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Abstract

The theory of linear operators is an extensive area. This thesis
is about the linear operators in finite dimensional vector spaces. We
study the symmetric, unitary, isometric, and normal operators, and
orthogonal projection in the unitary space, the eigenvalue problem and
the resolvent. We give a proof of the minimax principle in the end.
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Introduction

This report contains two sections. In Section 1 we study linear operators in
finite dimensional vector spaces, where projection, the adjoint operators are
introduced. In particular, we study the eigenvalue problem and some prop-
erties of the resolvent. In Section 2, different operators in unitary spaces,
such as symmetric, unitary, isometric and normal operators are considered.
We study the eigenvalue problems for these operators. Finally we prove the
minimax principle for eigenvalues.
The results in this report are primarily taken from Chapter 1 of [1].



1 Operators in vector spaces

1.1 Vector spaces and adjoint vector spaces

Let X be a vector space, and dim X be the dimension of X. In this thesis
we shall always assume that dim X < oc.

A subset M of X is a subspace, if M is itself a vector space. We define
the codimension of M in X by setting codimM = dim X — dim M.

Example 1. The set X = CV of all ordered N-tuples u = (£;) = (£1,...,&n)
of complex numbers is an N-dimensional vector space.

Let dim X = N, if o1, ...,zx are linearly independent, then they are a
basis of X, and each v € X can be uniquely represented as

N
u=>Y &u;, (1)
j=1

and the scalars {; are called the coefficients of u with respect to this basis.

Example 2. In CV the N vectors zj = (0,...,0,1,0,...,0) with 1 in the j-th
place, j = 1,..., N, form a basis (the canonical basis). The coefficients of
u = (§;) with respect to the canonical basis are the §; themselves.

If {z;} is another basis of X, since u = 3~ §;x;, there is a system of linear
relations

wk:Z’ijl‘; , k=1,...,N. (2)
J

When @,5} are coefficients of the same vector v with respect to the bases
{z;} and {$9} respectively, they are then related to each other by

k

The inverse transformations to (2) and (3) are

=) Ak =Y sl (4)
k J

where (1) is the inverse of the matrix (i) :



;%’i'}’ik = ;7]'1"%16 =k = { 017’;;: (5)
Let My, Ms be subspaces of X, we define the subspace M, + My by
M+ My = {x1 +z2: 21 € My,x2 € Ma}. (6)
Theorem 1. If My, My are subspaces of X, then
dim(M; + Mz) = dim M; + dim My — dim(M; N Ma). (7)

Proof. We can see that M7 N My is subspace of both M; and M. Suppose
that dim M; = my,dim My = mg and dim(M; N Ms) = m. We have to prove
that

d1m(M1 + Mg) =m1+mo —m.

Suppose that {x1, ...,z } is a basis of M; N M,. We can extend this basis
to a basis of M and to a basis of Ms. Let for example

Lot o, oo, a8

be two bases of My and M, respectively.

Let B = {xl,...,xm,xgl),...,xi,lli_m,xg),...,xm?_m

2) } Then B generates

My + Ms. Now we will show that the vectors in B are linearly indepen-
dent. Suppose that

(1) (2)

1 1 2
a1m1+...+ammm+ﬁlx§ )+...+Bml,mmm1,m+71x1 2)

+oo o Yma—m Ty = 0.
(8)

Let
B (1) W) 9
U =0121+ ... + pm + L1277+ o+ By —mTny s )
we have also
9 2
b =t 10



thus w € M; and u € Ms by (9) and (10). Hence u € M; N My. Therefore
there are (;,7 = 1,...,m such that v =) ;x;, and

2 2
Cll'l + ...+ mem + ’71505 ) + ...+ ’sz—mxinz—m =0.

s Yimo—m

Since {:1:17 S x?),. 72 } is a basis of My, then 1 =0, ..., Ymy—m =

0. Substituting this in (8), we obtain ajz1 + ... + @mTm + ﬁlxgl) + .+
By —m o) _ = 0, thus ay = 0, ...,y = 0, 81 = 0, .ee, By —m = 0. Hence B
is a basis of My + M>. Since B has m1 +m9 —m vectors, we get the required
result. ]

Definition 1. (Direct sum) Let My, ..., My be subspaces of X. X is a direct
sum of them if each v € X has a unique expression of the form

UZZUj, 'LL]‘EMJ‘, j=1,..,s. (11)
J

Then we write

X=M®@..®M,.
Proposition 1. If X = M; & ... ® Mg, then
1. X =M+ ...+ M,.
2. M;(\M; = {0}, where i # j.
3. dim X =}, dim M.

Proof. If X = My @ ... ® M, then each u € X can be uniquely expressed
as u = uj + ... + us, where u; € M;. Hence X = M + ... + M. Now let
u € M; N Mj, where i # j, then

u=01+...+0;-1+u +0j41+...+0; +... + 05 ,

and
u:01—1—...—|—Oi—|—...—|—0j,1—|—uj—|—0j+1—|—...—|—OS .

Since the expression (11) for u is unique, u; = u; = 0 and hence u =0 .
To show the last equality in the proposition we assume that dim X = N,
dim M; = m;, and we have to show that N = m;.



1 s
Let x;,...,2;

?,1=1,...,m; be bases of M;,j = 1,..., s respectively. Sup-

pose that

my ma ms
Zalixil + Z 0422‘-%'? + ...+ Zaszxf =0. (12)
=1 =1 =1

S ajixf € M;, and since X is the direct sum of M;, the representation
(12) is unique, and so for j = 1,...,s we have > .7, aj;z] = 0. Since {27}
j

are linearly independent, aj; = 0 for i = 1,...,m;,j = 1, ..., s. Hence z;,i =
1,...,mj,7 = 1,...,s are linearly independent.

Now suppose u € X, u = u1+us+...+us, u; € M;. Since u; is expressed in a
unique way as a linear combination of xz i =1,...,m;, then u is expressed in
a unique way as a linear combination of x{,j =1,...,s. Hence :vg,j =1,..,s

is a basis of X. Thus

dim X = " dim M; .
J

Definition 2. We call ||u|| a norm of u € X, if
(@) [lul| > 0 for all uw € X and |Ju|| =0 iff u = 0.
(13) ||au|| = |a|||u|| for all a € C,u € X.

(7i7) ||u + v|| < ||ul| + |Jv|| for all u,v € X.

Example 3.

[Jull = max &,

J
lull = 1451
i

2

lull = { D 1&P ]
i

where &; are coefficients of u with respect to the basis {z;} in X, are three
different norms.



