
EXAMENSARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The Mathematical Background of Artificial Neural Networks and

their Application in the Medical Technology Project NIVAB

av

Susanne Thon

2008 - No 14

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 10691 STOCKHOLM

The Mathematical Background of Artificial Neural Networks and

their Application in the Medical Technology Project NIVAB

Susanne Thon

Examensarbete i matematik 15 högskolepoäng, p̊abyggnadskurs

Handledare: Andreas Völkel

2008

Abstract

One of the most important features of the human brain is its abil-
ity to learn. The way in which the synapses between the brain’s
neurons are adapted in new situations is unique and the total capac-
ity of biological neural networks has not been able to be simulated.
Yet artificial neural networks are a powerful tool in pattern recogni-
tion and calculation as they are able to approximate any continuous
multidimensional function. The proof of this property goes back to
Kolmogorov and will be one of the main results which we will present
in this thesis.
After giving the mathematical background of neural networks, we
will turn to an application in medical technology. In the project
NIVAB (non-invasive determination of blood glucose level) neural
networks are used for the calculation of blood glucose. On the basis
of this project we will in the second part of this thesis demonstrate
how neural networks can be realised with Matlab.

i

Acknowledgment

This work was carried out at the business enterprise TROUT GmbH in Kassel,
Germany, during summer and autumn 2008. I would like to thank the TROUT
GmbH for giving me the opportunity to work with this interesting project and
my colleagues for their support and good cooperation.

iii

Contents

1 Introduction 3

2 The Concept of Neural Networks 4
2.1 Historical Overview . 4
2.2 The Topology of Neural Networks 4
2.3 Learning in Artificial Neural Networks 8

3 Two-Layer Feedforward Networks 9
3.1 Construction . 9
3.2 The Linear Associator with Hebbian Learning Rule 10
3.3 The Perceptron with Perceptron Learning Rule 11

4 Three-Layer Feedforward Networks 16
4.1 Construction . 16
4.2 Backpropagation . 25

5 A Realisation of Neural Networks in Matlab 29
5.1 Construction and Training . 29
5.2 Data Preprocessing . 33
5.3 Training Evaluation . 35

6 An Application of Neural Networks 36
6.1 The Project NIVAB . 36
6.2 Construction and Testing of a Simplified Network Based on NIVAB 37
6.3 Conclusion . 42

A Matlab Program Code 43

References 53

1

1 Introduction

In this thesis we will investigate the concept of artificial neural networks for use
in medical technology. Artificial neural networks are pattern recognition sys-
tems which are inspired by the functionality of biological neural networks. One
of the most important neural systems is the human brain. The nervous system
consists of biologically independent neurons which are connected by synapses.
Each neuron is connected to thousands of other neurons. By transmitting im-
pulses, the synapses pass information between the neurons. Each impulse causes
a reaction. In the learning process the synapses between the neurons are modi-
fied. The reaction on an impulse is changed by trial and error until the feedback
is optimal and recurring patterns are recognised.

Artificial neural networks simulate this way of learning and transmitting infor-
mation. They are applied in a wide range of areas, such as in speech recognition,
artificial intelligence, engineering and diagnostics in economy and medical sci-
ence, where problems are hard to describe analytically and cannot be solved
adequately by conventional methods.1

In this paper we will consider the mathematical background of artificial neural
networks. After a short historical overview the concept of neural networks will
be presented as a special area of graph theory. We will consider two- and three-
layer feedforward networks and show as a main result that three-layer networks
are able to approximate any continuous function. This result, which goes back
to Kolmogorov, makes neural networks a powerful tool for calculation where the
explicit functions are unknown.
To give an example of how learning can be carried out, we will consider the
backpropagation training method, which is based on the method of gradient
descent.

We will then show how neural networks can be used in Matlab, where a neural
network toolbox is provided. We will describe how networks can be created
and trained. Besides backpropagation a wide range of other training methods is
implemented in the toolbox, some of which we will present without going into
the mathematical details.
Finally we will present and analyse the medical technology project NIVAB. This
project is implemented with Matlab and applies neural networks as a tool for
non-invasive determination of blood glucose values. On the background of this
we will develop an own simplified version of a program for determining the blood
glucose level.

1[Berns Kolb 1994] p. v

3

2 The Concept of Neural Networks

2.1 Historical Overview

A first idea of neural networks was presented by McCulloch and Pitts in the
1940s. In their work ”A logical calculus of ideas immanent in nervous activ-
ity”2 they construct a formal model of a neuron as a threshold-unit in two
states, which can be seen as a foundation of artificial neural networks.3

In 1949 Hebb published his work ”The Organization of Behavior”,4 in which he
presents an approach of learning in neural networks. In the Hebbian learning
rule the connection between two neurons is strengthened, if they are active at
the same time.
The first adaptive network model was developed in 1958 by Rosenblatt.5 It was
called perceptron and provides in its features a basis for most of the networks
used today.
However, these networks turned out to be appropriate only for a limited class of
problems and could therefore not provide a basis for problem solution in general.
Research and public interest in neural networks abated for some decades, until
the publication of Hopfield’s work6 in 1982 caused a new boom in neuroresearch.
He describes recurrent networks as a totally new system of nonlinear networks.
The output of each processing element in the binary, symmetrically weighted
model is fully connected by weights to the inputs.
In the following years the first learning methods for multilayer networks were
described. In 1986 Rumelhart, Hinton and Williams7 presented backpropaga-
tion, a learning method that has its roots in the Ph.D. thesis of Werbos8 in
1974. Backpropagation can be applied to any multilayer neural network and is
one of the most popular methods still today.

2.2 The Topology of Neural Networks

In our presentation of the mathematical background of neural networks we will
mainly follow Lenze’s book ”Einführung in die Mathematik neuronaler Netze”.9

We will restrict ourselves to two- and three-layer networks, as this is sufficient
for our purpose. However, the concept of two- and three-layer networks can
be extended and in practical applications even networks with more than three
layers are used.

We consider neural networks as a special case of directed graphs. Before intro-
ducing formal neural networks, we will present some notations of graph theory.

2[McCulloch Pitts 1943]
3[Berns Kolb 1994] p. 10
4[Hebb 1949]
5[Rosenblatt 1958]
6[Hopfield 1982]
7[Rumelhart Hinton Williams 1986]
8[Werbos 1974]
9[Lenze 2003]

4

2.2.1 Definition

Let X be a finite nonempty set. A (finite) directed graph G := (X,H, γ) is
made up of the elements of X, called the vertices of G, a finite set H such that
H ∩X = {}, called the edges of G, and a mapping γ : H → X ×X, called the
incidence function of G.

2.2.2 Definition

Let G := (X,H, γ) be a directed graph with vertices v, w, v0, v1, ..., vn ∈ X and
edges h, h1, ..., hk ∈ H.

• If γ(h) = (v, w) then v is called origin and w is called terminus of h.

• The number of edges for which v is origin is called outgoing degree of
v and is denoted by δ+(v), the number of edges for which v is terminus is
called incoming degree of v and is denoted by δ−(v).

• If there do not exist any edges h such that γ(h) = (v, v) for any vertex v,
then G is called loop-free.

• A loop-free graph which has at most one edge between any two different
vertices is called simple graph.

• A finite sequence C := (v0, h1, v1, h2, v2, ..., vk−1, hk, vk) such that γ(hi) =
(vi−1, vi), 1 ≤ i ≤ k, is called directed path from v0 to vk. α(C) := v0

is called start vertex, ω(C) := vk is called end vertex of the path.

• A directed path C is called closed directed path, or cycle, if α(C) =
ω(C). Otherwise C is called open directed path.

We are now able to introduce formal neural networks and formal neurons.

2.2.3 Definition

Let G := (X,H, γ) be a simple directed graph. We define

X̃ := X \ {v ∈ X : δ+(v) · δ−(v) = 0},
H̃ := H \ {h ∈ H : γ(h) ∈ (X \ X̃)× (X \ X̃)}.

Then N := (X, X̃,H, H̃, γ) is called (formal) neural network.

The elements of X̃ are those vertices which are both origin and terminus, the
elements of H̃ are the edges between vertices in X̃, i.e. to get the set H̃ from
the set H, all edges between vertices v, w ∈ X such that v is not terminus and
w is not origin are removed. We will use the following notation:

• The elements v ∈ X̃ are called nodes of N .

• The elements h ∈ H̃ are called vectors of N .

5

• All nodes v ∈ X̃ for which exist a w ∈ X \ X̃ and an h ∈ H̃ such that
γ(h) = (w, v) are called input nodes of N . The vector h is then called
input vector of N .

• All nodes v ∈ X̃ for which exist a w ∈ X \ X̃ and an h ∈ H̃ such that
γ(h) = (v, w) are called output nodes of N . The vector h is then called
output vector of N .

• If the simple directed graph G induced by N does not contain any cycles
then N is called feedforward neural network. Otherwise N is called
recurrent neural network.

2.2.4 Definition

A (formal) neuron is a function

κ : Rn → Rm

(x1, ..., xn) 7→ (T (
n∑
i=1

wixi −Θ), ..., T (
n∑
i=1

wixi −Θ))

with weight vector ~w = (w1, ..., wn) ∈ Rn, threshold value Θ ∈ R, and
transfer function T : R→ R.

�
��

�
��
�*

xn

wn

...

PPPPPPPq

x2
w2

Z
Z
Z
Z
Z
ZZ~

x1

w1

T (
n∑
i=1

wixi −Θ) = y �
�
�
�
�
�
���

y1 = y

�
��

�
��

��*
y2 = y

...Q
Q
Q
Q
Q
Q
QQs ym = y

Model of a formal neuron

A neuron works in the following way: The input values x1, ..., xn are weighted

by w1, ..., wn. They are then added so that we get a total stimulation
n∑
i=1

wixi.

In this manner the weight vector regulates how much influence each neuron has
on the total stimulation of the output neuron.

The threshold value is subtracted from the total stimulation:
n∑
i=1

wixi −Θ.

Θ indicates the sensibility of the network. If Θ is large, even the total stimulation

6

has to be large to give positive stimulation to the neuron.
The transfer function translates the stimulation of a neuron into some kind of
neural activity by T (

n∑
i=1

wixi −Θ). Some typical transfer functions are:

• The linear function

T (x) = αx, α ∈ R+.

The stimulation of the neuron is multiplied by a positive scalar.
If α = 1, we get as a special case the following function:

• The identity function

T (x) = x =: TI(x).

• The step function

T (x) =
{

0, if x < 0
1, if x ≥ 0

}
=: T1(x).

If the total stimulation of the neuron is positive, it ”fires”, otherwise it
does not. This simulates the behavior of real neurons.

• The Sigmoid functions
A sigmoid function is any bounded function T : R→ R such that

lim
x→−∞

T (x) = 0 and lim
x→∞

T (x) = 1.

The neuron fires with an intensity between 0 and 1.

• The Fermi function

T (x) =
1

1 + e−x
=: TF (x)

is one example of a sigmoid function.

• The hyperbolic tangent function

T (x) = tanh(x) =
e2x − 1
e2x + 1

=: TH(x)

can be seen as an adjusted Fermi function as TH(x) = 2 TF (2x)− 1.

Now we imagine each node in a neural network as such a formal neuron. The
neurons are ordered in layers. To know which neuron is stimulated by which
other neuron, they are numbered. This is called time-discrete update or
scheduling.

