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Abstract

Torricelli’s law is often mentioned in the literature at the undergraduate
level. Because of its generality and elegance, it can be applied to a wide
range of outflow problems. However, in most contexts it is used only to
describe the flow out of containers with constant cross-sectional area. In
this thesis, the applications of Torricelli’s law are extended to hold for
almost any container of interest from a physical viewpoint.

In particular, we derive an ordinary differential equation that describes
the flow from arbitrary containers. The ODE is applied to a few inverse
problems, one of which involves finding the proper design for a water
clock. In addition, we derive and solve an integral equation concerning
flow rates by making use of the Laplace transform.

The ODE is also applied to a few optimal control problems, where
the objective is to find minimal emptying times. We use Pontryagin’s
minimum principle to find necessary conditions for optimality, and prove
that an optimal control is of the bang-bang type.
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1 Introduction

1.1 Inverse problems

Mathematics students at undergraduate level are frequently faced with direct
problems as part of the course work. These problems are commonly designed
to provide just enough information for the student to carry out a well defined
process yielding a unique solution. Unfortunately, the situation is often far more
complex in reality.

Any direct problem may be represented by an operator K modelling some
process of interest. In control theory, this operator is called an input-output
mapping. Along with the operator there is an input v in the domain of K with
a corresponding output w. This relationship is depicted in Figure 1. Because
K is a function, each input v in the domain of K yields a unique output w.
Moreover, if K is continuous, as will frequently be the case in this thesis, then
the output w depends continuously on v.

cause Model effect

v K w

input Process output

- -

Figure 1: A direct problem

To every direct problem of this kind, two corresponding inverse problems
arise naturally. One of them, known as the causation problem, consists of
determining the cause v given both the effect w and the model K. An example
of this kind that comes to mind is the problem of solving a linear system

Kv = w

for v, given that K is a finite dimensional linear operator. The other inverse
problem, the model identification problem, involves determining the operator K
given cause-effect pairs (v, w). In this context, some restrictions are generally
imposed on the model, so as to allow only models from a given class of models.

In the study of inverse problems, two issues are of particular interest. The
most immediate is the question of existence. For the causation problem, the
question is whether there is a cause v (of a given class) that produces an ob-
served effect w, for a certain model K. For the model identification problem
the question of interest would be: given a number of cause-effect pairs (v, w), is
there a model (in a given class) that can account for them? Uniqueness is also
of importance. Is it possible that two distinct causes produce the same effect?
Might different models account for the same cause-effect relationships?
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1.2 Torricelli’s law

A great deal of books on calculus at undergraduate level mention Torricelli’s
law at some point. Although this law arises mainly in fluid dynamics, there are
some aspects of it that should be of interest to any student in mathematics.
Beside the fact that it involves solving problems of physical nature, it is a good
example of how to use the method of separating variables in solving ordinary
differential equations (ODEs). Therefore, any mathematician should have come
across it at least once or twice.

Evangelista Torricelli was an Italian physicist and mathematician during the
17th century. Although his work has had a great impact on a wide variety of
fields in science, in this thesis we will be concerned with his achievements in
fluid dynamics.

In 1643, Torricelli presented his main theorem concerning fluid flow, most
commonly referred to simply as Torricelli’s law. This theorem provides an ele-
gant formula for the speed of a fluid flowing out of a tank through an opening
under the force of gravity. The derivation of the formula requires only basic
knowledge in physics. In fact, the simplicity of the theory behind the result
gives us the opportunity to present the necessary ideas in a straight-forward
manner.

Let us consider a tank of a given volume and height H initially filled with
fluid. Suppose a small hole is made in the bottom of the tank, causing an
outgoing flow. Consider a small amount of fluid with mass m flowing through
the hole. The fluid leaving the tank will cause a loss of mgH in potential energy
in the tank (g being the acceleration due to gravity). By the conservation law
of energy, this amount of energy is converted into kinetic energy of the fluid
leaving the tank. Hence, we have the relation

1
2
mv2 = mgH,

or equivalently,

v =
√

2gH, (1.1)

where v denotes the speed of the fluid flow.
This is Torricelli’s law in its natural form, which will be used in a number

of inverse problems concerning fluid flow. However, although expression (1.1)
holds in principle, the actual speed of the flow will be slightly less in practice,
depending on which fluid we are concerned with and how the flow is affected
by friction. In reality, the flow speed will actually be v = κ

√
2gH, for some

constant κ, constrained by 0 < κ < 1, depending on the situation. However,
these issues are beyond the scope of this thesis and will not be dealt with. For
generality, we will hence simply conclude that the flow speed is proportional to
the square root of the fluid level.

1.3 Motivation

As noted earlier, Torricelli’s law is often mentioned in literature at under-
graduate level. However, in most contexts, the law is applied exclusively to
efflux problems where the observed tank has constant cross-sectional area. This
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particular case is obviously of interest for various reasons, but constitutes only
a fraction of the applications made possible by the generality of Torricelli’s law.

Say for instance that we are interested in constructing a water clock, where
it is desirable to achieve a constant decrease of the water level in the tank. As
we shall see in the sequel, a tank with constant cross-sectional area will not do.
Hence, we must construct a tank, with a more complex shape, that produces
the desired flow.

In some cases, a certain behaviour of the flow is desired, such as in the water
clock problem. To achieve this, the option is either to alter the area of the
cross-section or that of the orifice; we are faced with an inverse problem. In
other cases, it is desirable to steer a process towards an (in some sense) optimal
behaviour. In this thesis, we will explore problems from both of these areas, all
stemming from Torricelli’s law.

1.4 Disposition

The thesis follows an application-driven approach. We begin with covering
some important properties of the Laplace transform, which is in many cases
an essential tool for solving differential and integral equations. Next, a brief
introduction to control theory is presented. This is followed by a selection of
important results from optimal control theory with emphasis on the minimum
principle.

In the second part of the thesis a few inverse problems concerning flow rates
are presented, one of which involves finding a proper design for a water clock.
Both the method of Laplace transformation as well as concepts from control
theory are applied here. Finally, we use optimal control theory to obtain a
minimal depletion time, i.e. emptying time, among all tanks that are of interest
from a physical viewpoint.
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2 Laplace transforms

The use of Laplace transforms is an essential tool for solving differential as well
as integral equations in many cases. In addition to several nice properties, the
key feature of the Laplace transform lies in the fact that it makes it possible
to transform linear differential and some integral equations into algebraic ones.
This will prove to be crucial later on, when we establish a solution to a classical
integral equation arising in an inverse problem stemming from Torricelli’s law.
For this purpose, it is necessary to provide some theory and results about the
Laplace transform.

2.1 Definition and existence

The Laplace transform 2.1.1. The Laplace transform of a function f(x),
defined on x ∈ [0,∞) is the function

L [f(x)] =
∫ ∞

0

e−sxf(x) dx = F (s).

Thus, the operator L acts on any function f(x) for which the integral exists,
and produces the Laplace transform depending on the parameter s. However,
it is not clear at first glance when this integral exists. Recall that the integral∫ ∞

0

f(x) dx

is defined as ∫ ∞

0

f(x) dx = lim
b→∞

∫ b

0

f(x) dx.

