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Abstract

In this thesis, we investigate a class of graphs called completely discretely sta-
ble, and also a kind of graph extensions called stitches. The properties of their
independence complexes and face lattices are studied. As a corollary, we calcu-
late the f - and h-vectors of a type of combinatorially determined Gorenstein
complexes.
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1 Introduction

Ramsey theory originates from a paper Frank P. Ramsey published in 1930,
concerning a certain problem in formal logic [9]. In general, Ramsey theory is
concerned with how “big” (in some sense) a mathematical structure must be to
assure the existence of certain substructures. Applied to graph theory, this can
be interpreted in terms of graphs and subgraphs. No definitons will be made
here, If necessary, the reader will find them in Section 3.3

Definition 1.0.1. Let G1, . . . , Gp be graphs. Then

R(G1, . . . , Gp) := min{n |Every colouring with p colours of Kn

contains an i-coloured Gi, for some i.}

is called the Ramsey number of Gi, . . . , Gp.

Note that

R(G1, . . . , Gi, Gi+1, . . . , Gp) = R(G1, . . . , Gi+1, Gi, . . . , Gp);

this follows immediately from the definition. When Gi = Kni
, for all i, let

R(n1, . . . , np) := R(Kn1
, . . . ,Knp

). It is not immediate that these numbers are
finite for every collection of graphs. However, if R(G1, . . . , Gn) exists and Hi is
a subgraph to Gi for every 1 ≤ i ≤ n, clearly R(H1, . . . , Hn) ≤ R(G1, . . . , Gn).
In particular, if |Gi| = mi, R(G1, . . . , Gn) ≤ R(m1, . . . ,mn). The next theorem
assures the existence of R(G1, . . . , Gn) for every collection of graphs G1, . . . , Gn.

Theorem 1.0.2. Assume r1, . . . , rs ≥ 1. Then R(r1) = r1, R(r1, r2) ≤ R(r1 −
1, r2) +R(r1, r2 − 1), and if s ≥ 3,

R(r1, . . . , rs) ≤ R (r1, . . . , rs−2, R (rs−1, rs)) .

Proof. First, obviously R(r1) = r1. Next, we show by induction that R(r1, r2) ≤
R(r1 − 1, r2) + R(r1, r2 − 1). We have R(m, 1) = R(1,m) = 1 from definition,
since every edge in K1 is coloured in any colour. Now assume R(r1 − 1, r2)
and R(r1, r2 − 1) satisfies the inequality, and hence are finite. Consider the
complete graph on R(r1 − 1, r2) + R(r1, r2 − 1) vertices, and pick a vertex v.
Let M be the induced subgraph on the vertices wi, vwi blue, and define N in
the same manner on the vertices ui, vui red. Now, either |M | ≥ R(r1 − 1, r2)
or |N | ≥ R(r1, r2 − 1). If |M | ≥ R(r1 − 1, r2), either M contains a red Kr2

or a
blue Kr1−1. In the latter case, the induced coloured graph on M ∪{v} contains
a blue Kr1

. With the same arguments, if |N | ≥ R(r1, r2 − 1), N contains either
a blue Kr1

or ar red Kr2
.

Finally, by induction over s, we show that R(r1, . . . , rs) satisfies the inequal-
ity. We know R(r1) and R(r1, r2) are finite. When s ≥ 3, regard s − 1 and s
as the same colour s′. Let rs′ = R(rs−1, rs). We know from the induction hy-
pothesis that n := R(r1, . . . , rs−2, rs′) is finite, and each colouring of Kn which
contains an s′-coloured Kr′

s
contains either an (s − 1)-coloured Krs−1

, or an
s-coloured Krs

.
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Example 1.0.3. A classical example is R(3, 3). First, note that from Theorem
1.0.2, we get R(3, 3) ≤ 6. Now, as seen in Figure 1, there exists an edge colouring
of K5 which neither contains a blue nor a red triangle. This colouring is in fact
unique. Hence, R(3, 3) = 6.

Figure 1: The unique bicolouring of K5 with no monochromatic triangle.

Note that in the in case of two colours, the ”blue” and ”red” edges can be
reinterpreted as edges and non-edges.

The upper bounds achieved in Theorem 1.0.2 are useful only for proving
finiteness, as they are far from good estimates for larger Ramsey numbers. A
great amount of work has been put into determining the Ramsey numbers, but
it is a daunting task. For example, as per 2nd of May 2008, only one non-trivial
Ramsey number has been determined when s > 2, namely R(3, 3, 3) = 17, which
is shown in [5]. Table 1 gives a summary of the known exact vaules or upper
and lower bounds for small Ramsey numbers, taken from [8].

One tool that has been used to determining upper and lower bounds of
R(3, j) are the numbers e(i, j, n), the minimal number of blue edges in a Kn

such that there exists no blue Ki or red Kj. Sharpening the lower bound on
e-numbers may sharpen the upper bound on the Ramsey numbers R(3, j), since
given a least number of blue edges in a Km, it might be possible to prove that
there must exist a blue triangle. This can of course also be used to sharpen
upper bounds on general Ramsey numbers R(i, j).

The edge extremal graphs with respect to the e(3, j, n)-numbers, i.e. graphs
which adhere to the conditions imposed by the definition of e(i, j, n) with exactly
e(3, j, n) edges, are often “nice” in some sense. For example, when the ratio j−1

n
is between 1

3 and 1
2 , all edge number extremal graphs are so-called completely

discretely stable graphs. This category of graphs can be extended by dropping
the condition of being triangle-free. We will study the properties of such graphs,
and see which properties are invariant under certain graph extensions.

On the other hand, to every graph one can assign a commutative ring, via
simplicial complexes. There is a strong interplay between properties of the
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r 3 4 5 6 7 8 9 10

s

3 6 9 14 18 23 28 36
40

43

4 18 25
35

41

49

61

56

84

73

115

92

149

5
43

49

58

87

80

143

101

216

125

316

143

442

6
102

165

113

298

127

495

169

780

179

1171

7
205

540

216

1031

233

1713

289

2826

8
282

1870

317

3583 6090

9
565

6588

580

12677

10
798

23556

Table 1: Known values and upper and lower bounds for small Ramsey bicoloured
numbers.

ring and properties of the graph, and completely discretely stable graphs are
interesting from this perspective. To understand the ring-graph correspondence,
a good deal of algebra is needed. The first part of this thesis will go through the
required material. The second part contains material on simplicial complexes
and graphs, in particular completely discretely stable graph and a type of graph
extension.

2 Algebra

The first sections will quickly go through standard material in commutative
and homological algebra. Then, progressively more carefully, we will go through
some dimension theory and other subjects in commutative algebra. The material
is from [10] and [12].

2.1 Basic constructions

When not explicitly stated otherwise, by a ring R we will always mean a ring
with a multiplicative identity 1 6= 0, and with associative and commutative ring
multiplication. Recall that a non-empty subset I ⊂ R of a ring R is an ideal of
R if it is closed under addition, and rI ⊂ I for every r ∈ R. An ideal I 6= R
is called a proper ideal. For r1, . . . , rn ∈ R, let (r1, . . . , rn) be the ideal in R
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generated by r1, . . . , rn. An ideal I is prime if for every r, p ∈ R, rp ∈ I implies
r ∈ I or p ∈ I. The set of all prime ideals of R is called the spectrum of R,
denoted Spec(R) . An ideal I is maximal if I  J ⊂ R implies J = R. Note
that all maximal ideals are prime.

Definition 2.1.1. A ring R is local if it has only one maximal ideal. A local
ring is often written as (R,m), where m is the unique maximal ideal of R. The
field R/m is called the residue class field of R.

The following theorem is called the Prime Avoidance Theorem.

Theorem 2.1.2. Let R be a ring, and I1, . . . , In ideals of R, of which at most
two are not prime. If J is another ideal in R, such that J ⊂

⋃n
i=1 Ii, J ⊂ Ij for

some 1 ≤ j ≤ n.

A frequent application of the above theorem is the following: If an ideal J
does not lie in any finite union of primes, there is an x ∈ I which avoids every
prime; hence the name “prime avoidance”.

The following definitions are mostly here for reference.

Definition 2.1.3. AnR-module M is an abelian group together with a mapping
ϕ : R×M →M such that

(i) r(m + n) = rm+ rn,

(ii) (r + s)m = rs+ rm,

(iii) (rs)m = r(sm),

(iv) 1m = m,

for all r, s ∈ R and m,n ∈M .

A K-module, where K is a field, is called a K-(vector) space. A ring A which
is also an R-module, with the additional condition r(ab) = (ra)b for all r ∈ R
and a, b ∈ A, is called an R-algebra.

Let M and N be R-modules. An (R-)module homomorphism is a mapping
ϕ : M → N such that ϕ(r1m1+r2m2) = r1ϕ(m1)+r2ϕ(m2) for every r1, r2 ∈ R
and m1,m2 ∈M . The set

{n ∈ N |ϕ(m) = n for some m ∈M}

is called the image of ϕ, denoted Imϕ. Similarly, the set

Kerϕ := {m ∈M |ϕ(m) = 0}

is called the kernel if ϕ. The sets Imϕ and Kerϕ are submodules of M and N ,
respectively. A homomorphism ϕ : M → N is an epimorphism if Imϕ = N ,
and a monomorphism if ϕ(m1) = ϕ(m2) ⇒ m1 = m2. ϕ is an isomorphism if
it is both an epimorphism and a monomorphism.
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The set of all module homomorphisms ϕ : M → N is denoted HomR(M,N),
or just Hom(M,N). HomR(M,N) can be given an R-module structure by
letting rϕ be the mapping that takes m to rϕ(m). Note that this is not possible
for non-commutative rings. Let M be an R-module.

A non-empty subset L ⊂ M is a submodule of M if L is an R-module, by
means of the induced operations from M . Given a submodule L of M , define a
mapping from R×(M/L) to M/L by (r, x) 7→ rx. This gives M/L an R-module
structure. The module M/L is called a quotient module of M .

Let Mi, i ∈ I be a family of R-modules. Let
⊕

i∈I Mi be the set of all (xi)i∈I

with almost all xi = 0. This is called the direct sum of Mi, i ∈ I, and is an
R-module. When I is finite, there is an isomorphism from HomR(

⊕

i∈I Mi, N)
to

⊕

i∈I HomR(Mi, N).

Theorem 2.1.4. Every R-module M is a quotient module of a free R-module.

Let M be an R-module, and S ⊂M . If every element m ∈M can be written
as

∑

si∈S risi, ri ∈ R, with only finitely many ri non-zero, S is said to generate
M , and is called a generating set for M . If there exists a finite such S ⊂ M ,
M is finitely generated, or finite. A subset T ⊂ M is linearly independent if
∑n

i=1 riti = 0, ri ∈ R, ti ∈ T implies ri = 0 for all i. A linearly independent
generating set is called a basis. A moduleM which has a basis is a free R-module.
When M is a finite free R-module, every basis has the same cardinality n. Note
that the corresponding statement is not true for non-commutative rings. The
number n is called the rank of M , written as rankRM (or just rankM). If M
is a free R-module of rank n, M is isomorphic to R⊕ · · · ⊕R

︸ ︷︷ ︸

n

. If R is a field,

every R-module has a basis, i.e. is free.

Definition 2.1.5. An R-module M is Noetherian if it satisfied one of the
following equivalent conditions.

(i) Every submodule of M is finitely generated.

(ii) Every chain L1 ( L2 ( . . . of submodules of M is finite.

(iii) Every non-empty family of submodules of M has a maximal member.

A ring R is Noetherian if it is Noetherian as an R-module. A useful result
is the following

Proposition 2.1.6. Let R be a Noetherian ring. Then every finitely generated
R-module M is Noetherian.

The following theorem is called Hilbert’s basis theroem.

Theorem 2.1.7. Let R be a Noetherian ring. Then R[X ] is Noetherian.

Corollary 2.1.8. For every field K and every n ∈ N, K[X1, . . . , Xn] is Noethe-
rian.

5



Definition 2.1.9. An R-module M is Artinian if if it satisfies one of the fol-
lowing equivalent conditions

(i) Every chain L1 ) L2 ) . . . of submodules of M is finite.

(ii) Every non-empty family of submodules of M has a minimal member.

A ring R is Artininan if it is Artinian as an R-module. Every Artinian
module is Noetherian, but the converse is not true. The ring Z provides an
example of a Noetherian, non-Artininan ring.

Definition 2.1.10. Let R be a ring. A set S ⊂ R is multiplicatively closed if
1 ∈ S and s1, s2 ∈ S implies s1s2 ∈ S. We eill always assume 0 /∈ S.

Definition 2.1.11. Let S be a multiplicatively closed subset of a ring R. Define
a relation ∼ on R× S as

(r1, r1) ∼ (r2, s2) ⇔ ∃u ∈ S such that u(r1s2 − r2s1) = 0.

This relation is easily seen to be an equivalence relation. For (r, s) ∈ R × S,
denote the equivalence class containing (r, s) as r

s . The set of all equivalence
classes, denoted S−1R, can be seen as a ring with the operations

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
,

r1
s1

r2
s2

=
r1r2
s1s2

.

The ring S−1R is called the ring of fractions of R with respect to S.

There is a natural ring homomorphism f : R → S−1R that takes r to r
1 .

For an ideal I ⊂ R, let IS−1R be the ideal f(I)S−1R ⊂ S−1R. Let r ∈ R be
an element such that rn 6= 0, ∀n ≥ 0. Then {1, r, r2, . . .} is a multiplicatively
closed set. Denote this set by 〈r〉. For every prime ideal p ∈ R, the set R \ p is
a multiplicatively closed set. Let Rp be (R \ p)−1R. Rp is called the localization
of R at p. The ring Rp is a local ring, with maximal ideal pRp. Let κ(p) be the
field Rp/pRp, called the residue class field of R at p.

Proposition 2.1.12. Let S be a multiplicatively closed set in R. Then

SpecS−1R = {pS−1R | p ∈ SpecR, p ∩ S = ∅}.

Moreover, the mapping

{pS−1R | p ∈ SpecR, p ∩ S = ∅} ⇒ SpecS−1R

is bijective and inlusion-preserving.

In particular, the above proposition gives that the prime ideals of Rp are
exactly the ideals qRp, where q is a prime of R contained in p.

The concept of fraction rings can be extended to modules, as follows.
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Definition 2.1.13. Let S be a multiplicatively closed subset of a ring R, and
let M be an R-module. Define a relation ∼ on M × S as

(m1, s1) ∼ (m2, s2) ⇔ ∃u ∈ S such that u(m1s2 −m2s1) = 0.

