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Abstract

In this thesis, I describe central concepts in event history analysis, in-

cluding Cox proportional hazards model, the log-linear model and the

illness-death model, and relate them to each other. We are interested

in the di�erence in bias and precision when including, or excluding, the

baseline prevalent cases in an analysis of e�ects of genotype on the haz-

ard using a case-cohort design. I generate populations, according to two

models, where the cases, myocardial infarction, depend on the genotype.

In one of the models death after MI and prior to baseline also depends on

genotype. In the traditional case-cohort analysis only incident new cases

during follow-up are included. We enrich the analysis with prevalent cases

that are alive at baseline and we expect a selection bias in the associa-

tion between genotype when death after MI depends on genotype. The

results do not, however, indicate any strong selection bias from including

prevalent cases in the case-cohort analysis.
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1 Introduction

In this thesis we are interested in seeing the di�erence in the genotype-disease

association from including prevalent cases at baseline in the case-cohort analysis.

The motivation stems from the MORGAM study in which the DNA from all

prevalent cases, alive at baseline, was genotyped. Since the case-cohort analysis

is valid for incident cases that occur during follow-up, the information from the

prevalent cases at baseline was not used in the MORGAM study. The question

remains whether the bias that these prevalent cases may have introduced in

the case-cohort estimate of the genotype-disease association would have been

outweighed by a gain in e�ciency from the using the additional information

from case genotypes at baseline. This thesis aims at introducing methodology

that can shed some light on this question.

The prevalent cases in this thesis are the events of myocardial infarction, MI,

that have happened before the study baseline for individuals who are still alive

at baseline (age 45). The incident cases are the MI cases that happen during

study follow-up, here from baseline (age 45) to censoring (age 80 or death,

whichever comes �rst).

I generate populations according to two models, where the risk that an individ-

ual experiences an MI depends on genotype of that individual. For Model 0 the

age at death with or without MI does not dependend on genotype while Model

1 assumes age at death after MI to depend on genotype and thus to induce

selection for prevalent cases that are alive at baseline.

The populations I generate consist of 20 000 individuals. Figure 1 shows the

structure for �fteen of these. We know when an individual dies, marked with x,

and we know if and when an MI occurred. An MI is marked with *.

To study the properties of the models I simulate 1 000 replicates of each pop-

ulation. For all analyses I use the Cox proportional hazards regression model

described in Section 2.1. However, for convenience I generate the data using a

log linear Weibull model, described in Section 2.2, utilizing the fact that regres-

sion estimates and their standard errors coincide for the Cox regression model

and the Weibull log-linear model. The traditional case-cohort analysis is in-

troduced in Section 2.3 together with a description of how to include prevalent

cases at baseline. Moreover, I use the illness-death model framework in my sim-

ulations to induce death rates after MI that depend on genotype through the
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age at which the MI occurred. The illness-death model is presented in Section

2.4.

The detailed simulations are presented in chapter 3, with results and discussion

in chapters 4 and 5. The data and R-code are included in Appendices.

Figure 1: A small population
Here we follow the �fteen individuals from birth until death. We can see if they
have an MI. The MI is marked with a *.
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Age (years)

In
di

vi
du

al
 N

o

0 10 20 30 40 50 60 70 80 90

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

MI
death
prevalent case

5



1.1 The MORGAM project

The MORGAM project is a study on determinants for cardiovascular disease.

The name MORGAM stands for MONICA, Risk, Genetics, Archiving and

Monography. MONICA was a WHO (The World Health Organization) project

about the risk factors for cardiovascular diseases. The name MONICA stands

for Multinational MONItoring of trends and determinants in CArdiovascular

disease. The MORGAM project is an extension of the MONICA project and

includes genetic factors and also includes other cohorts than the ones in the

MONICA project, as well as extensive biomaterial collection. There are mainly

European countries in the MORGAM project, with the populations from dif-

ferent geographic areas. Australia, Denmark, Finland, France, Italy, Lithuania,

Northern Ireland, Poland, Russia, Scotland, Sweden and Wales are areas that

contribute cohorts. A local ethics committee has approved the study and par-

ticipants have given informed consent. The samples and data are all processed

anonymously.

DNA is taken from blood in a random sample of the full cohort, from all deaths

and cardiovascular cases. Information of the DNA is collected for both the

incident cases and the prevalent cases.

One purpose of the MORGAM project is to �nd the association between ge-

netic variants and coronary heart disease and stroke. These diseases are called

complex, multifactorial diseases because they are not caused by a single genetic

defect, but by joint action from many genetic and environmental factors.

Information collected at the baseline, when individuals entered the project, in-

cluded for example smoking, alcohol use, socioeconomic indicators, history of

coronary heart disease, stroke, diabetes, family history of myocardial infarc-

tion and stroke. Anthropometric measurements, blood pressure, cholesterol,

triglycerides, �brinogen and SNP1 genotype were also measured at the base-

line. Triglycerides are fatty acids, where fat exists, and �brinogen make clots

of blood.

Di�erent MORGAM centers, have used di�erent follow-up methods on death.

In some centers information on death was retrieved from the national death

register and in other centers by periodic follow-up by letters or health care

systems. The follow-up on the coronary and stroke events were retrieved from

1explanation in Section 1.2.1 on the following page
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the MONICA register, hospitals discharge register, clinical event questionnaire

and regional health information system. [10]

1.1.1 Myocardial infarction - Cardiovascular disease

A heart attack or an acute myocardial infarction, MI, occurs when the heart

gets less blood supply than it should. The heart tissue is damaged and could

die because of oxygen shortage, ischemia.

The disease is a common cause of death all over the world, for both men and

women. The risk of an MI is higher for men at age 40 or older and women age

50 or older compared to younger men and women. There is a higher risk of an

MI if the individual has had vascular disease. Other things that increase the

risk of an MI are previous heart attack or stroke, abnormal heart rhythms or

fainting, smoking, extreme alcohol consumption, abuse of several illegal drugs,

high triglyceride levels, high LDL or low HDL (low- or high density lipoprotein),

diabetes, high blood pressure, obesity and stress.

The name, myocardial infarction, comes from the heart muscle, myocardium,

and tissue death due to oxygen starvation, infarction. Sometimes the name

�heart attack� is used to describe sudden cardiac death and that might be an

MI, but could also be some other type of heart failure. [2]

1.2 Genetic concepts and terminology

For the mathematician reader, with little background in biology or genetics, the

central concepts in genetics used in this thesis will be explained.

1.2.1 Genetic terms

The human genome consists of chromosomes, which are DNA molecules. The

DNA molecule, deoxyribonucleic acid, consists of two poly-nucleotide chains

which are kept together by hydrogen bonds. The genotype is the speci�c gene

set for an individual. [15]

The DNA molecule is built up of the nucleotide bases adenine, A, guanine, G,

cytosine, C, and thymine, T. The bases A and G, as well as C and T respectively

are complementary on a strand. These four bases occur linearly to form a DNA
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sequence. A triplet of the bases is a codon and this is coding for an amino acid.

Linearly arranged amino acids form speci�c proteins. [16]

A gene is a part of the DNA sequence that is coding for a polypeptide. Many

polypeptides form a protein. Variants of a gene, in a speci�c chromosomal locus,

on one chromosomal strand is called an allele. You need two alleles to form a

gene. The place where a gene is located on a chromosome is called locus, (pl.

loci). The genotype is heterozygous if the alleles di�er, and homozygous if they

are similar.

