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Abstract

The theory of linear operators is an extensive area. This thesis
is about the linear operators in infinite dimensional vector spaces.
We study elementary properties of Banach spaces, bounded operators,
compact operators and spectrum of compact operators. We give an ap-
plication to a two-point boundary value problem for a linear ordinary
differential equation in the end.
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Introduction

This report contains two sections. In Section 1, we introduce basic concepts

in infinite dimensional vector spaces, such as normed spaces, Banach spaces,

inner product spaces and Hilbert spaces. We also study the strong and weak

convergence. In Section 2, we study bounded linear operators in infinite

dimensional vector spaces. In particular, we study compact operators and

their spectrum. Finally, as an application we consider a two-point boundary

value problem for a linear ordinary differential equation.

The results in this report are primarily taken from [1].
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1 Infinite dimensional vector spaces

In this thesis we shall always assume that X is a vector space such that

dimX = ∞ unless otherwise stated.

1.1 Normed spaces. Banach spaces

Definition 1. A normed space is a vector space X in which a function

‖ ‖ : X −→ R is defined and satisfies the following conditions:

- ‖x‖ ≥ 0 and = 0 iff x = 0

- ‖αx‖ = |α|‖x‖

- ‖x + y‖ ≤ ‖x‖ + ‖y‖

for all x, y in X and all scalars α. A normed space X in which every Cauchy

sequence has a limit in X is said to be complete. A complete normed space

is called a Banach space.

Example 1. (Space lp). Let 1 ≤ p < ∞ be a fixed real number. By

definition, each element in the space lp is a sequence x = (ξj) = (ξ1, ξ2, · · · )

of numbers such that |ξ1|
p + |ξ2|

p + · · · converges; thus

∞
∑

j=1

|ξj |
p < ∞,

and the norm is defined by

‖x‖ = (

∞
∑

j=1

|ξj |
p)1/p. (1)

Since

- ‖x‖ = (

∞
∑

j=1

|ξj |
p)1/p ≥ 0, and = 0 iff x = 0,

- ‖λx‖ = (
∞

∑

j=1

|λξj |
p)1/p = (

∞
∑

j=1

|λ|p|ξj |
p)1/p = |λ|(

∞
∑

j=1

|ξj |
p)1/p = |λ|‖x‖,

- ‖x + y‖ = (
∞

∑

j=1

|ξj + ηj |
p)1/p ≤ (by the Minkowski inequality, see (12) on

p. 14 in [1]) ≤ (
∞

∑

j=1

|ξk|
p)1/p + (

∞
∑

j=1

|ηk|
p)1/p = ‖x‖ + ‖y‖,

this is indeed a norm.
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(Completeness of lp). Let (xn) be any Cauchy sequence in the space lp,

where xm = (ξ
(m)
1 , ξ

(m)
2 , · · · ). Then for every ǫ > 0 there is an N such that

for all m, n > N,

‖xm − xn‖ = (
∞

∑

j=1

|ξ
(m)
j − ξ

(n)
j |p)1/p < ǫ. (2)

It follows that

|ξ
(m)
j − ξ

(n)
j | < ǫ

for every j = 1, 2. · · · . For fixed j, (ξ
(n)
j ) is a Cauchy sequence of numbers.

Since the real and complex numbers are complete (see [1]), ξ
(n)
j −→ ξj as

n −→ ∞. We define x = (ξ1, ξ2, · · · ) and show that x ∈ lp and xm −→ x.

From (2) we have for all m, n > N and a fixed k

k
∑

j=1

|ξ
(m)
j − ξ

(n)
j |p < ǫp.

Letting n −→ ∞, we obtain for m > N

k
∑

j=1

|ξ
(m)
j − ξj |

p ≤ ǫp.

Now let k −→ ∞; then for m > N

∞
∑

j=1

|ξ
(m)
j − ξj |

p ≤ ǫp. (3)

This shows that xm − x = (ξ
(m)
j − ξj) ∈ lp, and

x = xm − (xm − x) ∈ lp.

The series in (3) represents ‖xm − x‖p, hence xm −→ x. Since (xn) was an

arbitrary Cauchy sequence in lp, this proves the completeness of lp.

Example 2. (Space l∞). Every element in this space is a complex sequence

x = (ξj) = (ξ1, ξ2, · · · ) such that sup
j

|ξj | < ∞, and the norm is defined by

‖x‖ = sup
j

|ξj |. (4)
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The first two conditions for the norm are verified similarly as in the last

example. Let us show the triangle inequality.

- ‖x + y‖ = sup
j

|ξj + ηj | ≤ sup
j

(|ξj | + |ηj |) ≤ sup
j

|ξj | + sup
j

|ηj | = ‖x‖ + ‖y‖.

(Completeness of l∞). Let (xm) be any Cauchy sequence in the space l∞,

where xm = (ξ
(m)
1 , ξ

(m)
2 , · · · ). Then for every ǫ > 0 there is an N such that

for all m, n > N

‖xm − xn‖ = sup
j

|ξ
(m)
j − ξ

(n)
j | < ǫ. (5)

We shall show that there exists x ∈ l∞ which is the limit of (xm). By (5) we

have for every fixed m, n > N

|ξ
(m)
j − ξ

(n)
j | < ǫ. (6)

Hence for every j the sequence {ξ
(1)
j , ξ

(2)
j , · · · } is a Cauchy sequence of num-

bers. So it converges : ξ
(m)
j −→ ξj as m −→ ∞. Let x = (ξ1, ξ2, · · · ). We

want to show that x ∈ l∞ and xm −→ x. From (6) with n −→ ∞ we have

for m > N

|ξ
(m)
j − ξj | ≤ ǫ. (7)

Since xm = (ξ
(m)
j ) ∈ l∞, there is a real number km such that |ξ

(m)
j | ≤ km for

all j. Hence by the triangle inequality

|ξj | ≤ |ξj − ξ
(m)
j | + |ξ

(m)
j | ≤ ǫ + km.

This inequality holds for every j. Hence (ξj) is a bounded sequence of num-

bers. This implies that x = (ξj) ∈ l∞. From (6) we obtain

‖xm − x‖ = sup
j

|ξ
(m)
j − ξj | ≤ ǫ

for m > N. This shows that xn −→ x.

Example 3. (Space C[a, b]). This space is the set of all continuous real-

or complex-valued functions x = x(t) defined on a given closed interval

J = [a, b], and the norm is defined by

‖x‖ = max
t∈J

|x(t)|. (8)
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The proof that this is indeed a norm is similar as in Example 2.

(Completeness of C[a, b]). Let (xm) be any Cauchy sequence in C[a, b]. Then

for every ǫ > 0 there is an N such that for all m, n > N,

‖xm − xn‖ = max
t∈J

|xm(t) − xn(t)| < ǫ. (9)

Hence for any fixed t = t0 ∈ J,

|xm(t0) − xn(t0)| < ǫ, m, n > N.

This shows that (x1(t0), x2(t0), · · · ) is a Cauchy sequence of real or complex

numbers, so the sequence converges, say xm(t0) −→ x(t0) as m −→ ∞. In

this way we can associate with each t ∈ J a unique number x(t). This defines

a function x on J, and we must show that x ∈ C[a, b] and xm −→ x.

From (9) (with n → ∞) we have

max |xm(t) − x(t)| ≤ ǫ, m > N.

Hence for every t ∈ J,

|xm(t) − x(t)| ≤ ǫ, m > N. (10)

This shows that (xm(t)) converges to x(t) uniformly on J. Since the xm’s are

continuous on J and the convergence is uniform, the limit function x is con-

tinuous on J. Hence x ∈ C[a, b] and xm −→ x. This proves the completeness

of C[a, b].

