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Abstract

The theory of linear operators is an extensive area. This thesis
is about the linear operators in infinite dimensional vector spaces.
We study elementary properties of Banach spaces, bounded operators,
compact operators and spectrum of compact operators. We give an ap-
plication to a two-point boundary value problem for a linear ordinary
differential equation in the end.
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Introduction

This report contains two sections. In Section 1, we introduce basic concepts
in infinite dimensional vector spaces, such as normed spaces, Banach spaces,
inner product spaces and Hilbert spaces. We also study the strong and weak
convergence. In Section 2, we study bounded linear operators in infinite
dimensional vector spaces. In particular, we study compact operators and
their spectrum. Finally, as an application we consider a two-point boundary
value problem for a linear ordinary differential equation.
The results in this report are primarily taken from [1].



1 Infinite dimensional vector spaces

In this thesis we shall always assume that X is a vector space such that
dim X = oo unless otherwise stated.

1.1 Normed spaces. Banach spaces

Definition 1. A normed space is a vector space X in which a function
| || - X — R is defined and satisfies the following conditions:

-|lz|| >0and =0 iff x =0

- ezl = falll]|

a4yl < Il +

for all z,y in X and all scalars a. A normed space X in which every Cauchy
sequence has a limit in X is said to be complete. A complete normed space
is called a Banach space.

Example 1. (Space I?). Let 1 < p < oo be a fixed real number. By
definition, each element in the space [P is a sequence = (&) = (1,62, )
of numbers such that |[§1]P + |2[P + - -+ converges; thus

)
Z |§j|p < 09,
j=1

and the norm is defined by

lzll = Q_ lg1”)1P. (1)
j=1

Since -
Nzl = O 1&P)P > 0, and = 0 iff x = 0,
j=1
-l = O GNP = O IMPIGIYP = IO 16DV = (M=,
j=1 j=1 j=1

-z 4yl = (Z & +n;[P)Y/P < (by the Minkowski inequality, see (12) on
j=1

p. 1 in 1) < O 1&M)YP + O Iml)? = ll=] + llyll,
j=1 j=1

this is indeed a norm.



(Completeness of IP). Let (x,) be any Cauchy sequence in the space 7,
where z,, = (f%m), §§m), -++). Then for every € > 0 there is an N such that
for all m,n > N,

me - an = (Z |§J(m) - €§n) |p)1/p < €. (2)
j=1

It follows that
(m) _ #(n)
|§j §; | <e

for every j = 1,2.--- . For fixed j, (fj(.n)) is a Cauchy sequence of numbers.

Since the real and complex numbers are complete (see [1]), fj(.n) — & as
n — o0o. We define = = (£, &2, -+ ) and show that = € I? and z,,, — .
From (2) we have for all m,n > N and a fixed k

k
2ol g <
j=1
Letting n — o0, we obtain for m > N
2
(m) _ ¢ p < P
Z |£j €]| S €.
j=1
Now let &k — oo; then for m > N
dolgm gl < e (3)
j=1

This shows that z,, —x = (fj(-m) — &) € P, and
T =Ty — (Tm —x) €.

The series in (3) represents ||z, — x||”, hence x,, — =. Since (x,) was an
arbitrary Cauchy sequence in [P, this proves the completeness of P.

Example 2. (Space [*°). Every element in this space is a complex sequence
x = (&) = (&1,&2, - -+ ) such that sup |§;| < oo, and the norm is defined by
J

]l = sup €51 (4)
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The first two conditions for the norm are verified similarly as in the last
example. Let us show the triangle inequality.

-l +yl = Sup €5 + 5l < Sup(\ﬁgl + [n;]) < sup &) + Sup il = llzll + llyll-
(Completeness of [*°). Let (xm) be any Cauchy sequence in the space [*°,
where x,, = (fim),fzm),- -). Then for every € > 0 there is an N such that
for all m,n > N

e — wall = supl&f™ — | <. (5)
J

We shall show that there exists € [ which is the limit of (z,,). By (5) we
have for every fixed m,n > N

€ — €] <. (6)

-} is a Cauchy sequence of num-

1) 5(‘2) N
) J )

Hence for every j the sequence {5](

bers. So it converges : gj(m) — & asm — o0. Let x = (€1,62,--+). We
want to show that x € [*° and x,,, — x. From (6) with n — oo we have
form > N

€™ — gl <e. (7)

Since z, = (fj(m)) € [*°, there is a real number k,, such that ]§§m)| < kyy, for
all j. Hence by the triangle inequality

165 < 165 — €7+ [€5] < €+ ko

This inequality holds for every j. Hence (§;) is a bounded sequence of num-
bers. This implies that x = (§;) € {*°. From (6) we obtain

lzm — 2] = sup €™ — &5 < e
J

for m > N. This shows that z, — =.

Example 3. (Space Cf[a,b]). This space is the set of all continuous real-
or complex-valued functions z = x(t) defined on a given closed interval
J = [a,b], and the norm is defined by

) = mae ot | 5)



The proof that this is indeed a norm is similar as in Example 2.
(Completeness of Cla, b]). Let (z,,) be any Cauchy sequence in C|[a, b]. Then
for every € > 0 there is an N such that for all m,n > N,

lzm = 2all = max|zm(t) — 2a(t)] <e. (9)
Hence for any fixed t =ty € J,
’xm(tO) - xn(tO)’ <€ m,n > N.

This shows that (z1(to),z2(to),- - -) is a Cauchy sequence of real or complex
numbers, so the sequence converges, say x,,(tg) — x(ty) as m — oo. In
this way we can associate with each t € J a unique number z(¢). This defines
a function z on J, and we must show that x € C[a,b] and x,,, — x.

From (9) (with n — oo) we have

max [T, (t) — ()| <€, m > N.
Hence for every t € J,
|Tm () —x(t)| <€, m > N. (10)

This shows that (z,,(t)) converges to z(¢) uniformly on J. Since the z,,’s are
continuous on J and the convergence is uniform, the limit function « is con-

tinuous on J. Hence z € Cla, b] and x,, — x. This proves the completeness

of Cla,b].
The following is an example of an incomplete normed space.

