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Abstract

The theory of linear operators is an extensive area. This thesis
is about the linear operators in finite dimensional vector spaces. We
study the symmetric, unitary, isometric, and normal operators, and
orthogonal projection in the unitary space, the eigenvalue problem and
the resolvent. We give a proof of the minimax principle in the end.
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Introduction

This report contains two sections. In Section 1 we study linear operators in

finite dimensional vector spaces, where projection, the adjoint operators are

introduced. In particular, we study the eigenvalue problem and some prop-

erties of the resolvent. In Section 2, different operators in unitary spaces,

such as symmetric, unitary, isometric and normal operators are considered.

We study the eigenvalue problems for these operators. Finally we prove the

minimax principle for eigenvalues.

The results in this report are primarily taken from Chapter 1 of [1].
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1 Operators in vector spaces

1.1 Vector spaces and adjoint vector spaces

Let X be a vector space, and dimX be the dimension of X. In this thesis

we shall always assume that dim X < ∞.

A subset M of X is a subspace, if M is itself a vector space. We define

the codimension of M in X by setting codimM = dimX − dimM .

Example 1. The set X = CN of all ordered N-tuples u = (ξi) = (ξ1, ..., ξN )

of complex numbers is an N -dimensional vector space.

Let dim X = N , if x1, ..., xN are linearly independent, then they are a

basis of X, and each u ∈ X can be uniquely represented as

u =

N
∑

j=1

ξjxj , (1)

and the scalars ξj are called the coefficients of u with respect to this basis.

Example 2. In CN the N vectors xj = (0, ..., 0, 1, 0, ..., 0) with 1 in the j-th

place, j = 1, ..., N, form a basis (the canonical basis). The coefficients of

u = (ξj) with respect to the canonical basis are the ξj themselves.

If {x′
j} is another basis of X, since u =

∑

ξjxj , there is a system of linear

relations

xk =
∑

j

γjkx
′
j , k = 1, ..., N. (2)

When ξj ,ξ
′
j are coefficients of the same vector u with respect to the bases

{xj} and {x′
j} respectively, they are then related to each other by

ξ′j =
∑

k

γjkξk , j = 1, ..., N. (3)

The inverse transformations to (2) and (3) are

x′
j =

∑

k

γ̂kjxk , ξk =
∑

j

γ̂kjξ
′
j , (4)

where (γ̂jk) is the inverse of the matrix (γjk) :
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∑

i

γ̂jiγik =
∑

i

γjiγ̂ik = δjk =

{

1, j = k
0, j 6= k.

(5)

Let M1, M2 be subspaces of X, we define the subspace M1 + M2 by

M1 + M2 = {x1 + x2 : x1 ∈ M1, x2 ∈ M2}. (6)

Theorem 1. If M1, M2 are subspaces of X, then

dim(M1 + M2) = dim M1 + dimM2 − dim(M1 ∩ M2). (7)

Proof. We can see that M1 ∩ M2 is subspace of both M1 and M2. Suppose

that dimM1 = m1, dimM2 = m2 and dim(M1∩M2) = m. We have to prove

that

dim(M1 + M2) = m1 + m2 − m.

Suppose that {x1, ..., xm} is a basis of M1 ∩ M2. We can extend this basis

to a basis of M1 and to a basis of M2. Let for example

{

x1, ..., xm, x
(1)
1 , ..., x

(1)
m1−m

}

,
{

x1, ..., xm, x
(2)
1 , ..., x

(2)
m2−m

}

be two bases of M1 and M2 respectively.

Let B =
{

x1, ..., xm, x
(1)
1 , ..., x

(1)
m1−m, x

(2)
1 , ..., x

(2)
m2−m

}

. Then B generates

M1 + M2. Now we will show that the vectors in B are linearly indepen-

dent. Suppose that

α1x1+...+αmxm+β1x
(1)
1 +...+βm1−mx

(1)
m1−m+γ1x

(2)
1 +...+γm2−mx

(2)
m2−m = 0.

(8)

Let

u = α1x1 + ... + αmxm + β1x
(1)
1 + ... + βm1−mx

(1)
m1−m, (9)

we have also

u = −γ1x
(2)
1 − ... − γm2−mx

(2)
m2−m, (10)
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thus u ∈ M1 and u ∈ M2 by (9) and (10). Hence u ∈ M1 ∩ M2. Therefore

there are ζi, i = 1, ..., m such that u =
∑

ζixi, and

ζ1x1 + ... + ζmxm + γ1x
(2)
1 + ... + γm2−mx

(2)
m2−m = 0.

Since
{

x1, ..., xm, x
(2)
1 , ..., x

(2)
m2−m

}

is a basis of M2, then γ1 = 0, ..., γm2−m =

0. Substituting this in (8), we obtain α1x1 + ... + αmxm + β1x
(1)
1 + ... +

βm1−mx
(1)
m1−m = 0, thus α1 = 0, ..., αm = 0, β1 = 0, ..., βm1−m = 0. Hence B

is a basis of M1 +M2. Since B has m1 +m2−m vectors, we get the required

result.

Definition 1. (Direct sum) Let M1, ..., Ms be subspaces of X. X is a direct

sum of them if each u ∈ X has a unique expression of the form

u =
∑

j

uj , uj ∈ Mj , j = 1, ..., s . (11)

Then we write

X = M1 ⊕ ... ⊕ Ms .

Proposition 1. If X = M1 ⊕ ... ⊕ Ms, then

1. X = M1 + ... + Ms.

2. Mi

⋂

Mj = {0} , where i 6= j.

3. dimX =
∑

j dimMj .

Proof. If X = M1 ⊕ ... ⊕ Ms, then each u ∈ X can be uniquely expressed

as u = u1 + ... + us, where uj ∈ Mj . Hence X = M1 + ... + Ms. Now let

u ∈ Mi ∩ Mj , where i 6= j, then

u = 01 + ... + 0i−1 + ui + 0i+1 + ... + 0j + ... + 0s ,

and

u = 01 + ... + 0i + ... + 0j−1 + uj + 0j+1 + ... + 0s .

Since the expression (11) for u is unique, ui = uj = 0 and hence u = 0 .

To show the last equality in the proposition we assume that dim X = N ,

dimMj = mj , and we have to show that N =
∑

mj .
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Let x1
i ,...,x

s
i , i = 1, ..., mj be bases of Mj , j = 1, ..., s respectively. Sup-

pose that

m1
∑

i=1

α1ix
1
i +

m2
∑

i=1

α2ix
2
i + ... +

ms
∑

i=1

αsix
s
i = 0 . (12)

∑mj

i=1 αj ix
j
i ∈ Mj , and since X is the direct sum of Mj , the representation

(12) is unique, and so for j = 1, ..., s we have
∑mj

i=1 αjix
j
i = 0. Since {xj

i}

are linearly independent, αji = 0 for i = 1, ..., mj , j = 1, ..., s. Hence xj
i , i =

1, ..., mj , j = 1, ..., s are linearly independent.

Now suppose u ∈ X, u = u1+u2+...+us, uj ∈ Mj . Since uj is expressed in a

unique way as a linear combination of xj
i , i = 1, ..., mj , then u is expressed in

a unique way as a linear combination of xj
i , j = 1, ..., s. Hence xj

i , j = 1, ..., s

is a basis of X. Thus

dimX =
∑

j

dimMj .

Definition 2. We call ‖u‖ a norm of u ∈ X, if

(i) ‖u‖ ≥ 0 for all u ∈ X and ‖u‖ = 0 iff u = 0.

(ii) ‖αu‖ = |α|‖u‖ for all α ∈ C, u ∈ X.

(iii) ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u, v ∈ X.

Example 3.

‖u‖ = max
j

|ξj |,

‖u‖ =
∑

j

|ξj |

‖u‖ =





∑

j

|ξj |
2





1

2

,

where ξj are coefficients of u with respect to the basis {xj} in X, are three

different norms.
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We show only that the last expression is a norm. Let ξj ,ηj be the coef-

ficients of u, v respectively, then

-‖u‖ =
(
∑

|ξj |
2
) 1

2 ≥ 0 and ‖u‖ = 0 iff ξj = 0, ∀j .