It is therefore reasonable to say that f(x) has a Laplace transform whenever
the limit

lim
b→∞

∫ b

0

e−sxf(x) dx

exists. Moreover, if we assume that f(x) is piecewise continuous, then the
existence (or non-existence) of its Laplace transform depends on the behaviour
of e−sxf(x) for large x. To guarantee that the integrand diminishes rapidly
enough for convergence, we shall further assume that f(x) is of exponential
order. This means that there are real positive constants M and c such that

|f(x)| ≤ Mecx. (2.1)

Thus, if f(x) satisfies (2.1), then we have∣∣e−sxf(x)
∣∣ ≤ Me−(s−c)x.

In addition, we note that

∫ ∞

0

∣∣e−sxf(x)
∣∣ dx ≤ M

∫ ∞

0

e−(s−c)x dx

=
M

s− c
,
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provided that s > c. Hence, the Laplace transform of f(x) converges absolutely
for all s > c, which implies that the Laplace transform converges itself. Under
the conditions that f(x) is piecewise continuous and of exponential order, we can
therefore guarantee that f(x) has a Laplace transform. However, it should be
pointed out that these are sufficient conditions, not necessary. Take for example
f(x) = x−1/2, which is discontinuous at x = 0 but nevertheless has a Laplace
transform, as will be shown later on.

2.2 Linearity, derivatives and integrals

As mentioned earlier, the Laplace transform is especially suited for dealing with
linear differential as well as some integral equations. To see why this is so,
consider the following simple consequences of the above definition concerning
linearity, derivatives and integrals:

L [αf(x) + βg(x)] =
∫ ∞

0

e−sx (αf(x) + βg(x)) dx

= α

∫ ∞

0

e−sxf(x) dx + β

∫ ∞

0

e−sxg(x) dx

= αL [f(x)] + βL [g(x)] ,

for all constants α and β. Hence, the Laplace transform is a linear operator.
Moreover,

L [f ′(x)] =
∫ ∞

0

e−sxf ′(x) dx

=
[
e−sxf(x)

]∞
0
−

∫ ∞

0

(−s)e−sxf(x) dx

= −f(0) + s

∫ ∞

0

e−sxf(x) dx

= s ·L [f(x)]− f(0)

by use of partial integration, and so,

L [f ′(x)] = s ·L [f(x)]− f(0). (2.2)

Next, let

f(x) =
∫ x

0

g(t) dt. (2.3)

Then by the fundamental theorem of calculus,

f ′(x) = g(x),

and so from (2.2) follows that L [f ′(x)] = s · L [f(x)] − f(0). But, clearly
f(0) = 0 according to (2.3), and thus, L [f(x)] = 1

sL [f ′(x)], which shows that

L

[∫ x

0

g(t) dt

]
=

1
s
L [g(x)] .
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2.3 The inverse Laplace transform and convolutions

In solving linear differential equations with the Laplace transform, the idea is
to apply it to both sides of the equation of interest to obtain a purely algebraic
equation. One can then express the Laplace transform of the unknown func-
tion in terms of the Laplace transforms of the known elements of the original
equation. This procedure results in an equation of the form

L [f(x)] = F (s),

where f(x) is the unknown function. When f(x) is continuous, the above equa-
tion is often written in the form

L −1 [F (s)] = f(x).

It is customary to call L −1 the inverse Laplace transformation, and to refer
to f(x) as the inverse Laplace transform of F (s). Hence, the inverse is used in
the last stage of solving the equation, yielding an expression of the unknown
function f(x) explicitly. This is exactly the procedure carried out when solving
an inverse problem including a differential or integral equation.

Having introduced the concept of the inverse, we are prepared to investigate
the following problem: if L [f(x)] = F (s) and L [g(x)] = G(s), what is the
inverse transform of F (s)G(s)?

To give an extensive answer to this question, we simply return to the defi-
nition, using dummy variables u and v in the integrals defining the transforms
to obtain

F (s)G(s) =
[∫ ∞

0

e−suf(u) du

] [∫ ∞

0

e−svg(v) dv

]
=

∫ ∞

0

∫ ∞

0

e−s(u+v)f(u)g(v) dudv

=
∫ ∞

0

[∫ ∞

0

e−s(u+v)f(u) du

]
g(v) dv,

where the domain of integration is the first quadrant (u ≥ 0, v ≥ 0) in the
uv-plane. We now introduce a new variable x in the inner integral of the last
expression by putting x = u + v, so that u = x− v and du = dx. This suggests
that

F (s)G(s) =
∫ ∞

0

[∫ ∞

v

e−sxf(x− v) dx

]
g(v) dv

=
∫ ∞

0

∫ ∞

v

e−sxf(x− v)g(v) dxdv.

This integration is extended over the first half of the first quadrant (x ≥ v) in
the xv-plane. By reversing the order of integration in the last expression, we
get
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F (s)G(s) =
∫ ∞

0

[∫ x

0

e−sxf(x− v)g(v) dv

]
dx

=
∫ ∞

0

e−sx

[∫ x

0

f(x− v)g(v) dv

]
dx

= L

[∫ x

0

f(x− t)g(t) dt

]
.

The integral in the last expression is commonly referred to as the convolution
of the functions f(x) and g(x). It can be regarded as a way of letting the function
f(x) ”blend into” the function g(x). The immediate consequence of the above
equation is the important fact that

L [f(x)]L [g(x)] = L

[∫ x

0

f(x− t)g(t) dt

]
, (2.4)

which is called the convolution theorem in the literature. It also follows that
the convolution of two functions is commutative,

f ∗ g = g ∗ f,

by setting y = x − t in the integral in (2.4). As we shall see, this result will
serve as the ideal tool for solving certain types of integral equations, common
in applications.
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3 Optimal control theory

3.1 A few words on control theory

Mathematical control theory is, roughly speaking, the area of applied mathe-
matics that deals with analysis and design of control systems. Control systems
arise frequently in engineering applications, which rely on control theory. This
theory is therefore incorporated in numerous modern devices, such as CD play-
ers, aircraft autopilots and robots, to name a few.

To control an object means to steer its behaviour to a desired state. For
example, an airline pilot relies on the autopilot to follow a desired route. To
achieve this, the autopilot must control several parts of the aircraft, including
the engines and wings. Obviously, the change of route can be achieved in many
ways, and some are more preferable than others. For instance, if maximum
acceleration is applied at some instant, the flight may not be satisfactory to the
passengers. There are clearly also physical limitations to the control, e.g. that
the engines have a certain capacity. In reality, both of these aspects must be
taken into account in finding a suitable control.

A further, but somewhat similar, example that illustrates these ideas is that
of landing a spacecraft on a planetary surface. Assume that the spacecraft is
at an altitude h from the surface at time t = 0, with initial downward velocity
v. For simplicity we assume that gravitational forces can be disregarded and
that we only consider vertical motion, upwards being the positive direction.
Moreover, let x1 denote the altitude, x2 velocity and u(t) the thrust applied by
the rocket motor, subject to some capacity |u(t)| ≤ k. The equations of motion
are

ẋ1 = x2, ẋ2 = u,

with initial conditions

x1(0) = h, x2(0) = v.

For a smooth landing at some time te, we require that

x1(te) = 0, x2(te) = 0.

The problem is thus to determine the control function u(t) so that both the
initial and terminal conditions of the state variables x1 and x2 are satisfied,
which is an objective at the core of control theory. As suggested above, this is
most likely achieved by a number of controls, and many times it is desirable to
choose one that in some sense optimizes the behaviour. The problem of finding
such a control will be studied later on, when we try to establish the shape of
a vessel that minimises the depletion time. So, without any further discussion
on the properties of control systems or even defining what they are, we attend
to the concept of optimality. All theory concerning control theory will be given
when necessary.