The following is an example of an incomplete normed space.

Example 4. Let X be the set of all continuous real-valued functions on

J = [0, 1], and let

‖x‖ =

∫ 1

0
|x(t)|dt, (11)

then ‖x‖ is a norm, since

‖x+y‖ =

∫ 1

0
|x(t)+y(t)|dt ≤

∫ 1

0
(|x(t)+|y(t)|)dt =

∫ 1

0
|x(t)|dt+

∫ 1

0
|y(t)|dt =

‖x‖ + ‖y‖, and the other two conditions are trivially satisfied.

This normed space X is not complete. Let (xm) be defined by

xm(t) =

{

0 if t ∈ [0, 1
2 ]

1 if t ∈ [am, 1]
,
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where am = 1
2 + 1

m and for 1
2 ≤ t ≤ am, (t, xm(t)) is the linear segment

joining (1
2 , 0) and (am, 1). For every given ǫ > 0,

‖xm − xn‖ < ǫ when m, n >
1

ǫ
.

Hence (xm) is a Cauchy sequence. For every x ∈ X,

‖xm − x‖ =

∫ 1

0
|xm(t) − x(t)|dt

=

∫ 1

2

0
|x(t)|dt +

∫ am

1

2

|xm(t) − x(t)|dt +

∫ 1

am

|1 − x(t)|dt.

Since each integrand is nonnegative, ‖xm − x‖ −→ 0 implies that each

integral approaches zero. Since x is continuous, we would have

x(t) =

{

0 if t ∈ [0, 1
2)

1 if t ∈ (1
2 , 1].

But this contradicts the continuity of x, hence x /∈ X. This proves that X

is not complete.

Definition 2. Let M be a subset in a normed space X, we say M is :

- bounded if there is a positive number c such that ‖x‖ ≤ c ∀x ∈ M.

- closed if for any sequence (xn) in M, xn −→ x implies that x ∈ M.

- compact if any sequence (xn) in M has a convergent subsequence whose

limit belongs to M.

We know that in the finite dimensional space RN , any subset M is com-

pact if and only if it is closed and bounded (see [1]). But in infinite dimen-

sional normed spaces this is no longer true.

Theorem 1. A compact subset M of a normed space is closed and bounded.

Proof. The proof is the same as for RN , see [1].

Remark 1. The converse of this theorem is not true in infinite dimensional

spaces.

We verify our claim in the space l2. Consider the sequence (en) in l2,

where en = (δnj) has the nth term 1 and all other terms 0. This sequence

is bounded since ‖en‖ = 1. Its terms constitute a point set which is closed

because it has no point of accumulation. For the same reason, that point

set is not compact. See also Theorem 2 below.

Later we shall need the following lemma:
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Riesz’s Lemma. Let Y and Z be subspaces of a normed space X (of any

dimension), and suppose that Y is closed and is a proper subset of Z. Then

for every real number θ in the interval (0, 1) there is a z ∈ Z such that

‖z‖ = 1, ‖z − y‖ ≥ θ for all y ∈ Y.

Proof. Let v ∈ Z − Y and

a = inf
y∈Y

‖v − y‖.

Since Y is closed, a > 0. We now take any θ ∈ (0, 1). By the definition of an

infimum there is a y0 ∈ Y such that

a ≤ ‖v − y0‖ ≤
a

θ
.

Let

z = c(v − y0) where c =
1

‖v − y0‖
.

Then ‖z‖ = 1, and we show that ‖z − y‖ ≥ θ for every y ∈ Y. We have

‖z − y‖ = ‖c(v − y0) − y‖

= c‖v − y0 − c−1y‖

= c‖v − y1‖

where

y1 = y0 + c−1y.

Since y, y0 ∈ Y, y1 ∈ Y. Hence by the definition of a, ‖v − y1‖ ≥ a, and

‖z − y‖ = c‖v − y1‖ ≥ ca =
a

‖v − y0‖
≥

a

a/θ
= θ.

Since y ∈ Y was arbitrary, this completes the proof.

Theorem 2. (Finite dimension). If a normed space X has the property

that the closed unit ball M = {x|‖x‖ ≤ 1} is compact, then X is finite

dimensional.

Proof. We argue by contradiction. We assume that M is compact but

dimX = ∞, and we shall show that this is impossible. Let x1 be any

vector of norm 1, and X1 be the one dimensional subspace of X generated
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by x1, which is closed because the dimension is finite. Since dimX = ∞,

X1 is a proper subspace of X.

By Riesz’s Lemma there is an x2 ∈ X of norm 1 such that

‖x2 − x1‖ ≥
1

2
.

Let X2 be two dimensional proper subspace of X generated by x1, x2.

Again by Riesz’s lemma there is an x3 ∈ X of norm 1 such that

‖x3 − x1‖ ≥
1

2
,

‖x3 − x2‖ ≥
1

2
.

Continuing in this way, we obtain a sequence (xn) of elements xn ∈ M such

that

‖xm − xn‖ ≥
1

2
for all m 6= n.

That is, (xn) has no convergent subsequence. But M is compact. Hence

dimX must be finite.

Definition 3. (Bounded linear functional). A linear functional f is a linear

operator with domain D(f) in a vector space X and range in the scalar field

K, where K = R or C. Thus

f : D(f) −→ K,

and we say the linear functional f is bounded if there exists a real number

c such that for all x ∈ D(f),

|f(x)| ≤ c‖x‖.

Definition 4. (Dual space). Let X be a normed space. The set of all

bounded linear functionals on X constitutes a normed space with the norm

defined by

‖f‖ = sup
x∈X
x 6=0

|f(x)|

‖x‖
= sup

x∈X
‖x‖=1

|f(x)|. (12)

This set is called the dual space of X and is denoted by X∗. We also write

(f, x) = f(x) for f ∈ X∗ and x ∈ X.
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It is easy to see from (12) that ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0,

and that ‖αf‖ = |α|‖f‖. Moreover,

‖f + g‖ = sup
x∈X
x 6=0

|f(x) + g(x)|

‖x‖
≤ sup

x∈X
x 6=0

|f(x)|

‖x‖
+ sup

x∈X
x 6=0

|g(x)|

‖x‖
= ‖f‖ + ‖g‖.

Hence X∗ is a normed space.

The following theorem shows the completeness of X∗.

Theorem 3. The dual space X∗ of a Banach space X is a Banach space.

Proof. Let (fn) be a Cauchy sequence in X∗. Then for each ǫ > 0 there

exists N such that

|(fn, u) − (fm, u)| = |(fn − fm, u)| ≤ ‖fn − fm‖‖u‖ < ǫ‖u‖ (13)

for every n, m > N, u ∈ X. Since (fn, u) is a Cauchy sequence of numbers,

it converges to some number cu and we define f by setting (f, u) = cu for

all u. Hence

lim
n→∞

(fn, u) = (f, u).

We must show f is linear, bounded and fn −→ f. We have

lim
n→∞

(fn, α1u1 + α2u2) = (f, α1u1 + α2u2),

and on the other hand,

lim
n→∞

(fn, α1u1 + α2u2) = lim
n→∞

(fn, α1u1) + lim
n→∞

(fn, α2u2)

= α1 lim
n→∞

(fn, u1) + α2 lim
n→∞

(fn, u2)

= α1(f, u1) + α2(f, u2),

thus f is linear. ‖fn‖ form a Cauchy sequence of positive numbers, hence

lim ‖fn‖ = M, and

|(f, u)| = lim
n→∞

|(fn, u)| ≤ lim
n→∞

‖fn‖‖u‖ = M‖u‖.

