
∑

kNm(x− k) = 1 for all x.
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(6) The relation between Nm and Nm−1 is given by

Nm(x) =
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1).

(7) Nm is symmetric with respect to the center of its support. That
is

Nm

(m
2
− x
)

= Nm

(m
2

+ x
)
.

The properties of the Fourier transform together with the fact that

Nm(x) = N1 ∗ ... ∗N1(x)

and

N̂1(ω) =

∫ 1

0

e−iωtdt =
1− e−iω
iω

,

makes it possible to express the Fourier transform of Nm(ω) as

N̂m(ω) =

(
1− e−iω
iω

)m
,

Example 8.24. In view of the two-scale symbol in (8.17) we have for
the mth-order cardinal B-spline a relation:

P (z) =

(
1 + z

2

)m

and

Πn
k=1P (e−iω/2

k

) =
1

2mn

(
1− e−iω

1− e−iω/2k

)m
,

where the right-hand side tends to
(

1−e−iω

iω

)m
as n → ∞ which agrees

with the above.

When using frames and R-wavelets it is necessary to consider prop-
erties such as

• the size of the time-frequency window
• the complexity and efficiency of the function
• the smoothness and symmetry of the function
• the order of approximation needed.

B-splines are a very efficient group of functions since they are the
least complicated functions with the smallest support ([2]) so that an
MRA constructed from a spline becomes a smooth approximation that
has fast decay. (In other words; it disappears fast outside its support.)
Consider Vj as the space of splines with degree m ≥ 0. They are
m − 1 times continuous differentiable functions which behave like a
polynomial at degree m inside each interval [2jn, 2j(n + 1)].
When m = 0, a polynomial is piecewise constant and when m = 1 the
MRA becomes piecewise linear and continuous.
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Example 8.25. Let Nm be the mth order cardinal B-spline. Then the
wavelet ψ corresponding to Nm is given by

ψm(x) =
∑

qnNm(2x− n)

where qn is a convolution

qn =
(−1)n

2m−1

∑(
m

l

)
N2m(n+ 1− l).

Example 8.26. A special class of wavelets are the Battle-Lemarié
wavelets. They are constructed via MRA with B-splines as scaling func-
tion. The B-splines in this case have their nodes on the integers.
Let

φ(x) =

{
1− |x| when 0 ≤ x ≤ 1

0 otherwise.

Then

φ(x) =
1

2
φ(2x+ 1) + φ(2x) +

1

2
φ(2x− 1)

and the Fourier transform becomes

φ(ω) =
1√
2π

(
sin(ω/2)

ω/2

)2

so that (8.1) and (8.2) are satisfied. In addition φ ∈ L1(R) and∫
φ(x)dx = 1 so that Vj generated by φ gives an MRA.

Now the Fourier transform of a wavelet can be expressed as

ψ̂(ω) =
√

3eiω/2 sin2(ω/4)

(
1 + 2 sin2(ω/4)

(1 + 2 cos2(ω/2)) + (1 + 2 cos2(ω/4))

)1/2

φ̂(ω/2).

The Fourier coefficients of the denominator can be calculated and ψ
can be written as

ψ(x) =

√
3

2

∑
(dn+1 − 2dn + dn−1)φ(2x− n).

Spline wavelets are continuous but even though they decay exponentially
their scaling and wavelet functions have infinite support.

9. Decomposition and Reconstruction

Assume that you have a signal that you want to denoise, i.e. you need
to find a way to remove frequencies that are outside a given interval.
To do this the signal has to be decomposed into small components that
are associated to different frequencies. When this is done it is possible
to select which components to keep, in the denoising case by throwing
away components associated to frequencies outside the interval. The
last step is to put the remaining components back together again, and
the importance of the task is to manage to do this in a way such that
the result is close to the original signal.
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9.1. The decomposition algorithm. The theory of multiresolution
analysis will be used to break a function into its Wj-parts, which con-
tains information about the oscillatory behavior of the signal.
A signal f ∈ Vj can be represented both as

f =
∑
〈f, φj,k〉φj,k (9.1)

and, since Vj = Vj−1 ⊕Wj−1, as

f =
∑
〈f, φj−1,k〉φj−1,k +

∑
〈f, ψj−1,k〉ψj−1,k = fj−1 + wj−1. (9.2)

For ajk = 2j/2 〈f, φj,k〉 equation (9.1) becomes

f(x) =
∑

ajkφ(2jx− k)

and with bjk = 2j/2 〈f, ψj,k〉 equation (9.2) becomes

f(x) =
∑

aj−1
k φ(2j−1x− k) +

∑
bj−1
k ψ(2j−1x− k).