Example 4. Let X be the set of all continuous real-valued functions on
J =10,1], and let

1
uw—Amwm (1)

then ||z|| is a norm, since
1

ool = [ lat)+ ow</um+w )t = /kvMH/w )ldt =

llz|| + ||y||, and the other two conditions are trivially satisfied.
This normed space X is not complete. Let (z,,) be defined by

on(f) = 0 if t€(0,3]
T LA € [am, 1]



where a, = 5 + L and for 3 <t < am, (£, 2m(t)) is the linear segment

joining (3,0) and (@m, 1). For every given € > 0,
|Tm — zn|| <€ when m,n > —.
€
Hence (z,,) is a Cauchy sequence. For every = € X,

1
e — 2] = /0 () — (t)]dt

: |x(t)\dt+ﬁ

_/02

Since each integrand is nonnegative, ||z, — x| — 0 implies that each

am

1
]xm(t)—x(t)]dt—l—/ 11— (t)|dt.

integral approaches zero. Since x is continuous, we would have

_Joif tefo, )
=) = {1 if te (%,21].

But this contradicts the continuity of x, hence x ¢ X. This proves that X
is not complete.

Definition 2. Let M be a subset in a normed space X, we say M is :

- bounded if there is a positive number ¢ such that |z| < ¢ Ve e M.

- closed if for any sequence (z,) in M, x,, — x implies that x € M.

- compact if any sequence (z,) in M has a convergent subsequence whose
limit belongs to M.

We know that in the finite dimensional space R, any subset M is com-
pact if and only if it is closed and bounded (see [1]). But in infinite dimen-
sional normed spaces this is no longer true.

Theorem 1. A compact subset M of a normed space is closed and bounded.

Proof. The proof is the same as for RV, see [1]. O

Remark 1. The converse of this theorem is not true in infinite dimensional
spaces.

We verify our claim in the space [?. Consider the sequence (ey) in 2,
where e, = (d,;) has the nth term 1 and all other terms 0. This sequence
is bounded since ||e,|| = 1. Its terms constitute a point set which is closed
because it has no point of accumulation. For the same reason, that point
set is not compact. See also Theorem 2 below.

Later we shall need the following lemma:



Riesz’s Lemma. Let Y and Z be subspaces of a normed space X (of any
dimension), and suppose that Y is closed and is a proper subset of Z. Then
for every real number 6 in the interval (0,1) there is a z € Z such that

lz] =1, |lz—y| >0 forallyeY.
Proof. Let ve Z —Y and
= inf —Y||.
a = inf Jlv—y|

Since Y is closed, a > 0. We now take any 6 € (0,1). By the definition of an
infimum there is a yg € Y such that

a<|lv—yl <

SRS

Let
¢ 1

o = ol
Then ||z]| = 1, and we show that ||z — y|| > 6 for every y € Y. We have

z=c(v—1yp) where c=

Iz =yl = lle(v —yo) — vl
= clv—yo —c My
=dcllv—u
where
y1=1yo+c 'y
Since y,y0 € Y, y1 € Y. Hence by the definition of a, ||[v — y1|| > a, and

a

e e _,
v =yl ~ a/0

Iz =yl = cllv—will = ca =

Since y € Y was arbitrary, this completes the proof. O

Theorem 2. (Finite dimension). If a normed space X has the property
that the closed unit ball M = {z|||z|| < 1} is compact, then X is finite
dimensional.

Proof. We argue by contradiction. We assume that M is compact but
dim X = oo, and we shall show that this is impossible. Let z1; be any
vector of norm 1, and X7 be the one dimensional subspace of X generated

10



by x1, which is closed because the dimension is finite. Since dim X = oo,
X is a proper subspace of X.
By Riesz’s Lemma there is an xo € X of norm 1 such that

1
_ > 2.
|22 — 21| > 5

Let X» be two dimensional proper subspace of X generated by x1, xs.
Again by Riesz’s lemma there is an x3 € X of norm 1 such that

|z3 — 21| >

9

N = N

|23 — @2 >

Continuing in this way, we obtain a sequence (z,,) of elements x,, € M such
that 1
|Xm — xnl| > B for all m # n.

That is, (z,) has no convergent subsequence. But M is compact. Hence
dim X must be finite. O

Definition 3. (Bounded linear functional). A linear functional f is a linear
operator with domain D(f) in a vector space X and range in the scalar field
K, where K = R or C. Thus

f:D(f) — K,

and we say the linear functional f is bounded if there exists a real number
¢ such that for all z € D(f),

f (@) < cll].

Definition 4. (Dual space). Let X be a normed space. The set of all
bounded linear functionals on X constitutes a normed space with the norm
defined by

1l = supm = sup |£(2). (12)
ot T

This set is called the dual space of X and is denoted by X*. We also write
(f,x) = f(x) for f € X" and z € X.

11



It is easy to see from (12) that || f|| > 0 and ||f|| = 0 if and only if f =0,
and that ||af|| = |al||f]|. Moreover,

flx)+g(z flx gz

1+ gl = sup POEIEN < ) VDL DLy gy g,
S S FTRE S C a
x#0 x#0 x#0

Hence X* is a normed space.
The following theorem shows the completeness of X*.

Theorem 3. The dual space X* of a Banach space X is a Banach space.

Proof. Let (fn) be a Cauchy sequence in X*. Then for each ¢ > 0 there
exists N such that

|((Frs ) = (fny w)| = [(frr = fom, )] < [ fne = fmlll[ull <effull (13)

for every n,m > N, u € X. Since (f,,u) is a Cauchy sequence of numbers,
it converges to some number ¢, and we define f by setting (f,u) = ¢, for
all u. Hence

lim (fn,u) = (f,u).
n—oo
We must show f is linear, bounded and f,, — f. We have
Jiﬂgo(fm aruy + aoug) = (f, a1ur + agus),
and on the other hand,
lim (fn, c1u1 + ague) = lim (fn, @1ur) + lUm (fp, agusg)
n—oo n—oo n—oo
= lim (fp,u1) + ag lim (fy, u2)
n—oo n—oo
= Oél(f, U1) + aQ(f> u2>a

thus f is linear. || fy,| form a Cauchy sequence of positive numbers, hence
lim || fn|| = M, and

(o) = T [(far)] < Timn [ fulllul) = M.
So f is bounded. (13) gives

((fo = frw)l = Tim [(fo = frm,w)| < Tm [ f = fullllu] < €],

hence
| .frn — £l :SUPM < e forall n > N.
wro  |ull
Thus f, — f and X* is complete. O

12



Example 5. Space I'. The dual space of [! is [*°.