-‖αu‖ =
(
∑

|αξj |
2
) 1

2 =
(

|α|2
∑

|ξj |
2
) 1

2 = |α|
(
∑

|ξj |
2
) 1

2 .

-It follows from the Schwarz inequality (see e.g. [2]) that

(
∑

|ξjηj |)
2 ≤

∑

|ξj |
2
∑

|ηj |
2,

therefore

2
∑

|ξjηj | ≤ 2
(

∑

|ξj |
2
) 1

2

(

∑

|ηj |
2
) 1

2

.

Adding
∑

|ξj |
2 +

∑

|ηj |
2 to both sides gives

∑

(|ξj |
2 + 2|ξjηj | + |ηj |

2) =
∑

|ξj |
2 + 2

∑

|ξjηj | +
∑

|ηj |
2

≤
∑

|ξj |
2 + 2(

∑

|ξj |
2)

1

2 (
∑

|ηj |
2)

1

2 +
∑

|ηj |
2

= [(
∑

|ξj |
2)

1

2 + (
∑

|ηj |
2)

1

2 ]2.

Hence

(
∑

|ξj + ηj |
2)

1

2 ≤ (
∑

|ξj |
2)

1

2 + (
∑

|ηj |
2)

1

2 ,

that is

‖u + v‖ ≤ ‖u‖ + ‖v‖.

-The adjoint space

Definition 3. (Linear forms and semilinear forms): A complex-valued func-

tion f [u] defined for u ∈ X is called a linear form if

f [αu + βv] = αf [u] + βf [v] (13)

for all u, v ∈ X , and all scalars α, β, and a semilinear form if

f [αu + βv] = ᾱf [u] + β̄f [v]. (14)

Example 4. Let x1, ..., xN be a fixed basis in X. It follows from (13) that

a linear form on X can be expressed in the form

f [u] =
N

∑

j=1

αjξj , where u = (ξj) and f [xj ] = αj ,
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and similarly by (14) a semilinear form on X can be expressed in the form

f [u] =
∑

j

αj ξ̄j .

f [u] is a semilinear form if and only if f [u] is a linear form.

Definition 4. The set of all semilinear forms on X is a vector space, called

the adjoint (or conjugate) space of X and is denoted by X∗.

Let us denote f [u] by (f, u) where f is a semilinear form. It follows from

the definition that (f, u) is linear in f and semilinear in u:

(αf + βg, u) = α(f, u) + β(g, u), (15)

(f, αu + βv) = ᾱ(f, u) + β̄(f, v). (16)

Example 5. For X = CN , X∗ may be regarded as the set of all row vectors

f = (αj) whereas X is the set of all column vectors u = (ξj), and

(f, u) =
∑

αj ξ̄j .

The adjoint basis The principal content in this part is the following

theorem:

Theorem 2. Suppose {xj} is a basis of X, and let e1, ..., eN be vectors in

X∗ defined by

(ej , xk) = δjk =

{

1, j = k
0, j 6= k

, (17)

then {ej} is a basis of X∗.

Proof. First we show that ej satisfying (17) exist. Define ej , j = 1, ..., N by

(ej , u) = ξ̄j . Then this corresponds to αk = δjk, k = 1, ..., N, in the formula

above. Next we shall show that {ej} generate X∗. Let f ∈ X∗, and suppose

(f, x1) = α1, (f, x2) = α2, ..., (f, xN ) = αN . Put g =
∑

αjej , then (g, x1) =

(
∑

αjej , x1) = α1(e1, x1) + α2(e2, x1) + ... + αN (eN , x1) = α1, and similarly

for j = 2, ..., N, (g, xj) = αj so that f(xj) = g(xj), j = 1, ..., N . Since f, g

are equal on vectors of the basis {xj} , then f = g = α1e1 + ... + αNeN ,
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i.e., f is a linear combination of e1, ..., eN . It remains to show e1, ..., eN are

linearly independent. Suppose that α1e1 + ... + αNeN = 0. Then

0 = (0, x1) = (α1e1 + ... + αNeN , x1)

= α1(e1, x1) + ... + αN (eN , x1)

= α1 ,

and similarly for k = 2, ..., N , so that we have α1 = ... = αN = 0. Thus

e1, ..., eN are linearly independent. Hence {ej} is a basis of X∗.

Let {xj} be a basis of X, and let {e1, ..., eN} , {e′1, ..., e
′
N} be vectors in

X∗ satisfying (17). Then by Theorem 2 {ej} and {e′j} are bases of X∗ and

e′i =
N

∑

j=1

α
(i)
j ej , i = 1, ..., N ,

so that

(e′1, x1) = α
(1)
1 (e1, x1) + α

(1)
2 (e2, x1) + ... + α

(1)

N (eN , x1)

= α
(1)
1 · 1 + α

(1)
2 · 0 + ... + α

(1)
2 · 0

= α
(1)
1 ,

and (e′1, x2) = α
(1)
2 , ..., (e′1, xN ) = α

(1)

N . Hence α
(1)
j = δj1 and e′1 = e1. Sim-

ilarly for j = 2, ..., N we obtain e′j = ej . Hence the basis {ej} of X∗ that

satisfies (17) is unique. It is called the basis adjoint to the basis {xj} of X.

Theorem 2 shows that

dimX∗ = dimX. (18)

Let {xj} and {x′
j} be two bases of X related to each other by (2). Then

the corresponding adjoint bases {ej} and {e′j} of X∗ are related to each

other by the formulas

e′j =
∑

k

γ̄jkek , ek =
∑

j

¯̂γkje
′
j . (19)

Furthermore we have

γ̄jk = (e′j , xk) , ¯̂γkj = (ek, x
′
j) . (20)

Definition 5. Let f ∈ X∗. The norm ‖f‖ is defined by

‖f‖ = sup
06=u∈X

|(f, u)|

‖u‖
= sup

‖u‖=1

|(f, u)| . (21)
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1.2 Linear operators

Definition 6. Let X, Y be two vector spaces. A function T that sends every

vector u of X into a vector v = Tu of Y is called a linear transformation or

a linear operator on X to Y if

T (α1u1 + α2u2) = α1Tu1 + α2Tu2 (22)

for all u1, u2 ∈ X and all scalars α1, α2 .

If Y = X we say T is a linear operator in X .

If M is a subspace of X, then T (M) is a subspace of Y , the subspace T (X)

of Y is called the range of T and is denoted by R(T ), dim(R(T )) is called

the rank of T. The codimension of R(T ) with respect to Y is called the

deficiency of T and is denoted by def T, hence

rank T + def T = dimY . (23)

The set of all u ∈ X such that Tu = 0 is a subspace of X and is called the

kernel or null space of T and is denoted by N(T ). dim(N(T )) is denoted

by nul T, and we have

rank T + nul T = dimX . (24)

If both nul T and def T are zero, then T is one-to-one. In this case the

inverse operator T−1 is defined.

Let {xk} be a basis of X. Each u ∈ X has the expansion (1) so that

Tu =
N

∑

k=1

ξkTxk , N = dimX . (25)

Thus an operator T on X to Y is determined by giving the values of

Txk, k = 1, ..., N . If {yj} is a basis of Y , each Txk has the expansion

Txk =
M
∑

j=1

τjkyj , M = dimY . (26)

Substituting (26) into (25), the coefficients ηj of v = Tu are given by

ηj =
N

∑

k=1

τjkξk, j = 1, ..., M . (27)
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In this way an operator T on X to Y is represented by an M × N matrix

(τjk) with respect to the bases {xk},{yj} of X, Y respectively.