A phenotype is a property that is observable and may be correlated with the

genotype. Here, we focus on cardiovascular disease phenotype such as MI, and

consider association with genotypes. Polymorphism is the occurrence of more

than one allele at a locus (form is morph in Greek) in a population. [15] A

variation in the population involving a single nucleotide, that DNA is called

SNP, Single Nucleotide Polymorphism. SNPs typically involves two alleles. Such

variations could a�ect how individuals develop diseases. [3]

2 Survival and event history analysis

Event history analysis is used when one is interested in the occurrence of events

over time. An event could be medical, such as death, myocardial infarction (MI)

or cancer diagnosis, or non-medical, such as electric failure, divorce or birth of

a child. In this thesis, MI constitutes the event of interest.

Event history analysis models is used to get information of the cause of the event

in terms of risk factors. Survival analysis is describing the event process for a

group of individuals by survival curves and hazard rates, and uses regression

models to analyze the dependence on covariates. Covariates are the measured

variables, that the event could be caused by or they could increase or decrease

the risk for an event. In a survival model for MI one could, for example, include

the covariates sex, age, weight, �tness and genotype. The result from event

history analysis could be used to see how the covariates a�ect the event, MI.

[12]

A survival function and a hazard function can describe survival data, data on

the times for individuals until an event happens. Some of the survival times

may be censored. Censoring occurs when an individual is lost to follow-up or
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the individual does not reach the speci�c event for other reasons during the

follow-up. The causes could be that the individual died for another reason than

the event, that the data collectors could not come in contact with the individual

or that the event had not happened when the study ended. The calendar time

period when an individual is in the study is called the study time. The time from

when the individual starts to participate in the study until the event happens

is called survival time. For censored individuals the survival time is only partly

observed. [9]

The survival function, S (t), is the probability that an individual has not expe-

rienced the event by time t. We write

S (t) = P (T ≥ t)

where the random variable T is survival time. The random variable T has the

function F (t) = P (T < t) =
´ t

0
f (s) ds, where f (t) is the underlying probabil-

ity density function of T . We also write the survival function as

S (t) = P (T ≥ t) = 1− P (T < t) = 1− F (t)

The hazard function or hazard rate, α (t), is the instantaneous probability den-

sity that an individual has the event at the time t if it is known that the

individual �survived� (did not have the event) before that time. We write

α (t) = lim
δt→0

P (t ≤ T < t+ δt | T ≥ t)
δt

(1)

where T is a the survival time. [9, 12]

The survival function and the hazard function are connected through

A (t) = − lnS (t)

where A (t) =
´ t

0
α (s) ds, is the cumulative hazard. To show this, we start with

the de�nition of the hazard function in (1) and rewrite the numerator of (1) as

P (t ≤ T < t+ δt | T ≥ t) =
P ((t ≤ T < t+ δt) ∩ (T ≥ t))

P (T ≥ t)
(2)
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According to the rule of conditional probability

P (A | B) =
P (A ∩B)
P (B)

the nominator in (2) is simpli�ed

P ((t ≤ T < t+ δt) ∩ (T ≥ t)) = P (t ≤ T < t+ δt)

because T ≥ t does not provide any new information. We rewrite the numerator

of (2) as

P (t ≤ T < t+ δt) = P (T < t+ δt)− P (t > T ) = F (t+ δt)− F (t)

so equation (2) could be written as

P (t ≤ T < t+ δt)
P (T ≥ t)

=
F (t+ δt)− F (t)

S (t)

From this we get the hazard function

α (t) = lim
δt→0

P (t ≤ T < t+ δt | T ≥ t)
δt

= lim
δt→0

F (t+ δt)− F (t)
δt

1
S (t)

=
f (t)
S (t)

where the last equality sign comes from identifying the derivative of F (t), which
is f (t). Now we have α (t) = f(t)

S(t) . From S (t) = 1−F (t) we get S′ (t) = −f (t),

so we have α (t) = −S′(t)
S(t) = − d

dt (lnS (t)) which by integrating gives us

A (t) = − lnS (t)

�

Now it is showed how the survival function and the hazard function are con-

nected. [9]

2.1 Proportional hazard model

The proportional hazard model or the Cox regression model is the basic model

for survival data. The Cox regression model is semi-parametric because the

baseline hazard is non-parametric and the relative risk function is parametric.
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In the general proportional hazard model, the hazards of an event at a particular

time depends on the values x1, x2, . . . , xp. These values are the covariates,

recorded at the baseline. Each individual has his/her speci�c baseline. To

handle a covariate that changes over time is more di�cult and will not be

discussed further here.

The hazard function of the ith individual is

αi (t) = ψ (xi)α0 (t)

where xi = (x1i, x2i, . . . , xpi) are the p covariates for individual i and α0 (t) is
the baseline hazard. The baseline hazard is a hazard function for an individual

for whom all the covariates are zero. The relative hazard can not be zero, so

it can be written as ψ (xi) = eηi where ηi is a linear combination of all the

covariates for individual i

ηi = β1x1 + β2x2 + . . .+ βpxp =
p∑
j=1

βjxj

with β as the coe�cients of the covariates. We write the general proportional

hazards model as

αi (t) = eηiα0 (t)

and we could rewrite that as

ln
(
αi (t)
α0 (t)

)
=

p∑
j=1

βjxji = βTxi

where j = 1, . . . , p denotes covariates. No assumptions have been made about

the form of the baseline hazard function α0 (t). [9]

2.1.1 Partial likelihood

The hazard rate α (t | xi), with xi the covariates for individual i, can be written

as

α (t | xi) = αo (t) r (β,xi (t)) (3)

where r (β,xi (t)) is the relative risk function with β = (β1, β2, . . . , βp)
T that

describes the e�ect of the covariates, and α0 (t) is the baseline hazard. The

r (β,xi (t)) is normalized, r (β,0) = 1. For the Cox regression model the rel-
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ative risk r (β,xi (t)) = eβ
Txi(t). Because the Cox regression model is semi-

parametric, the partial likelihood turned out to be an e�cient tool for estimat-

ing β1, . . . , βp. It can be treated much as an ordinary likelihood. The partial

likelihood has the form

L (β) =
∏
Tj

Yij (Tj) r
(
β,xij (Tj)

)∑n
l=1 Yl (Tj) r (β,xl (Tj))

(4)

where Yi (t) is an at-risk-indicator for individual i at time t, ij is the index of the

individual who experience the event at time Tj , and r (β,xi (t)) is the relative
risk function. The at-risk-indicator, Yi (t), is

Yi (t) =

1 if at risk

0 if not at risk

The partial likelihood is used to obtain the estimated β, by maximizing the

function (4).

To derive the partial likelihood in formula (4) start with formula (3) and use

λi (t) = Yi (t)α (t | xi (t)) . From this

λi (t) = Yi (t)α (t | xi (t)) =

= Yi (t)αo (t) r (β,xi (t))

The sum of all λ's is

λ� (t) =
n∑
l=1

λl (t) =

=
n∑
l=1

Yl (t)α0 (t) r (β,xi (t))

With

π (i | t) =
λi (t)
λ� (t)

=

=
Yi (t)α0 (t) r (β,xi (t))∑n
l=1 Yl (t)α0 (t) r (β,xl (t))

= (5)

=
Yi (t) r (β,xi (t))∑n
l=1 Yl (t) r (β,xl (t))

12



we get λi (t) = λ� (t)π (i | t).

This, π (i | t), is the conditional probability of observing an event for individual

i at time t, given the past and given that an event is observed at that time. To

obtain the partial likelihood for β, we take the product of all the conditional

probabilities in equation (5) over all observed event times. Times when events

are observed, T1 < T2 < . . .. From this we have the partial likelihood function

as in formula (4).