3.2 Performance indices

Much like the equations above, we will consider systems with a general set of n
nonlinear differential equations

8



ẋ(t) = f(x, u, t), (3.1)

where x ∈ Rn, subject to the initial condition

x(t0) = x0, (3.2)

where the components of f are continuous and satisfy standard conditions, such
as having continuous first partial derivatives so that the solution of (3.1) exists
and is unique for condition (3.2).

By choosing different control functions u(t), the system can be steered along
many different paths, not all of which are equally desirable. Suppose that it
is possible to measure the benefits associated with each path. Then we have
the means to find an optimal control among all valid, admissible, controls. For
this purpose, we introduce a performance index, or objective functional, a scalar
which provides a measure by which the performance of the cost of the system
can be judged.

It is understood that different performance indices are suitable in different
situations. For example, reverting to the problem given above, we might be
interested in minimising the total fuel consumption,∫ te

0

|u(t)| dt,

or, minimising the time of descent, ∫ te

0

dt,

of the spacecraft. In other cases, the total amount of control effort that can be
used to carry out a required task may be limited,∫ te

t0

q(x, u, t) dt = c,

where c is a given constant. This is an isoperimetric constraint. It can be dealt
with by defining a new variable

xn+1(t) =
∫ t

t0

q(x, u, s) ds,

so that

ẋn+1(t) = q(x, u, t). (3.3)

Then (3.3) is simply added to the original set of differential equations (3.1), and
the conditions

xn+1(t0) = 0, xn+1(te) = c,

are added to (3.2).
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3.3 The minimum principle

One convenient yet powerful way of dealing with a wide range of optimization
problems is to use the minimum principle, which provides necessary conditions
for optimality. Our objective is to derive these conditions, without presenting
any formal proof of the principle.

Much like before, we consider the system (3.1) and initial conditions (3.2)
along with a performance index

J(u) = Q[x(te), te] +
∫ te

t0

q(x, u, t) dt, (3.4)

where x ∈ Rn and u ∈ U ⊆ Rm, U being the set of admissible controls. Our
objective is to minimise this cost.

In realistic problems, the controls are often constrained in some way, typi-
cally by |ui(t)| ≤ ki, as will be the case in a problem proposed in the following
section. We will therefore take this into account throughout the derivation.
Moreover, we shall also assume that the functional J(u) is differentiable. Then
if u and u + δu are two admissible controls for which J is defined then

∆J = J(u + δu)− J(u) = δJ(u, δu) + j(u, δu)‖δu‖, (3.5)

where δJ is a linear function in δu and j(u, δu) → 0 as ‖δu‖ → 0, using some
suitable norm. Here, δJ is termed the variation in J corresponding to a variation
δu in u. Moreover, we say that the control u∗ is an extremal, and that J has
a relative minimum at u∗, if there exists an ε > 0 such that for all controls u
satisfying ‖u− u∗‖ < ε the difference J(u)− J(u∗) is nonnegative.

In the next theorem we revert briefly to the case when the controls are
unbounded.

Theorem 3.3.1. Assume there are no constraints on the control functions.
Then a necessary condition for u∗ to be an extremal is that δJ(u∗, δu) = 0.

We will not give any formal proof of this theorem. It is only stated to justify
the derivation of the following result:

Theorem 3.3.2. Assume the control functions are bounded. Then a necessary
condition for u∗ to be an extremal is that δJ(u∗, δu) ≥ 0.

It should be noted that we will only consider variations such that u + δu is
admissible and ‖δu‖ is sufficiently small so that the sign of ∆J is determined
by δJ in (3.5). This distinction will prove to be crucial to the derivation of the
theorem, for which we will present the fundamentals.

To begin with, recall that the control function u∗ minimises the functional
J if

∆J = J(u)− J(u∗) ≥ 0,

for all admissible controls u sufficiently close to u∗. If we let u = u∗ + δu, then
according to (3.5)

∆J(u∗, δu) = δJ(u∗, δu) + j(u∗, δu)‖δu‖.
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At this point, the assumption that the controls are constrained on their
magnitudes complicates the necessary steps considerably. To see why, assume
for now that the controls were unbounded. Then we could use the linearity of
δJ with respect to δu, together with the fact that δu can vary arbitrarily to
show that a necessary condition for u∗ to be an extremal control is that the
variation δJ(u∗, δu) must be zero for all admissible δu having sufficiently small
norm. However, since we are in fact requiring that the admissible controls are
bounded, δu may vary arbitrarily only if the extremal control is strictly within
the boundary during all times in the interval [t0, te]. If this is the case, then the
constraints do not effect the solution of the problem. If, however, an extremal
control attains a boundary during at least one subinterval [t1, t2] of the interval
[t0, te], then variations δû in an admissible control exist but its negatives (i.e.
−δû) are not admissible. If only these (admissible) variations are considered,
then a necessary condition for u∗ to minimise J is that δJ(u∗, δû) ≥ 0. On the
other hand, for variations δũ that are nonzero only for t outside the interval
[t1, t2], a necessary condition is that δJ(u∗, δũ) = 0, according to theorem 3.3.1.
So, considering all admissible variations with ‖u‖ small enough so that the sign
of ∆J is determined by δJ , we conclude that a necessary condition for u∗ to
minimise J is

δJ(u∗, δu) ≥ 0.

There is in fact a similar condition for minimum points in calculus. To
illustrate this, we consider a differentiable function f on [x0, x1]. Its differential
df is then the linear part of the increment ∆f . We consider only admissible
values of the increment ∆x, which are small enough so that the sign of ∆f is
determined by the sign of df , as before. If f has a relative minimum at the end
point x0, then df(x0,∆x) must be nonnegative. The same requirement must
hold for f(x1) to be a relative minimum. Thus, necessary conditions for f to
have relative minimum at the end points are

df(x0,∆x) ≥ 0, for admissible ∆x ≥ 0
df(x1,∆x) ≥ 0, for admissible ∆x ≤ 0

and a necessary condition for f to have a relative minimum at an interior point
x, x0 < x < x1, is

df(x,∆x) = 0.

These are in accordance with the necessary conditions for the control problem;

δJ(u∗, δu) ≥ 0,

if u∗ lies on the boundary during any portion of the time interval [t0, te], and

δJ(u∗, δu) = 0,

if u∗ lies within the boundary during the entire time interval [t0, te].
We are now ready to apply theorem 3.3.2 to our minimisation problem. We

will however consider an altered form of the performance index, namely
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Ĵ = Q [x(te), te] +
∫ te

t0

[q(x, u, t) + p′(f − ẋ)] dt,

where p is a vector of Lagrange multipliers p = [p1, . . . , pn]′. Note that this
performance index is chosen so as to take the constraints into account as well,
since ẋ = f(x, u, t).

The Hamiltonian function is introduced as

H(p, x, u, t) = q(x, u, t) + p′f(x, u, t)

to obtain

Ĵ = Q [x(te), te] +
∫ te

t0

[H− p′ẋ] dt.

Integrating the last term by parts then yields

Ĵ = Q [x(te), te]− [p′x]te

t0
+

∫ te

t0

[H+ (ṗ)′x] dt.