Proof. Let e, = (0;), then every x € I' has a unique representation

o
T = Z éreg.
k=1

Let f € IV, since f is bounded and linear,

F@) =&y = flex),

k=1

~¢’s are uniquely determined by f, and

[yl = | (ex)] < [ fIllex]l-

Since ||ex|| = 1, we have
vl < || f]| for all k.
Hence
Sup el < [I£1I- (14)
Thus f € [*°.

Conversely, let b = (8;) € [°°, then we can define the action of g on !
by

9(x) = &b,
k=1

where z = (&) € I'. Clearly, g is linear. It remains to show that g is
bounded. Note that

l9()] <> 1€kl
k=1

< sup|Bj ) |l
J

k=1
= ||z[| sup |31,
J

hence ¢ is bounded. Therefore g belongs to {!". Finally we show that
| fllps = || f]lie. We have

o0 o0
[F@)] =1 &l < suplyl > 1kl = llzll sup ]
k=1 J k=1 J

13



|/ ()]

Since || f|] = sup ~———, then
lzl=1 Izl
| f]l < sup[;].
j
From this and (14),
| f]l = sup [;].
J

This is the norm on I*. So we have shown that the I'" norm of f is the

norm on [*°.

O

Example 6. Space [P, 1 < p < co. The dual space of [P is [9, where ¢ is the

conjugate of p, that is, 1/p+1/q = 1.

Proof. Let x € [P and ey = (Ji;). Then every x € [” has a unique represen-

tation
o0
v = &ep.
k=1

Let f € IP", since f is linear and bounded,
f@) =" &f(er).
k=1

Let ¢ be the conjugate of p and consider x,, = (gli”)) with
() _ J1l?/ e if & < moand 4, # 0
: 0 if K >mnor vy =0,

where v, = f(ex). By substituting this into (15) we obtain

Flan) =36 =3 .
k=1 k=1

By (16) and (¢ — 1)p = ¢, we have

n

Fn) < I Maall = A1 16 )P

k=1

AN lwl 9Py P
k=1

AN bl
k=1

14

(16)



Then . "
F@n) =Pl < IO lwlDMP.
k=1 k=1

Dividing by the last factor, we get

Qw7 = QDY < AL
k=1 k=1

Letting n — oo, we obtain

QDY < £ (17)

k=1
This implies that () € 19.
On other hand, from (15) and the Holder inequality (see (10) on p. 14 in
[1]), we have

@)1= 1Y &l < Q&™) Il
k=1 k=1 k=1

= |2l 3 byl
k=1

and .
A< 2wl (18)
k=1
since || f|| = sup,g |'}i;x|)| We have, by (17) and (18),
LI = O el (19)
k=1
So ||l fll = l|7llg, where v = (y%) € 9 and 4 = f(er). The mapping of

(IP)* to 17 given by f +—— = is linear and injective. And by (19) it is
norm preserving, so it is an isomorphism. Thus we have shown that 7"
is isometrically embedded in [9. We complete the proof by showing that
f —— 7 is bijective, i. e., for each element of [¢ there is a corresponding
element of IP". Let (B;) € 19, then we can define g on [” by

9(®) =D &b,
k=1

15



where x = (&) € IP. Then g is linear and by the Holder inequality, we have

lg(@)] = 1D &l < Q_ 1&MYPQ_ 18:9)Y = [18]]|].
k=1 k=1 k=1

Hence ¢ is bounded and thus g belongs to IP”.

1.2 Inner product spaces. Hilbert spaces

Definition 5. An inner product space is a vector space X with an inner

product (, ) defined on X. A Hilbert space is a complete inner product

space.

Remark 2. The inner product has been defined in [3].

An inner product on X defines a norm on X given by
1
2] = (z,2)>.

A norm on an inner product space satisfies :
- Parallelogram equality:

Iz +ylI” + [l =yl = 2(l|=[* + ly[|*)-
- Polarization identity:

Re(zy) = (o + 9| - = ~ ")
tm(e,y) = (e + iyl ~ o~ iy]?)

(22) holds only in complex inner product spaces. By adding
lz +ylI* = (@ +y,2 +y) = [|lz]* + (z,9) + (v, 2) + [ly]%,
and

lz = yl* = (& =y, 2 —y) = 2l* + (2, —y) + (=, 2) + |yl
= llzll* = (z,9) = () + Iy

we obtain the parallelogram equality.

16
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To show (22), by (20), the definition of the inner product and since

(x,y) + (y,z) = (z,y) + (z,y) = 2Re(z, y), we have

a4yl =z —9l?) = (@ + .7 +9) — (2 g — )]

= L@ 2) + 2Re(z,9) + (4.9) — (2.2) + 2Re(z, 1) — (4,9)]

4
= Re(z,y).

Similarly, we can prove the other equality. Since Im(z,y) = Re(x,iy), we
get

1 .2 -2 1 2 . . 2

Uz +ayl” = llo —awyll") = Z{ll2l” + (z,3) + Gy, «) + llylI"~

(l]? = (z,iy) — (iy, x) + [|y]*)]
1 ‘ .

- 1[2(x72y> + Q(Zyw%')]

= S l(ei) + (i)

= Re(z, 1y)
= Im(z,y).

Example 7. Hilbert sequence space 2. The inner product is defined by
o
j=1
and the norm is defined by
1
|2]* = (z,2) = O I&[%)2.

We have shown the completeness of [2 in Example 1.

The inner product spaces are normed spaces and the Hilbert spaces are
Banach spaces, but the converse is not always true. The following examples
show that.

Example 8. The space [P with p # 2 is not an inner product space, hence
not a Hilbert space.

17



Proof. We prove this by showing that the norm does not satisfy the paral-
lelogram equality. Let z = (1,1,0,0,---) € I and y = (1,—1,0,0,---) € [P,
SO

Izl = llyll = 2%, Jle+yl = llz — yll = 2,

hence
8 = |z +yl> + |z — yl|* # 2(|J«|* + ||y]|?) = 4- 227

if p #£ 2. O

Example 9. The space Cla,b] is not an inner product space, hence not a
Hilbert space.