So f is bounded. (13) gives

|(fn − f, u)| = lim
m→∞

|(fn − fm, u)| ≤ lim
m→∞

‖fn − fm‖‖u‖ ≤ ǫ‖u‖,

hence

‖fn − f‖ = sup
u 6=0

|(fn − f, u)|

‖u‖
≤ ǫ for all n > N.

Thus fn −→ f and X∗ is complete.
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Example 5. Space l1. The dual space of l1 is l∞.

Proof. Let ek = (δkj), then every x ∈ l1 has a unique representation

x =

∞
∑

k=1

ξkek.

Let f ∈ l1
∗

, since f is bounded and linear,

f(x) =
∞

∑

k=1

ξkγk, γk = f(ek),

γk’s are uniquely determined by f, and

|γk| = |f(ek)| ≤ ‖f‖‖ek‖.

Since ‖ek‖ = 1, we have

|γk| ≤ ‖f‖ for all k.

Hence

sup
k

|γk| ≤ ‖f‖. (14)

Thus f ∈ l∞.

Conversely, let b = (βk) ∈ l∞, then we can define the action of g on l1

by

g(x) =
∞

∑

k=1

ξkβk,

where x = (ξk) ∈ l1. Clearly, g is linear. It remains to show that g is

bounded. Note that

|g(x)| ≤
∞

∑

k=1

|ξkβk|

≤ sup
j

|βj |

∞
∑

k=1

|ξk|

= ‖x‖ sup
j

|βj |,

hence g is bounded. Therefore g belongs to l1
∗

. Finally we show that

‖f‖l1
∗ = ‖f‖l∞ . We have

|f(x)| = |
∞

∑

k=1

ξkγk| ≤ sup
j

|γj |
∞

∑

k=1

|ξk| = ‖x‖ sup
j

|γj |.
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Since ‖f‖ = sup
‖x‖=1

|f(x)|

‖x‖
, then

‖f‖ ≤ sup
j

|γj |.

From this and (14),

‖f‖ = sup
j

|γj |.

This is the norm on l∞. So we have shown that the l1
∗

norm of f is the

norm on l∞.

Example 6. Space lp, 1 < p < ∞. The dual space of lp is lq, where q is the

conjugate of p, that is, 1/p + 1/q = 1.

Proof. Let x ∈ lp and ek = (δkj). Then every x ∈ lp has a unique represen-

tation

x =
∞

∑

k=1

ξkek.

Let f ∈ lp
∗

, since f is linear and bounded,

f(x) =
∞

∑

k=1

ξkf(ek). (15)

Let q be the conjugate of p and consider xn = (ξ
(n)
k ) with

ξ
(n)
k =

{

|γk|
q/γk if k ≤ n and γk 6= 0

0 if k > n or γk = 0,
(16)

where γk = f(ek). By substituting this into (15) we obtain

f(xn) =
∞

∑

k=1

ξ
(n)
k γk =

n
∑

k=1

|γk|
q.

By (16) and (q − 1)p = q, we have

f(xn) ≤ ‖f‖‖xn‖ = ‖f‖(

n
∑

k=1

|ξ
(n)
k |p)1/p

= ‖f‖(
n

∑

k=1

|γk|
(q−1)p)1/p

= ‖f‖(
n

∑

k=1

|γk|
q)1/p.
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Then

f(xn) =
n

∑

k=1

|γk|
q ≤ ‖f‖(

n
∑

k=1

|γk|
q)1/p.

Dividing by the last factor, we get

(
n

∑

k=1

|γk|
q)1−1/p = (

n
∑

k=1

|γk|
q)1/q ≤ ‖f‖.

Letting n −→ ∞, we obtain

(

∞
∑

k=1

|γk|
q)1/q ≤ ‖f‖. (17)

This implies that (γk) ∈ lq.

On other hand, from (15) and the Hölder inequality (see (10) on p. 14 in

[1]), we have

|f(x)| = |
∞

∑

k=1

ξkγk| ≤ (
∞

∑

k=1

|ξk|
p)1/p(

∞
∑

k=1

|γk|
q)1/q

= ‖x‖(
∞

∑

k=1

|γk|
q)1/q

and

‖f‖ ≤ (
∞

∑

k=1

|γk|
q)1/q (18)

since ‖f‖ = supx 6=0

|f(x)|

‖x‖
. We have, by (17) and (18),

‖f‖ = (
∞

∑

k=1

|γk|
q)1/q. (19)

So ‖f‖ = ‖γ‖q, where γ = (γk) ∈ lq and γk = f(ek). The mapping of

(lp)∗ to lq given by f 7−→ γ is linear and injective. And by (19) it is

norm preserving, so it is an isomorphism. Thus we have shown that lp
∗

is isometrically embedded in lq. We complete the proof by showing that

f 7−→ γ is bijective, i. e., for each element of lq there is a corresponding

element of lp
∗

. Let (βk) ∈ lq, then we can define g on lp by

g(x) =
∞

∑

k=1

ξkβk,
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where x = (ξk) ∈ lp. Then g is linear and by the Hölder inequality, we have

|g(x)| = |
∞

∑

k=1

ξkβk| ≤ (
∞

∑

k=1

|ξk|
p)1/p(

∞
∑

k=1

|βk|
q)1/q = ‖β‖‖x‖.

Hence g is bounded and thus g belongs to lp
∗

.

1.2 Inner product spaces. Hilbert spaces

Definition 5. An inner product space is a vector space X with an inner

product ( , ) defined on X. A Hilbert space is a complete inner product

space.

Remark 2. The inner product has been defined in [3].

An inner product on X defines a norm on X given by

‖x‖ = (x, x)
1

2 . (20)

A norm on an inner product space satisfies :

- Parallelogram equality:

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2). (21)

- Polarization identity:

Re(x, y) = 1
4(‖x + y‖2 − ‖x − y‖2)

Im(x, y) = 1
4(‖x + iy‖2 − ‖x − iy‖2).

(22)

(22) holds only in complex inner product spaces. By adding

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + (x, y) + (y, x) + ‖y‖2,

and

‖x − y‖2 = (x − y, x − y) = ‖x‖2 + (x,−y) + (−y, x) + ‖y‖2

= ‖x‖2 − (x, y) − (y, x) + ‖y‖2

we obtain the parallelogram equality.
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To show (22), by (20), the definition of the inner product and since

(x, y) + (y, x) = (x, y) + (x, y) = 2Re(x, y), we have

1

4
(‖x + y‖2 − ‖x − y‖2) =

1

4
[(x + y, x + y) − (x − y, x − y)]

=
1

4
[(x, x) + 2Re(x, y) + (y, y) − (x, x) + 2Re(x, y) − (y, y)]

= Re(x, y).

Similarly, we can prove the other equality. Since Im(x, y) = Re(x, iy), we

get

1

4
(‖x + iy‖2 − ‖x − iy‖2) =

1

4
[‖x‖2 + (x, iy) + (iy, x) + ‖y‖2−

(‖x‖2 − (x, iy) − (iy, x) + ‖y‖2)]

=
1

4
[2(x, iy) + 2(iy, x)]

=
1

2
[(x, iy) + (x, iy)]

= Re(x, iy)

= Im(x, y).

Example 7. Hilbert sequence space l2. The inner product is defined by

(x, y) =
∞

∑

j=1

ξj η̄j ,

and the norm is defined by

‖x‖2 = (x, x) = (
∑

|ξj |
2)

1

2 .

