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Abstract

In 1950, in Medd. Lunds Univ. Mat. Sem., Lannér classified Coxeter groups whose
Coxeter diagram without one vertex is a disjoint union of Coxeter diagrams of spherical
type. In 1980s, Vinberg and Shwartsman classified Coxeter groups of quasi-Lannér type
whose Coxeter diagram without one vertex is a disjoint union of Coxeter diagrams of
spherical or Euclidean type.

Solomon proved (1966) that the growth function of any Coxeter group is a rational
function. The growth functions of Coxeter groups of spherical or Euclidean type are
known. Here we give the explicit expressions of the growth functions of (quasi-)Lannér
groups. For the Lannér groups with 4 and 5 generators, these series are known thanks
to Worthington (1988) but, for 3 of 5 cases of the Lannér groups with 5 generators, his
results are wrong. For quasi-Lannér groups, our results are new as well as corrected
answers for Lannér groups.

We offer the virgin form of the growth function as a reliable tool for verification of
results; it also helps to get an explicit expression of the zeros of the growth function.

The non-real poles of the growth functions of quasi-Lannér groups lie in a narrow
annulus, as in the famous Eneström theorem, although the coefficients of the denomi-
nators of the growth functions do not satisfy conditions of Eneström’s theorem.
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Preface

The values of the polynomial n2 + n + 41 are
primes for integers n = 0 through 39. This fact
is, however, insufficient to make a tempting
claim that the values of this polynomial are
prime numbers at all integers. It suffices to set
n = 41, which is obvious, or n = 40 if one is
not observant but patient and perseverant.

A well-known Euler’s example ([FGI]).

D. Leites told me the above story in May 2008 as a warning, when I came to him and
asked him to be my advisor of an examentsarbete. He gave me the translation into Russian
of a book by Bourbaki [Bou] (published in 1968) where a certain statement is formulated
as an exercise true for ANY Coxeter group but in an implicit form, and asked to learn the
definitions and rewrite the recurrent expression explicitly, having added “Although it is not
required from you, it is more interesting to get — on any level — new results than just verify
old ones: life is too short”.

Then, together with him and his friends, we started to skim through the literature and
ask experts for advice. Vinberg told us that in Lund, in 1950, Lannér classified the
compact “hyperbolic” Coxeter groups; in 1970s, Vinberg classified the non-compact
(quasi-Lannér) ones.

In what follows, we present the results of our preliminary investigations (a more detailed
text, a joint work with Leites and Stekolshchik, is in preparation for publication) — what
one can add in Stockholm to Lund’s discoveries 59 years after. Our result resembles a dis-
covery of yet another Swedish mathematician, Eneström, 1893. W h a t a r e t h e
c o n d i t i o n s o n t h e c o e f f i c i e n t s o f t h e r e a l p o l y n o m i a l i n o r d e r
f o r i t s r o o t s t o b e h a v e a s t h e p o l e s o f t h e g r o w t h f u n c t i o n s o f
q u a s i - L a n n é r g r o u p s ? This is a topic for future studies.

The mistakes I made at first, and the mistakes of different authors found in the literature,
made the verification of the results our main concern. The results were double-checked by
two independent codes.

Acknowledgements. I am thankful to D. Leites, who raised the problem, for encour-
agement and help, to R. Stekolshchik for useful references, questions, verification and other
help, to A. Chapovalov and D. Chapovalov for their help with the computer program [DCh],
and to V. Molotkov who verified the poles by means of another code, I am also thankful to
R. Grigorchuk, B. Okun, O. Shwartsman, and É. Vinberg for helpful comments in answer
to Leites’s questions.



1 Introduction

I n t h i s w o r k I w i l l n o t g o i n t o g e o m e t r y o f w h i c h I k n o w n o t h -
i n g a n d o n l y c o n s i d e r a l g e b r a i c a s p e c t s o f t h e p r o b l e m ; g e o -
m e t r i c i m a g e s a n d t e r m s a p p e a r o n l y f o r s m o o t h n e s s o f o u r p r e -
s e n t a t i o n a n d t o g i v e s o m e s o u r c e s t o t h e r e a d e r i n t e r e s t e d i n
g e o m e t r y.

The Coxeter groups are discrete groups generated by reflection acting on, respectively,
the sphere, Euclidean space, and Lobachevsky (or hyperbolic) space. In the hyperbolic case,
if the group divides the space into simplexes of finite volume, it is said to be of Lannér type
if it acts cocompactly, and quasi-Lannér type otherwise. It was Vinberg who suggested the
term Lannér in honor of Lannér [La] who was the first, it seems, to list all connected Lannér
diagrams (see also [CW]); Shwartsman and Vinberg [VSh] listed all quasi-Lannér diagrams.

The growth functions of the Coxeter groups of spherical and Euclidean types are known.
In this work, I explicitly compute the growth functions of certain particular Coxeter groups
of hyperbolic types.

Except for the spherical Coxeter groups I
(m)
2 (for m 6= 3, 4, 6), H3, and H4, each spherical

or Euclidean Coxeter group serves as the Weyl group Wg(A) of, respectively, simple finite
dimensional or affine Kac-Moody Lie algebra. The hyperbolic groups of (quasi-)Lannér type
serve as the Weyl groups of what Leites suggested to call almost affine Lie algebra1 g(A),
where A is a Cartan matrix; for definitions and even the list of almost affine Lie algebras,
see the arXiv version of [CCLL]. We assume that all Cartan and Coxeter matrices are
indecomposable, unless otherwise stated.

1.1 The two known facts and related problems.

Fact 1. The growth function PW is a rational function for ANY infinite
Coxeter group (W,S) with finite set of generators S. The zeros of PW lie on
on the unit circle C centered at the origin but if W is not of spherical or
Euclidean type, their precise values were unknown. The growth of the
Coxeter groups of hyperbolic type is exponential, so there is a pole outside C
and this is all that is known about poles in general.

(1)

In [So, Ste, Bou], an implicit recurrence expression (10) for PW is given. From [So, Ste, Bou]
nothing is clear about the p o l e s o f PW . For the Coxeter groups of other than spherical
and Euclidean types, the eigenvalues of the Coxeter transformations do not lie on C, are of
the form difficult to describe (see, e.g., [St]), and, obviously, have nothing to do with the
zeros of PW .

W e w i l l s h o w t h a t t h e z e r o s o f t h e g r o w t h f u n c t i o n s a r e , n e v -
e r t h e l e s s , e a s y t o d e s c r i b e ( w i t h o u t a n y c o m p u t e r , a l m o s t o r a l l y )
i f t h e s e f u n c t i o n s a r e r e p r e s e n t e d i n a s p e c i a l v i r g i n f o r m.

The initial goal of this note was to give an e x p l i c i t expression not only for the zeros
of these rational functions (and try to compare them with the eigenvalues of the Coxeter

1These Lie algebras are currently known under other names: “hyperbolic” (also applied to Lorentzian Lie
algebras which constitute a different set) as well as overextended (although it is the Dynkin diagrams that
are extended twice, not the Lie algebras).
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transformations) but also for their poles (not spoken about in [So, Ste, Bou] at all) for all
(quasi-)Lannér groups. These groups are particular among all Coxeter groups, being most
close, in a sense, to the Coxeter groups of spherical and Euclidean type: A given Coxeter
group is (quasi-)Lannér if its Coxeter diagram is connected, neither spherical nor Euclidean,
but any its connected proper subdiagram is spherical (resp. spherical or Euclidean).

Knowing a recurrence formula, the problem does not seem to be difficult ideologically
but how to be sure that the result is correct? Our own mistakes we made at first, and those
we found in the literature make this question more serious than we thought at first.

For the case of Coxeter diagrams with 3 vertices, see the paper by Wagreich [Wa].
For the Lannér diagrams on 4 and 5 vertices, the answers are known [Wo], but I obtained

different answer in the three cases of five possible Lannér diagrams on 5 vertices.
This was where my job stopped until reliable means for verifications were found.
Using these means described below (subsec. 4.1), I’ve found that 3 out of 5 Worthington’s

answers are wrong.
To check our results, we need the correct results of Worthington [Wo], and so we reproduce

them.
It seemED (it does not seem so anymore even for general hyperbolic Coxeter groups) that

the denominators of the growth functions of Lannér groups do not admit a nice description
except the following ([CW]):

Fact 2. “With the exception of a single real pair of poles, the poles of the
growth function of any compact hyperbolic (Lannér) group with 4 generators
lie on the unit circle C. This is not so for any of the 5-generator Lannér
groups”.

(2)

The following problems arise:
1) Give reliable criteria for verification of the description of the growth functions.
2) Explicitly describe the poles of the growth function of the 5-generator Lannér groups.
3) Explicitly describe the poles of the growth function of quasi-Lannér groups. In partic-

ular, how does the number of the poles not lying on C grow with the number of generators?

1.1.1 On applications. Wagreich’s paper also discusses several applications (e.g., due
to J. Milnor and M. Gromov) giving motivation for this type of activity. For applications
of growth functions of the Coxeter groups of spherical and Euclidean type in the theory
of simple finite groups, see [So, St]. There are other types of applications of the growth
functions of the hyperbolic groups, see, e.g., [BC, GNa, DDJO].

1.1.2 Main results. I give an explicit form of the growth functions (a.k.a. Hilbert-
Poincaré series) of the Lannér groups with 5 generators and quasi-Lannér groups.

I offer reliable means for verifications of the correctness of the growth functions found.
For the Lannér diagrams and the corresponding growth functions, see Tables 3 – 5.
For the quasi-Lannér diagrams and the corresponding growth functions, see Tables 6 –

18.
We observe that (R. Stekolshchik gave an a priori explanation of the phenomena)

• If the number of vertices of a given quasi-Lannér diagram is even, than the Euler
characteristic χ = PW (1)−1 of the group W vanishes.
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• The difference of degrees of the numerator and denominator of the growth functions is
always ≤ 1 in the quasi-Lannér cases.