Proof. We show that the norm defined by
el = max (1)), J = [a,b

cannot be obtained from an inner product since this norm does not satisfy
t—a

the parallelogram equality. Indeed, if we take z(t) = 1 and y(t) = =%, we
have ||z| = 1,[ly|| = 1 and

:U(t)+y(t):1+z:z
t—a
x(t)—y(t)zl—b_a.

Hence ||z +y|| = 2,|lz —y|| = 1 and
lz +ylI” +llz —yl> =5 but 2(Jz*+ y|*) = 4.
This completes the proof. O

Definition 6. Let M be a subset of an inner product space X. We say M
is an orthogonal set if (z,y) = 0 Va,y € M,z # y and orthonormal if

0if z#vy
(T,y) =19, .
1if z=uy.

Later we shall need the following theorem:

18



Riesz’s Representation Theorem (Functionals on Hilbert spaces). Ev-
ery bounded linear functional f on a Hilbert space H can be represented in
terms of the inner product, namely,

f(x) = (z,2)
where z depends on f, is uniquely determined by f and has norm
1zl =171

For a proof, see 3.8-1 in [1].

1.3 Strong and weak convergence

Definition 7. Let (z,) be a sequence in a normed space X. We say that:
- (z,) is strongly convergent if there is an z € X such that lim ||z,—z| = 0.
n—oo
This is written lim =z, = z or z,, — =.
n—oo

- (z,) is weakly convergent if there is an € X such that for every f €
X*, lim f(z,) = f(z). This is written z, — = or z, — z.
n—oo

Example 10. Let e, = (1,0,0,---),(0,1,0,---),--- in H = I?. Then (e,)
converges weakly to 0, but not strongly. In fact, every f € H* has a Riesz

representation z € H. Hence f(e,) = (en, z). Now by the Bessel inequality
(see 3.4-6 in [1]),

o
D llens ) < 2]

n=1
Hence the series on the left converges, so that its terms must approach zero
as n — oo. This implies

flen) = (en,z) — 0.

Since f € H* was arbitrary, we see that e, — 0. However, (e,) does not
converge strongly because

lem — en||2 = (em — €nyem —€n) =2, m#n.

Lemma 1. Let (z,) be a weakly convergent sequence in a normed space X,
say, Tn — x. Then:

1. The weak limit x of (x,) is unique.

19



2. Every subsequence of (x,) converges weakly to z.

Proof. 1. If z, = x,2, — y, then f(z,) — f(x), f(z,) — f(y) for
f € X*. Since (f(zy)) is a sequence of numbers, its limit is unique.
Hence f(z) = f(y), that is

f@)=fly) = fle—y) =0
for every f € X*. This implies x — y = 0 by Corollary 4.3-4 in [1].

2. (f(xy)) is a convergent sequence of numbers, and every subsequence
of (f(xy)) converges and has the same limit as the sequence.
O

A subset S of X is said to be fundamental if the closed span of S is X,
i. e., if the set of all finite linear combinations of elements of S is dense in
X.

Example 11. Let u, € X be a bounded sequence. In order that u, con-
verge weakly to w, it suffices that (f,u,) converge to (f,u) for all f in a
fundamental subset S* of X*.

Proof. Let D* be the span of S*; D* is dense in X™*. Since f is a finite linear
combination of elements of S*, (f, u,) converges to (f,u) for all f € D*. Let
€ >0 and g € X* There exists f € D* such that

lg — fll <e.
Since (f,uy) converges, there is an N such that
|(fyun —um)| < e for n,m > N.

Thus

< ’(g_faun)’+|(f7un_um)|+‘(f_g7um)|
< Me+e+ Me=(2M + 1)e for n,m > N,

where M = sup ||uy||. This shows that (g,u,) converges for all g € X*. [

The relationship between strong and weak convergence is given by

20



Theorem 4. A sequence (uy,) C X converges strongly if and only if (f,uy,)
converges uniformly for || f|| <1, f e X*.

Proof. The ”only if” part follows from

(s un) = (fs um)| < Jlun — um[[ FI] < [Jun = uml|

because for each € > 0 there exists N such that ||u, —un|| < € for n,m > N.
To prove the ”if” part, suppose that (f, u,) converges uniformly for || f|| < 1.
This implies that for any € > 0, there exists an N such that

|(f,tn —um)| <€ if n,m >N and ||f|| < 1.

Hence

[un — || = Sup |(f un = um)| < € forn,m >N
flI<1

by (12).

2 Linear operators

2.1 The domain and range

Let X,Y be normed spaces, and let T" be a linear operator defined on a
subspace D(T') of X and taking values in Y. D(T) is called the domain of
T. The range R(T') of T is defined as the set of all vectors of the form Tu
with u € D(T). We write T : D(T) — Y.

Example 12. A finite real matrix (7;), j=1,---,r, k=1,--- ,n defines
a linear operator T': R — R" by

Yy=r7x,
where x = (§1,--+ ,&,) and y = (11, -+ , 7). In matrix form we write
] [t tiz ot S
2 tor tap oo ton| |82
LT [ir1 T2 trn ] 1&n
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Example 13. Let X be the vector space of all polynomials on [a,b]. We
may define a linear operator T' on X by setting

Tx(t) = 2/ (t)

for every x € X, where the prime denotes differentiation with respect to t.
This operator T' maps X onto itself.

Example 14. A linear operator T from Cfa, b] into itself can be defined by

t
Tx(t) = / z(r)dr, t € la,b.
Another linear operator from Cfa, b] into itself is defined by
Tx(t) = tx(t).

In these examples we can easily verify that the dimension of the range
of T" is not exceeding the dimension of the domain of T Let us prove this in
the following theorem.

Theorem 5. Let T be a linear operator. If dim D(T) = n < oo, then
dim R(T") < n.

Proof. If y1,...,yns1 are elements in R(T'), then there are x1,--- ,Zp41 in
D(T) such that y3 = Tx1, - ,ynt1 = Tp41. Since dim D(T') = n, this set
{1, -+ ,Zp4+1} must be linearly dependent. Hence

a1 + -+ 1%y =0
for some scalars aq, - -, apy1, not all zero, and
T(a1zy + - +n41 Toy1) = 1y1 + -+ Qn1Ynt1 = 0.