We have shown the completeness of l2 in Example 1.

The inner product spaces are normed spaces and the Hilbert spaces are

Banach spaces, but the converse is not always true. The following examples

show that.

Example 8. The space lp with p 6= 2 is not an inner product space, hence

not a Hilbert space.

17



Proof. We prove this by showing that the norm does not satisfy the paral-

lelogram equality. Let x = (1, 1, 0, 0, · · · ) ∈ lp and y = (1,−1, 0, 0, · · · ) ∈ lp,

so

‖x‖ = ‖y‖ = 21/p, ‖x + y‖ = ‖x − y‖ = 2,

hence

8 = ‖x + y‖2 + ‖x − y‖2 6= 2(‖x‖2 + ‖y‖2) = 4 · 22/p

if p 6= 2.

Example 9. The space C[a, b] is not an inner product space, hence not a

Hilbert space.

Proof. We show that the norm defined by

‖x‖ = max
t∈J

|x(t)|, J = [a, b]

cannot be obtained from an inner product since this norm does not satisfy

the parallelogram equality. Indeed, if we take x(t) = 1 and y(t) = t−a
b−a , we

have ‖x‖ = 1, ‖y‖ = 1 and

x(t) + y(t) = 1 +
t − a

b − a

x(t) − y(t) = 1 −
t − a

b − a
.

Hence ‖x + y‖ = 2, ‖x − y‖ = 1 and

‖x + y‖2 + ‖x − y‖2 = 5 but 2(‖x‖2 + ‖y‖2) = 4.

This completes the proof.

Definition 6. Let M be a subset of an inner product space X. We say M

is an orthogonal set if (x, y) = 0 ∀x, y ∈ M, x 6= y and orthonormal if

(x, y) =

{

0 if x 6= y

1 if x = y.

Later we shall need the following theorem:
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Riesz’s Representation Theorem (Functionals on Hilbert spaces). Ev-

ery bounded linear functional f on a Hilbert space H can be represented in

terms of the inner product, namely,

f(x) = (x, z)

where z depends on f, is uniquely determined by f and has norm

‖z‖ = ‖f‖.

For a proof, see 3.8-1 in [1].

1.3 Strong and weak convergence

Definition 7. Let (xn) be a sequence in a normed space X. We say that:

- (xn) is strongly convergent if there is an x ∈ X such that lim
n→∞

‖xn−x‖ = 0.

This is written lim
n→∞

xn = x or xn −→ x.

- (xn) is weakly convergent if there is an x ∈ X such that for every f ∈

X∗, lim
n→∞

f(xn) = f(x). This is written xn
w

−→ x or xn ⇀ x.

Example 10. Let en = (1, 0, 0, · · · ), (0, 1, 0, · · · ), · · · in H = l2. Then (en)

converges weakly to 0, but not strongly. In fact, every f ∈ H∗ has a Riesz

representation z ∈ H. Hence f(en) = (en, z). Now by the Bessel inequality

(see 3.4-6 in [1]),
∞

∑

n=1

|(en, z)|2 ≤ ‖z‖2.

Hence the series on the left converges, so that its terms must approach zero

as n −→ ∞. This implies

f(en) = (en, z) −→ 0.

Since f ∈ H∗ was arbitrary, we see that en
w

−→ 0. However, (en) does not

converge strongly because

‖em − en‖
2 = (em − en, em − en) = 2, m 6= n.

Lemma 1. Let (xn) be a weakly convergent sequence in a normed space X,

say, xn
w

−→ x. Then:

1. The weak limit x of (xn) is unique.
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2. Every subsequence of (xn) converges weakly to x.

Proof. 1. If xn
w

−→ x, xn
w

−→ y, then f(xn) −→ f(x), f(xn) −→ f(y) for

f ∈ X∗. Since (f(xn)) is a sequence of numbers, its limit is unique.

Hence f(x) = f(y), that is

f(x) − f(y) = f(x − y) = 0

for every f ∈ X∗. This implies x − y = 0 by Corollary 4.3-4 in [1].

2. (f(xn)) is a convergent sequence of numbers, and every subsequence

of (f(xn)) converges and has the same limit as the sequence.

A subset S of X is said to be fundamental if the closed span of S is X,

i. e., if the set of all finite linear combinations of elements of S is dense in

X.

Example 11. Let un ∈ X be a bounded sequence. In order that un con-

verge weakly to u, it suffices that (f, un) converge to (f, u) for all f in a

fundamental subset S∗ of X∗.

Proof. Let D∗ be the span of S∗; D∗ is dense in X∗. Since f is a finite linear

combination of elements of S∗, (f, un) converges to (f, u) for all f ∈ D∗. Let

ǫ > 0 and g ∈ X∗ There exists f ∈ D∗ such that

‖g − f‖ < ǫ.

Since (f, un) converges, there is an N such that

|(f, un − um)| < ǫ for n, m > N.

Thus

|(g, un − um)| = |(g − f, un) + (f, un − um) + (f − g, um)|

≤ |(g − f, un)| + |(f, un − um)| + |(f − g, um)|

≤ Mǫ + ǫ + Mǫ = (2M + 1)ǫ for n, m > N,

where M = sup ‖un‖. This shows that (g, un) converges for all g ∈ X∗.

The relationship between strong and weak convergence is given by
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Theorem 4. A sequence (un) ⊂ X converges strongly if and only if (f, un)

converges uniformly for ‖f‖ ≤ 1, f ∈ X∗.

Proof. The ”only if” part follows from

|(f, un) − (f, um)| ≤ ‖un − um‖‖f‖ ≤ ‖un − um‖

because for each ǫ > 0 there exists N such that ‖un−um‖ < ǫ for n, m > N.

To prove the ”if” part, suppose that (f, un) converges uniformly for ‖f‖ ≤ 1.

This implies that for any ǫ > 0, there exists an N such that

|(f, un − um)| ≤ ǫ if n, m > N and ‖f‖ ≤ 1.

Hence

‖un − um‖ = sup
‖f‖≤1

|(f, un − um)| ≤ ǫ for n, m > N

by (12).

2 Linear operators

2.1 The domain and range

Let X, Y be normed spaces, and let T be a linear operator defined on a

subspace D(T ) of X and taking values in Y. D(T ) is called the domain of

T. The range R(T ) of T is defined as the set of all vectors of the form Tu

with u ∈ D(T ). We write T : D(T ) −→ Y.

Example 12. A finite real matrix (τjk), j = 1, · · · , r, k = 1, · · · , n defines

a linear operator T : Rn −→ Rr by

y = τx,

where x = (ξ1, · · · , ξn) and y = (η1, · · · , ηr). In matrix form we write

















η1

η2

·
·
·
ηr

















=

















t11 t12 · · · t1n

t21 t22 · · · t2n

· · · · · ·
· · · · · ·
· · · · · ·

tr1 tr2 · · · trn



































ξ1

ξ2

...

ξn



















.
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Example 13. Let X be the vector space of all polynomials on [a, b]. We

may define a linear operator T on X by setting

Tx(t) = x′(t)

for every x ∈ X, where the prime denotes differentiation with respect to t.

This operator T maps X onto itself.

Example 14. A linear operator T from C[a, b] into itself can be defined by

Tx(t) =

∫ t

a
x(τ)dτ, t ∈ [a, b].

Another linear operator from C[a, b] into itself is defined by

Tx(t) = tx(t).

In these examples we can easily verify that the dimension of the range

of T is not exceeding the dimension of the domain of T. Let us prove this in

the following theorem.