We show only that the last expression is a norm. Let £;,n; be the coef-
ficients of u, v respectively, then

Nl = (S 1€2)% = 0 and Jul] =0 iff & =0, %,
ol = (S lag2)* = (ol S Ig)* = fal (S lg?)

-It follows from the Schwarz inequality (see e.g. [2]) that

O ImiD® < Y11 gl

N

therefore

N

2 gyl <2 (Z |§j|2)5 (Z |"7j|2>
Adding Y 1&|% + Y [nj|? to both sides gives
S UG+ 208m5] + g2 =D IGP+2>  gmil + > Insl?
<SP +20 16RO P2+ Inl
= [l + QI

Ole +m?)z < O 1GP)E + O Ingl?)z,

Hence

that is
Ju+ vl < fJull + [lvf]
-The adjoint space

Definition 3. (Linear forms and semilinear forms): A complex-valued func-
tion f[u] defined for u € X is called a linear form if

flow + Bv] = affu] + Bf[v] (13)
for all u,v € X , and all scalars «, 3, and a semilinear form if
flow+ po] = aflu] + Bflv]. (14)

Example 4. Let 1, ...,z be a fixed basis in X. It follows from (13) that
a linear form on X can be expressed in the form

N
flu] = Za]fj , where u = (§;) and flz;] =« ,

j=1



and similarly by (14) a semilinear form on X can be expressed in the form
flul =" 05
J

f[u] is a semilinear form if and only if f[u] is a linear form.

Definition 4. The set of all semilinear forms on X is a vector space, called
the adjoint (or conjugate) space of X and is denoted by X*.

Let us denote f[u] by (f,u) where f is a semilinear form. It follows from
the definition that (f, ) is linear in f and semilinear in u:

(af + Bg,u) = a(f,u) + (g, u), (15)
(f, au+ Bv) = a(f,u) + B(f,v). (16)

Example 5. For X = CN, X* may be regarded as the set of all row vectors
f = (o) whereas X is the set of all column vectors v = (&;), and

(f?u) = Zajg—j'

The adjoint basis The principal content in this part is the following
theorem:

Theorem 2. Suppose {z;} is a basis of X, and let ey, ...,en be vectors in

X* defined by

1=k
(ej,ivk)=5jk={ 0.7 £k (17)

then {e;} is a basis of X*.

Proof. First we show that e; satisfying (17) exist. Define e;,j =1,..., N by
(ej,u) = &. Then this corresponds to ay = d;5,k = 1,..., N, in the formula
above. Next we shall show that {e;} generate X*. Let f € X*, and suppose
(f,z1) = a1, (f,22) = aa, ..., (f,2n) = an. Put g =) aje;, then (g,21) =
(> ajej,x1) = ar(er, 1) + (e, 1) + ... + an(en, z1) = a1, and similarly
for j = 2,...,N,(g9,z;) = aj so that f(z;) = g(z;),j = 1,...,N. Since f,g
are equal on vectors of the basis {z;}, then f = g = aje;1 + ... + anen,

10



i.e., f is a linear combination of ey, ..., exn. It remains to show ey, ...,en are
linearly independent. Suppose that aje; + ... + ayeny = 0. Then

0=(0,21) = (a1€1 + ... + anen, 1)

= al(el, xl) + ...+ aN(eN,a:l)

= al y
and similarly for k£ = 2,..., IV, so that we have a; = ... = ay = 0. Thus
e1,...,en are linearly independent. Hence {e;} is a basis of X*. ]

Let {z;} be a basis of X, and let {e1,...,en}, {€],...,e/y} be vectors in
X* satisfying (17). Then by Theorem 2 {e;} and {€’} are bases of X* and

N

r_ (4) P

€; = g o ej, 1=1,.... N,
j=1

so that
(€], r1) = agl)(el,xl) + agl)(eg,wl) + ..+ ag\})(eN, T1)
=a” 1404 . +alV0
e
and (e}, z2) = agl), (e zn) = a%). Hence agl) = d;1 and €] = e;. Sim-

ilarly for j = 2,..., N we obtain €} = e;. Hence the basis {e;} of X* that

satisfies (17) is unique. It is called the basis adjoint to the basis {z;} of X.
Theorem 2 shows that

dim X* = dim X. (18)

Let {z;} and {2} be two bases of X related to each other by (2). Then

the corresponding adjoint bases {e;} and {e} of X* are related to each

other by the formulas
69 = Z:ijek , € = Z%/kjeg . (19)
k J

Furthermore we have

Yik = (€f,21) » Arg = (er, 25) - (20)
Definition 5. Let f € X*. The norm || f]| is defined by
fiu
1£1= sup W g (21)
ozuex  lull ju=1

11



1.2 Linear operators

Definition 6. Let X, Y be two vector spaces. A function T that sends every
vector u of X into a vector v = Tu of Y is called a linear transformation or
a linear operator on X to Y if

T(a1u1 + a2u2) = o1Tu; + asTus (22)
for all uy,us € X and all scalars aq, as .

If Y = X we say T is a linear operator in X .
If M is a subspace of X, then T'(M) is a subspace of Y, the subspace T'(X)
of Y is called the range of T' and is denoted by R(T), dim(R(T)) is called
the rank of 7. The codimension of R(T') with respect to Y is called the
deficiency of T and is denoted by def T', hence

rank T+ def T'=dimY . (23)

The set of all ©u € X such that Tu = 0 is a subspace of X and is called the
kernel or null space of T and is denoted by N (7). dim(N (7)) is denoted
by nul 7', and we have

rank 7'+ nul 7' = dim X . (24)

If both nul T" and def T are zero, then T is one-to-one. In this case the
inverse operator 7! is defined.
Let {x} be a basis of X. Each u € X has the expansion (1) so that

N
Tu=>)» Tz, N=dmX . (25)
k=1

Thus an operator T on X to Y is determined by giving the values of
Txp, k=1,..,N.If {y;} is a basis of Y, each Tz}, has the expansion

M
Tay = ZTjkyj , M =dimY . (26)
j=1

Substituting (26) into (25), the coefficients n; of v = T'u are given by
N
ni=> ke j=1,...M . (27)
k=1

12



In this way an operator T on X to Y is represented by an M x N matrix
(71) with respect to the bases {x1},{y;} of X,Y respectively.