If we write the risk set at time Tj as Rj = {l | Yl (Tj) = 1} the partial likelihood
function from formula (4) can be rewritten as [12]

L (β) =
∏
Tj

r
(
β,xij (Tj)

)∑
l∈Rj r (β,xl (Tj))

(6)

2.2 Log-linear model

The data for simulations, in Chapter 3, is more conveniently generated with a

log-linear model, than with the proportional hazard model. In certain situations,

that we use, the two models are equivalent.

In a log-linear model the covariate directly expands or contracts the time to the

event. The log-linear model can be written as

ln ti = α+ βTxi + σεi (7)

where ti is the age or time for individual i. The xi is a vector with the covariates

for individual i, and the vector β are the coe�cients to the covariates. The

covariates can be genotype, age, sex, �tness etc, but in this thesis we have the

covariates genotype and age. We will have only one covariate in each formula so

β will be a constant. Therefore the T , that denotes a transpose, will be omitted.

The εi is extreme value distributed. The ti is Weibull distributed with the two

parameters, shape 1
σ and scale eα+βTxi , according to the following derivation.

[9]

The shape parameter 1
σ describes the form for the distribution. With σ = 1 we

get an exponential distribution. If 1
σ = 3− 3.5 we get an approximately normal

distribution. [4]
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We now show of that ti is Weibull distributed, when we know that εi is extreme

value distributed. We want to show what distribution ti has in formula

ln ti = α+ βTxi + σεi

with εi extreme value distributed.

Starting with the probability density function f (ε) = eε−e
ε

for the extreme

value distributed ε, where −∞ < ε <∞. Then we make a transformation from

ε to t,

ti = eα+βT xi+σεi

with 0 < t <∞. [9]

We will use that all probability density functions

ˆ b

a

f (x) dx = 1 (8)

where a < x < b, and to remember to calculate dx. [5]

We write

εi =
1
σ

(ln ti − α− βxi)

dεi =
1
σ
· 1
ti
dti

and that with equation (8) we can write

1 =
ˆ ∞
−∞

f (ε) dε =
ˆ ∞
−∞

eε−e
ε

dε =

=
ˆ ∞

0

e
1
σ (ln ti−α−βxi)−e

1
σ (ln ti−α−βxi) 1

σ
· 1
ti
dti =

=
ˆ ∞

0

t
1
σ
i e
− 1
σ (α+βxi)e−e

1
σ (ln ti−α−βxi) 1

σ
· 1
ti
dti =

=
[
a = eα+βxi and b =

1
σ

]
=

=
ˆ ∞

0

tb−1
i · b · 1

ab
e−( tia )bdti =

=
ˆ ∞

0

b

ab
tb−1
i e−( tia )bdti

Comparing this result to the Weibull probability density function with two pa-
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rameters, scale a and shape b,

f (x; a, b) =
ˆ ∞

0

b

ab
xb−1e−( xa )bdx

we see that ti is Weibull distributed with the two parameters, scale eα+βxi and

shape 1
σ .

�

Another log-linear model can be written

ln ti =
1
k

(
− lnλ2 − βT2 xi + εi

)
(9)

where ti is the age or time for individual i. This ti is Weibull distributed with

the two parameters, shape 1
σ and scale e

1
k (− lnλ2−βT2 xi). The xi is a vector with

the covariates for individual i, and the vector β2 times 1
k are the coe�cients to

the covariates. The εi is extreme value distributed.

The Cox regression analysis returns β2. I use the model in equation (7). A

comparison between the models in equation (7) on page 13, and in equation (9)

we get

k =
1
σ

β2 = −β
σ

λ2 = e−
α
σ

Time for individual i, ti, is given by exponating equation (7),

ti = eα+βTxi+σεi (10)

The time is almost always age in this thesis. [9]

2.2.1 How to generate εi

The formula for εi is

ε = ln (− ln (1− p))

15



where p is a probability between 0 and 1, uniformly distributed. This formula is

obtained from the probability density function for the extreme value distribution

f (ε) = eh(ε) and h (ε) = ε− eε with −∞ < ε <∞

The transformation ξ = eε helps to obtain εi. We obtain the probability density

function g (ξ) = e−ξ with 0 < ξ <∞. When we integrate this we get

p =
ˆ ξ

0

g (u) du =
ˆ ξ

0

e−udu =

= −e−u|u=ξ
u=0 = −e−ξ −

(
−e−0

)
=

= 1− e−ξ

Here follows a derivation that p is uniformly distributed.

Assume that the variable t ∈ [A,B] with a density function f (t).

We know, from (8) on page 14, that

ˆ B

A

f (s) ds = 1 (11)

We de�ne

p (t) = P (T < t) =
ˆ t

A

f (s) ds

We want to change the variable from s to p, s (p) and dp
ds = f (s) from the

de�nition above, so dp = f (s) ds. Now we have

1 =
ˆ p(B)

p(A)

dp =
ˆ p(B)

p(A)

1dp

where 1 is a constant density function for p. We have that p (B) = 1, because
this is the integral over the whole set from A to B. The lower bound, p (A) = 0,
because it is the integral from A to A. The probability density function for an

individual with a uniform distribution [6] between a and b is

f (x) =

 1
b−a if a ≤ x ≤ b

0 otherwise

16



Here we can see that the probability density function for p is

1 =
1

p (B)− p (A)
=

1
1− 0

so p is uniformly distributed between 0 and 1, p ∼ U (0, 1).

�

To �rst obtain ξ we use

p = 1− e−ξ

1− p = e−ξ =
1
eξ

eξ =
1

1− p

ξ = ln
(

1
1− p

)
= − ln (1− p)

Out of this we obtain ε by formula (12) where we generate p randomly between

0 and 1 from a uniform distribution.

ε = ln ξ =

= ln (− ln (1− p)) (12)

2.2.2 Expected value of ti

To determine the parameters, α and β, we need to use the expected value of

equation (7) on page 13

E (ti) = E
(
eα+β′xi+σεi

)
=

= eα+β′xi · E (eσεi)

The expected value of eσεi is Γ (σ + 1), where Γ is the gamma function, according

to the following equations
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E (eσε) =
ˆ ∞
−∞

eσε · eε−e
ε

dε =

=
[
E (g (ε)) =

ˆ
g (ε) f (ε) dε

]
=

=
ˆ ∞
−∞

e(σ+1)ε · e−e
ε

dε =

=
[
ξ = eε, dξ = e−εdε⇐⇒ dε =

1
ξ
dξ,−∞ < ε <∞, 0 < ξ <∞

]
=

=
ˆ ∞

0

ξσ+1e−ξ
1
ξ
dξ =

=
ˆ ∞

0

ξσe−ξdξ

To solve the integral
´∞

0
ξσe−ξdξ we use the formula

ˆ ∞
0

xne−axdx =
1

an+1
Γ (n+ 1)

where Γ is the gamma function. [8]

The integral is

ˆ ∞
0

ξσe−ξdξ =
1

1σ+1
Γ (σ + 1)

= Γ (σ + 1)

We get

E (eσεi) = Γ (σ + 1) (13)

To calculate Γ, the gamma function in the software R will be used, and then σ

can be any positive real number.