Theorem 5. Let T be a linear operator. If dimD(T ) = n < ∞, then

dimR(T ) ≤ n.

Proof. If y1, . . . , yn+1 are elements in R(T ), then there are x1, · · · , xn+1 in

D(T ) such that y1 = Tx1, · · · , yn+1 = Txn+1. Since dimD(T ) = n, this set

{x1, · · · , xn+1} must be linearly dependent. Hence

α1x1 + · · · + αn+1xn+1 = 0

for some scalars α1, · · · , αn+1, not all zero, and

T (α1x1 + · · · +n+1 xn+1) = α1y1 + · · · + αn+1yn+1 = 0.

This shows that {y1, · · · , yn+1} is a linearly dependent set. Hence dim

R(T ) ≤ n.
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2.2 Bounded and continuous operators

Definition 8. (Bounded linear operator). Let X and Y be normed spaces

and T : D(T ) → Y a linear operator, where D(T ) ⊂ X. The operator T is

said to be bounded if there is a real number c such that for all x ∈ D(T )

‖Tx‖ ≤ c‖x‖.

Example 15. Let X and Y be normed spaces. T : X −→ Y is bounded if

and only if T maps bounded sets in X into bounded sets in Y.

Proof. Suppose T is bounded, then there is a number c such that ‖Tx‖ ≤

c‖x‖. Let A be a bounded subset, and c1 = max
x∈A

‖x‖, then ‖Tx‖ ≤ cc1 ∀x ∈

A, thus the image of any bounded set in X is bounded. Conversely, suppose

we have ‖Tx‖ ≤ M ∀ ‖x‖ ≤ 1. Then ‖Tx‖ ≤ M‖x‖ ∀x, so T is a bounded

operator.

Example 16. The operator T : l∞ −→ l∞ defined by y = (ηj) = Tx, ηj =

ξj/j, x = (ξj), is bounded.

Proof. Let A be any bounded set, then there is c such that ‖x‖ ≤ c for all

x ∈ A. Then

‖Tx‖ = max
j

|
ξj

j
| ≤ max

j
|ξj | = ‖x‖,

hence T is bounded.

Example 17. Let T be a bounded linear operator from a normed space X

onto a normed space Y. If there is a positive b such that

‖Tx‖ ≥ b‖x‖ for all x ∈ X,

then T−1 : Y −→ X exists and is bounded.

Proof. T is bounded, hence there is c > 0 such that ‖Tx‖ ≤ c‖x‖. So

b‖x‖ ≤ ‖Tx‖ ≤ c‖x‖.

Then Tx = 0 iff x = 0, that is, T−1 exists. Thus ∀x ∃y such that the

inequality becomes

b ≤
‖y‖

‖T−1y‖
≤ c.
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In particular,

‖T−1y‖ ≤
1

b
‖y‖.

Hence T−1 is bounded.

Example 18. The inverse T−1 : R(X) −→ X of a bounded linear operator

T : X −→ Y need not be bounded.

The operator defined in Example 16 is bounded and T−1 exists. It is given

by the formula

T−1(y) = (jηj) = (η1, 2η2, 3η3, · · · )

and is not bounded.

Theorem 6. (Finite dimension). If a normed space X is finite dimensional,

then every linear operator on X is bounded.

Proof. Let dim X = n and let {e1, · · · , en} be a basis for X. We take any

x =
∑

ξjej and consider any linear operator T on X. We have

‖Tx‖ = ‖

n
∑

j=1

ξjTej‖ ≤

n
∑

j=1

|ξj |‖Tej‖ ≤ max
k

‖Tek‖

n
∑

j=1

|ξj |.

To the last sum we apply Lemma 2.4-1 in [1] which states that

∑

|ξj | ≤
1

c
‖

∑

ξjej‖ =
1

c
‖x‖

for some c > 0. So

‖Tx‖ ≤ max ‖Tek‖
∑

|ξj | ≤
1

c
max ‖Tek‖‖x‖.

Let γ = 1
cmax

k
‖Tek‖, then

‖Tx‖ ≤ γ‖x‖

and T is bounded.

Definition 9. (Continuous linear operator). Let X, Y be normed spaces,

D(T ) ⊂ X, and let T : D(T ) −→ Y be a linear operator. T is continuous at

x0 ∈ D(T ) if for every ǫ > 0 there is a δ > 0 such that

‖Tx − Tx0‖ < ǫ for all x ∈ D(T ) satisfying ‖x − x0‖ < δ.

24



In fact there is an immediate relation between bounded and continuous

operators. We show this in next theorem.

Theorem 7. T is continuous if and only if T is bounded.

Proof. For T = 0 the statement is trivial. Let T 6= 0 be bounded, we

consider any x0 ∈ D(T ). Let ǫ > 0, then for every x ∈ D(T ) such that

‖x − x0‖ < δ where δ =
ǫ

‖T‖

we obtain

‖Tx − Tx0‖ = ‖T (x − x0)‖ ≤ ‖T‖‖x − x0‖ < ‖T‖δ = ǫ.

Since x0 ∈ D(T ) was arbitrary, this shows that T is continuous.

Conversely, if T is continuous at an arbitrary x0 ∈ D(T ), then for every

ǫ > 0 there is a δ > 0 such that

‖Tx − Tx0‖ ≤ ǫ for all x ∈ D(T ) satisfying ‖x − x0‖ ≤ δ.

We now take any y 6= 0 in D(T ) and set

x = x0 +
δ

‖y‖
y.

Hence ‖x − x0‖ = δ and

‖Tx − Tx0‖ = ‖T (x − x0)‖ = ‖T (
δ

‖y‖
y)‖ =

δ

‖y‖
‖Ty‖ ≤ ǫ.

Thus

‖Ty‖ ≤
ǫ

δ
‖y‖.

Hence T is bounded.

Example 19. Let T be a bounded linear operator. Then xn −→ x implies

Txn −→ Tx where xn, x ∈ D(T ). By the last theorem, as n −→ ∞ we have

‖Txn − Tx‖ = ‖T (xn − x)‖ ≤ ‖T‖‖xn − x‖ −→ 0.

Let X, Y be Banach spaces. We denote by B(X, Y ) the set of all bounded

operators from X to Y.
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Lemma 2. B(X, Y ) is a Banach space under the norm ‖T‖ = sup
x 6=0

‖Tx‖

‖x‖
=

sup
‖x‖=1

‖Tx‖.

Proof. That ‖T‖ is a norm can be seen in the same way as for ‖f‖ in (12).

Let (Tn) be a Cauchy sequence of elements of B(X, Y ). Then (Tnu) is a

Cauchy sequence in Y for all u ∈ X, hence for each ǫ > 0 there exists N

such that

‖Tnu − Tmu‖ ≤ ‖Tn − Tm‖‖u‖ < ǫ‖u‖. (23)

Since Y is complete, there is v ∈ Y such that

Tnu −→ v

and we can define v = Tu. As in the proof of Theorem 3, we see that T is

linear. We show that T is bounded and Tn −→ T. Since ‖Tn‖ form a Cauchy

sequence of positive numbers, then ‖Tn‖ ≤ M for some M and all n, and

‖Tu‖ = lim
n→∞

‖Tnu‖ ≤ lim
n→∞

‖Tn‖‖u‖ ≤ M‖u‖ for all u,

so T is bounded. Now (23) gives

‖(Tn − T )u‖ = lim
m→∞

‖(Tn − Tm)u‖ ≤ lim
m→∞

‖Tn − Tm‖‖u‖ ≤ ǫ‖u‖.