When (TJ’-k) is the matrix representing the same operator T with respect to
a new pair of bases {z}},{y}}, we can find the relationship between the
matrices (77, ) and (7;;) by combining (26) and a similar expression for Tz,
in terms of {y’} with the formulas (2),(4):

Ta = T(Y Ankwn)
3

= ATz,
' M

= Ak Y Tinyi
n i=1

=3 Ty
i h

= Z Z Tih Yk Z Vi
i h j

=3 AminAny
i i h

= Z Z ViiTin kY
4

- Z kyj 3

where 2, = Y ypnah, and @, = > Anean, vi = > Vjyj and v = vy
: 5

k h J
Thus the matrix 7/, is the product of three matrices (v};), () and (Y1),
(k) = (V) (Tik) () - (28)

Thus when T is an operator on X to itself det (7;;) and the trace of (1),
i.e., Y 7;; are determined by the operator T itself. More precisely, we shall
show det (7;;) and trace (7;) are the same for each choice of the basis for
X. (28) becomes

() = (98) (Ti0) (i) - (29)
We show tr ( = tr (7). Let v7 = (a;;) and 7y = bjj, then tr (y7) =
k) i

Zaﬂ = ZZ’Yﬂchg = ZZTkj’)/jk = Zbkk = tr (7). Since (¥;
E o j k

13



the inverse of the matrix (v;1), and we know that
det(y79) = det(y) det(7) det(%),
we have
det(7') = det(7) , and tr (7') = tr (y74) = tr (174) = tr (1) . (30)
Example 6. If {f;} is the basis of Y* adjoint to {y;} then
Tik = (f5, Txy) - (31)

Proof. Since Tx) = Z TikYi, then

1

= Zﬂ'k(fj:yi)
= Tikdi;

= Tjk -
O

Example 7. Let {z;} and {e;} be the bases of X and X*, respectively,
which are adjoint to each other. If T" is an operator on X to itself, we have

tr T = Z(ej,ij) : (32)

J

Proof. Similarly as in the last example, T'z; = Z 7TijTi, therefore

Z(‘fjaT%’) = Z(€j7 mei)
= Z(ZTij(ej’xi))

= s -
i

14



If T"and S are two linear operators on X to Y, then we define:
(aS + BT)u = a(Su) + B(Tu) .
If S maps X toY and T maps Y to Z, then we set
(T'S)u=T(Su) .
Example 8. 1. rank (S+T) < rank S +rank 7.
2. rank (7'S) < max(rank 7', rank 5).

Proof. (1) Let R(S) = My, R(T) = M2, R(S+T) = M. Since each v € M
can be expressed in the form v = v{ + v9,v1 € My,v9 € My, M = M7 + Mo,
thus dim M = dim M; +dim My —dim(M; N Ms) < dim M; +dim M,. Hence
rank (S +T) <rank (S) 4 rank (7).

(2) Let S : X - Y, T : R(S) — Z; TS : X — Z. Then we have
rank S +nul S = dim X and rank (7'S) + nul (7°S) = dim X. Since nul S <
nul 'S, rank TS <rank S. Let T:Y — Z, TS: X — Z. Since T : Y —
Z, rank T+def T' = dim Z, and rank (7'S)+def (T'S) = dim Z. Since def T' <
def (T'S), rank (7'S) < rank 7. Thus rank (7'S) < max(rank 7, rank S). O

Let us denote by L(X,Y) the set of all operators on X to Y. It is a vector
space. Let L(X) = L(X, X), then we have:

e 70=07T=0.
e T1 =1T =T, (1 is the identity operator) .
o TN = TN (TR — TMn = 0,1, ..

oy .

e If S,T € L(X) are nonsingular, then T-!T =1, T-" = (T~!)", and
(TS)~t =571t~

For any polynomial P(z) = ag + a1z + ... + @, 2" in the indeterminate
z, we define the operator

P(T)=a0+ 1T+ ...+ a, T".

Example 9. If S € L(X,Y) and T € L(Y,X), then ST € L(Y) and
TS € L(X).

15



1.3 Projections

Let M, N be two complementary subspaces of X, X = M & N. Thus each
u € X can be uniquely expressed in the form v = v/ +u”, v’ € M,u" €
N. ' is called the projecion of w on M along N. If v = v/ + v”, then
au + (v has the projection au’ + 3v' on M along N. If we set v/ = Pu, it
follows that P is a linear operator in X called the projection operator or
projection on M along N. 1 — P is the projection on N along M, and we
have Pu = u if and only if u € M, Pu = 0 if and only if w € N, that is
R(P)=N(1—-P)=M,N(P)=R(1 - P) = N. Furthermore, PPu = Pu,
that is P is idempotent, i.e.,
P> =P.

Remark 1. Any idempotent operator P is a projection.

To show, let M = R(P) and N = R(1 — P). If u’ € M, there is u such that
Pu = u' and therefore Pu/ = P?>u = Pu = «'. Similarly if v” € N. Now let
ue€ MNN. Then u = Pu=0.So M NN = {0}. Thus each u € X has the
expression v = v’ + v” with v/ = Pu € M and u” = (1 — P)u € N, proving
that P is the projection on M along N .

Example 10. If P is a projection, then we have
tr P =dim R(P) .

Proof. Since P is an operator in X, it can be represented by an n x n (n =
dim X') matrix (7;) with respect to the basis {z;} of X, and Pu = u when
u € M. This basis can be chosen so that x1,...,z,, € M and Tymy1, ..., Ty €
N, where N = (1 — P)X. Then P(aix1 + ... + QnZy) = 121 + ... + QT
Hence (7j1) is diagonal with 711 = ... = Ty = 1, Tigimt1 = .. = T = 0.
So tr P =m = dim R(P).

O

In general, if X = My @ ... ® M, then each u € X can be uniquely
expressed in the form v = uy + ... + us, u; € M;, j = 1,...,s. Then the
operator P; defined by Pju = u; € Mj, is a projection on M; along N; =
M ®...® Mj_1 ) Mj+1 @ ... & M,. And we have

S p=1, (33)

16



for 3 P)(Y_w) =3 Pi(Yw) =3 Pjuj = uj, and

J J
P.Pj = 6;P; (34)
because PkPj(Z u;) = Pyuj = Orjuj = Orj Pju.

Note that, ifzwe have (33) and (34), then X is the direct sum of subspaces
R(Pj). To show that, let M; = R(F;). For u € X, by (33) we have u =
Yo Pju=> uj € My+..+ M, Moreover M; N M; = {0} for i # j, because
by (34) if u € M; N M;j, then v = Pyuy = Pjup and v = Puy = Pful =
P;Pjus = 0. Hence X = M; @ ... @ M,. Since P; is idempotent, it follows
from Remark 1 that P; is the projection on M; along N;.