As in the case of rings, this relation is an equivalence relation. For (m, s) ∈
M × S, denote the equivalence class containing (m, s) as m

s . The set of all
equivalence classes, denoted S−1M , can be given an S−1R-module structure by
defining

m1

s1
+
m2

s2
=
m1s2 +m2s1

s1s2
,

r

s

n

t
=
rm

st
.

The module S−1M is called the module of fraction of M with respect to S.

Set Mp := (R \ p)−1M for p ∈ SpecR, called the localization of M at p.

Definition 2.1.14. The support of an R-module M , SuppM , is the set of prime
ideals p in R such that Mp 6= 0. When M = R, SuppM = SpecM .

The following proposition lists some properties of fraction modules.

Proposition 2.1.15. Let M and N be R-modules, L a submodule of M , and
S a multiplicatively closed set in R. Then

(a) S−1(IM) = IS−1RS−1M ,

(b) S−1M/S−1L ∼= S−1(M/L),

(c) S−1(M ⊕N) ∼= S−1M ⊕ S−1N ,

(d) SuppS−1M = {pS−1R | p ∈ SuppM, p ∩ S = 0}.

More information on the rings and modules of fractions may be found in any
standard book in commutative algebra, for example [4], [6], [10].

Definition 2.1.16. Let R be a ring, M an R-module, and J ⊂ M . The set
{r ∈ R | rJ = 0} is an ideal of R called the annihilator of J , denoted AnnJ
(or AnnR J , to emphasize the ring). The annihilator of {m} is often written as
Annm.

Lemma 2.1.17. Let M be a finite R-module. Then

SuppM = {p ∈ SpecR | p ⊃ AnnM}.

Definition 2.1.18. LetM be anR-module.over a local ring (R,m), with R/m =
K. Then

SocM := Ann m

is called the socle of M .

Definition 2.1.19. Let R be a ring and M an R-module. An ideal P ∈ SpecR
is called an associated prime ideal of M if P = Annm, for some m ∈ M . The
set of all associated prime ideals of M is denoted AssRM , or AssM if the ring
is understood.
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Definition 2.1.20. Let M be an R-module. An element 0 6= r ∈ R is a
zerodivisor on M if there exists 0 6= m ∈ M such that rm = 0. An element in
R which is not a zerodivisor is called a non-zerodivisor. The set of zerodivisors
on M is written as ZdvM , or ZdvRM .

Proposition 2.1.21. If R is a Noetherian ring and M 6= 0 a finite R-module,
AssM is a finite set, and

⋃

p∈Ass M

p = {0} ∪ ZdvM.

The following proposition will be used later.

Proposition 2.1.22. Let R be a ring and M an R-module. All inclusion min-
imal primes in SuppM lie in AssM .

2.2 Homological Algebra

Homological methods are very powerful tools in an algebraist’s toolbox. Over
the last decades, homological algebra has been applied in many branches of
mathematics, as well as in theoretical physics. Even the basic material presented
here will provide a method useful in commutative algebra, namely the use of
the Ext-functor. The material presented here is from [12] and [4].

2.2.1 Preliminaries

Let

· · ·
αi+2

// Mi+1
αi+1

// Mi
αi // Mi−1

αi−1
// · · ·

be a sequence of R-modules and homomorphisms. The sequence is exact at Mi

if Imαi+1 = Kerαi. The sequence is exact if it is exact at every Mi where it
makes sense. An exact sequence

0 // L
α // M

β
// N // 0

is called a short exact sequence.
A short exact sequence of the form

0 // L // L⊕N // N // 0

is called a split sequence.

Definition 2.2.1. A covariant functor F from R-modules to S-modules is an
object that for any R-module M associates an S-module F (M), and for every
R-module homomorphism α : M → N associates an S-module homomorphism
F (α) : F (M) → F (N). Moreover F must satisfy the following.

(i) If α : M → N and β : N → P are R-module homomorphisms, F (βα) =
F (β)F (α),

8



(ii) F (IdM ) = IdF (M).

Examples 2.2.2. Let R be a ring and M an R-module. Let Hom(M,−) be the
mapping that takes an R-module N and maps it to Hom(M,N), and F (α) the
homomorphism that takes ϕ ∈ Hom(M,N) to αϕ ∈ Hom(M,P ), for α : N → P .
Then Hom(M,−) is a covariant functor from R-modules to R-modules.

Another covariant functor is the localization functor. For a ring R, an R-
module M and a multiplicatively closed set S ⊂ R, set F (M) = S−1M . For

ϕ : M → N , let F (M) be the map that takes m
s to ϕ(m)

s . This gives a functor
from R-modules to S−1-modules.

A contravariant functor F from R-modules to S-modules is defined in the
same way as a covariant functor, except that for every R-module homomorphism
α : M → N , F associates an S-module homomorphism F (α) : F (N) → F (M),
and 2.2.1(i) is modified accordingly.

Example 2.2.3. Let R be a ring and M an R-module. Let Hom(−,M) be the
mapping that takes an R-module N and maps it to Hom(N,M), and F (α)(ϕ) =
ϕα, for ϕ ∈ Hom(P,M) and α : P → N . Then Hom(−,M) is a contravariant
functor.

Definition 2.2.4. A covariant functor F is left-exact if it preserves exact se-
quences

0 // L // M // N,

that is,

0 // F (L) // F (M) // F (N)

is exact. If it preserves exact sequences

L // M // N // 0,

it is called right-exact. If a functor is both left- and right-exact, it is called
exact.

Left- and right-exactness for contravariant functors is defined similarly, with
the obvious changes made.

Examples 2.2.5. The functors Hom(M,−) and Hom(−, N) are both left-exact,
but not always exact. The exact sequence

0 // 2Z
α // Z

β
// Z/2Z // 0,

where α and β are the canonical homomorphisms, provides examples where
Hom(Z/2Z,−) and Hom(−, 2Z) are not exact.

The localization functor is an exact functor.

Definition 2.2.6. A functor F is additive if F (α + β) = F (α) + F (β), for
α, β ∈ HomR(M,N). It follows that F preserves direct sums of modules,thus
F (L⊕M) = F (L) ⊕ F (M).

9



An immediate consequence of the above definition is that additive functors
preserve split sequences.

Example 2.2.7. Hom(M,−) and Hom(−, N) are additive functors.

Definition 2.2.8. Let R be a ring. A chain complex (C•, ∂), or just C•, of
R-modules is a sequence of modules and homomorphisms

C• : · · · // Ci+1
∂i+1

// Ci
∂i // Ci−1

// · · · ,

with ∂i∂i+1 = 0 for every i. The homology modules Hi(C•) of C• are Hi(C•) :=
Ker ∂i/ Im ∂i+1. Dually, a cochain complex (C•, ∂) (C•) of R-modules is a se-
quence of modules and homomorphisms

C• : · · · Ci+1oo Ci∂i

oo Ci−1∂i−1

oo · · · ,oo

with ∂i∂i−1 = 0 for every i. The cohomology modules Hi(C
•) of C• areHi(C•) :=

Ker ∂i/ Im∂i−1.

A (co)chain complex C• (C•) is exact at i if Hi(C•) = 0 (Hi(C•) = 0). If C•
(C•) is exact at every i, C• (C•) is exact.

Note that every cochain complex can be turned into a chain complex by
reversing the arrows, and vice versa. However, it is convenient to have both
notations. In what follows, definitions and results will be defined in terms of
either chain or cochain complexes. Everything may of course be dualized.

2.2.2 Projective and Injective Modules and Resolutions

Definition 2.2.9. Let P be an R-module. If for any R-module epimorphism
ϕ : M → N and homomorphism γ : P → N , there is a homomorphism β : P →
M such that the diagram

P

γ

��

β

~~|
|

|
|

|

M
ϕ

// // N

commutes, P is called a projective module.

If P is a free with generators pi, choose qi ∈ M such that ϕ(qi) = γ(pi).
Then we may let β be the map sending pi to qi. Thus every free module is
projective.

If N is a projective module, every exact sequence

0 // L // M // N // 0

splits.
Let M be an R-module. A chain complex

P• : · · · // P2
// P1

// P0
// M // 0

10



is called a projective (free) resolution of M if P• is exact, and all Pi are projec-
tive (free) modules. Note that since every free module is projective, every free
resolution is a projective resolution. Thus, from Theorem 2.1.4, every module
has a projective resolution. Sometimes the module M is removed from the res-
olution. In that case the chain complex need to be exact everywhere except at
P0, and H0 = M .

Dual to the notion of projective modules is that of injective modules, al-
though the theory is quite different; for example, injective modules are in general
not finite.

Definition 2.2.10. Let I be an R-module. If for any R-module monomorphism
ϕ : M → N and homomorphism β : M → I, there is a homomorphism γ : N →
I such that the diagram

M //
ϕ

//

β
!!CC

CC
CC

CC
CC

N

γ

��
�
�
�
�

I

commutes, I is an injective module.

If L is an injective module, every exact sequence

0 // L // M // N // 0

splits.
For every R-module M , there is an R-module I and a monomorphism φ :

M → I, see for example [4]. Thus, starting with a module M , embed M in an
injective module I0. Then embed I0/M in an injective module I1, and so on.
This gives an exact sequence

0 // M // I0 // I1 // I2 // · · · ,

called a injective resolution of M .

2.2.3 Maps, Homology and the Ext-functor

Definition 2.2.11. Let (C•, ∂) and (D•, d) be cochain complexes. A map of
cochain complexes ϕ is a collection of maps ϕi : Ci → Di such that the diagram

· · · Ci+1oo

ϕi+1

��

Ci∂i

oo

ϕi

��

· · ·oo

· · · Di+1oo Di

di

oo · · ·oo

commutes.

11



If ϕ : C• → D• is a map of cochain complexes, ϕ induces a map ϕ : Hi(C•) →
Hi(D•), called the induced map on cohomology. Now, given two maps of cochain
complexes, when do they induce the same map on cohomology? For a sufficient
condition, we need the notion of homotopy equivalence.

Definition 2.2.12. Let ϕ, ψ : (C•, ∂) → (D•, d) be maps of cochain complexes.
If there exists a collection h of module homomorphisms hi : Ci → Di−1 such
that ϕ− ψ = ∂h+ hd, ϕ is homotopy equivalent to ψ.

If ϕ, ψ : (C•, ∂) → (D•, d) with ϕ homotopy equvialent to ψ, ϕ and ψ induce
the same map on homotopy.

If F is a functor from R-modules to S-modules, and C is a (co)chain com-
plex of R-modules, let FC be the result of applying F to the modules and
homomorphisms of C.

Proposition 2.2.13. Let M be a module and P•, Q• (I•, J •) projective (in-
jective) resolutions of M . Then there are maps α1 : P• → Q• and α2 : Q• → P•

(β1 : I• → J • and β2 : J • → I•) such that α1α2 (β1β2) is homotopic to the
identity map on Q• (J •) and α2α1 (β2β1) is homotopic to the identity on P•

(I•). Moreover, if F is an additive functor, there is a canonical isomorphism
between Hi(FP) and Hi(FQ) (Hi(FI) and Hi(FJ )).

Proposition 2.2.14. Let

0 // C′ α // C
β

// C′′ // 0

be an exact sequence of cochain complexes. Then there are homomorphisms
δi : Hi(I ′′) → Hi+1(I ′) suh that the sequence

. . . βi−1

// Hi−1(I ′′)

δi−1

// Hi(I ′)
αi

// Hi(I)
βi

// Hi(I ′′)

δi

// Hi+1(I ′)
αi+1

// Hi+1(I)
βi+1

// Hi+1(I ′′)

δi+1

// Hi+2(I ′′)
αi+2

// . . .

is exact. This is called the long exact sequence in cohomology.

The following proposition is equally valid for injective resolutions.
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Proposition 2.2.15. Given a short exact sequence of R-modules

0 // L
α // M

β
// N // 0

and projective resolutions

P : · · · // P2
// P1

// 0,

R : · · · // R2
// R1

// 0

of L and N , respectively. Then there exists a projective resolution

Q : · · · // Q2
// Q1

// 0

of M and a short exact sequence

0 // P
α′

// Q
β′

// R // 0,

where α′ and β′ induce α and β.

Definition 2.2.16. Let R be a ring, M and N R-modules, and

P : · · · // P2
// P1

// 0

a projective resolution of M . Define Exti
R(M,N) as the i-th cohomology module

of the cochain complex

HomR(P , N) : 0 // HomR(P1, N) // HomR(P2, N) // · · · .

That Exti
R(M,N) is independent of the choice of P follows from Proposition

2.2.15, since Hom(−, N) is additive. Actually, Exti
R(M,N) could also be defined

by having an injective resolution

I : 0 // I1 // I2 // · · ·

of N , and letting Exti
R(M,N) be the i-th cohomology module of

HomR(M, I) : 0 // HomR(M, I1) // HomR(M, I2) // · · · .

Let Λ be an R-module, and

0 // L // M // N // 0

an exact sequence of R-modules. Then there are long exact sequences

· · · // Exti−1
R (Λ, N) // Exti

R(Λ, L) // Exti
R(Λ,M) // · · ·

and

· · · // Exti−1
R (L,Λ) // Exti

R(N,Λ) // Exti
R(M,Λ) // · · · .

This follows from Propositions 2.2.14 and 2.2.13.

13



2.3 Further topics in commutative algebra

In this section we give an introduction to the theory of dimension, grade and
other measures of rings and modules, and to the notion of graded rings and
modules, which may be seen as a generalization of polynomial rings and their
modules. We also introduce so-called Cohen-Macaulay and Gorenstein rings
and modules. Most proofs on standard material are omitted. An easily read,
more complete introduction to the subject is [10]. A deeper coverage of grade
and depth, Cohen-Macaulay and Gorenstein rings and modules may be found
in [2] and [4], from where most material in the following sections is taken. The
definition of Gorenstein ring is from [6]. Much of the theory of Gorenstein rings
(and some of the theory of Cohen-Macaulay rings) is beyond the scope of this
work. The interested reader may found more material in the above mentioned
books [2],[4],[6].

2.3.1 Dimension Theory

Definition 2.3.1. Let R be a commutative ring, and p ∈ SpecR. The height
of p, ht p, is the supremum of lengths l of chains p = p0 ) p1 ) · · · ) pl, p1, . . .,
pn ∈ SpecR.. The height of an arbitrary ideal I is ht I := inf{ht p | I ⊂ p ∈
SpecR}.