Since this holds for all u ∈ X,

lim
n→∞

‖Tn − T‖ = 0.

Definition 10. (Convergence of sequences of operators). Let X and Y be

normed spaces. A sequence (Tn) of operators Tn ∈ B(X, Y ) is said to be:

- uniformly operator convergent if (Tn) converges to some T in the norm on

B(X, Y ), i.e.,

‖Tn − T‖ −→ 0.

We use the notation Tn −→ T.

- strongly operator convergent to T if (Tnx) converges strongly in Y for every

x ∈ X, i. e.,

‖Tnx − Tx‖ −→ 0.
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This is denoted by Tn
s

−→ T.

- weakly operator convergent to T if (Tnx) converges weakly in Y for every

x ∈ X, i. e.,

|f(Tnx) − f(Tx)| −→ 0 for all f ∈ Y ∗.

This is denoted by Tn
w

−→ T. T is called the uniform, strong and weak

operator limit of (Tn), respectively.

Example 20. Let un ∈ X and Tn ∈ B(X). If un
s

−→ u and Tn
s

−→ T, then

Tnun
s

−→ Tu. If un
s

−→ u and Tn
w

−→ T, then Tnun
w

−→ Tu.

Proof. If un
s
→ u and Tn

s
→ T then,

‖Tnun − Tu‖ = ‖Tnun − Tun + Tun − Tu‖

≤ ‖Tnun − Tun‖ + ‖Tun − Tu‖

= ‖(Tn − T )un‖ + ‖T (un − u)‖

≤ ‖Tn − T‖‖un‖ + ‖T‖‖un − u‖ −→ 0.

If un
s
→ u and Tn

w
→ T, then for all f ∈ X∗ we have

|f(Tnun) − f(Tu)| = |f(Tnun) − f(Tnu) + f(Tnu) − f(Tu)|

≤ |f(Tnun) − f(Tnu)| + |f(Tnu) − f(Tu)|

≤ ‖f‖‖Tn‖‖un − u‖ + |f(Tnu) − f(Tu)| −→ 0.

2.3 Compact operators

Definition 11. Let X and Y be normed spaces. A linear operator T :

X −→ Y is called a compact linear operator if for every bounded subset M

of X, the set T (M) is compact.

Lemma 3. Let X and Y be normed spaces. Then:

1. Every compact linear operator T : X −→ Y is bounded, hence contin-

uous.

2. If dimX = ∞, the identity operator I : X −→ X is not compact.
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Proof. 1. The unit sphere U = {x ∈ X| ‖x‖ = 1} is bounded. Since T is

compact, T (U) is compact, and is bounded, so that

sup
‖x‖=1

‖Tx‖ < ∞.

Hence T is bounded and Theorem 7 shows that it is continuous.

2. The closed unit ball M = {x ∈ X| ‖x‖ ≤ 1} is bounded. If M is

compact, then dimX < ∞ by Theorem 2, which contradicts that X

is of infinite dimension. Thus M cannot be compact, showing that

I(M) = M = M is not compact, i.e. I is not compact.

From this lemma it follows that the identity operator in a normed space

is compact if and only if X is finite dimensional.

Theorem 8. Let X and Y be normed spaces and T : X −→ Y a linear

operator. Then T is compact if and only if it maps every bounded sequence

(xn) in X onto a sequence (Txn) in Y which has a convergent subsequence.

Proof. If T is compact and (xn) is bounded, then (Txn) is compact and

Definition 2 shows that (Txn) contains a convergent subsequence.

Conversely: Let B be any bounded subset in X, and let (yn) be any se-

quence in T (B). Then yn = Txn for some xn ∈ B, and (xn) is bounded since

B is bounded. By assumption, (Txn) contains a convergent subsequence.

Hence T (B) is compact, this shows that T is compact.

Example 21. If T1 and T2 are compact linear operators from a normed

space X into a normed space Y, then T1 + T2 is a compact linear operator.

Proof. Let (xn) be any bounded sequence in X. Since T1 is compact, by

Theorem 8 (T1xn) has a convergenct subsequence (T1xn1
) in Y and similarly,

(T2xn1
) has a convergent subsequence (T2xn2

) in Y. Then ((T1 + T2)xn2
) is

a convergent subsequence of ((T1 + T2)xn). Hence T1 + T2 is a compact

operator.

Theorem 9. (Finite dimensional domain or range). Let X and Y be normed

spaces and T : X −→ Y a linear operator. Then:

1. If T is bounded and dim T (X) < ∞, the operator T is compact.
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2. If dimX < ∞, T is compact.

Proof. 1. Let (xn) be any bounded sequence in X. Then the inequality

‖Txn‖ ≤ ‖T‖‖xn‖ shows that (Txn) is bounded. Hence (Txn) is

compact since dim T (X) < ∞. It follows that (Txn) has a convergent

subsequence. Since (xn) was an arbitrary bounded sequence in X, the

operator T is compact by Theorem 8.

2. By Theorem 6 T is bounded, by Theorem 5 dimT (X) ≤ dimX. Hence

by 1. T is compact.

Theorem 10. (Sequence of compact linear operators). Let (Tn) be a se-

quence of compact linear operators from a normed space X into a Banach

space Y. If (Tn) is uniformly operator convergent, say, ‖Tn −T‖ −→ 0, then

the limit operator T is compact.

Proof. Let (xm) be any bounded sequence in X, then it has subsequences

(x1,m), (x2,m), · · · such that (T1x1,m), (T2x2,m), · · · are Cauchy. Here (x1,m)

is a subsequence of (xm), (x2,m) is a subsequence of (x1,m) etc. Let (ym) =

(xm,m). This is a subsequence of (xm) such that for every fixed n the sequence

(Tnym) is Cauchy. Since ‖xm‖ ≤ c for some c > 0, also ‖ym‖ ≤ c for all m.

Since ‖Tn − T‖ −→ 0, ∃p such that ‖T − Tp‖ < ǫ
3c . Since (Tpym) is Cauchy,

∃N such that

‖Tpyj − Tpyk‖ <
ǫ

3
for all j, k > N.

Hence for j, k > N

‖Tyj − Tyk‖ ≤ ‖Tyj − Tpyj‖ + ‖Tpyj − Tpyk‖ + ‖Tpyk − Tyk‖

≤ ‖T − Tp‖‖yj‖ +
ǫ

3
+ ‖Tp − T‖‖yk‖

<
ǫ

3c
c +

ǫ

3
+

ǫ

3c
c = ǫ.

Hence (Tym) is Cauchy and therefore convergent, that is, T is compact.

Example 22. Prove compactness of T : l2 −→ l2 defined by y = (ηj) = Tx,

where ηj = ξj/j for j = 1, 2, · · · .

Proof. Let Tn : l2 −→ l2 be defined by

Tnx = (ξ1, ξ2/2, ξ3/3, · · · , ξn/n, 0, 0, · · · ).
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Tn is bounded, and it is compact by Theorem 9 because dim R(Tn) = n < ∞.

Furthermore,

‖(T − Tn)x‖2 =
∞

∑

j=n+1

|ηj |
2 =

∞
∑

j=n+1

1

j2
|ξj |

2

≤
1

(n + 1)2

∞
∑

j=n+1

|ξj |
2 ≤

‖x‖2

(n + 1)2
,

hence

sup
‖(T − Tn)x‖

‖x‖
≤

1

n + 1

and

‖T − Tn‖ ≤
1

n + 1
.

Hence Tn −→ T, and T is compact by Theorem 10.

