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Abstract

This essay is intended as an introduction to A∞-algebra and L∞-algebra for
those not familiar, or partially familiar with concepts such as graded alge-
bras, differentials and general homological algebra.

The first chapter defines some basic structures in homological algebra,
and proves some of the basic theorems. This is covered to provide a basis for
how to think about differentials and gradings, as well as a setting for many
of the results related to strong homotopy algebras that are outside of the
scope of this paper.

The second chapter defines some graded algebras with differentials. These
structures may be regarded as special cases of the algebras in the last three
chapters.

The third chapter introduces the tensor product, defines algebras using
the product and proves results related to the structures.

The forth chapter introduces two subalgebras of the tensor algebra/coalgebra,
called the symmetric and the Grassmannian algebras/coalgebras.

The fifth chapter defines the strong associative homotopy algebra, the
A∞-algebra. The algebra and related concepts are also studied and explicitly
constructed in the chapter.

In the sixth chapter the strong Lie homotopic algebra, the L∞-algebra, is
defined. A few related concepts are introduced, and a geometric interpreta-
tion of the algebra is outlined in detail. This chapter and the essay ends with
three explicit constructions of L∞-algebras from three different polynomial
rings.





Chapter 1

Chain complexes

1.1 Modules

A module is a generalisation of a vector space, where the field of scalars is
replaced by scalars from a ring structure.

This means that just as in the case of a vector space, a module is an
additive Abelian group, and in direct analogy with the vector space’s product,
it is equipped with a product between scalars from the ring and elements in
the group.

Please note that many of the well-known results about vector spaces, such
as the existence of a basis or duality, aren’t necessarily true for a module over
an arbitrary ring Λ.

Definition 1.1.1. A left Λ-module over a ring Λ is an Abelian group (M, +)
together with an operation Λ ×M → M , called scalar multiplication, such
that for all a, b ∈ Λ and x, y ∈M ,

1. a(x + y) = ax + ay
2. (a + b)x = ax + bx
3. (ab)x = a(bx)
4. 1x = 1.

A right Λ-module is defined as above, but with the scalar multiplication
defined by M × Λ→M , and with the corresponding set of rules.

Conversely, consider a left Λ-module where Λ a field, then the module
may of course also be regarded as a vector space.
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1.2 Chain complexes & Homology modules

This section will discuss different ring homomorphisms. In general a homo-
morphism is a mapping that preserve relevant structure, the homomorphisms
in question in this context will be ring and module homomorphisms. In order
to simplify the language all homomorphism will often be referred to simply
as homomorphism.

Definition 1.2.1. A ring homomorphism is a mapping f : R→ S, where R
and S are rings and where the following preserving properties are respected,

f(a + b) = f(a) + f(b),

f(ab) = f(a)f(b),

f(1) = 1,

for all a, b ∈ R.

Definition 1.2.2. A module homomorphism is a mapping f : M → N , where
M and N are modules over the ring K and where the following preserving
properties are respected,

f(a + b) = f(a) + f(b),

f(ra) = rf(a),

for all a, b ∈M and r, s ∈ K.

The homomorphisms has a corresponding set of classifications to the set-
theoretic mappings. An “injective homomorphism” is called a monomor-
phism (or mono), a “surjective homomorphism” is called an epimorphism
(or epi) and a “bijective homomorphism” is called an isomorphism (or iso).

To further remind ourselves, consider f : M → N . We know that if and
only if f is a monomorphism, ker f = 0, and that if and only if f is an
epimorphism, im f = N , and finally that f is an isomorphism if and only if
there exist an inverse function f−1, such that f ◦ f−1 = f−1 ◦ f = Id.

In order to get a feel for the main topic of this essay we will now introduce
and define a few simple, yet very central, concepts in homological algebra.
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Definition 1.2.3. Let f : L → M and g : M → N be Λ-homomorphisms.
Then

L
f−−−→ M

g−−−→ N

is a short exact sequence if
im f = ker g.

The definition of exactness is generalised to longer sequences in the nat-
ural manner, that is, consider the sequence

E : 0 −−−→ L
f−−−→ M

g−−−→ N −−−→ 0.

E is exact if and only if the subsequences,

0 −−−→ L
f−−−→ M,

L
f−−−→ M

g−−−→ N,

M
g−−−→ N −−−→ 0,

are short exact sequences.

Definition 1.2.4. A chain-complex (C•, d•) is a sequence of Λ-modules
. . . , C−2, C−1, C0, C1, C2, . . . with Λ-module homomorphisms dn : Cn → Cn−1,
such that dn−1 ◦ dn = 0 for all n. That is

· · · dn+1−−−→ Cn
dn−−−→ Cn−1

dn−1−−−→ Cn−2 −−−→ · · · −−−→ C0
d0−−−→ C−1 −−−→ · · · .

We may consider di for any i ∈ Z as a restriction of a general d• to Ci, hence
we may safely drop the subscripts when convenient. The function d• is called
the differential of C•.

The kernel of dn is usually denoted Zn = Zn(C•) and its members are
called cycles. In the same manner the image of dn+1 usually is denoted
Bn = Bn(C•) and its members are called boundaries. Now, since d• ◦ d• = 0,
we know that

0 ⊆ Bn ⊆ Zn ⊆ Cn

for all n.

A nice way to remember and think about chain-complex graphically is
depicted in the diagram below. The thicker lines represents the im di =
ker di−1 ⊂ Ai and where the sharp-angle edge of each triangle indicates the
zero-element.
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Definition 1.2.5. A chain-complex map is a morphism u : C• → D•, be-
tween two chain-complexes, such that it commutes with the differential d, in
the sense that the diagram

· · · d•−−−→ Cn+1
d•−−−→ Cn

d•−−−→ Cn−1
d•−−−→ · · ·

u

y u

y u

y
· · · d•−−−→ Dn+1

d•−−−→ Dn
d•−−−→ Dn−1

d•−−−→ · · ·
commutes.

We can now construct another central concept in homological algebra,
the homology module.

Definition 1.2.6. The nth homology module of C• is defined as Hn(C•) =
Zn/Bn of Cn.

The purpose of the homology module is to measure “how far C• is from
being exact.”

Definition 1.2.7. A chain-complex C is called a subcomplex of D if each Cn

is a submodule of Dn.

In direct analogy to the concept of chain-complexes, cycles, boundaries
and homology-modules, there are corresponding “co-constructions”. The
“co-constructions” are essentially the same as the “non-co”, but with the
arrows reversed and denoted with superscript.

To be more precise:

Definition 1.2.8. A cochain-complex is a family {Cn} of Λ-modules, to-
gether with maps dn : Cn → Cn+1, such that d• ◦ d• = 0.

· · · dn+1←−−− Cn+1 dn←−−− Cn dn−1←−−− Cn−1 dn−2←−−− · · ·
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We refer to the members of Zn(C•) = ker dn as cocycles and the members
of Bn(C•) = im dn−1 as coboundaries in direct analogy to the “non-co” case.

Definition 1.2.9. The nth cohomology module of C• is denoted Hn(C•) and
defined by

Hn(C•) = Zn(C•)/Bn(C•).

1.3 Categories & Functors

Definition 1.3.1. Categories are constructed to describe mathematical en-
tities and their relationships. A category C consists of a collection of objects,
denoted Ob(C) and a collection of morphisms denoted by Hom(C). That is,
every f ∈ Hom(C) is a mapping f : A → B where A,B ∈ Ob(C). Hom(C)
always includes the trivial identity mapping.

Categories are usually denoted by an abbreviation in a bold font. A few
examples of categories are:

Set Which consists of all sets together with functions between the sets.

Ab The category of all Abelian groups and their group homomorphisms.

Ring Consisting of all rings and their ring homomorphisms.

We will later see that chain-complexes are also a category, and more specifi-
cally an Abelian category; it is denoted by Ch.

Definition 1.3.2. A preadditive category (or Ab-category) A is a category
where for A,B ∈ Ob(A) every HomA(A,B) ⊂ Hom(A) is given the structure
of an Abelian group, where composition distributes over addition. That is
for A,B,C and D in Ob(A), f, h ∈ Hom(A) and g, g′ in HomA(A, B),

C
f // A

g //

g′
// B h // D,

says that h(g + g′)f = hgf + hgf ′.

Definition 1.3.3. An additive category A is a preadditive category that has
a zero element and a biproduct A × B. The notion of a biproduct is the
natural generalisation of the direct sum to preadditive categories.

The kernel of a morphism in an additive category f : A → B is defined
to be the map i : I → A, such that fi = 0 and the cokernel of f is a
map e : B → E, such that ef = 0. Hence in A a map, g : B → A, is a
monomorphism if ig = 0 implies that g = 0 and an epimorphism if he = 0
implies that h = 0.
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Definition 1.3.4. Every category C has an opposite category Cop. The ob-
jects of C and Cop are the same. The morphisms however are reversed in the
sense that for every morphism f : C → D in Hom(C) there exist a corre-
sponding morphism f op : D → C in Hom(Cop).

Further, if f is a monomorphism, then f op will be an epimorphism and
vice versa. Similarly the kernel and cokernel are each others corespondents
in the same manner.

The Cop is also referred to as the dual category of C.

Definition 1.3.5. A functor, F : C → D, is a mapping between categories.
That is a mapping such that for every a ∈ Ob(C), F (a) ∈ Ob(D), and for
every f : A → B ∈ Hom(C), F (f) : F (A) → F (B) ∈ Hom(D). Also
F (IdC) = IdF (C) and F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : L → K
and g : K →M , where L,K, M ∈ Ob(C).

A contravariant functor is a functor where the depicted mappings are
reversed. That is if the exact sequence

0 −−−→ L
f−−−→ K

g−−−→ M −−−→ 0

is depicted with a contravariant functor F we will get

F (L)
F (f)←−−− F (K)

F (g)←−−− F (M).

If a functor preserves exactness we say that the functor is exact and if the
functor only preserves exactness from one direction we say that the functor
is left or right exact respectively.

Definition 1.3.6. An Abelian category A, is an additive category such that
every map in Hom(A) has a kernel and cokernel and every monomorphism
in Hom(A) is the kernel of its cokernel and in correspondence every epimor-
phism in Hom(A) is the cokernel of its kernel.

Theorem 1.3.7. The category of chain-complexes, Ch or Ch(A), is an
Abelian category.

Proof. Let f : C• 7→ D• be a complex chain map, and hence f ∈ Hom(Ch).
Now we will construct maps for all modules in the complex: the injective
maps i : ker(f) 7→ Cn and the projective map e : Dn 7→ coker (f). Hence the
maps i and e will be the kernel and cokernel to f .
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1.4 Chain complex operations

Definition 1.4.1. Let C be a chain-complex and n ∈ Z. Now let τ≥nC
denote the subcomplex of C defined by

(τ≥nC)i =





0, i < n
Zn, i = n
Ci, i > n.

The subcomplex defined above is called the (good) truncation of C below n
and the quotient complex τ<nC = C/(τ≥nC) is called the (good) truncation
of C above n, hence Hi(τ<nC) is equal to Hi(C) as i < n and vanishes as
i ≥ n.

There is a variant of truncation called brutal truncation denoted with
σ≥nC and σ<nC. The difference between the good and brutal truncation is
that for i = n, (τ≥nC)i = Ci, therefore it is simpler to define, however the
homology modules are distorted as i = n.

Definition 1.4.2. Let m be an integer and C be a chain-complex or cochain-
complex. The translation operation is then denoted C[m] and defined as
C[m]n = Cn+m and C[m]n = Cn−m respectively, with differential (−1)md.
The chain-complex C[m] is referred to as the mth translate of C•.

Definition 1.4.3. A chain-complex C is called split if there exist maps sn :
Cn → Cn+1, such that d•|n = dnsndn+1. The maps {sn} are called the
splitting maps.

1.5 More on long exact sequences

The snake lemma is something as unusual as a pop-fiction lemma. Featured
in at least two films, The Graduate from 1967 and It’s My Turn from 1980[13].

Lemma 1.5.1. The snake lemma.
Given a diagram of Λ-modules and Λ-module homomorphisms,

A
f−−−→ B

g−−−→ C −−−→ 0

a

y b

y c

y
0 −−−→ A′ f ′−−−→ B′ g′−−−→ C ′

where the two rows are exact sequences, we can create the following exact
sequence,

ker a
f̄−−−→ ker b

ḡ−−−→ ker c
δ−−−→ coker a

f̄ ′−−−→ coker b
ḡ′−−−→ coker c,
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where f̄ , ḡ, f̄ ′ and ḡ′ are defined as restrictions of f, g, f ′ and g′, and δ is
defined as δ = f ′−1bg−1.