When (τ ′
jk) is the matrix representing the same operator T with respect to

a new pair of bases {x′
k} , {y′j}, we can find the relationship between the

matrices (τ ′
jk) and (τjk) by combining (26) and a similar expression for Tx′

k

in terms of {y′j} with the formulas (2),(4):

Tx′
k = T (

∑

h

γ̂hkxh)

=
∑

h

γ̂hkTxh

=
∑

h

γ̂hk

M
∑

i=1

τihyi

=
∑

i

∑

h

τihγ̂hkyi

=
∑

i

∑

h

τihγ̂hk

∑

j

γ′
jiy

′
j

=
∑

j

∑

i

∑

h

γ′
jiτihγ̂hky

′
j

=
∑

j

∑

i,h

γ′
jiτihγ̂hky

′
j

=
∑

j

τ ′
jky

′
j ,

where xh =
∑

k

γkhx′
k and x′

k =
∑

h

γ̂hkxh, yi =
∑

j

γ′
jiy

′
j and y′j =

∑

i

γ′′
ijyi.

Thus the matrix τ ′
jk is the product of three matrices (γ′

jk), (τjk) and (γ̂jk),

(τ ′
jk) = (γ′

jk)(τjk)(γ̂jk) . (28)

Thus when T is an operator on X to itself det (τjk) and the trace of (τjk),

i.e.,
∑

τjj are determined by the operator T itself. More precisely, we shall

show det (τjk) and trace (τjk) are the same for each choice of the basis for

X. (28) becomes

(τ ′
jk) = (γjk)(τjk)(γ̂jk) . (29)

We show tr (γτ) = tr (τγ). Let γτ = (ajk) and τγ = bjk, then tr (γτ) =
∑

j

ajj =
∑

j

∑

k

γjkτkj =
∑

k

∑

j

τkjγjk =
∑

k

bkk = tr (τγ). Since (γ̂jk) is

13



the inverse of the matrix (γjk), and we know that

det(γτ γ̂) = det(γ) det(τ) det(γ̂),

we have

det(τ ′) = det(τ) , and tr (τ ′) = tr (γτ γ̂) = tr (τγγ̂) = tr (τ) . (30)

Example 6. If {fj} is the basis of Y ∗ adjoint to {yj} then

τjk = (fj , Txk) . (31)

Proof. Since Txk =
∑

i

τikyi, then

(fj , Txk) = (fj ,
∑

i

τikyi)

=
∑

i

τik(fj , yi)

=
∑

i

τikδij

= τjk .

Example 7. Let {xj} and {ej} be the bases of X and X∗, respectively,

which are adjoint to each other. If T is an operator on X to itself, we have

tr T =
∑

j

(ej , Txj) . (32)

Proof. Similarly as in the last example, Txj =
∑

i

τijxi, therefore

∑

j

(ej , Txj) =
∑

j

(ej ,
∑

i

τijxi)

=
∑

j

(
∑

i

τij(ej , xi))

=
∑

j

∑

i

τijδij

=
∑

j

τjj .
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If T and S are two linear operators on X to Y , then we define:

(αS + βT )u = α(Su) + β(Tu) .

If S maps X to Y and T maps Y to Z, then we set

(TS)u = T (Su) .

Example 8. 1. rank (S + T ) ≤ rank S + rank T.

2. rank (TS) ≤ max(rank T, rank S).

Proof. (1) Let R(S) = M1, R(T ) = M2, R(S + T ) = M. Since each v ∈ M

can be expressed in the form v = v1 + v2, v1 ∈ M1, v2 ∈ M2, M = M1 + M2,

thus dimM = dimM1+dimM2−dim(M1∩M2) ≤ dim M1+dimM2. Hence

rank (S + T ) ≤ rank (S) + rank (T ).

(2) Let S : X → Y, T : R(S) → Z; TS : X → Z. Then we have

rank S + nul S = dim X and rank (TS) + nul (TS) = dimX. Since nul S ≤

nul TS, rank TS ≤ rank S. Let T : Y → Z, TS : X → Z. Since T : Y →

Z, rank T +def T = dimZ, and rank (TS)+def (TS) = dimZ. Since def T ≤

def (TS), rank (TS) ≤ rank T . Thus rank (TS) ≤ max(rank T, rank S).

Let us denote by L(X, Y ) the set of all operators on X to Y. It is a vector

space. Let L(X) = L(X, X), then we have:

• T0 = 0T = 0 .

• T1 = 1T = T ; (1 is the identity operator) .

• TmTn = Tm+n, (Tm)n = Tmn, m, n = 0, 1, ..., .

• If S, T ∈ L(X) are nonsingular, then T−1T = 1, T−n = (T−1)n, and

(TS)−1 = S−1T−1 .

For any polynomial P (z) = α0 + α1z + ... + αnzn in the indeterminate

z, we define the operator

P (T ) = α0 + α1T + ... + αnTn.

Example 9. If S ∈ L(X, Y ) and T ∈ L(Y, X), then ST ∈ L(Y ) and

TS ∈ L(X).
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1.3 Projections

Let M, N be two complementary subspaces of X, X = M ⊕ N . Thus each

u ∈ X can be uniquely expressed in the form u = u′ + u′′, u′ ∈ M, u′′ ∈

N. u′ is called the projecion of u on M along N . If v = v′ + v′′, then

αu + βv has the projection αu′ + βv′ on M along N. If we set u′ = Pu, it

follows that P is a linear operator in X called the projection operator or

projection on M along N . 1 − P is the projection on N along M, and we

have Pu = u if and only if u ∈ M, Pu = 0 if and only if u ∈ N , that is

R(P ) = N(1 − P ) = M, N(P ) = R(1 − P ) = N. Furthermore, PPu = Pu,

that is P is idempotent, i.e.,

P 2 = P.

Remark 1. Any idempotent operator P is a projection.

To show, let M = R(P ) and N = R(1 − P ). If u′ ∈ M, there is u such that

Pu = u′ and therefore Pu′ = P 2u = Pu = u′. Similarly if u′′ ∈ N. Now let

u ∈ M ∩ N. Then u = Pu = 0. So M ∩ N = {0}. Thus each u ∈ X has the

expression u = u′ + u′′ with u′ = Pu ∈ M and u′′ = (1 − P )u ∈ N, proving

that P is the projection on M along N .

Example 10. If P is a projection, then we have

tr P = dim R(P ) .

Proof. Since P is an operator in X, it can be represented by an n × n (n =

dimX) matrix (τjk) with respect to the basis {xj} of X, and Pu = u when

u ∈ M. This basis can be chosen so that x1, ..., xm ∈ M and xm+1, ..., xn ∈

N, where N = (1 − P )X. Then P (α1x1 + ... + αnxn) = α1x1 + ... + αmxm.

Hence (τjk) is diagonal with τ11 = ... = τmm = 1, τm+1,m+1 = ... = τnn = 0.

So tr P = m = dim R(P ).

In general, if X = M1 ⊕ ... ⊕ Ms, then each u ∈ X can be uniquely

expressed in the form u = u1 + ... + us, uj ∈ Mj , j = 1, ..., s. Then the

operator Pj defined by Pju = uj ∈ Mj , is a projection on Mj along Nj =

M1 ⊕ ... ⊕ Mj−1 ⊕ Mj+1 ⊕ ... ⊕ Ms. And we have

∑

Pj = 1 , (33)
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for (
∑

j

Pj)(
∑

i

ui) =
∑

j

Pj(
∑

i

ui) =
∑

Pjuj =
∑

uj , and

PkPj = δjkPj , (34)

because PkPj(
∑

i

ui) = Pkuj = δkjuj = δkjPju.

Note that, if we have (33) and (34), then X is the direct sum of subspaces

R(Pj). To show that, let Mj = R(Pj). For u ∈ X, by (33) we have u =
∑

Pju =
∑

uj ∈ M1 + ... + Ms. Moreover Mi ∩Mj = {0} for i 6= j, because

by (34) if u ∈ Mi ∩ Mj , then u = Piu1 = Pju2 and u = Piu1 = P 2
i u1 =

PiPju2 = 0. Hence X = M1 ⊕ ... ⊕ Ms. Since Pj is idempotent, it follows

from Remark 1 that Pj is the projection on Mj along Nj .