The number aj is called the approximation coefficient and bj is called
the detail coefficient. the number bj corresponds to the frequency of
the function (or signal).

To begin with the decomposition a sequence of Vj has to be chosen.
It should fit the information in f as good as possible. The choice
of Vj depends on the sampling rate and the MRA used. The best
approximation of f from Vj is given by the orthogonal projection

Pjf =
∑

aJkφ(2jx− k).
When a signal is being sampled, the following so-called quadratic rule
is sometimes needed to get a good approximation of Pjf .

Theorem 9.1. Let {Vj}j∈Z
be an MRA and let φ be its compactly

supported scaling function. Then, for continuous f ∈ L2(R) and for
sufficiently large j

ajk =

∫ ∞

−∞
f(x)φ(2jx− k)dx = f

(
k

2j

)∫ ∞

−∞
φ(x)dx. (9.3)

Proof. The function φ has compact support so it is only nonzero inside
an interval [−M,M ].

The interval of integration for ajk is {x : |2jx− k| ≤M}.
Let t = 2jx− k. Then

ajk =

∫ M

−M
f(2−jt+ 2−jk)φ(t)dt.

As j increases, the number 2−jt + 2−jk gets close to 2−jk for t ∈
[−M,M ]. But since f is uniformly continuous on every finite interval
this means that

f(2−jt+ 2−jk) ≈ f(2−jk) for all t ∈ [−M,M ].
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Hence

ajk ≈ f

(
k

2j

)∫ M

−M
φ(x)dx.

And since φ is zero outside [−M,M ], this means that
∫ M

−M
φ(t)dt =

∫ ∞

−∞
φ(t)dt.

Thus formula (9.3) is obtained. �

The approximation of Pjf gets better the bigger j gets, but the
calculations gets heavier at the same time, so what j to use is an
optimization problem.
Pjf can also be written as

Pjf ≈ fj(x) =

∫
φ(x)dx

∑
f

(
k

2j

)
φ(2jx− k).

At the first step we have f ≈ fj ∈ Vj. We also know from our
previous arguments that

∑
Wj = L2(R). It is possible to start with fj

and then to decompose it so that for

fj−1 ∈ Vj−1 and wj−1 ∈ Wj−1 : fj = fj−1 + wj−1.

Depending on the purpose, the level of decomposition differs. Some-
times, like when detecting singularities, it can be enough to downsam-
ple one or two steps. For now the stopping level will be 0.

9.2. Downsampling. Put

hk =
1

2
(−1)kpk−1 (9.4)

and

lk =
1

2
p−k. (9.5)

Then

H(x) = h ∗ x and L(x) = l ∗ x
becomes two discrete filters where L is a low-pass filter and H is a
high-pass filter.
With x = aj we define the downsampling coefficients as

aj−1
l = L(aj)2l and bj−1

l = H(aj)2l. (9.6)

In order to make the data-load smaller, the following downsampling
can be used.
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Definition 9.2. Downsampling

Let x = (...x−2, x−1, x0, x1, x2...). Then

Dx = (...x−2, x0, x2...)

is the downsampling of x and D is called the downsampling operator.
This can also be written as:

(Dx)l = x2l for all l ∈ Z.

Hence:

aj−1 = D(l ∗ aj) = DLaj

bj−1 = D(h ∗ aj) = DHaj.

Since the stopping level of the downsampling was chosen to be 0,
this gives a set including the approximation coefficient at the level 0

{a0
k} and the wavelet coefficients

{
bj

′

k

}
for j′ = 0, ..., j − 1.

The following example was found in [1] as an exercise and its purpose
is to illustrate the decomposition.

Example 9.3. Let φ and ψ be the Haar scaling and wavelet functions
in (2.14) and (2.15) respectively.
Assume that φ(2jx− k) generate Vj and ψ(2jx− k) generate Wj.
Let f be defined for x ∈ [0, 1) and let

f(x) =





−1 0 ≤ x < 1
4

4 1
4
≤ x < 1

2

2 1
2
≤ x < 3

4

−3 3
4
≤ x < 1.

Then f will be expressed in terms of the basis for V2 and then decom-
posed into its component parts in W1, W0 and V0.
In V2 the function f can be written

f(x) = −φ(4x) + 4φ(4x− 1) + 2φ(4x− 2)− 3φ(4x− 3).