Example 23. Let Y be a Banach space and let Tn : X −→ Y, n = 1, 2, · · · ,

be bounded operators of finite rank. If (Tn) is uniformly operator convergent,

then the limit operator is compact.

Proof. Since dim Tn(X) = rank Tn < ∞, it follows from Theorem 9 that Tn

is compact for all n. Hence by Theorem 10 T is compact.

2.4 Spectrum of compact operators

Definition 12. Let X be a normed space and T : X −→ X a bounded

linear operator. Denote

Tλ = T − λI, (24)

where λ is a complex number and I is the identity operator on X. If Tλ

has no bounded inverse on X, then λ is called a spectral value, denoted

λ ∈ σ(T ). If Tλx = 0 for some x 6= 0, then λ is said to be an eigenvalue and

x an eigenvector.

If λ is an eigenvalue, then λ ∈ σ(T ), but the converse need not be true.

Theorem 11. (Eigenvalues). The set of eigenvalues of a compact linear

operator T : X −→ X on a normed space X is countable (perhaps finite or

even empty), and the only possible point of accumulation is λ = 0.
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Proof. We suppose the opposite, and we get a contradiction. Let k0 > 0,

and suppose there is an infinite sequence (λn) of distinct eigenvalues such

that |λn| > k0 for all n.

For each n, let Tλn
xn = 0, xn 6= 0. The set of all the xn’s is linearly indepen-

dent (see Thm. 7.4-3 in [1] or Proposition 2 in [3]). Let Mn =span{x1, · · · , xn}.

Then each x ∈ Mn has a unique representation

x = α1x1 + · · · + αnxn.

We apply T − λnI and use Txj = λjxj :

(T − λnI)x = α1(λ1 − λn)x1 + · · · + αn−1(λn−1 − λn)xn−1,

hence

(T − λnI)x ∈ Mn−1 for all x ∈ Mn.

The Mn’s are finite dimensional and therefore closed (see Thm. 2.4-3 in

[1]). By Riesz’s Lemma there is a sequence (yn) such that yn ∈ Mn and

‖yn‖ = 1, ‖yn − x‖ ≥ 1
2 for all x ∈ Mn−1.We show that

‖Tyn − Tym‖ ≥
1

2
k0 for all n > m,

so that (Tyn) has no convergent subsequence because k0 > 0. Since T is

compact and (yn) is bounded, we get a contradiction.

Now let m < n, then we have λmym ∈ Mn−1 and (T −λnI)yn ∈ Mn−1. Thus

x =
1

λn
(Tym − Tyn) + yn ∈ Mn−1.

Hence
‖Tyn − Tym‖ = ‖λnyn − λnx‖

= |λn|‖yn − x‖

≥
1

2
|λn| ≥

1

2
k0.

Theorem 12. (Null space). Let T : X −→ X be a compact linear operator

on a normed space X. Then for every λ 6= 0 the null space N(Tλ) of Tλ =

T − λI is finite dimensional.
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Proof. We shall apply Theorem 2 from which it follows that if the closed

unit ball M in N(Tλ) is compact, then dimN(Tλ) < ∞. Now we show that

M is compact.

Let (xn) be in M, then

‖xn‖ ≤ 1.

T is compact and (xn) is bounded, hence (Txn) has a convergent subse-

quence (Txnk
) by Theorem 8.

Since xn ∈ M ⊂ N(Tλ),

Tλxn = Txn − λxn = 0,

so that

xn = λ−1Txn.

Thus

xnk
= λ−1Txnk

is a convergent subsequence of (xn), and the limit is in M because M is

closed. This proves that M is compact.

Example 24. Let T : X −→ X be a compact linear operator on a normed

space. If dim X = ∞, then 0 ∈ σ(T ).

Proof. We assume 0 /∈ σ(T ). Similarly as in the last theorem, we have that

if the closed unit ball M in X is compact, then dimX < ∞. Let (xn)

be in M. Since T is compact, there is a convergent subsequence (Txnk
) of

(Txn), Txnk
−→ y. T−1 exists because 0 /∈ σ(T ), hence xnk

−→ T−1y.

From Theorem 2 it follows that dimX < ∞ which is a contradiction. Hence

0 ∈ σ(T ).

Lemma 4. Let T : X −→ X be a compact linear operator on a normed

space X. If λ 6= 0 is not eigenvalue, then R(Tλ) is a closed subset of X.

Proof. We have to prove that for any convergent sequence (Tλxn) the limit

of it is in R(Tλ).

Suppose

Tλxn = Txn − λxn −→ y.
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First we will show that (xn) must be bounded. Suppose (xn) is unbounded,

then we may assume passing to a subsequence that ‖xn‖ −→ ∞.

Let x′
n =

xn

‖xn‖
. Then

Tλx′
n = Tx′

n − λx′
n −→ 0,

and since T is compact, there is y′ such that

Tx′
n −→ y′

after passing to a subsequence once more. It follows that

λx′
n −→ y′

and

|λ| = ‖λx′
n‖ −→ ‖y′‖.

So y′ 6= 0. On the other hand,

Tλy′ = Tλ(limλx′
n)

= λ limTλx′
n

= λ lim(Tx′
n − λx′

n)

= λ(y′ − y′) = 0.

Hence y′ is an eigenvector, but this is a contradiction because λ is not an

eigenvalue. This shows that (xn) cannot be unbounded.

Now (xn) is bounded, T is compact, hence there is z ∈ X such that

Txn −→ z

after passing to a subsequence, so

λxn −→ z − y.

Thus we have

Tλ(
1

λ
(z − y)) = Tλ(

1

λ
( lim
n→∞

λxn))

= lim
n→∞

Tλxn

= lim
n→∞

(Txn − λxn)

= z − (z − y)

= y.

So y ∈ R(Tλ).
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Since Tλ(X) ⊂ X, it follows that T 2
λ (X) ⊂ Tλ(X). Continuing, we see

that

X = T 0
λ (X) ⊃ Tλ(X) ⊃ T 2

λ (X) ⊃ · · · ,

where T 0
λ = I.

Lemma 5. Let T : X −→ X be a compact linear operator on a normed

space X and let λ 6= 0. Then there exists a smallest q ≥ 0 such that

T q
λ(X) = T q+1

λ (X).

Proof. We assume the opposite, i. e.,

Tn
λ (X) ⊃ Tn+1

λ (X)

for all n and all inclusions are proper. We shall find a bounded sequence

(xn) such that (Txn) has no convergent subsequence, and this contradicts

the compactness of T. Hence T q
λ(X) = T q+1

λ (X) for some q ≥ 0.

By the preceding lemma, Tn+1
λ (X) is a closed subspace of Tn

λ (X), so it

follows from Riesz’s Lemma that there is a sequence (xn), xn ∈ Tn
λ (X), such

that

‖xn‖ = 1, ‖xn − x‖ ≥
1

2
for all x ∈ Tn+1

λ (X). (25)

We will show

‖Txn − Txm‖ ≥
1

2
|λ| for all m > n.

We have

Txn − Txm = λxn + Tλxn − Tλxm − λxm.

Since

xm ∈ Tm
λ (X) ⊂ Tn+1

λ (X),

Tλxm ∈ Tm+1
λ (X) ⊂ Tn+1

λ (X)

and

Tλxn ∈ Tn+1
λ (X),

it follows that

x =
1

λ
(Tλxm − Tλxn − λxm) ∈ Tn+1

λ (X).
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Thus (25) gives
‖Txn − Txm‖ = ‖λxn − λx‖

= |λ|‖xn − x‖

≥
1

2
|λ| > 0.