Assume that t0 and te are fixed and that u is differentiable on t0 ≤ t ≤ te.
The variation in Ĵ corresponding to a variation δu in u is

δĴ =
[(

∂Q

∂x
− p′

)
δx

]
t=te

+
∫ te

t0

[
∂H
∂x

δx +
∂H
∂u

δu + (ṗ)′ δx
]

dt, (3.6)

where δx is the variation in x in the differential equations (3.1) due to δu, and

∂H
∂x

=
[

∂H
∂x1

, . . . ,
∂H
∂xn

]
∂H
∂u

=
[

∂H
∂u1

, . . . ,
∂H
∂um

]
∂Q

∂x
=

[
∂Q

∂x1
, . . . ,

∂Q

∂xn

]

Moreover, since x(t0) is specified from the initial condition, (δx)t=t0
= 0 is

implied. Notably, if we choose p suitably, all terms involving δx are removed
from (3.6). Evidently, this happens if p satisfies the adjoint equations

ṗi = −∂H
∂xi

(3.7)

with corresponding terminal conditions

pi(te) =
(

∂Q

∂xi

)
t=te

, for all i = 1, . . . , n. (3.8)

If these conditions are met, then equation (3.6) reduces to

δĴ =
∫ te

t0

(
∂H
∂u

δu

)
dt.
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Recall that if H is differentiable, then

H(p, x, u + δu, t)−H(p, x, u, t) =
∂H
∂u

δu + %(u, δu)‖δu‖,

where %(u, δu) → 0 as ‖δu‖ → 0. Hence, the expression for δĴ can be replaced
by

δĴ(u, δu) =
∫ te

t0

[H(p, x, u + δu, t)−H(p, x, u, t)− %(u, δu)‖δu‖] dt,

so by theorem 3.3.2 a necessary condition for u = u∗ to be a minimising control
is that δĴ(u∗, δu) is nonnegative for all admissible variations δu. This in turn
implies that

H(p∗, x∗, u∗ + δu, t)−H(p∗, x∗, u∗, t)− %(u, δu)‖δu‖ ≥ 0.

But, if we continue to assume that ‖δu‖ is sufficiently small so that the sign of
∆H is not determined by it, then

H(p∗, x∗, u∗ + δu, t)−H(p∗, x∗, u∗, t) ≥ 0 (3.9)

is a necessary condition, for all admissible δu and all t ∈ [t0, te]. To see why
(3.9) must hold true in the entire time interval, suppose it did not hold in some
interval t1 ≤ t ≤ t2. Then, δĴ(u∗, δu) would become negative by choosing
δu = 0 for all t outside this interval. Hence, equation (3.9) states that u∗

minimises H, so we have established the following fundamental result:

Pontryagin’s minimum principle 3.3.3. Necessary conditions for u∗ to min-
imise (3.4) subject to (3.1) and (3.2) are that (3.7), (3.8) and (3.9) hold.

Remark 3.3.4. It should be pointed out that there are also means of deriving
this principle by using the well known Hamilton-Jacobi-Bellman equation. It is
obtained by introducing a value function V (x, t), which is the minimal future
cost from time t onwards, given that the system is in state x at time t. Then,
by using dynamic programming, one can show that a sufficient condition for
optimality is given by the following partial differential equation

∂V

∂t
(x, t) + inf

u∈U

[
q(x, u, t) +

∂V

∂x
(x, t)f(x, u, t)

]
= 0

with boundary condition V (x, te) = Q(x, te).
However, this approach requires stronger assumptions compared to the min-

imum principle with variational calculus. Notably, the HJB equation requires
that the value function has continuous partial derivatives in both x and t. An-
other drawback is that an explicit solution is often difficult to find, even implicit
ones using numerical procedures. This is the main reason for why the variational
calculus approach will be preferred in our study of optimization problems. On
the positive side, the HJB equation gives a sufficient condition for optimality
when the minimum principle only provides necessary conditions. Hence, we
must always remember to prove that a candidate solution in fact is an optimal
one when the minimum principle is used in favour of the HJB equation.
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4 Examples of inverse problems

In this section we will use Torricelli’s law to find a few inverse problems con-
cerning fluid flow. We begin with deriving an ODE that describes the efflux out
of a tank with a given shape. The generality of the equation makes it possible
to apply it to almost any container that is of interest from a physical viewpoint.
Next, we use this ODE to form a model identification problem, where the ob-
jective is to specify the geometry of a water clock. The second inverse problem,
a causation problem, is that of finding a tank that produces a desired flow rate
out of an irrigation canal.

4.1 The efflux equation

Let us consider a tank of volume V and height H initially filled with fluid.
Suppose a small hole with cross-sectional area a is made in the bottom of the
tank. Let A(h), 0 ≤ h ≤ H, be the area of the tank cross-section at height h.

Let h be the height of the fluid in the tank at time t. Moreover, let ∆h
denote the height drop during a small amount of time ∆t that elapses from the
moment t. Then the volume decrease ∆V is approximately A(h)∆h during this
period of time. If we let v(h) denote the speed of the outgoing flow at height
h, the amount of fluid leaving the tank during ∆t is approximately equal to
av(h)∆t. Combining these results, we conclude that A(h)∆h = −av(h)∆t. If
we let ∆t → 0, the relationship turns into the differential equation

A(h)
dh

dt
= −av(h).

Applying Torricelli’s law then yields

A(h)
dh

dt
= −aκ

√
2gh.

For convenience, we introduce a constant µ = aκ
√

2g, which gives

A(h)
dh

dt
= −µ

√
h. (4.1)

Since we assume that the initial height is H, the initial condition is h(0) = H.

Remark 4.1.1. There is a restriction on the model. Due to physical considera-
tions, equation (4.1) will not hold if a is large, because then one cannot ignore
the kinetic energy gained by water moving toward the hole inside the tank.
Therefore, we will assume that a is ”small” in relation to the cross-sectional
area, say A(h) > α, for all h ∈ [0,H], where α is some constant greater than
a. For a thorough study of this phenomenon, one should consult a textbook on
fluid dynamics. See for example [1].

Since we assume that the cross-sectional area is always positive, we can
rewrite the equation as

dh

dt
= −µ

√
h

A(h)
or,
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ẋ(t) = −µ

√
x(t)

u(x(t))

by using the standard notation from control theory (the state variable x being
the height and the control function u the cross-sectional area). By integrating
from zero to t, and noting that x(0) = H, the following equivalent integral
equation for x is obtained

x(t) = H − µ

∫ t

0

√
x(s)

u(x(s))
ds (4.2)

The equation has two aspects; the direct problem and the model identifica-
tion problem. The former involves solving for x(t) having u(x) specified, and the
latter determining u(x) by knowledge of a given behaviour x(t). In the sequel,
our concern is the model identification problem, where t can be regarded as the
input, x the output and u the input-output mapping.

The model identification problem evidently consists of solving a general non-
linear integral equation (4.2). Had the equation been linear in x(t) and u(t),
then we could have applied the Laplace transform to express u in terms of the
Laplace transform of x. However, there is no similar technique for nonlinear
problems and hence no way of finding u(x) for arbitrary x(t). In the following,
x(t) must therefore be specified explicitly in order to obtain the corresponding
input-output mapping u. An example of such a problem is dealt with next.