1.4 The adjoint operator

Definition 7. Let T € L(X,Y), a function T* on Y* to X* is called the
adjoint operator of T if :

(T*g,u) = (9,Tu), Yg € Y™, Yu € X. (35)

Then (T*(a1g1+a292), u) = (a1g1+aege, Tu) = a1(g1, Tu)+as (g, Tu) =
a1(T*g1,u)+as(T*ge, u) so that T* (a1 91 +a2g2) = a1T* g1+a2T*ge. There-
fore T* is a linear operator on Y™ to X*, that is, T* € L(Y™*, X™).

The operation * has the following properties:

1. (aS+ pT)* = aS* + pT*, for S,T € L(X,Y), and o, 3 € C.

2. (TS)* = S*T*, for T € L(Y, Z) and S € L(X,Y).
Note that S* € L(Y*, X*) and T € L(Z*,Y") so that S*T™* € L(Z*, X™).
Then ((T'S)*h,u) = (h,TSu) = (T*h, Su) = (S*T*h,u),Yh € Z*VYu € X.
Hence 2. holds.
Example 11. If T € L(X), we have 0* = 0,1* = 1.

If {x1},{y;} are bases in X,Y respectively, and T' € L(X,Y) is repre-
sented by a matrix (7;;) in these bases, and {ex},{f;} are the adjoint bases
of X* Y™ respectively, the operator T € L(Y™, X*) can be represented by a
matrix (7;;). These matrices are given by 7;; = (f;, Tw) according to (31)
and 7, = (1" fj,z) = (f;, Txy) (see the argument below), thus

=7k k=1,.,N=dmX, j=1,..,M = dimY. (36)

17



To show that (T f;,z) = 7j;, we first write 7" f; = E 7;;fi and then
i
compute:

T f],ZEk Z fi,xk Z fl,xk Zf‘;}&zk = 7_']%.
%

Example 12. If T € L(X), we have

det T =det T, tr T* =tr T (37)

and
(T*)"t = (T71)", (38)

Since det (7;;) and tr (7;) are the same for each choice of the basis for X
and similarly with (7;;), (37) is satisfied according to (36). To prove (38)
note that T*(T~1)* = (T~ 'T)* = 1* = 1.

Definition 8. (Norm of T') The norm of 7' is defined by

170 = sup 24— o iz, T e LY. (39)

ozuex Ul ju=1
Example 13.
f,Tu
1Tl = swp TN o g, 7). (40)
Oue X Il =1
0#feYy [IflI=1

We first prove that the expression for ||T']| given by (40) is a norm.

Proof.  -||T|| = sup |(f,Tu)| >0, and =0 iff " = 0.

[[uf=1
fll=1
“llaT]l = SuP, |(f, aTw)| = SuP |a(f, Tu)| = |af Sup, |(f, Tw)| = la[|T]].
1£lI=1 ll£ll=1 [l £ll=1
[ T+S[ = Sup, |(f, TutSu)| = SuP, |(f, Tu)+(f, Su)| < ||81”1p1(|(f, Tu)|+
[ £ll=1 1£l=1 I £ll=1
|(f, Su)]) < Sup, |(f; TU)|+”81”1p1 |(f; Su)l = [T+ [IS]]. Hence || T defined
I£ll=1 I £ll=1
n (40) is a norm. O

18



We have to show that (39) and (40) are equivalent. To see this we recall

(21). Note that |(f,w)| < || f]|||w|. This implies that ||u| = sup ()] =
o£fexs | fll
sup |(f,u)| (see Section 1.2.5 in [1]). It follows that ||Tu| = sup |(f, Tu)]
I£ll=1 lFll=1
and T = sup [[Tul| = sup [(f,Tu)|.
flull=1 [lull=1
ll£ll=1
T
Since T = sup W then U8 < 7, so 17l < . Hence
full=1 I

ITSull < [T Sull < I TSHlull, thus
IS < TS| (41)

for T € L(Y,Z) and S € L(X,Y).
If T € L(X,Y), then T* € (Y*, X*) and

[T = 1T (42)

This follows from (40) according to which ||T%|| = sup [(T* f,u)| = sup |(f, Tu)| =
|T|| where v € X, ||ul| =1 and f € X*,||f]| = 1.
1.5 The eigenvalue problem

Definition 9. Let 7' € L(X). A complex number A is called an eigenvalue
of T' if there is a non-zero vector u € X such that

Tu = Au. (43)

u is called an eigenvector of T' belonging to the eigenvalue A. The set Ny of
all w € X such that Tu = Au is a subspace of X called the eigenspace of T'
for the eigenvalue A and dim N, is called the multiplicity of A .

Example 14. ) is an eigenvalue of T' if and only if A — £ is an eigenvalue
of T —¢.

Proposition 2. The eigenvectors of T' belonging to different eigenvalues
are linearly independent.

Proof. To prove that we will use induction.
We shall first show that any two eigenvectors of T' belonging to different
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eigenvalues are linearly independent. Assume next this is true for k eigen-
vectors, and we shall prove it for k + 1 eigenvectors. Let Tu; = A\uy, Tus =
)\QUQ, )\1 75 )\2,)\1 75 0 and

a1u1 + agug = 0,

we have

Q1 AU + ashous = 0.

By multiplying the first equation by A1 and subtracting it from the second
we obtain (A1 — A2)agus = 0. Hence apug = 0, but ug # 0, so ag = 0. Now
aju; = 0 which implies a; = 0 since u; # 0. Hence a3 = as = 0, that is
u1, ug are linearly independent.

Now assume Tu; = Aug, ..., Tup, = Agug, A # Aj for i # j and uq, ..., ug
are linearly independent. We shall show that wp,...,ug, upyr1 are linearly
independent where Tug4+1 = Agy1ur4+1. We have two cases: A1 = 0 and
Ak+1 # 0.

If App1 = 0, then we have \; # 0,7 = 1, ..., k. If uy, ..., u, ups1 are linearly
dependent then

Ul = Uy + ... + QU + Qg1 UE+1,

and
AMup = Tup = ag s + ... + ap AUy,

thus w1, ..., ug are linearly dependent, and this contradicts our assumption.
If Ak11 # 0 suppose
Uk4+1 = 0qu1 + ... + agug,

where o # 0, then we have

Met1Upt1 = Tupp1 = a1 \ug + ...+ o Aguy

061)\1 Oék)\k
uy + ... +
Mer1 Ak+1

Since uq, ..., ux are linearly independent, we obtain A; = Agy1,...; Ak = Ag1,
and this is also a contradiction. ]

It follows from this proposition that there are at most N eigenvalues of
T, where N is the dimension of X.
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Proposition 3. lim HT”H% exists and is equal to inf HT"H%
n— oo n=1,2,...
Proof. 1t follows from (41) that
[T | < T Tl T < TS myn = 0,1, ... (44)
Set a,, = log||T™||, what is to be proved is that

lim ™ = inf (45)
n—oo n n=1,2,--- n

The inequality (44) gives

Uman < G + Q.