�

2.3 The Case-cohort study

The case-cohort study design is a method for studying time-to-event-data with-

out needing to collect covariate information on all individuals. Here, it is sub-

stantially cheaper to collect DNA samples on few individuals. It is only needed
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to collect DNA for all individuals who experienced the event and for a subco-

hort of all individuals in the study. The latter subcohort is a randomly chosen

sample from the whole population. It is important that the subcohort is chosen

without looking at the covariates that we think contribute to the event, MI.

The subcohort is a comparison group for all the MI cases in the cohort. In most

of the case-cohort studies, information for the covariates is collected when the

individual enters the study. For genetic studies DNA can be collected at any

time during the study. Since DNA is stable over an individual's lifespan DNA

can be collected at any time during the study. For MI cases DNA is collected

at the time of diagnosis. To analyze the case-cohort samples there are several

methods, analogous to methods for the full cohort data. [13] Here we use the

partial likelihood described in Section 2.3.1.

In Figure 2 we follow �fteen hypothetical individuals from when they enter the

study to an MI or a death. We can also see if they had an MI or not. The

death is marked with an x and an MI is marked with a ∗. The prevalent cases,
individuals who had an MI before baseline, is at baseline marked with a �.
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Figure 2: Fifteen individuals in the study

We follow the same individuals as in Figure 1 from the time they enter
the study at the baseline, age 45. Two individuals do not reach the age of 45,
so in the study we do not even know that they existed. We follow the remaining
thirteen individuals until they get an MI, die or are censored at age 80.

A case−cohort design with fifteen individuals
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2.3.1 Partial likelihood function for case-cohort design

The partial likelihood for case-cohort design is obtained from formula (6) with

di�erent sets for the sums in the denominator,

L̃ (β) =
∏
Tj

r
(
β,xij (Tj)

)∑
l∈R̃j(t) r (β,xl (Tj))
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where R̃j (t) is the case-cohort set and consist of the chosen subcohort and

the MI cases outside the subcohort, R̃j (t) = C̃ (t) ∪ {ij}. The C̃ (t) is the

subcohort at time t, where individuals who had an MI are removed after the MI

has occurred. The {ij} is the set of the MI case that occurs at time Tj . [14]

2.3.2 Including prevalent cases

Figure 2 presents prevalent cases that have occurred before baseline for indi-

viduals that are alive at baseline. Each of these prevalent cases contributes a

term to the partial likelihood with their genotype in the numerator and the de-

nominator summed over the subcohort at baseline enriched with the prevalent

cases.

2.4 The illness-death model

We use the illness-death model to introduce death after MI that depends on age

at MI and thus, indirectly, on the genotype. This should introduce selection

and bias in using prevalent cases at baseline in the case-cohort analysis. The

illness-death model has a Markov property.

A Markov chain is a stochastic process with discrete states and discrete time,

{X1, X2, . . .} where Xn is a discrete stochastic variable, and ful�lls

P (Xn+1 = j | Xn = in, Xn−1 = ii−1, . . . , X0 = i0) = P (Xn+1 = j | Xn = in)

where j, i, in−1, . . . are di�erent states. There are Markov chains, called Markov

processes, that are time continuous, but we will not use them in this thesis. This

equation means that the future is not dependent on the past, it only depends

on the present state. [11]

In this thesis, the illness-death model has three states, as in Figure 3, individuals

that are healthy (no MI or death) in state �Healthy�, individuals who have had

an MI (and not yet died) in state �MI� and individuals who are dead (no matter

an MI or not) in state �Dead�.
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Figure 3: Illness-death model

In this illness-death model there are three states. The transition intensi-
ties between the states are marked with α.

In this �gure the α's are transition intensities, the instantaneous risk of moving

from state �Healthy� to state �MI� is denoted αH to MI and so on.

The probability that an individual is in state �a� at time t1 and is in state �b�

at a later time t2 is written Pab (t1, t2). This probability can be written as

Pab (t1, t2) = P (X (t2) = b | X (t1) = a)

where a, b are di�erent states in a Markov chain, and t1 < t2 as said above. We

have the transition intensity

αab (t) = lim
∆t→0

P (X (t+ dt) = b | X (t−) = a)

where a and b are two states and t is the time. [12]

3 The simulation study

I simulate a population based on the illness-death model and study the e�ect of

including prevalent cases at baseline when evaluating the MI, in the case-cohort

design. I use the software R [1]. There are three states in this illness-death

model, see Figure 4.
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In my models the genotype may a�ect transition from state �Healthy� to state

�MI�, αH to MI, and age of the MI may a�ect the transition from state �MI� to

state �Dead�, αMI to D. The risk of dying for an individual, who has not had

an MI, is smaller than the risk of dying for an individual, who had an MI. That

is, the risk of transition from state �Healthy� to state �Dead� is smaller than the

risk of transition from state �MI� to state �Dead�. The genotype is not assumed

to directly a�ect the risk of transition from state �MI� to state �Dead�.

Figure 4: Illness-death model for MI

3.1 Generating data

I generate a population of 20 000 individuals from birth with information on age

of death for each individual, an indicator if the individual has had an MI or not

and the age when the individual had an MI. My data also consists of information

on the genotype and an indicator if the individual is in the subcohort. The

subcohort is every 10th individual in the population. An example of data can

be seen in Table 8 on page 38.

First I generate an age of natural death for each individual using the log-linear

model in formula (7), on page 13, with the procedure to generate εi described

in Section 2.2.1 on page 15. Natural death means other causes of death than an

MI. All times are in years.

Then I generate an age when each individual gets an MI, and time until death

after their MI. I assume that an individual can get at most one MI. Now each

individual have age for two deaths, the age of natural death, and the age of
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death after an MI. The actual age of death will be the age of whatever kind of

death that occurs �rst for each individual.

There are two models for the transition from state �Healthy� to state �Dead�

via state �MI�. These two models will be described in detail below. The natural

death is the same for both models.

3.1.1 Genotypes

The genotype is the covariate of interest in this thesis. As mentioned in Section

1.1, on page 6, the MI is a multifactorial disease. Here we assume a so called

�candidate SNP� scenario, and study one genotype at a time. In my two models

the age when the individual gets an MI is assumed to depend on the genotype

of the individual. The individuals inherit their alleles from their parents, one

from each parent. To generate the genotype of an individual, �rst I simulate

which of the alleles are inherited.

For simplicity, it is assumed that the parents are heterozygous, that their geno-

type is Aa, so they have one allele of each type. The value 0 represents allele a

and 1 represents allele A. The allele inherited from each parent is either 0 or 1,

binomial distributed with probability p. The chance of inheriting either allele is

equal, so the probability is p = 0.5. To get the genotype for the o�spring, sum

the values for the alleles from the parents. The sum for the o�spring is 0, 1 or

2 which represents genotype aa, Aa respective AA. I assume that the risk of an

MI is greatest for genotype AA and least for the genotype aa. Therefore the β

in the log-linear model, in equation (7) on page 13, will be negative.

3.1.2 Transition from state �Healthy� to state �Death�

The natural death is generated in the same way for Model 0 and 1, described

below. To generate how natural death depends on age, transition from state

�Healthy� to state �Dead�, I use the log-linear model without any covariates.

The age of natural death is denoted t(death)
i for individual i, and calculated by

t
(death)
i = eα+σεi (14)

where t(death)
i is a random variable that follows a Weibull distribution with

parameter scale eα, shape 1
σ since εi an extreme value distribution.

24



To get a realistic value of the parameter α, I choose σ = 1
9 and the mean age of

natural death to be t(death)
i = 78 years, which is close to the average length of

life. Then we use the formula

t
(death)
i = E

(
eα+σεi

)
=

= eα · E (eσεi) = (15)

= eαΓ (σ + 1)

because of the result in equation (13).