Put

φ(x) = 1
2
(ψ(2x) + φ(2x))

φ(4x− 1) = 1
2
(φ(2x)− ψ(2x))

φ(4x− 2) = φ(4(x− 1
2
)) = 1

2
(ψ(2(x− 1

2
)) + φ(2(x− 1

2
)))

φ(4x− 3) = φ(4(x− 1
2
)− 1) = 1

2
(φ(2(x− 1

2
))− ψ(2(x− 1

2
)))

(9.7)

into f(x), then it can be rearranged so that

f(x) =
3

2
φ(2x)− 1

2
φ(2x− 1)− 3

2
ψ(2x) +

5

2
ψ(2x− 1).

Terms in this expression containing ψ are already in W1, to get the
other components the decomposition process has to continue.



55

Use

φ(2x) =
1

2
(φ(x) + ψ(x))

φ(2x− 1) =
1

2
(φ(x)− ψ(x))

and put this into the latest form of f(x) which then becomes

f(x) = −φ(x)− 1

2
(ψ(x)− 3

2
ψ(2x) +

5

2
ψ(2x− 1)).

Now the term with φ is in V0, ψ(x) is in W0 and ψ(2x) and ψ(2x− 1)

are in W1 so that those terms are the respective spaces components.

9.3. The reconstruction algorithm. When the decomposition is

finished we are left with all the wavelet coefficients bj
′

k and we have
to decide what to do with them. If the signal should be denoised, then

the bj
′

k corresponding to wrong frequencies has to be thrown away. If
the signal should be compressed then it is possible to remove coeffi-
cients that are small. Here “small“ is a problem of definition depending
of how precise the final result should be.

As in the decomposition we again define two discrete filters

H̃ = h̃ ∗ x with h̃k = p1−k(−1)k

L̃ = l̃ ∗ x with l̃k = pk.

Now H̃ and L̃ is the reconstruction high- resp. low-pass filters.
The reconstruction formula is written as

ajk =
∑

n∈Z

l̃k−2na
j−1
n +

∑

n∈Z

h̃k−2nb
j−1
n .

If the index were k − n instead of k − 2n this would have been a
convolution. To recover the odd terms that are missing the upsampling
operator can be used.

Definition 9.4. Upsampling

Let x = (...x−2, x−1, x0, x1, x2...). Then

Ux = x = (...x−2, 0, x−1, 0, x0, 0, x1, 0, x2...).

is the upsampling of x, and U is called the upsampling operator.

With this operator it is possible to write

ajk = l̃ ∗ (Uaj−1) + h̃ ∗ (Ubj−1) = L̃Uaj−1 + H̃Ubj−1.

The following example will illustrate the reconstruction algorithm.

Example 9.5. In this example a function f ∈ V3 will be reconstructed
from the coefficients

a[1] = [
3

2
,−1] , b[1] = [−1,−3

2
] , b[2] = [−3

2
,−3

2
,−1

2
,−1

2
].
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To do this we use the relations

a[j](2k) = a
[j−1]

k + b
[j−1]

k

a[j](2k + 1) = a
[j−1]

k − b[j−1]

k .

To get to V3, which is the third level, two iterations must be done. First
use a[1] and b[1] to get

a[2] = [
1

2
,
5

2
,−5

2
,
1

2
]

then use a[2] and b[2] to get

a[3] = [−1, 2, 1, 4,−3,−2, 0, 1].

This gives

f(x) = −φ(23x) + 2φ(23x− 1) + φ(23x− 2)

+4φ(23x− 3)− 3φ(23x− 4)− 2φ(23x− 5) + φ(23x− 7).

10. Applications of Wavelets

10.1. Daubechies wavelets. The most desired basis of a Hilbert space
is of course an orthonormal basis. One example of its convenience is
that if a scaling function φ with two-scale symbol pk generates a basis
of L2 then the corresponding two-scale symbol qk of ψ can be found eas-
ily by conjugation, sign change and unit shifts. One family of wavelets
that can be constructed in this way are the Daubechies wavelets. They
are compactly supported and, apart from ψD1 = ψH , they are contin-
uous. They also have increasing number of continuous derivatives.
To describe how to construct the second Daubechies wavelet, ψD2, we
will start with some theorems. Proofs of the theorems and a more
detailed description of the construction can be found in [1]. More in-
formation about orthogonal wavelets can be found in [3].