4.2 Designing a water clock

The water clock is, along with the sundial, probably the earliest time-measuring
apparatus. It was the most accurate and widely used timekeeping device in
Europe until it was replaced by the more accurate pendulum clock during the
17th century. However, the water clock is still used, but nowadays mainly for
its elegance and simplicity rather than its accuracy.

There have been numerous examples of different constructions of water clocks
over the years. What they all have in common, though, is that time is measured
by means of a (possibly regulated) flow of liquid into or out of a container. These
techniques can prove equally useful depending on the situation. However, we
will pay attention only to the latter of these two, i.e. the outflow type.

Before Torricelli, there was no obvious way of constructing water clocks of
outflow type, and one had to rely on other ideas. The Greeks, for instance, had
problems with the decrease of outflow speed; one of the immediate consequences
of Torricelli’s law. However, thanks to Torricelli, there were means to construct
an accurate water clock by specifying the shape of the vessel appropriately.

The objective here is to supply the mathematical model behind such a con-
struction. The key feature of the desired vessel is the requirement of constant
height decrease, i.e. that the height is linear in t. The next proposition contains
the solution to this problem:

Proposition 4.2.1. If x(t) = H − ct, for all t such that x(t) > 0 and some
constant c, then u(y) = µ

c

√
y solves (4.2).

Proof. By direct substitution into (4.2) we see that
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x(t) = H − µ

∫ t

0

√
x(s)

u(x(s))
ds

= H − µ

∫ t

0

c
√

x(s)
µ
√

x(s)
ds, x(s) > 0

= H − ct

Remark 4.2.2. The constant c is assumed to be some suitable positive number,
so that x(t) diminishes for increasing t in a desirable way. It must hence be
chosen in accordance with the size of the container.

Remark 4.2.3. Geometrically, the area function u corresponds to the container
obtained by revolving the curve y = mx4 around the y-axis in the xy-plane,
with m = (πc/µ)2. Symmetric shapes are most commonly used to design water
clocks, for both artistic and historical reasons, and it is therefore instructive to
point out this perspective of the problem.

4.3 Geometry via flow rates: an integral equation

Consider an irrigation canal of depth h. In the wall of the canal is a weir notch
fitted with a sluice gate that is symmetric with respect to a central vertical axis
through the gate, as in Figure 2. The shape of the notch is given by a function
x = u(y) as indicated in the figure. It is clear that the total rate of flow (i.e.
the volume of flow per unit time) through the notch depends on this shape.

h

6

6

-

y

x

earth

x = u(y) -

water

Figure 2: An irrigation canal

The relationship between the notch shape and the flow rate is obtained from
Torricelli’s law. If we consider a horizontal slab of water of thickness ∆y at
height y, then the volume of this slab passing through the notch per unit time
is

2u(y)∆y
√

2g (h− y).

Now, summing over all slabs and letting ∆y tend to zero, we find that the total
volume of flow per unit time through the notch, when the water level is h, is
given by

f(h) = 2
√

2g

∫ h

0

u(y)
√

h− y dy. (4.3)
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The inverse problem, which is a causation problem, is to determine the
geometry u having the flow rate f given. In this case, the function u should be
regarded as the input-output mapping, the height h the input and f the output.
Evidently, the problem involves the solution of the integral equation (4.3) that
comes in the form of a convolution. It is therefore especially suited for methods
involving Laplace transformation.

The problem was proposed by Brenke in [2] and illustrated by Groetsch in
[3]. As opposed to the former, Groetsch gives a solution to the integral equation
when the flow rate f is given explicitly. Brenke, on the other hand, presents
a solution for ”arbitrary” flow rates, and does so by transforming (4.3) into a
special case of Abel’s integral equation. In the following, we will merge the ideas
of Brenke and Groetsch to obtain a solution that holds in general, by applying
the Laplace transform directly to the integral equation. However, to understand
Brenke’s approach, we start off with a few words on Abel’s integral equation.

Abel’s integral equation is a special case of an integral equation in the form
of a convolution. It was studied extensively by Niels Henrik Abel during his
work on an inverse problem in pure mechanics. The generalized Abel’s integral
equation, which is an extended version of the original equation, reads

g(x) =
∫ x

0

1

(x− t)λ
u(t) dt, 0 < λ < 1

Evidently, this is a singular equation, since the denominator (x− t)λ is zero
for t = x. Moreover, it can be shown that derivation of (4.3) with respect to h
yields

f ′(h) =
√

2g

∫ h

0

u(y)√
h− y

dy, (4.4)

which is a special case of Abel’s integral equation (with λ = 1/2). At this
point, Brenke concludes that a solution of (4.4) is also a solution of the original
equation (4.3). However, this differentiation yields an improper integral (with
singularity at y = h). It is not clear, at first glance, whether or not this is a
valid operation. This may however be asserted under the assumption that the
derivative of u is continuous.

To see this, consider the right-hand side of (4.4). Using integration by parts,
we find that

∫ h

0

u(y)√
h− y

dy =
[
−2

√
h− y · u(y)

]h

0
−

∫ h

0

−2
√

h− y · u′(y) dy

= −2
(√

h− h · u(h)−
√

h · u(0)
)

+ 2
∫ h

0

u′(y)
√

h− y dy

= 2u(0)
√

h + 2
∫ h

0

u′(y)
√

h− y dy

= 2
∫ h

0

u′(y)
√

h− y dy,

upon using that u(0) = 0 is given by the geometrical setting. Thereby, we have
built up the power of (h− y) inside the integral sign. It is thus clear that if u′

is continuous on [0, h] then we can guarantee that the integral is nonsingular.

17



It is now time to return to the original equation (4.3) and try to solve it
directly by means of Laplace transforms. It should be noted that we will assume
that u is sufficiently smooth in [0, h], so that the original equation (4.3) is well
defined and that u has a Laplace transform. Before examining all the details
we begin with stating the solution to the problem as a proposition:

Proposition 4.3.1. The equation

f(h) = 2
√

2g

∫ h

0

u(y)
√

h− y dy

has a continuous solution

u(h) =
1

π
√

2g

∫ h

0

f ′′(y)√
h− y

dy

provided that f(x) is continuous and has finite first and second derivatives f ′(x)
and f ′′(x) with at most a finite number of discontinuities in the range of inte-
gration.

This statement could be proved by direct substitution. We will however carry
out the complete derivation of the solution to fully illustrate the use of Laplace
transformation. So, following standard procedure, we begin with applying the
Laplace transform to both sides of the equation:

L [f(h)] = 2
√

2gL

[∫ h

0

u(y)
√

h− y dy

]
which comes in the form of a convolution. Hence,

L [f(h)] = 2
√

2g
(
L [u(h)] ·L

[√
h
])

by use of the convolution theorem. Next, we need the Laplace transform of
√

x.
The required calculations are however quite cumbersome to carry out in detail
and are therefore enclosed as a proposition.

Proposition 4.3.2. The Laplace transform of
√

x is given by

L
[√

x
]

=
√

π

2
s−3/2, s > 0

Proof. By definition, we have that

L
[√

x
]

=
∫ ∞

0

e−sx
√

x dx

We make the substitution u =
√

sx, such that x = u2/s and dx = 2u/s. Noting
that the range of integration is unchanged, the integral becomes∫ ∞

0

e−u2 u√
s

2u

s
du =

1
s3/2

∫ ∞

0

u · 2ue−u2
du

By use of partial integration we find that
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L
[√

x
]

=
1

s3/2

([
u

(
−e−u2

)]∞
0
−

∫ ∞

0

−e−u2
du

)
=

1
s3/2

([
−ue−u2

]∞
0

+
∫ ∞

0

e−u2
du

)
=

1
s3/2

∫ ∞

0

e−u2
du

=
1

2s3/2

∫ ∞

−∞
e−u2

du,

since the integrand is an even function. It can be shown by elementary calculus
that the integral in the last stage equals

√
π, and thus L [

√
x] =

√
π

2 s−3/2.