We have found out that the poles of the growth functions of the quasi-Lannér groups lie
behave rather nicely:

1.2 Towards a generalization of the Eneström-Kakeya theorem.

1.2.1 Gal’s formulation. For recent studies of the poles of the growth functions of Cox-
eter groups, see Gal’s preprint [Gal]. Gal considered Coxeter diagrams for which the nerve
NW (whatever this is) of the corresponding Coxeter group W is a homology sphere2. Gal
wondered how many real poles can the growth function of such a group have (he notes that
the degree of the denominator of the growth function of certain of such Coxeter group may
be however great). I do not know at the moment how to describe the nerve of the group or
check if it is a homology sphere and can only cite Gal: “If W is an affine Coxeter group,
then there is a unique real pole of order n at 1 [Bou]. If dim NW = n ≤ 3, then there are
exactly n positive real roots of the denominator of PW [Par]. Moreover, in these two cases,
all the non-real poles lie on the unit circle.”

Gal writes that usually (but does not explain how often does this “usually” occur and
what are the exceptions), if dim NW ≥ 3, the non-real poles of the growth function fail
to lie on the unit circle. Looking at the examples known to him Gal made the following
observation (he writes that he “tested a number of groups whose nerve is a simplex or
a product of simplexes” but, regrettably, did not specify the number and gave only two
illustrations which, actually, are L55 and QL102):

several poles lie “near”the real positive half-line
and the rest of the poles tend to lie “near”the unit
circle.

(3)

1.2.2 Quasi-Lannér cases. Having found the precise expressions of the growth functions
and their poles we saw that the distribution of poles, which could have been random, does
stick to the pattern (3) almost correctly described by Gal [Gal]. Let us forget for a moment
the poles lying “near the real positive half-line”; the remaining poles do lie in a thin annulus
concentric with and lying “near”the unit circle.

Our results and Gal’s hints lead us to a result of G. Eneström [E]. His theorem (redis-
covered by Kakeya [Kak]) says

1.2.3. Theorem. Let p(t) = a0 +a1t+ · · ·+antn be a polynomial with positive coefficients,
m := min

0≤i<n

ai

ai+1
, and M := max

0≤i<n

ai

ai+1
. Then all the roots of p(t) lie in an annulus with

bounding circles of radius m and M concentric with and containing the unit circle C centered
at the origin.

The coefficients of the denominators of the growth functions of the (quasi-)Lannér poly-
nomials do not satisfy the conditions of the Eneström-Kakeya theorem but the zeros of these
polynomials behave as if they do, or almost: all non-real roots lie in an annulus with the
center at the origin (except that we do not know how to define m and M from the coef-
ficients). It is natural, therefore, to try to find the conditions these coefficients satisfy in

2A homology sphere is an n-dimensional manifold having the same homology groups as Sn does.
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order to derive a generalization of the Eneström-Kakeya theorem for polynomials whose real
coefficients can be of any sign or vanish.

Leites asked V. Molotkov to check my results. Molotkov started with the study of the
L47 case (as one of the simplest cases) and saw that the poles lying on C are hardly roots
of unity (unlike the zeros of the numerator of the growth function of any Coxeter group).
Molotkov also observed that, in contradistinction with what is depicted in Gal’s illustration
for QL102,

w h e n t h e n u m b e r o f v e r t i c e s o f t h e C o x e t e r d i a g r a m o f
t h e q u a s i - L a n n é r g r o u p b e c o m e s > 4 , N O N E o f t h e n o n -
r e a l r o o t s l i e s o n C i t s e l f ; r e a l p o l e s ( i f a n y ) l i e n e a r
1 o r −1 .

(4)

Molotkov’s results, more precise than Gal’s, inspired us to verify and sharpen Gal’s conjecture
(3) as formulated in (4). To list all the poles in all (quasi-)Lannér cases is not very time-
consuming but occupies many pages; besides, the poles we found numerically do not look as
if they are simple-looking (for humans) algebraic numbers. Therefore we have summarized
the answer by listing only the real roots and the extremal values of the absolute values of
the complex roots, see Tables 19–26.
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2 Precise setting of the problems

2.1 Generating functions. Generating functions of graded objects were introduced and
studied by Hilbert and Poincaré at more or less the same time. Leaving touchy priority
questions aside, Wikipedia informs us:

“A Hilbert-Poincaré series, named after David Hilbert and Henri Poincaré, is
an adaptation of the notion of dimension to the context of graded algebraic
structures (where the dimension of the entire structure is often infinite). It is
a formal power series in one indeterminate, say t, where the coefficient of tn

gives the dimension (or rank) of the sub-structure of elements homogeneous of
degree n.”

(5)

2.1.1. Remark. Observe that in the above definition certain restrictions are taken for
granted: the dimension of each homogeneous component must be finite, and usually only
non-negative components are non-zero; “graded” is only assumed to be by means of Z. For
Zk-graded objects (under similar restrictions: The support of the degrees with non-zero
components lies in the cone with non-negative coordinates and each component is finite-
dimensional), we get series in several indeterminates, as in [McD, DDJO].

In the particular case of Coxeter groups stratified by the length of their elements, the term
“Hilbert-Poincaré series” is usually replaced lately by the growth function. These functions
in the particular case of Coxeter groups of (quasi-)Lannér type is the object of our study.

2.2 Coxeter groups. A Coxeter group is a pair (W,S) consisting of a group W and a
set of generators S ⊂ W subject to relations

(st)ms,t = 1, where ms,s = 1, and ms,t = mt,s ≥ 2 for s 6= t in S. (6)

If no relation occurs for a pair s, t, then it is assumed that ms,t = ∞. The symmetric matrix
M = (ms,t)s,t∈S is called a Coxeter matrix.

The presentation of every finitely generated Coxeter group can be illustrated by an undi-
rected labeled graph, called Coxeter diagram, whose vertices correspond to the generators S
of W and edges are as follows. If ms,t = 2 then no edge joins s and t. If ms,t = 3, then an
edge joins s and t. The edge between the vertices corresponding to s, t ∈ S is endowed with
label ms,t if ms,t > 3.

The growth function PW,S(t) of a group W relative to a finite generating set S is briefly
denoted PW (t) and defined as follows. For any g ∈ W , define the length l(g) to be the
minimum length of all words in S representing g 6= 1 and l(1) = 0. Then

PW (t) :=
∑
g∈W

tl(g). (7)

2.2.1 Remarks 1) The Coxeter diagrams, so graphic in the spherical and Euclidean cases,
are utterly useless if the Coxeter matrix is not sparse, as is the case of Lorentzian Lie algebras
considered by Borcherds, and Gritsenko and Nikulin, see [GN]. In this note, we deal with
the cases where graphs are helpful, but the reader should realize that actually we deal with
Coxeter matrices.

2) Other notations used (less convenient, we think, if there are many cases of multiple
edges): The edge between nodes s and t is often depicted as a multiple one of multiplicity
ms,t − 2, unless ms,t = ∞; for ms,t = ∞, the edge is usually depicted thick.
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2.3 Exponents. Let W be a finite group generated by reflections ri, where i = 1, . . . , n, in the Eu-
clidean space or on the sphere. (For example, the Weyl group W = Wg of a simple Lie algebra g naturally
acts in the root space of g.) Let C :=

∏
ri, called the Coxeter transformation, be the product of all generators

(in any order; all these products are conjugate, see [St]). For the Weyl groups of simple finite dimensional
and affine Kac-Moody Lie algebras, the eigenvalues of C are of the form ωmi , where ω = e2πi/h and where
h = 1+max mi, called the Coxeter number, is the order of C ([CM], [OV], [Ste]). The numbers mi are called
the exponents of the Coxeter group W , see [Cox, Table 2].

We do not reproduce the list of spherical and Euclidean Coxeter diagrams (see [Vi]): They are easily
obtained from the well-known Dynkin graphs and their Cartan matrices, see [Bou].

2.4 The growth functions (a.k.a. Hilbert-Poincaré series) of the Coxeter groups.
Following Solomon, Bourbaki [Bou] gives an explicit expression of the growth function PWg

of the Weyl groups of simple finite dimensional Lie algebras in terms of exponents:

PWg =
∏ 1− tmi+1

1− t
. (8)

This formula is applicable not only to the Weyl groups of the simple finite dimensional Lie
algebras, but to other Coxeter groups of spherical type, see Table 2.

The generalization of (8) to affine Weyl groups is due to Bott [Bo]; see also [Ste]. Bott
writes about the loop groups and loop algebras (i.e., algebras of the form g̃ := g⊗C[u−1, u],
where g is any simple finite dimensional Lie algebra) but in reality he only considered the
Weyl groups of the Lie algebras of these loop groups; since the exponents are defined up
to dualization of the root system, the growth function of the Weyl groups of the “twisted”
affine Kac-Moody algebras are covered by Bott’s result. The answer is given by the formula

PWg̃
=

∏ 1− tmi+1

(1− t)(1− tmi)
= PWg

∏ 1

1− tmi
. (9)

Let us now try to perform the next step — consider the Weyl groups of almost affine Lie
algebras.

2.5 Digression: (Quasi-)Lannér groups are the Weyl groups of almost affine Lie
algebras. There are several (intersecting but distinct) sets of Lie algebras whose elements are often called
“hyperbolic” Lie algebras. We would like to carefully distinguish between these sets so need an appropriate
name for each. We say that a submatrix of a square matrix is principal if it is obtained by striking out a
row and column that intersect on the main diagonal. We say that Lie algebra with Cartan matrix whose
entries belong to the ground field is almost affine if it is not finite dimensional or affine, and its subalgebra
corresponding to any principal submatrix of the Cartan matrix is the sum of finite dimensional or affine Lie
algebras.