The following theorem, Krull’s principal ideal theorem, is a fundamental
result in dimension theory.

Theorem 2.3.2. Let R be a Noetherian ring and I = (x1, . . . , xn) a proper
ideal. Then ht p ≤ n for every minimal p ∈ {p ∈ SpecR | p ⊃ I}.

In particular, every proper ideal in a Noetherian ring has finite height.

Definition 2.3.3. The (Krull) dimension of a commutative ring R is dimR :=
sup{ht p | p ∈ SpecR}.

The Artinian rings are precisely the Noetherian rings of dimension zero.
Since SpecRp = {qRp | q ∈ SpecR, q ⊂ p} for p ∈ SpecR, we get that

dimRp = ht p.

Lemma 2.3.4. Let R be a ring, and I an ideal of R. Then

ht I + dimR/I ≤ dimR.

Proof. Since ht I = inf{ht p | I ⊂ p ∈ SpecR} and dimR/I = sup{ht p/I | I ⊂
p ∈ SpecR}, this follows.

Let R be a ring of dimension n. If x1, . . . , xn are elements of R such that
dimR/(x1, . . . , xn) = 0, x1, . . . xn is called a system of parameters of R.

Definition 2.3.5. The dimension of an R-module M is dimM := sup{ht p | p ∈
SuppM}. If M is finite, dimM = dimR/AnnM . Indeed, since for a prime
ideal p, p ∈ SuppM ⇔ p ⊃ AnnM .
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Proposition 2.3.6. Let (R,m) be a Noetherian local ring, M a finite R-module
and x1, . . . , xn ∈ m. Then

dimM/(x1, . . . , xn)M ≥ dimM − n,

with equality if, and only if x1, . . . , xn is a part of a system of parameters for
M .

Proposition 2.3.7. Let R be a field. Then dimR[X ] = dimR+ 1.

In particular, dimK[X1, . . . , Xn] = n.

2.3.2 Grade and Depth

In the last section 2.3.1, we introduced the notion of dimension of rings and
modules. In this section, we will introduce another measure, more algebraic in
nature.

Definition 2.3.8. Let R be a ring and M an R-module. An element x ∈ R is
M -regular if it is a non-zerodivisor on M , i.e. xm = 0 ⇒ m = 0. A sequence
of elements x1, . . . , xn is an M -sequence if xi is M/(x1, . . . , xi−1)M -regular and
(x1, . . . , xn)M 6= M .

The following proposition follows immediately from the Prime Avoidance
Theorem 2.1.2, and Proposition 2.1.21.

Proposition 2.3.9. Let R be a Noetherian ring, and M a finite R-module. If
an ideal I ⊂ R consists of zero-divisors of M , there is a prime p ∈ AssM with
I ⊂ p.

The next result shows that M -sequences are invariant under localizations.

Proposition 2.3.10. Let R be a Noetherian ring, and M a finite R-module. If
(x1, . . . , xn) is an M -sequence contained in a prime p ∈ SuppM , (x1, . . . , xn)
(as a sequence in Rp) is an Mp-sequence.

Theorem 2.3.11 (Rees). Let R be a Noetherian ring, M a finite R-module and
I an ideal in R such that IM 6= M . Then every inclusion maximal M -sequence
in I has the same length, given by min{i | Exti

R(R/I,M) 6= 0}.

This leads us to the following definition.

Definition 2.3.12. Let R be a Noetherian ring, and M a finite R-module, and
I an ideal of R with IM 6= M . The grade of I on M , grade(I,M) is the length
of the maximal M -sequence in I. Further, let grade(I,M) = ∞ if IM = M .

Definition 2.3.13. When (R,m) is a local ring, the grade of m on M is called
the depth of M , written as depthM .

Proposition 2.3.14. Let R be Noetherian ring, I an ideal of R, and M a
finitely generated R-module. Then
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(a) grade(I,M) = inf{depthMp | p ∈ SpecR, p ⊃ I},

(b) If x1, . . . , xn is an M -sequence,

grade(I/(x1, . . . , xn),M/(x1, . . . , xn)M) = grade(I,M/(x1, . . . , xn)M)

= grade(I,M) − n.

Proposition 2.3.15. Let (R,m) be a Noetherian local ring and M a finite R-
module, M 6= 0. Then every M -sequence is a part of a system of parameters of
M . This particularly means that depthM ≤ dimM .

Proof. From Proposition 2.1.22, every minimal p ∈ SuppM lies in AssM .
Therefore, if x ∈ m is an M -regular element, x /∈ p for every minimal p ∈
SuppM . (Recall that p ∈ AssM means that p = Ann y for some y ∈ R.) Thus
dimM/xM ≤ dimM − 1. An induction then yields dimM/(x1, . . . , xn)M ≤
dimM − n, for any M -sequence x1, . . . , xn, xi ∈ m. From Proposition 2.3.6,
dimM/(x1, . . . , xn)M ≥ dimM − n for any x1, . . . , xn in m. We get that
dim(M/x1, . . . , xn)M = dimM − n, thus x1, . . . , xn is a part of a system of pa-
rameters for M . This holds for any M -sequence, hence depthM ≤ dimM .

The inequality depthM ≤ dimM may be sharpened, as the following propo-
sition shows.

Proposition 2.3.16. Let (R,m) be a local ring and M 6= 0 a finite R-module.
Then depthM ≤ dimR/p for all p ∈ AssM .

An easy consequence of Propositions 2.3.15 and 2.3.14(a) is the following

Proposition 2.3.17. Let R be a Noetherian ring and I an ideal in R. Then
grade I ≤ ht I.

Definition 2.3.18. Let (R,m) be a Noetherian local ring, K := R/m, and M a
finite non-zero R-module with depthM = n. Then define the type of M , r(M),
as dimK Extn

R(K,M).

Lemma 2.3.19. Let (R,m) be a Noetherian local ring, K := R/m, M a finite
R-module, and x1, . . . , xn a maximal M -sequence. Then

r(M) = dimK SocM/(x1, . . . , xn)M.

2.3.3 Graded Rings and Modules

Consider the ring of polynomials K[X1, . . . , Xn]. Every polynomial f therein
can be written as a sum of homogeneous polynomials, i.e. polynomials in which
every monomial has the same degree (with the usual degX i1

1 · · ·X in
n =

∑n
j=1 ij).

Moreover, although K[X1, . . . , Xn] is not a local ring, it has a unique maximal
ideal generated by homogeneous polynomials, namely (X1, . . . , Xn). The aim
of this section is to formalize these characteristics, and generalize the concept
to so called graded rings and modules.
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Definition 2.3.20. A ring R is a graded ring if R =
⊕

i∈Z
Ri as an abelian

group, with RiRj ⊂ Ri+j . An R-module M is graded if M =
⊕

i∈Z
Mi as a Z-

module, and RiMj ⊂Mi+j . An R-algebra S is graded if moreover, SiSj ⊂ Si+j .

The elements x ∈Mi are called homogeneous of degree i. Denote the degree
of x by deg x. Every element x ∈ M has a unique decomposition into a sum
∑

i∈Z
xi of homogeneous elements, with almost all xi = 0. Note that for a graded

module M , it is always possible (and often desirable) to choose a generating set
for M consisting of homogeneous elements.

Definition 2.3.21. An ideal I ∈ R is a graded ideal if for every x =
∑

i∈Z
xi ∈

I, xi ∈ I for all i. Note that I is graded if, and only if, I is generated by
homogeneous elemenents.

For an arbitrary ideal I ⊂ R, define I∗ to be the (graded) ideal generated
by all homogeneous elements in I.

Note that every ring is graded by letting R0 = R, Ri = 0 for i 6= 0. This
is called the trivial grading. The polynomial ring K[X1, . . . , Xn] is a K-algebra
generated by elements of degree 1. Graded rings which as R0-algebras are
generated by elements of positive degree are called positively gradedR0-algebras.
These include all rings K[X1, . . . , Xn]/I, where I is a graded ideal, with the
grading inherited from K[X1, . . . , Xn].

Proposition 2.3.22. Let R be a positively graded R0-algebra and x1, . . . , xn

homogeneous elements of positive degree. Then the following are equivalent.

(a) x1, . . . , xn generate m =
⊕∞

i=1 Ri.

(b) x1, . . . , xn generate R as an R0-algebra.

Proof. (a) ⇒ (b): It is enough to prove that every homogeneous element r in R
can be written as a polynomial in the xi with coefficients in R0. We will do this
by induction over deg r. We know that r may be written as

∑n
i=1 aixi, ai ∈ R.

Note that, since r is homogeneous, every ai may be assumed to be homogeneous.
Thus, if deg r = 1, it is possible to choose the non-zero coefficients ai to be of
degree zero, since the sum in degrees other than one is 0. Thus r may be written
as

∑n
i=1 aixi, ai ∈ R0, or ai = 0. Assume the claim holds when deg r < t. For

deg r = t, write r as
∑n

i=1 aixi with ai homogeneous, as above. Every ai with
deg aixi 6= t may be chosen to be 0, as above. Thus deg ai < t for every non-zero
ai. By induction, every non-zero ai may be written as a polynomial in the xi’s
with coefficients in R0, whence this is also true for r.

(b) ⇒ (a): This is obvious.

Note that this means that a positively graded R0-algebra R is Noetherian
precisely when R0 is Noetherian and R is finitely generated as an R0-algebra.

A graded homomorphism ϕ : M → N of graded R-modules is a homomor-
phism of R-modules with ϕ(Mi) ⊂ Ni. The graded homomorphisms are not in
general a submodule of all R-homomorphisms. This leads us to the following
definition. Consider R-homomorphisms ϕ : M → N with ϕ(Mi) ⊂ Ni+j for all
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i. Such a homomorphism ϕ is called homogeneous of degree j. Note that graded
homomorphisms are homogeneous of degree 0. Denote the set of homogeneous
maps of degree j by Homj

R(M,N). Set ∗HomR(M,N) =
⊕

Homj
R(M,N). For

a graded R-module M , let M(d) be the graded R-module with M(d)e = Md+e.
M(d) can be thought of as a shift of M in d degrees. This makes it possible
to think of a homomorphism ϕ : M → N of degree j as a homomorphism
ϕ : M(−j) → N of degree 0.

There is a graded version of Theorem 2.1.4, whence every graded R-module
M has a projective resolution in which all modules and homomorphisms are
graded. Let P• be a graded projective resolution of M . Let

∗Exti
R(M,N) = Hi(∗HomR(P•, N)).

Lemma 2.3.23. Let R be a graded ring. If M is a finite graded R-module,
∗HomR(M,N) = HomR(M,N).

Proof. Every homomorphism ϕ : M → N can be written as
∑
ϕj , where ϕj(x)

is the homogeneous (i + j)-part of ϕ(x), for a homogeneous element x. Note
that every ϕj is a graded homomorphism. Since M as a finite homogeneous
generating set, it follows that only a finite number of graded homomorphisms are
needed to describe ϕ(M). Thus ϕ ∈ ∗HomR(M,N), whence ∗HomR(M,N) =
HomR(M,N) when M is finite.

Thus also ∗Exti
R(M,N) = Exti

R(M,N) when R is Noetherian and M a
finite R-module. The Noetherian property of R is needed since all modules
Pi of the resolution of M must be finite. Otherwise, it is not certain that
∗HomR(Pi, N) = HomR(Pi, N) for all i.

Proposition 2.3.24. Let R be a graded ring, and M a graded R-module. Then

(a) p ∈ SpecR ⇒ p∗ ∈ SpecR,

(b) p ∈ SuppM ⇒ p∗ ∈ SuppM ,

(c) p ∈ AssM ⇒ p is graded, and is the annihilator of a homogeneous element.

Proof. (a): Let r, s ∈ R such that rs ∈ p∗, but r, s /∈ p∗. Write r =
∑

i ri and
s =

∑

j sj , as sums of graded components. There exist p, q such that rp /∈ p∗,
but ri ∈ p∗ for i < p and sq /∈ p∗, but sj ∈ p∗ for j < q. Consider the sum

∑

i+j=p+q

risj , which is the (p+ q)-th graded component of rs. Since p∗ is graded,

∑

i+j=p+q

risj ∈ p
∗. Every component except rpsq lies in p∗, hence so does rpsq.

This means that rpsq ∈ p, and since p is prime, one of rp, sq lies in p. But since
rp and sq are homogeneous, rp ∈ p∗ or sq ∈ p∗, a contradiction.
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(b): Assume p∗ /∈ SuppM , whence Mp∗ = 0. Let x be a homogeneous ele-
ment in M . There exists a in R\p∗ such that ax = 0. With ai the homogeneous
parts of a, aix = 0 for every i. Since a /∈ p∗, there is an i such that ai /∈ p∗.
Since ai is homogeneous, ai /∈ p. Thus x

1 = 0 in Mp, for every homogeneous
elements in M . Thus x

1 = 0 for every element x ∈M , whence Mp = 0.
(c): Let x ∈ M be such that p = Ann x. Write x as x = xk + · · · + xm, a

sum of homogeneous components xi, deg xi = i (so some xi may be zero). In
the same way, decompose an element a ∈ p as a = ap + · · · + aq. Since ax = 0,

there are equations
∑

i+j=r

aixj = 0, for r = k + p, . . . ,m + q. Now, apxk = 0.

Assume by induction that an−1
p xk+n−2 = 0. Then

an−1
p

∑

i+j=p+k+n−1

aixj = an
pxk+n−1 = 0.

Thus am−k+1
p annihilates x, and since p is prime, ap ∈ p. The same can be

done for ap+1, . . . , aq, whence every homogeneous compononent of a lies in p.
Hence p is graded. It is left to prove that p is the annihilator of a homogeneous
element. Since p is graded, p is generated by homogeneous elements, whence p

annihilates every homogeneous component of x. Set pi = Ann xi. Now, pi ⊃ p

for every k ≤ i ≤ m. But it also holds that
⋂m

i=k pi ⊂ p. Since p is prime, pj ⊂ p

for some j, whence pj = p.

Let p be a prime ideal in R. The set S of all homogeneous elements outside p

is multiplicatively closed. Write S−1M as M(p). R(p) is a graded ring, and M(p)

is a graded R(p)-module. Note that in R(p)/p
∗R(p), every non-zero homogeneous

element is invertible.

Lemma 2.3.25. Let R be a graded ring. Then the following are equivalent.