The reasoning above may be expressed in the following commutative dia-
gram, which also motivates the name and the pop-fiction quality of the lemma,

Proof. Since f̄ and ḡ are defined as restricted versions of the original f and
g and ker a ⊆ A, ker b ⊆ B, ker c ⊆ C, it is clear that ḡf̄ = 0, which implies
that im f̄ ⊆ ker ḡ.

We now want to show that the upper sequence is exact, which is clear if
f̄ is a monomorphism. Let β ∈ ker ḡ. Then ḡ(β) = g(β) = 0, hence since
im f = ker g, there is a α ∈ A such that β = f(α).

Thereby we can conclude that,

(f ′a)(α) = (bf)(α) = b(β) = 0,

since β ∈ ker ḡ ⊆ ker b. But we know that f ′ is a monomorphism, hence
a(α) = 0 and α ∈ ker a. Thereby we have established that f̄ is a monomor-
phism and β = f̄(α).

By the same type of diagram chasing argument one may show that the
bottom sequence is exact too.

It remains to show that

ker b
ḡ−−−→ ker c

δ−−−→ coker a
f̄ ′−−−→ coker b,

is exact.
We start by showing that im ḡ ⊆ ker δ. Suppose v ∈ im ḡ, that is for all

β ∈ ker b, v = g(β). Now, since f ′ is a monomorphism β′ = b(β) = 0 and
hence δ(v) = 0.

Next we will show that im ḡ ⊇ ker δ. Suppose δ(v) = 0. As we know that
im f = ker g and the fact that g is an epimorphism, we may choose β such
that v = g(β). It is clear that,

b(β) = (f ′a)(α) = (bf)(α),
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by casual diagram chasing. Now consider β − f(α). We have that b(β −
f(α)) = 0. Then β − f(α) ∈ ker b and g(β − f(α)) = g(β) − (gf)(α) =
g(β) = v, such that v ∈ im ḡ.

Now we will show im δ ⊆ ker f̄ ′. Suppose ᾱ′ = δ(v). Choose β and α′ as
in the previous construction of δ. Then f̄ ′(ᾱ′) = (a′b)(β) = 0, since a′b = 0.

Finally we will show that im δ ⊇ ker f̄ ′ Now suppose that f̄ ′(ᾱ′) = 0.
Choose α′, such that a′(α′) = ᾱ′. Then (b′f ′)(α′) = (f̄ ′a′)(α′) = 0 which
implies that f ′(α′) ∈ ker b′ = im b. Therefore f ′(α′) = m(β). Let v = g(β).
It is clear that δ(v) = ᾱ′ and we are done.

Utilizing the snake lemma we will now be able to prove the following pow-
erful theorem.

Proposition 1.5.2. Let

E• : 0 −−−→ A•
f•−−−→ B•

g•−−−→ C• −−−→ 0

be an exact sequence of chain-complexes, then there exist canonical homo-
morphisms called the connecting homomorphisms,

δn(E•) : Hn(C•)→ Hn−1(A•),

such that the sequence,

. . . −−−→ Hn+1(C•)
δn+1−−−→ Hn(A•)

f̄•−−−→
f̄•−−−→ Hn(B•)

ḡ•−−−→ Hn(C•)
δn−−−→ Hn−1(A•) −−−→ . . . ,

is exact.

Proof. If we expand the exact sequence E• it is evident that the diagram,

...
...

...

dA
n+2

y dB
n+2

y dC
n+2

y
0 −−−→ An+1

fn+1−−−→ Bn+1
gn+1−−−→ Cn+1 −−−→ 0

dA
n+1

y dB
n+1

y dC
n+1

y
0 −−−→ An

fn−−−→ Bn
gn−−−→ Cn −−−→ 0

dA
n

y dB
n

y dC
n

y
0 −−−→ An−1

fn−1−−−→ Bn−1
gn−1−−−→ Cn−1 −−−→ 0

dA
n−1

y dB
n−1

y dC
n−1

y
...

...
...

,
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commutes and have exact rows.
Consider the sequence

0 −−−→ Zn(A•)
f̄−−−→ Zn(B•)

ḡ−−−→ Zn(C•),

where f̄ and ḡ are given by f and g as in the snake lemma (Lemma 1.5.1),
which also establishes this sequence’s exactness. In the same lemma we
induce the mappings f̄ ′ and ḡ′. Consider these mappings and let X• be
either of A•, B• or C•. Now let,

Z ′
n(X•) = coker dX

n+1 =
Xn

im dX
n+1

=
Xn

Bn

(X•),

then we may consider the following sequence,

Z ′
n(A•)

f̄ ′−−−→ Z ′
n(B•)

ḡ′−−−→ Z ′
n(C•),

which we know commutes and is exact, again by virtue of the snake lemma
(Lemma 1.5.1).

We can connect these two sequences using a chain-complex map induced

by the differentials. Consider Xn
dX

n−−−→ Xn−1
and recall that im dX

n+1 =

ker dX
n , this induces a map Z ′

n(X•)
d̃X

n−−−→ Zn−1(X•) for any chain-complex

X•.
Using these maps, d̃X

n , we get the following commutative diagram,

Z ′
n(A)

f̄ ′−−−→ Z ′
n(B)

ḡ′−−−→ Z ′
n(C) −−−→ 0

dA
n

y dB
n

y dC
n

y

0 −−−→ Zn(A)
f̄−−−→ Zn(B)

ḡ−−−→ Zn(C).

But

ker d̃X
n = ker(Xn/im dX

n+1 → Xn−1) = (1.1)

= ker(Xn → Xn−1)/im dX
n+1 = (1.2)

= Zn/Bn(X•) = Hn(X•) (1.3)

and

coker d̃X
n = Zn−1(X•)/im (Xn/im dX

n+1 → Xn−1) = (1.4)

= Zn−1(X•)/im (Xn → Xn−1) = (1.5)

= Zn−1/Bn−1(X•) = Hn−1(X•), (1.6)
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so we get the sought-after long exact sequence,

. . . −−−→ Hn+1(C•)
δn+1−−−→ Hn(A•)

f̄•−−−→ Hn(B•)
ḡ•−−−→

ḡ•−−−→ Hn(C•)
δn−−−→ Hn−1(A•) −−−→ . . . ,

once again by the snake lemma (Lemma 1.5.1), and we are done.

1.6 Homotopy

In topology two functions are homotopic if they can be continuously trans-
formed in to each other. To be more precise:

Definition 1.6.1. Let f, g : A → B, where A,B is topological spaces. f
and g is homotopic if we can define a continuous function H : A× [0, 1]→ B,
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ A.

We can construct splitting maps from any chain-complex of vector spaces
over a field. Let

Cn = Zn ⊕B′
n, B′

n ' Cn/Zn = d•(Cn) = Bn−1,

Zn = Bn ⊕H ′
n, H ′

n ' Zn/Bn = Hn(C).

Thus
Cn → Zn → Bn ' B′

n+1 ⊆ Cn+1

and we got the splitting maps sn : Cn → Cn+1, where d• = d•sd•.

Definition 1.6.2. A chain map f : C → D is called null homotopic if there
are maps sn : Cn → Dn+1, such that f = d•s + sd•. The {sn} maps of a null
homotopic f are called a chain contraction of f .

To get a better understanding of null homotopic chain-complexes, we will
study the following diagram, where f = dn+1sn + sn−1dn:

Now consider the composition df (once again dropping the subscripts),
we get that

d•f = d•(d•s + sd•) = d•sd• = (d•s + sd•)d• = fd•.

11



Thus f = d•s + sd• is a chain map from C• → D•.

If g : C• → D• is any chain map, then so is the map g + (d•s + sd•) for
any choice of splitting maps. Note that g and g + (d•s + sd•) are closely
related.

Definition 1.6.3. Let f, g : C• → D• be two chain maps. We say that f
and g are chain homotopic if their difference f−g is null homotopic, i.e. that
there exist splitting maps {sn} such that

f − g = d•s + sd•,

and the set of splitting maps {sn} is in this case called a chain homotopy
from f to g.

Finally we construct an equivalence relation called chain homotopy equiv-
alence. We say that f : C• → D• and g : D• → C• are equivalent if gf and
fg are both chain homotopic to their respective identity maps.

Lemma 1.6.4. If f : C• → D• is a null homotopic chain-complex mapping
then every map f ′ : Hn(C)→ Hn(D) is zero.

Proof. Let f = d•s + sd• and x ∈ Hn(C), then x is also in Zn(C) and
hence a n-cycle. That means that f(x) = d•s(x) + sd•(x) = d•s(x), hence
f(x) ∈ Bn(D). Thus f(x) is represented by 0 in Hn(D).

Corollary 1.6.5. If f, g : C → D are chain homotopic, then they induce the
same maps Hn(C)→ Hn(D).

Proof. The corollary follows directly from the previous lemma (Lemma 1.6.4).
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Chapter 2

Differential Graded Algebras

2.1 Z-graded vector spaces

Definition 2.1.1. A Z-graded vector space V is a vector space V together
with a direct sum decomposition

V =
⊕

i∈Z
V i,

elements % ∈ V i are called homogeneous of degree i, which we denote by
|%| := i.

An example of an Z-graded vector space is the set of all polynomials
where every linear combination of monomials of degree n is a homogeneous
elements of degree n.

Definition 2.1.2. Let V =
⊕

i∈Z V i and W =
⊕

i∈ZW i be Z-graded vector
spaces. A linear map f : V → W is called homogeneous of degree k if
∀% ∈ V i, f(%) ∈ W i+k.

The set of all homogeneous linear maps of degree k from V to W is itself
a vector space, we denote it by Homk(V, W ).

Definition 2.1.3. If V =
⊕

i∈Z V i is a Z-graded vector space, ∀p ∈ N, then

V [p] :=
⊕

i∈Z
V [p]i,

is also a Z-graded vector space with V [p]i := V i+p.

13



2.2 Lie algebras

Definition 2.2.1. A Lie algebra is a vector space V over a field K together
with a binary operation

[·, ·] : V × V → V

referred to as the Lie bracket and satisfying the following axioms:

• Bilinearity

[ax + by, z] = a[x, z] + b[y, z], [x, ay + bz] = a[x, y] + b[x, z],

for all scalars a, b ∈ K and all elements x, y, z ∈ V .

• Anti-commutativity
[x, y] = −[y, x],

for all elements x, y ∈ V .

• Jacobi-identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0,

for all elements x, y, z ∈ V .

We can construct a Lie algebra from any associate algebra, A, by defining
the Lie bracket as their commutator,

[a, b] = a · b− b · a,

and the resulting Lie algebra is then denoted L(A). The associate algebra A
is now referred to as the enveloping algebra of L(A).

2.3 Differential Graded Algebra

Definition 2.3.1. A differential graded algebra, or briefly a DG-algebra, over
a field K constitutes of a Z-graded vector space, A =

⊕
i∈ZAi together with

a morphism,
µ : A⊗ A→ A,

such that,
µ⊗ (IdA ⊗ µ) = µ⊗ (µ⊗ IdA).

Definition 2.3.2. A differential graded algebra morphism from (A, µA) to
(B, µB) is a morphism φ : A→ B such that,

µB(φ⊗ φ) = φµA.

An example of a DG-algebra is the tensor algebra, that we will study in
details in the next chapter.
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2.4 Differential Graded Coalgebra

Definition 2.4.1. A differential graded coalgebra, or briefly DG-coalgebra,
over a field K constitutes of a Z-graded vector space, A =

⊕
i∈ZAi, together

with a morphism,
∆ : A→ A⊗ A,

such that,
(∆⊗ IdA)⊗∆ = (IdA ⊗∆)⊗∆.

Definition 2.4.2. A differential graded coalgebra morphism from (A, ∆A) to
(B, ∆B) is a morphism φ : A→ B such that,

(φ⊗ φ)∆B = ∆Aφ.

2.5 Differential Graded Lie Algebra

Definition 2.5.1. A differential graded Lie algebra, or briefly DGL-algebra,
over a field K, consists of a Z-graded vector space, A =

⊕
i∈ZAi, together

with a morphism,
[·, ·] : A⊗ A→ A,

such that it fulfills the bilinearity, anti-commutativity and Jacobi-identity.

Definition 2.5.2. A differential graded Lie algebra morphism from (A, [·, ·]A)
to (B, [·, ·]B) is a morphism φ : A→ B such that,

[·, ·]B(φ⊗ φ) = φ[·, ·]A.