This shows that {yi, -+ ,yns1} is a linearly dependent set. Hence dim
R(T) < n. O
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2.2 Bounded and continuous operators

Definition 8. (Bounded linear operator). Let X and Y be normed spaces
and T : D(T) — Y a linear operator, where D(T) C X. The operator T is
said to be bounded if there is a real number ¢ such that for all x € D(T)

1 Tz]| < cfjz]].

Example 15. Let X and Y be normed spaces. T : X — Y is bounded if
and only if 7" maps bounded sets in X into bounded sets in Y.

Proof. Suppose T is bounded, then there is a number ¢ such that | Tz| <
c||z||. Let A be a bounded subset, and ¢; = max |||, then || Tz| < ccy Va €
Te

A, thus the image of any bounded set in X is bounded. Conversely, suppose
we have ||[Tz|| < MV ||z|| < 1. Then ||Tz|| < M||z| Vx, so T is a bounded
operator. O

Example 16. The operator T : [ — [* defined by y = (n;) = Tz, n; =
&i/j, = (&), is bounded.

Proof. Let A be any bounded set, then there is ¢ such that ||z < ¢ for all
x € A. Then

&
|T|| = max |22 < max |&;] = [z,
i J
hence T is bounded. O

Example 17. Let T be a bounded linear operator from a normed space X
onto a normed space Y. If there is a positive b such that

|ITz| > b||x| for all z € X,
then 77! : Y — X exists and is bounded.
Proof. T is bounded, hence there is ¢ > 0 such that || Tz| < ¢||lz|. So
bllz|| < [Tz < .

Then Tz = 0 iff £ = 0, that is, T7~! exists. Thus Va 3y such that the

inequality becomes
Iyl
< <ec
1Tyl
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In particular,
_ 1
1Tyl < 3 llyll

Hence T~ is bounded. O

Example 18. The inverse 7! : R(X) — X of a bounded linear operator
T : X — Y need not be bounded.

The operator defined in Example 16 is bounded and T~ ! exists. It is given
by the formula

T~ (y) = (jny) = (1, 2n2,3n3, -+

and is not bounded.

Theorem 6. (Finite dimension). If a normed space X is finite dimensional,
then every linear operator on X is bounded.

Proof. Let dim X = n and let {e1,--- ,e,} be a basis for X. We take any
x =Y &je; and consider any linear operator 7" on X. We have

n n n
Tzl =11 &Tesll < D 16lI1Tes] < max || Te | > Igl-
j=1 j=1 j=1

To the last sum we apply Lemma 2.4-1 in [1] which states that

1 1
> olgl < Al > gell = el

for some ¢ > 0. So

1
|7 < max | Teg] Y 11 < — max || Teg|l]|z]].

Let v = %ml?XHTekH, then
[T] < ~llz|

and 7' is bounded. O

Definition 9. (Continuous linear operator). Let X,Y be normed spaces,
D(T) c X,and let T : D(T) — Y be a linear operator. 7' is continuous at
xzo € D(T) if for every € > 0 there is a 6 > 0 such that

|Tx — Txo|| < e for all z € D(T) satisfying ||z — zo|| < 9.
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In fact there is an immediate relation between bounded and continuous
operators. We show this in next theorem.

Theorem 7. T is continuous if and only if T is bounded.

Proof. For T = 0 the statement is trivial. Let T # 0 be bounded, we
consider any zg € D(T'). Let € > 0, then for every z € D(T') such that

€
|z — x0l| < where § = —
1|
we obtain

[Tz = Tol| = IT(z — zo)|| < [Tl = zoll < [IT|6 = e.

Since zg € D(T) was arbitrary, this shows that 7" is continuous.
Conversely, if T' is continuous at an arbitrary xg € D(T), then for every
€ > 0 there is a § > 0 such that

|Tz — Txo|| < e forall z € D(T) satisfying ||z — zo|| < 9.

We now take any y # 0 in D(T') and set

1)
T =20+ Y.
Iyl
Hence ||z — x¢|| = ¢ and
1) 1)
[Tz —Txo| = [|T(x — xo)|| = T (79l = 1Tyl <e.
[yl [yl
Thus
€
Tyl < = .
1Tyl < 5yl
Hence T is bounded. O

Example 19. Let T be a bounded linear operator. Then z,, — x implies
Tz, — Tz where z,,x € D(T). By the last theorem, as n — oo we have

[Ty — Tal| = T (zn — )| < |T[[|2n — 2| — 0.

Let X, Y be Banach spaces. We denote by B(X,Y) the set of all bounded
operators from X to Y.
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[Tz _

Lemma 2. B(X,Y) is a Banach space under the norm ||7'|| = sup T
x#£0 [T

sup || T||

llzll=1

Proof. That ||T|| is a norm can be seen in the same way as for || f|| in (12).
Let (T,) be a Cauchy sequence of elements of B(X,Y). Then (T,u) is a
Cauchy sequence in Y for all u € X, hence for each € > 0 there exists N
such that

[Tnu = Tonul] < [|Tn = Tl |ull < €flul- (23)

Since Y is complete, there is v € Y such that

Tou — v

and we can define v = T'u. As in the proof of Theorem 3, we see that T is
linear. We show that 7" is bounded and T,, — T Since ||T,|| form a Cauchy
sequence of positive numbers, then ||T,,|| < M for some M and all n, and

ITul| = lim ||T,ul| < lim ||T,||[|u]] < M|u|| for all u,
n—oo n—oo
so T is bounded. Now (23) gives
(T = T)ull = lim |[(T = Trp)ul| < lm ||, — Top [ [Jul] < €fful].
m—0o0 m—0o0
Since this holds for all u € X,
lim ||T,, — T = 0.
n—oo
O

Definition 10. (Convergence of sequences of operators). Let X and Y be
normed spaces. A sequence (7T),) of operators T,, € B(X,Y) is said to be:
- uniformly operator convergent if (T,,) converges to some 7' in the norm on
B(X,Y), ie.,

T, —T| — 0.

We use the notation T,, — T.
- strongly operator convergent to T' if (T,,x) converges strongly in Y for every
z € X, i e,

| Tz — Tzl — 0.