Equation (15) gives

α = ln

 t
(death)
i

Γ (σ + 1)


To get εi, I use formula (12), on page 17, with p random uniformly distributed

between 0 and 1. Now we have all the parameters needed to calculate the

distribution of natural death from formula (14).

3.1.3 Transition from state �Healthy� to state �MI�

To generate the age when an individual has an MI, I use the log-linear model.

The risk of getting an MI is set to depend on the genotype. Two age groups are

distinguished depending on age when the MI occurs. The �rst group consists

of those individuals who had an MI before the age of 45, �MI age < 45�. The

second group consists of those who had an MI at age 45 or later, �MI age ≥
45�. The transition from state �Healthy� to �Death� in Model 1 is di�erent from

Model 0, described below. For Model 0 the relative risk of getting an MI does

not change for the two age groups. But for the other two models the relative

risk of getting an MI depending on genotype is higher before age 45 than after.

3.1.4 Transition from state �MI� to state �Death�

For Model 0 the risk of dying is the same regardless of age group when MI

occurred. In Model 1, the risk of dying after an MI is higher for an individual

who experienced an MI at young age, before age 45.
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3.1.5 Data structure

When we know the age of possible death, a comparison for each individual is

made between the age of natural death and the age of death by MI. The age of

real death is the age of the �rst possible death that happens to the individual.

All individuals are censored at age 80. For individuals who have not had an MI

before age 80, the age of MI is not available, NA. The age of death is known

for all the individuals, it is known if they had an MI or not, the age of MI, and

if they were censored or not.

In our data we will have for each individual, age of death, the genotype, MI

indicator and age of MI if the individual has had an MI. There are three di�erent

indicator values, the indicator value 0 means that the individual has not had an

MI, 1 means that the individual has had an MI and 2 means that the individual

was censored. An example of the ten �rst individuals in Model 0 is in Table 8

in Section A on page 38.

3.1.6 Model 0

In this model, see Figure 5, the risk of getting an MI depends on genotype only.

Further more, the relative risk of getting an MI depending on the genotype

before age 45, is the same as the relative risk of getting an MI after age 45.

This means that the parameter β is the same for the two age groups. The risk

of dying given an MI is not here depending on age group of when MI occurred.
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Figure 5: Model 0

In this model the relative risk of getting an MI does not change with age,
β(<45) = β(≥45). The risk of dying is also the same regardless of age group.

Transition from state �Healthy� to state �MI�

To generate a vector containing age when an individual has his/her MI I use a

variant of formula (7) on page 13,

t
(MI)
i = eα+β·Gi+σεi (16)

where t(MI)
i is Weibull distributed with the two parameters scale and shape,

eα+β·Gi respective 1
σ . The Gi is the genotype of individual i (0 for aa, 1 for Aa

and 2 for AA), εi is extreme value distributed. I adjust the parameters σ, β and

α to get a reasonable age distribution when the MI occurs. I choose σ = 1
8 ,

and this value is used for all following σ's.

To get the values εi, use formula (12), on page 17, and generate the probability

p with uniform distribution.

For genotype aa, the age when MI occurs is generated from

t(MI)
aai = eα+β·0+σεi

with mean age when the MI occurs for this genotype, taa = 90. We get α from

α = ln
(

taa
Γ (σ + 1)

)
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Now we have the parameters α and εi.

The distribution of age at MI for the other two genotypes, Aa and AA, deter-

mines the parameter β. I choose a mean age when the MI occurs for genotype

Aa, tAa = 75. and obtain the parameter β from

β = ln
(

tAa
Γ (σ + 1)

)
− α =

= ln
(

tAa
Γ (σ + 1)

)
− ln

(
taa

Γ (σ + 1)

)
=

= ln
(
tAa
taa

)
(17)

With all the parameters de�ned and the genotype vector generated, I use for-

mula (16) to generate the age when MI occurs.

Transition from state �MI� to state �Dead�

To generate a vector with age of death via MI, I use a form of the formula (10),

on page 15,

t
(death|MI)
i = eα+σεi (18)

The parameter εi is generated, as before, with formula (12), on page 17, and

the probability p, which is a uniform distribution.

To set the parameter α, I choose a mean time the individuals live after an MI,

t = 10. After setting this value in the formula below, we obtain the parameter

α.

t = E
(
eα+σεi

)
= eαΓ (σ + 1)

I choose the value of σ to get a realistic age distribution, σ = 1
8 .

From this we obtain the parameter α as

α = ln
(

t

Γ (σ + 1)

)
(19)

Now when we have all the parameters we use formula (18).
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3.1.7 Model 1

In this model the risks are di�erent, see Figure 6. The relative risk of getting

an MI depending on the genotype before age 45, is higher than the relative risk

of getting an MI after age 45. The risk of dying for an individual is greater in

state �MI age < 45� than in state �MI age ≥ 45�.

Figure 6: Model 1

All the risks are di�erent. The relative risk of getting an MI is higher
before age 45 than after. The risk of dying is di�erent for the individuals in the
two age groups.

Transition from state �Healthy� to state �MI�

To generate age when an MI occurs, we use formula (16), on page 27, as in

Model 0. The di�erence between Model 0 and Model 1 is that the risk that

depends on genotype in Model 0 is the same and in Model 1 is di�erent. We

generate a preliminary vector with age when MI occurs with formula

t
(MI)
preli

= eα+β·Gi+σεi (20)

where t(MI)
preli

is Weibull distributed with the two parameters scale and shape,

eα+β·Gi respective 1
σ . The Gi is the genotype of individual i (0 for aa, 1 for Aa

and 2 for AA), εi is extreme value distributed. To obtain the values for α, β

and εi I do as in Model 0, using formulas (19),(17) on page 28 and (12) on page

17, with the same values on σ, taa and tAa.

To di�erentiate how the genotype e�ect depends on age, use formula (20) again

for all values in the preliminary vector, t(MI)
preli

which are greater than 45. The
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age when the MI occurs is obtained using the following formula

t
(MI)
i = I

(
t
(MI)
preli

< 45
)
· t(MI)
preli

+

+I
(
t
(MI)
preli

≥ 45
)
·
(
eα+β2·Gi+σε,i

)
(21)

where t(MI)
preli

is the preliminary age when individual i got an MI and I (x) = 1 if

x is true and 0 otherwise. The parameter β2 is here chosen to be the same as β,

but it could have bee chosen to be another value than β. The ε,i is regenerated,

using the same procedure as above for εi.

Now we can calculate the age when the MI occurs using equation (21).

Transition from state �MI� to state �Dead� To get the distribution of

age of death given an MI, that is the transition from state �Healthy� to state

�Dead� via state �MI�. To get the time from the MI until death I use formula

eα+β·Ii(MI≥45)+σεi

So I simulate the age of death given an MI using

t
(death|MI)
i = t

(MI)
i +

+ eα+β·Ii(MI≥45)+σεi (22)

where the indicator

Ii (MI ≥ 45) =

0 if t(MI)
i < 45

1 if t(MI)
i ≥ 45

Now we want to obtain the parameters α, β and εi. I choose σ = 1
8 , as before.