15



Chapter 3

Tensor Algebras and
Coalgebras

3.1 Tensor Product

Definition 3.1.1. Let L1, . . . , Lp be Z-graded vector spaces over the field K.
A vector spaceM is defined as the set of all functions f : L1× · · ·×Lp → K
such that f(l) = 0 for all but finitely many l ∈ L1 × · · · × Lp. TheM-space
is clearly a linear space over K under the ordinary operations of point-wise
addition and the multiplication of a scalar.

A basis for the spaceM consists of the so-called Kronecker delta-functions,
δl, defined as δl(k) = 1 if k = l and δl(k) = 0 if k 6= l. There is an obvi-
ous one-to-one correspondence between the delta-functions and the elements
in L1 × · · · × Lp and we will therefore omit the symbol δ to simplify nota-
tions. Now all elements ofM can be written as finite linear combinations of
(l1, . . . , lp) ∈ L1 × · · · × Lp and the space as the set,

M =
{∑

al1···lp(l1, . . . , lp)|al1···lp ∈ K
}

.

Definition 3.1.2. LetM0 be a subspace ofM generated by the vectors on
the form,

(l1, . . . , l
′
j + l′′j , . . . , lp)− (l1, . . . , l

′
j, . . . , lp)− (l1, . . . , l

′′
j , . . . , lp)

and

(l1, . . . , alj, . . . , lp)− a(l1, . . . , lj, . . . , lp), where a ∈ K and 1 ≤ j ≤ p.

Definition 3.1.3. We define

L1 ⊗ · · · ⊗ Lp =M/M0.

16



Now since the right hand side is a quotient space there exist a natural pro-
jection

π :M→M/M0 = L1 ⊗ · · · ⊗ Lp

and we may therefore denote

π(l1, . . . , lp) = l1 ⊗ · · · ⊗ lp.

It is clear from the fact that (l1, . . . , lp) is a basis of M that the tensors
l1 ⊗ · · · ⊗ lp form a basis of L1 ⊗ · · · ⊗ Lp.

We will now study some of the principal properties of the tensor product
mapping.

Theorem 3.1.4. Let

t : L1 × · · · × Lp → L1 ⊗ · · · ⊗ Lp

a) The mapping t is multilinear, that is linear in each variable, i.e. for
any constant c,

t(l1, . . . , c(l
′
k) + l′′k, . . . , ln) = ct(l1, . . . , l

′
k, . . . , ln) + t(l1, . . . , l

′′
k, . . . , ln).

b) The mapping t is universal.
By universal we mean that for any linear space M over the field K and
any multilinear mapping s : L1×· · ·×Lp →M it exist an unique linear
mapping f : L1 ⊗ · · · ⊗ Lp →M such that s = f ◦ t.

Proof. The proof of part a) is fairly trivial as the criteria for multilinearity,

l1 ⊗ · · · ⊗ (lk + l′′k)⊗ · · · ⊗ ln =

= l1 ⊗ · · · ⊗ l′k ⊗ · · · ⊗ ln + l1 ⊗ · · · ⊗ l′′k ⊗ · · · ⊗ ln,

and
l1 ⊗ · · · ⊗ alk ⊗ · · · ⊗ ln = a(l1 ⊗ · · · ⊗ ln),

correspond exactly to the definition of the denominator of the quotient space
M/M0.

To show part b), the universality, we consider a linear mapping,

g :M→M,

determined by the following mapping for the base elements,

g(l1, . . . , lp) = s(l1, . . . , lp),
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that is in general,

g(
∑

al1···lp(l1, . . . , lp)) =
∑

al1···lps(l1, . . . , lp).

Now consider what the multilinear nature of s implies for g. That is

g((l1, . . . , l
′
k + l′′k, . . . , lp)− (l1, . . . , l

′
j, . . . , lp)− (l1, . . . , l

′′
j , . . . , lp)) =

s(l1, . . . , l
′
k + l′′k, . . . , lp)− s(l1, . . . , l

′
j, . . . , lp)− s(l1, . . . , l

′′
j , . . . , lp) = 0,

and

g((l1, . . . , alk, . . . , lp)−a(l1, . . . , lp)) = s(l1, . . . , alk, . . . , lp)−as(l1, . . . , lp) = 0,

which makes clear thatM0 ⊂ ker g, now this clearly induces a function

f :M/M0 = L1 ⊗ · · · ⊗ Lp →M,

such as
f(l1 ⊗ · · · ⊗ lp) = s(l1, . . . , lp),

which settles the proof if f is unique. However we know that t generates
L1 ⊗ · · · ⊗ Lp, that implies that f is uniquely determined as s = f ◦ t.

Theorem 3.1.5. The tensor product over a field K is associative.

Proof. Let Li be a Z-graded vector space over K and li ∈ Li. To prove
the tensor product’s associativity we construct mappings using the universal
property of the tensor product,

Ψi : L1 ⊗ · · · ⊗ Lp → (L1 ⊗ L2) · · · ⊗ Lp),

where the domain has an arbitrary distribution of parenthesis. We can con-
clude using an inductive argument that the mappings Ψi are isomorphisms,
since it is clear that,

l1 ⊗ l2 ⊗ l3 7→ (l1 ⊗ l2)⊗ l3,

is a simple transformation.

If the tensor product is a new acquaintance for you and you need further
assistance to grasp the concept you might find Timothy Gowers comforting
guide[1] helpful.

Corollary 3.1.6. There exist a canonical isomorphism between Hom(L1 ×
· · · × Lk,M) and Hom(L1 ⊗ · · · ⊗ Lk,M).
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Proof. In the proof of Theorem 3.1.4, multilinear maps f : L1×· · ·×Lk →M
was split into s = f◦t. The mapping is surjective since for any linear mapping
f the mapping s is multilinear, it is injective since s 6= 0 implies that f ◦t 6= 0
and thus f 6= 0, and hence it is therefore an isomorphisms.

Definition 3.1.7. The tensor product for two chain-complexes C = (C•, dC)
and D = (D•, dD) is given by

(C ⊗D)n =
⊗

i+j=n

Ci ⊗Dj,

with the differential

dC⊗D(x⊗ y) = dC(x)⊗ y + (−1)ix⊗ dD(y),

for all x ∈ Ci and y ∈ Dj.

Theorem 3.1.8. Let Li be finite dimensional linear spaces, then there is a
canonical isomorphism between L∗1 ⊗ · · · ⊗ L∗k and (L1 ⊗ · · · ⊗ Lk)

∗.

Proof. Every element (f1, . . . , fk) ∈ L∗1 × · · · × L∗k can be used to construct
a multilinear function from L1× · · · ×Lk to the base field K, by multiplying
f1(l1) · · · fk(lk) : L∗1 × · · · × L∗k. By Theorem 3.1.4 we know that it may be
constructed through a function from L∗1 ⊗ · · · × L∗k.

Now, let this function be called F , then

F : L∗1 × · · · × L∗k → Hom(L1 × · · · × Lk,K),

and by Theorem 3.1.4 there is maps g, t such that F = g ◦ t, where

t : L∗1 ⊗ · · · ⊗ L∗k → Hom(L1 × · · · × Lk,K).

By Theorem 3.1.6 we know that Hom(L1 × · · · × Lk,K) is isomorphic to
Hom(L1 ⊗ · · · ⊗ Lk,K) = (L1 ⊗ · · · ⊗ Lk)

∗.

We have now constructed a mapping between L∗1 ⊗ · · · ⊗ L∗k and (L1 ⊗
· · · ⊗ Lk)

∗, it remains to show that it is an isomorphism.
It is clear that dim(L∗1 ⊗ · · · ⊗L∗k) = dim((L1 ⊗ · · · ⊗Lk)

∗), and hence it
is enough to show that the mapping is surjective.

The surjectiveness follows as the when F runs through a basis of fi ∈ L∗i ,
the image thanks to the multilinear nature of the function is also going to
run through the basis of Hom(L1 × · · · × Lk,K), which again is isomorphic
to (L1 ⊗ · · · ⊗ Lk)

∗, by Theorem 3.1.6.
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3.2 Tensor Algebra

Definition 3.2.1. An associative algebraic structure, or associative algebra,
on a Z-graded vector space A =

⊕
i∈ZAi is formed by associating a map µ

of degree 0,
µ : A⊗ A→ A,

such that the following diagram

A⊗ A⊗ A
Id⊗µ−−−→ A⊗ A

µ⊗Id

y
yµ

A⊗ A
µ−−−→ A

commutes. This means that for all homogeneous a, b, c ∈ A

|µ(a, b)| = |a|+ |b|

and
µ(a, (µ(b, c))) = µ(µ(a, b), c).

Definition 3.2.2. Let A =
⊕

i∈ZAi be a Z-graded associative algebra. A
derivation of A of degree k is a linear map

D : A→ A

of degree k such that for all homogeneous a, b ∈ A,

D(a⊗ b) = D(a)⊗ b + (−1)k|a|a⊗D(b).

Definition 3.2.3. A differential D in a Z-graded associative algebra A is a
derivation of degree 1 such that

D2 = 0

To simplify the equations we introduce the following notation,

L⊗q := L⊗ · · · ⊗ L︸ ︷︷ ︸
q times

.

Definition 3.2.4. Let L =
⊕

i∈Z Li be a Z-graded vector space and q an
integer. We call the space

A := TL =
⊕
q≥0

L⊗q
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together with the function

µ : A⊗ A→ A

given by

µ(a1 ⊗ · · · ⊗ ap, b1 ⊗ · · · ⊗ bq) = a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq

the tensor algebra of L. Note that µ is the ordinary tensor multiplication.

Lemma 3.2.5. The tensor algebra of a vector space L, (TL, µ), is an asso-
ciative algebra.

Proof. It is clear from Theorem 3.1.4 that µ is multilinear or more specifically
bilinear.

Let a, b, c be elements of A. It is easy to see that µ fulfills the commutative
diagram in Definition 3.2.1,

µ(a, µ(b, c)) = µ(a1 ⊗ · · · ⊗ al, µ(b1 ⊗ · · · ⊗ bm, c1 ⊗ · · · ⊗ cn)) =

= a1 ⊗ · · · ⊗ al ⊗ b1 ⊗ · · · ⊗ bm ⊗ c1 ⊗ · · · ⊗ cn =

= µ(µ(a1 ⊗ · · · ⊗ al, b1 ⊗ · · · ⊗ bm), c1 ⊗ · · · ⊗ cn)

= µ(µ(a, b), c).

We conclude that A together with µ is an associative algebra.

Theorem 3.2.6. There is a one-to-one correspondence between degree k
derivations of TL and degree k linear maps L→ TL ∈ Homk(L, TL)

Proof. Let ai = l1 ⊗ · · · ⊗ lp ∈ TL, and let D : TL→ TL be a derivation of
degree k. It is clear from the definition of the derivation D that

D(a1 ⊗ a2) = D(a1)⊗ a2 + (−1)k|a1|a1 ⊗D(a2).

Using this in an induction argument, we can prove that for all a ∈ TL, D(a)
is determined by a linear combination of D(ai) and aj, where D(ai), aj ∈ TL.

Construct a function f : L → TL by f := D|L. The restriction of a
homogeneous function of degree k is again a homogeneous function of degree
k, hence f is a homogeneous function of degree k and therefore an element
of Homk(L, TL). Further all elements in Homk(L, TL) can be described as
D|L since the restricted function is an arbitrary linear map from which the
non-restricted D may be unfolded.
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Definition 3.2.7. Let

T̄L =
⊕

k≥1

L⊗k

together with µ from Definition 3.2.4 be an algebra. This algebra is called the
bar tensor algebra of L. The algebra is an associative by the same arguments
as in Lemma 3.2.5.

3.3 Tensor Coalgebra

Definition 3.3.1. A coassociative coalgebraic structure, or coassociative coal-
gebra, is a Z-graded vector space, A =

⊕
i∈ZAi, together with a linear map

of degree 0,

∆ : A→ A⊗ A

such that the diagram

A
∆−−−→ A⊗ A

∆

y
yId⊗∆

A⊗ A
∆⊗Id−−−→ A⊗ A⊗ A

commutes. This means that for any a ∈ A, ∆a =
∑

i a
′
i ⊗ a′′i ∈ A ⊗ A and

a′i, a
′′
i ∈ A and ∑

i

∆(a′i)⊗ a′′i =
∑

i

a′i ⊗∆(a′′i ).

Definition 3.3.2. Let A =
⊕

i∈ZAi be a Z-graded coalgebra. A coderivation
on A of degree k is a linear map

D : A→ A

of degree k such that for all a ∈ A

∆ ◦D(a) = (Id⊗D + D ⊗ Id)∆a

i.e. if ∆a =
∑

i a
′
i ⊗ a′′i then

∆D(a) =
∑

i

D(a′i)⊗ a′′i + (−1)k|a′i|
∑

i

a′i ⊗D(a′′i ).