26



This is denoted by T}, — T.
- weakly operator convergent to T if (T,,x) converges weakly in Y for every
z e X, i e,

|f(Thz) — f(Tx)] — 0 forall f e Y™

This is denoted by T, — T. T is called the uniform, strong and weak
operator limit of (7},), respectively.

Example 20. Let u, € X and T, € B(X). If u, — w and T,, — T, then
Tou, —— Tu. If u, — u and T,, —— T, then T)u, — Tu.

Proof. If u, Svand T, > T then,

| Thun — Tul| = || Thun — Tun + Tup, — Tul|
< || Thun — Tun|| + [|Tun — Tul|
= (T = T)un|| + T (un — w)|
< 1 Tn = TlfJunl| + 1T} tn — ]| — 0.

If u, - w and T, — T, then for all f € X* we have

|f(Toun) — f(Tw)| = | f(Thun) = f(Tau) + f(Tnu) — f(Tu)
< ‘f(Tnun) - f(Tnu)| + ‘f(Tnu) - f(Tu)’
< IFINTnlllun = wll + [f (Tru) = f(Tu)| — 0.

2.3 Compact operators

Definition 11. Let X and Y be normed spaces. A linear operator T :
X — Y is called a compact linear operator if for every bounded subset M

of X, the set T'(M) is compact.
Lemma 3. Let X and Y be normed spaces. Then:

1. Every compact linear operator T': X — Y is bounded, hence contin-
uous.

2. If dim X = oo, the identity operator I : X — X is not compact.
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Proof. 1. The unit sphere U = {z € X| ||z|| = 1} is bounded. Since T is
compact, T'(U) is compact, and is bounded, so that

sup ||Tz|| < oo.
llzl|=1

Hence T is bounded and Theorem 7 shows that it is continuous.

2. The closed unit ball M = {z € X| ||z|| < 1} is bounded. If M is
compact, then dim X < oo by Theorem 2, which contradicts that X
is of infinite dimension. Thus M cannot be compact, showing that

I(M) = M = M is not compact, i.e. I is not compact.
O

From this lemma it follows that the identity operator in a normed space

is compact if and only if X is finite dimensional.

Theorem 8. Let X and Y be normed spaces and T : X — Y a linear
operator. Then T is compact if and only if it maps every bounded sequence
(z5,) in X onto a sequence (Tx,) in Y which has a convergent subsequence.

Proof. If T is compact and (z,) is bounded, then (T'z,) is compact and
Definition 2 shows that (T'z,) contains a convergent subsequence.
Conversely: Let B be any bounded subset in X, and let (y,) be any se-
quence in T'(B). Then y, = Tz, for some z,, € B, and (z,,) is bounded since
B is bounded. By assumption, (T'z,) contains a convergent subsequence.

Hence T'(B) is compact, this shows that 7" is compact. O

Example 21. If T} and T, are compact linear operators from a normed
space X into a normed space Y, then T + 15 is a compact linear operator.

Proof. Let (z,) be any bounded sequence in X. Since T is compact, by
Theorem 8 (T x,,) has a convergenct subsequence (T, ) in Y and similarly,
(Toxy, ) has a convergent subsequence (Toxy,) in Y. Then (T} + T2)xy,) is
a convergent subsequence of ((17 + T2)x,). Hence T7 + T is a compact
operator. ]

Theorem 9. (Finite dimensional domain or range). Let X and Y be normed
spaces and T': X — Y a linear operator. Then:

1. If T is bounded and dim T'(X) < oo, the operator T' is compact.
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2. If dim X < oo, T is compact.

Proof. 1. Let (z,,) be any bounded sequence in X. Then the inequality
|Tx,|| < |IT||||zn|| shows that (Tx,) is bounded. Hence (Tz,) is
compact since dim T'(X) < oo. It follows that (Tx,) has a convergent
subsequence. Since (z,) was an arbitrary bounded sequence in X, the

operator T is compact by Theorem 8.

2. By Theorem 6 T is bounded, by Theorem 5 dim 7'(X) < dim X. Hence
by 1. T is compact.
O

Theorem 10. (Sequence of compact linear operators). Let (7},) be a se-
quence of compact linear operators from a normed space X into a Banach
space Y. If (7T},) is uniformly operator convergent, say, ||T,, — T'|| — 0, then
the limit operator T is compact.

Proof. Let (x,,) be any bounded sequence in X, then it has subsequences
(Z1,m), (X2,m), - - such that (T121m), (T2z2,m), - - are Cauchy. Here (21 ,)
is a subsequence of (z,,), (x2.,) is a subsequence of (x1,,) etc. Let (ym) =
(@m,m). This is a subsequence of (z,,) such that for every fixed n the sequence
(Thym) is Cauchy. Since ||z,|| < ¢ for some ¢ > 0, also ||ym|| < ¢ for all m.
Since || T, — T'|| — 0, 3p such that | T — Tp|| < . Since (Tpym) is Cauchy,
3N such that
| Try; — Toykll < g for all j,k > N.

Hence for j, k > N
1Ty; — Tyl < 1Ty; — Tpy;ll + 1Tpys — Toywll + [ Tpyr — Tyl
€
< =Tollllysll + 5 + 17 = Tllllyel

€ € €
—Cct+ -+ —c=e¢€.

<30 3 3c

Hence (Ty,,) is Cauchy and therefore convergent, that is, 7' is compact. [J

Example 22. Prove compactness of T : [ — [? defined by y = (n;) = Tz,
where n; =§;/j for j=1,2,--- .

Proof. Let T}, : 1> — [? be defined by
Thx = (£1>£2/27£3/3a"' ’gn/nvovov"')'
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T, is bounded, and it is compact by Theorem 9 because dim R(T},) = n < co.

Furthermore,
1
(T — T)z||* = Z il = Y 117
Jj=n+1 Jj= n-‘rl‘7
2 o =l
T 1\2 Z |€]‘ 29
(n+1) Pt (n+ 1)
hence
T =Tl 1
up
[Ed] n+1
and 1
IT =T, < nr 1
Hence T,, — T, and T is compact by Theorem 10. O

Example 23. Let Y be a Banach space andlet T, : X — Y, n=1,2,---
be bounded operators of finite rank. If (7},) is uniformly operator convergent
then the limit operator is compact.