Z. Kobayashi and J. Morita classified the almost affine Lie algebras with indecomposable symmetrizable
Cartan matrix of size > 2 [KoMo]. Later, Li Wang Lai [Li] obtained a complete answer (for Cartan matrices
of size > 2): there are 238 almost affine Lie algebras; 142 of these algebras have a symmetrizable Cartan
matrix. Later Saçlioğlu [S] rediscovered the result of Kobayashi and Morita (with few omissions, see [BS]);
his paper is devoted to physical applications and is very interesting.

Since nobody bothered to make the complete list of Cartan matrices or Dynkin diagrams of the almost
affine Lie algebras accessible, and since it is sometimes needed (for example, for the multiparameter version
of this work), we have reproduced it in [CCLL].

In this paper we derive explicit formulas for the growth functions of the groups most close in a sense to
the Weyl groups of simple finite dimensional Lie algebras.

2.5.1. Remark. In the literature, in similar studies, the authors write sometimes that they are studying
the Lie algebras or even the Lie groups having these Lie algebras, whereas they are only studying the Weyl
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groups of these Lie algebras. This subtlety is sometimes important: in particular, to list all the groups
we are dealing with (Lannér and quasi-Lannér) is much easier than to list the Lie algebras whose Weyl
groups they are. These are almost affine (a.k.a hyperbolic) Lie algebras; their complete list was unknown
when the description of the growth functions of their Weyl groups has begun (and the classification of
these Lie algebras is not needed in this particular study of their Weyl groups). There are several stages of
generalization of simple finite dimensional Lie algebras (which all possess very particular Cartan matrices)
to the Lie algebras with more-or-less arbitrary Cartan matrix. We intend to generalize the results on the
growth functions known for the Weyl groups of simple finite dimensional and affine Kac-Moody Lie algebras
to the case of Weyl groups of almost affine Lie algebras. These Lie algebras became of acute interest lately
in connection with “cosmic billiards”; for details and further references, see [H], [BS]. The growth functions
of the Weyl groups of almost affine Lie algebras are invariants of these Lie algebras that can be used further,
see [Wa] and references therein. The set of almost affine Lie algebras has a non-empty intersection with the
(different) set of Lorentzian Lie algebras, sometimes also called “hyperbolic”. For applications of Lorentzian
Lie algebras, see [RU], [GN]. For one of these applications Borcherds was awarded with Fields medal.

3 The growth functions (known facts)

3.1 The Solomon-Steinberg recursion: Eq. (10). For a finite set X, let ε(X) =
(−1)card(X). Let PX(t) be the growth function (a polynomial or series) of the Coxeter group
WX whose Coxeter graph is X. If card WD < ∞, let M be the maximal length of the
elements of WD (there is only one element of maximal length).

Ex. 26 to §1 of Ch.4 [Bou] claims that f o r a n y C o x e t e r g r a p h D , w e h a v e
(this formula is obviously due to Solomon [So]; Steinberg [Ste], Theorem 1.25 gave a simpler
proof; see also an exposition of Steinberg’s proof in [McD], where there are considered multi-
parameter series t a k i n g i n t o a c c o u n t d i f f e r e n c e i n l e n g t h o f r o o t s3);
here X is any complete4 subgraph of D:

∑
X⊂D

ε(X)

PX(t)
=





tM

PD(t)
if card WD < ∞,

0 otherwise.

(10)

In this expression, the summand corresponding to the empty subgraph is equal to 1.
Recall that the rational (non-polynomial) function P (t) is said to be reciprocal if P (t−1) =

P (t); if P (t−1) = −P (t) the rational function P (t) is often said to be anti-reciprocal.
The polynomial function P (t) is said to be reciprocal (resp.anti-reciprocal) if

P (t) = tMP (t−1), (resp. P (t) = −tMP (t−1)), where M = deg P.

The (anti-)reciprocal function is said to be ±-reciprocal.
The recurrence (10) and ±-reciprocity of PX(t) if |WX | < ∞ imply the following sharp-

ening of (10) due to Steinberg [Ste]: If card WD = ∞, then

1

PD(t−1)
=

∑

X(D | card WX<∞

ε(X)

PX(t)
. (11)

3Therefore, for this task, we need not just Coxeter graphs but the Dynkin diagrams, and hence the
classification of almost affine (a.k.a. hyperbolic) Lie algebras due to [Li, S]; for the list of such diagrams, see
also [CCLL].

4Recall that a complete subgraph is a subgraph such that each node is connected to every other node in
the subgraph.
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To begin the induction, recall the following facts:
0) If the Coxeter graph X is the disjoint union of connected components Xi, then PX(t) =∏

PXi
(t). Hereafter it is advisable to simplify notations: For any n ∈ N ∪ {∞}, set

[n] :=





1 + t + · · ·+ tn−1 for n < ∞,

1 + t + · · · = 1

1− t
for n = ∞.

(12)

1) P∅(t) = 1 and P∗(t) = 1 + t = [2] (that is, for the graph consisting of 1 vertex and 0
edges).

2) If X has two vertices joined by m− 2 edges, then

PX(t) =





(1 + t)(1− tm+2)

1− t
= [2][m + 1] if 3 ≤ m < ∞ (for I

(m)
2 ),

1 + t

1− t
= [2][∞] if m = ∞ (for I

(∞)
2 ).

(13)

3) The growth functions of the 3-generator Coxeter group Gp,q,r with diagram L3 or QL3
(if |Gp,q,r| < ∞, then 1

p
+ 1

q
+ 1

r
> 1):

PGp,q,r(t) =
[2][p][q][r]

[2][p][q][r]− 3[p][q][r] + [p][q] + [p][r] + [q][r]
×

{
(tM + 1) if |Gp,q,r| < ∞,

1 otherwise,

(14)
where, as before, M is the length of the element of maximal length in Gp,q,r.

We summarize the results needed to explicitly compute (11) in Table 2.
L3: Each diagrams on 3 vertices is a triangle with edges labeled by p, q, r such that

2 ≤ p, q, r < ∞ and 1
p

+ 1
q

+ 1
r

< 1. One (only one) of the labels p, q, r may be equal to 2,
and then the graph is not, actually, a triangle.

QL3: The graphs look as those for L3 but any of the labels p, q, r may be (and at least
one is) equal to ∞.

3.2 Lannér and quasi-Lannér diagrams on > 3 vertices. In the literature we saw,
these diagrams are seldom identified (the only exception known to us is an interesting paper
[JKRT] with too complicated5 names for them), so we simply number them for convenience.
The first to list these diagrams was, it seems, Lannér [La], see also [CW50].

3.2.1 Worthington’s results. For the Lannér diagrams with 4 vertices, Worthington
computed the growth functions, and we confirm them in Tables 3–4. For the Lannér diagrams
with 5 vertices, Worthington computed the growth functions, but in 3 of 5 cases his answers
are wrong.

5In addition to overcomplicated proper names, called Witt symbols, there are given in [JKRT] also Coxeter
symbols that encode the Coxeter graphs, but can not be used as short names, either, and are not clearly
defined for an arbitrary diagram in either [CM] or [JKRT] (try to reconstruct the rules for, e.g., DP 3, M3

or N4).
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4 The growth functions of the Lannér and quasi-Lannér

groups (new results)

Having computed something different from Worthington’s results, we realized that means
of verification are badly needed. Besides, our goal was not to refute (or verify) somebody’s
results but to say something new. At first, we could only say something negative (“there is
no reciprocity”, “not all poles lie on C, the unit circle centered at the origin”, etc.), which
was not appealing. Let me concentrate on my own results.

4.1 The virgin form of the numerator. The numerator of PD(t) is equal to the de-

nominator of the sum
∑

X(D

ε(X)
PX(t)

. By (8), for the finite Coxeter group WX with exponents

m1,m2, . . . , mk

the growth function PX is a polynomial of the form

[m1 + 1][m2 + 1] . . . [mk + 1]. (15)

The least common multiple

Virg(D) := LCM
X(D such that |WX |<∞

PX(t) (16)

is said to be the virgin form of (the numerator of) PD(t).
The expression of PD(t) in as an irreducible fraction is said to be a reduced form.

4.1.1. Lemma. The growth function PD(t) can be expressed as a rational fraction whose
numerator is Virg(D).

We say that a subgroup WJ of the Coxeter group (W,S) is special if it is generated by a
subset J ⊂ S. 6

Proof. The statement is obvious if all special subgroups WX are finite: then the numerator of
PD(t) is equal to the denominator of the sum

∑
X(D

ε(X)
PX(t)

and all denominators of its summands

are polynomials of the form (15). The general case is done by induction on |X|.
4.1.1a. Corollary. Let ε(X)

PX(t)
be expressed as an irreducible fraction. Then the LCM of all

denominators in the sum
∑

X(D

ε(X)
PX(t)

is equal to Virg(D).

Proof. Indeed, if |WX | = ∞, then the denominator of the irreducible fraction ε(X)
PX(t)

divides

Virg(X) and Virg(X) divides Virg(D). If |WX | < ∞, then PX(t) divides Virg(D) by defini-
tion. Hence, the LCM of denominators divides Virg(D).

Implication in the opposite direction: divisibility of the LCM of denominators by Virg(D)
ia obvious.

6In some works such a group is called parabolic, but in other works the parabolic group means wWJw−1

for some w ∈ W , where WJ is the subgroup generated by J ⊂ S. Besides, the term parabolic group is
already occupied in the Lie group theory. On top of this, some say that there are Coxeter groups of elliptic,
hyperbolic and parabolic type, so the term is overused.