We denote the set of coderivations on A with CoDer(A).
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Definition 3.3.3. A codifferential D in a Z-graded associative algebra A is
a derivation of degree 1 such that

D2 = 0

Definition 3.3.4. Let L be a Z-graded vector space over a field K, then

A := T cL = K ⊕ L⊕ L⊗2 ⊕ L⊗3 ⊕ · · ·

is a coalgebra together with the linear map of degree 0

∆ : A→ A⊗ A

defined by

∆(a1 ⊗ · · · ⊗ ap) := 1⊗ (a1 ⊗ · · · ⊗ ap) + (a1 ⊗ · · · ⊗ ap)⊗ 1

+

p−1∑
i=1

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ ap),

where p ≥ 1 and ∆(1) = 1 ⊗ 1. This coalgebra is referred to as the tensor
coalgebra.

Lemma 3.3.5. The tensor coalgebra of a vector space L, (T cL, ∆), is a
coassociative coalgebra.

Proof. Let a = (a1 ⊗ · · · ⊗ ap) ∈ A. It is clear from Theorem 3.3.4 and The-
orem 3.1.4 that ∆ is multilinear. Thus it only remains to show associativity,
which in turn is clear by,

(∆⊗ Id) ◦∆a =

p−1∑
i=1

(

j=i∑
j=1

(a1 ⊗ · · · ⊗ aj−1)⊗ (aj ⊗ · · · ⊗ ai))⊗ (ai+1 ⊗ · · · ⊗ ap)

= a1 ⊗ · · · ⊗ ap + . . . + a1 ⊗ · · · ⊗ ap︸ ︷︷ ︸
p terms

=

p−1∑
i=1

(ai+1 ⊗ · · · ⊗ ap)⊗ (

j=i∑
j=1

(a1 ⊗ · · · ⊗ aj−1)⊗ (aj ⊗ · · · ⊗ ai)),

= (Id⊗∆) ◦∆a,

and Theorem 3.1.5, that the tensor coalgebra is a coassociative coalgebra.

Theorem 3.3.6. If A = T cL, then as vector spaces CoDer(A) = Hom(T cL,L).
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Proof. Let n ≥ 0. Given a homogeneous map %n|L⊗n : L⊗n → L, which can
be considered as a map %n : T cL→ L ∈ Hom(T cL, L), by letting the function
vanish at all points not in L⊗n. Now let

%̃n(l1 ⊗ · · · ⊗ lk) := 0,

for k < n, and

%̃n(l1 ⊗ · · · ⊗ lk) :=
k−n∑
i=0

(−1)|%n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li ⊗ %n(li+1 ⊗ · · · ⊗ li+n)

⊗li+n+1 ⊗ · · · ⊗ lk),

for k ≥ n. Let %̃j
n : T cL→ L⊗j be the j:th output-component of %̃n. To show

that %̃n is a uniquely determined coderivation we study

∆(%̃n(l1 ⊗ · · · ⊗ lk)) = (%̃n ⊗ Id + Id⊗ %̃n)(∆(l1 ⊗ · · · ⊗ lk)) =

= (%̃n ⊗ Id + Id⊗ %̃n)(
k∑

i=0

(l1 ⊗ · · · ⊗ li)⊗

⊗(li+1 ⊗ · · · ⊗ lk)) =

=
k∑

i=0

%̃n(l1 ⊗ · · · ⊗ li)⊗ (li+1 ⊗ · · · ⊗ lk) +

+(−1)|%̃n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li)⊗ %̃n(li+1 ⊗ · · · ⊗ lk),

and project both sides to
⊕

i+j=m L⊗i ⊗ L⊗j ⊂ T cL⊗ T cL which yields

∆(%̃m
n (l1 ⊗ · · · ⊗ lk)) =

k∑
i=0

%̃m+i−k
n (l1 ⊗ · · · ⊗ li)⊗ (li+1 ⊗ · · · ⊗ lk)

+(−1)|%̃n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li)⊗ %m−i
n (li+1 ⊗ · · · ⊗ lk).

This shows that the the right hand side depends solely on %̃j
n if j < m, and

falls back on the trivial case if j = m. An induction argument now shows
that %̃m

n vanishes for elements in V ⊗k where k 6= m + n− 1. For elements in
V ⊗m+n−1,

%̃m
n (l1 ⊗ · · · ⊗ lk) =

m−1∑
i=0

(−1)|%n|(|l1|+...+|li|)( l1 ⊗ · · · ⊗ li ⊗ %n(li+1 ⊗ · · · ⊗ li+n)

⊗li+n+1 ⊗ · · · ⊗ lm+n−1),

hence %̃n|L⊗k : L⊗k → L⊗k−n+1.
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Noting that coderivation is a linear property it is clear that the sum of
coderivations is again a coderivation. Thus the map

α : {{%i : L⊗i → L}i≥0} → CoDer(T cL), {%i : L⊗i → L}i≥0 7→
∑
i≥0

%̃i

is well defined. Let the mapping β be given by

∑
i≥0

%̃i 7→ {{prL ◦D|L⊗i}i≥0} = {%i : L⊗i → L}i≥0,

then β ◦ α = Id. The uniqueness of the mapping between % and %̃ gives that
α ◦ β = Id and hence implies the isomorphism.

Definition 3.3.7. Let
T̄ cL =

⊕

k≥1

L⊗k

together with the linear map of degree 0

∆ : T̄ cL→ T̄ cL

given by

∆(a1 ⊗ · · · ⊗ an) =

{ ∑p−1
i=1 (a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ ap) , n ≥ 2

0 , n = 1

be a coalgebra. This algebra is usually referred to as the bar symmetric
coalgebra.

Lemma 3.3.8. T̄ cL is a coassociative algebra.

Proof. Let a ∈ L ⊂ T̄ cL. It is easy to confirm coassociativity for such a
since,

((∆⊗ Id) ◦∆)a = (∆⊗ Id)0 = 0⊗ 0 = (Id⊗∆)0 = ((Id⊗∆) ◦∆)a.

For a ∈ T̄ cL \L, the commutativity and hence the theorem follows from the
same argument as in Theorem 3.3.5.

Theorem 3.3.9. If A = T̄ cL then as vector spaces CoDer(A) = Hom(T̄ cL,L).

Proof. This proof is almost identical to Theorem 3.3.6, just modified to com-
pensate for the difference between T cL and T̄ cL. Let n ≥ 1. Given a homo-
geneous map %n|L⊗n : L⊗n → L, we may construct a map, %n : T̄ cL → L ∈
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Hom(T̄ cL,L), by letting the function vanish for all points not in L⊗n. Now
let

%̃n(l1 ⊗ · · · ⊗ lk) := 0,

for k < n, and

%̃n(l1 ⊗ · · · ⊗ lk) :=
k−n∑
i=0

(−1)|%n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li ⊗ %n(li+1 ⊗ · · · ⊗ li+n)

⊗li+n+1 ⊗ · · · ⊗ lk),

for k ≥ n. Let %̃j
n : T̄ cL→ L⊗j be the j:th output-component of %̃n. To show

that %̃n is a uniquely determined coderivation we study,

∆(%̃n(l1 ⊗ · · · ⊗ lk)) = (%̃n ⊗ Id + Id⊗ %̃n)(∆(l1 ⊗ · · · ⊗ lk)) =

= (%̃n ⊗ Id + Id⊗ %̃n)(
k−1∑
i=1

(l1 ⊗ · · · ⊗ li)⊗

⊗(li+1 ⊗ · · · ⊗ lk)) =

=
k−1∑
i=1

%̃n(l1 ⊗ · · · ⊗ li)⊗ (li+1 ⊗ · · · ⊗ lk) +

+(−1)|%̃n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li)⊗ %̃n(li+1 ⊗ · · · ⊗ lk),

and project both sides to
⊕

i+j=m L⊗i ⊗ L⊗j ⊂ T̄ cL⊗ T̄ cL which yields

∆(%̃m
n (l1 ⊗ · · · ⊗ lk)) =

k−1∑
i=1

%̃m+i−k
n (l1 ⊗ · · · ⊗ li)⊗ (li+1 ⊗ · · · ⊗ lk)

+(−1)|%̃n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li)⊗ %m−i
n (li+1 ⊗ · · · ⊗ lk)

this shows that the right hand side depends solely on %̃j
n if j < m, and if

j = m it is trivial. An induction argument now shows us that %̃m
n vanishes

for elements in V ⊗k where k 6= m + n− 1. For elements in V ⊗m+n−1,

%̃m
n (l1 ⊗ · · · ⊗ lk) =

m−1∑
i=0

(−1)|%n|(|l1|+...+|li|)(l1 ⊗ · · · ⊗ li

⊗%n(li+1 ⊗ · · · ⊗ li+n)⊗ li+n+1 ⊗ · · · ⊗ lm+n−1),

hence %̃n|L⊗k : L⊗k → L⊗k−n+1.
And once again by noting that coderivation is a linear property it is clear

that the sum of coderivations is again a coderivation. Thus the map

α : {{%i : L⊗i → L}i≥1} → CoDer(T̄ cL), {%i : L⊗i → L}i≥1 7→
∑
i≥1

%̃i
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is well defined. The mapping β given by

∑
i≥1

%̃i 7→ {{prL ◦D|L⊗i}i≥1} = {%i : L⊗i → L}i≥1

fulfills β ◦ α = Id. The uniqueness of the mapping between % and %̃ gives
that α ◦ β = Id, hence the mapping is an isomorphism
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Chapter 4

Symmetric Tensor Algebras &
Grassmann Algebras

4.1 Symmetric Tensor Algebra

Definition 4.1.1. Let Sn be the set of permutation mappings of the num-
bers 1 to n, and let Sh(p, q) denote the set of (p, q)-shuffles, that is, those
permutations σ ∈ Sp+q that fulfills σ(1) < σ(2) < . . . < σ(p) and σ(p + 1) <
σ(p + 2) < . . . < σ(p + q).

Definition 4.1.2. Let l = (l1, . . . , lq) be an element in the tensor algebra of
the Z-graded vector space L and let

fσ(l) = fσ(l1 ⊗ · · · ⊗ lq) = lσ(1) ⊗ · · · ⊗ lσ(q).

We will call a tensor l ∈ L⊗q symmetric if fσ(l) = l for any permutation
σ ∈ Sq. For convenience we will also include all scalars in the category of
symmetric tensors.

We will denote the subspace of symmetric tensors in L⊗q with L¯q.

Proposition 4.1.3. Let σ ∈ Sq, and let L be a linear space, then the mapping

S : TL→ TL

given by

S(L⊗q) =
1

q!

∑
σ∈Sq

fσ : L⊗q → L⊗q.

has the following properties S2 = S and im S = L¯q. S is referred to as the
symmetrisation mapping.
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Proof. It is obvious that im S ⊂ L¯q. It is also clear that the symmetrisation
works as an identity map for all symmetric elements, s ∈ L¯q, that is s =
S(s). and hence im S = L¯q and S2 = S.

Remark 4.1.4. Note that the symmetrisation using S of the basis e1, . . . , en

of L⊗q generates L¯q.

We introduce the following notation

S(ei1 ⊗ · · · ⊗ eiq) = ei1 ¯ · · · ¯ eiq .

As the product does not change under any permutation of the indices, {ij}
we may in general simplify the notation further by

la1
1 ¯ · · · ¯ lan

n ,

where ai ≥ 0, a1 + · · · + an = q denotes how many times the vector li is a
factor in li1 ⊗ · · · ⊗ liq .

Definition 4.1.5. Let L be a Z-graded vector space, then

SL =
⊕
q≥0

L¯q

together with
µ : SL× SL→ SL

given by
µ(A1, A2) = S(A1 ⊗ A2),

where S is the symmetrisation mapping, is called the symmetric algebra of
the Z-graded vector space L. We will hereinafter denote the operator µ with
¯.

Lemma 4.1.6. The symmetric algebra is an associative algebra.

Proof. Since the tensor product is multilinear our operator µ clearly is bilin-
ear. It remains to show associativity, let a, b, c ∈ SL, then

µ(µ(a, b), c) = µ(S(a⊗ b), c) = S(S(a⊗ b)⊗ c) = S(a⊗ b⊗ c) =

= S(a⊗ S(b⊗ c)) = S(a⊗ µ(b, c)) = µ(a, µ(b, c)).

The third and forth equality follows from the fact that the outer application
of the S does the symmetrisation fully, with or without the inner S.
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Remark 4.1.7. The definition of derivations and differentials of an Z-graded
algebra can be found in Definition 3.2.2 and 3.2.3.