Using this result and rearranging the equation gives

L [u(h)] =
1

2
√

2g

(
2√
π

s3/2 ·L [f(h)]
)

=
1√
2gπ

s−1/2
(
s2 ·L [f(h)]

)
(4.5)

The reason for rewriting the equation in this way is because there is no
inverse Laplace transform of s3/2 in explicit form. We will instead try to make
something useful of the expression in brackets in the last expression. We have
that

s2 ·L [f(x)] = s2

∫ ∞

0

e−sxf(x) dx

= s

∫ ∞

0

se−sxf(x) dx

= s

([
−e−sxf(x)

]∞
0
−

∫ ∞

0

−e−sxf ′(x) dx

)
= s

(
−f(0) +

∫ ∞

0

e−sxf ′(x) dx

)
= −sf(0) + s

∫ ∞

0

e−sxf ′(x) dx

= −sf(0) + sL [f ′(x)]
= −sf(0) + f ′(0) + L [f ′′(x)] ,

by use of repeated partial integration. From equation (4.3) follows directly that
f(0) = 0. A similar argument can be given about f ′(0) by virtue of (4.4), so
f ′(0) = 0 as well. Inserting these results into (4.5) thus yields

L [u(h)] =
1√
2gπ

s−1/2 ·L [f ′′(x)] . (4.6)

To find u explicitly we need the inverse Laplace transform of s−1/2. It is
established in the following proposition:
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Proposition 4.3.3. The inverse Laplace transform of s−1/2 is given by

L −1[s−1/2] =
1√
π

x−1/2, x > 0

Proof. The inverse can be found by using the fact that the inverse Laplace
transform of s−3/2 is known. For this purpose, let g(x) = L −1

[
s−1/2

]
. We

then have the relation ∫ ∞

0

e−sxg(x) dx = s−1/2.

Let G be a primitive function of g. Then, by partial integration

[
e−sxG(x)

]∞
0

+ s

∫ ∞

0

e−sxG(x) dx.

Now, if G(x) is of exponential order, then

s

∫ ∞

0

e−sxG(x) dx = s−1/2,

or equivalently, ∫ ∞

0

e−sxG(x) dx = s−3/2.

From proposition 4.3.2 follows that L [
√

x] =
√

π
2 s−3/2, and thus

L [G(x)] =
2√
π

L
[√

x
]
.

This implies that G(x) = 2√
π

√
x. Finally, since g(x) = G′(x), we find that

g(x) =
1√
π

x−1/2,

provided that x > 0.

Finally, inserting into (4.6) yields

L [u(h)] =
1√
2gπ

L

[
1√
π

x−1/2

]
·L [f ′′(x)]

=
1

π
√

2g
L

[
x−1/2

]
·L [f ′′(x)]

By again invoking the convolution theorem and applying the inverse Laplace
transform yields the continuous solution

u(h) =
1

π
√

2g

∫ h

0

f ′′(y)√
h− y

dy.
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Remark 4.3.4. It should be noted that we have assumed that f is twice dif-
ferentiable and that its derivatives are sufficiently smooth and have Laplace
transforms. Moreover, we have also made the assumption that the Laplace
transform of x−1/2 exists, without argument. As noted earlier, this is not an
obvious conclusion since it has a discontinuity at x = 0, and the corresponding
Laplace transform therefore includes an improper integral. However, this can
be remedied by partial integration,

∫ ∞

0

e−sxx−1/2 dx =
[
2e−sx

√
x
]∞
0

+ 2s

∫ ∞

0

e−sx
√

x dx

= 2s ·L
[√

x
]
,

which is well defined.
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5 The optimal depletion time

In earlier sections, we have seen that the flow speed out of a container depends
on its shape and the initial volume of fluid. Hence, there is reason to believe
that the depletion time, i.e. the time it takes to empty a given container, is
closely connected with these parameters as well.

In the following, we seek a theoretical minimum of the depletion time when
the observed container has constant cross-sectional area and when the area may
vary, respectively. In both cases it is imperative that the initial volume of fluid
is the same, as well as the size of the exit hole, so as to have the possibility to
compare the efficiency of different methods.

5.1 Problem specifications

We begin by defining the optimization problem. First of all, an expression for
the depletion time is needed. It can be obtained from the efflux equation (4.1)

A(h)
dh

dt
= −µ

√
h.

Since this is an autonomous ODE (with no explicit t dependence) the method
of separating variables can be used to obtain an implicit solution∫ h

h0

A(s)√
s

ds =
∫ t

t0

−µdu.

Noting that h(0) = H then yields∫ H

h

A(s)√
s

ds = µt.

Moreover, if the depletion time is denoted by T , we have the boundary condition
h(T ) = 0. Thus, ∫ H

0

A(s)√
s

ds = µT,

or equivalently,

T =
1
µ

∫ H

0

A(s)√
s

ds.

However, the integral has evidently a singularity at s = 0, so it is not obvious
if this is well defined. To avoid dealing with this singularity, we shall instead
consider the limit

T = lim
ε→0+

1
µ

∫ H

ε

A(s)√
s

ds.

Since we require that the initial volume is constant, an expression for the
volume of any given container filled to a height h is also of interest. Because
A(x) is the cross-sectional area at height x, the volume is given by

V (h) =
∫ h

0

A(s) ds, (5.1)
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for any tank, assuming that A is at least piecewise continuous on [0,H].
Now, suppose that the initial volume is V0, for some positive constant. We

can then directly see from expression (5.1) that V (H) = V0 is a boundary
condition. This is in fact an isoperimetric constraint. It also follows that an
additional boundary condition V (0) = 0. Thus, upon differentiation of (5.1) we
obtain the problem of minimising

T = lim
ε→0+

1
µ

∫ H

ε

A(s)√
s

ds

subject to  V ′(h) = A(h)
limε→0+ V (ε) = 0
V (H) = V0

that holds for any tank with piecewise continuous area function. The reason for
including the limit in the constraints is to avoid ambiguity in the calculations,
although (5.1) is perfectly well defined. With this extension, the problem may
be regarded as optimization over [ε,H] and then taking a limit.

If the volume V is regarded as the state equation and the cross-sectional
area A is regarded as the control function, then the problem can be formulated
as an optimal control problem in x and u as

T ∗ = min lim
ε→0+

1
µ

∫ H

ε

u(t)√
t

dt

subject to  ẋ(t) = u(t)
limε→0+ x(ε) = 0
x(H) = V0

(5.2)

using standard notation from control theory. This will prove convenient.
Moreover, as noted in remark 4.1.1, we must see to it that the cross-sectional

area is large in comparison to the exit hole. On the other hand, we are not
interested in tanks of infinite range and should therefore also put an upper
bound on the size of the tank. It is hence reasonable to restrict this study solely
to tanks with α ≤ A ≤ β, for some suitable constants α > a and β < ∞.
Consequently, the initial height H must be chosen such that αH ≤ V0 ≤ βH.