(a) Every non-zero homogeneous element of R is invertible.

(b) R0 = K for a field K, and either R = K, or R = K[x, x−1] for a homo-
geneous element x ∈ R which is transcendental over K.

Proof. (a) ⇒ (b): That R0 = K is a field is immediate. If R 6= R0, there
exist homogeneous elements r ∈ R of positive degree, since deg r = − deg r−1.
Let x be a homogeneous element of minimal positive degree, d say. Since x is
invertible, we can define a ring homomorphism ϕ : K[X,X−1] → R by mapping
K identically to R, and mapping X to x. We can define a grading on K[X,X−1],
by setting degX = d. This makes ϕ a homomorphism of graded rings. We are
done if ϕ is an isomorphism. Assume g ∈ Kerϕ, with g =

∑
aiX

i, ai ∈ K, i ∈ Z
Thus ϕ(g) =

∑
aix

i = 0, whence aix
i = 0 for all i. Since x is invertible,

(aix
i)x−i = ai = 0, for all i. This means that g = 0, thus ϕ is injective. To

see that ϕ is surjective, let a ∈ R be a homogeneous element of degree i. If
i = 0, a ∈ Imϕ from above,thus assume i 6= 0. Now, i = jd+ r, with 0 ≤ r < d.
Now, ax−j = b has degree r. Since d was the least positive degree, r has to be

19



zero. Hence a = bxj , whence a = ϕ(bXj) ∈ Im(ϕ). Since every element in R is
a finite sum of homogeneous elements, ϕ is surjective.

(b) ⇒ (a): This is obvious.

Lemma 2.3.26. The ring K[X,X−1] is a principal ideal domain.

Proof. Since K[X,X−1] = K[X ]〈X〉, 〈X〉 = {1, X,X2, X3, . . .}, this follows eas-
ily.

Proposition 2.3.27. Let R be a graded ring, and M a finite graded R-module.
If p ∈ SuppM is graded with dimMp = d, there exists a chain p0 ( p1 (

. . . ( p of graded prime ideals, where pi ∈ SuppM for all i. If p is not graded,
dimMp = dimMp∗ + 1.

Proof. First, ht p/p∗ = 1. Without loss of generality, replace R by R/p∗, whence
p∗ = 0. Since p does not contain any non-zero homogeneous elements, it is safe
to invert all, obtaining R(0). Since pR(0) is a non-zero prime ideal in R(0),
R(0)

∼= K[X,X−1] by Lemma 2.3.25. Thus ht p/p∗ = 1.
Let p ∈ R be an arbitrary ideal in SuppM with dimMp = d. If there exists a

chain of prime ideals p0 ( p1 ( · · · ( pd−1 ( p in SuppM , p0, . . . , pd−1 graded,
the first claim is immediately proven. The claim that dimMp = dimMp∗ + 1
when p is not graded follows from the facts that pd−1 ⊂ p∗ and ht p/p∗ = 1,
whence pd−1 = p∗.

Now, let p0 ( p1 ( · · · ( pd−1 ( p be a chain of prime ideals in SuppM .
Since p0 lies in AssM , p0 is graded by Proposition 2.3.24. Hence, if d = 1 we are
done. Since ht pd−1 < ht p we may, by induction, assume p0, . . . , pd−2 graded.
Assume p is not graded. Then replace pd−1 by p∗, which lies properly between
pd−2 and p, and we are done.

Else, p is graded, where it contains a homogeneous element r /∈ pd−2. Let q be
an inclusion minimal prime such that pd−2+(r) ⊂ q ⊂ p. Since (pd−2+(r))/pd−2

is generated by r, it follows from Theorem 2.3.2 that ht(q/pd−2) = 1. Since
ht(p/pd−2) = 2, p and q is not equal. Moreover, since q is a minimal element of
SuppR/(pd−2 + (r)), it is graded by Proposition 2.3.24 (c).

Lemma 2.3.28. Every graded module M over K[X,X−1] is free.

Proof. Take a minimal homogeneous generating set G for M . Assume there
is a relation

∑n
i=1 aigi = 0, ai ∈ K[X,X−1], gi ∈ G. Any relation between

homogeneous elements of different degrees would destroy the grading on M .
Thus it must hold that, with aijgii the elements of degree j,

∑n
i=1 aijgi = 0 for

all j. At least one of these relations must be nontrivial, in degree j say. Every
homogeneous element in K[X,X−1] is invertible, thus gn = a−1

nj

∑n−1
i=1 aijgi.

This contradicts the minimality of G.

For the next proposition we need the following result, which is a specializa-
tion of Lemma 3.3.8 in [14],
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Lemma 2.3.29. Let R be a Noetherian ring, M and N R-modules with M
finite, and p ∈ SpecR. Then

Exti
R(M,N)p

∼= Exti
Rp

(Mp, Np).

Proposition 2.3.30. Let R be a graded ring, and M a finite graded R-module.
If p ∈ SuppM is not graded, depthMp = depthMp∗ + 1 and r(Mp) = r(Mp∗).

Proof. We may regard the modules Mp and Mp∗ as modules over R(p), whence
R/p∗ = K[X,X−1]. Since K[X,X−1] is a principal ideal domain, it follows that
p = aR+ p∗ for some a ∈ R. There is an exact sequence

0 // R/p∗
a // R/p∗ // R/p // 0 .

Thus there is an exact sequence

· · · // Exti
R(R/p∗,M)

a // Exti
R(R/p∗,M) // Exti+1(R/p,M) // · · ·

Exti
R(R/p∗,M) = ∗Exti

R(R/p∗,M). SinceR/p∗ ∼= K[X,X−1], ∗Exti
R(R/p∗,M)

is a free R/p∗-module (p∗ ⊂ AnnR(∗Exti
R(R/p∗,M))), from Lemma 2.3.28.

Hence a : ∗Exti
R(R/p∗,M) → ∗Exti

R(R/p∗,M) is injective, thus there are short
exact sequences

0 // a∗Exti
R(R/p∗,M) // ∗Exti

R(R/p∗,M) // Exti+1
R (R/p,M) // 0.

Thus
Exti+1

R (R/p,M) ∼= ∗Exti
R(R/p∗,M)

/
a∗Exti

R(R/p∗,M).

Since ∗Exti
R(R/p∗,M) =

⊕
R/p∗ and p = aR+ p∗,

∗Exti
R(R/p∗,M)

/
a∗Exti

R(R/p∗,M) =
⊕

R/p.

Thus Exti+1
R (R/p,M) is a free R/p-module of the same rank as ∗Exti

R(R/p∗,M).
Hence depthMp = depthMp∗ + 1. Localizing in p respectively p∗, using the
above Lemma 2.3.29, we get

dimκ(p) Exti+1
Rp

(κ(p),Mp) = rankR/p Exti+1
R (R/p,M)

= rankR/p∗ Exti
R(R/p∗,M) = dimκ(p∗) Exti

R∗
p
(κ(p∗),Mp).

Thus, indeed r(Mp) = r(Mp∗).

Proposition 2.3.31. Let R = K[X1, . . . , Xn] with K an infinite field, M a
finite R-module and I ∈ R an ideal generated by elements of degree 1. Assume
grade(I,M) = p. Then there exist elements x1, . . . , xp of degree 1 in I such that
x1, . . . , xp is an M -sequence.
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Definition 2.3.32. A graded ring with a unique graded maximal ideal is called
a ∗local ring.

Example 2.3.33. Let R =
⊕∞

i=0 Ri, where R0 is a field. Then R is a ∗local
ring, with graded maximal ideal

⊕∞
i=i Ri. This ideal is called the irrelevant

ideal.

Proposition 2.3.34. Let (R,m) be a ∗local ring, M a finite graded R-module
and I a graded ideal of R. Then

grade(I,M) = grade(IRm,Mm).

Sketch of proof. The localization functor is exact, whence the long exact ∗ Ext-
sequence is preserved. Further, one can show that if ∗ExtN

M (R, i) is non-zero
for finite graded R-modules M and N , ∗ExtN

M (R, i)p is non-zero for graded p ∈
SpecR. This shows that grade(I,M) ≥ grade(IRm,Mm). That grade(I,M) ≤
grade(IRm,Mm) follows from Proposition 2.3.10.

If (R,m) is a ∗local ring where m is a maximal ideal in the non-graded sense,
there is a corresponding result for dimension and height.

Proposition 2.3.35. Let (R,m) be a ∗local ring with m a maximal ideal in the
non-graded sense, and let I be a graded ideal of R. Then

(a) dimR = dimRm,

(b) htR I = htRm
IRm.

Proof. (a): Let p ∈ SpecR, p not graded. Then ht p = ht p∗ + 1, from Proposi-
tion 2.3.27. But since p∗ ⊂ m, ht m ≥ ht p∗ + 1 ≥ ht p.
(b): For I ∈ SpecR, this follows immediately from Proposition 2.3.27. Now
assume I /∈ SpecR. Since I is graded we get that for every I ⊂ p ∈ SpecR,
I ⊂ p∗. Hence

htR I = inf{ht p | I ⊂ p ∈ SpecR, p graded}

= inf{ht pRm | IRm ⊂ pRm ∈ SpecRm, pRm graded}

= htRm
IRm.

From Proposition 2.3.27, it also follows that if R is Noetherian and M a
finite R-module, dimM = dimMm.

Definition 2.3.36. Let M be a finite N-graded K[X1, . . . , Xn]-module, K a
field. Since dimK Mi is finite for all i ∈ N (since M is Noetherian), we can
define the Hilbert series of M as the series HilbM (t) =

∑

i∈N
dimK Mit

i.
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Example 2.3.37. Consider the K[X1, X2X3]-module

M := K[X1.X2, X3]/(X2
1 , X2X3).

A K-basis for the first few Mi is as follows.

Abelian group K-basis
M0 1
M1 X1, X2, X3

M2 X1X2, X1X3, X
2
2 , X

2
3

M3 X1X
2
2 , X1X

2
3 , X

3
2 , X

3
3

...
...

Thus aK-basis forM is given by 1, X1, X2, X
2
2 , . . ., X3, X

2
3 , . . ., X1X2, X1X

2
2 , . . .,

X1X3, X1X
2
3 , . . .. Since 1 + t+ t2 + . . . = 1

1−t , we get that

HilbM (t) = 1 + t+
2t

1 − t
+

2t2

1 − t

=
(1 + t)(1 − t) + 2t+ 2t2

1 − t

=
(1 + t)2

1 − t
.

Proposition 2.3.38. Let M be a finite N-graded K[X1, . . . , Xn]-module with
Hilbert series HilbM (t), and let x1, . . . , xp ∈ R1 be an M -sequence. Set N =
M/(x1, . . . , xp)M . Then

HilbN (t) = (1 − t)p HilbM (t) .

Proof. Assume first that p = 1. Consider the exact sequence

0 // M(−1)
x // M // N // 0.

Since HilbM(−1) (t) = tHilbM (t),

HilbN (t) = (1 − t) HilbM (t) .

By an inductive argument, the proposition follows immediately.

2.3.4 Cohen-Macaulay and Gorenstein Rings and Modules

Definition 2.3.39. Let (R,m) be a Noetherian local ring. A finite R-module
M is Cohen-Macaulay if depthM = dimM . For an arbitrary ring R, an R-
module M is Cohen-Macaulay if depthMm = dimMm for every maximal ideal
m ∈ SuppM . The ring R is a Cohen-Macaulay ring if it is Cohen-Macaulay as
an R-module.

Proposition 2.3.40. Let (R,m) be a Noetherian local ring, and M a Cohen-
Macaulay R-module. Then
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(a) dimR/p = depthM , for all p ∈ AssM ,

(b) grade(I,M) = dimM − dimM/IM , for every proper ideal I ⊂ m.

Proof. (a): Since AssM ⊂ SuppM , dimR/p ≤ dimM . From Proposition
2.3.16, dimR/p ≥ depthM . Since dimM = depthM , the assertion follows.

(b): If grade(I,M) = 0, I is contained in a prime ideal p ∈ AssM , from 2.3.9.
Since AnnM/pM = p, and dimM/IM ≥ dimM/pM = dim r/p, dimM/IM =
dimM , from 2.3.6. If grade(I,M) > 0, choose an M -regular element x ∈
I. Then, from Proposition 2.3.14(b), grade(I,M/xM) = grade(I,M) − 1,
depthM/xM = depthM − 1 and dimM/xM = dimM − 1. The claim fol-
lows by induction.

Proposition 2.3.41. Let M be a Cohen-Macaulay R-module.

(a) Let x1, . . . , xn be an M -sequence. Then M/(x1, . . . , xn)M is a Cohen-
Macaulay module. If R is local the converse of the statement is also true,
i.e. if M/(x1, . . . , xn) is Cohen-Macaulay, M is Cohen-Macaulay.

(b) For every p ∈ SpecR, Mp is a Cohen-Macaulay module.

Proof. (a): Assume M is Cohen-Macaulay. Since x1, . . . , xn is an Mp-sequence
for p ∈ SuppM , we may assume that R is a local ring. Then

depthM/(x1, . . . , xn)M = depthM − n

from 2.3.14(b), and

dimM/(x1, . . . , xn)M = dimM − n

from 2.3.15. If R is local, we may use 2.3.15 to prove the converse.
(b): Let m be a maximal ideal in R containing p. Since Mp = (Mm)pRp

, we
may assume that R is local. If Mp is the zero module, we are done. Otherwise,
if depthMp = 0, p ∈ AssM by Proposition 2.3.9. Thus p is minimal in SuppM ,
hence dimMp = 0, from 2.3.40(a). This also means that if depthMp > 0, p

can not be contained in some prime q ∈ AssM . Thus there exists an M -regular
element x ∈ p. Since (M/xM)p

∼= Mp/xMp, we get from Proposition 2.3.14(b)
that depth(M/xM)p = depthMp − 1. We also have, from Proposition 2.3.15,
that dim(M/xM)p = dimMp−1. Since M/xM is Cohen-Macaulay , from 2.3.4,
we may assume by induction that (M/xM)p is Cohen-Macaulay. Since R could
be assumed to be local, we may use (a) to get that Mp is Cohen-Macaulay.

Proposition 2.3.42. Let R be a Cohen-Macaulay ring, and I a proper ideal of
R. Then grade(I,M) = ht I. Further, if R is local, ht I + dimR/I = dimR.