1.4 The adjoint operator

Definition 7. Let T ∈ L(X, Y ), a function T ∗ on Y ∗ to X∗ is called the

adjoint operator of T if :

(T ∗g, u) = (g, Tu), ∀g ∈ Y ∗, ∀u ∈ X. (35)

Then (T ∗(α1g1+α2g2), u) = (α1g1+α2g2, Tu) = α1(g1, Tu)+α2(g2, Tu) =

α1(T
∗g1, u)+α2(T

∗g2, u) so that T ∗(α1g1+α2g2) = α1T
∗g1+α2T

∗g2. There-

fore T ∗ is a linear operator on Y ∗ to X∗, that is, T ∗ ∈ L(Y ∗, X∗).

The operation * has the following properties:

1. (αS + βT )∗ = ᾱS∗ + β̄T ∗, for S, T ∈ L(X, Y ), and α, β ∈ C.

2. (TS)∗ = S∗T ∗, for T ∈ L(Y, Z) and S ∈ L(X, Y ).

Note that S∗ ∈ L(Y ∗, X∗) and T ∗ ∈ L(Z∗, Y ∗) so that S∗T ∗ ∈ L(Z∗, X∗).

Then ((TS)∗h, u) = (h, TSu) = (T ∗h, Su) = (S∗T ∗h, u),∀h ∈ Z∗,∀u ∈ X.

Hence 2. holds.

Example 11. If T ∈ L(X), we have 0∗ = 0, 1∗ = 1.

If {xk} , {yj} are bases in X, Y respectively, and T ∈ L(X, Y ) is repre-

sented by a matrix (τjk) in these bases, and {ek} , {fj} are the adjoint bases

of X∗, Y ∗ respectively, the operator T ∗ ∈ L(Y ∗, X∗) can be represented by a

matrix (τ∗
kj). These matrices are given by τjk = (fj , Txk) according to (31)

and τ̄∗
kj = (T ∗fj , xk) = (fj , Txk) (see the argument below), thus

τ∗
kj = τ̄jk, k = 1, ..., N = dim X, j = 1, ..., M = dimY. (36)
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To show that (T ∗fj , xk) = τ̄∗
kj , we first write T ∗fj =

∑

i

τ∗
ijfi and then

compute:

(T ∗fj , xk) = (
∑

i

τ∗
ijfi, xk) =

∑

i

τ̄∗
ij(fi, xk) =

∑

i

τ̄∗
ijδik = τ̄∗

kj .

Example 12. If T ∈ L(X), we have

det T ∗ = det T , tr T ∗ = tr T (37)

and

(T ∗)−1 = (T−1)∗. (38)

Since det (τjk) and tr (τjk) are the same for each choice of the basis for X

and similarly with (τ∗
kj), (37) is satisfied according to (36). To prove (38)

note that T ∗(T−1)∗ = (T−1T )∗ = 1∗ = 1.

Definition 8. (Norm of T ) The norm of T is defined by

‖T‖ = sup
06=u∈X

‖Tu‖

‖u‖
= sup

‖u‖=1

‖Tu‖, T ∈ L(X, Y ). (39)

Example 13.

‖T‖ = sup
06=u∈X
06=f∈Y ∗

|(f, Tu)|

‖f‖‖u‖
= sup

‖u‖=1
‖f‖=1

|(f, Tu)|. (40)

We first prove that the expression for ‖T‖ given by (40) is a norm.

Proof. -‖T‖ = sup
‖u‖=1
‖f‖=1

|(f, Tu)| ≥ 0, and = 0 iff T = 0.

-‖αT‖ = sup
‖u‖=1
‖f‖=1

|(f, αTu)| = sup
‖u‖=1
‖f‖=1

|α(f, Tu)| = |α| sup
‖u‖=1
‖f‖=1

|(f, Tu)| = |α|‖T‖.

-‖T+S‖ = sup
‖u‖=1
‖f‖=1

|(f, Tu+Su)| = sup
‖u‖=1
‖f‖=1

|(f, Tu)+(f, Su)| ≤ sup
‖u‖=1
‖f‖=1

(|(f, Tu)|+

|(f, Su)|) ≤ sup
‖u‖=1
‖f‖=1

|(f, Tu)|+ sup
‖u‖=1
‖f‖=1

|(f, Su)| = ‖T‖+‖S‖. Hence ‖T‖ defined

in (40) is a norm.
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We have to show that (39) and (40) are equivalent. To see this we recall

(21). Note that |(f, u)| ≤ ‖f‖‖u‖. This implies that ‖u‖ = sup
06=f∈X∗

|(f, u)|

‖f‖
=

sup
‖f‖=1

|(f, u)| (see Section I.2.5 in [1]). It follows that ‖Tu‖ = sup
‖f‖=1

|(f, Tu)|

and ‖T‖ = sup
‖u‖=1

‖Tu‖ = sup
‖u‖=1
‖f‖=1

|(f, Tu)|.

Since ‖T‖ = sup
‖u‖=1

‖Tu‖

‖u‖
, then

‖Tu‖
‖u‖

≤ ‖T‖, so ‖Tu‖ ≤ ‖T‖‖u‖. Hence

‖TSu‖ ≤ ‖T‖‖Su‖ ≤ ‖T‖‖S‖‖u‖, thus

‖TS‖ ≤ ‖T‖‖S‖ (41)

for T ∈ L(Y, Z) and S ∈ L(X, Y ).

If T ∈ L(X, Y ), then T ∗ ∈ (Y ∗, X∗) and

‖T ∗‖ = ‖T‖. (42)

This follows from (40) according to which ‖T ∗‖ = sup |(T ∗f, u)| = sup |(f, Tu)| =

‖T‖ where u ∈ X, ‖u‖ = 1 and f ∈ X∗, ‖f‖ = 1.

1.5 The eigenvalue problem

Definition 9. Let T ∈ L(X). A complex number λ is called an eigenvalue

of T if there is a non-zero vector u ∈ X such that

Tu = λu. (43)

u is called an eigenvector of T belonging to the eigenvalue λ. The set Nλ of

all u ∈ X such that Tu = λu is a subspace of X called the eigenspace of T

for the eigenvalue λ and dimNλ is called the multiplicity of λ .

Example 14. λ is an eigenvalue of T if and only if λ − ξ is an eigenvalue

of T − ξ.

Proposition 2. The eigenvectors of T belonging to different eigenvalues

are linearly independent.

Proof. To prove that we will use induction.

We shall first show that any two eigenvectors of T belonging to different
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eigenvalues are linearly independent. Assume next this is true for k eigen-

vectors, and we shall prove it for k +1 eigenvectors. Let Tu1 = λ1u1, Tu2 =

λ2u2, λ1 6= λ2, λ1 6= 0 and

α1u1 + α2u2 = 0,

we have

α1λ1u1 + α2λ2u2 = 0.

By multiplying the first equation by λ1 and subtracting it from the second

we obtain (λ1 − λ2)α2u2 = 0. Hence α2u2 = 0, but u2 6= 0, so α2 = 0. Now

α1u1 = 0 which implies α1 = 0 since u1 6= 0. Hence α1 = α2 = 0, that is

u1, u2 are linearly independent.

Now assume Tu1 = λ1u1, ..., Tuk = λkuk, λi 6= λj for i 6= j and u1, ..., uk

are linearly independent. We shall show that u1, ..., uk, uk+1 are linearly

independent where Tuk+1 = λk+1uk+1. We have two cases: λk+1 = 0 and

λk+1 6= 0.

If λk+1 = 0, then we have λi 6= 0, i = 1, ..., k. If u1, ..., uk, uk+1 are linearly

dependent then

u1 = α2u2 + ... + αkuk + αk+1uk+1,

and

λ1u1 = Tu1 = α2λ2u2 + ... + αkλkuk,

thus u1, ..., uk are linearly dependent, and this contradicts our assumption.

If λk+1 6= 0 suppose

uk+1 = α1u1 + ... + αkuk,

where α1 6= 0, then we have

λk+1uk+1 = Tuk+1 = α1λ1u1 + ... + αkλkuk

= λk+1(
α1λ1

λk+1

u1 + ... +
αkλk

λk+1

uk).