Let n = mq + r, where ¢, are nonnegative integers with 0 < r < m, then
the last inequality gives

A < Gmg + Q.

Let apmq = log [|[T™4]]. By (44) amq < log ||T™||7 = qlog || T™|| = gam, hence
ap < QG + ay

and ]
a
n < gam + —a, .
n n n

Therefore

. an . q . Ay
lim sup — < lim sup —a,, + lim sup — .
n—00 n n—00 n n—00 n

. . g 1 . ar
Since lim sup — = — and lim sup — =0,
n—00 n m n—oo n
. anp, Qm,
lim sup — < — .
n— oo n m

Since this holds for all fixed m,

. Qap . 0 Om
lim sup — < inf — .
n m

n—oo
Obviously
. (7% . Am
lim sup — > inf —
n—oo n m
hence
. an, ) an
lim sup— = inf — .
n— 00 n n=12,... N
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Now we define:

Definition 10. (Spectral radius of T") sprT :lim||T"||% :ianT"H%.

1.6 The resolvent

Let T' € L(X) and consider the equation
(T - f)u =7,

where £ is a given complex number, v € X is given and u € X is to be
found. This equation has a solution u for every v if and only if T — £ is
nonsingular, that is £ is different from any eigenvalue Ap of 1. Then the
inverse (T — ¢)~! exists and the solution u is given by

u= (T —¢&) M.

The operator

R() = R(&,T) = (T =)~ (46)
is called the resolvent of 7. The complementary set of the spectrum X(7')

is called the resolvent set of T" and will be denoted by P(T'). The resolvent
R(§) is thus defined for £ € P(T).

Example 15. R(£) commutes with 7. And R(&) has exactly the eigenvalues
(An, — &)~ where A\, are eigenvalues of T
We show that R(§) commutes with T
T=T-1

=TT - (T - &)

=(T-OT(T-¢~"
Hence . . .

(T=8 " T=(T=¢5) (IT-9T(T-¢)"

=T(T-¢)7'.
Now we show that if A is an eigenvalue of T, that is T = Au, then (A —&)~!
is an eigenvalue of R(§).
Clearly we have

(T=8u=A=8u,
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or equivalently

A=) T - u=

Then

(&) (- &) T — Eu) = (T —¢)!
B A= (T — &) NT— )= (T— &)
Hence

A= u=(T-¢™"

Note that the resolvent satisfies the (first) resolvent equation

R(&1) — R(&2) = (&1 — &2)R(&1) R(&2) (47)

(T—&) —(T-&) = (T~ 51) HT = &) T = &)(T - &)
(T—&)™ = (T-&)7]
= (T - &) (T - &) (T - 52) (T' = &)
=@ -e)T-&) (T-&)
= (&1 — &) R(&)R(&2)-
Here we have used the identity (7' — &) (T — &1) = (T — &)(T — &2).

We shall show that for each &y € P(T") R(£) is holomorphic in some disk
around &p.

Proposition 4. R(£) = Y (€ — &)"R(&)™ 1! is absolutely convergent for
€ — &l < (spr R(&0))™"

To prove this we have to study the following Lemmas.

where £ is a given complex number.

Lemma 1. (Neumann series) The series ZT” is absolutely convergent if
n=0
|T|| < 1. Moreover,

(1-T)" ZT”, and |(1—T)"Y| < (1—||T|)~Y, where T € L(X) . (48)
n=0
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Proof. This series is absolutely convergent because lim HT”H% <||T| < 1.
n—oo

Set Z T" = S, then
n=0

TS = f: A

n=0
o0
:ZT”
n=1
[o¢]
=y 1"-1
n=0

=5-1,
so that TS = ST = S — 1. Hence (1 -17)S = S(1—-T7T) =1 and S =
oo oo oo
(1=T)~" Now we have [|(1 =)' = | YT <Y IT" < Y IT|" =
) n=0 n=0 n=0
(=7~ -
Lemma 2. The series (48) is absolutely convergent if ||77|| < 1 for some

positive integer m, or equivalently, if spr T" < 1, and the sum is again equal
to (1 —T)~! (see proof of Proposition 3).

Proof. Since spr T = inf ||T"|= = lim |7"|» and |T™|= < 1, it
n=1 n—oo

I Ly

follows that lim ||T”||% < 1 and the series is absolutely convergent. The
n—oo

proof that the sum is equal to (1 —7)! is the same as above (see the proof

of Proposition 3). O
Lemma 3. -
St)=(1-tT)'=> ¢"T", (49)
n=0

where ¢ is a complex number. The convergence radius r of (49) is exactly
equal to 1/spr T.

Proof. By Lemma 2, (49) holds if spr(tT') < 1, i.e., |t| < 1/sprT, so the

convergence radius r > 1/sprT. If |¢t| > 1/sprT, then spr(tT) > 1, so
1

lim |[t"T"||» > 1 and the series diverges. Hence r = 1/sprT. O

n—oo
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Now we can complete the proof of Proposition 4. By (47), with & = ¢

and & = &, we have R(€) = R(&)(1 — (€ — &)R(&)) ™" Let tT = (£ —
&) R(&) in Lemma 3. Then

o

R(&) =) (6= &) "R(&)™

n=0

By Proposition 4 we obtain:

Proposition 5. R(¢) is holomorphic at & in the disk |€ — &| < (spr T) L.
Proposition 6. R() is holomorphic at co.

Proof. R(&) has the expansion

[e.9]

R =—¢'1-¢'m) == ¢l (50)

n=0

which is convergent if and only if || > spr T, thus R({) is holomorphic at
infinity. O

Example 16. |R(¢)| < (/€| — [T])~" and [[R(§) + &1 < I€I7M (€] —
|71~ HITY, for €] > IT]|-

Proof. 1t follows from (50) that

IRE) =11 - & '17|
=&l D (T/€)"
S
< le=t Yo lermTT
=l - et
= (¢l = ITH~,
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and
oo

IR + &M =11-> ¢+l

n=0

)
= > ¢t
n=1

< (&7 YT
n=1
el (O [ A DR

1 1

=Tl Kl

_ =+ 1T
SISl KA1

= [¢I7 (el = I~y

O]

The spectrum X(7") is never empty; 7" has at least one eigenvalue. Oth-
erwise R(§) would be an entire function such that R(§) — 0 for || — oo,
then we must have R(£) = 0 by Liouville’s theorem (see [3]). But this results
in the contradiction that 1 = (T'— §)R(§) = 0.