14



If |WX | < ∞, then PX(t) is of the form (15). We would like to represent Virg(D) in the
same form, but this is not always possible: if m and n are not relatively prime, then [m] and
[n] are not relatively prime. On the other hand, each such polynomial can be represented as
the product of irreducible over Q polynomials Φn(t), where n = 2, 3, . . . , namely

[n] =
∏

i|n, i>1

Φi(t). (17)

Therefore, it is natural to compute Virg(D) in the form of the product of the Φi(t). It is
convenient to introduce one more notation:

[n′] := 1 + tn; observe that [n][n′] = [2n]. (18)

4.1.1b. Remark. At first, we thought that the virgin form is only useful to control the
computations. But we got more: The answer shows that, for (quasi-)Lanner groups, the
virgin form coincides with the reduced form except for QL81, QL82, QL84.
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5 The code and means of control

We used the Mathematica-based code subg due to D. Chapovalov [DCh] and R. Stekolshchik
double-checked the result with his own code. The codes compute the growth functions w i t h
n u m e r a t o r s i n t h e v i r g i n f o r m of the Coxeter groups given by Coxeter graphs.

5.1 Code subg. We rewrite the expression (11) in the following form

PD(t) =
−ε(D)∑

X(D

ε(X)
PX(t)

. (19)

Given a graph D, the code subg generates a list of variables, one for each complete subgraph
of D, the graph D itself including. To isomorphic graphs one variable corresponds (so the
code compares graphs).

In the file input.txt, to the variables that correspond to finite Coxeter groups of spherical
type listed in Table 1 the values equal to the growth functions of the corresponding groups
are already assigned; to the other variables the value is generated:

1. if the graph is disconnected, the value is the product of the values corresponding to
the connected components;

2. if the graph is connected, the value of the variable is computed in terms of the values
of the variables corresponding to its complete subgraphs according to (19).

5.1.1 Encoding Coxeter diagrams. First of all, we need an economic way of encod-
ing/decoding the Coxeter graph to eliminate the chances for a “human error” to creep in.
There are several ways to document the presentation of a given Coxeter group; the Coxeter
matrix, Coxeter diagram as well as the Coxeter and Witt symbols (see [CM, JKRT]) are
the most used ones but the first symbol is too long, while the latter two, especially the
Witt symbol, are unclear for humans and computers alike. To encode the Cartan matrix
M = (mij)

n
i,j=1 it suffices to punch in not n2 elements but just 1

2
n(n − 1) (say, above the

diagonal), thanks to symmetry.
Instead of the Coxeter matrix we use the incidence matrix of the Coxeter

graph K = (kij)
n
i,j=1, where kij = mij − 2,, more precisely, its part above the diagonal and

to encode M we write:

mk12 . . . k1nk23 . . . k2n . . . . . . . . . kn−1,n. (20)

For example, the Coxeter matrix, the incidence matrix and the variable for the graph B3 are



∗ 3 2
∗ ∗ 4
∗ ∗ ∗


 ,



∗ 1 0
∗ ∗ 2
∗ ∗ ∗


 , m102.

This way is universal but not practical since it is difficult for a human to recognize a given
graph if n > 4 (given a Coxeter matrix). Therefore, we introduced several auxiliary variables
helping to overview formulas and recognize graphs. Since we intend to deal only with graphs
on ≤ 10 vertices, the following suffices:

16



1. The variables a1, a2, . . ., a9, b2, b3, . . ., b9, d4, d5, . . ., d9, h3, h4, i25, i26, f4, e6, e7,
e8 correspond to their namesakes-groups. These variables are short and graphic and
are used instead of rather long m-variables wherever possible.

2. Any chain-graph is denoted by y followed by an ordered list of multiplicities. For
example, b4 can be expressed as y112 or y211.

3. The cycle-graph can be encoded as z followed by an ordered list of multiplicities. For
example, L47 can be expressed as z2121 or z1212.

4. Let a given graph have vertices of degree ≥ 3 (i.e., with ≥ 3 edges emitted from the
vertex) but no two such vertices belong to one cycle. Such a graph can be obtained
by gluing several graphs at this vertex. The variable of this graph can be encoded by
juxtaposition of the variables of the subgraphs glued. For example, d4 is the result of
gluing a chain with two edges and two chains of one edge each, so it can be expressed
as y11y1y1, or y1y1y11, or y1y11y1. The graph QL420 can be encoded as y4z111, the
graph QL72 can be encoded as y1y11m100110. By means of such short notation one
can encode any of quasi-Lannér graphs, except for QL421, QL422 and QL59

5.1.2 The procedure. For example, let us compute the growth function of QL42 to
which the variable y214 corresponds. We copy input.txt into the file ql42.txt (we have
to create), in the same catalog where the code subg lies. In the command line we write

subg y214 -fql42.

This means that we do NOT have to generate variables already computed in the file ql42.txt.
The result will be written in the same file ql42.txt:

m1 = a2
m2 = b2
m3 = i25
m4 = i26
m002 = (b2 ∗ a1)
m004 = (a1 ∗ i26)
m011 = a3
m012 = b3
m013 = h3
m014 = 1/(1 + 1/i26 + 1/a2− 3/a1 + 1/m0)
m001011 = d4
m010011 = a4
m010012 = f4
m100012 = b4
m100013 = h4
m200014 = −1/(1 + 1/i26− 1/b3 + 1/b2 + 1/a2− 4/a1− 1/m014−

1/m004− 1/m002 + 3/m0)
. . . (“ . . . ” is what we do not need for the moment )
y214 = m200014

(21)
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Let us now switch Mathematica on and copy in it from the file Virgin-mdk.txt the following
formulas needed to compute a1 − e8 in terms of v1, v2, . . . , vn, . . . (corresponding to the
respective polynomials Φn(t)):

p2 = v2
p3 = v3
p4 = v2 ∗ v4
p5 = v5
p6 = v2 ∗ v3 ∗ v6
p7 = v7
p8 = v2 ∗ v4 ∗ v8
p9 = v3 ∗ v9
p10 = v2 ∗ v5 ∗ v10
p12 = v2 ∗ v3 ∗ v4 ∗ v6 ∗ v12
p14 = v2 ∗ v7 ∗ v14
p16 = v2 ∗ v4 ∗ v8 ∗ v16
p18 = v2 ∗ v3 ∗ v6 ∗ v9 ∗ v18
p20 = v2 ∗ v4 ∗ v5 ∗ v10 ∗ v20
p24 = v2 ∗ v3 ∗ v4 ∗ v6 ∗ v8 ∗ v12 ∗ v24
p30 = v2 ∗ v3 ∗ v5 ∗ v6 ∗ v10 ∗ v15 ∗ v30

a1 = p[[2]]
a2 = p[[2]] ∗ p[[3]]
a3 = (a2 ∗ p[[4]])
a4 = (a3 ∗ p[[5]])
a5 = (a4 ∗ p[[6]])
a6 = (a5 ∗ p[[7]])
a7 = (a6 ∗ p[[8]])
a8 = (a7 ∗ p[[9]])
a9 = (a8 ∗ p[[10]])
b2 = p[[2]] ∗ p[[4]]
b3 = b2 ∗ p[[6]]
b4 = b3 ∗ p[[8]]
b5 = b4 ∗ p[[10]]
b6 = b5 ∗ p[[12]]
b7 = b6 ∗ p[[14]]
b8 = b7 ∗ p[[16]]
b9 = b8 ∗ p[[18]]
d4 = b3 ∗ p[[4]]
d5 = b4 ∗ p[[5]]
d6 = b5 ∗ p[[6]]
d7 = b6 ∗ p[[7]]
d8 = b7 ∗ p[[8]]
d9 = b8 ∗ p[[9]]
h3 = p[[2]] ∗ p[[6]] ∗ p[[10]]
h4 = p[[2]] ∗ p[[12]] ∗ p[[20]] ∗ p[[30]]
i25 = p[[2]] ∗ p[[5]]
i26 = p[[2]] ∗ p[[6]]
f4 = p[[2]] ∗ p[[6]] ∗ p[[8]] ∗ p[[12]]
e6 = f4 ∗ p[[5]] ∗ p[[9]]
e7 = f4 ∗ p[[10]] ∗ p[[14]] ∗ p[[18]]
e8 = p[[2]] ∗ p[[8]] ∗ p[[12]] ∗ p[[14]] ∗ p[[18]] ∗ p[[20]] ∗ p[[24]] ∗ p[[30]]

(22)

and order “compute”. Now we copy formulas from ql42, type Simplify[y214], and
order “compute”. The preliminary result is ready:

(v23 ∗ v3 ∗ v4 ∗ v6)/(1 + v4 + v3 ∗ v6− v2 ∗ v3 ∗ v6− 2v2 ∗ v3 ∗ v4 ∗ v6 + v22 ∗ v3 ∗ v4 ∗ v6)
V irg(QL42) = v23 ∗ v3 ∗ v4 ∗ v6 (23)

To compute the corresponding denominator, we copy from the file Virgin-mdk.txt to
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Mathematica the formulas expressing the vi’s in terms of t:

p = Table[Cancel[(1− tn)/(1− t)], n, 1, 30]
v2 = p[[2]]
v3 = p[[3]]
v4 = Cancel[p[[4]]/v2]
v5 = p[[5]]
v6 = Cancel[p[[6]]/(v2 ∗ v3)]
v7 = p[[7]]
v8 = Cancel[p[[8]]/(v2 ∗ v4)]
v9 = Cancel[p[[9]]/v3]
v10 = Cancel[p[[10]]/(v2 ∗ v5)]
v12 = Cancel[p[[12]]/(v2 ∗ v3 ∗ v4 ∗ v6)]
v14 = Cancel[p[[14]]/(v2 ∗ v7)]v15 = Cancel[p[[15]]/(v3 ∗ v5)]
v16 = Cancel[p[[16]]/(v2 ∗ v4 ∗ v8)]
v18 = Cancel[p[[18]]/(v2 ∗ v3 ∗ v6 ∗ v9)]
v20 = Cancel[p[[20]]/(v2 ∗ v4 ∗ v5 ∗ v10)]
v24 = Cancel[p[[24]]/(v2 ∗ v3 ∗ v4 ∗ v6 ∗ v8 ∗ v12)]
v30 = Cancel[p[[30]]/(v2 ∗ v3 ∗ v5 ∗ v6 ∗ v10 ∗ v15)]