Since u1, ..., uk are linearly independent, we obtain λ1 = λk+1, ..., λk = λk+1,

and this is also a contradiction.

It follows from this proposition that there are at most N eigenvalues of

T, where N is the dimension of X.

20



Proposition 3. lim
n→∞

‖Tn‖
1

n exists and is equal to inf
n=1,2,...

‖Tn‖
1

n .

Proof. It follows from (41) that

‖TmTn‖ ≤ ‖Tm‖‖Tn‖, ‖Tn‖ ≤ ‖T‖n, m, n = 0, 1, ... (44)

Set an = log ‖Tn‖, what is to be proved is that

lim
n→∞

an

n
= inf

n=1,2,···

an

n
. (45)

The inequality (44) gives

am+n ≤ am + an.

Let n = mq + r, where q, r are nonnegative integers with 0 ≤ r < m, then

the last inequality gives

an ≤ amq + ar.

Let amq = log ‖Tmq‖. By (44) amq ≤ log ‖Tm‖q = q log ‖Tm‖ = qam, hence

an ≤ qam + ar

and
an

n
≤

q

n
am +

1

n
ar .

Therefore

lim
n→∞

sup
an

n
≤ lim

n→∞
sup

q

n
am + lim

n→∞
sup

ar

n
.

Since lim
n→∞

sup
q

n
=

1

m
and lim

n→∞
sup

ar

n
= 0,

lim
n→∞

sup
an

n
≤

am

m
.

Since this holds for all fixed m,

lim
n→∞

sup
an

n
≤ inf

am

m
.

Obviously

lim
n→∞

sup
an

n
≥ inf

am

m
,

hence

lim
n→∞

sup
an

n
= inf

n=1,2,...

an

n
.

21



Now we define:

Definition 10. (Spectral radius of T ) sprT =lim‖Tn‖
1

n =inf‖Tn‖
1

n .

1.6 The resolvent

Let T ∈ L(X) and consider the equation

(T − ξ)u = v,

where ξ is a given complex number, v ∈ X is given and u ∈ X is to be

found. This equation has a solution u for every v if and only if T − ξ is

nonsingular, that is ξ is different from any eigenvalue λk of T . Then the

inverse (T − ξ)−1 exists and the solution u is given by

u = (T − ξ)−1v.

The operator

R(ξ) = R(ξ, T ) = (T − ξ)−1 (46)

is called the resolvent of T . The complementary set of the spectrum Σ(T )

is called the resolvent set of T and will be denoted by P (T ). The resolvent

R(ξ) is thus defined for ξ ∈ P (T ).

Example 15. R(ξ) commutes with T . And R(ξ) has exactly the eigenvalues

(λh − ξ)−1 where λh are eigenvalues of T .

We show that R(ξ) commutes with T :

T = T · 1

= T (T − ξ)(T − ξ)−1

= (T − ξ)T (T − ξ)−1.

Hence
(T − ξ)−1T = (T − ξ)−1(T − ξ)T (T − ξ)−1

= T (T − ξ)−1 .

Now we show that if λ is an eigenvalue of T, that is Tu = λu, then (λ−ξ)−1

is an eigenvalue of R(ξ).

Clearly we have

(T − ξ)u = (λ − ξ)u ,
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or equivalently

(λ − ξ)−1(T − ξ)u = u .

Then

(T − ξ)−1((λ − ξ)−1(T − ξ)u) = (T − ξ)−1u ,

i.e.

(λ − ξ)−1((T − ξ)−1(T − ξ)u) = (T − ξ)−1u .

Hence

(λ − ξ)−1u = (T − ξ)−1u .

Note that the resolvent satisfies the (first) resolvent equation

R(ξ1) − R(ξ2) = (ξ1 − ξ2)R(ξ1)R(ξ2) (47)

since

(T − ξ1)
−1 − (T − ξ2)

−1 = (T − ξ1)
−1(T − ξ2)

−1(T − ξ2)(T − ξ1)·

[(T − ξ1)
−1 − (T − ξ2)

−1]

= (T − ξ1)
−1(T − ξ2)

−1[(T − ξ2) − (T − ξ1)]

= (ξ1 − ξ2)(T − ξ1)
−1(T − ξ2)

−1

= (ξ1 − ξ2)R(ξ1)R(ξ2).

Here we have used the identity (T − ξ2)(T − ξ1) = (T − ξ1)(T − ξ2).

We shall show that for each ξ0 ∈ P (T ) R(ξ) is holomorphic in some disk

around ξ0.

Proposition 4. R(ξ) =
∑

(ξ − ξ0)
nR(ξ0)

n+1 is absolutely convergent for

|ξ − ξ0| < (spr R(ξ0))
−1 where ξ0 is a given complex number.

To prove this we have to study the following Lemmas.

Lemma 1. (Neumann series) The series
∞

∑

n=0

Tn is absolutely convergent if

‖T‖ < 1. Moreover,

(1−T )−1 =
∞

∑

n=0

Tn, and ‖(1−T )−1‖ ≤ (1−‖T‖)−1, where T ∈ L(X) . (48)
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Proof. This series is absolutely convergent because lim
n→∞

‖Tn‖
1

n ≤ ‖T‖ < 1.

Set
∞

∑

n=0

Tn = S, then

TS =
∞

∑

n=0

Tn+1

=
∞

∑

n=1

Tn

=
∞

∑

n=0

Tn − 1

= S − 1 ,

so that TS = ST = S − 1. Hence (1 − T )S = S(1 − T ) = 1 and S =

(1− T )−1. Now we have ‖(1− T )−1‖ = ‖
∞

∑

n=0

Tn‖ ≤
∞

∑

n=0

‖Tn‖ ≤
∞

∑

n=0

‖T‖n =

(1 − ‖T‖)−1.

Lemma 2. The series (48) is absolutely convergent if ‖Tm‖ < 1 for some

positive integer m, or equivalently, if spr T < 1, and the sum is again equal

to (1 − T )−1 (see proof of Proposition 3).

Proof. Since spr T = inf
n=1,2,...

‖Tn‖
1

n = lim
n→∞

‖Tn‖
1

n and ‖Tm‖
1

m < 1, it

follows that lim
n→∞

‖Tn‖
1

n < 1 and the series is absolutely convergent. The

proof that the sum is equal to (1−T )−1 is the same as above (see the proof

of Proposition 3).

Lemma 3.

S(t) = (1 − tT )−1 =
∞

∑

n=0

tnTn, (49)

where t is a complex number. The convergence radius r of (49) is exactly

equal to 1/spr T.

Proof. By Lemma 2, (49) holds if spr(tT ) < 1, i.e., |t| < 1/sprT, so the

convergence radius r ≥ 1/sprT. If |t| > 1/sprT, then spr(tT ) > 1, so

lim
n→∞

‖tnTn‖
1

n > 1 and the series diverges. Hence r = 1/sprT.
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Now we can complete the proof of Proposition 4. By (47), with ξ1 = ξ

and ξ2 = ξ0, we have R(ξ) = R(ξ0)(1 − (ξ − ξ0)R(ξ0))
−1. Let tT = (ξ −

ξ0)R(ξ0) in Lemma 3. Then

R(ξ) =
∞

∑

n=0

(ξ − ξ0)
nR(ξ0)

n+1.

By Proposition 4 we obtain:

Proposition 5. R(ξ) is holomorphic at ξ0 in the disk |ξ − ξ0| < (spr T )−1.

Proposition 6. R(ξ) is holomorphic at ∞.

Proof. R(ξ) has the expansion

R(ξ) = −ξ−1(1 − ξ−1T )−1 = −
∞

∑

n=0

ξ−n−1Tn, (50)

which is convergent if and only if |ξ| > spr T, thus R(ξ) is holomorphic at

infinity.

Example 16. ‖R(ξ)‖ ≤ (|ξ| − ‖T‖)−1 and ‖R(ξ) + ξ−1‖ ≤ |ξ|−1(|ξ| −

‖T‖)−1‖T‖, for |ξ| > ‖T‖.