We can see that each eigenvalue of T is a singularity of the analytic func-
tion R(&). Since there is at least one singularity of R(£) on the convergence
circle |§| = spr T according to (50), spr T coincides with the largest (in
absolute value) eigenvalue of T":

spr T' = max |Ap|. (51)

This shows that spr 7T is independent of the norm used in its definition.

2 Operators in unitary spaces

2.1 Unitary spaces

A normed space X is a special case of a linear metric space in which the
distance between any two points is defined by ||u —v/||, where u and v belong
to X.
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Definition 11. (The complex inner product) Let u,v € X, and let (u,v)
be a complex number, then we say that the function (, ) is a complex inner
product if it satisfies:

-(aquy + Buz,v) = a(ur,v) + B(ug,v).

-(u,v) = (v, u).

-(u,u) >0, if u # 0.

From the second condition in the last definition we can obtain

(u, kv) = k(u,v),

since (u, kv) = (kv,u) = k(v,u) = k(u,v).

Definition 12. A normed space H is called a unitary space if an inner
product (u,v) is defined for all vectors u,v € H.

Definition 13. In a unitary space the function
1
[ull = (u,u)? (52)
is a norm which is called the unitary norm.

We shall show the conditions in the Definition 2:
-the first condition follows directly from the definition of the inner prod-
uct.
“flau] = (au,au)? = [a(u, au))? = [ad(u, u)]% [ ]l
(w,u+0) + (v, u+0)]2 = [(u,u) + (u,0) +
(v,u) + (v,0)]2 < [(u,u) + |(u,v)] + | (v, )] + (v v)]% By the Schwarz in-
equality
[(w, 0)[ < lulllloll (53)

1 1
hence [u-+v] < [[Jul+|(w, v)[+[(v, w)|+[[olP]2 < [Jull*+2[ulllv]+]v]*]z =
[l + [l

Example 17. For numerical vectors u = (&1, ...,&n) and v = (11, ..., NN ) set

v) =Y &, llul? =) 1%

with this inner product the space CV becomes a unitary space.
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Remark 2. A characteristic property of a unitary space H is that the adjoint
space H* can be identified with H itself.

To show that, let f,u € H, we have the form (f,u) is linear in f and
semilinear in u by Definition 11. Then f € H* by (15) and (16). Hence f
can be considered as a vector in H or a vector in H*. Thus H and H* can
be identified.

Definition 14. (Orthogonal) If (u,v) = 0 we write uLv and say that u,v
are mutually orthogonal.

If S, S’ are subsets of H we say
ulS ifulv, Vo€ S (where u € H),

S18" ifulv, Yues, Yveds.
The set of all u € H such that uLS is denoted by S=.

Example 18. « 1S implies ul M where M is the span of S.
Let v € M, then there are vy,--- ,vp € S and ay,...,ar € C such that
v =001 + -+ avg. So

(u,v) = (u, 11 + - -+ + agvk)

= (u,oqv1) + -+ + (u, V)
ai(u,vy) + -+ + ag(u, vg)
104+ ag-0

a
0,

thus u LS.
Let dim H = N. If xyq, ...,xy € H have the property
(), 2x) = i (54)

then they form a basis of H, called an orthonormal basis, for ayxq + ... +
ayzy = 0, implies (121 + ... + anzy,z;) = 0 and a;(z;,2z;) = 0 for all
Jj=1,...,N, hence o;j = 0, showing that z1, ...,z are linearly independent.
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2.2 Symmetric operators

Definition 15. (Sesquilinear form) Let H, H' be two unitary spaces. A
complex-valued function ¢[u,u’] defined for v € H and ' € H' is called a
sesquilinear form on H x H' if it is linear in uw and semilinear in u’.

If H' = H we speak of a sesquilinear form on H.
Let T be a linear operator on H to H', the function

tlu,u'] = (Tu,u’) (55)

is a sesquilinear form on H x H'. Conversely, an arbitrary sesquilinear form
t[u,u'] on H x H' can be expressed in this form by a suitable choice of an
operator T on H to H'. Since t[u,u'] is a semilinear form on H' for a fixed
u, there exists a unique w’ € H' such that t[u,v] = (w',u’) for all v’ € H'.
Since w' is determined by u, we define a function T by setting w’ = Tu. T is
a linear operator on H to H'. In the same way, t[u, '] can also be expressed

in the form

tlu,u'] = (u, T*u'). (56)
Since H*, H"* can be identified with H, H' respectively, T* can be consid-
ered as the adjoint of T on H' to H.

T*T is a linear operator on H to itself. The relation
(u, T*Tv) = (T"Tu,v) = (Tu, Tv) (57)

shows that 7T is the operator associated with the sesquilinear form (7'u, T')
on H. Note that the first two members of (57) are the inner product in H
while the last is that in H'.

2
Tt follows from (57),(40) that ||T*T] — supm > SupW _
u
|T||?. By (41) and (42) we have ||[T*T|| < || T*||||T|| = || T||*. Hence
17| = || - (58)

Example 19. If T is an operator on H to itself, (T'u,u) = 0 for all u implies
T=0.
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Proof. We have (T'(u+v),u+v) = 0. On the other hand, (T'(u+v),u+v) =
(Tu,w) + (Tu,v) + (Tv,u) + (Tv,v) = (Tu,v) + (T'v,u) = 0. Since v is any
vector in H, then (Tu,iv) + (Tiv,u) = —i(Tu,v) + i(Tv,u) = 0, that is
—(Tu,v) 4+ (Tw,u) = 0. Combining this equality with (Tu,v) + (Tv,u) =0
yields (T'v,u) = 0,Vu,Vv. Hence T' = 0.

0

Remark 3. This property is not true when 7' is defined on a real space. To
show that we can take T represented by the matrix

0 1
Tk=\-1 0)°
then (Tu,u) = 0 for all u, but T # 0.

