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ON THE BUNKBED CONJECTURE

MADELEINE LEANDER

Abstract. Let G be a finite graph and consider the bunkbed graph
G̃ = G × K2 where K2 is the graph consisting of two vertices, {0, 1}
and one edge connecting them. On G̃ consider the percolation model
with p the probability that an edge e exists, for all e ∈ G̃. All edges will
exist or not independently of each other. We write u↔ v for the event
”there is a path from u to v”. The bunkbed conjecture states that for
any bunkbed graph G̃ = G×K2, corresponding to a finite graph G the
following holds

P (u0 ↔ v0) ≥ P (u0 ↔ v1),

for all u, v ∈ V (G) and any probability p.
The bunkbed conjecture was first informally stated by P. W. Kaste-

leyn around 1985 and has influenced the research of mathematicians like
van den Berg, Kahn, Häggström and Linusson since.

The main purpose of this thesis is to use combinatorial tools to work
on the bunkbed conjecture. The bunkbed conjecture will be proven to
be true for wheels and some small graphs.
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1. Introduction to the problem

Studying stochastic models on graphs is a big and important area in prob-
ability theory, see for example Aldous [1], Häggström [7], [6], [8] and Lyons
[11]. Percolations on product graphs can be used in several different con-
texts. In theoretical physics one example is electrical networks, as described
by Doyle and Snell in [3]. Another example is described in [5], where the
graph corresponds to a quadratic or cubic lattice and is used for the Ising
model.

The product graphs we will study here are bunkbed graphs. We can think
of a bunkbed graph as two copies of a finite graph G such that every vertex
in one copy is adjacent to the corresponding vertex in the other copy. We
will call the copys the 0-layer and the 1-layer. A vertex x ∈ G will have two
copies in the bunkbed graph, we will call them x0 and x1 depending on the
layer. We will write G̃ for the bunkbed graph G×K2 on G.

Figure 1.1. An example of a bunkbed graph. This bunkbed
graph corresponds to the graph with solid edges in the figure.

One can ask if a node u0 ∈ G̃ is ”closer” to a vertex v0 than it is to v1.
The answer to this question depends on the way closeness is defined. If we
define a vertex to be closer if one can find a shorter path (a path with less
edges) to that vertex the answer is of course yes.

One can on the other hand define closeness to be how likely a random
walk starting at u0 hits v0 and v1 respectively by time t. This was proven
not to be the case (for discrete time) by Bollobas and Brightwell.

Another way of defining closeness is to compare the probability that there
exists a path from u0 to v0 with the probability that there exists a path from
u0 to v1, where every edge in the bunkbed graph exists with probability p
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independent of each other. The existence of the edges will be i.i.d. The
probability that there exists a path from a vertex u to a vertex v in the
graph G will be written as PG(u↔ v) or P (u↔ v) for short when it is clear
which graph is regarded. We might say that u0 is closer to v0 than it is to
v1 if

P (u0 ↔ v0) ≥ P (u0 ↔ v1).
The bunkbed conjecture states that this inequality is true.

Conjecture 1. The bunkbed conjecture (BBC). Let G be a finite graph
and let G̃ = G×K2 be the corresponding bunkbed graph. Then for any two
vertices u, v ∈ V (G)

P (u0 ↔ v0) ≥ P (u0 ↔ v1).

If we manage to prove things like the bunkbed conjecture we might get
a better understanding of closeness between nodes in different stochastic
models also for other graphs.

Product graphs are also interesting while studying random walks. In [2]
Bollobás and Brightwell proved some results concerning this.

We shall begin in Section 2 and 3 by presenting some known results to
initiate the reader to some recent results on the bunkbed conjecture due to
Linusson. We will also introduce new models, operations and generalizations
in those sections. In Section 3 we prove a generalization of the bunkbed
conjecture for wheels and a subset of series-parallel graphs. In Section 3 we
will also give some restrictions for minimal counterexamples to the BBC.
The rest of the paper will be organized as follows. In Section 4, 5 and 6
we give some new generalizations of BBC. In Section 4 we will formulate a
conjecture corresponding to the bunkbed conjecture where we allow paths
to start and end in more than one vertex. In Section 5 we present the
corresponding problem for acyclic directed graphs. In Section 6 we give a
new way to attack the bunkbed conjecture. For the last section, Section 7,
we will summary some results about series-parallel graphs we found while
trying to prove the bunkbed conjecture for series-parallel graphs.
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2. Models and generalizations