Theorem 4.1.8. There is a one-to-one correspondence between degree k
derivations of A = SL and degree k linear maps L→ SL ∈ Homk(L, SL)

Proof. This follows by the same arguments as in Theorem 3.2.6.

Definition 4.1.9. Let

S̄L =
⊕

k≥1

L¯k

together with µ from Definition 4.1.5 be an algebra. The algebra is an asso-
ciative algebra by the same arguments as in Lemma 3.2.5, and is called the
bar symmetric algebra of L.

4.2 Symmetric Tensor Coalgebra

Definition 4.2.1. Let L be a Z-graded vector space over a field K and let
ε(σ, l1, . . . , lk) be defined such that lσ(1) ¯ · · · ¯ lσ(k) = ε(σ)l1 ¯ · · · ¯ lk and
let S̄L be the same set as in the algebra defined in Definition 4.1.9. Now

S̄cL := S̄L

is a coalgebra with

∆ : S̄cL→ S̄cL⊗ S̄cL

given by

∆(l1¯ · · · ¯ lk) =
k−1∑
i=1

∑
σ∈Sk

ε(σ, l1, . . . , lk)lσ(1)¯ · · · ¯ lσ(i)⊗ lσ(i+1)¯ · · · ¯ lσ(k).

Lemma 4.2.2. The symmetric coalgebra is a coassociative algebra.
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Proof. It is clear from Theorem 4.2.1 that ∆ is bilinear. Now, as

(Id⊗∆) ◦∆(l1 ¯ · · · ¯ lk) =

= (Id⊗∆)(
n−1∑
i=1

∑
σ∈Sk

ε(σ, l1, . . . , lk)lσ(1) ¯ · · · ¯ lσ(i) ⊗ lσ(i+1) ¯ · · · ¯ lσ(k)) =

=
n−1∑
i=1

∑
σ∈Sk

ε(σ, l1, . . . , lk)lσ(1) ¯ · · · ¯ lσ(i) ⊗

⊗(

σ(n−i−1)∑

j=σ(1)

∑
τ∈Sn−i

li+τ(1) ¯ · · · ¯ li+τ(j) ⊗ li+τ(j+1) ¯ · · · ¯ li+τ(n−i)) =

= (∆⊗ Id)(
n−1∑
i=1

∑
σ∈Sk

ε(σ, l1, . . . , lk)lσ(1) ¯ · · · ¯ lσ(i) ⊗ lσ(i+1) ¯ · · · ¯ lσ(k)) =

= (∆⊗ Id) ◦∆(l1 ¯ · · · ¯ lk),

it is clear that the symmetric tensor coalgebra is an coassociative coalgebra

Theorem 4.2.3. Let S̄cL be a symmetric tensor coalgebra, then CoDer(S̄cL) =
Hom(S̄cL,L) as vector spaces.

Proof. Let n ≥ 1. Given a homogeneous map %n|L¯n : L¯n → L, which can
be considered as a map %n : S̄cL → L ∈ Homk(S̄

cL, L) letting the function
vanish at all points not in L¯n. Now let

%̃n(l1 ¯ · · · ¯ lk) := 0,

for k < n, and

%̃n(l1 ¯ · · · ¯ lk) :=
n∑

i=1

∑

σ∈Sh(i,k)

ε(σ)%n(lσ(1) ¯ · · · ¯ lσ(i))¯

¯lσ(i+1) ¯ · · · ¯ lσ(k)),

for k ≥ n. Let %̃j
n : S̄cL→ L¯j be the j:th output-component of %̃n. To show
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that %̃n is a uniquely determined coderivation we study

∆(%̃n(l1 ¯ · · · ¯ lk)) = (%̃n ⊗ Id + Id⊗ %̃n)(∆(l1 ¯ · · · ¯ lk)) =

= (%̃n ⊗ Id + Id⊗ %̃n)(
k−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ)(lσ(1) ¯ · · · ¯ lσ(i))⊗

⊗(lσ(i+1) ¯ · · · ¯ lσ(k))) =

=
k−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ)%̃n(lσ(1) ¯ · · · ¯ lσ(i))⊗

⊗(lσ(i+1) ¯ · · · ¯ lσ(k)) +

+
∑

σ∈Sh(i,k)

ε(σ)(−1)|%̃n|(|l1|+...+|li|)(lσ(1) ¯ · · · ¯ lσ(i))⊗

⊗%̃n(lσ(i+1) ¯ · · · ¯ lσ(k)),

and project both sides to
⊕

i+j=m L¯i ⊗ L¯j ⊂ S̄cL⊗ S̄cL which yields

∆(%̃m
n (l1 ¯ · · · ¯ lk)) =

k−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ)%̃m+i−k
n (lσ(1) ¯ · · · ¯ lσ(i))⊗

(lσ(i+1) ¯ · · · ¯ lσ(k)) +

+
∑

σ∈Sh(i,k)

ε(σ)(−1)|%̃n|(|l1|+...+|li|)(lσ(1) ¯ · · · ¯ lσ(i))⊗

⊗%m−i
n (lσ(i+1) ¯ · · · ¯ lσ(k)),

this shows that the right hand side depends solely on %̃j
n if j < m or the

trivial case where j = m. An induction argument now shows us that %̃m
n

vanishes for elements in V ¯k where k 6= m+n−1. For elements in V ¯m+n−1,

%̃m
n (l1 ¯ · · · ¯ lk) =

m−1∑
i=0

∑

σ∈Sh(i,m+n−1)

ε(σ)(−1)|%n|(|l1|+...+|li|)(lσ(1) ¯ · · · ¯ lσ(i) ⊗

⊗%n(lσ(i+1) ¯ · · · ¯ lσ(i+n))⊗ lσ(i+n+1) ¯ · · · ¯ lσ(m+n−1)),

and hence %̃n|L¯k : L¯k → L¯m = L¯k−n+1.

Noting that being a coderivation is a linear property it is clear that the
sum of coderivations is again a coderivation. Thus the map

α : {{%i : L¯i → L}i≥0} → CoDer(S̄cL), {%i : L¯i → L}i≥0 7→
∑
i≥0

%̃i
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is well defined. The mapping β given by
∑
i≥0

%̃i 7→ {{prL ◦D|L¯i}i≥0} = {%i : L¯i → L}i≥0

fulfills β ◦ α = Id. The uniqueness of the mapping between % and %̃ gives
that α ◦ β = Id, hence the mapping is an isomorphism.

4.3 Grassmann Algebra

Definition 4.3.1. Let l be an element of the tensor algebra of a Z-graded
vector space L. If fσ(l) = ε(σ)l for all ε and all permutations σ, we call l
skew-symmetric (or anti-symmetric).

The Grassmann algebra, also referred to as the exterior algebra, is closely
related to the symmetric tensor algebra, It may be considered as the skew-
symmetric tensor algebras.

In direct analogy with the symmetric tensor algebra we define a projection

Proposition 4.3.2. Let q be an integer and let σ be a permutations of the
integers 1 to q. Now let L be a linear space, then the mapping

A : TL→ TL

given by

A =
1

q!

∑
σ

ε(σ)fσ : TLq → TLq.

has the following properties A2 = A and im A = L∧q. A is referred to as the
skew-symmetrisation (or anti-symmetrisation) mapping.

Proof. It is obvious that im A ⊂ L∧q. Conversely, if a tensor s′ ∈ L∧q, then
s′ = A(s′), hence im A = L∧q. It remains to show that A2 = A, which follows
from the equation below, as ε(σ)2 = 1,

fσ(A(s′)) = fσ


 1

q!

∑
τ∈Sq

ε(τ)fτ (T )


 =

1

q!

∑
τ∈Sq

ε(τ)fστ (T ) =

= ε(σ)
1

q!

∑
τ∈Sq

ε(στ)fστ (T ) = ε(σ)A(s′)

And thereby we can rewrite the square, A2, back on the form of A,

A2 =
1

(q!)2

∑
σ,τ∈Sq

ε(στ)fστ =
1

q!

∑
ρ∈Sq

ε(ρ)fρ = A.
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Definition 4.3.3. Let L be a Z-graded vector space, then

∧
L =

⊕
q≥0

L∧q

together with the linear map of degree 0

µ :
∧

L⊗
∧

L→
∧

L

given by
µ(B1, B2) = A(B1 ⊗B2),

where B1, B2 is elements in
∧

L, are called the Grassmann algebra of the
Z-graded vector space L. We will hereinafter denote the operator µ with ∧.

Lemma 4.3.4. The Grassmann algebra is an associative algebra.

Proof. Since the tensor product is multilinear, µ is clearly bilinear. Let
a, b, c ∈ ∧

L, then

µ(µ(a, b), c) = µ(A(a⊗ b), c) = A(A(a⊗ b)⊗ c) = A(a⊗ b⊗ c) =

= A(a⊗ A(b⊗ c)) = A(a⊗ µ(b, c)) = µ(a, µ(b, c)).

The third and forth equality follows from the fact that the outermost S does
the symmetrisation fully, with or without the inner S.

4.4 Grassmann Coalgebra

Definition 4.4.1. Let L be a Z-graded vector space, then

∧
L =

⊕
q≥0

L∧q

together with the linear map of degree 0

∆ :
∧

L→
∧

L

given by

∆(a1∧ · · · ∧ ak) =
k−1∑
i=1

∑

σ∈Sh(i,k)

(−1)σε(σ)aσ(1)∧ · · · ∧ aσ(i)⊗ aσ(i+1)∧ · · · ∧ aσ(k)

is called the Grassmann coalgebra of L.
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Lemma 4.4.2. The Grassmann coalgebra is a coassociative coalgebra.

Proof. It is clear from Theorem 4.2.1 that ∆ is bilinear, and as

(Id⊗∆) ◦∆(l1 ∧ · · · ∧ lk) =

= (Id⊗∆)(
n−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ, l1, . . . , lk)lσ(1) ∧ · · · ∧ lσ(i) ⊗ lσ(i+1) ∧ · · · ∧ lσ(k)) =

=
n−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ, l1, . . . , lk)lσ(1) ∧ · · · ∧ lσ(i) ⊗

⊗(

σ(n−i−1)∑

j=σ(1)

∑

τ∈Sh(j,n−i)

li+τ(1) ∧ · · · ∧ li+τ(j) ⊗ li+τ(j+1) ∧ · · · ∧ li+τ(n−i)) =

= (∆⊗ Id)(
n−1∑
i=1

∑

σ∈Sh(i,k)

ε(σ, l1, . . . , lk)lσ(1) ∧ · · · ∧ lσ(i) ⊗ lσ(i+1) ∧ · · · ∧ lσ(k)) =

= (∆⊗ Id) ◦∆(l1 ∧ · · · ∧ lk),

it is clear that the symmetric tensor coalgebra is an coassociative coalgebra

Theorem 4.4.3. If A :=
∧

L, then as vector spaces CoDer(A) = Hom(
∧

L,L)

Proof. Let n ≥ 0. Given a homogeneous map %n|L∧n : L∧n → L, which can
be considered as a map %n :

∧c L → L ∈ Hom(
∧c L,L) letting the function

vanish at all points not in L∧n. Now let

%̃n(l1 ∧ · · · ∧ lk) := 0,

for k < n and

%̃n(l1 ∧ · · · ∧ lk) :=
k−n∑
i=0

(−1)|%n|(|l1|+...+|li|)(lσ(1) ∧ · · · ∧ lσ(i) ⊗ %n(lσ(i+1) ∧ · · · ∧ lσ(i+n))

⊗lσ(i+n+1) ∧ · · · ∧ lσ(k)),

for k ≥ n. Let %̃j
n :

∧c L → L∧j be the j:th output-component of %̃n. To
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show that %̃n is a uniquely determined coderivation we study

∆(%̃n(l1 ∧ · · · ∧ lk)) = (%̃n ⊗ Id + Id⊗ %̃n)(∆(l1 ∧ · · · ∧ lk)) =

= (%̃n ⊗ Id + Id⊗ %̃n)(
k−1∑
i=1

(lσ(1) ∧ · · · ∧ lσ(i))⊗

⊗(lσ(i+1) ∧ · · · ∧ lσ(k))) =

=
k−1∑
i=1

%̃n(lσ(1) ∧ · · · ∧ lσ(i))⊗ (lσ(i+1) ∧ · · · ∧ lσ(k)) +

+(−1)|%̃n|(|l1|+...+|li|)(lσ(1) ∧ · · · ∧ lσ(i))⊗
⊗%̃n(lσ(i+1) ∧ · · · ∧ lσ(k)).