Proof. It follows from (50) that

‖R(ξ)‖ = ‖ −
∑

ξ−n−1Tn‖

= |ξ|−1‖
∑

(T/ξ)n‖

≤ |ξ|−1
∑

|ξ|−n‖Tn‖

≤ |ξ|−1
∑

|ξ|−n‖T‖n

= |ξ|−1(1 − ‖ξ−1T‖)−1

= (|ξ| − ‖T‖)−1,
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and

‖R(ξ) + ξ−1‖ = ‖ −
∞

∑

n=0

ξ−n−1Tn + ξ−1‖

= ‖
∞

∑

n=1

ξ−n−1Tn‖

≤ |ξ|−1

∞
∑

n=1

|ξ|−n‖T‖n

= |ξ|−1[(1 − |ξ|−1‖T‖)−1 − 1]

=
1

|ξ| − ‖T‖
−

1

|ξ|

=
|ξ| − |ξ| + ‖T‖

|ξ|(|ξ| − ‖T‖)

= |ξ|−1(|ξ| − ‖T‖)−1‖T‖.

The spectrum Σ(T ) is never empty; T has at least one eigenvalue. Oth-

erwise R(ξ) would be an entire function such that R(ξ) → 0 for |ξ| → ∞,

then we must have R(ξ) = 0 by Liouville’s theorem (see [3]). But this results

in the contradiction that 1 = (T − ξ)R(ξ) = 0.

We can see that each eigenvalue of T is a singularity of the analytic func-

tion R(ξ). Since there is at least one singularity of R(ξ) on the convergence

circle |ξ| = spr T according to (50), spr T coincides with the largest (in

absolute value) eigenvalue of T :

spr T = max |λh|. (51)

This shows that spr T is independent of the norm used in its definition.

2 Operators in unitary spaces

2.1 Unitary spaces

A normed space X is a special case of a linear metric space in which the

distance between any two points is defined by ‖u−v‖, where u and v belong

to X.
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Definition 11. (The complex inner product) Let u, v ∈ X, and let (u, v)

be a complex number, then we say that the function ( , ) is a complex inner

product if it satisfies:

-(αu1 + βu2, v) = α(u1, v) + β(u2, v).

-(u, v) = (v, u).

-(u, u) > 0, if u 6= 0.

From the second condition in the last definition we can obtain

(u, kv) = k̄(u, v),

since (u, kv) = (kv, u) = k̄(v, u) = k̄(u, v).

Definition 12. A normed space H is called a unitary space if an inner

product (u, v) is defined for all vectors u, v ∈ H.

Definition 13. In a unitary space the function

‖u‖ = (u, u)
1

2 (52)

is a norm which is called the unitary norm.

We shall show the conditions in the Definition 2:

-the first condition follows directly from the definition of the inner prod-

uct.

-‖αu‖ = (αu, αu)
1

2 = [α(u, αu)]
1

2 = [αᾱ(u, u)]
1

2 = |α|‖u‖.

-‖u + v‖ = (u + v, u + v)
1

2 = [(u, u + v) + (v, u + v)]
1

2 = [(u, u) + (u, v) +

(v, u) + (v, v)]
1

2 ≤ [(u, u) + |(u, v)| + |(v, u)| + (v, v)]
1

2 . By the Schwarz in-

equality

|(u, v)| ≤ ‖u‖‖v‖ , (53)

hence ‖u+v‖ ≤ [‖u‖2+|(u, v)|+|(v, u)|+‖v‖2]
1

2 ≤ [‖u‖2+2‖u‖‖v‖+‖v‖2]
1

2 =

‖u‖ + ‖v‖.

Example 17. For numerical vectors u = (ξ1, ..., ξN ) and v = (η1, ..., ηN ) set

(u, v) =
∑

ξjηj , ‖u‖2 =
∑

|ξj |
2,

with this inner product the space CN becomes a unitary space.
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Remark 2. A characteristic property of a unitary space H is that the adjoint

space H∗ can be identified with H itself.

To show that, let f, u ∈ H, we have the form (f, u) is linear in f and

semilinear in u by Definition 11. Then f ∈ H∗ by (15) and (16). Hence f

can be considered as a vector in H or a vector in H∗. Thus H and H∗ can

be identified.

Definition 14. (Orthogonal) If (u, v) = 0 we write u⊥v and say that u, v

are mutually orthogonal.

If S, S′ are subsets of H we say

u⊥S if u⊥v, ∀v ∈ S (where u ∈ H),

S⊥S′ if u⊥v, ∀u ∈ S, ∀v ∈ S′.

The set of all u ∈ H such that u⊥S is denoted by S⊥.

Example 18. u⊥S implies u⊥M where M is the span of S.

Let v ∈ M, then there are v1, · · · , vk ∈ S and α1, ..., αk ∈ C such that

v = α1v1 + · · · + αkvk. So

(u, v) = (u, α1v1 + · · · + αkvk)

= (u, α1v1) + · · · + (u, αkvk)

= ᾱ1(u, v1) + · · · + ᾱk(u, vk)

= ᾱ1 · 0 + · · · + ᾱk · 0

= 0,

thus u⊥S.

Let dim H = N. If x1, ..., xN ∈ H have the property

(xj , xk) = δjk , (54)

then they form a basis of H, called an orthonormal basis, for α1x1 + ... +

αNxN = 0, implies (α1x1 + ... + αNxN , xj) = 0 and αj(xj , xj) = 0 for all

j = 1, ..., N, hence αj = 0, showing that x1, ..., xN are linearly independent.
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2.2 Symmetric operators

Definition 15. (Sesquilinear form) Let H, H ′ be two unitary spaces. A

complex-valued function t[u, u′] defined for u ∈ H and u′ ∈ H ′ is called a

sesquilinear form on H × H ′ if it is linear in u and semilinear in u′.

If H ′ = H we speak of a sesquilinear form on H.

Let T be a linear operator on H to H ′, the function

t[u, u′] = (Tu, u′) (55)

is a sesquilinear form on H ×H ′. Conversely, an arbitrary sesquilinear form

t[u, u′] on H × H ′ can be expressed in this form by a suitable choice of an

operator T on H to H ′. Since t[u, u′] is a semilinear form on H ′ for a fixed

u, there exists a unique w′ ∈ H ′ such that t[u, u′] = (w′, u′) for all u′ ∈ H ′.

Since w′ is determined by u, we define a function T by setting w′ = Tu. T is

a linear operator on H to H ′. In the same way, t[u, u′] can also be expressed

in the form

t[u, u′] = (u, T ∗u′). (56)

Since H∗, H ′∗ can be identified with H, H ′ respectively, T ∗ can be consid-

ered as the adjoint of T on H ′ to H.

T ∗T is a linear operator on H to itself. The relation

(u, T ∗Tv) = (T ∗Tu, v) = (Tu, Tv) (57)

shows that T ∗T is the operator associated with the sesquilinear form (Tu, Tv)

on H. Note that the first two members of (57) are the inner product in H

while the last is that in H ′.

It follows from (57),(40) that ‖T ∗T‖ = sup
|(Tu, Tv)|
‖u‖‖v‖

≥ sup
‖Tu‖2

‖u‖2 =

‖T‖2. By (41) and (42) we have ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. Hence

‖T ∗T‖ = ‖T‖2 . (58)

Example 19. If T is an operator on H to itself, (Tu, u) = 0 for all u implies

T = 0.
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Proof. We have (T (u+v), u+v) = 0. On the other hand, (T (u+v), u+v) =

(Tu, u) + (Tu, v) + (Tv, u) + (Tv, v) = (Tu, v) + (Tv, u) = 0. Since v is any

vector in H, then (Tu, iv) + (Tiv, u) = −i(Tu, v) + i(Tv, u) = 0, that is

−(Tu, v) + (Tv, u) = 0. Combining this equality with (Tu, v) + (Tv, u) = 0

yields (Tv, u) = 0,∀u, ∀v. Hence T = 0.