Proof. Since

ht I = min{dimRp | I ⊂ p ∈ SpecR},

grade(I, R) = {depthRp | I ⊂ p ∈ SpecR},
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that grade(I, R) = ht I follows from Proposition 2.3.41(b). The second equation
follows from the first and Proposition 2.3.40(b).

Proposition 2.3.43. Let R be a Noetherian ring. Then R[X ] is a Cohen-
Macaulay ring if, and only if, R is a Cohen-Macaulay ring.

Proof. If R[X ] is Cohen-Macaulay, R[X ]/(X) = R is Cohen-Macaulay from
2.3.41(a) since X is R[X ]-regular. To prove the converse, let m be a maximal
ideal of R[X ], and let p = m ∩ R. Since R \ p ⊂ R[X ] \ m, we have that
R[X ]m = Rp[X ]m. Thus we may assume that R is local with maximal ideal p.
Further, R[X ]/pR[X ] = (R/p)[X ] is a principal ideal domain, whence m/p = (f).
If x1, . . . , xn ∈ p is an R-sequence, it is also an R[X ]-sequence. The element
f is a non-zerodivisor of R[X ]/(x1, . . . , xn)R[X ], thus x1, . . . , xn, f is an R[X ]-
sequence in m. Thus depthR[X ]m ≥ 1 + depthR. Moreover, htR[X] p = dimR,
and by Krull’s principal ideal theorem, ht m ≤ 1 + ht p. Since R is Cohen-
Macaulay, dimR = depthR, thus depthR[X ]m ≥ ht m = dimR[X ]m. Thus
depthR[X ]m = dimR[X ]m, for every maximal ideal m ⊂ R[X ], i.e.. R[X ] is
Cohen-Macaulay.

Corollary 2.3.44. K[X1, . . . , Xn] is Cohen−Macaulay for every field K and
every n.

Proposition 2.3.45. Let M be finite graded module over a ∗local ring (R,m).
Then M is Cohen-Macaulay if, and only if, Mm is Cohen-Macaulay.

Proof. Since Mm is Cohen-Macaulay, Mp is Cohen-Macaulay for every graded
ideal p ∈ SuppM . Assume p ∈ SuppM is not graded. Then, from Propositions
2.3.27 and 2.3.30, dimMp = dimMp∗ + 1 = depthMp∗ + 1 = depthMp. Hence
Mp is Cohen-Macaulay for every p ∈ SuppM . The other direction is obvious.

Example 2.3.46. Let R = K [X1, . . . , Xn], and let I be a proper graded ideal.
Then R/I is Cohen-Macaulay if, and only if, Rm/mIm is Cohen-Macaulay, where
m = (X1, . . . , Xn).

Cohen-Macaulay rings in many ways behave more nicely than general Noethe-
rian rings.For example, say that a Noetherian ring R is catenary if every sat-
urated chain of prime ideals from p to q has the same length ht p/q, for every
pair of prime ideals q ⊂ p. If every ring R[X1, . . . , Xn] is catenary, the ring R
is universally catenary.

Proposition 2.3.47. Every Cohen-Macaulay ring R is universally catenary.

Proof. Since R[X1, . . . , Xn] is Cohen-Macaulay if R is Cohen-Macaulay, it is
enough to prove that R is catenary. Let p ⊂ q be prime ideals of R. From
Proposition 2.3.41(b), Rp is Cohen-Macaulay. Apply Proposition 2.3.42 on Rp,
to get

ht q = dimRq = ht pRq + dimRq/pRq = ht p + ht p/q.
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Now assume that there exists prime ideals p ⊂ q of R, such that there exist
maximal chains of prime ideals q ) q1 ) · · · ) qd and q ) p1 ) · · · ) pd−n,
d = ht q/p− 1, n > 0. Then ht pd−n = ht p + ht pd−n/p = ht p + 1, and ht q may
be written as

ht q = ht q/pd−n + ht pd−n = d− n+ ht p + 1.

But ht q/p = d+ 1, whence we would have

ht q = ht q/p + ht p − n,

a contradiction. Thus a Cohen-Macaulay ring is catenary.

Definition 2.3.48. A local ring R is Gorenstein if R is Cohen-Macaulay, and
r(M) = 1. In general, a ring R is Gorenstein if every localization of R at a
maximal ideal is Gorenstein.

As for Cohen-Macaulay rings, we have the following criterion for ∗local rings,
which follows by the same results as 2.3.45.

Proposition 2.3.49. Let (R,m) be a ∗local ring, and M a finite R-module.
Then M is Gorenstein if, and only if, Mm is Gorenstein.

3 Combinatorics

Combinatorial objects may often be used to define algebraic structures, which
then can be analyzed through their combinatorial origin. We will restrict ourself
to combinatorial objects which give rise to particularly simple algebric struc-
tures. Other, more complex associations are found in [7], from which many
results in this chapter are taken.

3.1 Simplicial Complexes

Definition 3.1.1. An abstract simplicial complex is a class of subsets ∆ of a
finite set V such that

σ ∈ ∆ ⇒ τ ∈ ∆, foreveryτ ⊂ σ.

When not explicity stated otherwise, we shall assume that every element of
V lies in ∆.

The elements with cardinality k + 1 in ∆ are called k-faces, or just faces.
Thus {v1} is a 0-face, {v1, v3} is a 1-face, and so on. The dimension of a
k-face σ, dimσ, is k. The dimension of ∆, dim ∆, is max{dimσ |σ ∈ ∆}.
The maximal faces of ∆ are called facets, and the 0-faces are called vertices.
A simplicial complex is pure if every facet has the same dimension. Given a
simplicial complex ∆ on V and S ⊂ V , call 〉S〈:= {σ ∈ ∆ |σ ⊂ S} the induced
(sub)complex on S. Often S will be a face in ∆.
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Figure 2: The simplicial complex ∆ used in Example 3.1.4.

Definition 3.1.2. The f -vector of a simplicial complex ∆, dim ∆ = d, is the
vector (f−1, f0, . . . , fd), where fi is the number of i-dimensional faces in ∆.

Definition 3.1.3. Let ∆ be a simplicial complex with f -vector (f−1, f0, . . . , fd).
Define the F-polynomial of ∆ as F (∆ ; t) :=

∑n
i=−1 fix

i+1.

Example 3.1.4. Let ∆ be the simplicial complex in Figure 2. Then ∆ has
f -vector (1, 7, 12, 6, 1).

Definition 3.1.5. A simplicial complex in which every minimal non-faces is a
2-set is called a flag complex.

Definitions 3.1.6. Let ∆ be a simplicial complex, and σ ∈ ∆. Then the link
of σ in ∆ is lk∆ τ := {τ ∈ ∆ | τ ∪ σ ∈ ∆, τ ∩ σ = ∅}, and the star of σ in ∆ is
St∆ σ := {τ ∈ ∆ | τ ∪ σ ∈ ∆}.

Definition 3.1.7. Let ∆ and Γ be simplicial complexes. The sum of ∆ and Γ,
∆ + Γ, is the union of ∆ and Γ on disjoint vertex sets.

Definition 3.1.8. The join of two simplicial complexes ∆ and Γ is the complex
∆ ∗ Γ = {σ ∪ τ |σ ∈ ∆, τ ∈ Γ}.

Example 3.1.9. Let ∆ and σ ∈ ∆ be as in Figure 3(a). The star and link of σ
are depicted in Figure 3(b) respectively Figure 3(c). Let Γ be the disjoint union
of two points. The join ∆ ∗ Γ is shown in Figure 3(d).

Definition 3.1.10. Let ∆ be a simplicial complex with f -vector (f−1, f0, . . . , fd).
Define the reduced Euler characteristic χ̃ (∆) as

χ̃ (∆) =

d∑

i=−1

(−1)ifi.

Definition 3.1.11. A simplicial complex is Eulerian, or an Euler complex, if ∆
is pure and χ̃ (lkσ) = (−1)dim lk σ, for all σ ∈ ∆.

It is a well-known fact that simplicial spheres are Eulerian, see any introduc-
tory book in topology.

Proposition 3.1.12. The h-vector of an (d−1)-dimensional Eulerian complex
is symmetric, i.e. hi = hd−i for 0 ≤ i ≤ d.

Thus simplicial spheres have symmetric h-vectors.
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σ

(a) The simplicial complex ∆,
with σ a 0-dimensional face of ∆.

σ

(b) The star of σ in ∆.

(c) The link of σ in ∆. (d) The join of ∆ and Γ, where
Γ is as in Example 3.1.9.

Figure 3: Examples of operations on simplicial complexes.

3.1.1 The Stanley-Reisner Ring of a Simplicial Complex

Simplicial complexes can be defined to determine square-free monomial ideals,
as in the following definition. For notation, given {va1

, . . . , van
} ⊂ V , let Xσ be

the monomial Xa1 · · ·Xan .

Definition 3.1.13. Let ∆ be a simplicial complex on the vertex set 1, . . . , n, and
let K be a field. Define an ideal I∆ in K[X1, . . . , Xn] by letting I∆ := ({Xσ |σ /∈
∆}). I∆ is called the Stanley-Reisner ideal of ∆. The Stanley-Reisner ring of
∆ is the ring K[∆] := K[X1, . . . , Xn]/I∆.

Note that, from the results in Section 2.3.3, a Stanley-Reisner ring Rmay
often be regarded as a local ring (or as a finite graded module over a local ring),
in the sense that many results regarding (finite modules over) local rings may
be applied to R.

There is a 1-to-1 correspondence between square-free monomial ideals in
K[X1, . . . , Xn] and simplicial complexes on {1, . . . , n}. For {vi1 , . . . , vik

} = σ ∈
∆, let pσ be the monomial ideal (Xi1 , . . . , Xik

), and let σ be the complement of
σ in ∆.

Theorem 3.1.14. For ∆ a simplicial complex,

I∆ =
⋂

σ∈∆

p
σ,

and dimK[∆] = dim ∆ + 1.
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Proof. For Xτ to lie in
⋂

σ∈∆ pσ, it is necessary and sufficient that τ share at
least one element with every σ. Equivalently, τ does not lie in any face σ ∈ ∆,
hence

I∆ =
⋂

σ∈∆

p
σ.

Assume dim ∆ = d, and the number of vertices of ∆ is n. We have ht I∆ ≤
n−dim ∆−1, since pσ, with dimσ = d, can be generated by n−d−1 elements.
Since

ht I∆ + dimK[∆] ≤ dimK[X1, . . . , Xn] = n,

dimK[∆] ≤ d+ 1. But pσ is a prime ideal of K[∆] with ht pσ ≥ d+ 1. Hence

dimK[∆] = dim ∆ + 1.

A simplicial complex is Cohen-Macaulay if K[∆] is Cohen-Macaulay. Note
that this is dependent of the field K.

Proposition 3.1.15. A Cohen-Macaulay complex is pure.

Proof. Assume a complex ∆ is not pure, and let dim ∆ = d. Consider pσ, where
σ = {i1, . . . , ip} is a facet. We have grade(pσ,K[∆]) = 0, since Xi1 · · ·Xip

is
annihilated by every element in pσ. Note that K[∆]/pσK[∆] ∼= K[Xi1 , . . . , Xip

].
Since ∆ is not pure, there is a facet F with dimF < dim ∆. But then

grade(pF ,K[∆] < dimK[∆] − dimK[∆]/pFK[∆],

which contradicts 2.3.40(b).

By homological arguments beyond the scope of this work (see [2]), one can
show that simplical spheres are Cohen-Macaulay over any field.

In Section 2.3.3, we introduced the notion of N-graded rings and modules.
For the next theorem, we need the notion of Nn-graded rings and modules.
A Stanley-Reisner ring has an obvious Nn-grading. Let M be an Nn-graded
K[X1, . . . , Xn]-module. Define the Nn-graded (or “finely graded”) Hilbert series
of M as

HilbM (x) =
∑

a∈Nn

dimMax
a.

Setting xi = t for all i gives the N-graded Hilbert series for M .

Theorem 3.1.16. Let ∆ be a simplicial complex with f -vector (f−1, f0, . . . , fd),
f0 = n. Then

HilbK[∆] (t) =
d+1∑

i=0

fi−1t
i

(1 − t)i
.
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Proof. K[∆] has naturally an Nn-grading, thus K[∆] can be viewed as an Nn-
graded K[X1, . . . , Xn]-module. For a ∈ Nn, let the support of a be the set
supp a = {i | ai 6= 0}. Thus a squarefree monimial Xa is completely determined
by suppa. An arbitrary monomial Xa lies outside I∆ exactly when Xsuppa lies
outside I∆. Also, the non-zero monomials form a basis (as a vector space over
K) for K[∆]. Thus

HilbK[∆] (x) =
∑

a∈N
n

suppa∈∆

xa

=
∑

σ∈∆

∑

a∈N
n

supp a=σ

xa.

Since ∑

a∈N
n

supp a=σ

=
∏

i∈σ

xi

1 − xi
,

and the product over an empty index set is 1,

HilbK[∆] (x) =
∑

σ∈∆

∏

i∈σ

xi

1 − xi
.

As K[∆]i =
⊕

a∈N
n

|a|=i

K[∆]a, the N-graded Hilbert series of K[∆] is

HilbK[∆] (t) =
∑

σ∈∆

∏

i∈σ

t

1 − t

=

d∑

i=−1

fit
i+1

(1 − t)i+1
.

Thus HilbK[∆] (t) = h0+h1t+···+hd+1td+1

(1−t)d+1 . Call the polynomal h0 + h1t +

· · · + hd+1t
d+1 the H-polynomial of K[∆], denoted by H(M ; t). The vec-

tor (h0, h1, . . . , hd+1) is the h-vector of ∆. The relation between the f -vector
and the h-vector of a simplicial complex is given by the following proposition.

Proposition 3.1.17. For a d-dimensional simplicial complex ∆, it holds that

hi =

i∑

j=0

(−1)j−i

(
d+ 1 − i

i− j

)

fj−1,

fj−1 =

j
∑

i=0

(
d+ 1 − i

j − i

)

hi.
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Proof. Putting the expression for HilbK[∆] (t) on a common denominator gives

d+1∑

i=0

hit
i =

d+1∑

j=0

fj−1t
j(1 − t)d+1−j. (1)

This gives hi in terms the fi, by simply summing the monomials of the same
degree on the right hand side. To express fi in terms of the hi, make the change
of variable t = s

1+s . Then (1) transforms into

d+1∑

i=0

hi
si

(1 + s∗)i
=

d+1∑

j=0

fj−1
sj

(1 + s)j

1

/1 + s)d+1−j

⇔
d+1∑

i=0

his
i(1 + s)d+1−i =

d+1∑

j=0

fj−1s
j.