7

The neurons in the first layer, i.e. the input neurons of the network N , are stim-
ulated. The impulses are adapted in the way described above and propagated
to the neurons of the second layer and so on. Finally, the output neurons return
the network’s reaction on the primary impulse.
Regarding all these conditions, a neural network N with formal neurons as nodes
and given time-discrete update is an implementation of a function

ℵ : Rn → Rm,

which in its turn is called ”The Neural Network”. We assume that N has n
input vectors and m output vectors. ℵ depends thus in a complex way on the
weights, threshold values and transfer functions of all neurons as well as on the
given update.

2.3 Learning in Artificial Neural Networks

How will the threshold values and the weight vectors be determined? The neural
network has to learn them. In a first step they are initialised by random values.
A finite set of training data (~x(1), ~y(1)), ..., (~x(t), ~y(t)), consisting of input values
~x(j) ∈ Rn and output values, or targets, ~y(j) ∈ Rm, 1 ≤ j ≤ t, is presented to
a network with n input nodes and m output nodes. To each input ~x(j) the net
calculates an output, which is compared to the target ~y(j). The weights and
threshold values will then be adapted by a given learning rule. There are many
learning rules in common use, some of which will be presented later.
When learning is finished, the network should be able to map each training
vector of input values ~x(j) to the right, or at least approximately right, output
value ~y(j), as well as to calculate an appropriate output to any other input. This
form of learning is called supervised learning.

There exists even another form of learning, called unsupervised learning. In
this case a finite amount of inputs ~x(1), ..., ~x(t) is presented to the neural network.
The network should organise the presented data and discover collective prop-
erties. By searching for regularities or trends in the inputs, the network makes
adaptions and should, after the learning process, be able to classify primary un-
known inputs. In this thesis we will not discuss further issues on unsupervised
learning as it is not relevant in our context.

8

3 Two-Layer Feedforward Networks

3.1 Construction

3.1.1 Definition

A two-layer feedforward network is a neural network whose nodes and
vectors have the following properties:

• Each node is either input or output node.

• To each input node exists exactly one input vector.

• To each output node exists exactly one output vector.

• Each input node is connected to each output node. Other connections do
not exist.

�
��
-x1

�
��
-x2

�
��
-x3

�
��
- y1

�
��
- y2

XXXXXXXz
H
HHH

HHHj

-
XXXXXXXz

��
�
��

�
��*

���
���

��:

A two-layer feedforward network with three input nodes and two output nodes

The input layer consists of all input nodes, the output layer consists of all
output nodes.
If the net has n input and m output nodes, it should have the following features:

• The input nodes are formal neurons with identity transfer function TI .
The i-th input neuron has weight vector ~wi = 1 ∈ R and threshold value
Θi = 0 ∈ R for 1 ≤ i ≤ n.

• The output nodes are formal neurons with a common transfer function
T . For 1 ≤ j ≤ m, the j-th output node has weight vector ~wj =
(w1j , ..., wnj) ∈ Rn and threshold value Θj ∈ R.

Thus for an input ~x = (x1, ..., xn) ∈ Rn the network calculates the output
~y = (y1, ..., ym) ∈ Rm by

yj = T (
n∑
i=1

wijxi −Θj), 1 ≤ j ≤ m.

9

3.2 The Linear Associator with Hebbian Learning Rule

One of the simplest and first studied models of neural networks is the linear
associator. It is a two-layer feedforward network which uses the identity trans-
fer function in the output layer and the Hebbian learning rule. The Hebbian
learning rule was introduced in 1949 by Donald Hebb in his book ”The Orga-
nization of Behavior”.10 It basically states that if one neuron is active and this
activity is caused by another neuron’s activity, the weight between these two
neurons should be increased. The threshold value is equal to zero. The rule is
formulated as follows:

3.2.1 Definition

Let N be a two-layer feedforward network with n input neurons and m out-
put neurons. For 1 ≤ j ≤ m, let ~wj ∈ Rn be the weight vectors to be
learned, initialised by ~wj

(0) = ~0, and let Θj = 0 for 1 ≤ j ≤ m. Let
(~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn × Rm be a set of training patterns which is pre-
sented to the network. The rule

~wij
(t) :=

t∑
r=1

y
(r)
j x

(r)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

is called Hebbian learning rule. After training, the network has weights
~wj = ~wj

(t) and threshold values Θj = 0 for 1 ≤ j ≤ m.

According to that the linear associator is defined as follows:

3.2.2 Definition

A two-layer feedforward neural network with identity transfer function TI in
the output layer and Hebbian learning rule is called linear associator with
Hebbian learning rule.

How do we have to choose training data in order to make the net work perfectly
on them? The following theorem will answer this question.

3.2.3 Theorem

Let N be a linear associator with Hebbian learning rule and n input nodes and
m output nodes. Let

(~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn × Rm

be a set of training patterns which is presented to the network. After learning,
N works perfectly on these training data, if ~x(1), ..., ~x(t) is an orthonormal set
of vectors, i.e. if ~x(r) · ~x(s) = 0 for r 6= s and

∥∥~x(r)
∥∥

2
=
√
~x(r) · ~x(r) = 1, where ·

10[Hebb 1949]

10

denotes the scalar product.
After training we will get

TI(
n∑
i=1

wijx
(s)
i −Θj) = TI(

n∑
i=1

wijx
(s)
i) = y

(s)
j , 1 ≤ j ≤ m, 1 ≤ s ≤ t.

Proof

After training the network, the weights are

wij =
t∑

r=1

y
(r)
j x

(r)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Thus we get for an input vector x(s)
i , 1 ≤ s ≤ t:

TI(
n∑
i=1

wijx
(s)
i) =

n∑
i=1

wijx
(s)
i =

n∑
i=1

t∑
r=1

y
(r)
j x

(r)
i x

(s)
i =

t∑
r=1

y
(r)
j (

n∑
i=1

x
(r)
i x

(s)
i) = y

(s)
j ,

because x(r)
i x

(s)
i =

{
0, if r 6= s
1, if r = s

}
for 1 ≤ j ≤ m.

2

We see that the training data must not consist of more than n pairs of vectors as
a set of orthonormal vectors ~xi ∈ Rn cannot contain more than n vectors. Fur-
thermore, we see that the network can only work perfectly on the training data,
if the input vectors have length 1. Thus the capacity of the linear associator is
limited.

3.3 The Perceptron with Perceptron Learning Rule

The perceptron learning rule was developed in the late 1950s by Frank Rosen-
blatt. Based on the Hebbian learning rule, the idea was to use even threshold
values and to modify weights and threshold values only if the net does not work
perfectly on training data yet.

3.3.1 Definition

Let N be a two-layer feedforward neural network with n input neurons and m
output neurons. For 1 ≤ j ≤ m, let ~wj ∈ Rn and Θj ∈ R be the weight vectors
and threshold values respectively to be learned, initialised by ~wj

(0) = ~0 and
Θ(0)
j = 0. Let (~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn×Rm be a set of training patterns,

which is presented to the network. The rule

ỹj
(s) := T (~wj

(s−1) · ~x(s) −Θ(s−1)
j),

~wj
(s) := ~wj

(s−1) + (y(s)
j − ỹj

(s))~x(s),

Θ(s)
j := Θ(s−1)

j − (y(s)
j − ỹj

(s)), 1 ≤ j ≤ m, 1 ≤ s ≤ t,

11

is called perceptron learning rule. After training, the network has weights
~wj = ~wj

(t) and threshold values Θj = Θ(t)
j for 1 ≤ j ≤ m.

Here ỹj
(s) is the j-th output vector the network generates from input ~x(s) before

learning, the target vector y(s)
j is the value we want the network to proceed

for the j-th output vector. Thus, after the network has learned s − 1 training
patterns, the weights and threshold values are updated in the s-th step only if
ỹj

(s) and y
(s)
j differ.

If the net does not work perfectly on the training data after one learning epoch,
learning can be repeated using the weights and threshold values of the current
network as initial values.

3.3.2 Definition

A two-layer feedforward neural network with step function T1 as transfer func-
tion in the output layer on which the perceptron learning rule is applied repeat-
edly is called perceptron with (iterative) perceptron learning rule.

How should training data be chosen in order to make the net work perfectly on
it after finitely many epochs? To answer this question we need the following
definition.

3.3.3 Definition

Let (~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn × Rm be such that y(s)
j ∈ {0, 1} for 1 ≤ j ≤

m, 1 ≤ s ≤ t, i.e. each component of the vectors ~y(1), ..., ~y(t) is either 0 or
1. (~x(1), ~y(1)), ..., (~x(t), ~y(t)) are called strictly linearly separable, if to each
j ∈ {1, ...,m} exist a δj > 0, a vector ~wj

∗ ∈ Rn, and a value Θ∗j ∈ R such that
for s = 1, ..., t

(~wj
∗,Θ∗j) · (~x(s),−1) =

n∑
i=1

w∗ijx
(s)
i −Θ∗j

{
≥ δj , if y(s)

j = 1
≤ −δj , if y(s)

j = 0

}
.

Here we denote the vector (w1, ..., wn,Θ) by (~w,Θ) for ~w ∈ Rn, Θ ∈ R.

Now we can state the following theorem.

3.3.4 Theorem

Let N be a perceptron with (iterative) perceptron learning rule having n input
neurons and m output neurons. Let (~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn × {0, 1}m
be strictly linearly separable training data which are presented to the network.
Then the net works perfectly on the training data after finitely many learning
iterations. After learning is completed we get

T1(
n∑
i=1

wijx
(s)
i −Θj) = y

(s)
j , 1 ≤ j ≤ m, 1 ≤ s ≤ t.

12

Proof

We write
(~x(t+1), ~y(t+1)) := (~x(1), ~y(1))

(~x(t+2), ~y(t+2)) := (~x(2), ~y(2))

...
...

...

(~x(2t), ~y(2t)) := (~x(t), ~y(t))

(~x(2t+1), ~y(2t+1)) := (~x(1), ~y(1))

...
...

...

Thus we can assume that we have infinitely many pairs of training data (~x(s), ~y(s)),
s ∈ N, when iterating the learning process. These pairs (~x(s), ~y(s)) are strictly
linearly separable by assumption, i.e. for each j ∈ {1, 2, ...,m} there exist δj > 0,
~wj
∗ ∈ Rn, and Θ∗j ∈ R such that

~wj
∗ · ~x(s) −Θ∗j

{
≥ δj , if y(s)

j = 1
≤ −δj , if y(s)

j = 0

}
. (1)

The weights and threshold values are

~wj
(0) = ~0, Θ(0)

j = 0

and
ỹj

(s) = T1(~wj
(s−1) · ~x(s) −Θ(s−1)

j),
~wj

(s) = ~wj
(s−1) + (y(s)

j − ỹj
(s))~x(s),

Θ(s)
j = Θ(s−1)

j − (y(s)
j − ỹj

(s)), s ≥ 1,

for 1 ≤ j ≤ m.

We define M := max
1≤s≤t

∥∥~x(s)
∥∥2

2
= max

s∈N

∥∥~x(s)
∥∥2

2
.

We fix a j-th output neuron and consider those subsequences (su)u∈N for which

y
(su)
j − ỹj(su) = ±1,

i.e. for which the values actually are changed.
Then we have

y
(su)
j − ỹj(su) =

{
1, if y(su)

j = 1
−1, if y(su)

j = 0

}
(2)

and
(y(su)
j − ỹj(su))2 = 1 . (3)

13

From ỹj
(s) = T1(~wj

(s−1) · ~x(s) −Θ(s−1)
j) follows

~wj
(su−1) · ~x(su) −Θ(su−1)

j

{
< 0, if y(su)

j = 1
≥ 0, if y(su)

j = 0

}
. (4)

We have to show that

y
(su)
j − ỹj(su) = ±1, u ∈ N,

is possible only for a finite number of u.