Proof. Since dim 7T,,(X) = rank T,, < oo, it follows from Theorem 9 that 7,
is compact for all n. Hence by Theorem 10 T' is compact. O

2.4 Spectrum of compact operators

Definition 12. Let X be a normed space and T : X — X a bounded
linear operator. Denote
=T -\, (24)

where A is a complex number and [ is the identity operator on X. If T}
has no bounded inverse on X, then A is called a spectral value, denoted
A€ o(T). If Thx = 0 for some x # 0, then ) is said to be an eigenvalue and
T an eigenvector.

If A is an eigenvalue, then A € o(T), but the converse need not be true.

Theorem 11. (Eigenvalues). The set of eigenvalues of a compact linear
operator T': X — X on a normed space X is countable (perhaps finite or
even empty), and the only possible point of accumulation is A = 0.
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Proof. We suppose the opposite, and we get a contradiction. Let kg > 0,
and suppose there is an infinite sequence () of distinct eigenvalues such
that |A,| > ko for all n.

For each n, let T, z,, = 0, z,, # 0. The set of all the x,,’s is linearly indepen-
dent (see Thm. 7.4-3 in [1] or Proposition 2 in [3]). Let M,, =span{z1,--- ,z,}.
Then each x € M, has a unique representation

Tr=oa1x1+ -+ oapTy.
We apply T' — A\, I and use T'xj = \jx;:
(T =MDz =01(M — M)z + -+ a1 (Ap—1 — Ap)Tn—1,
hence
(T — N\ D)x € My,—q for all z € M,

The M, ’s are finite dimensional and therefore closed (see Thm. 2.4-3 in
[1]). By Riesz’s Lemma there is a sequence (yy) such that y, € M, and
lynll =1, |lyn — || > 5 for all z € M,_;.We show that

1
| Tyn — Tyml| > §k0 for all n > m,

so that (Ty,) has no convergent subsequence because ky > 0. Since T is
compact and (y,) is bounded, we get a contradiction.
Now let m < n, then we have \p,ym € M,—1 and (T'— A\, 1)y, € Mp—1. Thus

1
T = T(Tym - Tyn) + Yn € Myp—1.
n

Hence
1TYn — Tym| = [[Anyn — Anz]|

= ‘)‘nmyn _xH
1 1
> —|\,| > =kg.
_2| n|_2 0
L]

Theorem 12. (Null space). Let T': X — X be a compact linear operator
on a normed space X. Then for every A # 0 the null space N(Ty) of T\ =
T — M is finite dimensional.
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Proof. We shall apply Theorem 2 from which it follows that if the closed
unit ball M in N(T)) is compact, then dim N (7)) < co. Now we show that
M is compact.
Let (xy,) be in M, then
lzn] < 1.

T is compact and (z,) is bounded, hence (T'z,) has a convergent subse-
quence (T'zy, ) by Theorem 8.
Since z, € M C N(T)),

Thx, =Tz, — Ax, =0,

so that
Tn = ATz,

Thus

Ty, = )\_leL'nk

is a convergent subsequence of (x,), and the limit is in M because M is
closed. This proves that M is compact. ]

Example 24. Let T': X — X be a compact linear operator on a normed
space. If dim X = oo, then 0 € o(T).

Proof. We assume 0 ¢ o(T'). Similarly as in the last theorem, we have that
if the closed unit ball M in X is compact, then dim X < oo. Let (x,)
be in M. Since T is compact, there is a convergent subsequence (T'z,, ) of
(Txy), Txy, — y. T~ exists because 0 ¢ o(T), hence z,, — T ly.
From Theorem 2 it follows that dim X < oo which is a contradiction. Hence
0€oa(T). O

Lemma 4. Let T : X — X be a compact linear operator on a normed
space X. If XA # 0 is not eigenvalue, then R(T)) is a closed subset of X.

Proof. We have to prove that for any convergent sequence (Tyz,) the limit
of it is in R(T)).
Suppose
Thr, =Tz, — A, — y.
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First we will show that (z,) must be bounded. Suppose (z,,) is unbounded,
then we may assume passing to a subsequence that ||z,| — oo.

/ Ln
Let x;, = Then

EM
Tyx,, = Txz,, — \x), — 0,
and since T' is compact, there is 9/ such that
Tz, —
after passing to a subsequence once more. It follows that
Azl —
and
Al = [z, [ — [ly/II
So ¢’ # 0. On the other hand,
Tyy' = Th(lim \x)))

= Aim Thz),
= AMim(Tz!, — \x)
=AMy —y)=0.

Hence 3’ is an eigenvector, but this is a contradiction because A is not an
eigenvalue. This shows that (z,) cannot be unbounded.
Now (z,,) is bounded, T' is compact, hence there is z € X such that

Tr, — z
after passing to a subsequence, so
ATy — 2 — Y.
Thus we have

(> (2 — ) = T (> (Jim Az,))

A n—o0

= lim T)\(I}n
n—oo

= lim (Tx, — Azy)

n—oo

=z-(2-y)

So y € R(T)). O
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Since T)(X) C X, it follows that T¢(X) C T)(X). Continuing, we see
that
X=T)X)oT\(X)D>T{X)D---,

where T)(\) =1.

Lemma 5. Let T : X — X be a compact linear operator on a normed
space X and let A # 0. Then there exists a smallest ¢ > 0 such that

1
TI(X) = T4 ().
Proof. We assume the opposite, i. e.,
TR (X) D TH(X)

for all n and all inclusions are proper. We shall find a bounded sequence
(5,) such that (T'z,) has no convergent subsequence, and this contradicts
the compactness of T. Hence T} (X) = T§+1(X ) for some ¢ > 0.
By the preceding lemma, T/’\"‘H(X ) is a closed subspace of TV (X), so it
follows from Riesz’s Lemma that there is a sequence (x,), z, € T (X), such
that 1

|lznll =1, [|zn — x| > B for all z € TP (X). (25)

We will show 1
| Tzn — Tam| > 5\)\] for all m > n.