To obtain εi, I do as before, using formula (12), on page 17. To obtain α and

β, I do as in Model 0, and obtain formulas (19) and (17), on page 28. I use the

same value for with the same value on σ. But the risk for the two age groups

are di�erent, and time from MI until death is t(<45) = 5 and t(≥45) = 10.
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We have the formula

t(<45) = E
(
eα+β·0+σεi

)
=

= eαE (eσεi) =

= eαΓ (σ + 1)

and

t(≥45) = E
(
eα+β·1+σεi

)
=

= eα+βE (eσεi) =

= eα+βΓ (σ + 1)

From these two formulas we obtain

α = ln
(

t(<45)

Γ (σ + 1)

)
and

β = ln
(
t(≥45)

t(<45)

)

Now, to get age of death given an MI, we use formula (22).

3.1.8 Input data

The input data for Model 0 and 1 are in Table 1, where we also can see the

values of the times from the MI until death.
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Table 1: Input data for Model 0 and 1
Input data for Model 0 and 1

mean age of natural death t
(death)
i = 78

shape parameter for Weibull k = 1
σ = 8

mean age when MI occurs with genotype aa taa = 90
mean age when MI occurs with genotype Aa tAa = 75

censoring age 80

Time from the MI until death
In Model 0 In Model 1

tMI→Death = 10 t(<45) = 5
t(≥45) = 10

3.2 Analyzing data

To analyze the simulated data we use the package survival in the software R

[1]. I compare the case-cohort analysis with and without the prevalent cases

to the Cox regression model for the full cohort. I treat the mean over the 1

000 replicates of the Cox regression estimate for β as the true value to which I

compare the case-cohort estimate of β and its standard error, seβ.

Note that I have introduced dependent censoring by death when I use the log

linear model to generate the data according to the illness-death model. I there-

fore cannot expect to retrieve the input β for MI from the Cox model even when

the full cohort is used. Instead I compare the two case-cohort scenarios to the

generated Cox model for the full cohort.

3.2.1 Cox regression model analysis

The Cox regression model analysis is, in R code, called coxph. In the Cox

analysis I use all MI cases in my population.

3.2.2 Case-cohort design analysis

The case-cohort design analysis is, in R code, called cch. In one of the case-

cohort analyses I use only incident cases, and in the other case-cohort analysis I

use both the incident cases and the prevalent cases. However both case-cohort
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analyses only use the MI cases where individuals still are alive after age 45,

baseline, since they are known. I also know the age of MI for the prevalent

cases.

3.2.3 95 % coverage

To get the 95% coverage for both analyzing methods, we are testing if the true

β is in the interval from the calculated β for Cox, β̂Cox, and for case-cohort

design, β̂cch, plus-minus the standard errors for these. We test on level 95%

that gives us the value 1.96. That is, we check how many times of the 1 000 the

true β is inside the intervals,

β ∈
(
β̂Coxi ± 1.96 · seβ̂Coxi

)
and

β ∈
(
β̂cchi ± 1.96 · seβ̂cchi

)
where i is the number of the population, i = 1, . . . , 1 000. For both analyzing

models, the real β is the mean of β̂Cox, where β̂Cox are the 1 000 β̂'s returned

from the Cox regression analysis. The result is expressed in percent in Table 2

and 5.

3.2.4 Mean square error

To see the di�erence in precision and bias between the two case-cohort models,

with and without the prevalent cases the mean square error, MSE, is used.

Two mean square error is calculated, one for the case-cohort design without

the prevalent cases, and on for the case-cohort design with the prevalent cases

included. The formula for mean square error is

MSE
(
β̂
)

= var
(
β̂
)

+
(
bias

(
β̂
))2

where the bias and variance is calculated as below.

The bias is calculated with

bias
(
β̂
)

= E
(
β̂
)
− β
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Table 3: Mean square error, variance and bias for Model 0
Analysis type mean square error variance bias

Case-cohort without prevalent cases 0.0105 0.0105 -0.0086
Case-cohort with prevalent cases 0.0099 0.0099 -0.0032

where the β̂ is the mean of the value from the case-cohort design and β is the

true value of β and that is the mean of the β's from the Cox regression model.

The variance is

var
(
β̂
)

=
1

n− 1

n∑
i=1

(
β̂i −mean

(
β̂
))2

but is calculated with the function var in the software R. Here β̂i is the value

i from case-cohort design and β̂ is a vector with all values from case-cohort

design. [7]

4 Results

4.1 Results from Model 0

The results from Model 0 is presented in Table 2. There are the calculated

�real� value on β which is set to be the same as the means of all 1 000 β̂ for

Cox regression analysis. We also have the mean of all 1 000 β̂ for case-cohort

analysis. In the table we also can see the mean of the standard errors, se β̂,

from the two analyzing methods, then the calculated standard deviation, sd β̂,

and the 95% coverage for both models.

Table 2: Results from Model 0
In the Cox regression model there are 20 000 individuals, but in the case-
cohort analysis the subcohort is only 2 000 individuals. The true value of
β =meanβ̂Cox.

Analysis mean β̂ mean seβ̂ sdβ̂ 95% coverage

Cox regression model 0.2734 0.0236 0.0229 0.963
Case-cohort 0.2648 0.1064 0.1023 0.954

Case-cohort with prevalent 0.2702 0.1038 0.0996 0.955

We could also be interested in knowing the percentage of individuals who are
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healthy until death, who have an MI before they die or who are censored because

they still live and are older than the censoring age, 80 years. These results we

can see in Table 4.

Table 4: Percentage of healthy, MI cases or censored individuals in Model 0
MI indicator %

Healthy 44
MI cases 27

Censored at age 80 29
Prevalent cases of all MI cases 6

4.2 Results from Model 1

The results from Model 1 is presented in Table 5. There are the calculated

�real� value on β which is set to be the same as the means of all 1 000 β̂ for

Cox regression analysis. We also have the mean of all 1 000 β̂ for case-cohort

analysis. In the table we also can see the mean of the standard errors, se β̂,

from the two analyzing methods, then the calculated standard deviation, sd β̂,

and the 95% coverage for both models.

Table 5: Results from Model 1
In the Cox regression model there are 20 000 individuals, but in the case-
cohort analysis the subcohort is only 2 000 individuals. The true value of
β =meanβ̂Cox.

Analysis mean β̂ mean seβ̂ sdβ̂ 95% coverage

Cox regression model 0.2784 0.0232 0.0226 0.952
Case-cohort 0.2616 0.1074 0.1103 0.941

Case-cohort with prevalent 0.2700 0.1037 0.1066 0.942

Table 6: Mean square error, variance and bias for Model 1
Analysis type mean square error variance bias

Case-cohort without prevalent cases 0.0125 0.0122 -0.0168
Case-cohort with prevalent cases 0.0114 0.0114 -0.0084

We could also be interested in knowing the percentage of individuals who are

healthy until death, who have an MI before they die or who are censored because
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they still live and are older than the censoring age, 80 years. These results we

can see in Table 7.

Table 7: Percentage of healthy, MI cases or censored individuals in Model 1
MI indicator %

Healthy 43
MI cases 28

Censored at age 80 29
Prevalent cases of all MI cases 12

5 Conclusions and discussion

The results do not indicate any strong selection bias by including the prevalent

cases compared to excluding the prevalent cases in the case-cohort analysis.

The results for both models are more or less the same, see Table 3 and 6. The

variance, or the precision, for the two models is almost the same if we include

the prevalent cases or not. We might see a small di�erence that the variance is

smaller when we include the prevalent cases than when we exclude them. The

bias is larger when we exclude the prevalent cases than when we include them.

But this di�erence is much smaller than the variance, so it is not visible in the

mean square error.

We have, in Table 2 and 5, the results of the coe�cient for the covariate β.

When we do the analysis with the Cox regression model we receive the value

that we call true, because all 20 000 individuals are being used in this study.