5.2 Constant cross-sectional area

Given the general specifications of the problem, we can easily transform this to
hold in particular for tanks with constant cross-sectional area. Using u(t) = c,
for some positive constant c ∈ [α, β], we obtain the optimization problem

T ∗c = min lim
ε→0+

1
µ

∫ H

ε

c√
s

ds (5.3)

subject to
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 ẋ(t) = c, α ≤ c ≤ β
limε→0+ x(ε) = 0
x(H) = V0

We can directly see that the constraints are equivalent to the relationship

lim
ε→0+

c (H − ε) = V0,

cH = V0 (5.4)

The problem can readily be solved without the methods of optimal control
theory. We begin by computing the integral in (5.3),

lim
ε→0+

1
µ

∫ H

ε

c√
s

ds = lim
ε→0+

c

µ

[
2
√

s
]H

ε

= lim
ε→0+

2c

µ

(√
H −

√
ε
)

=
2c

µ

√
H

Finally, using (5.4) yields

Tc =
2c

µ

√
V0

c
=

2
µ

√
V0c (5.5)

Clearly, this expression is minimal when c = α (and maximal when c = β,
conversely). Hence, the minimal depletion time is given by

T ∗c =
2
µ

√
V0α, (5.6)

and is achieved when the cross-sectional area is α.

5.3 The general case

We now turn to the problem of finding the minimal depletion time for vessels
of arbitrary shape. By this we mean vessels with cross-sectional areas that are
constrained by α ≤ A(h) ≤ β in [0,H].

A similar problem was proposed by Hanin in [4], who considered the pos-
sibility of finding a minimal depletion time for symmetric vessels. However, in
the problem domain there were no restrictions given on the cross-sectional area,
and therefore the depletion time could become arbitrarily small. To see this, let
for example α tend to zero in expression (5.6). There are a few drawbacks with
this approach. To begin with, if the cross-sectional area is allowed to become
arbitrarily small, then the fluid flow cannot be modelled by means of Torricelli’s
law, for reasons already mentioned. Moreover, if we let α tend to zero, then the
initial height H must tend to infinity, which is hardly realistic.

We will therefore restrict our attention solely to the set of admissible controls,
U , consisting of all piecewise continuous functions on [0,H] that take on values
in the control region [α, β], for some fixed constant H in [V0/β, V0/α].
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We will use the minimum principle to find a solution. The objective func-
tional to be minimised is

T (u) = lim
ε→0+

1
µ

∫ H

ε

u(t)√
t

dt, u ∈ U (5.7)

subject to the state equation, initial and terminal conditions according to (5.2).
This should be regarded as optimization over [ε,H] and then taking a limit, as
noted earlier.

Notably, the objective functional is time-varying, since it depends explicitly
on t. Moreover, since there is one system equation ẋ = u(t), only one Lagrange
multiplier is necessary to incorporate in the Hamiltonian. Thus,

H(p, x, u, t) = p(t)u(t) + u(t)/
√

t

= u(t)
(

p(t) +
1√
t

)
According to the necessary conditions of optimality in the minimum princi-

ple, an optimal control u∗(t) must minimise the Hamiltonian. Since this function
is linear in u, we see directly that the minimising argument is

u∗(t) =
{

α, if p∗(t) < 1/
√

t

β, if p∗(t) ≥ 1/
√

t

along with the adjoint equation

ṗ∗(t) = −∂H
∂x

= 0.

From this equation follows that p∗(t) = c1, for some constant c1. Because there
is no function outside the integral in our objective functional (5.7), condition
(3.8) vanishes in the minimum principle and does not provide any terminal
condition for p∗. Hence, our conclusion so far is that the optimal control is
given by

u∗(t) =
{

α, if ε ≤ t < 1/c2
1

β, if 1/c2
1 ≤ t ≤ H

which is clearly well defined regardless of the value of c1. An optimal control like
this one is known as a bang-bang control, since the control alternates between
extremes, in this case between α and β.

The optimal control changes values at the switching point ts = 1/c2
1. This

is uniquely determined by the terminal condition in (5.2), which implies that

lim
ε→0+

∫ H

ε

u∗(t) dt = V0.

Moreover, there can only be one switching time that satisfies this condition,
since u∗(t) is piecewise constant. So,
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V0 = lim
ε→0+

∫ H

ε

u∗(t) dt

= lim
ε→0+

∫ ts

ε

α dt +
∫ H

ts

β dt

= lim
ε→0+

α (ts − ε) + β (H − ts)

= αts + β (H − ts)

Hence, ts = (βH − V0) / (β − α). Reverting to the original notations, the opti-
mal area function is thus

A(h) =
{

α, if 0 ≤ h < ts
β, if ts ≤ h ≤ H

and the minimal depletion time is

T ∗g =
2
µ

(
β
√

H −
√

βH − V0

√
β − α

)
. (5.8)

This is well defined since β is the maximal cross-sectional area allowed, and it
is thus understood that βH ≥ V0.

5.4 Verification of optimality

As noted earlier, the minimum principle provides only necessary conditions for
optimality. To show that our bang-bang control is in fact an optimal control, we
need sufficient conditions. The HJB equation would have provided these unless
the control function had been discontinuous. Instead we must use a different
approach to show that the bang-bang control is optimal. This is provided by
the following lemma:

Sufficient conditions for optimality 5.4.1. Consider the problem of mini-
mising ∫ te

t0

q(x(t), u(t)) dt (5.9)

subject to

ẋ = f(x(t), u(t)), x(t0) = x0, x(te) = xe (5.10)

where u belongs to the set of admissible controls U , here the set of bounded,
piecewise continuous functions defined on a bounded interval. Further, let X be
the set of initial states from which the terminal state xe is reachable.

Let u∗(t) be a bang-bang control with one switching point ts, and let x∗(t),
t0 ≤ t ≤ te, be the corresponding solution. Then, u∗(t) is optimal with respect
to all the admissible controls u(t) with corresponding solutions x(t), t0 ≤ t ≤ te,
such that x(t0) = x0, x(te) = xe and x(t) ∈ X, for all t ∈ (t0, te), if there exists
a piecewise continuously differentiable function V ∗ on X such that

(i) q(x∗(t), u∗(t)) + grad V ∗(x∗(t)) · f(x∗(t), u∗(t)) = 0, for all t ∈ [t0, te)
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(ii) q(x, u) + grad V ∗(x) · f(x, u) ≥ 0, for all u ∈ U , x ∈ X

Proof. Suppose u∗(t) is a bang-bang control and that V ∗(x) and the gradient
of V ∗(x) are discontinuous at x(ts) = xs. Then there are functions V ∗

1 (x) and
V ∗

2 (x) on X with values in R such that

V ∗(x) =
{

V ∗
1 (x(t)), t0 ≤ t < ts

V ∗
2 (x(t)), ts ≤ t ≤ te

and v∗1 and v∗2 on X with values in R2 such that

grad V ∗(x) =
{

v∗1(x(t)), t0 ≤ t < ts
v∗2(x(t)), ts ≤ t ≤ te

Now, define

I1 =
∫ xe

x0

grad V ∗(x) dx

=
∫ xs

x0

v∗1(x) dx +
∫ xe

xs

v∗2(x) dx

= V ∗
1 (xs)− V ∗

1 (x0) + V ∗
2 (xe)− V ∗

2 (xs) (5.11)