Let u ∈ N, then∥∥(~wj
(su),Θ(su)

j)
∥∥2

2
= (~wj

(su),Θ(su)
j)·(~wj(su),Θ(su)

j) = ~wj
(su)· ~wj(su)+Θ(su)

j ·Θ(su)
j

= (~wj
(su−1)+(y(su)

j −ỹj(su))~x(su))·(~wj(su−1)+(y(su)
j −ỹj(su))~x(su))+(Θ(su−1)

j −(y(su)
j −ỹj(su)))2

= ~wj
(su−1) · ~wj(su−1) +2(y(su)

j − ỹj(su)) ~wj
(su−1) ·~x(su) +(y(su)

j − ỹj(su))2~x(su) ·~x(su)

+(Θ(su−1)
j)2 − 2(y(su)

j − ỹj(su))Θ(su−1)
j + (y(su)

j − ỹj(su))2

=
∥∥(~wj

(su−1),Θ(su−1)
j)

∥∥2

2

+ 2(y(su)
j − ỹj(su))(~wj

(su−1) · ~x(su) −Θ(su−1)
j)︸ ︷︷ ︸

≤ 0 by (2) and (4)

+ (y(su)
j − ỹj(su))2︸ ︷︷ ︸

= 1 by (3)

(1 +
∥∥~x(su)

∥∥2

2︸ ︷︷ ︸
≤ M

)

≤
∥∥(~wj

(su−1),Θ(su−1)
j)

∥∥2

2
+ (1 +M).

It follows∥∥(~wj
(su),Θ(su)

j)
∥∥2

2
≤
∥∥(~wj

(su−1),Θ(su−1)
j)

∥∥2

2
+ (1 +M)

≤
∥∥(~wj

(su−2),Θ(su−2)
j)

∥∥2

2
+ 2(1 +M)

≤

...

≤
∥∥(~wj

(s0),Θ(s0)
j)

∥∥2

2
+ u(1 +M)

= u(1 +M) as ~wj
(s0) = ~wj

(0) = ~0 and Θ(s0)
j = Θ(0)

j = 0

=⇒
∥∥(~wj

(su),Θ(su)
j)

∥∥
2
≤
√
u(1 +M).

Using Cauchy-Schwarz inequality we get

(~wj
(su),Θ(su)

j)·(~wj∗,Θ∗j) ≤ |(~wj
(su),Θ(su)

j)·(~wj∗,Θ∗j)| ≤
∥∥(~wj

(su),Θ(su)
j)

∥∥
2

∥∥(~wj
∗,Θ∗j)

∥∥
2

14

≤
∥∥(~wj

∗,Θ∗j)
∥∥

2

√
u(1 +M). (5)

On the other hand we have

~wj
(su) =

u∑
v=1

(y(sv)
j − ỹj(sv))~x(sv),

Θ(su)
j = −

u∑
v=1

(y(sv)
j − ỹj(sv)) .

From (1) and (2) follows

(~wj
(su),Θ(su)

j) · (~wj∗,Θ∗j) =
u∑
v=1

(y(sv)
j − ỹj(sv))(~x(sv),−1) · (~wj∗,Θ∗j)

=
u∑
v=1

(y(sv)
j − ỹj(sv))(~wj

∗ · ~x(sv) −Θ∗j) ≥ u δj

=⇒ (~wj
(su),Θ(su)

j) · (~wj∗,Θ∗j) ≥ u δj . (6)

Combining (5) and (6) we get

u δj ≤ (~wj
(su),Θ(su)

j) · (~wj∗,Θ∗j) ≤
∥∥(~wj

∗,Θ∗j)
∥∥

2

√
u(1 +M)

⇐⇒
√
u ≤

∥∥(~wj
∗,Θ∗j)

∥∥
2

√
1 +M δ−1

j .

This equality holds only for finitely many u ∈ N, thus the j-th neuron does learn
in a finite number of epochs. As the learning process for the output neurons is
independent, each of the m output neurons learns in a finite number of epochs.

2

In practical use it is difficult to decide whether data are strictly linearly sepa-
rable. One possibility could be to implement algorithms that analyse training
data before using them. However, this demands additional calculating time.
Another way could be just to use training data without testing them to see if
learning terminates after finitely many epochs. If learning does not finish af-
ter a long time, no judgment can be made whether training time was not long
enough or data were not strictly linearly separable. In the latter case the net
would never learn to work perfectly on current training data. Therefore other
solutions are needed.

15

4 Three-Layer Feedforward Networks

4.1 Construction

As we have seen, the two-layer feedforward networks with respective learning
rules we presented in the previous chapter are limited in their functionality as
they put certain claims on training data in order to be able to work perfectly on
them after training is finished. Therefore we introduce three-layer feedforward
networks as a more powerful instrument.

4.1.1 Definition

A three-layer feedforward network is a neural network whose nodes and vectors
have the following properties:

• To each input node exists exactly one input vector.

• To each output node exists exactly one output vector.

• Each node that is neither input nor output node is called hidden node.

• Each input node is connected to each hidden node and each hidden node
is connected to each output node. Other connections do not exist.

�
��
-x1

�
��
-x2

�
��
-x3

�
��
PPPPq

�
��
��

��1�
��
- y1

XXXXXXXz
HH

HHH
HHj

-
XXXXXXXz

�
��

�
��

��*

���
���

��:

A three-layer feedforward network with three input nodes,
two hidden nodes and one output node

The input layer consists of all input nodes, the output layer consists of all
output nodes, and the hidden layer consists of all hidden nodes.
If the net has n input nodes, q hidden nodes, and m output nodes, it should
have the following features:

• The input nodes are formal neurons with identity transfer function TI .
The i-th input node has weight vector ~wi = 1 ∈ R and threshold value
Θi = 0 for 1 ≤ i ≤ n.

• The hidden nodes are formal neurons with a common transfer function
T . The p-th hidden node has weight vector ~wp = (w1p, ..., wnp) ∈ Rn and
threshold value Θp ∈ R for 1 ≤ p ≤ q.

16

• The output nodes are formal neurons with identity transfer function TI .
The j-th output node has weight vector ~gj = (g1j , ..., gqj) ∈ Rq and
threshold value Φj = 0 for 1 ≤ j ≤ m.

Thus for an input ~x = (x1, ..., xn) ∈ Rn the network calculates the output
~y = (y1, ..., ym) ∈ Rm by

yj =
q∑
p=1

gpjT (
n∑
i=1

wipxi −Θp), 1 ≤ j ≤ m.

We will now show the important result that makes neural networks such a
powerful tool for calculation: Three-layer neural networks have the potential
to approximate any continuous multidimensional function. This result goes
historically back to Kolmogorov, who proved that it is possible to describe
any multidimensional function on a compact space by linear combination and
composition of one-dimensional functions.11

We start by showing that a three-layer neural network can approximate any
continuous one-dimensional function f : R→ R.

4.1.2 Theorem

Let [a, b] ⊂ R be a closed interval and ε > 0. Let f : [a, b]→ R be an arbitrary
continuous function and let T : R → R be a continuous sigmoid transfer func-
tion, i.e. lim

x→−∞
T (x) = 0 and lim

x→∞
T (x) = 1. Then there exist u, v ∈ N such

that the function S : R→ R,

S(x) := f(a)T (v(x− a + b−a
u

))

+
u∑

k=1

(
f(a + k

u
(b− a))− f(a + k−1

u
(b− a))

)
T (v(x− (a + k

u
(b− a))))

satisfies
|f(x)− S(x)| ≤ ε

for all x ∈ [a, b].

Proof

Let
‖T‖∞ := sup

x∈R
|T (x)| <∞ and

‖f‖∞ := sup
x∈[a,b]

|f(x)| <∞.

As f is a continuous function on a closed interval, f is uniformly continuous,
i.e. for

ε̃ :=
ε

3 + 2‖T‖∞ + ‖f‖∞
11[Lenze 2003] p. 112

17

there exists a δ > 0 such that for all y, z ∈ [a, b] with |y − z| ≤ δ, we have
|f(y)− f(z)| ≤ ε̃.

We choose a natural number u ∈ N such that

b− a
u
≤ δ

and v ∈ N such that

x ≥ v b−au =⇒ |1− T (x)| ≤ min{ε̃, 1
u} and

x ≤ −v b−au =⇒ |T (x)| ≤ min{ε̃, 1
u}.

For an arbitrary given x ∈ [a, b] we choose l ∈ {0, 1, ..., u− 1} such that

a+
l

u
(b− a) ≤ x ≤ a+

l + 1
u

(b− a).

Then it follows
|f(x)− S(x)|

= |f(x)−f(a)T (v(x−a+
b− a
u

))−
u∑
k=1

(
f(a+

k

u
(b−a))−f(a+

k − 1
u

(b−a))
)
T (v(x−(a+

k

u
(b−a))))|

(1)

≤ |f(x)−f(a)T (v(x−a+
b− a
u

))−
l∑

k=1

(
f(a+

k

u
(b−a))−f(a+

k − 1
u

(b−a))
)
T (v(x−(a+

k

u
(b−a))))|

+|
u∑

k=l+1

(
f(a+

k

u
(b− a))− f(a+

k − 1
u

(b− a))
)
T (v(x− (a+

k

u
(b− a))))|

(2)

≤ |f(x)−f(a)T (v(x−a+
b− a
u

))−
l∑

k=1

(
f(a+

k

u
(b−a))−f(a+

k − 1
u

(b−a))
)
|

+
l∑

k=1

|
(
f(a+

k

u
(b− a))− f(a+

k − 1
u

(b− a))
)
| |1− T (v(x− (a+

k

u
(b− a))))|

+
u∑

k=l+1

|
(
f(a+

k

u
(b− a))− f(a+

k − 1
u

(b− a))
)
| |T (v(x− (a+

k

u
(b− a))))|

(3)

≤ |f(x)− f(a+
l

u
(b− a))|+ |f(a)− f(a)T (v(x− a+

b− a
u

))|

+ε̃
l∑

k=1

|1− T (v(x− (a+
k

u
(b− a))))|+ ε̃

u∑
k=l+1

|T (v(x− (a+
k

u
(b− a))))|

(4)

≤ ε̃+ ‖f‖∞|1− T (v(x− a+
b− a
u

))|

18

+ε̃(1 + ‖T‖∞) + ε̃

l−1∑
k=1

|1− T (v(x− (a+
k

u
(b− a))))|

+ε̃‖T‖∞ + ε̃

u∑
k=l+2

|T (v(x− (a+
k

u
(b− a))))|

(5)

≤ ε̃+ ‖f‖∞ε̃+ ε̃(1 + ‖T‖∞) + ε̃

l−1∑
k=1

1
u

+ ε̃‖T‖∞ + ε̃

u∑
k=l+2

1
u

= 2ε̃+ 2ε̃‖T‖∞ + ‖f‖∞ε̃+ ε̃(
u− 2
u

)

≤ 3ε̃+ 2ε̃‖T‖∞ + ε̃‖f‖∞ = ε.

As x was arbitrary, the theorem follows.