(24)

and perform the calculations.
Now we compute the denominator:

Expand[Simplify[(1 + v4 + v3v6− v2v3v6− 2v2v3v4v6 + v22v3v4v6)]] (25)

The answer
1− t− t3 − t5 + t6 + t8

is ready!
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6 Tables

Table 1: The exponents, Coxeter number, and the maximal length of the elements in the
spherical Coxeter groups

Coxeter Lie exponents maximal length Coxeter

group algebra mi l(w0) =
∑

mi number h

An sl(n + 1) 1, 2, 3, . . . , n
n(n + 1)

2
n + 1

Bn o(2n) for n ≥ 2 1, 3, . . . , 2n− 1 n2 2n

Cn sp(2n) for n ≥ 2 1, 3, . . . , 2n− 1 n2 2n

Dn o(2n + 1) 1, 3, . . . , 2n− 3; n− 1 n(n− 1) 2(n− 1)

G2 g2 1, 5 6 6

F4 f4 1, 5, 7, 11 24 12

E6 e6 1, 4, 5, 7, 8, 11 36 12

E7 e7 1, 5, 7, 9, 11, 13, 17 63 18

E8 e8 1, 7, 11, 13, 17, 19, 23, 29 120 30

I
(m)
2 for m > 6 — 1,m− 1 m m

or m = 5

H3 — 1, 5, 9 15 10

H4 — 1, 11, 19, 29 60 30

Note. The groups I
(m)
2 are the non-crystallographic dihedral groups for m = 5 and m > 6.

For m = 3, 4, and 6, respectively, we have the crystallographic dihedral group as follows:

A2 = I
(3)
2 , B2 = C2 = I

(4)
2 , G2 = I

(6)
2 .
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Table 2: The growth functions of the spherical Coxeter groups with connected Coxeter
diagram

Coxeter group its growth function

An [2] . . . [n + 1]

Bn [2][4] . . . [2n]

Dn [2][4] . . . [2n− 2][n]

G2 [2][6]

F4 [2][6][8][12]

E6 [2][5][6][8][9][12]

E7 [2][6][8][10][12][14][18]

E8 [2][8][12][14][18][20][24][30]

I
(m)
2 for 5 ≤ m ≤ ∞ [2][m]

H3 [2][6][10]

H4 [2][12][20][30]
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Table 3: The Lannér diagrams on 4 vertices and growth functions

Label Diagram Growth function
Degrees χ = 0 in all cases

L41
[2][6][5′]

t11 − 2t10 + t9 − t7 + 2t6 − 2t5 + t4 − t2 + 2t1 − 1
(11, 11)

L42 The numerator is [4][10][3′]
(15, 15) The denominator is

t15 − 2t14 + 2t13 − 2t12 + t11 − t10

+t9 − t8 + t7 − t6 + t5 − t4 + 2t3 − 2t2 + 2t− 1

L43
[2][10][3′]

t13 − 2t12 + t11 − t9 + t8 − t7 + t6 − t5 + t4 − t2 + 2t− 1
(13, 13)

L44
[4][3′][5′]

t11 − 3t10 + 4t9 − 4t8 + 3t7 − 2t6 + 2t5 − 3t4 + 4t3 − 4t2 + 3t− 1
(11, 11)

L45
[2][4][3′]

t7 − 2t6 + 2t4 − 2t3 + 2t− 1
(7, 7)
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Table 4: The Lannér diagrams on 4 vertices and growth functions (cont.)

Label Diagram Growth function
Degrees χ = 0 in all cases

L46
[4][3′][5′]

t11 − 3t10 + 3t9 − t8 − 2t7 + 4t6 − 4t5 + 2t4 + t3 − 3t2 + 3t− 1
(11, 11)

L47
[2][4][3′]

t7 − 2t6 + t4 − t3 + 2t− 1
(7, 7)

L48
[2][3′][5′]

t9 − 3t8 + 2t7 + t6 − 3t5 + 3t4 − t3 − 2t2 + 3t− 1
(9, 9)

L49
[4][3′][5′]

t11 − 3t10 + 3t9 − 2t8 + 2t6 − 2t5 + 2t3 − 3t2 + 3t− 1
(11, 11)
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Table 5: The Lannér diagrams on 5 vertices and growth functions

L51 The numerator is [2][12][20][30]
The denominator is

χ = 1/14400 t60 − t59 − t53 + t52 − t51 + t50 − t49 + t46 − t45

deg = (60, 60) +t44 − 2t43 + 2t42 − t41 + t40 − t39 + t38 − t37 + 2t36

−2t35 + 2t34 − 2t33 + 2t32 − t31 + t30 − t29 + 2t28 − 2t27

+2t26 − 2t25 + 2t24 − t23 + t22 − t21 + t20 − t19 + 2t18

−2t17 + t16 − t15 + t14 − t11 + t10 − t9 + t8 − t7 − t + 1

L52 The numerator is [2][12][20][30][4′]
The denominator is

χ = 17/28880 t64 − t63 − t61 + 2t60 − 2t59 + t58 − 3t57 + 3t56 − 3t55

deg = (64, 64) +3t54 − 5t53 + 5t52 − 5t51 + 6t50 − 7t49 + 8t48 − 8t47 + 9t46

−9t45 + 11t44 − 11t43 + 12t42 − 11t41 + 14t40 − 13t39 + 14t38

−13t37 + 16t36 − 14t35 + 15t34 − 14t33 + 17t32 − 14t31 + 15t30

−14t29 + 16t28 − 13t27 + 14t26 − 13t25 + 14t24 − 11t23 + 12t22

−11t21 + 11t20 − 9t19 + 9t18 − 8t17 + 8t16 − 7t15 + 6t14 − 5t13

+5t12 − 5t11 + 3t10 − 3t9 + 3t8 − 3t7 + t6 − 2t5 + 2t4 − t3 − t + 1

L53 The numerator is [2][12][20][30]
The denominator is

χ = 13/7200 t60 − t59 − t57 − t53 − t51 + 2t50 − 2t49 + 2t48 − 2t47

deg = (60, 60) +2t46 + 2t44 − 2t43 + 2t42 − 2t41 + 6t40 − 3t39 + 4t38 − 3t37

+4t36 + 4t34 − 3t33 + 4t32 − 3t31 + 8t30 − 3t29 + 4t28 − 3t27

+4t26 + 4t24 − 3t23 + 4t22 − 3t21 + 6t20 − 2t19 + 2t18 − 2t17

+2t16 + 2t14 − 2t13 + 2t12 − 2t11 + 2t10 − t9 − t7 − t3 − t + 1

L54 The numerator is [2][12][20][30]
The denominator is

t60 − t59 − t57 + t56 − t55 − t53 + t52 − t51 − t49 + 2t48

χ = 17/14400 −t47 + t46 − t45 + 2t44 − t43 + t42 − t41 + 3t40 − t39

deg = (60, 60) +2t38 − t37 + 3t36 − t35 + 2t34 − t33 + 3t32 − t31 + 3t30

−t29 + 3t28 − t27 + 2t26 − t25 + 3t24 − t23 + 2t22 − t21

+3t20 − t19 + t18 − t17 + 2t16 − t15 + t14 − t13 + 2t12

+t11 − t9 + t8 − t7 − t5 + t4 − t3 − t1 + 1

L55 The numerator is [2][5][6][8][12]
The denominator is

χ = 11/5760 t28 − t26 − t25 − t24 − 2t23 − 2t22 − t21 + t20 + t19 + 2t18

deg = (28, 28) +2t17 + 3t16 + 2t15 + 3t14 + 2t13 + 3t12 + 2t11 + 2t10 + t9 + t8

−t7 − 2t6 − 2t5 − t4 − t3 − t2 + 1
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Table 6: The quasi-Lannér diagrams on 4 vertices and growth functions, none of them
reciprocal

In what follows, the column Inf.gr. contains # of infinite special groups.

Label Diagram Growth function Inf.gr
Degrees χ = 0 in all cases

QL41
[2][4][6]

t8 − t4 − t + 1
1

(9, 8)

QL42
[2][4][6]

t8 + t6 − t5 − t3 − t + 1
1

(9, 8)

QL43
[2][6][10]

t14 + t12 − t5 − t3 − t + 1
1

(15, 14)

QL44
[2]2[6]

t7 + t6 − t5 − t2 − t + 1
2

(7, 7)

QL45
[2][6]

t6 − t4 + t2 − 2t + 1
2

(6, 6)

QL46
[2][4][6]

t8 − t3 − t + 1
1

(9, 8)

QL47
[2]2[4]

t5 + t4 − t3 − t2 − t + 1
2

(5, 5)

QL48
[2][4][3′]

t6 − t5 + t4 − t3 + t2 − 2t + 1
1

(7, 6)
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Table 7: The quasi-Lannér diagrams on 4 vertices and growth functions, none of them
reciprocal (cont.)