The case-cohort design with and without the prevalent cases gives us β's lower

than the true value. We can see that the mean of the standard error, mean

se β̂, and standard deviation, sd β̂, is almost the same as they should be, if

the standard error is correctly programmed in coxph and cch in the software R.

The mean standard error for case-cohort design is so much larger than the mean

standard error for the Cox regression model because in the Cox regression model

we have more individuals, 20 000 individuals compared with 2 000 individuals

in the case-cohort analysis. The values of the 95% coverage are for Model 0

slightly higher than 95 % while for Model 1 is almost 94%, see Table 2 and 5.

This indicates that the estimated β's, β̂, and their standard errors, se β̂, are

close enough to the real value in Model 0, but further away in Model 1.
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If we would like to examine further if there is a di�erence between including or

excluding the prevalent cases in the cases-cohort design we could create more

prevalent cases. In this thesis 6 % and 11 % of all the MI cases are prevalent

cases in Model 0 respective Model 1, see Table 4 and 7. We could also create

more MI cases so that more than 27-28 % of all individuals have an MI, as can

be seen in the same tables as mentioned above. This we could do to test the

model with and without prevalent cases even if the data will get unrealistic by a

higher rate of MI cases. Another way to is to create a larger di�erence between

death after an MI. More data could also help us to see the di�erence between

including or excluding the prevalent cases.

To make the generated populations more realistic, we could as covariates have

the di�erent genotypes, that we expect contributes to an MI. We could also

have sex as a covariate.
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A Data

In Table 8 you see what the data, generated by my R code, look like.

Table 8: DataThe 10 �rst data generated by Model 0
No genotype age_death MI age_MI_�nal subcohort

1 1 76.85544 0 NA 0
2 1 51.25060 0 NA 0
3 2 63.73509 1 52.47947 0
4 1 67.76001 1 58.56679 0
5 0 74.01712 0 NA 0
6 2 75.39422 0 NA 0
7 0 68.97590 0 NA 0
8 1 70.88697 0 NA 0
9 1 66.95569 0 NA 0
10 0 83.23083 2 NA 1

B R code

B.1 Genotypes

a1=rbinom(n,1,0.5)

a2=rbinom(n,1,0.5)

genotype = a1+a2 # gives us 0, 1, 2 represent aa, Aa, AA

B.2 Natural death - Healthy to death

p=runif(n,0,1)

epsilon=log(-log(1-p))

death_mean=78

sigma=1/9

alpha=log(death_mean/gamma(1+sigma))

death=exp(alpha + sigma*epsilon)
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B.3 Model 0

# number of persons in my simulation

n=20000

############ From state Healthy to state MI in model 0 ###############

p=runif(n,0,1)

epsilon_1=log(-log(1-p))

mean_MI_aa=90

sigma=1/8

alpha_1=log(mean_MI_aa/gamma(sigma+1))

mean_MI_Aa=75

beta_1=log(mean_MI_Aa/mean_MI_aa)

age_MI=exp(alpha_1 + beta_1 * genotype + sigma*epsilon_1)

############ From state MI to state Dead in model 0 ###############

p=runif(n,0,1)

epsilon_2=log(-log(1-p))

mean_t_young=10

alpha_2=log(mean_t_young/gamma(sigma+1))

death_MI=age_MI+exp(alpha_2+sigma*epsilon_2)

###################### Create our data ########################

age_death=(death >= death_MI)*death_MI+(death < death_MI)*death

age_censoring=80

# 0=death, 1=MI, 2=censored by age

MI=(death<death_MI & death<age_censoring)*0 +

(death>=death_MI & death_MI<age_censoring)*1 +

(death>=age_censoring & death_MI>=age_censoring)*2

age_MI_final=((death<death_MI & death<=age_censoring)| #| for "or"
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(death>age_censoring & death_MI>age_censoring))*(-1)+

(death>death_MI & death_MI<age_censoring)*age_MI

for(j in 1:n){

if(age_MI_final[j]==-1)

age_MI_final[j]=NA}

nr=1:n

subcohort=floor(nr/10)==nr/10

matrix_death=cbind(nr,genotype, age_death,MI,age_MI_final, subcohort)

data_death_model0=as.data.frame(matrix_death)

ratio_0=sum(data_death_model0$MI==0)/n

ratio_1=sum(data_death_model0$MI==1)/n

ratio_2=sum(data_death_model0$MI==2)/n

B.3.1 Model 0 analysis

library(survival)

# creating a data from Model 0 but only with the MI-cases

data_MI_model0=data_death_model0[MI==1,]

######## Cox analysis ############

Cox_model0=coxph(Surv(age_MI_final,MI==1)~genotype, data=data_death_model0)

######## Case-cohort analysis ############

## not prevalent cases

data_H_baseline=data_death_model0[(age_death>45)&(age_MI_final>45)&(MI==1),]

casecohort_result_model0=cch(Surv(data_H_baseline$age_MI_final) ~

data_H_baseline$genotype, data=data_H_baseline, subcoh=~subcohort,

id=~nr,cohort.size=n)

## include prevalent cases

data_H_baseline=data_death_model0[(age_death>45)&(MI==1),]
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casecohort_result_model0_prevalent=cch(Surv(data_H_baseline$age_MI_final)

~data_H_baseline$genotype, data=data_H_baseline, subcoh=~subcohort,

id=~nr, cohort.size=n)

B.3.2 Model 0 looping

# number of loops

k=1000

for(ij in 1:k)

{source("Model 0 analysis.R")

# Cox

Cox_result_model0[ij]=coef(Cox_model0)

se_Cox_result_model0[ij]=sqrt(Cox_model0$var)

# case-cohort

casecohort_coef_model0[ij]=coef(casecohort_result_model0)

casecohort_se_model0[ij]=sqrt(casecohort_result_model0$var)

# case-cohort prevalent cases included

casecohort_coef_model0_prevalent[ij]=coef(casecohort_result_model0_prevalent)

casecohort_se_model0_prevalent[ij]=sqrt(casecohort_result_model0_prevalent$var)

# the rates

ratio_0_all_model0[ij]=ratio_0

ratio_1_all_model0[ij]=ratio_1

ratio_2_all_model0[ij]=ratio_2

} # end of for-loop

### Cox results ###

mean_Cox_result_model0=mean(Cox_result_model0,na.rm=TRUE)

mean_se_model0=mean(se_Cox_result_model0)
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sd_Cox_model0=sd(Cox_result_model0)

### Case-cohort results ###

mean_casecohort_coef_model0=mean(casecohort_coef_model0)

mean_se_cch_model0=mean(casecohort_se_model0)

sd_cch_model0=sd(casecohort_coef_model0)

### Case-cohort results prevalent cases included ###

mean_casecohort_coef_model0_prevalent=mean(casecohort_coef_model0_prevalent)

mean_se_cch_model0_prevalent=mean(casecohort_se_model0_prevalent)

sd_cch_model0_prevalent=sd(casecohort_coef_model0_prevalent)

###### 95% coverage ######

# true beta

beta_input=mean_Cox_result_model0

for (ik in 1:k)

{procent95[ik]=1.96*se_Cox_result_model0[ik]

analys95proc_Cox[ik]=((beta_input>=(Cox_result_model0[ik]-procent95[ik]))&

(beta_input<=(Cox_result_model0[ik]+procent95[ik])))

procent95_cch[ik]=1.96*casecohort_se_model0[ik]

analys95proc_cch[ik]=((beta_input>=(casecohort_coef_model0[ik]-procent95_cch[ik]))&