2

For a better understanding we will give some explanations to the transforma-
tions that were made:

(1): We split the sum
u∑
k=1

into
l∑

k=1

and
u∑

k=l+1

and use triangle inequality

|x+ y| ≤ |x|+ |y|.

(2): We add zero to the sum by adding

l∑
k=1

(
f(a+

k

u
(b− a))− f(a+

k − 1
u

(b− a))
)

and subtracting it again. Then we use triangle inequality and |xy| ≤ |x| |y| to
split the sums.

(3): Most of the terms in the sum

−
l∑

k=1

(
f(a+

k

u
(b− a))− f(a+

k − 1
u

(b− a))
)

cancel out each other, only

−f(a+
l

u
(b− a)) + f(a)

remains. Triangle inequality is used again.
Further we know that

|f(a+
k

u
(b− a))− f(a+

k − 1
u

(b− a))| ≤ ε̃

19

because
|a+

k

u
(b− a)− (a+

k − 1
u

(b− a))| = |b− a
u
| ≤ δ.

(4): As

a+
l

u
(b−a) ≤ x ≤ a+

l + 1
u

(b−a)⇔ 0 ≤ x−(a+
l

u
(b−a)) ≤ a+

l + 1
u

(b−a)−(a+
l

u
(b−a))

it follows from

|x− (a+
l

u
(b− a))| ≤ |a+

l + 1
u

(b− a)− a− l

u
(b− a)| = |b− a

u
| ≤ δ

that
|f(x)− f(a+

l

u
(b− a))| ≤ ε̃.

Further we know that

|f(a)| ≤ sup
x∈[a,b]

|f(x)| =: ‖f‖∞.

Again we split up the sums
l∑

k=1

and
u∑

k=l+1

and use triangle inequality and the

fact that
|T (v(x− (a+

k

u
(b− a))))| ≤ sup

x∈R
|T (x)| =: ‖T‖∞

for k = l and k = l + 1.

(5): As x ∈ [a, b] it follows from

x ≥ a⇔ x− a+
b− a
u
≥ b− a

u

that
|1− T (v(x− a+

b− a
u

))| ≤ min{ε̃, 1
u
} ≤ ε̃.

For k ≤ l − 1 it follows from a+ l
u (b− a) ≤ x that

x− (a+
k

u
(b− a)) ≥ l − k

u
(b− a) ≥ b− a

u

so that
|1− T (v(x− (a+

k

u
(b− a))))| ≤ min{ε̃, 1

u
} ≤ 1

u
.

Analogous it follows for k ≥ l + 2 from x ≤ a+ l+1
u (b− a) that

x− (a+
k

u
(b− a)) ≤ l + 1− k

u
(b− a) ≤ −b− a

u

20

so that
|T (v(x− (a+

k

u
(b− a))))| ≤ min{ε̃, 1

u
} ≤ 1

u
.

The function S can be interpreted as a neural network with one input neuron,
q = u+ 1 hidden neurons, and one output neuron with

wp ∈ R as the weight vector for the p-th hidden neuron,
Θp ∈ R as the threshold value for the p-th hidden neuron, and
(g1, ..., gq) ∈ Rq as the weight vector for the output neuron

in the following way:

S(x) := f(a)T (v(x− a+ b−a
u))

+
u∑
k=1

(
f(a+ k

u (b− a))− f(a+ k−1
u (b− a))

)
T (v(x− (a+ k

u (b− a))))

= f(a)T (vx− v(a− b−a
u))

+
u+1∑
p=2

(
f(a+ p−1

u (b− a))− f(a+ p−2
u (b− a))

)
T (vx− v(a+ p−1

u (b− a)))

=
q∑
p=1

gpT (wpx−Θp),

where

g1 = f(a), gp = f(a+ p−1
q−1 (b− a))− f(a+ p−2

q−1 (b− a)) for p = 2, ..., q,
w1 = v, wp = v for p = 2, ..., q,
Θ1 = v(a− b−a

q−1), Θp = v(a+ p−1
q−1 (b− a)) for p = 2, ..., q,

q = u+ 1.

We now consider the multidimensional case.

4.1.3 Theorem

Let K ⊂ Rn, K 6= {}, be a compact subset of Rn and let f : K → Rm be
a function f = (f1, ..., fm) which is continuous on K. Then there exist for all
ε > 0 and all continuous sigmoid transfer functions T parameters

q ∈ N,
~wp ∈ Rn, 1 ≤ p ≤ q,
Θp ∈ R, 1 ≤ p ≤ q,
~gj ∈ Rq, 1 ≤ j ≤ m,

21

such that for all ~x ∈ K

|fj(~x)−
q∑
p=1

gpjT (
n∑
i=1

wipxi −Θp)| ≤ ε, 1 ≤ j ≤ m.

The proof of this theorem uses two results from classical analysis which we will
present without proving them. For proofs, see e.g. [Lenze 2003] pp. 41-43 and
91.

Tietze extension theorem states that ifK ⊂ Rn, K 6= {}, is a compact subset
of Rn and if f : K → R is continuous, then there exists a function F : Rn → R
which is continuous on Rn and an n-dimensional interval [−α, α]n ⊃ K, α > 0,
such that

F (~x) = f(~x) for all ~x ∈ K and F (~x) = 0 for all ~x ∈ Rn\[−α, α]n.

Weierstrass theorem for trigonometric polynomials states that given an
arbitrary α > 0 and a continuous function f : Rn → R such that

f(~x) = f(~x+ 2α~k), ~x ∈ Rn,~k ∈ Zn,

there exists to each ε > 0 a finite amount of nonnegative integer multi-indices
~kr ∈ Nn0 and coefficients γr, δr ∈ R, 1 ≤ r ≤ R, such that the trigonometric
polynomial P : Rn → R,

P (~x) :=
R∑
r=1

(γrcos(
π

α
~kr · ~x) + δrsin(

π

α
~kr · ~x)),

satisfies
|f(~x)− P (~x)| < ε

for all ~x ∈ Rn.

Proof of Theorem 4.1.3

We prove the theorem for a fixed j-th component function fj : Rn → R. This is
sufficient as each component function can be described by assigning a particular
set of hidden neurons to each output neuron and choosing the weights of the
other hidden neurons in the output neuron to equal zero.
Let j ∈ {1, 2, ...,m} be arbitrary but fixed. According to Tietze extension
theorem we can assume that fj can be extended from K to the whole Rn such

22

that it is identically zero outside a sufficiently large interval [−α, α]n, α > 0,
which contains K. We now assign to fj its continuous 2α-periodic extension

f̃j : Rn → R,
f̃j(~x) = fj(~t), ~t ∈ [−α, α]n, ~x ≡ ~t mod 2α .

By Weierstrass theorem for trigonometric polynomials there exist to any ε > 0
a finite amount of nonnegative integer multi-indices ~kr ∈ Nn0 and coefficients
γr, δr ∈ R, 1 ≤ r ≤ R, such that

|f̃j(~x)−
R∑
r=1

(
γr cos(

π

α
~kr · ~x) + δr sin(

π

α
~kr · ~x)

)
| < ε

3
for all ~x ∈ Rn.

For all ~x ∈ K ⊂ [−α, α]n it follows in particular

|fj(~x)−
R∑
r=1

(
γr cos(

π

α
~kr · ~x) + δr sin(

π

α
~kr · ~x)

)
| < ε

3
.

We define
M := max{|π

α
~kr · ~x| : 1 ≤ r ≤ R, ~x ∈ K}.

By theorem 4.1.2, the one-dimensional functions sin and cos on [-M,M] can be
approximated by one-dimensional functions s1 and s2 respectively. As we have
proved, there exist sufficiently large numbers u, v ∈ N such that

s1(x) := cos(−M)T (v(x+M + 2M
u))

+
u∑
k=1

(
cos(−M + 2Mk

u)− cos(−M + 2M(k−1)
u)

)
T (v(x− (−M + 2Mk

u)))

and

s2(x) := sin(−M)T (v(x+M + 2M
u))

+
u∑
k=1

(
sin(−M + 2Mk

u)− sin(−M + 2M(k−1)
u)

)
T (v(x− (−M + 2Mk

u)))

satisfy
|cos(x)− s1(x)| ≤ ε

3
(

1 +
R∑
r=1
|γr|
) , x ∈ [−M,M],

and

|sin(x)− s2(x)| ≤ ε

3
(

1 +
R∑
r=1
|δr|
) , x ∈ [−M,M],

for an arbitrary sigmoid function T .

23

We then define S : Rn → R,

S(~x) :=
R∑
r=1

(
γrs1(

π

α
~kr · ~x) + δrs2(

π

α
~kr · ~x)

)
.

It follows for all ~x ∈ K that

|fj(~x)− S(~x)| ≤ |fj(~x)−
R∑
r=1

(
γr cos(πα ~kr · ~x) + δr sin(πα ~kr · ~x)

)
|

+|
R∑
r=1

γr

(
cos(πα ~kr · ~x)− s1(πα ~kr · ~x)

)
|

+|
R∑
r=1

δr

(
sin(πα ~kr · ~x)− s2(πα ~kr · ~x)

)
|

≤ ε
3 +

R∑
r=1
|γr| ε

3

(
1+

R∑
r=1
|γr|
) +

R∑
r=1
|δr| ε

3

(
1+

R∑
r=1
|δr|
)

< ε .

Similar to the one-dimensional case, the function S can be interpreted as a
neural network with n input neurons, q = (u + 1)R hidden neurons, and one
output neuron with

(w1p, ..., wnp) ∈ Rn as the weight vector for the p-th hidden neuron,
Θp ∈ R as the threshold value for the p-th hidden neuron, and
(g1, ..., gq) ∈ Rq as the weight vector for the output neuron

in the following way:

S(x) =
R∑
r=1

(
γrs1(πα ~kr · ~x) + δrs2(πα ~kr · ~x)

)

=
R∑
r=1

γrcos(−M)T (v(πα ~kr · ~x+M + 2M
u))

+
R∑
r=1

γr
u∑
l=1

(cos(−M + 2Ml
u)− cos(−M + 2M(l−1)

u))T (v(πα ~kr · ~x− (−M + 2Ml
u)))

+
R∑
r=1

δrsin(−M)T (v(πα ~kr · ~x+M + 2M
u))

+
R∑
r=1

δr
u∑
l=1

(sin(−M + 2Ml
u)− sin(−M + 2M(l−1)

u))T (v(πα ~kr · ~x− (−M + 2Ml
u)))

24

=
R∑
r=1

(
γrcos(−M) + δrsin(−M)

)
T (

n∑
i=1

v παkr,ixi − v(−M − 2M
u))

+
R∑
r=1

u∑
l=1

(
γr(cos(−M + 2Ml

u)− cos(−M + 2M(l−1)
u))

+δr(sin(−M + 2Ml
u)− sin(−M + 2M(l−1)

u))
)
T (

n∑
i=1

v παkr,ixi − v(−M + 2Ml
u))

=
q∑
r=1

grjT (
n∑
i=1

wirxi −Θr)

with
Θr = v(−M − 2M

u),
grj = γrcos(−M) + δrsin(−M),
wir = v παkr,i

for r = 1, ..., R, i = 1, ..., n and

ΘR+(r−1)u+l = v(−M + 2Ml
u),

gR+(r−1)u+l,j = γr(cos(−M + 2Ml
u)− cos(−M + 2M(l−1)

u))
+δr(sin(−M + 2Ml

u)− sin(−M + 2M(l−1)
u)),

wi,R+(r−1)u+l = v παkr,i

for l = 1, ..., u, r = 1, ..., R, and i = 1, ..., n.
Here kr,i denotes the i-th component of the vector ~kr. As j was arbitrary, the
theorem follows.