Label Diagram Growth function Inf.gr.
χ = 0 in all cases

QL49
[2]2[4]

2t5 + t4 − 2t3 − t2 − t + 1
3

(5, 5)

QL410
[4][6]

t8 + t6 − t5 − t3 + t2 − 2t + 1
2

(8, 8)

QL411
[2][4][6]

t9 + t8 + t7 + t6 − t5 − t4 − t3 − t2 − t + 1
2

(9, 9)

QL412
[2][6][5′]

t11 − 2t + 1
2

(11, 11)

QL413
[2][6]

3t6 − 2t5 − 2t + 1
4

(6, 6)

QL414
[2][4][3′]

t6 − t4 + t3 − 2t1 + 1
1

(7, 6)
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Table 8: The quasi-Lannér diagrams on 4 vertices and growth functions, none of them
reciprocal (cont.)

Label Diagram Growth function Inf.gr.
χ = 0 in all cases

QL415
[2][4][3′]

t7 − 2t + 1
2

(7, 7)

QL416
[2][4]

3t4 − 2t3 − 2t + 1
4

(4, 4)

QL417
[3][4]

t4 − t3 + t2 − 2t + 1
1

(5, 4)

QL418 − [2][4][6]

t8 + t6 − t4 − t2 − t + 1
1

(9, 8)

QL419
[2][6][5′]

t10 − t9 + t8 − t6 + t5 − t4 + t3 − 2t + 1
1

(11, 10)

QL420
[2][6]

2t6 − t5 − t4 + t3 − 2t + 1
3

(6, 6)

QL421
[3][4]

t5 − 2t + 1
2

(5, 5)

QL422
[2][3]

3t3 − 2t2 − 2t1 + 1
4

(3, 3)
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Table 9: The quasi-Lannér diagrams on 5 vertices and growth functions, none of them
reciprocal

Label Diagram Growth function Inf.gr.
χ, Degrees D:=denominator

QL51 The numerator is [2][6][8][12]

(24, 23) D := t23 + t19 − t18 − t16 + t15 − 2t14 1
χ = −1/1152 +t13 − 2t12 + t11 − 2t10 + 2t9 − 2t8

+t7 − t6 + 2t5 − t4 + t3 + t− 1

QL52 The numerator is [2][6][8][12]

(24, 23) D := t23 + t20 − t17 − t15 − t13 − t12 1
χ = −1/576 −t11 − t8 + t5 + t3 + t1 − 1

QL53 The numerator is [2][4][5][6][8]

(20, 19) D := t19 + t18 + t17 + t16 − t14 − t13 − 2t12 − 2t11 1
χ = −1/1920 −2t10 − t9 − t8 + t7 + t6 + 2t5 + t4 + t3 − 1

QL54 The numerator is [2][4][6][8]

(16, 16) D := t16 + t15 − t12 − 2t10 + t9 − 3t8 2
χ = −1/384 +t7 − 2t6 + 2t5 − t4 + 2t3 + t− 1

QL55 The numerator is [2][4]2[6]
χ = −1/192 The denominator is

(12, 12) 2t12 + t11 − 4t8 − t7 − 3t6 + 2t5 − t4 + 3t3 + t1 − 1 3
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Table 10: The quasi-Lannér diagrams on 5 vertices and growth functions, none of them
reciprocal (cont.)

Label Diagram Growth function Inf.gr.
χ, Degrees D:=denominator

QL56 The numerator is [2][6][8][12]
(24, 23) D := t23 + t22 + t20 − t17 − 2t16 − t15 − t14 − t13 1

χ = −1/144 −3t12 − t11 − t10 − 3t8 + t5 + t3 + t2 + t− 1

QL57 The numerator is [2][4]2[5][6]
(16, 15) D := t15 + t14 + t13 + t12 − t11 − 2t10 1

χ = −1/960 −2t9 − 3t8 − t7 + t5 + 2t4 + t3 + t2 − 1

QL58 The numerator is [2][4][6][8]
(16, 16) D := t16 + t15 − t11 − t10 − t9 2

χ = −1/192 −2t8 − t7 + t3 + t2 + t− 1

QL59 The numerator is [2][4]2[6]
(12, 12) D := 2t12 + t11 − t10 + t9 − 3t8 − 2t7 3

χ = −1/192 −t6 − 2t5 + t3 + 2t2 + t1 − 1
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Table 11: The quasi-Lannér diagrams on 6 vertices and growth functions

Label Diagram Growth function Inf.gr.
Degrees χ = 0 in all cases

D:=denominator

QL61 The numerator is [2]2[6][8][12]
(25, 25) D := t25 + t24 − t23 − t22 − t19 − t18 + 2t16 2

−t15 − t14 + t13 + t12 − t11 + t10 + t7

+t6 − 2t5 + t3 − t2 − t + 1

QL62 The numerator is [2][6][8][10][12]

(33, 32) D := t32 − t26 − t23 − t22 − t19 + t18 1
+t16 + t14 + t12 − t5 − t + 1

QL63 The numerator is [2]2[6][8][12]
(25, 25) D := t25 + t24 − t23 − t22 − t19 − t18 + 2t16 − t15 2

−t14 + 2t12 − t11 + 2t8 − t5 + t4 − t2 − t + 1

QL64 The numerator is [2]2[6][8][12]
(25, 25) D := 2t25 + t24 − 2t23 − t22 − 2t19 − t18 + 3t16 3

−2t15 − t14 + 3t12 − 2t11 + t10 + 2t8 + t6

−2t5 + t4 − t2 − t + 1

QL65 The numerator is [2][4][8][10][3′]
The denominator is

(23, 22) D := t22 − t21 + t19 − 2t18 + t17 − t15 + t14 1
−t13 + t11 − t9 + 2t8 − t7 + t5 − t4 + t2 − 2t1 + 1

QL66 The numerator is [2]2[4][6][8]
(17, 17) D := 2t17 + t16 − 2t15 − 2t14 − t13 3

−t11 + 3t8 + t6 + t4 − t3 − t2 − t1 + 1
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Table 12: The quasi-Lannér diagrams on 6 vertices and growth functions (continue)

Label Diagram Growth function Inf.gr.
Degrees χ = 0 in all cases

D:=denominator

QL67 The numerator is [2]2[4][6][8]
(17, 16) D := t16 − t14 − t12 + t8 − t7 1

+2t5 + t4 − t3 − t2 − t + 1

QL68 The numerator is [2]2[4][6][8]
(17, 17) D := 3t17 + t16 − 3t15 − 3t14 − t13 + t12 − 2t11

+4t8 − t7 + 2t6 + 2t4 − 2t3 − t2 − t + 1 4

QL69 The numerator is [2]2[4]2[3′]
(11, 11) D := 4t11 − 3t10 − 5t9 + 2t8 + t6 5

−t5 + 5t4 − 2t3 − 2t + 1

QL610 The numerator is [2][5][6][8]
(17, 16) D := t16 − t15 − t11 + t9 − t8 + t7 + t3 − 2t + 1 1

QL611 The numerator is [2][6][8][12][5′]
(29, 29) D := t29 − t26 + t23 − 2t22 − 2t19 + t18 − t15

+t14 + 2t12 − t11 + 2t8 − t6 + t3 − 2t + 1 2

QL612 The numerator is [2][6][8][12]
(24, 24) D := 5t24 − 4t23 − 2t21 + 3t20 − 6t19 + 3t18

−6t17 + 7t16 − 4t15 + 2t14 − 6t13 + 8t12 − 4t11

+2t10 − 2t9 + 5t8 − 2t7 + 3t6 − 2t5 + t4 − 2t1 + 1 6
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Table 13: The quasi-Lannér diagrams on 7 vertices and growth functions

Label Diagram Growth function Inf.gr.
χ, Degrees D:=denominator

QL71 The numerator is [2][4][6][8][9][10][12]
1/414720, (44, 43)

D = t43 + t42 + t41 + t40 − t37 − t36 − 2t35 − 3t34

−3t33 − 3t32 − 3t31 − 2t30 − t29 + t28 + 2t27 + 3t26 1
+4t25 + 4t24 + 5t23 + 5t22 + 4t21 + 2t20 + t19 − t18

−t17 − 3t16 − 3t15 − 4t14 − 3t13 − 3t12 − t11 − t10

+t9 + t7 + t6 + t5 + t4 + t3 − 1

QL72 The numerator is [2]2[6][8][9][10][12]
1/207360, (42, 41)

D = t41 + t40 − t35 − t34 − t33 − 2t32 − 2t31 − 2t30

−t29 − t28 + 2t26 + 2t25 + t24 + 2t23 + 3t22 + 4t21 1
+3t20 + t19 − t15 − 2t14 − 2t13 − 2t12 − 2t11 − t10

+t4 + t3 + t2 − 1

QL73 The numerator is [2]2[6][7][8][9][10][12]
13/725760, (48, 47)

D = t47 + 2t46 + 2t45 + 2t44 + 2t43 + 2t42 + t41

−2t40 − 4t39 − 6t38 − 9t37 − 11t36 − 12t35 − 13t34

−11t33 − 7t32 − 3t31 + t30 + 6t29 + 12t28 + 18t27 1
+21t26 + 22t25 + 21t24 + 19t23 + 17t22 + 13t21 + 6t20

−5t18 − 8t17 − 10t16 − 12t15 − 12t14 − 10t13 − 9t12

−6t11 − 2t10 + t8 + 2t7 + 2t6 + 2t5 + 2t4

+2t3 + t2 − t1 − 1
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Table 14: The quasi-Lannér diagrams on 8 vertices and growth functions

Label Diagram Growth function
Degrees χ = 0 in all cases

D:=denominator

QL81 The numerator is [4][6][8][12][18][5′][7′]
(55, 54)

t54 − 2t53 + 2t52 − 2t51 + t50 + t49 − 3t48 + 5t47−
7t46 + 7t45 − 6t44 + 5t43 − 3t42 + 2t40 − 2t39 + 2t38−
t37 − 2t36 + 5t35 − 6t34 + 7t33 − 6t32 + 3t31 − 3t29