Remark 3. This property is not true when T is defined on a real space. To

show that we can take T represented by the matrix

τjk =

(

0 1
−1 0

)

,

then (Tu, u) = 0 for all u, but T 6= 0.

Definition 16. A sesquilinear form t[u, v] (or t in short) on a unitary space

H is said to be symmetric if

t[v, u] = t[u, v], for all u, v ∈ H. (59)

If t is symmetric, t[u, u] is real-valued, and is denoted by t[u]. t is

nonnegative if t[u] ≥ 0 for all u, and positive if t[u] > 0 for all u 6= 0.

The operator T associated with a symmetric form t[u, v] according to

(55),(56) has the property that

T ∗ = T. (60)

Indeed, t[v, u] = (Tv, u) = (v, T ∗u) and t[u, v] = (Tu, v) = (v, Tu). Hence

T ∗ = T .

Definition 17. An operator T on H to itself satisfying (60) is said to be

symmetric.

(Tu, u) is real for all u ∈ H if and only if T is symmetric. Indeed,

if (Tu, u) is real, then (Tu, u) = (u, Tu) = (u, Tu) = (T ∗u, u), hence by

Example 19 T ∗ = T . Conversely if T ∗ = T, then (Tu, u) = (T ∗u, u) =

(u, T ∗u) = (Tu, u), thus (Tu, u) is real.
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A symmetric operator T is nonnegative (positive) if the associated form

is nonnegative (positive), and we write T ≥ 0 to denote that T is nonnegative

symmetric. More generally, we write

T ≥ S or S ≤ T

if S, T are symmetric operators such that T − S ≥ 0.

Example 20. If T is symmetric, P (T ) is symmetric for any polynomial P

with real coefficients.

Since (αTS)∗ = αS∗T ∗, it follows that Tn∗ = T ∗n = Tn, thus

(αnTn + ... + α0)
∗ = ᾱnTn∗ + ... + ᾱ0 = αnTn + ... + α0.

Example 21. For any linear operator T on H to H ′, T ∗T and TT ∗ are

nonnegative symmetric operators in H and H ′, respectively.

We have

(T ∗T )∗ = T ∗(T ∗)∗ = T ∗T, (T ∗Tu, u) = (Tu, Tu) ≥ 0

and

(TT ∗)∗ = (T ∗)∗T ∗ = TT ∗, (TT ∗u′, u′) = (T ∗u′, T ∗u′) ≥ 0.

Example 22. If T is symmetric, then T 2 ≥ 0; T 2 = 0 ⇔ T = 0.

(T 2u, u) = (Tu, T ∗u) = (Tu, Tu) ≥ 0; T 2 = 0, that is (T 2u, u) = (Tu, Tu) =

0 according to Example 19, and this is equivalent to T = 0.

Example 23. R ≤ S and S ≤ T imply R ≤ T . S ≤ T and S ≥ T imply

S = T .

R ≤ S and S ≤ T is equivalent to S − R ≥ 0 and T − S ≥ 0, therefore

((S − R)u, u) ≥ 0 and ((T − S)u, u) ≥ 0, hence (Su, u) − (Ru, u) ≥ 0 and

(Tu, u)− (Su, u) ≥ 0. Adding the last two inequalities, we obtain (Tu, u)−

(Ru, u) ≥ 0. Hence ((T − R)u, u) ≥ 0, that is, T − R ≥ 0.

S ≤ T and S ≥ T is equivalent to S−T ≤ 0 and S−T ≥ 0, and this implies

that S − T = 0, that is (Su, u) − (Tu, u) = 0 for all u ∈ H. Thus S = T by

Example 19.
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2.3 Unitary, isometric and normal operators

Definition 18. Let H and H ′ be unitary spaces. An operator T on H to

H ′ is said to be isometric if

‖Tu‖ = ‖u‖ for every u ∈ H. (61)

This is equivalent to (T ∗Tu, u) = (Tu, Tu) = (u, u), thus

T ∗T = 1. (62)

This implies that

(Tu, Tv) = (u, v) for every u, v ∈ H. (63)

Definition 19. An isometric operator T is said to be unitary if the range

of T is the whole space H ′.

Example 24. T ∈ L(H, H ′) is unitary if and only if T−1 ∈ L(H ′, H) exists

and

T−1 = T ∗ . (64)

If T is unitary, ‖Tu‖ = ‖u‖ implies that the mapping T is one-to-one,

that is, T−1 exists. Since T ∗T = 1, T−1 = T ∗. If T−1 exists and T−1 = T ∗,

then T ∗T = 1, hence T is unitary.

Example 25. T is unitary ⇔ T ∗ is.

We have T−1∗ = T ∗−1 and by Example 24 this is equivalent to (T ∗)∗ =

(T ∗)−1, which is equivalent to T ∗ being unitary.

Example 26. If T ∈ L(H ′, H ′′) and S ∈ L(H, H ′) are isometric, TS ∈

L(H, H ′′) is isometric. The same is true if ”isometric” is replaced by ”uni-

tary”.

We have S∗S = 1 and T ∗T = 1, therefore (TS)∗TS = S∗(T ∗T )S =

S∗S = 1, and if the range of S is the whole space H ′, and the range of T is

the whole space H ′′, this implies that the range of TS is the whole of H ′′.

Definition 20. T ∈ L(H) is said to be normal if T and T ∗ commute, i.e.

T ∗T = TT ∗. (65)
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Symmetric operators and unitary operators on a unitary space into itself

are special cases of normal operators.

Example 27. Let T1, T2, T3 be operators represented by the matrices





1 1 0
1 1 0
0 0 0



 ,





0 0 i
0 1 0
i 0 0



 ,





1 i 0
i 1 0
0 0 0



 ,

respectively, then T1 is normal, symmetric but not unitary, T2 is normal,

not symmetric but unitary, T3 is normal, neither symmetric nor unitary.

An important property of a normal operator T is that

‖Tn‖ = ‖T‖n, n = 1, 2, ... (66)

This implies that

spr T = ‖T‖. (67)

We shall prove (66). If T is symmetric, by (58) ‖T 2‖ = ‖T‖2. Since T 2

is symmetric we have ‖T 4‖ = ‖T 2‖2 = ‖T‖4. Proceeding in this manner

we obtain ‖Tn‖ = ‖T‖n for n = 2m, m = 1, 2, · · · . If T is normal but not

necessarily symmetric, again by (58) we have ‖Tn‖2 = ‖Tn∗Tn‖. Since

Tn∗Tn = (T ∗T )n because T is normal, and T ∗T is symmetric, by (58)

‖Tn‖2 = ‖(T ∗T )n‖ = ‖T ∗T‖n = ‖T‖2n for n = 2m. Now if 2m − n = r ≥

0, then ‖T‖n‖T‖r = ‖T‖n+r = ‖Tn+r‖ ≤ ‖Tn‖‖T r‖ ≤ ‖Tn‖‖T‖r. Thus

‖T‖n ≤ ‖Tn‖. The opposite inequality is obvious. This proves (66).

Example 28. If T is normal then (i) Tn = 0 for some integer n implies

T = 0. (ii)If T is nonsingular then T−1 is normal.

(i) Tn = 0 ⇒ ‖Tn‖ = 0 = ‖T‖n ⇒ ‖T‖ = 0 ⇒ T = 0.

(ii) We have T ∗T = TT ∗ therefore (T ∗T )−1 = (TT ∗)−1 therefore T−1T ∗−1 =

T ∗−1T−1, since T ∗−1 = T−1∗, therefore T−1T−1∗ = T−1∗T−1.

2.4 Orthogonal projections

Definition 21. Let M be a subspace of H and H = M⊕M⊥, the projection

operator P = PM on M along M⊥ is called the orthogonal projection on

M .
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P is a symmetric, nonnegative and idempotent operator, for

(Pu, u) = (u′, u′ + u′′) = (u′, u′) ≥ 0 (68)

where

u = u′ + u′′, u ∈ H, u′ ∈ M, u′′ ∈ M⊥, (69)

by u′⊥u′′. (68) shows also that (Pu, u) is real . Hence P is symmetric, i.e.