2

We have shown that each continuous multidimensional function on a compact
space can be approximated correctly to an arbitrary small error. This is, how-
ever, primarily a proof of existence as it does not tell how in an easy and clear
way a network can be constructed for a given problem.

We will now present one of the most important methods for calculating the
weights and threshold values in three-layer neural networks, the backpropaga-
tion training method.

4.2 Backpropagation

Backpropagation is one optimisation method for determining the optimal weights
and threshold values of a network for a given problem. The backpropagation
technique involves two phases. In the first phase, called the forward phase, an
input is given to and propagated forward through the network such that an out-
put value is computed for each neuron. The total output will then be compared
to the desired output, or target, and the difference, or error, will be computed.
In the second phase, called the backward phase, the weights and threshold val-
ues in each successive layer are adjusted to reduce this error.

25

In terms of functions this means: A set of training data (~x(s), ~y(s)) ∈ Rn ×
Rm, 1 ≤ s ≤ t, is presented to a neural network. To each input value ~x(s) the
net computes output values

ỹj
(s) =

q∑
p=1

gpjT (
n∑
i=1

wipx
(s)
i −Θp), 1 ≤ j ≤ m, 1 ≤ s ≤ t.

The weights and threshold values should then be adjusted in such a way that
the square error(

y
(s)
j − ỹj

(s)
)2

=
(
y

(s)
j −

q∑
p=1

gpjT (
n∑
i=1

wipx
(s)
i −Θp)

)2

becomes as small as possible for all 1 ≤ j ≤ m and 1 ≤ s ≤ t. This can be done
by a wide range of methods. The method used in backpropagation is based on
the method of gradient descent.

4.2.1 Definition

Let the function f : Rn → R be partially differentiable such that its partial
derivatives are continuous. We denote the gradient of f by

gradf(~x) :=
(∂f
∂x1

(~x), ...,
∂f

∂xn
(~x)
)

=: (fx1(~x), ..., fxn(~x)).

Let λ > 0 be an arbitrary but fixed given value, called the step size. If f has a
(local) minimum, then the algorithm for finding this minimum,

~x(0) ∈ Rn,
~x(k) := ~x(k−1) − λ gradf(~x(k−1)), k ≥ 1,

is called the method of gradient descent.

If the method of gradient descent converges, it will after a sufficient number of
iterations find a critical point ~x∗ of the function f , i.e. a point ~x∗ which satisfies
gradf(~x∗) = 0. If further all second partial derivatives of f exist and if the
Hessian matrix

Hf (~x) :=
(∂2f

∂xi∂xj
(~x)
)

1≤i,j≤n
∈ Rn×n

is positive definite in ~x∗, then f has a (local) minimum at ~x∗.

Many iterations may be necessary until a critical point is found. Therefore we
can stop iteration when we have reached a point ~x(k) that is close enough to the
minimum, i.e. |~x(k) − ~x∗| < ε for a given ε > 0.

For the given problem(
y

(s)
j −

q∑
p=1

gpjT (
n∑
i=1

wipx
(s)
i −Θp)

)2 != min

26

we assume that the transfer function T is continuously differentiable. To each
pair of training data (~x(s), ~y(s)) we define the error function

F (s) : Rnq × Rq × Rqm → R, 1 ≤ s ≤ t,

as
F (s)(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm)

:=
m∑
j=1

(
y

(s)
j −

q∑
p=1

gpjT (
n∑
i=1

wipx
(s)
i −Θp)

)2

, 1 ≤ s ≤ t.

To minimise the error for the s-th pair of training data, we calculate the min-
imum of the error function F (s) with respect to the weights gpj , wip, and the
threshold values Θp for 1 ≤ p ≤ q, 1 ≤ j ≤ m, and 1 ≤ i ≤ n. For one gradient
step, this is done as follows:

1. For the weights gpj , 1 ≤ p ≤ q, 1 ≤ j ≤ m :
The partial derivative of F (s) with respect to the weight gpj is

F
(s)
gpj (w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm)

= 2
(
y

(s)
j −

q∑̃
p=1

gp̃jT (
n∑̃
i=1

wĩp̃x
(s)

ĩ
−Θp̃)

)
· (−1)T (

n∑̃
i=1

wĩpx
(s)

ĩ
−Θp).

Thus the weight gpj is modified as follows:

g
(new)
pj = gpj−λF (s)

gpj
(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm).

2. For the weights wip, 1 ≤ i ≤ n, 1 ≤ p ≤ q :
The partial derivative of F (s) with respect to the weight wip is

F
(s)
wip(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm)

= 2
m∑̃
j=1

(
(y(s)

j̃
−

q∑̃
p=1

gp̃j̃T (
n∑̃
i=1

wĩp̃x
(s)

ĩ
−Θp̃)) · (−1)gpj̃

)
· T ′(

n∑̃
i=1

wĩpx
(s)

ĩ
−Θp) · x(s)

i .

Thus the weight wip is modified as follows:

w
(new)
ip = wip−λF (s)

wip
(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm).

3. For the threshold value Θp, 1 ≤ p ≤ q :
The partial derivative of F (s) with respect to the threshold value Θp is

F
(s)
Θp

(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm)

= 2
m∑̃
j=1

(
(y(s)

j̃
−

q∑̃
p=1

gp̃j̃T (
n∑̃
i=1

wĩp̃x
(s)

ĩ
−Θp̃)) · (−1)gpj̃

)
· T ′(

n∑̃
i=1

wĩpx
(s)

ĩ
−Θp) · (−1).

Thus the threshold value Θp is modified as follows:

Θ(new)
p = Θp−λF (s)

Θp
(w11, ..., wn1, ..., w1q, ..., wnq,Θ1, ...,Θq, g11, ..., gq1, ..., g1m, ..., gqm).

This updating method is successively applied to all error functions F (s), 1 ≤
s ≤ t. The error F (s) is propagated back into the net in order to modify
the parameters. This defines the backpropagation learning method for neural
networks.

27

4.2.2 Definition

Let N be a three-layer feedforward neural network with n input neurons, q
hidden neurons, and m output neurons. Let the transfer function T in the
hidden layer be continuously differentiable. The weights ~wp ∈ Rn, 1 ≤ p ≤ q,
the threshold values Θp ∈ R, 1 ≤ p ≤ q, and the weights ~gj ∈ Rq, 1 ≤ j ≤ m,
are initialised by arbitrary values ~w

(0)
p ∈ Rn, Θ(0)

p ∈ R, and ~g
(0)
j ∈ Rq. Let

(~x(1), ~y(1)), ..., (~x(t), ~y(t)) ∈ Rn × Rm be a set of training data and let λ > 0 be
a fixed step size, then for 1 ≤ s ≤ t the algorithm

ỹ
(s)
j =

q∑
p̃=1

g
(s−1)
p̃j T (

n∑
ĩ=1

w
(s−1)

ĩp̃
x

(s)

ĩ
−Θ(s−1)

p̃), 1 ≤ j ≤ m,

g
(s)
pj = g

(s−1)
pj +λ2(y(s)

j −ỹ
(s)
j)·T (

n∑
ĩ=1

w
(s−1)

ĩp
x

(s)

ĩ
−Θ(s−1)

p), 1 ≤ p ≤ q, 1 ≤ j ≤ m,

w
(s)
ip = w

(s−1)
ip + λ2

m∑
j̃=1

(
(y(s)

j̃
− ỹ(s)

j̃
)g(s−1)

pj̃

)
· T ′(

n∑
ĩ=1

w
(s−1)

ĩp
x

(s)

ĩ
−Θ(s−1)

p) · x(s)
i ,

1 ≤ i ≤ n, 1 ≤ p ≤ q,

Θ(s)
p = Θ(s−1)

p −λ2
m∑
j̃=1

(
(y(s)

j̃
−ỹ(s)

j̃
)g(s−1)

pj̃

)
·T ′(

n∑
ĩ=1

w
(s−1)

ĩp
x

(s)

ĩ
−Θ(s−1)

p), 1 ≤ p ≤ q,

is called backpropagation learning rule. After learning is finished, the net
has weights ~wp = ~w

(t)
p , ~gj = ~g

(t)
j , and threshold values Θp = Θ(t)

p for 1 ≤ p ≤ q
and 1 ≤ j ≤ m.

If the net does not work sufficiently on the training data after one learning cycle,
learning can be repeated, as it is done in the perceptron learning rule. For a
given ε > 0 the network is trained as long until it satisfies

t∑
s=1

m∑
j=1

(
y

(s)
j −

q∑
p=1

gpjT (
n∑
i=1

wipx
(s)
i −Θp)

)2

< ε.

Motivated by the method of gradient descend, we will get a network that works
correctly to an ε-error on the training data after a sufficient number of learning
cycles.

28

5 A Realisation of Neural Networks in Matlab

5.1 Construction and Training

Matlab provides a neural network toolbox for the realisation of neural networks.
In our description we will mainly follow the MathWorks’ users’s guide.12 A
slightly different construction of a network is used: In contrast to the notation
we used before, the neural network toolbox does not refer to the input layer as
a layer because typically its only function is to buffer the input signal. Thus
a two-layer network in our notation is a one-layer network in Matlab, having
one output layer. In the same way, a three-layer network in our notation is a
two-layer network in Matlab, having one hidden layer and one output layer. A
feedforward network with n− 1 hidden layers is created in the following way:

A network object is created by the function newff. This function requires four
inputs and returns the network object:

net = newff (MINMAX, [L1, L2, ..., Ln], {T1, T2, ..., Tn}, T).

The inputs are

• MINMAX : an L0 × 2-matrix containing minimum and maximum values
for each of the L0 elements of the input vector.

• [L1, L2, ..., Ln]: an array where Li denotes the size of the ith hidden layer
for i = 1, ..., n− 1 and Ln denotes the size of the output layer.

• {T1, T2, ..., Tn}: a cell array containing the names of the transfer func-
tions used in each layer.

• T : the name of the training function to be used.

The command even initialises the weights and threshold values of the network.

When we have constructed a feedforward neural network net as described above,
we can simulate it by giving an input matrix to the net. The net then calculates
an output matrix in the following way:

a = sim(net,p).

p is an L0 × R matrix containing the input values, where L0 determines the
number of input neurons and R the sample size. The output matrix a has
dimension Ln×R.

For training the network, we have to give a matrix of input values p and a target
matrix t to the network. This is done using the command

net = train(net, p, t),
12[Demuth Beale 2002]

29

where p is an L0×R matrix and the target matrix t has dimension Ln×R.
By default, the network is trained for 100 epochs or until the mean square error
between output and target is less then 0.01. We can change the training parame-
ters by assigning new values to net.trainParam.epochs and net.trainParam.goal.

We will construct a simple example of a network considering the so called XOR-
problem. XOR means exclusive or: For two logical operators x and y the value
x XOR y is true, if exactly one of x and y is true. The truth-table is as follows:

x 0 0 1 1
y 0 1 0 1
XOR 0 1 1 0

We will construct a feedforward network having the following structure: We
choose to have one hidden layer containing L1 = 3 hidden neurons. The number
of input neurons is L0 = 2, the number of output neurons is L2 = 1. The sample
size is R = 4. As transfer function for the hidden layer we choose the hyperbolic
tangent function denoted by tansig, the output neuron has the identity function
as transfer function, which is denoted by purelin. The network will be trained
with backpropagation, which is denoted by traingd. Thus the input matrix is

p =
[

0 0 1 1
0 1 0 1

]
and the target matrix is

t =
[

0 1 1 0
]
.