Theorem 10.1. Take the polynomial P (x) = 1
2

∑
k pkx

k satisfying

• P (1) = 1

• |P (x)|2 + |P (−x)|2 = 1 for |x| = 1

• |P (eit)| > 0 for |t| ≤ π
2
.

Let φD1 = φH and let

φn(x) =
∑

k

pkφn−1(2x− k).

Then the sequence φn converges to the function φ satisfying
∫ ∞

∞
φ(x− n)φ(x−m)dx = δnm

and
φ(x) =

∑

k

pkφ(2x− k).
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Theorem 10.2. Let {Vj : j ∈ Z} be an MRA with a scaling function

φ(x) =
∑

k

pkφ(2x− k).

Let Wj be the span {ψ(2jx− k) : k ∈ Z} where

ψ(x) =
∑

k

(−1)kp1−kφ(2x− k).

Then Vj+1 = Vj ⊕Wj and {ψj,k(x) = 2j/2ψ(2jx − k) : k ∈ Z} is an
orthonormal basis of Wj.

Example 10.3. Recall the example 8.5. The Haar wavelet ψH is the
first one in the Daubechies family. It is the only one in the family that
is not continuous.
The Haar scaling function has p0 = p1 = 1 which, by the means of

ψ(x) =
∑

k

(−1)kp1−kφ(2x− k)

gives
ψ(x) = φ(2x)− φ(2x− 1).

The problem now is to find the pj’s for the Daubechies wavelets of
higher order that satisfies conditions in Theorem 10.1. As mentioned
above a suitable procedure for this is described in [1]. For the second
Daubechies they are given by

p0 =
1 +
√

3

4
, p1 =

3 +
√

3

4
, p2 =

3−
√

3

4
, p3 =

1−
√

3

4

so that

φD2 =
1 +
√

3

4
φ(2x)+

3 +
√

3

4
φ(2x−1)+

3−
√

3

4
φ(2x−2)+

1−
√

3

4
φ(2x−3)

is the scaling function and

ψD2 =
1−
√

3

4
φ(2x)−3−

√
3

4
φ(2x−1)+

3 +
√

3

4
φ(2x−2)−1 +

√
3

4
φ(2x−3)

is the wavelet.

For large N the wavelet ψDN and scaling function φDN have ap-
proximately N/5 continuous derivatives. Thanks to this and to the
compactness of their support, the Daubechies wavelets are very useful
in, for example, noise removing, singularity detection and compression.

10.2. Denoising and compression of images. Application of wavelets
to an image can have two purposes. Either one wants to get a clearer
image by getting rid of unwanted noise or to make the data volume of
the image smaller by compressing it.

Both for denoising and compression the procedure is roughly done
in three steps
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Figure 3. The Daubechies wavelet ψD2.

Figure 4. Function and its denoised version.

(1) Decompose. A wavelet and a level N is chosen, then the de-
composition is computed at that level N .

(2) Selection using thresholding. For each level from 1 to N a
threshold is decided and all wavelet coefficients outside that
threshold are removed.

(3) Reconstruction. The reconstruction is computed with the orig-
inal coefficients from level N and the modified coefficients on
the levels 1 to N .

The difference between the denoising and the compression is the thresh-
old. If the data of the image is to be compressed, only large enough
coefficients are kept. But to denoise the threshold has to be chosen so
that the data kept is smoother than before. In other words: coefficients
corresponding with too large frequencies are removed. For an image it
is still important not to loose all edges. Therefore in the areas of the
image with a lot of edges the denoising must be done more carefully.
In Figure 4 a signal with a lot of noise is shown together with the
much smoother denoised version of the same signal. All important
information is kept but the result looks much nicer.
Applying the same principle to an image gives the same result. Look
at Figure 5: The picture to the right is the denoised version of the left
picture.
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Figure 5. Noisy image and denoised version.

Figure 6. The original image.

Figure 7. The image compressed using threshold 2.
The compression ratio is 27:1

For the following compressed images (Figure 7 and 8) the threshold
means that any coefficient smaller than the threshold value was taken
away. To see the whole procedure and its matlab code, see [11]

When FBI was going to digitalize all fingerprints they used an algo-
rithm based on Daubechies biorthogonal spline wavelets called WSQ,
or The wavelet scalar quantization grey-scale fingerprint image com-
pression algorithm.
Using this algorithm they where able to get a good image of the fin-
gerprint by only keeping 8% of the data. For more information see
[10].



60

Figure 8. The image compressed using threshold 8.
The compression ratio is 5:1.
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