Definition 16. A sesquilinear form t[u, v] (or ¢ in short) on a unitary space
H is said to be symmetric if

t[v, u] = t{u,v], for all u,v € H. (59)

If ¢ is symmetric, t[u,u| is real-valued, and is denoted by t[u]. ¢ is
nonnegative if t[u] > 0 for all u, and positive if ¢t[u] > 0 for all u # 0.

The operator T associated with a symmetric form ¢[u,v]| according to
(55),(56) has the property that

T =T. (60)

Indeed, t[v,u] = (Tv,u) = (v, T*u) and t[u,v] = (T'u,v) = (v,Tu). Hence
T =T.

Definition 17. An operator 7' on H to itself satisfying (60) is said to be

symmetric.

(Tw,u) is real for all w € H if and only if T is symmetric. Indeed,
if (Tw,u) is real, then (Tu,u) = (u,Tu) = (u,Tu) = (T*u,u), hence by
Example 19 T* = T. Conversely if T* = T, then (Tu,u) = (T*u,u) =

(u, T*u) = (Tu,u), thus (Tu,u) is real.
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A symmetric operator T' is nonnegative (positive) if the associated form
is nonnegative (positive), and we write 7" > 0 to denote that 7" is nonnegative
symmetric. More generally, we write

T>Sor S<T

if S,T are symmetric operators such that T'— S > 0.

Example 20. If T is symmetric, P(7) is symmetric for any polynomial P
with real coefficients.

Since (a1'S)* = @S*T™, it follows that T"* = T*" =T, thus
(T + ..+ ap) =, T+ ...+ ag =, T"+ ... + ap.

Example 21. For any linear operator 7' on H to H', T*T and TT* are
nonnegative symmetric operators in H and H’, respectively.
We have

(T*T)* = T*(T*)* = T*T, (T*Tu,u) = (Tu, Tu) >0

and
(TT*)* = (T*)'T* =TT, (TT*u ,v') = (T*, T*u) > 0.

Example 22. If T is symmetric, then 72 > 0; T2 =0 < T = 0.
(T?u,u) = (Tu, T*u) = (Tu, Tu) > 0; T? = 0, that is (T?u,u) = (T, Tu) =
0 according to Example 19, and this is equivalent to T' = 0.

Example 23. R< Sand S <T imply R<T. S <T and S > T imply
S=T.

R < Sand S <T isequivalent to S — R > 0 and T — S > 0, therefore
((S — R)u,u) > 0 and ((T' — S)u,u) > 0, hence (Su,u) — (Ru,u) > 0 and
(Tu,u) — (Su,u) > 0. Adding the last two inequalities, we obtain (T'u,u) —
(Ru,u) > 0. Hence ((T'— R)u,u) > 0, that is, T'— R > 0.

S <Tand S > T isequivalent to S—T < 0and S—T > 0, and this implies
that S — T = 0, that is (Su,u) — (Tu,u) =0 for all w € H. Thus S =T by
Example 19.
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2.3 Unitary, isometric and normal operators

Definition 18. Let H and H’ be unitary spaces. An operator T on H to
H’ is said to be isometric if

|ITul| = |jul]| for every w € H. (61)

This is equivalent to (T*Tu,u) = (Tu, Tu) = (u,u), thus
T =1. (62)
This implies that
(Tu,Tv) = (u,v) for every u,v € H. (63)

Definition 19. An isometric operator 1" is said to be unitary if the range
of T is the whole space H'.

Example 24. T € L(H, H') is unitary if and only if T~! € L(H', H) exists
and
Tt =1". (64)
If T is unitary, ||Tu|| = ||u|| implies that the mapping 7" is one-to-one,
that is, 77! exists. Since T"T =1, T~' =T*. If T~! exists and T~ = T*,
then T*T = 1, hence T is unitary.

Example 25. T is unitary < T is.
We have T~1* = T*~! and by Example 24 this is equivalent to (T%)* =
(T*)~1, which is equivalent to T* being unitary.

Example 26. If T € L(H',H") and S € L(H,H') are isometric, T'S €
L(H,H") is isometric. The same is true if ”isometric” is replaced by ”uni-
tary”.

We have §*S = 1 and T*T = 1, therefore (T'S)*T'S = S*(T"T)S =
S5*S =1, and if the range of S is the whole space H’, and the range of T is
the whole space H”, this implies that the range of T'S is the whole of H".

Definition 20. T € L(H) is said to be normal if 7" and 7™ commute, i.e.

T*T = TT*. (65)
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Symmetric operators and unitary operators on a unitary space into itself
are special cases of normal operators.

Example 27. Let T7,75,T5 be operators represented by the matrices

1 10\ /00 i 1
1 10],(lo1o0]f,[d
000 i 00/ \o

O = .

0
0],
0

respectively, then 77 is normal, symmetric but not unitary, 75 is normal,
not symmetric but unitary, 75 is normal, neither symmetric nor unitary.

An important property of a normal operator T is that

T = |T||", n=1,2,... (66)

This implies that
spr T = [T (67)
We shall prove (66). If T is symmetric, by (58) ||T?|| = ||T||*. Since T2
is symmetric we have ||[T?| = ||T?||> = ||T||*. Proceeding in this manner
we obtain [|[T"|| = ||T'||™ for n = 2™, m = 1,2,--- . If T is normal but not
necessarily symmetric, again by (58) we have ||T"||> = ||T"*T"||. Since

T™*T"™ = (T*T)™ because T is normal, and T*T is symmetric, by (58)
T2 = |(T*T)"|| = ||T*T||™ = ||T||** for n = 2™. Now if 2™ —n = r >
0, then | TPIT|" = [T = [T7+)| < [[TT7)| < [T T Thus
IIT||™ < ||T™]|. The opposite inequality is obvious. This proves (66).

Example 28. If T is normal then (i) 7" = 0 for some integer n implies
T = 0. (ii)If T is nonsingular then 7! is normal.

() " =0 = [T =0 = |T|" = |[T]| =0 =T =0,

(ii) We have T*T = TT* therefore (T*T)~! = (TT*)~! therefore T~'T*~! =
T+ 171 since T*~1 = T~ therefore T~ 1T~ = T~

2.4 Orthogonal projections

Definition 21. Let M be a subspace of H and H = M @M, the projection
operator P = Py; on M along M~ is called the orthogonal projection on
M.
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P is a symmetric, nonnegative and idempotent operator, for
(Pu,u) = (v, u' +u") = (u/,u') > 0 (68)

where
wv=u 44", ue H ueM, " eM", (69)

by ' Lu”. (68) shows also that (Pu,u) is real . Hence P is symmetric, i.e.
P* = P. Idempotent follows from P being a projection.