Theorem 13. (Eigenvalues). Let T : X −→ X be a compact linear operator

on a Banach space X. Then every spectral value λ 6= 0 of T (if it exists) is

an eigenvalue of T.

Proof. Suppose λ 6= 0 is not an eigenvalue. Then Tλx = 0 if and only if

x = 0, hence

T−1
λ : Tλ(X) −→ X

exists. Now we show

Tλ(X) = X,

that is, q = 0 in Lemma 5. Suppose q ≥ 1, then the inclusion T q
λ(X) ⊂

T q−1
λ (X) is proper, and hence there exists

y ∈ T q−1
λ (X) − T q

λ(X). (26)

We have

y = T q−1
λ x for some x.

Since

Tλy = T q
λx ∈ T q

λ(X) = T q+1
λ (X),

Tλy = T q+1
λ z for some z. (27)

By (26) and since T q
λz ∈ T q

λ(X),

y − T q
λz 6= 0.

But by (27)

Tλ(y − T q
λz) = 0

which is impossipole because λ is not an eigenvalue. So q = 0 and Tλ(X) =

X. Hence T−1
λ is defined on the whole space X and T−1

λ must be bounded

by the bounded inverse theorem 4.12-2 in [1]. It follows that λ /∈ σ(T ).
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Definition 13. (Equicontinuous). Let (xn) be a sequence in C[a, b]. We say

it is equicontinuous if for any ǫ > 0 there is a δ > 0 depending on ǫ, such

that for all s1, s2 ∈ [a, b], |s1 − s2| < δ, we have

|xn(s1) − xn(s2)| < ǫ for all n.

Ascoli’s Theorem (Equicontinuous sequence). A bounded equicontinu-

ous sequence (xn) in C[a, b] has a convergent subsequence.

Theorem 14. (Compact integral operator). Let J = [a, b] be any compact

interval and suppose that k is continuous on J × J. Then the operator

T : X −→ X defined by

(Tx)(s) =

∫ b

a
k(s, t)x(t)dt, (28)

where X = C[a, b], is a compact operator.

Proof. We shall prove T is bounded, hence (Txn) is bounded when (xn) is

bounded. Then we show that (Txn) is equicontinuous, so Ascoli’s theorem

will imply that (Txn) has a convergent subsequence, and so T is compact.

Boundedness of T follows from

‖Tx‖ = max
s∈J

|

∫ b

a
k(s, t)x(t)dt| ≤ ‖x‖max

s∈J

∫ b

a
|k(s, t)|dt,

which is of the form ‖Tx‖ ≤ M‖x‖. Now let (xn) be any bounded sequence

in X, ‖xn‖ ≤ c, and let yn = Txn. We show that (yn) is equicontinuous.

Since k is continuous, for all ǫ > 0 there is δ > 0 such that for all t ∈ J and

all s1, s2 ∈ J satisfying |s1 − s2| < δ we have

|k(s1, t) − k(s2, t)| <
ǫ

(b − a)c
.

Consequently, for |s1 − s2| < δ and every n we obtain

|yn(s1) − yn(s2)| = |

∫ b

a
[k(s1, t) − k(s2, t)]xn(t)dt|

< (b − a)
ǫ

(b − a)c
c = ǫ.

This proves equicontinuity of (yn).
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Finally we consider the boundary value probem

x′′(t) + µq(t)x(t) = f(t), x(0) = x(1) = 0, (29)

where µ ∈ C, q is a given real-valued function, q(t) > 0 for all t ∈ [0, 1]

and f ∈ C[0, 1]. We shall show that for most values of µ, (29) has a unique

solution for each f. Before showing that, let us consider the following lemma.

Lemma 6. The boundary value problem

x′′(t) = g(t), x(0) = x(1) = 0, (30)

where g ∈ C[0, 1], has a unique solution

x(t) =

∫ 1

0
G(s, t)g(s)ds, (31)

where G is defined by

G(s, t) =

{

s(t − 1), 0 ≤ s ≤ t ≤ 1

t(s − 1), 0 ≤ t ≤ s ≤ 1.

Proof. Since G is continuous for s, t ∈ [0, 1], (31) can be written as

x(t) =

∫ 1

0
G(s, t)g(s)ds

=

∫ t

0
s(t − 1)g(s)ds +

∫ 1

t
t(s − 1)g(s)ds

= (t − 1)

∫ t

0
sg(s)ds + t

∫ 1

t
(s − 1)g(s)ds.

If x satisfies (30), then x(0) = 0, x(1) = 0,

x′(t) =

∫ t

0
sg(s)ds + (t − 1)tg(t) +

∫ 1

t
(s − 1)g(s)ds − t(t − 1)g(t)

=

∫ t

0
sg(s)ds +

∫ 1

t
(s − 1)g(s)ds

and
x′′(t) = tg(t) − (t − 1)g(t)

= g(t).
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Hence x a is solution of (30). If x satisfies (30), then integration gives

x′(τ) =

∫ τ

0
g(s)ds + c1,

x(t) =

∫ t

0

∫ τ

0
g(s)dsdτ + c1t + c2.

x(0) = 0 gives c2 = 0 and x(1) = 0 gives

c1 = −

∫ 1

0

∫ τ

0
g(s)dsdτ.

Hence

x(t) =

∫ t

0

∫ τ

0
g(s)dsdτ − t

∫ 1

0

∫ τ

0
g(s)dsdτ.

Changing the order of integration,

x(t) =

∫ t

0

∫ t

s
g(s)dτds − t

∫ 1

0

∫ 1

s
g(s)dτds

=

∫ t

0
(t − s)g(s)ds −

∫ 1

0
t(1 − s)g(s)ds

=

∫ t

0
(t − s)g(s)ds −

∫ t

0
t(1 − s)g(s)ds −

∫ 1

t
t(1 − s)g(s)ds

=

∫ t

0
s(t − 1)g(s)ds +

∫ 1

t
t(s − 1)g(s)ds

=

∫ 1

0
G(s, t)g(s)ds.

Hence x is a solution of (30).

Theorem 15. The boundary value problem (29) has a unique solution for

each f ∈ C[0, 1] and each µ ∈ C\A, where A = {µ1, µ2, · · · } is a countable

set such that |µn| −→ ∞ as n −→ ∞.

Proof. The boundary value problem

x′′(t) + µq(t)x(t) = 0, x(0) = x(1) = 0 (32)

is equivalent to

x(t) = −µ

∫ 1

0
G(s, t)q(s)x(s)ds
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(set g(t) = −µq(t)x(t) in Lemma 6). Since k(s, t) = −G(s, t)q(s) is contin-

uous, it follows from Theorem 14 that the operator T : C[0, 1] −→ C[0, 1]

given by (Tx)(t) =
∫ 1
0 k(s, t)x(s)ds is compact. Let λ = 1/µ. Then x is a

solution of (32) if and only if

Tλx = Tx − λx = 0.

By Theorems 11 and 13, the spectrum of T is a set (λn) which is either finite

or λn −→ 0. But here |µn| = 1/|λn| −→ ∞. Using Lemma 6 once more, we

can re-write (29) as

x = µTx + h,

where h(t) =
∫ 1
0 G(s, t)f(s)ds. Let λ = 1/µ. Then (29) becomes

Tλx = Tx − λx = −λh.

Let A = {µ1, µ2, · · · }, where µn = 1/λn. If µ /∈ A, then Tλ is invertible and

x = −T−1
λ (λh) is the unique solution of (29).

Let us finally remark that it is known from the theory of ordinary differ-

ential equations that if q > 0, then the set A is infinite and all µn are real

and positive.
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