+6t28 − 7t27 + 6t26 − 5t25 + 3t24 − t22 − t21+
2t20 − 4t19 + 8t18 − 11t17 + 12t16 − 12t15 + 10t14−
7t13 + 4t12 − t11 − t10 + 2t9 − t8 − t7

+3t6 − 5t5 + 6t4 − 5t3 + 4t2 − 3t + 1

QL82 The numerator is [4][6][8][10][12][7′][9′]
(51, 50)

D = t50 − 2t49 + 2t48 − 2t47 + t46 − t44 + 3t43−
5t42 + 7t41 − 9t40 + 10t39 − 11t38 + 11t37 − 10t36+
10t35 − 9t34 + 8t33 − 7t32 + 6t31 − 6t30 + 6t29−
5t28 + 4t27 − 2t26 + 2t24 − 6t23 + 10t22 − 13t21+
15t20 − 16t19 + 17t18 − 18t17 + 17t16 − 16t15 + 14t14−
12t13 + 12t12 − 11t11 + 10t10 − 10t9 + 9t8 − 9t7+
9t6 − 7t5 + 6t4 − 5t3 + 4t2 − 3t + 1
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Table 15: The quasi-Lannér diagrams on 8 vertices and growth functions

Label Diagram Growth function
Degrees χ = 0 in all cases

D:=denominator

QL83 The numerator is [2][6][8][10][12][14][18]
(63, 62)

D = t62 − t56 − t54 − t52 − t50 − t49 + t48

−t47 + t46 + t44 + 2t42 + t40 + 2t39 + t37

+2t36 − t34 + 2t33 − 2t32 − t29 − 2t28 + t27

−2t26 − 2t25 + t24 − 2t23 − t22 − 2t19 + 3t18

−t17 + t15 + t14 + t12 + t11 − t10

+2t9 − t8 − t4 − t + 1

QL84 The numerator is [4][6][8][10][12][14][9′]
(57, 56)

D = t56 − t55 + t54 − t53 − t50 − t48 + 2t47 − 3t46

+3t45 − 3t44 + 2t43 − t41 + 3t40 − 3t39 + 5t38 − 4t37

+6t36 − 4t35 + 4t34 − 2t33 + t32 + 2t31 − 3t30 + 5t29

−6t28 + 6t27 − 7t26 + 5t25 − 5t24 + 2t23 − 3t21 + 3t20

−6t19 + 5t18 − 7t17 + 6t16 − 4t15 + 2t14 + t13 − 2t12

+2t11 − 3t10 + 3t9 − 2t8 + 3t7 − t6 + t5 − t3 + t2 − 2t1 + 1
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Table 16: The quasi-Lannér diagrams on 9 vertices and growth functions

Label Diagram Growth function
χ, Degrees D:=denominator

QL91 The numerator is [2][12][14][16][18][20][24][30]
17/1393459200,

(128, 127) D = t127 − t117 + t116 − 2t115 + t114 − 3t113

+2t112 − 4t111 − 12t103 + 3t110 − 6t109 + 6t108

−8t107 + 7t106 − 10t105 + 11t104 + 13t102 − 15t101

+18t100 − 17t99 + 21t98 − 21t97 + 26t96 − 23t95

The number of infinite +29t94 − 26t93 + 33t92 − 28t91 + 35t90 − 31t89

special subgroups: 1 +38t88 − 32t87 + 38t86 − 33t85 + 38t84 − 33t83

+36t82 − 32t81 + 32t80 − 30t79 + 28t78 − 26t77

+22t76 − 22t75 + 14t74 − 16t73 + 6t72 − 9t71

−3t70 − t69 − 13t68 + 7t67 − 22t66 + 17t65

−32t64 + 26t63 − 40t62 + 35t61 − 49t60 + 44t59

−55t58 + 52t57 − 62t56 + 59t55 − 65t54 + 65t53

−69t52 + 69t51 − 69t50 + 72t49 − 72t48 + 73t47

−68t46 + 73t45 − 68t44 + 71t43 − 63t42 + 68t41

−61t40 + 63t39 − 55t38 + 59t37 − 52t36 + 53t35

−45t34 + 47t33 − 42t32 + 40t31 − 35t30 + 35t29

−32t28 + 29t27 − 26t26 + 24t25 − 23t24 + 19t23

−18t22 + 15t21 − 15t20 + 12t19 − 11t18 + 9t17

−10t16 + 7t15 − 6t14 + 5t13 − 5t12 + 4t11 − 3t10

+3t9 − 3t8 + 2t7 − t6 + t5 − t4 + t3 + t− 1

QL92 The numerator is [2][8][12][14][18][20][24][30]
17/696729600

(120, 119) D = t119 − t111 − t109 + t108 − 2t107 − 2t105 + t104 − 2t103

+t102 − 3t101 + 2t100 − 2t99 + 2t98 − 2t97 + 3t96 − 2t95

+2t94 + 4t92 + 2t90 + t89 + 3t88 + 3t87 + 2t86 + 3t85

+t84 + 5t83 − t82 + 6t81 − 2t80 + 6t79 − 5t78 + 8t77

The number of infinite −5t76 + 7t75 − 8t74 + 7t73 − 10t72 + 8t71 − 10t70 + 6t69

special subgroups: 1 −12t68 + 6t67 − 12t66 + 5t65 − 12t64 + 3t63 − 12t62 + 3t61

−11t60 + t59 − 9t58 − 8t56 − 4t54 − 2t53 − 4t52 − 2t51

−2t49 − 3t47 + 3t46 − 2t45 + 4t44 − 2t43 + 6t42 − 2t41

+4t40 − t39 + 7t38 − t37 + 4t36 + 6t34 + 3t32 + 3t30

+t29 + t28 + t27 + t26 + t25 − 2t24 + t23 + t21

−3t20 + t19 − t18 + t17 − 3t16 + t15 − 2t14 + t13

−2t12 + t11 − t10 + t9 − 2t8 + t7 + t5 − t4 + t3 + t− 1
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Table 17: The quasi-Lannér diagrams on 9 vertices and growth functions (cont.)

Label Diagram Growth function
χ, Degrees D:=denominator

QL93 The numerator is [2][8][12][14][18][20][24][30]

D = t119 − t111 − t107 − t105 − t103 + t102 − 2t101

1/696729600 +t100 − t99 + t98 − 2t97 + 3t96 − 3t95 + 2t94

(120, 119) −t93 + 3t92 − 3t91 + 5t90 − 3t89 + 3t88 − t87

+5t86 − 5t85 + 6t84 − 2t83 + 3t82 − 2t81 + 6t80

The number of infinite −6t79 + 5t78 − t77 + 2t76 − 4t75 + 6t74 − 5t73

special subgroups: 1 +t72 + t70 − 5t69 + 3t68 − 2t67 − 3t66 + t65

−4t63 − t62 + 2t61 − 6t60 + t59 − t58 − t57

−5t56 + 7t55 − 7t54 + 2t53 − 2t52 + 4t51 − 8t50

+9t49 − 6t48 + 3t47 − 3t46 + 8t45 − 9t44 + 9t43

−4t42 + 4t41 − 5t40 + 10t39 − 8t38 + 7t37 − 3t36

+5t35 − 6t34 + 9t33 − 6t32 + 4t31 − 3t30 + 5t29

−6t28 + 6t27 − 4t26 + 2t25 − 3t24 + 4t23 − 5t22

+3t21 − 2t20 + t19 − 3t18 + 3t17 − 3t16 + t15

−t14 + t13 − 2t12 + 2t11 − t10 + t7 − t6 + t5 + t1 − 1

QL94 The numerator is [2][8][12][14][18][20][24][30]
(120, 120) D = t120 + t119 − t115 + t114 − t113 − t112 − 2t111

17/43545600 −2t109 − 3t107 − t106 − 2t105 + t104 − 3t103 + 2t102

−2t101 + 2t100 + 6t98 − t97 + 6t96 + t95 + 9t94

+3t93 + 11t92 + 3t91 + 12t90 + 5t89 + 12t88 + 6t87

The number of infinite +14t86 + 4t85 + 11t84 + 6t83 + 11t82 + 3t81 + 6t80

special subgroups: 2 +5t78 + t77 − 2t76 − 5t75 − 5t74 − 7t73 − 13t72

−8t71 − 16t70 − 14t69 − 22t68 − 14t67 − 26t66 − 15t65

−31t64 − 19t63 − 31t62 − 16t61 − 36t60 − 17t59 − 33t58

−16t57 − 33t56 − 9t55 − 31t54 − 10t53 − 27t52 − 5t51

−23t50 + t49 − 22t48 + t47 − 12t46 + 7t45 − 12t44

+11t43 − 6t42 + 10t41 − 3t40 + 15t39 − t38 + 15t37

+2t36 + 14t35 + 4t34 + 16t33 + t32 + 12t31 + 4t30

+11t29 + 3t28 + 10t27 + t26 + 6t25 + t24 + 5t23

−t22 + 4t21 − t20 + t19 − t18 + t17 − 3t16 − 2t14

−t13 − t12 − t10 − t9 − t8 + t2 + t1 − 1
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Table 18: The quasi-Lannér diagrams on 10 vertices and growth functions

Label Degrees Growth function
Diagram in all cases χ = 0; D:=denominator

QL101 (129, 128) The numerator is [2]2[12][14][16][18][20][24][30]

D = −1 + t + t2 − t3 + t7 − t8 − t9 + t10 + t11 − t13−
t18 + t19 − t21 + t22 − t24 − t26 + t27 + t28 − t30 + t32−
t36 + 2t37 + t38 − t39 + t43 − t45 + t46 + t47−
2t48 + t50 − t51 − t54 + t55 − 2t57 + t59 − 2t60 + t62−
t63 − t66 + t67 − t69 + t71 + t74 − t75 + 2t77 − t81+
2t82 + t83 − t84 + t86 − t93 + t94 + t95 − 2t96 − t97 + t98−
t101 − t102 + t103 − t105 + t116 + t126 − t128