(beta_input<=(casecohort_coef_model0[ik]+procent95_cch[ik])))

procent95_cch_prevalent[ik]=1.96*casecohort_se_model0_prevalent[ik]

analys95proc_cch_prevalent[ik]=(

(beta_input>=(casecohort_coef_model0_prevalent[ik]-procent95_cch_prevalent[ik]))&

(beta_input<=(casecohort_coef_model0_prevalent[ik]+procent95_cch_prevalent[ik])))

} # end for-loop

percent_beta_input_Cox=mean(analys95proc_Cox)

percent_beta_input_cch=mean(analys95proc_cch)

percent_beta_input_cch_prevalent=mean(analys95proc_cch_prevalent)
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# rates

mean(ratio_0_all_model0)

mean(ratio_1_all_model0)

mean(ratio_2_all_model0)

# MSE

Bias_model0_without_prevalent=mean_casecohort_coef_model0-mean_Cox_result_model0

Bias_model0_with_prevalent=mean_casecohort_coef_model0_prevalent-mean_Cox_result_model0

var_model0_without_prevalent=var(casecohort_coef_model0)

var_model0_with_prevalent=var(casecohort_coef_model0_prevalent)

MSE_model0_without_prevalent=var_model0_without_prevalent+

Bias_model0_without_prevalent^2

MSE_model0_with_prevalent=var_model0_with_prevalent+

Bias_model0_with_prevalent^2

rate_prevalent_cases=sum((age_MI<45) & (MI==1))/

sum(data_death_model0$MI==1);rate_prevalent_cases

B.4 Model 1

# number of persons in my simulation

n=20000

############# Simulate age for MI - model 1 #################

p=runif(n,0,1)

epsilon_prel=log(-log(1-p))

mean_MI_aa=90

sigma=1/8

alpha_1=log(mean_MI_aa/gamma(sigma+1))

mean_MI_Aa=75

beta_1=log(mean_MI_Aa/gamma(1+sigma))-alpha_1
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age_MI_prel=exp(alpha_1 + beta_1 * genotype + sigma*epsilon_prel)

## For this model we need to draw the age_MI_prel for all age_MI_prel>=45

p=runif(n,0,1)

epsilon_1=log(-log(1-p))

age_MI=age_MI_prel*(age_MI_prel<45)+

exp(alpha_1 + beta_1 * genotype + sigma*epsilon_1)*(age_MI_prel>=45)

############ From state MI to state Dead ###############

t_before45=5 #years

t_after45=10

beta_2=log(t_after45/t_before45)

alpha_2=log(t_before45/gamma(sigma+1))

p=runif(n,0,1)

epsilon_2=log(-log(1-p))

TorF=age_MI>=45

death_MI=age_MI+

exp(alpha_2+beta_2*TorF+sigma*epsilon_2)

###################### Create our data ########################

age_death=(death >= death_MI)*death_MI+(death < death_MI)*death

age_censoring=80

# 0=death, 1=MI, 2=censored by age

MI=(death<death_MI & death<age_censoring)*0 +

(death>=death_MI & death_MI<age_censoring)*1 +

(death>=age_censoring & death_MI>=age_censoring)*2

age_MI_final=((death<death_MI & death<=age_censoring)| #| for "or"

(death>=age_censoring & death_MI>=age_censoring))*(-1)+

(death>=death_MI & death_MI<age_censoring)*age_MI

for(j in 1:n){ if(age_MI_final[j]==-1) age_MI_final[j]=NA}
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nr=1:n

subcohort=floor(nr/10)==nr/10

matrix_death=cbind(nr,genotype, age_death,MI,age_MI_final,subcohort)

data_death_model1=as.data.frame(matrix_death)

B.4.1 Model 0 analysis

######## Cox analysis ############

Cox_model1=coxph(Surv(age_MI_final,MI==1)~genotype, data=data_death_model1)

######## Case-cohort analysis ############

data_H_baseline=data_death_model1[(age_death>45)&(age_MI_final>45)&(MI==1),]

# excluding the prevalent cases

casecohort_result_model1=cch(Surv(age_MI_final) ~ genotype,

data=data_H_baseline, subcoh=~subcohort, id=~nr, cohort.size=n)

# data WITH the prevalent cases

data_H_prevalent=data_death_model1[(age_death>45)&(MI==1),]

casecohort_result_model1_prevalent=cch(Surv(age_MI_final) ~ genotype,

data=data_H_prevalent, subcoh=~subcohort, id=~nr, cohort.size=n)

B.4.2 Model 1 looping

# number of loops

k_1=1000

for(i_1 in 1:k_1) # start of for-loop

{source("Model 1 analysis.R")

Cox_result_model1[i_1]=coef(Cox_model1)

se_Cox_result_model1[i_1]=sqrt(Cox_model1$var)

casecohort_coef_model1[i_1]=coef(casecohort_result_model1)
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casecohort_se_model1[i_1]=sqrt(casecohort_result_model1$var)

casecohort_coef_model1_prevalent[i_1]=coef(casecohort_result_model1_prevalent)

casecohort_se_model1_prevalent[i_1]=sqrt(casecohort_result_model1_prevalent$var)

## the rates

ratio_0_all_model1[i_1]=ratio_0_model1

ratio_1_all_model1[i_1]=ratio_1_model1

ratio_2_all_model1[i_1]=ratio_2_model1} # end of for-loop

mean_Cox_result_model1=mean(Cox_result_model1,na.rm=TRUE)

mean_se_model1=mean(se_Cox_result_model1)

sd_Cox_model1=sd(Cox_result_model1)

mean_casecohort_coef_model1=mean(casecohort_coef_model1)

mean_casecohort_se_model1=mean(casecohort_se_model1)

sd_casecohort_coef_model1=sd(casecohort_coef_model1)

mean_casecohort_coef_model1_prevalent=mean(casecohort_coef_model1_prevalent)

mean_casecohort_se_model1_prevalent=mean(casecohort_se_model1_prevalent)

sd_casecohort_coef_model1_prevalent=sd(casecohort_coef_model1_prevalent)

###### 95% coverage ######

beta_input_model1=mean_Cox_result_model1

for (ik in 1:k_1)

{procent95_model1[ik]=1.96*se_Cox_result_model1[ik]

analys95proc_Cox_model1[ik]=((beta_input_model1

>=(Cox_result_model1[ik]-procent95_model1[ik]))&

(beta_input_model1<=(Cox_result_model1[ik]+procent95_model1[ik])))

procent95_cch_model1[ik]=1.96*casecohort_se_model1[ik]

analys95proc_cch_model1[ik]=(

(beta_input_model1>=(casecohort_coef_model1[ik]-procent95_cch_model1[ik]))&
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(beta_input_model1<=(casecohort_coef_model1[ik]+procent95_cch_model1[ik])))

procent95_cch_model1_prevalent[ik]=1.96*casecohort_se_model1_prevalent[ik]

analys95proc_cch_model1_prevalent[ik]=(

(beta_input_model1>=

(casecohort_coef_model1_prevalent[ik]-procent95_cch_model1_prevalent[ik]))&

(beta_input_model1<=

(casecohort_coef_model1_prevalent[ik]+procent95_cch_model1_prevalent[ik])))

} # end for-loop

percent_beta_input_Cox_model1=mean(analys95proc_Cox_model1)

percent_beta_input_cch_model1=mean(analys95proc_cch_model1)

percent_beta_input_cch_model1_prevalent=mean(analys95proc_cch_model1_prevalent)
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