By (i) of the lemma, together with (5.10) and (5.11),

I2 =
∫ te

t0

q(x∗(t), u∗(t)) dt

=
∫ te

t0

−grad V ∗(x∗(t)) · f(x∗(t), u∗(t)) dt

=
∫ te

t0

−grad V ∗(x∗(t)) · dx∗

dt
dt

=
∫ xe

x0

−grad V ∗(x∗) dx∗

= −I1

Now, consider the difference in the value of the performance index,

∆ =
∫ te

t0

q(x(t), u(t)) dt−
∫ te

t0

q(x∗(t), u∗(t)) dt (5.12)

We may add the null term I1 + I2 to the right-hand side of (5.12) without
changing its value. In view of (5.10),

I1 =
∫ te

t0

grad V ∗(x(t)) · f(x(t), u(t)) dt,

so that
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∆ =
∫ te

t0

q(x(t), u(t)) dt−
∫ te

t0

q(x∗(t), u∗(t)) dt + I1 + I2

=
∫ te

t0

[q(x(t), u(t)) + grad V ∗(x(t)) · f(x(t), u(t))] dt−
∫ te

t0

q(x∗(t), u∗(t)) dt + I2

=
∫ te

t0

[q(x(t), u(t)) + grad V ∗(x(t)) · f(x(t), u(t))] dt

Thus, by (ii) of the lemma, we have

∆ ≥ 0

which concludes the proof.

This is a special case of a sufficiency theorem presented in [5]. It is adjusted
especially to meet the request for sufficient optimality conditions for problems
with bang-bang control. Note that we have assumed that there was only a
single switching point. This can be extended to hold for controls with several
switching points, but this will however complicate the calculations considerably.
Another restriction is that the lemma is applicable only to autonomous prob-
lems, without explicit t dependence. It can however easily be extended to hold
for nonautonomous ones, by introducing an additional state variable.

In our case we let x2 = t. Then we obtain the equivalent problem of mini-
mising

lim
ε→0+

1
µ

∫ H

ε

u(t)√
x2(t)

dt

subject to 
ẋ =

[
u(t) 1

]′
limε→0+ x(ε) =

[
0 0

]′
x(H) =

[
V0 H

]′
If u∗(t) is the control defined above, then the corresponding solution is

x∗(t) =

{ [
αt t

]′
, ε ≤ t < ts[

βt + (α− β) ts t
]′

, ts ≤ t ≤ H

So, u∗(t) is the optimal control according to the lemma if there is a function
V ∗ such that

(i) u∗(t)/
√

t + grad V ∗(x∗(t)) ·
[
u∗(t) 1

]′ = 0, for all t ∈ [ε,H)

(ii) u/
√

x2 + grad V ∗(x∗) ·
[
u 1

]′ ≥ 0, for all u ∈ U , x ∈ X

It follows from condition (i) that{
α/
√

t + grad V ∗(x∗(t)) ·
[
α 1

]′ = 0, ε ≤ t < ts
β/
√

t + grad V ∗(x∗(t)) ·
[
β 1

]′ = 0, ts ≤ t < H
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which is evidently equivalent to the set of equations{
α/
√

t + V̇ ∗(x∗(t)) = 0, ε ≤ t < ts
β/
√

t + V̇ ∗(x∗(t)) = 0, ts ≤ t < H

Hence, V ∗ must satisfy V ∗(x∗(t)) = −2α
√

t + c2 on ε ≤ t < ts and V ∗(x∗(t)) =
−2β

√
t + c2 on ts ≤ t < H . Notably, it has a discontinuity at t = ts. We must

also take condition (ii) into account when choosing V ∗. Since x2 = t, it seems
reasonable to try

V ∗(x) =
{
−2α

√
x2, ε ≤ t < ts

−2β
√

x2, ts ≤ t < H

It has already been shown that this choice holds for (i), so it remains to be
seen that condition (ii) holds. To begin with, when grad V ∗(x) =

[
0 −α/

√
x2

]
we must show that

u
√

x2
− α
√

x2
≥ 0, for all u ∈ U , x ∈ X

Note first that this is well defined since x2 = t > ε. Moreover, the inequality
must hold since u ≥ α, for all u ∈ U . Finally, when grad V ∗(x) =

[
0 −β/

√
x2

]
we must show that

u
√

x2
− β
√

x2
≥ 0, for all u ∈ U , x ∈ X

But it can easily be seen that u = β is the only admissible control that transfers
the state variable from xs to xe, so this expression must be zero, and we have
thus shown that u∗ in fact is an optimal control.

5.5 A comparison

It should be noted that there is a conceptually important difference between
the constant area case and the general case. In the former, the initial height
H is allowed to vary in order to find the minimal depletion time for a specific
(fixed) initial volume V0. In the latter, both H and V0 are fixed, and the optimal
depletion time is then determined by these parameters, as seen in (5.8). Since
these methods rely on different assumptions, it is crucial to keep both H and
V0 fixed to compare the efficiency of the methods.

We must first point out that it is still required that H is restricted by V0/β ≤
H ≤ V0/α. So, if both H and V0 are fixed, then the constant cross-sectional
area is uniquely determined, c = V0/H, as well as the depletion time,

Tc =
2
µ

V0√
H

,

in accordance with (5.5). Then the improvement is

∆T = Tc − T ∗g =
2
µ

V0√
H
− 2

µ

(
β
√

H −
√

βH − V0

√
β − α

)
=

2
µ

(
V0√
H
− β

√
H +

√
βH − V0

√
β − α

)
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A plot of the improvement in depletion time as the initial height H increases
is included below (Figure 3). The curve is based on generic values α = 0.5,
β = 10 and V0 = 10 as H is taken over the interval [1, 20].

An additional plot shows the height decrease over time for both the constant
cross-sectional area case and when optimal control is applied (Figure 4). In the
former case, the cross-sectional area c is set to the mean of alfa and beta. The
graphs are otherwise based on parameter values α = 0.5, β = 10, V0 = 10 as
above, consequently yielding H ≈ 1.9.
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Figure 3: Depletion time improvement
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Figure 4: Outflow in the optimal versus the constant area case

31



6 Conclusion

We have studied outflow problems derived from Torricelli’s law with emphasis
on inverse problems and optimal control. In particular, we have shown that the
outflow from arbitrary containers can be described by an autonomous nonlinear
ODE. When the shape of the container is given by the curve y = cx4 revolved
around the y-axis, a proper design for a water clock is obtained, producing
constant height decrease. An additional problem of interest, that is closely
related to this one, but has not been addressed in this thesis, is to what extent
the outflow can be controlled by choosing the cross-sectional area appropriately.

Moreover, we have derived and solved an inverse problem involving an inte-
gral equation that comes in the form of a convolution. We have shown that the
solution is also given by a convolution, and that it can be obtained by applying
the Laplace transform to the equation.

In the final section of the thesis, we have used the above ODE to derive
two optimal control problems, which both involve finding minimal depletion
times for arbitrary containers with known initial volume. In the first of these
problems, we found that the minimum is attained if the container has minimal
cross-sectional area. In the latter problem, where the initial height of the fluid
is also specified, we found that the optimum is given by applying a bang-bang
control. When comparing the methods (for a given fixed initial height), we found
that there is a considerable difference between their performance. In particular,
the bang-bang control resulted in a significant improvement compared to the
method using a constant control.
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