and project both sides to
⊕

i+j=m L∧i ⊗ L∧j ⊂ ∧c L⊗∧c L which yields

∆(%̃m
n (l1 ∧ · · · ∧ lk)) =

k−1∑
i=1

%̃m+i−k
n (lσ(1) ∧ · · · ∧ lσ(i))⊗ (lσ(i+1) ∧ · · · ∧ lσ(k))

+(−1)|%̃n|(|l1|+...+|li|)(lσ(1) ∧ · · · ∧ lσ(i))⊗
⊗%m−i

n (lσ(i+1) ∧ · · · ∧ lσ(k))

this shows that the right hand side depends solely on %̃j
n if j < m or the

trivial case where j = m. An induction argument now shows us that %̃m

vanishes for elements in V ∧k where k 6= m+n−1. For elements in V ∧m+n−1,

%̃m
n (l1 ∧ · · · ∧ lk) =

m−1∑
i=0

(−1)|%n|(|l1|+...+|li|)(lσ(1) ∧ · · · ∧ lσ(i) ⊗

%n(lσ(i+1) ∧ · · · ∧ lσ(i+n))⊗ lσ(i+n+1) ∧ · · · ∧ lσ(m+n−1)),

hence %̃n|L∧k : L∧k → L∧k−n+1.
Noting that coderivation is a linear property it is clear that the sum of

coderivations is again a coderivation. Thus the map

α : {{%i : L∧i → L}i≥0} → CoDer(
c∧

L), {%i : L∧i → L}i≥0 7→
∑
i≥0

%̃i

is well defined. It is clear that the mapping β given by
∑
i≥0

%̃i 7→ {{prL ◦D|L∧i}i≥0} = {%i : L∧i → L}i≥0

fulfills β ◦ α = Id. The uniqueness of the mapping between % and %̃ gives
that α ◦ β = Id, hence the mapping is an isomorphism.
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Chapter 5

A∞-algebra

5.1 Definitions

Definition 5.1.1. An A∞ structure on a Z-graded vector space L is the
coalgebra T̄ c(L[1]) together with its codifferential D. The structure is called
the A∞-algebra of L.

A∞-algebras are also referred to as strong homotopy associative algebras
or sha-algebras.

Theorem 5.1.2. An A∞-algebra (L,D), can also be defined as the Z-graded
vector space L together with the mapping

D : L[1]⊕ (L[1])⊗2 ⊕ · · · = T̄ cL[1]→ T̄ cL[1],

where D2 = 0. Or equivalently as the vector space together with a set of
mappings

Dk : L[1]⊗k → L[1], |Dk| = 1,∀k ≥ 1

where D2
k = 0. Or again equivalently, as the vector space together with a set

of mapping

mk : L⊗k → L. |mk| = 2− k, ∀k ≥ 1
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which satisfies the following system of equations

m1(m1(a1)) = 0,

m1(m2(a1, a2))−m2(m1(a1), a2)− (−1)|a1|m2(a1,m1(a2)) = 0,

m1(m3(a1, a2, a3))−m2(m2(a1, a2), a3) + m2(a1,m2(a2, a3))+

+m3(m1(a1), a2, a3) + (−1)|a1|m3(a1,m1(a2), a3)+

(−1)|a1|+|a2|m3(a1, a2,m1(a3)) = 0,
...

k∑
i=1

k−i+1∑
j=0

(−1)εmk−i+1(a1, . . . ,mi(aj, . . . , aj+i−1), . . . , ak) = 0,

where ε = i
∑j−1

l=1 |al|+ (j − 1)(i + 1) + k − i.

Proof. We know by Theorem 3.3.9 that there exist a mapping that takes all
coderivations to a set of functions {Dk : L[1]⊗k → L[1]}k≥1. Hence we can
decompose all coderivations D into a set of Dk and thereby the condition
D2 = 0 translates directly to ∀k, D2

k = 0.

Let ↑ be the canonical map L → L[1] of degree −1 and ↓=↑− 1, that is,
a map L[1]→ L of degree +1.

Let Dk =↑ ◦mk◦ ↓k, then

Dk(↑ a1 ⊗ · · ·⊗ ↑ ak) = ↑ ◦mk◦ ↓k (↑ a1 ⊗ · · ·⊗ ↑ ak) =

= (−1)
Pk−1

j=1 (|aj |+1) ↑ ◦mk ◦ (↓k−1 ⊗Id)

(↑ a1 ⊗ · · ·⊗ ↑ ak−1, ↓↑ ak) =

= (−1)
Pk−2

j=1 2(|aj |+1)+|ak−1|+1 ↑ ◦mk ◦ (↓k−2 ⊗(Id)⊗2)

(↑ a1 ⊗ · · ·⊗ ↑ ak−2, ↓↑ ak−1 ↓↑ ak) =
...

= (−1)
Pk−j

j=1 (|aj |+1) ↑ ◦mk(a1 ⊗ · · · ⊗ ak).

We can from the above system of equations conclude that Dk and mk only
differs by a linear transformation and they are therefore isomorphic. To study
what D2

k = 0 translates to after this transformation we study
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prL[1] ◦D2(↑ a1, . . . , ↑ ak) =
k∑

i=1

k−i+1∑
j=0

(−1)
Pj−1

i=1 (|a1|+1)

Dk−i+1(↑ a1, . . . , Di(↑ aj, . . . , ↑ aj+i−1), . . . , ↑ ak) =

=
k∑

i=1

k−i+1∑
j=0

(−1)
Pj−1

l=1 (|al|+1)+
Pj+i−1

l=j (j+i−l−1)(|al|+1)

Dk−i+1(↑ a1, . . . , ↑ ◦mi(aj, . . . , aj+i−1), . . . , ↑ ak) =

=
k∑

i=1

k−i+1∑
j=0

(−1)εmk−i+1(a1, . . . , mi(aj, . . . , aj+i−1), . . . , ak),

where

ε =
k∑

l=1

(k − l)(|al|+ 1) + k + j − 1.

To verify the exact sign, i. e. ε, one may study cases of k. This is carried
out in detail in [11].

We can easily construct examples of A∞-algebras, since every differential
graded algebra (DG-algebra), say (A, d, µ), can also be viewed as an A∞-
algebra structure by letting m1 := d,m2 := µ and mi := 0 for all k ≥ 3.
The equations proposed by the A∞-structure given these definitions implies
precisely the defining conditions of a DG-algebra,

d2(a) = 0,

d(a · b) = d(a) · b + (−1)|a|a · d(b),

(a · b) · c = a · (b · c),
for all a, b, c ∈ A and there are no higher equations since mi = 0 when i > 2.

5.2 Morphisms of A∞-algebras

Definition 5.2.1. An A∞-algebra morphism between two A∞-algebras (A,m)
and (A′,m′) consists of a family of functions

fn : A⊗n → B, n ≥ 1,

homogeneous of degree 0 such that, for all n ≥ 1, we have
∑

i+j+k=n

fi+1+k ◦ (1⊗i ⊗ bj ⊗ 1⊗k) =
∑

i1+...+is=n

bs ⊗ (fi1 ⊗ · · · ⊗ fis).
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5.3 An explicit construction of A∞-algebra

Definition 5.3.1. A commutator of a graded module, M , is an operation,
[·, ·] : M ×M →M , such that for all m,n ∈M ,

[m, n] = mn− (−1)|m||n|nm.

This explicit construction uses the same method as Merkulov[7], but with
a few of the steps described in further detail. Let (V, d) be a differential
graded associative algebra and let (W,d) ⊂ (V, d) such that there exist an
odd operator

Q : V → V,

that for any v ∈ V the element (1− [d,Q])v lies in the subspace W and [·, ·]
is the commutator.

The construction will use the following recursively defined tensors

λn : V ⊗n → V, n ≥ 2,

initialized by

λ2 := v1 · v2,

and with λ1 := −Q−1, the recursive formula for n ≥ 2 is

λn(v1, . . . , vn) = −
∑

k+l=n+1
k,l≥1

(−1)k+(l−1)(|v1|+...+|vk|)[Qλk(v1, . . . , vk)] ·

·[Qλl(vk+1, . . . , vn)].

Lemma 5.3.2. The tensors λk, k ≥ 2, satisfies the identities,

Φn(v1, . . . , vn) =
∑

k+l=n+1
k,l≥2

k−1∑
j=0

(−1)r

λk(v1, . . . vj, λl(vj+1, . . . , vj+l), vj+l+1, . . . , vn)

= 0,

where

r = l(|v1|+ . . . + |vj|) + j(l − 1) + (k − 1)l,

for any n ≥ 3 and any v1, . . . , vn ∈ V .
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Proof. As a first step we split Φn into three sums,

Φn(v1, . . . , vn) =
∑

k+l=n+1
k,l≥2

(−1)(k−1)lλk(λl(v1, . . . , vl), vl+1, . . . , vn) +

∑

k+l=n+1
k,l≥2

(−1)l(|v1|+...+|vk−1|)+k−1λk(v1, . . . , vk−1, λl(vk, . . . , vn)) +

∑

k+l=n+1
k,l≥2

k−2∑
j=1

λk(v1, . . . , vj, λl(vj+1, . . . , vj+l), vj+l+1, . . . , vn)

= 0.

Given the recursive definition of λi and expanding the λl not directly coupled
with Q it is clear that

−
∑

k+l=n+1
k,l≥2

(−1)l+k(|v1|+...+|vl|)λl(v1, . . . , vl) ·Qλk−1(vl+1, . . . , vn)

+
∑

k+l=n+1
k+l≥2

(−1)l(|v1|+...+|vk−1|)Qλk−1(v1, . . . , vk−1)λl(vk, . . . , vn) = 0.

Thus the first two sums in the split Φn reduces to the following expression

−
∑

k+l=n+1
k,l≥2

∑

s+t=k
s≥2
t≥1

(−1)p[Qλs(λl(v1, . . . , vl), vl+1, . . . , vs+l−1))] · [Qλt(vl+s, . . . , vn)]

−
∑

k+l=n+1
k,l≥2

∑

s+t=k
s≥1
t≥1

(−1)qQλs(v1, . . . , vs) ·Qλt(vs+1, . . . , vk−1, λl(vk, . . . , vn)),

where p = k(l− 1) + s + (t− 1)(|v1|+ . . . + |vs+l−1|+ l) and q = l(|v1|+ . . . +
|vk−1|) + k − 1 + s + (t− 1)(|v1|+ . . . + |vs|).

The third and last sum splits into the following two sums

∑

k+l=n+1
k,l≥2

k−2∑
j=1

∑

s+t=k
1≤s≤j

t≥1

(−1)aQλs(v1, . . . , vs) ·

·Qλt(vs+1, . . . , vj, λl(vj+1, . . . , vj+l), vj+l−1, . . . , vn)

−
∑

k+l=n+1
k,l≥2

k−2∑
j=1

∑

s+t=k
s≥j+1

t≥1

(−1)bQλs(v1, . . . , vj, λl(vj+1, . . . , vj+l), vj+l+1, . . . , vs+l−1) ·

·Qλt(vs+l, . . . , vn),
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where a = r + s− 1 + (t− 1)(|v1|+ . . . + |vs|) and b = r + s + (t− 1)(|v1|+
. . . + |vs+l−1|+ l).

Substituting these expressions back into the original equation we get the
following recursive formula

Φn(v1, . . . , vn) =
∑

k+l=n
k≥3
l≥1

(−1)(l−1)(|v1|+...+|vk|)+kQΦk(v1, . . . , vk) ·Qλl(vk+1, . . . , vn)

−
∑

k+l=n
k≥1
l≥3

(−1)l(|v1|+...+|vk|)Qλk(v1, . . . , vk) ·QΦl(vk+1, . . . , vn),

where n ≥ 4. Finally to cover all cases we compute Φ3(v1, v2, v3) = (v1 · v2) ·
v3 − v1 · (v2 · v3) = 0. Thus Φn = 0 for all n ≥ 3.

Lemma 5.3.3. The λk defined above satisfies the following identities,

Θn(v1, . . . , vn) = dλn(v1, . . . , vn) +
n−1∑
j=0

(−1)n−1+|v1|+...+|vj |

λn(v1, . . . , vj, dvj+1, vj+2, . . . , vn)

−
∑

k+l=n+1
k,l≥2

k−1∑
j=0

(−1)rλk(v1, . . . , vj, [d,Q]

λl(vj+1, . . . , vj+l), vj+l+1, . . . , vn)

= 0,

where
r = l(|v1|+ . . . + |vj|) + j(l − 1) + (k − 1)l,

for any n ≥ 2 and any v1, . . . , vn ∈ V .