From this it is easy to see how fj−1 can be expressed in terms of the hi.

Theorem 3.1.18. Let ∆ be a (d − 1)-dimensional Cohen-Macaulay complex,
with n vertices and h-vector (h0, . . . , hd). Then

0 ≤ hi ≤

(
n− d+ i− 1

i

)

, for 0 ≤ i ≤ d.

Proof. Without loss of generality we may assume K infinite, see the proof Corol-
lary 4.1.10 in [2]. From Proposition 2.3.31, we can find a K[∆]-regular sequence
x1, . . . xd, where every xi is of degree 1. Set N = K[∆]/(x1, . . . , xd)K[∆]. From
Proposition 2.3.38,

HilbN (t) = (1 − t)d HilbK[∆] (t) = h0 + h1t+ . . .+ hdt
d,

so hi ≥ 0 for all 0 ≤ i ≤ d. Now, N is generated over K by n − d elements of
degree 1. Hence dimK Ni is bounded by dimK K[X1, . . . , Xn]i =

(
n−d+i−1

i

)
.

A simplicial complex ∆ is Gorenstein over K if K[∆] is Gorenstein.

Theorem 3.1.19. Let ∆ be a (d − 1)-dimensional Gorenstein complex. Then
hi = hd−i for every 0 ≤ i ≤ d.

Thus the Gorenstein complexes satisfies the same relation on the h-vector
as Eulerian complexes. In fact, a simplicial complex ∆ is Gorenstein if, and
only if, ∆ is a Cohen-Macaulay complex and core ∆ is Eulerian, where core ∆
is the complex {F ∈ ∆ | St v 6= ∆, ∀v ∈ F}. Hence, if ∆ is a sphere, K[∆] is
Gorenstein for any field K.

Definition 3.1.20. Let ∆ be a pure simplicial complex of dimension d. A
shelling of ∆ is a total ordering F1, . . . , Fn of the facets of ∆ such that the
following equivalent conditions hold.
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(i) For every j < i, there exists k < i such that Fi \ Fk = {v} ⊂ Fi \ Fj .

(ii) For every i > 1, the set {F ∈ 〈Fi〉 |F /∈ 〈F1, . . . , Fi−1〉} has a unique
inclusion-minimal element.

(iii) For every i > 1, 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉 is a pure, (d − 1)-dimensional sim-
plicial complex.

If there exists a shelling of the facets of ∆, ∆ is shellable.

Example 3.1.21. The complex in Figure 4(a) is shellable, with a shelling
given by {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5}. The complex in Figure 4(b) is
not shellable.

v1

v2

v3

v4

v5

(a) A shellable complex.

(b) A non-shellable complex.

Figure 4: Examples of shellable and non-shellable complexes.

Lemma 3.1.22. Let ∆ be a shellable complex. Then

(a) St σ is shellable, for all σ ∈ ∆,

(b) lkσ is shellable, for all σ ∈ ∆.

Further, if Γ is another shellable complex,
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(c) ∆ ∗ Γ is shellable.

Proof. (a): Let F1, . . . , Fd be an ordering of the facets of St σ, such that there
exists a shelling of ∆ with Fi < Fj if i < j. From (i), for every pair Fj , Fi,
i < j, there is a facet F ∈ ∆, F < Fj such that Fj \ F = {v} ⊂ Fj \ Fi. Since
σ ∩ (Fj \ Fi = ∅, it follows that σ ⊂ F . Thus F ∈ Stσ, and hence Stσ is
shellable.

(b): This follows easily from (a).
(c): Let F1, . . . Fn and G1, . . . , Gm be shellings of ∆ and Γ, respectively.It

follows easily that

F1 ∪G1, . . . , F1 ∪Gm, F2 ∪G1, . . . Fn,∪G1, . . . Fn ∪Gm

is a shelling of ∆ ∗ Γ.

Theorem 3.1.23. Let ∆ be a shellable simplicial complex. Then K[∆] is Cohen-
Macaulay.

Proof. We follow the proof in [7], and prove this by induction over the num-
ber of facets m in ∆. First, assume m = 1. Then K[∆] is a polynomial ring,
which is Cohen-Macaulay. For m > 1, assume F1, . . . , Fm−1 is a shelling of
the complex ∆′ generated by F1, . . . , Fm−1. By induction, K[∆′] is Cohen-
Macaulay. Assume that the vertices of Fm are x1, . . . , xr, by renumbering
them if necessary. By renumbering the vertices x1, . . . , xr again, assume that
{x1, . . . , xq} is the unique minimal face in ∆ \ ∆′. This means that K[∆′] =
K[∆]/(X1 · · ·Xq)K[∆]. Further, Xk ·X1 · · ·Xq = 0 if k > q, whence the pincipal
ideal (X1 · · ·Xq) can be seen as a free module over K[X1, . . . , Xn]. This means
that (X1 · · ·Xq)K[X1, . . . , Xr] is a Cohen-Macaulay module of dimension r. Set
M = (X1 · · ·Xq)K[X1, . . . , Xr]. From above, we have an exact sequence

0 // M // K[∆] // K[∆′] // 0,

where the K[X1, . . . , Xn]-modules M and K[∆′] are Cohen-Macaulay mod-
ules of dimension r. Apply Ext(K,−) to the above sequence, to get a long exact
sequence

· · · // Exti(K,M) // Exti(K,K[∆]) // Exti(K,K[∆′]) // · · · .

Since M and K[∆′] are Cohen-Macaulay of dimension r, the smallest i such
that Ext(K,M) and Ext(K,K[∆′]) are non-zero is r. Thus the same must hold
for Exti(K,K[∆)], whence K[∆] is Cohen-Macaulay .

3.2 Posets

The here presented standard material on posets is from [11].
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Definition 3.2.1. A partially ordered set (or poset for short) is a pair (P,≤),
where P is a set and ≤ is a partial ordering, i.e. is reflexive, transitive and
anti-symmetric. Often ≤ is understood, and the poset is written simply as P .
A poset (P,≤) is finite if P is a finite set.

Definitions 3.2.2. Let P be a poset. An induced subposet Q of P is a poset
Q ⊂ P , with x ≤ y in Q exactly when x ≤ y in P . The interval [x, y] = {z ∈
P |x ≤ z ≤ y} is an induced subposet of P . P is locally finite if every interval
in P is finite. x < y if x ≤ y and x 6= y. An element y covers x if x < y and
there is no element z with x < z < y.

A chain is a poset C in which x ≤ y or y ≤ x for all x, y ∈ C. Let C be
a chain which is a subposet of P . C is saturated if x < z < y and x, y ∈ C
implies z ∈ C. The length of a chain C = x0, x1 . . . , xp, ℓ(C), is p. P is graded
if every maximal chain in P has the same length d. Then there exists a rank
function ρ : P → [0, d] such that ρ(x) = 0 if x is minimal, and ρ(y) = ρ(x) + 1
if y covers x. ρ(x) is called the rank of x. If P has a unique minimal element
x, i.e. x ≤ y for all y ∈ P , this element is often written 0̂. In the same way, a
unique maximal element is written 1̂.

Definition 3.2.3. Let x, y ∈ P . If there exists an element z ∈ P such that
x, y ≤ z, and z ≤ w for any x, y ≤ w, z is called the join of x and y, written
x∨ y. In the same way, if there exists an element z ∈ P such that x, y ≥ z, and
z ≥ for any x, y ≥ w, z is called the meet of x and y, written x∧ y. If the meet
and join exist for every pair x, y ∈ P , P is a lattice.

There are many ways to construct new posets from old, here are but a few.

Definition 3.2.4. Let P and Q be posets on disjoint sets. Then make the
following definitions.

(i) Let the disjoint union, or the direct sum, of P and Q be the poset P +Q
on P ∪ Q, with x ≤ y in P + Q if either x, y ∈ P and x ≤ y in P , or
x, y ∈ Q and x ≤ y in Q.

(ii) The direct product of P and Q is the poset P×Q on P×Q, with (x1, y1) ≤
(x2, y2) in P ×Q if x1 ≤ x2 in P and y1 ≤ y2 in Q.

Definition 3.2.5. Let P be a locally finite poset. Define a function µP (or just
µ) on the non-empty intervals of P as follows.

(i) µ([x, x]) = 1,

(ii) µ([x, y]) = −
∑

x≤z<y µ([x, z]) for x 6= y.

The function µP is called the Möbius function on P .

Example 3.2.6. Let S be a set with n elements. The set-inclusion relation is
a partial ordering on 2S, the set of all subsets of S. The poset Bn := (2S ,⊂) is
a lattice, with x ∨ y = x ∪ y, x ∧ y = x ∩ y. Bn and any lattice isomorphic to
Bn is called a Boolean lattice. Bn is ranked by the cardinality of sets.
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Definition 3.2.7. Let P be a finite, graded poset, with rank n. Define a
function SP : 2({0}∪[n]) → 2P with SP (G) = {x ∈ P | ρ(x) ∈ G}. For simplicity,
write SP (i) for SP ({i}).

Definition 3.2.8. Let ∆ be a simplicial complex. Define a lattice L(∆), with
the faces of ∆, with a 1̂ adjoined, as elements and inclusion as order relation.
This gives a lattice, called the face lattice of ∆. Also, define P (∆), the face
poset of ∆, as the poset consisting of all non-empty faces of ∆. Note that if ∆
is pure, L(∆) is ranked by the cardinality of faces.

Example 3.2.9. Let ∆ be as in Figure 5(a). Then L(∆) is the lattice depicted
in Figure 5(b). Note that [x, y] is a Boolean lattice for every pair of faces x, y ∈ ∆
with x ( y. As Figure 5(b) shows, L(∆) need not even be ranked. However,
L(∆) is ranked whenever ∆ is pure.

Lemma 3.2.10. Let ∆ be a simplicial complex. For every σ ∈ ∆, L(lkσ) is
isomorphic to the induced sublattice Q := {τ | τ ≥ σ} ⊆ L(∆).

Proof. There is an obvious isomorphism ϕ between L(lkσ) and [σ, 1̂], which
sends τ ∈ L(lkσ) \ {1̂} to τ ∪ σ ∈ Q, and sends 1̂ to 1̂.

Corollary 3.2.11. If moreover ∆ is pure, the isomorphism ϕ preserves rank
differences of the elements, i.e.

ρL(lkσ)(y) − ρL(lk σ)(x) = k ⇔ ρQ(ϕ(y)) − ρQ(x) = k.

Definition 3.2.12. A graded poset P is Eulerian if µ([x, y]) = (−1)ρ(y)−ρ(x)

for every x < y, or equivalently, if every such interval [x, y], contains the same
number of even- as odd-ranked elements.

Example 3.2.13. Let P = Bn. For x, y ∈ P with x < y and |y| − |x| = j,

[x, y] is isomorphic to Bj . Since
∑j

i=0(−1)i
(
j
i

)
= 0, [x, y] has the same number

of odd- as even-ranked elements. Hence Bn is Eulerian.

Lemma 3.2.14. Let ∆ be a pure simplicial complex. Then the following are
equivalent.

(a) ∆ is an Euler complex.

(b) L(∆) is Eulerian.

Proof. (a) ⇒ (b): Since every interval [x, y] ⊂ L(∆), y 6= 1̂, is isomorphic to a
Boolean lattice, it is enough to show that [x, 1̂] has the same number of odd- as
even-ranked elemets, for all x ∈ L(∆), x 6= 1̂. From 3.2.10, [x, 1̂] is isomorphic
to the face lattice L(lkσ), where σ is the face of ∆ corresponding to x. Since
χ̃ (lkσ) = (−1)dim lk σ, and dim lkσ = ρ(x) − 1, it follows that the number of
odd-ranked elements in [x, 1̂] is equal to the number of even-ranked elements.
Hence L(∆) is Eulerian.

(b) ⇒ (a) follows similarly.
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v1 v2 v3

v4v5

(a) The simplicial complex ∆.

v1 v2 v3v4v5

(b) The face lattice of ∆.

Figure 5: A simplicial complex and its face lattice.

3.3 Graphs

The non-standard material is from [1], including the notion of (completely) dis-
cretely stable graphs and stitches. It is indicated where results are taken there-
from.

Let
(
S
i

)
be the set of all i-subsets of S.

Definition 3.3.1. A simple, loop-free graph is a pair (V,E), where V is a finite
set and E ⊂

(
V
2

)
. An element {u, v} ∈ E will often be abbreviated as uv. The

set V is often called the vertices of G, and the set E the edges of G.

A graph will always mean a simple, loop-free graph.

Example 3.3.2. The path Pn, n ≥ 1 is the graph with VPn
= {v1 . . . , vn},

EPn
= {vivi+1 | 1 ≤ i ≤ n − 1}. The cycle Cn, n ≥ 3, is the graph with
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VCn
= VPn

, ECn
= EPn

∪ {v1vn}. The complete graph Kn is the graph with
VKn

= {v1, . . . , vn}, EKn
=

(
VKn

2

)
.

Definition 3.3.3. Let G = (V,E) be a graph. A subgraph ofG is a pair (V ′, E′),

where V ′ ⊂ V and E′ ⊂
(
V ′

2

)
∩ E. A subgraph of G is an induced subgraph if

E′ =
(
V ′

2

)
∩ E. (V ′, E′) is said to be the subgraph induced by V ′.

A graph G = (V,E) will often be identified with its vertices. For example, if
S ⊂ V , G \ S may either denote V \ S or the induced subgraph on G \ S. This
will not cause any confusion.

Definition 3.3.4. Let G = (VG, EG) and H = (VH , EH) be graphs on disjoint
vertex sets. Define the sum of G and H as G+H := (VG ∪ VH , EG ∪EH), and
G⊎H := (VG ∪ VH , VG ∪ VH ∪ {uv |u ∈ VG, v ∈ VH}).

Example 3.3.5. Let G be the graph in Figure 6(a), and H the graph in Fig-
ure 6(b). Then G + H is the graph in Figure 6(c), and G⊎H is the graph in
Figure 6(d).

(a) The graph G. (b) The graph H.

(c) The graph G + H.

(d) The graph G⊎H.

Figure 6: Graphs and their different sums.