The function minmax(p) calculates the matrix
[

0 1
0 1

]
containing the min

and max values of each row of p.

We now construct the network net by

net = newff (minmax (p), [3, 1], {’tansig ’, ’purelin’}, ’traingd ’).

We simulate the net, which is initialised by random weights and threshold values,

a = sim(net, p)

and get as output matrix

a = [-1.4452 -1.0245 -1.4735 -0.8000].

This is not the desired output, thus we have to train the network.

We choose

net.trainParam.epochs = 1000

30

and

net.trainParam.goal = 0.01.

The net will be trained for 1000 epochs or until the mean square error is less
than 0.01. We now train the network

net = train(net, p, t).

After 448 iterations the mean square error is 0.00997415, thus the performance
goal is reached and training is stopped. If we now simulate the network with
input matrix p, the output is

a = [0.0989 0.9143 0.8577 0.0503],

which is close to the desired output.

As we see, it takes many epochs to train the network. This is a quite common
problem to occur when backpropagation is used because the method of gradient
descent is a method which converges rather slowly.

One possibility to get faster convergence is to use an adaptive step size, or learn-
ing rate, λ, as the optimal learning rate changes during the training process.
The learning rate is adapted according to the error between output and target
in each step. If the new error exceeds the old one by more than a certain prede-
fined ratio, the learning rate is decreased. If the new error is less than the old
one, the learning rate is increased. Backpropagation with adaptive learning rule
is denoted by traingda. Applying this method to our problem, a mean square
error of 0.00818517 is reached after only 74 epochs.

Another possibility is to use standard numerical optimisation techniques such
as Conjugate Gradient, Quasi-Newton, or Levenberg-Marquardt.

In the method of Conjugate Gradient search is no longer performed along
the direction in which the function decreases most but along conjugate direc-
tions. On the first iteration, the direction of steepest gradient is chosen. The
next search direction is chosen in such a way that it is conjugate to the previous
search directions. The direction is determined by combining the new steepest
descent direction with the previous search direction. The different ways how
this can be done result in different algorithms, e.g. the Fletcher-Reeves algo-
rithm traincgf or the Polak-Ribire algorithm, denoted by traincgp.13

Applying the method of conjugate gradient to our problem, a mean square error
of 0.00567906 is reached after four epochs using traincgf. Using traincgp train-
ing is stopped after three iterations when a mean square error of 0.00111612 is
reached.

13for a more detailed description, see [Demuth Beale 2002] pp. 5-17 - 5-21.

31

Another method which converges fast is Newton’s Method, which besides the
gradient even considers the Hessian matrix when choosing search direction.
Computing and inverting the Hessian matrix is, however, an expensive opera-
tion. Therefore it can be more effective to use methods which only approximate
the Hessian matrix, called Quasi-Newton Methods. One such algorithm has
been developed by Broyden, Fletcher, Goldfarb, and Shanno and is denoted
by trainbfg.14 Applied to our problem, a mean square error of 0.000554043 is
reached after four iterations.

Even in the Levenberg-Marquardt Method the Hessian matrix is approxi-
mated. The method uses the Jacobian matrix, which contains the first deriva-
tives of the network errors with respect to the weights and threshold values.15

It is denoted by trainlm. In our problem the network needs only two training
epochs to reach a mean square error of 0.0043434.

An algorithm which combines the basic idea of Levenberg-Marquardt with the
conjugate gradient approach is the method of Scaled Conjugate Gradient,
denoted by trainscg.16 In our problem it takes 14 iterations to reach a mean
square error of 0.00246505.

The number of epochs needed can vary depending on the initial network pa-
rameters. Anyhow, we can see a trend that some methods converge faster than
others. Which method is the most suitable one depends on the given problem
and has to be tested in each case.

How should training data be chosen to train a network as effectively as possi-
ble? The set of training data should be large enough to provide an adequate fit.
On the other hand, when the set of training data is too large, so called over-
fitting can occur. The network then memorises the training examples but does
not learn to generalise new data. When overfitting occurs, the training error
decreases monotonically during training. When new cross-validation data are
applied to the network after training, this error can be large. When monitored
simultaneously, it can be noticed that the error of cross-validation data reaches
a minimum early in training and then increases again, while the training error
still decreases. Thus the training error is not always a reliable indicator of how
good a network has learned to generalise. To find the point at which a network’s
generalisation ability is best, both training and cross-validation error should be
considered.
In Matlab’s neural network toolbox this is done in a method called early stop-
ping. In this method data are divided into three subsets: a training set, a
validation set and a test set. While the network is trained with the training set,
the validation error is monitored, and when it increases for a specified number

14for a more detailed description, see [Demuth Beale 2002] pp. 5-26 - 5-27.
15ibid. pp. 5-28 - 5-31.
16ibid. pp. 5-22 - 5-23.

32

of iterations, training is stopped. The test set is used to evaluate the division
of data. When the test set error and the validation error reach a minimum at
a significantly different number of iterations, this can indicate a bad division of
data.
Early stopping should be used with training algorithms that do not converge
too rapidly. An algorithm which works well with early stopping is the scaled
conjugate gradient method.

One question that remains is how to choose an optimal structure of a network
for a given problem. The number of input and output neurons is mostly deter-
mined by the problem, the number of hidden neurons, however, is not a priori
fixed. It is even possible to have more than one hidden layer, although it is very
rare that a neural network has more than two hidden layers.17

In choosing the number of hidden neurons, the same problem as in choosing the
size of training data can occur: If too few hidden neurons are used, the network
may not be able to detect signals in a complicated data set. Using too many
hidden neurons, however, can cause overfitting.
There are no clear rules how to optimise a network structure. In nearly all cases
the optimal structure of a particular network has to be determined by experi-
mentation. For finding the optimal number of hidden neurons there exist some
rules of thumb, for example the Baum-Haussler rule:18

• The number of hidden neurons NH should be less than NT ∗ E/(NP +
NO), where NT is the number of training examples, E is the error tol-
erance, NP is the number of input neurons, and NO is the number of
output neurons.

This rule generally ensures that a neural network generalises rather than mem-
orises.19

Searching for the best structure for a network in a given problem, we can pro-
ceed in the following way:
We start with a minimal number of hidden neurons, typically two. The resulting
network is then trained and tested. In each step the number of hidden neurons
is increased and training and testing of the network is repeated until the results
of training and testing are not improved anymore.

5.2 Data Preprocessing

5.2.1 Normalisation

The XOR-problem we presented is a rather small example, both in sample size
and in dimension of the input vector. In real problems the size of input data
is often large. In this case it can be useful to preprocess data before applying

17[Heaton 2005] p. 129
18[Lin 1995] p. 3
19[Lin 1995] p. 3

33

them to the network to make training more effective.
If sample size is large, the inputs and targets can be scaled before training the
network. This can be done in different ways. One approach is to normalise the
means and standard deviations. This is implemented in the function prestd in
the following way:

[pn, meanp, stdp, tn, meant, stdt] = prestd(p,t).

p and t are the matrices containing the original input and target values. Their
means and standard deviations are given in the vectors meanp, stdp, meant and
stdt respectively. pn and tn contain the normalised inputs and targets, having
zero means and unity standard deviations.
When a network has been trained with normalised data and new inputs are
applied to it, these should be preprocessed using the means and standard devi-
ations that were computed for the training set. This is done with the function
trastd in the following way:

dn = trastd(d, meanp, stdp).

The network will now produce a normalised output. To convert it back to its
original units, we can use poststd :

an = sim(net, dn)
a = poststd(an, meant, stdt).

5.2.2 Principal Component Analysis

If the dimension of the input vector is large, it can be useful to reduce the dimen-
sion because the components can be highly correlated. This can be done using
principal component analysis. In principal component analysis, data are per-
formed in the following way: The components of the vectors are orthogonalised,
so that they become uncorrelated with each other. They are then ordered by
their size of variation. The components with least variation are eliminated, as
they contribute least to the total variation of the data set.
In Matlab principal component analysis is realised in the function precpa. It
requires a matrix of normalised input vectors and a fraction which denotes the
minimum variance for the components to keep as arguments and returns the
transformed data set and the transformation matrix:

[ptrans, transMat] = prepca(pn, 0.01).

When a network has been trained with normalised data that has been pre-
processed with precpa, new inputs should, after normalisation, be transformed
with the transformation matrix of the training set. This is done in the function
trapca:

dntrans = trapca(dn, transMat).

34

5.3 Training Evaluation

After having trained a network, its performance can be analysed. For a first
evaluation, the training, validation, and test set errors can be regarded. For a
more detailed investigation, Matlab provides a function for performing regres-
sion analysis between the network response and its corresponding targets. The
function postreg takes the output and the target vector, if the network has one
output neuron, or one element of the network output, if there are more than one
output neurons, and performs a linear regression. It returns the slope m and
the y-intercept b of the linear regression as well as the correlation coefficient r
between the outputs and the targets:

[m,b,r]=postreg(a,t).

The closer m is to 1 and b to 0 , the better is the fit. The correlation coefficient
is a value between -1 and 1 and measures the linear association between the
outputs and targets. A correlation value close to 1 indicates a strong linear
relationship, which implies a good network performance.

35

6 An Application of Neural Networks

6.1 The Project NIVAB

The German business enterprise TROUT GmbH develops a device for non-
invasive measurement of blood glucose value, the Glucose Monitor, in coop-
eration with the Saint-Petersburg Polytechnic University. The aim is to be
able to determine the blood glucose level by means of high and low frequency
impedances and skin temperature instead of using conventional methods that
require access to blood. The coherence between the glucose level and the con-
ductivity of tissue regarding the temperature makes it possible to measure the
blood glucose value continuously under a period of 24 hours after a one-time
calibration with an invasively measured glucose value. In this way the pain and
trouble in adequately monitoring the glucose level can be reduced to a minimum.

Calculating the glucose level from impedances and temperature is a problem
of mapping correlated values where the explicit function is unknown. But this
is exactly what neural networks are able to do. In fact, they have given the best
results when different calculation methods were tested for the project NIVAB.20

In the following we will shortly describe the system and the calculation pro-
gram, which is implemented in Matlab. Based on this we will then develop a
simplified version of a neural network program for calculating the glucose value
to demonstrate the process of constructing, training, and simulating a neural
network.

How does the system work?

The Glucose Monitor measures high and low frequency impedances and skin
temperature ten times per minute and saves it in binary code. Data are then
converted into txt format and finally average values for each minute are saved in
an excel file. For training and calibration purposes even invasive glucose values
are measured at some points of time and have to be entered. Furthermore in-
gestion events can be reported, as well as insulin ingestion for diabetic patients.
The Matlab program reads data from the excel file. First of all the data are
preprocessed by different statistical methods to reduce the influence of measure-
ment errors and make data more smooth. Then neural networks are created.
Optionally feedforward networks with Levenberg-Marquardt training method or
recurrent Elman networks can be chosen. Both networks have the same struc-
ture of two hidden layers containing five and three neurons respectively and an
output layer containing one neuron. The hidden layers have hyperbolic tangent
transfer function, the output layer has identity transfer function. We can choose
if one single network or several networks are to be used. In the latter case nine
identical networks are generated and trained. This is done because the quality
of training results even depends on the net’s initial weights and threshold values,

20[Voelkel 2007] p. 17

36

which are generated randomly.
As input data high and low frequency impedances, skin temperature, and op-
tionally food, drink, and insulin events are used both as actual and delayed
values. The resulting total of up to 23 input neurons is reduced with principal
component analysis to between four and seven neurons.
The invasive glucose values serve as target data. To be able to use these values
over the whole period of time interim values are calculated by means of spline
interpolation.
Input and target data are normalised so that they have zero means and unity
standard deviations. Training is then carried out and the training results are
saved. After training, target and output values are postprocessed and compared
to determine the quality of the resulting networks.