QL102 (129, 129) The numerator is [2]2[12][14][16][18][20][24][30]

D = −1 + t + t2 − t4 + t7 − 2t8 + t9 + t11 − 2t12 + t13 − t14+
2t15 − 4t16 + 2t17 − 2t18 + 4t19 − 4t20 + 3t21 − 3t22 + 5t23−
7t24 + 6t25 − 4t26 + 8t27 − 8t28 + 7t29 − 6t30 + 11t31−
11t32 + 9t33 − 7t34 + 13t35 − 14t36 + 12t37 − 9t38 + 14t39−
17t40 + 12t41 − 11t42 + 17t43 − 18t44 + 11t45 − 12t46+
17t47 − 22t48 + 12t49 − 12t50 + 15t51 − 18t52 + 10t53−
13t54 + 15t55 − 18t56 + 7t57 − 9t58 + 13t59 − 15t60 + 5t61−
4t62 + 9t63 − 11t64 + 2t65 − t66 + 8t67 − 5t68 − 3t69 + 5t70+
5t71 − 2t72 − 5t73 + 9t74 + 4t76 − 6t77 + 11t78 − 2t79+
4t80 − 11t81 + 15t82 − 3t83 + 6t84 − 11t85 + 13t86 − 6t87+
7t88 − 11t89 + 10t90 − 6t91 + 7t92 − 12t93 + 11t94 − 5t95+
2t96 − 10t97 + 8t98 − 5t99 + 4t100 − 8t101 + 5t102 − 3t103+
2t104 − 7t105 + 4t106 − t107 + t108 − 4t109 + 4t110 − t111−
2t113 + 2t114 + t116 − t117 + 2t118 + t119 − t120 − t121+
t122 + t126 + t127 − t128 − t129

QL103 (129, 129) The numerator is [2]2[12][14][16][18][20][24][30]

D = −1 + t + t2 − t4 + 2t7 − 3t8 + 3t11 − 3t12 + t13−
2t14 + 4t15 − 6t16 + 3t17 − 4t18 + 8t19 − 8t20+
5t21 − 5t22 + 11t23 − 13t24 + 9t25 − 9t26 + 17t27−
16t28 + 14t29 − 13t30 + 22t31 − 22t32 + 17t33−
16t34 + 28t35 − 29t36 + 24t37 − 21t38 + 31t39−
34t40 + 24t41 − 25t42 + 37t43 − 38t44 + 24t45−
26t46 + 38t47 − 44t48 + 24t49 − 26t50 + 34t51 − 37t52+
21t53 − 26t54 + 33t55 − 36t56 + 13t57 − 16t58 + 27t59−
30t60 + 9t61 − 6t62 + 17t63 − 19t64 + t65 + 13t67 − 7t68−
9t69 + 13t70 + 5t71 − t72 − 14t73 + 22t74 − 5t75 + 10t76−
16t77 + 24t78 − 8t79 + 13t80 − 26t81 + 31t82 − 10t83+
13t84 − 23t85 + 29t86 − 14t87 + 14t88 − 24t89 + 22t90−
12t91 + 14t92 − 23t93 + 21t94 − 10t95 + 5t96 − 18t97+
16t98 − 10t99 + 6t100 − 13t101 + 10t102 − 5t103 + 3t104−
12t105 + 7t106 − 2t107 + t108 − 5t109 + 6t110 − 2t111−
3t113 + 3t114 + t116 − t117 + 3t118 + 2t119 − 2t120−
2t121 + 2t122 + t126 + 2t127 − t128 − 2t129
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Table 19: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Lannér cases

L51 L52 L53 L54 L55

0.833415

0.94166

1.06195

1.19988

m = 0.97149

M = 1.02935

0.720106

0.898971

1.11238

1.38868

m = 0.96401

M = 1.03734

0.659358

0.875566

1.14212

1.51663

m = 0.93176

M = 1.07324

yes, correct:

no

real

roots

m = 0.94718

M = 1.05577

0.61621

0.85384

1.17118

1.62282

m = 0.89454

M = 1.11788
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Table 20: The real poles and the extremal absolute values of the non-real poles of the
growth functions. Quasi-Lannér cases (The trivial pole 1 is not indicated)

QL41 QL42 QL43 QL44 QL45

0.771327

m = 0.950357

M = 1.103357

m = 1

M = 1.210606

0.639025

m = 0.960217

M = 1.142917

−1.61803

0.618034

m = M = 1

0.667961

m = 0.910638

M = 1.343628

QL46 QL47 QL48 QL49 QL410

0.708134

m = 0.957686

M = 1.146305

−1.61803

0.618034

m = M = 1

0.636883

m = 1.099895

M = 1.139254

−1.33552

0.552965

m = M = 0.822833

0.561856

m = 0.909844

M = 1.287859

QL411 QL412 QL413 QL414 QL415

−1.29065

0.51879

m = 1

M = 1.222085

−1.11231

0.500245

m = 1.032895

M = 1.107983

0.492432

m = 0.902209

M = 0.911924

0.551753

m = 1.076010

M = 1.251157

−1.19004

0.504138

m = 1.103491

M = 1.169974

QL416 QL417 QL418 QL419

0.469396
m = M = 0.842693

0.682328
m = M = 1.210606

0.588985
m = 0.962999
M = 1.231827

0.552531
m = 0.986410
M = 1.243136

QL420 QL421 QL422

0.537613
m = 0.942397
M = 1.023332

−1.29065
0.51879
m = M = 1.222085

−0.767592
0.434259
m = 0.94718
M = 1.05577
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Table 21: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases

QL51 QL52 QL53 QL54 QL55

0.698956

0.891273

1.09813

m = 0.957885

M = 1.154830

−1.236

−1.05414

0.654741

0.872516

1.12047

m = 0.914538

M = 1.161598

0.72899

0.903396

1.08431

m = 0.948289

M = 1.150045

−1.62934

0.627864

0.862852

1.12033

m = 0.915917

M = 1.131353

−1.46751

0.579431

0.842435

1.1368

m = 0.849730

M = 1.074701

QL56 QL57 QL58 QL59

0.537456

0.820844

1.18562

m = 0.903486

M = 1.344774

0.662566

0.876238

1.11333

m = 0.947039

M = 1.119572

−1.162980.55887

0.831791

1.15607

m = 0.920577

M = 1.106633

−1.38639

0.491695

0.800368

1.18595

m = 0.864826

M = 1.082570
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Table 22: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases. (The trivial pole 1 is not indicated)

QL61 QL62 QL63 QL64 QL65

−1.41222

0.741226

0.864041

m = 0.947515

M = 1.137513

0.801198

0.896819

1.07859

m = 0.966866

M = 1.130358

m = 0.9459183

M = 1.136787

−1.35548

0.667522

0.822211

1.13349

m = 0.940570

M = 1.068224

0.744209

0.8651

1.10943

m = 0.961618

M = 1.147472

QL66 QL67 QL68 QL69 QL610

−1.30069

0.634641

0.802625

1.15397

m = 0.915468

M = 1.051409

0.702245

0.840655

1.13578

m = 0.881099

M = 1.177095

−1.28976

0.59287

0.777193

1.17396

m = 0.897402

M = 0.981604

−1.25535

0.542596

0.744994

1.20423

m = 0.747308

M = 0.932831

0.657119

0.814442

1.1665

m = 0.993132

M = 1.106255

QL611 QL612

−1.06958

0.604368

0.784304

1.17725

m = 0.907820

M = 1.237682

0.533802

0.742603

1.19555

m = 0.889811

M = 1.010751

41



Table 23: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases

QL71 QL72 QL73

0.755431

0.847161

0.94682

1.0582

1.11047

m = 0.943848

M = 1.145506

0.726032

0.827211

0.939344

1.06657

1.13199

m = 0.937174

M = 1.141785

0.656509

0.780576

0.92162

1.08703

1.18705

m = 0.892428

M = 1.160250

Table 24: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases. (The trivial pole 1 is not indicated)

QL81 QL82 QL83 QL84

−1.25799

−1.04243

0.763804

0.837519

0.915858

m = 0.939234

M = 1.100237

−1.29534

−1.0366

0.741982

0.821394

0.907002

m = 0.921189

M = 1.114182

0.77866

0.84753

0.92114

m = 0.932965

M = 1.134982

0.657583

0.760101

0.873128

m = 0.926349

M = 1.171854
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Table 25: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases

QL91 QL92 QL93 QL94

−1.28534

−1.02229

0.770075

0.831719

0.896113

0.964269

1.03702

m = 0.935688

M = 1.108580

−1.23784

−1.0607

0.753304

0.818656

0.88767

0.96124

1.04029

0.913000

1.121820

−1.19828

−1.01676

0.826149

0.873169

0.922226

0.973477

1.02722

m = 0.958697

M = 1.093674

−1.03174

0.659124

0.746793

0.841212

0.944445

1.05875

m = 0.878261

M = 1.347490

Table 26: The real poles and the extremal absolute values of the non-real poles of the growth
functions. Quasi-Lannér cases. (The trivial pole 1 is not indicated)

QL101 QL102 QL103

−1.14077

−1.008

0.878674

0.907888

0.93783

0.968518

1.03182

m = 0.968106

M = 1.068399

−1.01583

0.774744

0.827863

0.882622

0.939841

1.06238

m = 0.932746

M = 1.342964

−1.014947

0.7615867

0.8172635

0.8751652

0.9359320

1.0662355

m = 0.933795

M = 1.219335
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