Definition 3.3.6. Let G be a graph. A set S ⊂ G is called an independent set
if the subgraph induced by S has no edges. A set T ⊂ G is called a clique if the
graph induced by T is isomorphic to K|T |. The independence number of G is
defined as α(G) := max{|S| |S independent in G}. The clique number of G is
ω(G) := max{|T | |T clique in G}. If all inclusion-maximal independent sets of
G have the same cardinality, G is unmixed.
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Definition 3.3.7. LetG be a graph and v and w two vertices ofG. The distance
between v and w, d(v, w), is the smallest n such that Pn+1 is a subgraph of G
with v and w as endpoints, if such n exists. Otherwise d(v, w) := ∞. For
v ∈ V , let N(v) denote the set of neighbours of v, i.e. N(v) = {w | d(v, w) = 1}.
More generally, if S ⊂ G, N(S) denotes the set of vertices v not in S such that
d(s, v) = 1 for some s ∈ S.

Definition 3.3.8. Let G be a graph and S an independent set in G. The graph
GS := G \ (S ∪N(S)) is called a standard subgraph of G.

Definition 3.3.9. Let G = (VG, EG) be a graph. Define an ideal I(G) of
K[X1, . . . , X|VG|] by identifying the variables Xi with the vertices vi ∈ VG,
and letting XiXj ∈ I(G) if vivj ∈ EG. The ideal I(G) is called the graph
ideal of G, and was introduced by Villareal in [13]. He then studied the rings
K[X1, . . . , X|VG|]/I(G).

The ring K[X1, . . . , X|VG|]/I(G) may also be obtained by from the graph G
by determining a simplicial complex and taking the Stanley-Reisner ring of that
complex, as follows.

Definition 3.3.10. Let G = (V,E) be a graph. Define a simplicial complex
CG on V by letting E be the minimal non-faces of CG. If G is the empty graph,
let CG = {∅}. To simplify notation, let K[G] be K[CG], P (G) be P (CG), and
L(G) be L(CG).

Note that CG is a flag complex, and that there is a 1-to-1 correspondence
between flag complexes and graphs. Further, CG is pure exactly when G is
unmixed. The Stanley-Reisner ring of CG is the ring K[X1, . . . , X|VG|]/I(G).

Example 3.3.11. Let G be the graph in Figure 7(a). Then

CG = {∅, {v1}, {v2}, {v3}, {v4}, {v5}, {v1, v4}, {v1, v5},

{v2, v5}, {v3, v4}, {v4, v5}, {v1, v4, v5}},

depicted in Figure 7(b). The Stanley-Reisner ring K[G] is

K[X1, X2, X3, X4, X5]/(X1X2, X1X3, X2X3, X2X5, X3X4, X3X5).

Let G be a graph. To G there is an associated simplicial complex CG, and
also an associated lattice L(G). Now, take for example a standard subgraph
of G, say Gu. What is then the operation d on CG, such that d(CG) = CGu?
The following proposition collects the correspondences beween a few of the most
basic operations on graphs and operations on CG and L(G).

Proposition 3.3.12. Let G be a graph.

(a) Standard subgraphs of G corresponds to links in CG and upper intervals in
L(G), in the sense that CGu1,...,un ∼= lk∆{u1, . . . , un} and L(Gu1,...,un

) ∼=
[{u1, . . . , un}, 1̂] ⊂ L(G).
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v1 v2

v3

v4 v5

(a) The graph G used in Example 3.3.11.

v1 v2 v3

v4v5

(b) The independence complex of G.

Figure 7: A graph and its independence complex.

Let H be another graph. Then

(b) CG+H ∼= CG ∗ CH and L(G+H) ∼=
(
(P (G)∪ {0̂})× (P (H)∪ {0̂})

)
∪ {1̂},

(c) CG⊎H ∼= CG + CH and L(G⊎H) ∼=
(
P (G) + P (H)

)
∪ {0̂, 1̂}.

Proof. (a): A set S ⊂ G is an independent set of Gu1,...,un
precisely when S is

an independent set of G such that S ∩ {u1, . . . , un} = ∅ and S ∪ {u1, . . . , un}
is an independent set. Thus CGu1,...,un ∼= lk∆{u1, . . . , un} follows immediately.
The isomorphism of lattices is the content of Lemma 3.2.10.

(b): The isomorphism CG+H ∼= CG ∗CH follows at once, since every indepen-
dent set of G + H is a union of an independent set of G and an independent
set of H . Further, the set of independent sets S of G + H can be seen as the
cartesian product of the sets of independent sets S′

1 and S′
2 of G resp H . Since

s1 ⊂ s2 in S exactly when s1 ∩ S
′
1 ⊂ s2 ∩ S

′
1 and s1 ∩ S

′
2 ⊂ s2 ∩ S

′
2, the lattice

isomorphism follows.
(c): This is immediate.

3.3.1 Completely Discretely Stable Graphs

Definition 3.3.13. Let G be a graph. Then

(i) G discretely stable if α(G \ S) = α(G) for every independent set S ⊂ G,

(ii) G is completely discretely stable if every standard subgraph of G is dis-
cretely stable.

Note that it is enough to consider inclusion-maximal independent sets S.

It follows easily that if G and H are completely discretely stable, both G+H
and G⊎H are completely discretely stable.

Lemma 3.3.14 ([1]). Let G be a graph, and {v, w} an edge in G. If α(Gv) =
α(Gw) = α(G) − 1, and Gv and Gw are discretely stable, so is G.
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Proof. Let S ⊂ G be an independent set. Not both of v and w lie is S. Assume
v /∈ S. S∩Gv is independent in Gv, and since Gv is discretely stable, there is an
independent set T ∈ Gv \S, with |T | = α(Gv). Thus T ∪ {v} is an independent
set of size α(Gv) + 1 = α(G) in G \ S.

Proposition 3.3.15. Let G be a graph, with α(G) = k. Then the following are
equivalent.

(a) G is completely discretely stable.

(b) For every standard subgraph G′ of G with α(G′) = 1, G′ ∼= Km for some
m > 1.

(c) There are no intervals in L(G) with 3 elements.

(d) Every proper standard subgraph of G is discretely stable, and G ∼= Km,
m > 1, if k = 1.

Proof. That the conditions are equivalent when k = 0 is trivial. Assume k ≥ 1.
(a) ⇒ (b): This is immediate.

(b) ⇒ (c): Note that, since L(P ) is a face lattice of a simplicial complex,
the only possibility for [x, y] to be a three element interval is for y to be 1̂. In
view of Lemma 3.2.10, the implication follows immediately.

(c) ⇒ (b): This follows from Lemma 3.2.10.
(b) ⇒ (d): Since (b) holds for every standard subgraph of G, and all condi-

tions are equivalent by induction, (d) follows.
(d) ⇒ (a): Let S be a k-independent set, and let u ∈ S. S ∩ VGu

is a
(k − 1)-independent set in Gu. Since Gu is discretely stable, there is at least
one (k − 1)-independent set T in Gu disjoint from S. Then T ∪ {u} is a k-
independent set in VG. There is a w ∈ T which is not in S, and such that
α(Gw) = k− 1. Moreover, w ∈ lk v for some v ∈ S, otherwise S ∪{w} would be
a (k + 1)-independent set in G. Apply Lemma 3.3.14 with v and w as adjacent
vertices.

Since 3.3.15(b) is satisfied for every Eulerian poset, graphs corresponding to
Eulerian complexes are completely discretely stable. In particular, every flag
sphere comes from a completely discretely stable graph.

Proposition 3.3.16. Let G and H be two completely discretely stable graphs,
with independence complexes CG and CH . Let v1, . . . , vp be vertices of CG and
w1, . . . , wp vertices of CH, such that there is a bijection between {v1, . . . , vp} and
{w1, . . . , wp}. If ∆, constructed by identifying every pair (vi, wi) in CG + CH,
is a flag simplicial complex, the graph determined by ∆ is completely discretely
stable.

Note that if the induced subcomplexes on {v1, . . . , vp} resp. {w1, . . . , wp} are
isomorphic, the result will always be a flag complex.
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Proof. From Proposition 3.3.15 it is enough to verify that every 0-dimensional
link in ∆ contains at least two vertices. But this is obvious, since any 0-
dimensional link lk∆ τ contains at least as many vertices as the 0-dimensional
link of τ , in the complex(es) where τ is a member.

Example 3.3.17. Let G be the graph shown in Figure 8, and let ∆ be the
complex contructed by identifying faces of CG + CG as in Figure 9. Then the
graph H determined by ∆ is completely discretely stable. The graph H is
displayed in Figure 10.

Figure 8: The graph G.

In [1], Backelin and Torsten Ekedahl prove that the triangle-free completely
discretely stable graphs are precisely those graphs with spheres as independence
complexes. This is not true in the general case, since the independence complex
of a completely discretely stable graph need not even be pure. However, an
interesting question is if every completely discretely stable graph can be con-
structed by the method of iterating Proposition 3.3.16, with spheres as “base
objects” of the iteration.
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Figure 9: The complex ∆, constructed by identifying the indicated faces of
CG + CG.

Figure 10: The graph H with independence complex ∆ as in Figure 9.

3.4 Extensions of Graphs

Definition 3.4.1. Let G be a graph, u1, . . . , un−1 be vertices of G with pairwise
distance at least 3, and n ≥ 1. Define the (n-)stitch, based at u1, . . . , un−1,
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denoted crn(G ; u1, . . . , un−1), as follows. First, add n vertices v0, . . . vn−1.
Add edges from uj to vi for i+ 1 ≤ j ≤ n− 1, and from every w ∈ N(ui) to vi,
for 1 ≤ i ≤ n − 1. Finally add a vertex u′, and add edges from every vi to u′.
The vertices u1, . . . , un−1 is the base of the stitch, and u′ is the node. When the
base is understood, the stitch is written as crn(G).

Note that when n = 1, crn(G) = G+ P2. See Figure 11 for an example of a
2-stitch.

u

v

v

u ′

0

1

1

Figure 11: A 2-stitch.

Lemma 3.4.2 ([1]). Let G be a graph. With the notation above,

(a) crn(G)v0
∼= crn(G)u′ = G,

(b) crn(G)vi,ui
∼= Gui

for 1 ≤ i ≤ n− 1.

Proof. If not stated otherwise, N(v) will denote the neighbourhood of v in
crn(G).

(a): For each vertex u1, . . . , un−1, N(ui) = N(vi) \ {u
′}. Since u′ ∈ N(v0),

(a) follows.
(b): Since N(vj) \ {u′} = N(uj), it follows that crn(G)vi

is isomorphic to
the graph G′ := cri−1(G) \ (NG(ui) ∪ u

′), where the (i− 1)-stitch has the base
u1, . . . , ui−1. Since NG′(ui) = {v0, . . . , vi−1}, (b) follows.

Many graph properties are preserved by stitches, or can easily be expressed
in terms of the original graph.

Proposition 3.4.3 ([1]). Let G′ = crn(G). Then

(a) ω(G′) = max{2, ω(G)},

(b) α(G′) = α(G) + 1,

(c) if G is unmixed, so is G′,

(d) if G is discretely stable, so is G′,

43



(e) G′ is completely discretely stable if, and only if, G is completely discretely
stable.

Proof. (a): If G contains no edges, ω(G′) = 2. Assume ω(G) ≥ 2. An (ω(G)+1)-
clique S in G′ must contain exactly one vertex in G′ \ G, and neither u′ nor
v0 may be a part of such S. Assume vk ∈ S. Further, S \ vk ⊂ N(uk), since
d(ui, uj) ≥ 3 for i 6= j. But then N(uk) contains an ω(G)-clique T , and T ∪{uk}
is an (ω(G) + 1)-clique in G, a contradiction.

(b): This follows from Lemma 3.4.2.
(c): Given an inclusion maximal independent set S, if vk ∈ S with k ≥ 1,

uk ∈ S. Thus also (c) follows from Lemma 3.4.2.
(d): Let S be an independent set in G′. Then there exists an independent

α(G)-set T in G′ \ S. If u′ /∈ S, T ∪ {u′} will be an independent (α(G) + 1)-set
in G′ \ S. If u′ ∈ S, vk /∈ S for 0 ≤ k ≤ n − 1. If ui /∈ T for all 1 ≤ i ≤ n − 1,
S ∪ {v0} is an independent (α(G) + 1)-set in G′. Otherwise, there is a minimal
i such that ui ∈ T . Then S ∪ {vi} is an independent (α(G) + 1)-set in G′.

(e): If G′ is completely discretely stable, so is G′
u′ = G. For the con-

verse, assume G completely discretely stable. If n = 1, G′ = G + P2, which
is completely discretely stable. Thus we may make an induction over the ver-
tices of G′, and assume that n ≥ 2. From (d), we know that G′ is discretely
stable. It remains to show that G′

v is completely discretely stable, for every
v ∈ G′. If v ∈ G and v /∈ (Nvi

) for 0 ≤ i ≤ n − 1, G′
v = crn(Gv), which,

by induction, is completely discretely stable. If v ∈ NG(ui), G
′
v = crn−1(Gv ;

u1, . . . , ui−1, ui+1, . . . un−1), which is completely discretely stable by induction.
If v = ui, G

′ = crn−i(Gv ; ui+1, . . . , un−1). If v ∈ {u′, v0}, G′
v
∼= G. Lastly,

if v = vi with i ≥ 1, G′
v
∼= cri(Gui

; u1, . . . , ui−1), with ui the node of the
stitch.

Before the next proposition, let us recapitulate the principle of inclusion-
exlusion. We will only need a simple version of it, see for example [11] for a
more general formulation.

Theorem 3.4.4. Let A be a set, and A1, . . . , An subsets of A. Then

|

n⋃

i=1

Ai| =
∑

S⊂[n]
S 6=∅

(−1)|S|−1|
⋂

s∈S

Ai|.

Proposition 3.4.5. Let G be a graph for which CG is Eulerian. Then ∆ :=
Ccrk+1(G), where the stitch has base u1, . . . , uk, is Eulerian.

Proof. We will show that L(∆) is Eulerian. Then, from Lemma 3.2.14, we get
that ∆ is Eulerian. To see that L(∆) is Eulerian, we only need to prove that
every interval [σ, 1̂] has the same number of odd- and even-ranked elements.
First, the interval [u′, 1̂] is isomorphic to L(CG). Thus, if σ contains u′, the
assertion follows.