The networks can now be used for calculation. New input data are prepro-
cessed using the precalculated means and standard deviations as well as the
previously computed principal component transformation matrix. The seven
networks with best training results are then simulated and output data are
postprocessed. Their mean is calculated as resulting output value.

6.2 Construction and Testing of a Simplified Network Based
on NIVAB

We will now demonstrate the process of finding an optimal network for the given
problem by implementing a simplified version of the Matlab program used for
NIVAB.21 Based on the NIVAB code we will construct an own program, which
follows the rough structure of some parts of the NIVAB program, and add some
analysing tools for finding a network that works best for our purpose. The code
of our simplified program can be found in the appendix.
In our network we will only use three input neurons determined by high and
low frequency impedances and skin temperature. As target data invasive glu-
cose values will be used.
We start by importing data from an excel file which contains data that were
recorded within a clinical test for Saint-Petersburg University.

Data are then transformed to remove anomalies resulting from measurement
errors. First we investigate input data for extreme values. We calculate the
differences of consecutive data and define for each sample a threshold value as
the maximum of the absolute differences divided by ten. We then investigate
the differences for extreme values. If a value increases (respectively decreases)
by more than the threshold value in one timestep and decreases (respectively
increases) by more than 0.8 times the threshold value in one of the following
ten timesteps, we interpret this as a measurement error and adjust these values
in such a way that they do not differ by more than the threshold value.

21[NIVAB]

37

We then apply a median filter of order five to the input values for smooth-
ing data. The median filter replaces each value by the median of the current
value and the two previous and consecutive values.

Invasive glucose data are available only for some points of time. To receive
target data for the entire interval between the first and the last invasive glucose
value, we use natural cubic spline interpolation.

Input and target data are normalised so that they have means of zero and
unity standard deviations. Finally, principal component analysis is carried out
on input data. All three components remain; we thus have a network with three
input and one output neurons. We can now create a feedforward network and
train it with the preprocessed data.

First of all we want to determine an optimal architecture for our network. In
each step we will create nine identical networks for a better evaluation. We will
proceed as follows: We start with a minimal neural network structure having
one hidden layer with two hidden neurons and successively increase the number
of hidden neurons until we have reached a maximum of ten hidden neurons.
To reduce the risk of overfitting, we will use early stopping when training the
networks, as training method we will use the scaled conjugate gradient method
as it works best with early stopping. After training we will perform regression
analysis for each network to evaluate how good the network works. The nine
networks will be ranked by their regression coefficients. We then consider the
average of all nine regression coefficients and mean square errors between target
and output values to compare the quality of the network architectures.
Then networks with two hidden layers will be tested. We will start with a min-
imal number of neurons in both layers and successively increase the number of
neurons in the second hidden layer, until we have reached a maximum of totally
ten hidden neurons. Then we will increase the number of neurons in the first
hidden layer and iterate the process.
Finally we will choose the network architecture with the best regression coeffi-
cient.

For the network with the best architecture we will test different training meth-
ods. After each training we will analyse the network fit considering the average
regression coefficient and mean square error to choose the training method with
best fit.

All networks will be trained for a maximum of 1000 epochs and a goal of 0.1.
We will use the hyperbolic tangent transfer function for the hidden layers and
the identity transfer function for the output layer.

From the training results, which are shown in Table 1, we can see that we
get the best fit for the networks that have two hidden layers with six and three
neurons respectively. For these nets we will test the different training methods.

38

Table 1: Network structure

hidden neurons
layer 1 layer 2 mean MSE mean r

2 - 0.1583 0.9149
3 - 0.1405 0.9199
4 - 0.1213 0.9359
5 - 0.1036 0.9441
6 - 0.1085 0.9426
7 - 0.0992 0.9470
8 - 0.1008 0.9466
9 - 0.0995 0.9473
10 - 0.0991 0.9474
2 2 0.1489 0.9217
2 3 0.1785 0.9053
2 4 0.1513 0.9140
2 5 0.1525 0.9171
2 6 0.1467 0.9246
2 7 0.1591 0.9182
2 8 0.1660 0.9114
3 2 0.1315 0.9357
3 3 0.1286 0.9296
3 4 0.1333 0.9276
3 5 0.1074 0.9444
3 6 0.1108 0.9438
3 7 0.1106 0.9415
4 2 0.1269 0.9384
4 3 0.1139 0.9421
4 4 0.1193 0.9356
4 5 0.1107 0.9440
4 6 0.1058 0.9444
5 2 0.1177 0.9409
5 3 0.1080 0.9423
5 4 0.1069 0.9435
5 5 0.0993 0.9477
6 2 0.1101 0.9438
6 3 0.0994 0.9479
6 4 0.1105 0.9418
7 2 0.1220 0.9326
7 3 0.1020 0.9464
8 2 0.0992 0.9476

39

Table 2: Training methods

training method mean MSE mean r
traingd - backpropagation 0.2893 0.8679
traingda - backpropagation with adaptive learning rule 0.1707 0.9067
traincgf - method of conjugate gradient, Fletcher-Reeves algorithm 0.1207 0.9352
traincgp - method of conjugate gradient, Polak-Ribire algorithm 0.1142 0.9403
trainbgf - quasi-Newton method 0.1020 0.9449
trainlm - Levenberg-Marquardt method 0.0978 0.9472
trainscg - method of scaled conjugate gradient 0.1035 0.9454

The results in Table 2 show that the Levenberg-Marquardt training method
works best.

Analysing the training results we see that our optimal network structure is quite
similar to the network structure in the NIVAB project. Our simplified network
has two hidden layers with six and three neurons respectively and is trained
with the Levenberg-Marquardt method. Even the NIVAB net is trained with
the Levenberg-Marquardt method and contains five and three hidden neurons
respectively in its two hidden layers. The slightly different number of neurons
can be explained by the more extensive preprocessing of data in NIVAB.

We will now test if our network can carry out adequate calculations from new
input values. For this purpose, data from another excel file recorded for the
same clinical test are imported. The data are preprocessed in the same way
as before to remove anomalies resulting from measurement errors. Using the
precalculated means, standard deviations, and transformation matrix, data are
normalised and principal component analysis is carried out. The four nets with
best training results are simulated with these data. The outputs are unnor-
malised and their average is calculated as the resulting glucose level. In Figure
1 the result is visualised. Line 1 shows the glucose level calculated by the neural
network. The dots show the actual glucose values in mmol/l measured inva-
sively. The connecting line 2 is created by interpolating the invasive glucose
values.

We see that the glucose values calculated by the neural network approximate
the invasive glucose values to a certain degree. The output does not completely
coincide with the target values, however, the trend of the glucose level is largely
similar.

40

Figure 1: Simulation of the created network

In the NIVAB network the approximation is clearly better as we can see in
Figure 2.22 The line shows the glucose values calculated by the network, the
dots show the invasively measured glucose values in mg/dl, where 18.0182 mg/dl
correspond to 1 mmol/l. The line does not totally coincide with the dots but
the fit is much better than in our simplified network and the trend can clearly
be seen.

22The figure is taken from the original NIVAB program [NIVAB 2008]

41

Figure 2: Simulation of the NIVAB network

6.3 Conclusion

Neither the network we constructed nor the original network in the project
NIVAB calculate the blood glucose level exactly, even though the NIVAB net-
work gives much better results. However, the trend of the glucose level can be
approximated.
The inaccuracy can result from measurement errors and other external inter-
ferences. It can even be considered if the impedances and skin temperature are
not sufficient to explain 100 percent of the blood glucose value. On the other
hand, neither the invasively measured values give the exact blood glucose level
as they are measured with test strips and hence only approximate the actual
values.
The Glucose Monitor is under development and will be further improved to
make non-invasive measurement of blood glucose more reliable. At this point of
time it could already be applied as a tool for monitoring the blood glucose level
in order to detect sudden and significant changes in the blood glucose level.
Another application could be to use it for the detection of diabetes mellitus type
2, where glucose cannot be reduced sufficiently within a certain amount of time.
In this case, continuous measurement showing the trend of the blood glucose
level can be a helpful tool.

42

A Matlab Program Code

NIVAnet.m

clear all;

%------ import data from excel file ---------
M = xlsread(’T4-B A-2002-10-11-(04)-G0.xls’);
%--

%------ data preprocessing ------------------
[P,T,x0,y0] = transformData(M);
%--

%------ network training --------------------
NTrain(P,T);
%--

NTransformData.m

function [P,T,x0,y0] = NTransformData(M)

M(find(isnan(M(:)))) = 0; % replace all empty entries by 0

[Mrow,Mcol] = size(M); % size of matrix M
k = 0;
for i = 1:Mrow

if(M(i,3) ∼= 0) % find invasive glucose entries
k = k+1;
x0(k) = i; % save the line number in x0,
y0(k) = M(i,3); % save the respective glucose value in y0

end;
end;

% x0(1) is the number of the first, x0(k) the number of the last line
% containing invasive glucose values

43

M1(1:(x0(k)-x0(1)+1),:) = M(x0(1):x0(k),:); % save lines x0(1) to
% x0(k) of matrix M in M1

%------ input data --------------------------
M in(:,1) = M1(:,2);
M in(:,2) = M1(:,11);
M in(:,3) = M1(:,12);
%--

% ----- remove extreme values ---------------
for i = 1:3

M in(:,i) = NRemoveExtreme(M in(:,i));
end;
%--

%------ median filter -----------------------
for i = 1:3

M in(:,i) = medfilt1((M in(:,i)), 5);
end;
%--

%------ input vector ------------------------
P = M in’;
%--

M1 out(:,1) = M1(:,3);
T0 = M1 out(:,1); % T0 contains the invasively measured glucose
% values. Where no value was measured, the entry is 0.