Proof. Using the same path of execution as in the previous Lemma, this
result follows. That is single out the terms where j = 0 and j = k− 1 in the
sums and expand the λk not coupled with Q as above, do cancelling where
possible and then it is possible to derive the following recursion formula,

Θn(v1, . . . , vn) =
∑

k+l=n
k≥2
l≥1

(−1)(l−1)(|v1|+...+|vk|)+k[QΘk(v1, . . . , vk)] · [Qλl(vk+1, . . . , vn)]

−
∑

k+l=n
k≥1
l≥2

(−1)l(|v1|+...+|vk|)[Qλk(v1, . . . , vk)] · [QΘl(vk+1, . . . , vn)],
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where n ≥ 3. And as

Θ2(v1, v2) = d(v1 · v2)− (dv1) · v2 − (−1)|v1|v1 · (dv2),

is the Leibniz identity for d it is clear that Θ2 = 0, and thus Θn = 0 for all
n ≥ 3 too.

Theorem 5.3.4. The the linear maps

µk :
⊗

k

W → W,k ≥ 1,

defined by

µ1 := d,

µk := (1− [d,Q])λk, k ≥ 2,

with
λ1 := −Q−1

and

λn(v1, . . . , vk) = −
∑

k+l=n+1
k,l≥1

(−1)k+(l−1)(ṽ1+...+ṽk)[Qλk(v1 . . . , vk)][Qλl(vk+1, . . . , vn)],

where n ≥ 2 and λn satisfy the so-called higher order associativity condition,

∑

k+l=n+1

k−1∑
j=0

(−1)rµk(v1, . . . , vj, µl(vj+1, . . . , vj+l), vj+l+1, . . . , vn) = 0,

where r = l(|v1|+ . . . + |vj|) + j(l − 1) + (k − 1)l.
Thus there exist an A∞-algebra structure on W .

Proof. We denote the high order associative equation with Ψn, that is,

Ψn =
∑

k+l=n+1

k−1∑
j=0

(−1)rµk(v1, . . . , vj, µl(vj+1, . . . , vj+l), vj+l+1, . . . , vn),

where r = l(|v1|+ . . . + |vj|) + j(l − 1) + (k − 1)l.
Since (V, d) is a differential algebra and (W,d) is a subcomplex of (V, d) it

is clear that Ψ1 and Ψ2 vanishes. For n ≥ 3 we may consider the equivalent
expression

Ψn = (1− [d,Q])(Φn + Θn),

with Φn and Θn has been defined in Lemma 5.3.2 and 5.3.3. By the same
Lemmas it is also clear that Φn and Θn vanishes for all n ≥ 3, and this
completes the proof.
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Chapter 6

L∞-Algebras

6.1 Definitions

Definition 6.1.1. An L∞-structure on a Z-graded vector space L is a sym-
metric coalgebra (S̄(L[1]), ∆) together with a codifferential Q, hereinafter
referred to as the L∞ algebra (L,Q).

L∞-algebras are also referred to as strong homotopy Lie algebras or shl-
algebras.

Theorem 6.1.2. An L∞-algebra, (L,Q), can also be regarded as a Z-graded
vector space L, together with the mapping

Q : S̄cL[1]→ S̄cL[1],

or equivalently as the vector space together with a set of mappings

Qn : L[1]¯n → L[1], |Qn| = 1,∀n ≥ 1,

where Q2
n = 0, that is

(Q2)n(a1, . . . , an) =
∑

k+l=n+1

∑

σ∈Sh(l,n)

ε(σ)Ql(Qk(aσ(1), . . . aσ(l)), aσ(l+1), . . . , aσ(n) = 0.

Or again equivalently as the vector space together with a set of mappings

µn :
n∧

L→ L, |µn| = 2− n,

related to Qn as,

Qn = (−1)n(n−1)/2 ↓ ◦µn◦ ↑n: L·n → L
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and satisfy the following condition,
∑

s+t=n+1

∑

σ∈Sh(s,n)

ε(σ)Qt(Qs(lσ(1), . . . , lσ(k)), lσ(k+1), . . . lσ(n)) = 0,

for each n ≥ 0 and l1, . . . , ln ∈ L.

Proof. The one-to-one correspondence between a coderivation of degree k
and a series of linear maps follows from Theorem 4.2.3, and hence we may
construct a set of Qn : L[1]¯n → (L[1])[1] such that

Q|L[1]¯n(a1, . . . , an) =
n∑

l=0

∑

σ∈Sh(l,n)

ε(σ)Ql(aσ(1), . . . aσ(l))¯aσ(l+1)¯ . . .¯aσ(n),

with l = 0 interpreted as Q0(1)¯ a1 ¯ . . .¯ an.
Considering the next equivalence we need to consider how Q2 = 0 trans-

lates to the last formulation.

(µ2)n(a1, . . . , an) =
∑

k+l=n+1

∑

σ∈Sh(l,n)

(−1)k(l−1)ε(σ)

Ql(Qk(aσ(1), . . . aσ(l)), aσ(l+1), . . . , aσ(n) = 0.

Now considering the Qk as functions L[1]¯k → L[2], then there is a natural
isomorphism to the mapping µk from the Grassmann algebra L∧k → L[2− n].

Just as in the case with A∞-algebras there is a direct relation between
differential graded counterparts and hence easy to construct examples. Let
(A, d, [·, ·]) be an arbitrary DG Lie-algebra, then it can also be seen as an
L∞-algebra by letting µ1 = d, µ2 = [·, ·] and for i > 2, µi = 0. It is easy
to see that the higher order Jacobi identities suggests the functionality of a
differential d and the normal Jacobi identity [·, ·] for µ1 and µ2 respectively.

6.2 Morphisms of L∞-algebras

Definition 6.2.1. An L∞-morphism is a mapping between two L∞-algebras,
(L, ∆) and (L′, ∆′), such that the there is a morphism between the differential
graded coalgebras

((S̄c(V1[1]), D1), ∆S̄c(V1[1]))→ ((S̄c(V2[1], D2), ∆S̄c(V2[1])).

That is, that there exist a mapping

F : S̄c(V1[1])→ S̄c(V2[1]),
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such that the following two diagrams commute with ∆ being the respective
comultiplication,

S̄c(V1[1])
∆−−−→ S̄c(V1[1])⊗ S̄c(V1[1])

F

y F⊗F

y
S̄c(V2[1])

∆−−−→ S̄c(V2[1])⊗ S̄c(V2[1])

and
S̄c(V1[1])

F−−−→ S̄c(V2[1])

D1

y D2

y
S̄c(V2[1])

F−−−→ S̄c(V2[1]).

6.3 A geometrical interpretation of L∞-algebras

Lemma 6.3.1. Let V be a graded finite dimensional vector space, then there
is a one-to-one correspondence between the symmetric coalgebra S̄c(V [1]) and
its dual, the symmetric algebra S̄(V ∗[−1]), as vector spaces.

Proof. By Theorem 3.1.8 we know that for vector spaces L1, . . . , Lp, there is
a canonical isomorphism from L∗1 ⊗ · · · ⊗ L∗p to (L1 ⊗ · · · ⊗ Lp)

∗.
Since the symmetric algebra is a subalgebra of the tensor algebra this

result obviously implies that L∗1 ¯ · · · ¯ L∗p is isomorphic to (L1 ¯ · · · ¯
Lp)

∗, hence the result follows given that the derivation is defined as the
corresponding coderivation in the symmetric coalgebra.

Theorem 6.3.2. Let V be a graded finite dimensional vector space, then
there is a one-to-one correspondence between coderivations of degree k over
the symmetric coalgebra S̄c(V [1]) and derivations of degree k over the sym-
metric algebra S̄(V ∗[−1]).

Proof. By Theorem 4.2.3, CoDer(S̄c(V [1])) = Hom(S̄c(V [1]), V [1]) as vec-
tor spaces. Further, we know by Lemma 6.3.1 that S̄c(V [1]) is isomorphic
to S̄(V ∗[−1]) and as it is obvious that V [1] ' V ∗[−1], we can conclude that
Hom(S̄c(V [1]), V [1]) must be isomorphic to Hom(V ∗[−1], S̄(V ∗[−1])). Which
in turn is isomorphic to S̄(V ∗[−1]) by Theorem 4.1.8.

Letting the index shift into negatives when we do the dualisation, it is
clear that for D ∈ Hom(S̄c(V [1]), V [1]) and D∗ ∈ Hom(V ∗[−1], S̄(V ∗[−1])),
that |D| = |D∗| as the associated dual bases form the Kronecker delta δi

j =
d∗−i(dj), and therefore obviously are of degree 0.
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It now remains to show that Hom(V ∗[−1], S̄(V ∗[−1])) is isomorphic to
Der(S̄(V ∗[−1]) to prove the claim.

A derivation D ∈ Der(S̄(V ∗[−1]) can always be restricted to a function
D|V ∗[−1] : V ∗[−1]→ S̄(V ∗[−1]) ∈ Hom(V ∗[−1], S̄(V ∗[−1])). Conversely it is
clear that the non-restricted derivation D is fully described by the restriction
D|V ∗[−1], as all derivations D by definition recursively fulfill

D(a¯ b) = D(a)¯ b± a¯D(b).

Lemma 6.3.3. Let V be a graded finite dimensional vector space, and let
{xα}α∈I be a basis of its shifted dual V ∗[−1], then there is an isomorphism
of algebras S̄(V ∗[−1]) ' K[xα].

Proof. As {xα}α∈I is a basis of V ∗[−1], every element a ∈ S̄(V ∗[−1]) can be
expressed as

a =
∑

i

λix
α1 ¯ xα2 ¯ xα3 · · · ,

where λi are scalars in the base field V ∗[−1].

Further, the symmetric tensor product operates in the same manner as
the normal commutative product in a formal polynomial ring, hence it is
clear that if we just denote xα ¯ xβ by xαxβ it is possible to identify every
a ∈ S̄(V ∗[−1]) with an element in the formal polynomial ring K[xα].

Now we are ready to use the above results to show the geometrical inter-
pretation.

Theorem 6.3.4. An L∞-algebra over a finite dimensional vector space V
is isomorphic to the formal polynomial ring K[xα] together with a derivation

D =
∑

α∈I V α(x) ∂
∂xα that fulfills

∑
α,β∈I V α(x)∂V β(x)

∂xα = 0, |V α(x)| = |xα|+ 1

and | ∂
∂xα | = −|xα|.

Proof. It is well-known from the field of differential geometry that all deriva-
tions D′ of K[xα] must be on the form

D′ =
∑
α∈I

(−1)|x
α|V α(x)

∂

∂xα
,

where V α(x) (hereinafter also referred to as V α) is a polynomial over K.
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In a symmetric algebra A, a differential D : A→ A needs to fulfill D2 = 0,
that is D(Df ′) = 0 for all f ′ ∈ A. Now this condition translates in the formal
polynomial ring, and for an arbitrary f , to

D′2 = D′(D′f) = D′(
∑
α∈I1

(−1)|x
α|V α ∂f

∂xα
) =

∑

β∈I2

(−1)|x
β |V β ∂

∂xβ

(∑
α∈I1

(−1)|x
α|V α ∂f

∂xα

)
= 0,

where D′ : K[xα] → K[xα] is the corresponding function to the coderivation
D.

Applying product law of derivations,

∂

∂x
(fg) =

∂f

∂x
g + (−1)|x||f |f

∂g

∂x
,

this leaves us with,

∑

α∈I1,β∈I2

(−1)|x
α|+|xβ |V β(x)

(
∂V α(x)

∂xβ

∂f

∂xα
+ (−1)|V

α(x)|| ∂f
∂xα |V α(x)

∂2f

∂xβ∂xα

)
= 0.

Now, by the symmetry of the second derivation we may conduct the
derivation by xα or xβ in any order, given that we adjust the grading, that
is if we study an isolate part of the sum over the second term,

∑

α,β

V βV α ∂2f

∂xβ∂xα
=

1

2

∑

α,β

(V βV α ∂2f

∂xβ∂xα
+(−1)|V

β ||V α|+| ∂

∂xβ || ∂
∂xα |(V αV β ∂2f

∂xα∂xβ
)

Let r be the exponent of (−1), that is

r = |V β||V α|+ | ∂

∂xβ
|| ∂

∂xα
| = (|xα|+ 1)(|xβ|+ 1) + (−|xα|)(−|xβ|)

= = 2|xα||xβ|+ |xα|+ |xβ|+ 1.