P ∗ = P. Idempotent follows from P being a projection.

Example 29. If P is an orthogonal projection, then 1− P is a symmetric,

nonnegative and idempotent, and we have

0 ≤ P ≤ 1, ‖P‖ = 1 if P 6= 0.

(1 − P )∗ = 1∗ − P ∗ = 1 − P, ((1 − P )u, u) = (u − u′, u) = (u′′, u′ + u′′) =

(u′′, u′′) ≥ 0, and (1 − P )2 = 1 − 2P + P 2 = 1 − 2P + P = 1 − P. Now

((1 − P )u, u) ≥ 0, therefore 1 − P ≥ 0, and (Pu, u) ≥ 0, therefore P ≥ 0.

Hence 0 ≤ P ≤ 1. Since P 2 = P and P is symmetric, ‖P‖ = ‖P 2‖ = ‖P‖2

by (58), or equivalently ‖P‖(1−‖P‖) = 0. But ‖P‖ 6= 0 for P 6= 0, therefore

‖P‖ = 1.

Example 30. ‖(1 − PM )u‖ =dist(u, M), u ∈ H.

dist(u, M) = inf
v∈M

‖u− v‖. Since ‖u− v‖2 = ‖(u′ − v′) + u′′‖2 = ‖u′ − v′‖2 +

‖u′′‖2, the infimum is attained as v′ = u′, and is equal to ‖u′′‖ = ‖(1−PM )u‖.

Example 31. 1. M⊥N ⇔ PMPN = 0.

2. The following three conditions are equivalent:

(i)M ⊃ N ,

(ii)PM ≥ PN ,

(iii)PMPN = PN .

Proof. H = M ⊕ M⊥.

(1) We have M⊥N, therefore for each u ∈ H, 0 = (PMu, PNu) = (u, P ∗
MPNu) =

(u, PMPNu). Hence PMPN = 0. Conversely if PMPN = 0, then PMu =

PMPNu = 0 for all u ∈ N. Thus M⊥N.

(2) Now we will show that (i)⇔(ii), and (i)⇔(iii).

If M ⊃ N, then H = N ⊕N1⊕M⊥, where N1 is the orthogonal complement

of N in M. Let u = u′ + u′′ + u′′′, u′ ∈ N, u′′ ∈ N1, u
′′′ ∈ M⊥.
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(i)⇒(ii): ((PM − PN )u, u) = (PMu, u) − (PNu, u) = (u′ + u′′, u) − (u′, u) =

(u′′, u) = (u′′, u′′) ≥ 0. (ii)⇒(i): Let u ∈ N, then (PMu, u) ≥ (PNu, u) =

(u, u), hence ((I − PM )u, u) ≤ 0. Since I − PM is the orthogonal projection

on M⊥, I − PM ≥ 0 so ((I − PM )u, u) = 0 which means that u ∈ M.

(i)⇒(iii) Since PNu ∈ N ⊂ M, PMPNu = PNu. (iii)⇒(i) Let u ∈ N. Then

PMPNu = PNu by (iii), and PNu = u. So PMu = u, i.e., u ∈ M.

2.5 The eigenvalue problem

Example 32. A symmetric operator has only real eigenvalues.

We have proved that T ∗ = T is equivalent to (Tu, u) being real, and this

implies that (λu, u) is real, for an eigenvector u with eigenvalue λ. Thus λ

is real.

Example 33. Each eigenvalue of a unitary operator has absolute value one.

A normal operator with this property is unitary.

Since ‖Tu‖ = ‖u‖ ∀u ∈ H, Tu = λu implies ‖λu‖ = ‖u‖, that is |λ| = 1.

T being normal is equivalent to (T ∗Tu, u) = (TT ∗u, u). This is equiva-

lent to (Tu, Tu) = (T ∗u, T ∗u), therefore we have (T ∗u, T ∗u) = (λu, λu) =

|λ|2(u, u) = (u, u). On the other hand (T ∗u, T ∗u) = (TT ∗u, u), hence TT ∗ =

1. Since T ∈ L(H) and is nonsingular, the range of T is the whole space H.

Example 34. If T is normal, then we have

1. Tu = 0 if and only if T ∗u = 0.

2. (T − λI) is a normal.

3. The eigenvalues of T ∗ are the conjugates of the eigenvalues of T.

4. Any two eigenvectors that belong to different eigenvalues are orthogo-

nal.

Proof. 1. We will show that (Tu, Tu) = (T ∗u, T ∗u).

(Tu, Tu) = (u, T ∗Tu) = (u, TT ∗u) = (T ∗u, T ∗u), so that Tu = 0 is

equivalent to T ∗u = 0.

2. We have to show that T − λI commutes with its adjoint.

(T − λI)(T − λI)∗ = (T − λI)(T ∗ − λ̄I) = TT ∗ − λT ∗ − λ̄T + λλ̄I

= T ∗T − λ̄T − λT ∗ + λλ̄I = (T ∗ − λ̄I)(T − λI)

= (T − λI)∗(T − λI),
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hence T − λI is a normal.

3. If Tu = λu, (T−λI)u = 0. Since T−λI is normal we have (T−λI)∗u =

0, so (T ∗−λ̄I)u = 0. Thus T ∗u = λ̄u. Hence any eigenvector of T is also

an eigenvector of T ∗, and the corresponding eigenvalues are conjugate

to each other.

4. Let Tu1 = λ1u1, Tu2 = λ2u2 and λ1 6= λ2, then

λ1(u1, u2) = (λ1u1, u2)

= (Tu1, u2)

= (u1, T
∗u2)

= (u1, λ̄2u2)

= λ2(u1, u2).

Since λ1 6= λ2, (u1, u2) = 0.

2.6 The minimax principle

Let T be a symmetric operator in H. T is diagonalizable (see [2]) and has

only real eigenvalues. For a subspace M of H, set

µ[M ] = µ[T, M ] = min
u∈M
‖u‖=1

(Tu, u) = min
06=u∈M

(Tu, u)

‖u‖2
. (70)

Arrange the eigenvalues of T in the following order

µ1 ≤ µ2 ≤ ... ≤ µN ,

where µi can be repeated. The minimax (or maximin) principle is

µn = max
codimM =n−1

µ[M ] = max
codimM ≤n−1

µ[M ]. (71)

This is equivalent to the following two propositions:

µn ≥ µ[M ] for any M with codimM ≤ n − 1; (72)

µn ≤ µ[M0] for some M0 with codimM = n − 1. (73)

Let us prove these separately.
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Let {ϕn} be an orthonormal basis with the property

Tϕn = µnϕn, n = 1, ..., N. (74)

Each u has the expansion

u =
N

∑

n=1

ξnϕn, ξn = (u, ϕn), ‖u‖2 =
N

∑

n=1

|ξn|
2,

in this basis. Then

Tu =
N

∑

n=1

ξnTϕn =
N

∑

n=1

µnξnϕn, (Tu, u) =
N

∑

n=1

µn|ξn|
2.

Let M be any subspace with codimM ≤ n − 1. The n-dimensional sub-

space M ′ spanned by ϕ1, ..., ϕn contains a nonzero vector u in common with

M by (7). This u has the coefficients ξn+1, ξn+2, ... equal to zero, so that

(Tu, u) =

N
∑

1

µk|ξk|
2

=
n

∑

1

µk|ξk|
2

≤ µn

n
∑

1

|ξk|
2

= µn‖u‖
2.

Hence µ[M ] = min
06=u∈M

(Tu, u)

‖u‖2
≤ µn. This proves (72).

Let M0 be the subspace consisting of all vectors orthogonal to ϕ1, ..., ϕn−1,

so that codimM0 = n− 1. Each u ∈ M0 has the coefficients ξ1, ..., ξn−1 zero.

Hence

(Tu, u) =
N

∑

k=n

µk|ξk|
2

≥
N

∑

k=n

µn|ξk|
2

= µn‖u‖
2,

which implies (73).
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