Example 29. If P is an orthogonal projection, then 1 — P is a symmetric,
nonnegative and idempotent, and we have

0<P<1, ||P|=1if P+£0.

1-P=1*—P*=1—-P((1 - Plu,u) = (u—v,u) = W v +u") =
(u",u") >0,and (1-P)2=1-2P+P>=1-2P+ P =1- P. Now
((1 = P)u,u) > 0, therefore 1 — P > 0, and (Pu,u) > 0, therefore P > 0.
Hence 0 < P < 1. Since P2 = P and P is symmetric, || P|| = ||P?|| = || P|?
by (58), or equivalently || P||(1—||P]|) = 0. But || P|| # 0 for P # 0, therefore
1P| = 1.

Example 30. [|(1 — Pyy)u|| =dist(u, M),u € H.
dist(u, M) = inj& | — v]|. Since [ju—v||? = ||(v/ —v') +u"||? = ||[u’ —'||* +
//||2 °c

u' ||%, the iInfimum 1s attained as v = u’', and 1s equal to ||u” || = —Ppr)ulf|.
he infi i ined ! ' and i 1 " 1-P

Example 31. 1. M1N < Py Py =0.

. The following three conditions are equivalent:
(i)M D N,

(ii) Py > Pw,

(111)PMPN = PN.

Proof. H=M @ M*.

(1) We have M LN, therefore for each u € H, 0 = (Pyru, Pyvu) = (u, Py Pyu) =
(u, Py Pyu). Hence PyyPy = 0. Conversely if Py Py = 0, then Pyu =
Py Pyu =0 for all w € N. Thus M _LN.

(2) Now we will show that (i)« (ii), and (i)« (iii).

If M O N, then H = N® N, & M=, where N is the orthogonal complement
of Nin M. Let u =o' +u" +u" v’ € N,u" € Nj,v" € M~+.
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(i)=(ii): ((Py — Pn)u,u) = (Pyu,u) — (Pyu,u) = (v +u” u) — (v, u) =
(W’ u) = (", u") > 0. (ii)=(i): Let u € N, then (Pyu,u) > (Pyu,u) =
(u,u), hence ((I — Pyr)u,u) < 0. Since I — Py is the orthogonal projection
on M+, I — Py >0so ((I — Py)u,u) =0 which means that u € M.

(i)=-(iii) Since Pyu € N C M, PyyPyu = Pyu. (iii)=(i) Let v € N. Then
PyrPyu = Pyu by (iii), and Pyu = u. So Pyju = u, i.e., u € M. O

2.5 The eigenvalue problem

Example 32. A symmetric operator has only real eigenvalues.

We have proved that 7% = T is equivalent to (T'u,u) being real, and this
implies that (Au,u) is real, for an eigenvector u with eigenvalue A. Thus A
is real.

Example 33. Each eigenvalue of a unitary operator has absolute value one.
A normal operator with this property is unitary.

Since ||[Tu|| = |Ju|| Yu € H, Tu = \u implies ||Au|| = [Ju||, that is || = 1.

T being normal is equivalent to (T*Tu,u) = (TT*u,u). This is equiva-
lent to (Tu,Tu) = (T*u,T*u), therefore we have (T*u,T*u) = (Au, \u) =
IA%(u,u) = (u,u). On the other hand (T*u, T*u) = (TT*u,u), hence TT* =
1. Since T' € L(H) and is nonsingular, the range of T is the whole space H.

Example 34. If T is normal, then we have
1. Tu =0 if and only if T*u = 0.
2. (T'— AI) is a normal.
3. The eigenvalues of T* are the conjugates of the eigenvalues of T.
4. Any two eigenvectors that belong to different eigenvalues are orthogo-

nal.

Proof. 1. We will show that (Tu, Tu) = (T*u, T*u).
(Tu,Tu) = (u, T%Tu) = (u, TT*u) = (T™u, T*u), so that Tu = 0 is
equivalent to T*u = 0.

2. We have to show that T'— AI commutes with its adjoint.

(T — M) (T — AI)* = (T = XI)(T* — NI) = TT* — A\T* — AT + A\\I
=T*T — XTI — A\T* + A\ = (T* — M )(T — \I)
= (T — \I)*(T — ),
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hence T — AI is a normal.

3. If Tu = Au, (T'—AI)u = 0. Since T'— AI is normal we have (T'—\I)*u =
0,50 (T* —AI)u = 0. Thus T*u = Au. Hence any eigenvector of T is also
an eigenvector of T, and the corresponding eigenvalues are conjugate
to each other.

4. Let Tuy; = AMui, Tus = Aaug and A # Ao, then

A (ur,u2) = (Aur, ug)
= (Tul,uQ)

= (ul, T*UQ)

= (u1, A2u2)

= Ao (u1,u2).

Since A1 # Az, (u1,u2) = 0.

2.6 The minimax principle

Let T be a symmetric operator in H. T is diagonalizable (see [2]) and has
only real eigenvalues. For a subspace M of H, set

(Tu,u)

M] = [T, M] = min (Tu,u) = min 2" 70

ue
flull=1
Arrange the eigenvalues of T" in the following order
p1 < pr2 < .o <UN,
where p; can be repeated. The minimax (or maximin) principle is

Hn = codirr?]%?xzn—l 'LL[M] - codinllr]%/?};n—l M[M] (71)

This is equivalent to the following two propositions:
fn > p[M] for any M with codimM <n —1; (72)
tn < p[My] for some My with codimM =n — 1. (73)

Let us prove these separately.
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Let {¢,} be an orthonormal basis with the property
Ton = pinn, n=1,...,N. (74)

Each u has the expansion

N N
U = an@m gn = (uv 9071)7 Hu||2 = Z ‘&1‘27

n=1 n=1

in this basis. Then

n=1

n=1

Let M be any subspace with codimM < n — 1. The n-dimensional sub-
space M' spanned by 1, ..., o, contains a nonzero vector u in common with
M by (7). This u has the coefficients &, 41, &n+2, ... equal to zero, so that

(T, u) me
:ZMM&JZ
1
< an |£k’2
1

2
= pnllull.
. (Tu,u)
min 5
0£ueM  ||ul|
Let My be the subspace consisting of all vectors orthogonal to @1, ..., pn_1,

so that codimMy = n — 1. Each u € My has the coefficients &1, ..., £,—1 zero.
Hence

Hence pu[M] = < ptp,. This proves (72).

(T, u) Z 1k l€x)?

> Zﬂn|§k|2
k=n

= pin[ull?,
which implies (73).
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