We have
Txyp — Txp = Aty +Dhxn — I — Ao,
Since
Tm € TV(X) C TYHH(X),
Tyem € TYHHX) € TYHH(X)
and

Ty\z, € TYTH(X),

it follows that

1
T = X(T)\;J:m — oz, — Azpy) € TYHHX).
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Thus (25) gives
| Tzn — Tam| = || Azn, — Ax]|

= [Alllzn — 2|

v

1
—|A .
2\ | >0
]

Theorem 13. (Eigenvalues). Let T': X — X be a compact linear operator
on a Banach space X. Then every spectral value A # 0 of T' (if it exists) is

an eigenvalue of 7.

Proof. Suppose A # 0 is not an eigenvalue. Then Thx = 0 if and only if
x = 0, hence
T, Th(X) — X

exists. Now we show

T\(X) = X,

that is, ¢ = 0 in Lemma 5. Suppose ¢ > 1, then the inclusion TY(X) C
T ;f_l(X ) is proper, and hence there exists

y € TN X) — TYX), (26)
We have
y = T)‘\I_l:): for some x.

Since
Ty = Tz € T{(X) = T{(X),

Ty = T;\le for some z. (27)

By (26) and since Tyz € TY(X),
y— Tz #0.

But by (27)
Ta(y —T3z) =0

which is impossipole because A is not an eigenvalue. So ¢ = 0 and T)\(X) =
X. Hence T 1'is defined on the whole space X and Ty ! must be bounded
by the bounded inverse theorem 4.12-2 in [1]. It follows that A ¢ o(T"). O
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Definition 13. (Equicontinuous). Let (z,,) be a sequence in Cla, b]. We say
it is equicontinuous if for any ¢ > 0 there is a § > 0 depending on ¢, such
that for all s1,s2 € [a,b], |s1 — s2| < 0, we have

|zn(s1) — zn(s2)| < € for all n.

Ascoli’s Theorem (Equicontinuous sequence). A bounded equicontinu-
ous sequence (z,) in Cla, b] has a convergent subsequence.

Theorem 14. (Compact integral operator). Let J = [a, b] be any compact
interval and suppose that k is continuous on J x J. Then the operator
T : X — X defined by

b
(Tz)(s) = / k(s,t)x(t)dt, (28)
where X = Ca, b], is a compact operator.

Proof. We shall prove T' is bounded, hence (T'z,,) is bounded when (z,,) is
bounded. Then we show that (T'z,) is equicontinuous, so Ascoli’s theorem
will imply that (T'z,) has a convergent subsequence, and so 7" is compact.

Boundedness of T follows from

b b
Tx| = k(s,t)x(t)dt| < k(s,t)|dt
7l = ma| [ ks, Oa(t)at] < ol mase [ k(s D)l

which is of the form ||Tz|| < M]||z||. Now let (z,) be any bounded sequence
in X, ||z, < ¢, and let y, = Tx,. We show that (y,) is equicontinuous.
Since k is continuous, for all € > 0 there is § > 0 such that for all ¢ € J and
all s1, s9 € J satisfying |s1 — s2| < § we have

€

k(s1,t) — k(s2,t)] < b—a)c

Consequently, for |s; — s2| < ¢ and every n we obtain

b
lym(51) — m(52)] = | / (1, 1) — k(52 £)]n (1)t

<(b—a)

This proves equicontinuity of (y;,). O
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Finally we consider the boundary value probem

2" (t) + pg(t)a(t) = f(t), x(0) ==(1) =0, (29)

where € C, ¢ is a given real-valued function, ¢(t) > 0 for all ¢ € [0,1]
and f € C[0,1]. We shall show that for most values of y, (29) has a unique
solution for each f. Before showing that, let us consider the following lemma.

Lemma 6. The boundary value problem

Proof. Since G is continuous for s,t € [0, 1], (31) can be written as
1
x(t) = /0 G(s,t)g(s)ds
t 1
= / s(t—1)g(s)ds +/ t(s —1)g(s)ds
0 t
t 1
=(t— 1)/0 sg(s)ds + t/t (s —1)g(s)ds.
If x satisfies (30), then z(0) = 0,z(1) =0,
t 1
x'(t) = /0 sg(s)ds + (t — 1)tg(t) +/t (s —1)g(s)ds —t(t — 1)g(t)
t 1
= /0 sg(s)ds +/t (s —1)g(s)ds

and

2" (t) = tg(t) — (t — 1g(t)

g(t).
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Hence z a is solution of (30). If = satisfies (30), then integration gives

o) = [ alsds+ e

/ / dsd’i‘ + ci1t + co.

z(0) = 0 gives co = 0 and z(1) = 0 gives

// $)dsdr.
// dsdr—t// s)dsdr.

Changing the order of integration,

/ / des—t/ / s)drds
/O<t—s><>ds—/0 H(1 — s)g(s)ds
= (- 9aas— [ 101 oty [ 10~ yatepas

t 1
:/0 s(t — 1)g(s)ds+/t t(s —1)g(s)ds

1
:/ G(s,t)g(s)ds
0

Hence z is a solution of (30). O

Hence

Theorem 15. The boundary value problem (29) has a unique solution for
each f € C[0,1] and each p € C\A, where A = {1, p2, -} is a countable
set such that |u,| — oo as n — oo.

Proof. The boundary value problem

2"(t) + pg(t)z(t) =0, z(0)==z(1)=0 (32)

1
x(t) = —,u/o G(s,t)q(s)x(s)ds
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(set g(t) = —pq(t)x(t) in Lemma 6). Since k(s,t) = —G(s,t)q(s) is contin-
uous, it follows frorn Theorem 14 that the operator T : C|0,1] — C|0, 1]
given by (Tx)( fo s)ds is compact. Let A = 1/u. Then z is a
solution of (32) 1f and only 1f

Thae=Tx— ) x=0.

By Theorems 11 and 13, the spectrum of T is a set (\,,) which is either finite
or A\, — 0. But here |u,| = 1/|\,] — o0. Using Lemma 6 once more, we
can re-write (29) as

x=pulz+h,

where h(t fo s)ds. Let A = 1/pu. Then (29) becomes
The =Tz — Az = —)\h.

Let A = {u1, 2, -}, where p, = 1/\,. If p ¢ A, then T) is invertible and
x = —T, *(\h) is the unique solution of (29). O

Let us finally remark that it is known from the theory of ordinary differ-
ential equations that if ¢ > 0, then the set A is infinite and all u,, are real
and positive.
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