As we can choose the order of the indices α and β we may choose them such
that |xα| = |xβ| and hence r ≡ 1 mod 2. If we now rewrite the expression
into two separate sums,

∑

α∈I1,β∈I2

(−1)|x
α|+|xβ |V β

(
∂V α

∂xβ

∂f

∂xα

)
+

+
∑

α∈I1,β∈I2

(−1)|x
α|+|xβ |1

2
V β

(∑

α,β

V βV α ∂2f

∂xβ∂xα
+ (−1)r(V βV α ∂2f

∂xβ∂xα
)

)
,
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it is due to the oddness of r clear that the second term in the outermost
summation will vanish.

It is therefore safe to ignore the last term in the initial expression, and
hence the following condition is sufficient to guarantee that D2 = 0,

∑

α,∈I1,β∈I2

(−1)|x
α|+|xβ |V β ∂V α

∂xβ
= 0,

and that the conditions on grading in turn implies that |D| = 1, as |V α| +
|∂V β(x)

∂xα | = 1.

Using the isomorphism in Lemma 6.3.3 it is now clear that K[xα] together
with the subset of derivations D′ circumscribed by the conditions above will
be exactly the differentials D in the symmetric algebra S̄(V ∗[−1]).

Finally, Lemma 6.3.1 gives the isomorphism S̄c(V [1]) ' S̄(V ∗[−1]) that
will take these differentials to the codifferential Q in the symmetric coalgebra
structure ((S̄c(V [1]), ∆), Q) which by Definition 6.1.1 is the L∞-algebra over
V .

6.4 Explicit construction of L∞-algebras

6.4.1 From the polynomial ring S2

Example 6.4.1. Consider the polynomial ring K[x, y], where |x| = 2 and
|y| = 3, and consider a function d : K[x, y] → K[x, y], such that d(x) = 0,
d(y) = x2 and |d| = 1.

Using Lemma 6.3.3 we have an isomorphism from K[x, y] to S̄V ∗[−1].
Let the isomorphism map x 7→ v∗1[−1] and y 7→ v∗2[−1], and the gradings are
preserved, that is |v∗1[−1]| = 2 and |v∗2[−1]| = 3, and v∗1[−1], v∗2[−1] spans
V ∗[−1].

Let the function d over the polynomial ring be transferred using the iso-
morphism in Lemma 6.3.3 into d̂ : S̄V ∗[−1]→ S̄V ∗[−1], it is then clear that
d̂ is a derivation over S̄V ∗[−1]. As d̂2 = 0 and |d̂| = 1 it is also clear that d̂
is a differential of degree 1 over S̄V ∗[−1].

Now, for the set of derivations over S̄V ∗[−1], Der(S̄V ∗[−1]), we know
from the definition of a derivation, such as d̂ (Definition 3.2.2) that d̂(a¯b) =
d̂(a) ¯ b + (−1)|a|a ¯ d̂(b), and hence by the obvious recursive argument all
values of d̂ are determined.
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The mapping of d therefore explicitly transforms into,

d̂ :=

{
v∗1[−1] 7→ 0
v∗2[−1] 7→ v∗1[−1]¯ v∗1[−1],

.

And, as d̂ is fully determined by the restriction of d̂|V ∗[−1], there is a
natural isomorphism from Der(S̄V ∗[−1]) to Hom(V ∗[−1], S̄V ∗[−1]). This
means that if we use the following list as the basis for SV ∗[−1]

e∗1 = v∗1[−1]
e∗2 = v∗2[−1]
e∗3 = v∗1[−1]¯ v∗1[−1]
e∗4 = v∗1[−1]¯ v∗2[−1]
e∗5 = v∗2[−1]¯ v∗2[−1]
e∗6 = v∗1[−1]¯ v∗1[−1]¯ v∗1[−1]
e∗7 = v∗1[−1]¯ v∗1[−1]¯ v∗2[−1]
e∗8 = v∗1[−1]¯ v∗2[−1]¯ v∗2[−1]
e∗9 = v∗2[−1]¯ v∗2[−1]¯ v∗2[−1]
e∗10 = v∗¯4

1 [−1]
...

then we can represent d̂ using the following matrix,

D∗ =

(
0 0 0 0 · · ·
0 0 1 0 · · ·

)
.

In order to continue the reasoning we need the following remark about
one of the basic theorem about duals.

Remark 6.4.2. It is well known that given a linear mapping between linear
spaces f : L → M there exist a dual mapping f ∗ : M∗ → L∗ that satisfies
the following equation,

(f ∗(m∗))(l) = m∗(f(l))

Let A be the matrix representing f , and let ~m∗ and~l denote the coordinate
vector representatives of m∗ and l. Now

m∗(f(l)) = ~m∗t(A~l)

and
(f ∗(m∗))(l) = (B ~m∗)t~l = ( ~m∗tBt)~l,

this implies by the uniqueness of f ∗ that A = Bt
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We may now use the Remark 6.4.2 and Lemma 6.3.1 to explicitly calculate
the dual of D∗, D ∈ Hom(S̄cV [1], V [1]) as D = D∗t. That is using the
corresponding system of bases for ScV [1] as we used for SV ∗[−1], we will
get,

D =




0 0
0 0
0 1
0 0
0 0
...

...




.

As we dualise the base elements in V ∗[1] the associated dual basis will
form the Kronecker delta v∗i [−1](vj[1]) = δi

j. As the Kronecker delta has
degree 0, this implies that |v1[1]| = −|v∗1[−1]| and |v2[1]| = −|v∗2[−1]|. We let
indices become negative in the dualised direct sum, i. e. if D∗ : V i → V i+1,
it will be dualised to D : V−i+1 ← V−i, and hence the degree of D will be
equal to the degree of D∗.

To continue the quest to explicitly construct an L∞-algebra out of the
original d over the polynomial ring, one may study the details of the proof of
Theorem 4.2.3, which gives an isomorphism between Hom(S̄cV [1], V [1]) and
CoDer(S̄cV [1]).

Looking closer at the proof of Theorem 4.2.3, it gives the explicit details
on how to map a set of mappings %n|L¯n : L¯n → L to a coderivator map
Q : S̄cL→ S̄cL.

Let Q ∈ Hom(S̄cV [1], V [1]) be the linear map determined by the matrix
D, the function will have the same degree, hence |Q| = 1 Splitting Q into the
restricted mappings Qi : L¯i → L. It is clear from the matrix that Qi = 0 if
i 6= 2, and that

Q2 : V [1]¯2 → V [1], Q2 :

{
λv1[1]¯ v1[1] → λv2[1][1] = v2[2]
else → 0

As Q2 is of degree 1 one may construct a Q̃ : V [1]¯2 → V [2], just by
internalising the grading.

Now applying the natural isomorphism,

V [1]¯n ' V ∧n[n], v1[1]¯· · ·¯vn[1] 7→ (−1)
Pn

i=0(n−i)|vi|+n(v1∧· · ·∧vn)[n],

between the exterior and symmetric algebra one gets the following function

µ2 : V ∧2 → V [2− 2] = V, µ2 :

{
λv1 ∧ v1 → λv2

else → 0
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As all Qi where i > 2 vanishes, the L∞ algebra constructed is a normal
graded Lie algebra, and the Lie bracket function is the Q2, that is, [v1, v1] =
v2, [v1, v2] = 0 and [v2, v2] = 0.

6.4.2 From the polynomial ring CP2

This explicit construction will follow the same path of execution as the pre-
vious one and will therefore not dwell on details in the same extent as the
first.

The polynomial ring in this example is K[x, y], where |x| = 2 and |y| =
5. This implies that y2 = 0, and the derivation d of degree 1 is therefore
determined by the following characteristics,

d :

{
x 7→ 0
y 7→ x3 .

Using the same steps and basis as in the previous example one will need
to construct a matrix describing the linear transformation D∗ : V [−1] →
SV ∗[−1] that corresponds to our initial d given above. Which is, by the
same kind of reasoning as in the previous example is,

D∗ =

(
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 1 0 0 · · ·

)

Now, once again using Remark 6.4.2 and Lemma 6.3.1, one may explicitly
calculate the dual of D∗, D ∈ Hom(S̄cV [1], V [1]) as D = D∗t. That is using
the corresponding system of bases as for SV ∗[−1],

D =




0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0
...

...




.

As in the first example most Qi will vanish for all i 6= 3, and

Q3 : V [1]¯3 → V [1], Q3 :

{
v1[1]¯ v1[1]¯ v1[1] → v2[1][1] = v2[2]
else → 0
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which translates via the natural isomorphism used in the previous example
to

µ3 : V ∧3 → V [2− 3] = V [−1], µ3 :

{
v1 ¯ v1 ¯ v1 → v2[−1]
else → 0

,

and the µi = 0 where i 6= 3. These µi is thereby an L∞-algebra over V .

6.4.3 From a slightly more complex polynomial ring

Once again this explicit construction is in most parts analog in execution to
the first one, and the redundant details has been left out of this construction.

The polynomial ring for this construction example is K[c1, c2, u, v], where
|c1| = 2, |c2| = 4, |u| = 5 and |v| = 7. This implies that u2 = v2 = 0. The
derivation d of degree 1 over the ring is determined by,

d :





c1 7→ 0
c2 7→ 0
u 7→ c3

1 − 2c1c2

v 7→ c2c
2
1 − c2

2

.

In order to construct the matrix for D∗ as in the examples above we need
to specify a basis for our V ∗[−1] and SV ∗[−1]. Let the basis for V ∗[−1] be
given by v∗1[−1], v∗2[−1], v∗3[−1], v∗4[−1] relating to the polynomial rings basis
as c1 7→ v∗1[−1], c2 7→ v∗2[−1], u 7→ v∗3[−1] and v 7→ v∗4[−1], and the basis for
SV ∗[−1] be,

e∗1 = v∗1[−1] e∗12 = v∗3[−1]¯ v∗4[−1]
e∗2 = v∗2[−1] e∗13 = v∗1[−1]¯ v∗1[−1]¯ v∗1[−1]
e∗3 = v∗3[−1] e∗14 = v∗1[−1]¯ v∗1[−1]¯ v∗2[−1]
e∗4 = v∗4[−1] e∗15 = v∗1[−1]¯ v∗1[−1]¯ v∗3[−1]
e∗5 = v∗1[−1]¯ v∗1[−1] e∗16 = v∗1[−1]¯ v∗1[−1]¯ v∗4[−1]
e∗6 = v∗1[−1]¯ v∗2[−1] e∗17 = v∗1[−1]¯ v∗2[−1]¯ v∗2[−1]
e∗7 = v∗1[−1]¯ v∗3[−1] e∗18 = v∗1[−1]¯ v∗2[−1]¯ v∗3[−1]
e∗8 = v∗1[−1]¯ v∗4[−1] e∗19 = v∗1[−1]¯ v∗2[−1]¯ v∗4[−1]
e∗9 = v∗2[−1]¯ v∗2[−1] e∗20 = v∗1[−1]¯ v∗3[−1]¯ v∗4[−1]
e∗10 = v∗2[−1]¯ v∗3[−1] e∗21 = v∗¯4

1 [−1]
e∗11 = v∗2[−1]¯ v∗4[−1] e∗22 = v∗1[−1]¯ v∗1[−1]¯ v∗1[−1]¯ v∗2[−1]

...

.

Now the linear mapping D∗ may be described using the following matrix,

D∗ =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 −2 0 0 0 0 0 0 1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 · · ·



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Using Remark 6.4.2 and Lemma 6.3.1, we can explicitly calculate the dual
of D∗, D ∈ Hom(S̄cV [1], V [1]) as D = D∗t.

This implies that we will have a function Q : ScV [1]→ ScV [1] such that
if we split it into Qi.

Then Qi = 0 for i 6= 2 and i 6= 3,

Q2 : V [1]¯2 → V [1], Q2 :





v1[1]¯ v2[1] → −2v3[1][1] = −2v3[2]
v2[1]¯ v2[1] → −v4[1][1] = −v3[2]
else → 0,

and

Q3 : V [1]¯3 → V [1], Q3 :





v1[1]¯ v1[1]¯ v1[1] → v3[1][1] = v3[2]
v1[1]¯ v1[1]¯ v2[1] → v4[1][1] = v4[2]
else → 0,

,

which in turn translates via the natural isomorphism to

µ2 : V ∧2 → V [2− 2] = V, µ2 :





v1 ∧ v2 → −2v3

v2 ∧ v2 → −v4

else → 0,

and

µ3 : V ∧3 → V [2− 3] = V [−1], µ3 :





v1 ∧ v1 ∧ v1 → v3[−1]
v1 ∧ v1 ∧ v2 → v4[−1]
else → 0,

.

The set of µi form the L∞-algebra over V , and as in the previous examples
the µi not explicitly given above vanishes for all input, which is easy to see
in the matrix D.
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