%------ target vector -----------------------
X = x0(1):x0(k);
pc = 0.999;
Y = csaps(x0,y0,pc,X); % natural cubic spline
T = Y; % T contains glucose values, approximated by a natural cubic
% spline
%--

44

NRemoveExtreme.m

function Pt = NRemoveExtreme(P)

Pt = P;
Px = diff(P); % Px contains the differences between adjacent elements
% of P
[nx,mx] = size(Px);

window = 10;
threshold = max(abs(Px)) * 0.1; % the threshold value is the maximum
% absolute value of the differences divided by ten

for i = 1:nx
isExtreme = 0;
if (Px(i) > threshold) % if any difference exceeds the threshold

% value ...
beg = i;
if (nx - i) < window

kend = nx;
else

kend = i + window;
end;
for k = i:kend

if (Px(k) < -threshold * 0.8) % ... and if any of the following
% ten differences falls below -0.8 times the threshold value ...

endi = k;
isExtreme = 1; % ... there is an extreme value due to

% measurement error
end;

end;
if (isExtreme == 1) % if there are extreme values ...

if(beg > 1) beg = beg-1; end;
if(endi < nx) endi = endi + 1; end;
for j = beg:endi % ... the differences that exceed (fall

% below) the threshold value in this window are replaced by the (negative)
% threshold value

if(Px(j) > threshold)
Px(j) = threshold;

end;
if(Px(j) < -threshold)

Px(j) = -threshold;
end;

end;
Pt(beg) = P(beg);
for l = beg:endi

45

Pt(l+1) = Pt(l) + Px(l); % the original values are updated
% with the adapted differences

end;
end;

end;
end;

for i=1:nx
isExtreme = 0;
if (Px(i) < -threshold) % if any difference falls below the negative

% threshold value ...
beg = i;
if (nx - i) < window

kend = nx;
else

kend = i + window;
end;
for k = i:kend

if (Px(k) > threshold * 0.8) % ... and if any of the following
% ten differences exceeds 0.8 times the threshold value ...

endi = k;
isExtreme = 1; % ... there is an extreme value due to

% measurement error
end;

end;
if (isExtreme == 1) % if there are extreme values ...

if(beg > 1) beg = beg - 1; end;
if(endi < nx) endi = endi + 1; end;
for j = beg:endi % ... the differences that exceed (fall

% below) the threshold value in this window are replaced by the (negative)
% threshold value

if(Px(j) > threshold)
Px(j) = threshold;

end;
if(Px(j) < -threshold)

Px(j) = -threshold;
end;

end;
Pt(beg) = P(beg);
for l = beg:endi

Pt(l+1) = Pt(l) + Px(l); % the original values are updated
% with the adapted differences

end;
end;

end;
end;

46

NTrain.m

function res = NTrain(P,T)

res = 0;

%----- net and training parameter -----------
netsize = [6,3,1];
transfer = {’tansig’,’tansig’,’purelin’};
trainmethod = ’trainlm’;
goal = 0.1;
epochs = 1000;
%--

%------- normalisation ----------------------
[PN,meanP,stdP,TN,meanT,stdT] = prestd(P,T);
%--

%------ pca ---------------------------------
[PNC,transMat] = prepca(PN,0.01); % principal component analysis
% on input data
%--

[R,Q] = size(PNC); % R is the number of input neurons, Q is the sample
% size

% data are divided into three subsets: training data, cross validation
% data, and test data
iitst = 2:4:Q;
iival = 4:4:Q;
iitr = [1:4:Q,3:4:Q];
val.P = PN(:,iival); val.T = TN(:,iival);
test.P = PN(:,iitst); test.T = TN(:,iitst);
ptr = PN(:,iitr); ttr = TN(:,iitr);

% nine nets are created and trained with early stopping
% the output of net i is saved in A(i,:)

47

%------ net 1 -------------------------------
GlucNet1 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet1.trainParam.epochs = epochs;
GlucNet1.trainParam.goal = goal;
GlucNet1 = train(GlucNet1,ptr,ttr,[],[],val,test);
AN1 = sim(GlucNet1,PN);
A(1,:) = poststd(AN1,meanT,stdT);
[GlucNet1,y,e,pf] = adapt(GlucNet1,ptr,ttr);
delta(1) = mse(e);
%--

%------ net 2 -------------------------------
GlucNet2 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet2.trainParam.epochs = epochs;
GlucNet2.trainParam.goal = goal;
GlucNet2 = train(GlucNet2,ptr,ttr,[],[],val,test);
AN2 = sim(GlucNet2,PN);
A(2,:) = poststd(AN2,meanT,stdT);
[GlucNet2,y,e,pf] = adapt(GlucNet2,ptr,ttr);
delta(2) = mse(e);
%--

%------ net 3 -------------------------------
GlucNet3 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet3.trainParam.epochs = epochs;
GlucNet3.trainParam.goal = goal;
GlucNet3 = train(GlucNet3,ptr,ttr,[],[],val,test);
AN3 = sim(GlucNet3,PN);
A(3,:) = poststd(AN3,meanT,stdT);
[GlucNet3,y,e,pf] = adapt(GlucNet3,ptr,ttr);
delta(3) = mse(e);
%--

%------ net 4 -------------------------------
GlucNet4 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet4.trainParam.epochs = epochs;
GlucNet4.trainParam.goal = goal;
GlucNet4 = train(GlucNet4,ptr,ttr,[],[],val,test);
AN4 = sim(GlucNet4,PN);
A(4,:) = poststd(AN4,meanT,stdT);
[GlucNet4,y,e,pf] = adapt(GlucNet4,ptr,ttr);
delta(4) = mse(e);

48

%--

%------ net 5 -------------------------------
GlucNet5 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet5.trainParam.epochs = epochs;
GlucNet5.trainParam.goal = goal;
GlucNet5 = train(GlucNet5,ptr,ttr,[],[],val,test);
AN5 = sim(GlucNet5,PN);
A(5,:) = poststd(AN5,meanT,stdT);
[GlucNet5,y,e,pf] = adapt(GlucNet5,ptr,ttr);
delta(5) = mse(e);
%---

%----- net 6 -------------------------------
GlucNet6 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet6.trainParam.epochs = epochs;
GlucNet6.trainParam.goal = goal;
GlucNet6 = train(GlucNet6,ptr,ttr,[],[],val,test);
AN6 = sim(GlucNet6,PN);
A(6,:) = poststd(AN6,meanT,stdT);
[GlucNet6,y,e,pf] = adapt(GlucNet6,ptr,ttr);
delta(6) = mse(e);
%--

%------ net 7 -------------------------------
GlucNet7 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet7.trainParam.epochs = epochs;
GlucNet7.trainParam.goal = goal;
GlucNet7 = train(GlucNet7,ptr,ttr,[],[],val,test);
AN7 = sim(GlucNet7,PN);
A(7,:) = poststd(AN7,meanT,stdT);
[GlucNet7,y,e,pf] = adapt(GlucNet7,ptr,ttr);
delta(7) = mse(e);
%--

%------ net 8 -------------------------------
GlucNet8 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet8.trainParam.epochs = epochs;
GlucNet8.trainParam.goal = goal;
GlucNet8 = train(GlucNet8,ptr,ttr,[],[],val,test);
AN8 = sim(GlucNet8,PN);
A(8,:) = poststd(AN7,meanT,stdT);

49

[GlucNet8,y,e,pf] = adapt(GlucNet8,ptr,ttr);
delta(8) = mse(e);
%--

%------ net 9 -------------------------------
GlucNet9 = newff(minmax(PNC),netsize,transfer,trainmethod);
GlucNet9.trainParam.epochs = epochs;
GlucNet9.trainParam.goal = goal;
GlucNet9 = train(GlucNet9,ptr,ttr,[],[],val,test);
AN9 = sim(GlucNet9,PN);
A(9,:) = poststd(AN9,meanT,stdT);
[GlucNet9,y,e,pf] = adapt(GlucNet9,ptr,ttr);
delta(9) = mse(e);
%--

%----- regression analysis ------------------
for i=1:9

[m(i),b(i),r(i)] = postreg(A(i,:),T);
end;
%--

% the correlation coefficient between the outputs and targets of net
% i is saved as row i of matrix r

AverageMES = mean(delta) % the avarage mean square error of the nine
% networks in shown
AverageR = mean(r) % the avarage regression coefficient of the nine
% networks in shown

%----- the nets are ranked by correlation ---
r1 = r; r1 = sort(r); dop = r1(5);
k = 0;
for j = 1:9

if(r(j) < dop)
k = k + 1;
NumNet(k) = j;

end;
end;
%--

save NumNet NumNet % the numbers of the four best nets are saved

50

%------ save all nets -----------------------
save GlucNet1 GlucNet1;
save GlucNet2 GlucNet2;
save GlucNet3 GlucNet3;
save GlucNet4 GlucNet4;
save GlucNet5 GlucNet5;
save GlucNet6 GlucNet6;
save GlucNet7 GlucNet7;
save GlucNet8 GlucNet8;
save GlucNet9 GlucNet9;
%--

%------ save preprocessing data -------------
save meanP meanP;
save stdP stdP;
save meanT meanT;
save stdT stdT;
save transMat transMat;
%--

res = 1;

51

52

References

[Astion 1983] M. L. Astion et al., Overtraining in Neural Networks That Inter-
pret Clinical Data, Clinical Chemistry, Vol. 39 No. 9, 1983.

[Berns Kolb 1994] K. Berns, T. Kolb, Neuronale Netze für technische Anwen-
dungen, Springer-Verlag, 1994.

[Demuth Beale 2002] H. Demuth, M. Beale, Neural Network Toolbox User’s
Guide, TheMathWorks, 2002.

[Grauel 1992] A. Grauel, Neuronale Netze, B.I. Wissenschaftsverlag, 1992.

[Grimaldi 2004] R. P. Grimaldi, Discrete and Combinatorial Mathematics,
Pearson Education, 2004.

[Heaton 2005] J. Heaton, Introduction to Neural Networks with Java, Heaton
Research, 2005.

[Hebb 1949] D. O. Hebb, The Organization of Behavior, Wiley, 1949.

[Hopfield 1982] J. J. Hopfield, Neural Networks and Physical Systems
with Emergent Collective Computational Abilities, Proceedings National
Academy of Science 79, pp. 2554-2558, 1982.

[Koehle 1990] M. Koehle, Neurale Netze, Springer-Verlag, 1990.

[Lenze 2003] B. Lenze, Einführung in die Mathematik neuronaler Netze, Logos
Verlag Berlin, 2003.

[Lin 1995] F. Lin et al., Time Series Forecasting with Neural Networks, Com-
plexity International, Volume 2, 1995.

[Lundgren Roennqvist Vaerbrand 2003] J. Lundgren, M. Rönnqvist,
P. Värbrand, Optimeringslära, Studentlitteratur, 2003.

[Malychina 2008] G. Malychina, NeuralNetwork Based Algorithm for the Blood
Glucose Level Measurement with the Group Parameter Estimation and Bi-
nary Glucose-Significant Events, Saint-Petersburg Polytechnic University,
2008.

[McCulloch Pitts 1943] W. S. McCulloch, W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bulletin of Mathematical Biophysics
5, pp. 115-137, 1943.

[Nelson Illingworth 1991] M. McCord Nelson, W. T. Illingworth, A Practical
Guide to Neural Nets, Addison Wesley, 1991.

[NIVAB 2008] Program Code of the Project NIVAB, Version 8.0, G. Malychina,
Saint-Petersburg Polytechnic University, 2008.

53

[Rosenblatt 1958] F. Rosenblatt, The Perceptron: A Probabilistic Model for In-
formation Storage and Organization in the Brain, Psychological Review 65,
pp. 386-408, 1958.

[Rumelhart Hinton Williams 1986] D. E. Rumelhart, G. E. Hinton,
R. J. Williams, Learning Internal Representations by Error Propaga-
tion, Parallel Distributed Processing 1, pp. 318-362, 1986.

[Sanchez-Sinencio Lau 1992] E. Sanchez-Sinencio, C. Lau, eds, Artificial Neural
Networks, IEEE Press, 1992.

[Voelkel 2007] A. Völkel, Beschreibung NIVAB, Version 06, TROUT GmbH,
2007.

[Werbos 1974] P. J. Werbos, Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences, Ph.D. Thesis, Harvard University,
Committee on Applied Mathematics, 1974.

54