Next we will show by induction over l that if σ contains vl, [σ, 1̂] satisfies the
assertion. Since [v0, 1̂] is isomorphic to L(CG), it is true for v0. Let σ ≥ vl. Now,
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if σ contains vi, 0 ≤ i < l, we are done. Also note that [{vl, ul}, 1̂] is isomorphic
to L(lkul). Hence, we can suppose that σ neither contains vi, 0 ≤ i < l, nor ul.
Now there are integers 0 ≤ m0 < · · · < mj ≤ l − 1, depending on σ, such that
σ ∪ {vs} ∈ L(∆) ⇔ s = mi. We want to show that

|{τ ∈ L(∆) | τ ≥ σ, ρ(τ) odd}|
=

|{τ ∈ L(∆) | τ ≥ σ, ρ(τ) even}|.
(2)

Define the following induced subposets of L(∆) \ {1̂}: P1 := {τ | τ ⊇ σ ∪ {ul}},

Qi := {τ | τ ⊇ σ ∪ {vmi
}}, P2 :=

j
⋃

i=0

Qi and P3 := {τ | τ ⊇ σ} \ (P1 ∪ P2). Note

that P1 ∩ P2 = ∅, whence P1, P2 and P3 are pairwise disjoint. Both P1 and P3

are isomorphic to P{τ | τ ⊇ σ \ {vl} ∪ {ul}} as subposets of L(∆) \ {1̂}. This
follows from Lemma 3.4.2 and the fact that

L(crk+1(G)vl
\ {v1, . . . , vl−1}) ∼= L(Gul

).

Since ρ(σ ∪ {ul}) = ρ(σ) + 1,

|{τ ∈ P1 ∪ P3 | ρ(τ) − ρ(σ) odd}| = |{τ ∈ P1 ∪ P3 | ρ(τ) − ρ(σ) even}|.

In what follows, ρ will denote the rank function of P2. We have that
⋂

i∈I Qi

is graded for every ∅ 6= I ⊂ [j]. Moreover, if an element x ∈
⋂

i∈I Qi has
rank n in

⋂

i∈I Qi, the rank of x in P2 is k + |I| − 1. From the principle of
inclusion-exclusion, we thus have

|SP2
(k)| =

∑

T⊂[j]
T 6=∅

(−1)|T |+1|ST

i∈T Qi(k−|T |+1)|.

This gives a sum

ΣT :=

p
∑

i=0

(−1)|T |+1|S∩t∈T Qt
(i)|,

where p = ρ(
⋂

t∈T Qt), for every non-empty T ∈ [j]. Note that

ρ(P2)
∑

i=0

|SP2
(k)| =

∑

T

ΣT .

Now, consider
ρ(P2)
∑

i=0

(−1)i|SP2
(i)|. (3)

The rank of
⋂

t∈T Qt is ρ(P ) − |T | + 1, thus (3) is equal to

∑

T⊂[j]
T 6=∅

ρ(P )−|T |+1
∑

i=0

(−1)i|ST

t∈T
Qt

(i)|.
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Every Qi is Eulerian by induction, thus for every non-empty T ⊂ [j] it holds
that

ρ(P2)−|T |+1
∑

i=0

(−1)i|ST

t∈T
Qt

(i)| = (−1)ρ(P2)−|T |+1.

Since
∑

T∈[j]
T 6=∅

(−1)|T | = −1 and ρ(P2) = ρ([σ, 1̂]) − 1, it follows that

ρ(P2)
∑

i=0

(−1)i|SP2
(i)| = (−1)ρ(P2)+1.

Thus the subposet [σ, 1̂] ⊃ P ′
2 := P2 ∪ {1̂} contains the same number of odd-

ranked as equal-ranked elements, since the rank of 1̂ in P ′
2 is even if the rank

of P2 is odd and vice versa and any other element in P ′
2 has the same rank

in P ′
2 as in P2. Summing up, (2) holds. Thus the assertion follows when σ

contains some vi. The only case left to consider is when σ does not contain any
vi nor u′. Define P1, P2 and P3 as above, but use u′ instead of ul. Thus P1 is
{τ | τ ⊃ σ ∪ u′} and P3 is simply {τ | τ ⊃ σ} as a subposet of L(∆) \ {1̂}.

Proposition 3.4.6. Let G be a shellable graph. Then G′ := crr+1(G) is
shellable.

Proof. The subcomplex of CG′

generated by all facets containing u′ (the base
of the stitch, recall the notation in Definition 3.4.1) is just {u′} ∗ CG, which is
shellable by Lemma 3.1.22. Let G1, . . . , Gp be a shelling of {u′} ∗ CG′

. Next,
all facets containing the vertex vr, and no other vi, also contain the vertex ur.
From Lemma 3.4.2(b)C(Gvr,ur ∼= CG′

ur . The complex CGur is shellable, again by

Lemma 3.1.22, whence CG′

vr,ur is shellable too. Let H1, . . . , Hn be a shelling of
CGur . From Definition 3.1.20(ii), there exists a unique minimal face σi in

{F ∈ 〈Hi〉 |F /∈ 〈H1, . . . , Hi−1〉},

for each 1 ≤ i ≤ n. The face σi ∪ {vr} is then a unique minimal face in

{F ∈ 〈Hi ∪ {vr, ur}〉 |F /∈ 〈G1, . . . , Gp, H1 ∪ {vr, ur}, . . . , Hi−1 ∪ {vr, ur}〉}.

Indeed, from the fact that every face therein contains vr, if there were two
minimal faces τ1 and τ2, τ1 \ {vr} and τ2 \ {vr} would be two minimal faces in

{F ∈ 〈Hi〉 |F /∈ 〈H1, . . . , Hi−1〉}.

Thus G1, . . . , Gp, H1 ∪ {vr, ur}, . . . , Hn ∪ {vr, ur} is a partial shelling of CG′

.
Continuing with the facets containing vs and no vi for i ≤ s − 1, for s =
r − 1, . . . , 1, the same argument as for the facets containing vr and no other
vi shows that there exists a partial shelling of CG′

consisting of all facets not

containing v0, say F1, . . . , Fj . Since CG′

v0 is isomorphic to CG, the complex

46



generated by the facets I1, . . . , Im containing {v0} is {v0} ∗ C
G′

, hence shellable.
If κi is a minimal face in

{F ∈ 〈Ii〉 |F /∈ 〈I1, . . . , Ii−1〉},

κi ∪ {v0} is a minimal face in

{F ∈ 〈Ii〉 |F /∈ 〈F1, . . . , Fj , I1 ∪ {v0}, . . . , Ii−1 ∪ {v0}〉}.

Hence CG′

is shellable.

The Propositions 3.4.5 and 3.4.6 can be used in conjunction with the follow-
ing consequence of Propositions 1.2 and 1.3 in [3].

Theorem 3.4.7. Let ∆ be a simplicial complex of dimension d, in which every
(d− 1)-face lies in exactly 2 facets. Then ∆ is (homeomorphic to) a d-sphere.

Since an Eulerian simplicial complex ∆ of dimension d has the property
that every (d− 1)-face is contained in exactly 2 facets, every shellable Eulerian
complex is a shellable sphere. Thus, if CG is a shellable sphere, and hence
Eulerian, Ccrk G is a shellable sphere as well.

Proposition 3.4.8. Let G be a graph and u1, . . . , ur−1 ∈ G with d(ui, uj) ≥ 3.
Then

F(Ccrr(G) ; x) =F(CG ; x) + 2xF(CG ; x)+

+

r−1∑

i=1

(
xF(CGui ; x) + x2F(CGui ; x)

)
. (4)

Proof. For each independent k-set T ∈ crr(G), exactly one of the following holds:
T ⊂ G, u′ ∈ T , or there is a minimal i ∈ N such that vi ∈ T . If u′ ∈ T , T \{u′} ⊂
G, and we get xF(CG ; x). Since crk(G)v0

∼= G, if {v0} ∈ T we get xF(CG ; x).

Let vi, i ≥ 1, be the minimal vi in T . We have crk(G)vi
\

⋃i−1
j=0{vj} ∼= Gui

+P1,

and we get xF (CGui ; x) + x2F (CGui ; x). Summing up, we get (4).

Corollary 3.4.9. Let G and u1, . . . , ur−1 ∈ V be as above. Then

H(K[crr(G)] ; x) = H(K[G] ; x) + xH(K[G] ; x) +

r−1∑

i=1

xH(K[Gui
] ; x).

This will follow from the following lemma. Although not standard by any
means, set fj = 0 for j < −1 or j > d. This is to simplify the formulæ.

Lemma 3.4.10. With the notation as in Proposition 3.4.8,

(a) hi−1(CG) =
∑i

j=0(−1)i−j
(
d−j
i−j

)
fj−2(CG),

(b) hi(C
G) =

∑i
j=0(−1)i−j

(
d−j
i−j

)
(fj−1(CG) + fj−2(CG)),
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(c) hi−1(CGui )
∑i

j=0(−1)i−j
(
d−j
i−j

)
(fj−2(CGui ) + fj−3(CGui )).

Proof. Recall that fi(∆) is defined to be zero for i < −1.
(a): The change of variable l = j − 1 transforms the sum in j to

i−1∑

l=0

(−1)i−1−l

(
d− 1 − l

i− 1 − l

)

fl−1(CG) = hi−1(CG).

(b): Since
(
m
n

)
=

(
m−1

n

)
+

(
m−1
n−1

)
,

i∑

j=0

(−1)i−j

(
d− j

i− j

)

(fj−1(CG) =

i∑

j=0

(−1)i−j

(
d− 1 − j

i− j

)

(fj−1(CG) +

i−1∑

j=0

(−1)i−j

(
d− 1 − j

i− 1 − j

)

(fj−1(CG).

The first term is equal to hi(C
G), and the second is equal to −hi−1(CG), from

3.4. Thus

i∑

j=0

(−1)i−j

(
d− j

i− j

)

(fj−1(CG)+

i∑

j=0

(−1)i−j

(
d− j

i− j

)

fj−2(CG)) = hi(C
G) − hi−1(CG) + hi−1(CG)

= hi(C
G).

(c): This follows immediately from (b) and the change of variable l = j −
2.

Proof of Corollary 3.4.9. From Proposition 3.4.8, it follows that

fj(Ccrr(G)) = fj(CG) + 2fj−1(CG) +

r−1∑

k=1

(
fj−1(CGuk ) + fj−2(CGuk )

)
.

Hence

hi(C
crr(G)) =

i∑

j=0

(−1)i−j

(
d− j

i− j

)

fj−1(Ccrr(G))

=

i∑

j=0

(−1)i−j

(
d− j

i− j

)

(fj−1(CG) + 2fj−2(CG) +

r−1∑

k=1

(
fj−2(CGui ) + fj−3(CGui )

)

= hi(C
G) + hi−1(CG) +

r−1∑

k=0

hi−1(CGuk ).
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Interpreting this in terms of the H-polynomial gives

H(K[crr(G)] ; x) = H(K[G] ; x) + xH(K[G] ; x) +

r−1∑

i=1

xH(K[Gui
] ; x).

3.4.1 The graph crn
2 (P2).

Definition 3.4.11. Begin with the graph P2. Then successively add 2-stitches
to the graph, where the base of each stitch is the node of the previous. This
is called a simple wale, or in the introduced notation crn

2 (P2), where n is the
number of stitches of the wale.

Note that, since CP2 is a (or the) 0-dimensional shellable sphere, any simple
wale is a shellable sphere. In particular, K[crn

2 (P2)] is Gorenstein.
As an application of Proposition 3.4.8 and its corollary, the f - and h-vector

of Ccrn
2 (P2) is determined. This will thus give the Hilbert series of the Artinian,

Gorenstein rings K[crn
2 (P2)]/(x1, . . . , xn+1)K[crn

2 (P2)] (where x1, . . . , xn is a
maximal M -sequence, deg xi = 1). As a corollary, a closed form solution to
a complicated (well) recurrence equation is somewhat serendipitously found.

Proposition 3.4.12. Let G = crn
2 (P2), n ≥ 0. Also, let G be the empty graph

for n = −1. Then

(a) hi(C
G) =

i∑

j=0

(
i

j

)(
n+ 1 − j

i

)

,

(b) fi(C
G) =

i+1∑

j=0

[(
n+ 1 − j

i+ 1 − j

) j
∑

l=0

(
j

l

)(
n+ 1 − l

j

)]

.

Proof. For convenience, set hn
i = hi(C

crn
2 (P2)).

(a): For n = −1 and n = 0, G has h-vector (1) resp (1, 1). By the change of
variables

i = i,

m = n− i+ 1,

the recursion hn
i = hn−1

i + hn−1
i−1 + hn−2

i−1 transforms to hm
i = hm−1

i + hm
i−1 +

hm−1
i−1 , i ≥ 0,m ≥ 1, with initial conditions h0

1 = h1
0 = 1. It is possible to

extend this recursion to m ≥ 0 by setting h0
0 = 1, and this is consistent with

the h-vector of G for n = −1. This renders the inital condidions h0
1 = h1

0 = 1
superfluous. What is left is the recursion

hm
i = hm−1

i + hm
i−1 + hm−1

i−1 , h
0
0 = 1, i,m ≥ 0,

and this is the recursion for the Delannoy numbers. The number hm
i can be

interpreted as the number of ways to move a king from (0, 0) to (i,m) on a
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chessboard if only steps in one quadrant are allowed (i.e. the steps (1, 0), (0, 1)
and (1, 1)). The recursion may be solved by first choosing j rows of i rows,
which may be done in

(
i
j

)
ways, corresponding to rows with a (1, 1)-step. Then

choose m− j (0, 1)-steps, which may be done in
(
m+i−j
m−j

)
=

(
m+i−j

i

)
ways, since

it is not possible to place a (0, 1)-step in a row with a (1, 1)-step. The walk is
completely determined by the placements of the (1, 0)- and (1, 1)-steps, whence

hm
i =

∑i
j=0

(
i
j

)(
m+i−j

i

)
. Changing back to the variables i and n gives

hn
i =

i∑

j=0

(
i

j

)(
n+ 1 − j

i

)

.

(b): This follows immediately from (a) and Proposition 3.1.17.

The formula for fi(C
G) in (b) gives a solution to the recurrence equation

an
i = an−1

i + 2an
i−1 + an−1

i−1 + an
i−2, a

0
0 = 1, aj

i = 0 for i < 0 or j < 0,

namely

an
i =

i∑

j=0

[(
n+ i− j

i− j

) j
∑

l=0

(
j

l

)(
n+ i− l

j

)]

.

Note that the f -vector of Ccrn
2 (P2) may be obtained from this equation by taking

diagonal slices from an+1
0 to a0

n+1. Thus fi(C
crn

2 (P2)) = an−i
i+1 .
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