If nothing else is said all the graphs will be considered simple and undi-
rected. For a graph G we will as usual define V (G) to be the set of vertices
in G and E(G) the set of edges in G. If we have an edge between two vertices
x and y we call it xy. We will write G\U for the graph obtained from G

with the vertices in U removed. When we write G̃ for a graph, we will mean
that G̃ is a bunkbed graph, G̃ = G×K2.

For the first model we will condition on the vertical edges existing in G̃.
Let G be a finite graph. Let further T ⊂ V (G) be such that the vertical
edges of G̃ exist exactly at the positions in T. Let the horizontal edges exist
with probability p independently and identically-distributed, as usual. The
vertices in T will be called transcendental. The following two models will
be given the same names as in [10].

Model 1. Ep,T
2 : For a graph G, let T ⊂ V (G) be the set of transendental

nodes in G. Let p (0 ≤ p ≤ 1) be the probability that an edge exists in the
0-layer or in the 1-layer of G̃ = G×K2 independent of each other.

With this model we can formulate the conjecture below that also seems
likely to be true. The probability that there exists a path from u to v in G

using the model BBCEp,T
2 will be written P

Ep,T
2 (G)

(u↔ v) or P
Ep,T

2
(u↔ v)

for short. This will be written in a corresponding way for other models.
Also if it is clear which model is used we may skip the model index.

Conjecture 2. (BBCEp,T
2 ). Let G be a finite graph with the corresponding

bunkbed graph G̃ = G×K2. Let further T ⊂ V (G) be the set of transcendental
nodes. Then for any u, v ∈ V (G) and for any 0 ≤ p ≤ 1 we have

P
Ep,T

2
(u0 ↔ v0) ≥ P

Ep,T
2

(u0 ↔ v1).

It is easy to realize that if BBCEp,T
2 is true for all T ⊂ V (G) then so

is also the original bunkbed conjecture. Using a mirror argument Linusson
also proved the following lemma that will be useful later. Recall first that a
cutset C ⊂ V (G) is such that G\C is disconnected.

Lemma 1. If the set of transcendental nodes, T ⊂ V (G), contains a cutset
of G that separates u from v or u ∈ T or v ∈ T, then

P
Ep,T

2
(u0 ↔ v0) = P

Ep,T
2

(u0 ↔ v1),

and hence BBCEp,T
2 is true.

Now, for the next model, fix any edge e ∈ E(G). If 0 < p < 1 we have
four cases. If both e0 and e1 exists in G̃, it is equivalent to contract the
edge e. On the other hand if neither e0 nor e1 exists in G̃ it is equivalent to
remove the edge e. With equivalent we will mean that the probability that
there exists a path between two vertices doesn’t change. We end up with
the model below, with the remaining two cases.

Model 2. ET
3 : Let G be a graph and let the vertical edges exist exactly on

positions in T for a subset T of V (G). Every horisontal edge in G̃ exists
either in the 0-layer or in the 1-layer with equal probability, and no edges
exist in both layers.
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This model can be reformulated in the following way. Let every edge
in G be coloured either red or blue with equal probability and let a subset
T ⊂ V (G)consist of transcendental nodes where a path may change colour.

In the reformulation we will think of the red edges to exist in the 0-layer
and the blue edges to exist in the 1-layer. Every path is allowed to change
color at the transcendental nodes. We generalize the bunkbed conjecture to
the one below.

Conjecture 3. (BBCET
3 ) Let G be a finite graph in model ET

3 . Then for
any u, v ∈ V (G) we have

PET
3

(u0 ↔ v0) ≥ PET
3

(u0 ↔ v1),

where the zeroes means that we start/end in a red edge (or u/v transcen-
dental) and v1 means ending in a blue edge (or v transcendental).

In other words, the probability that there exists a path from u to v ending
in a red edge (or v transcendental) is at least the same as the probability that
there exists a path from u to v ending in a blue edge (or v transcendental).
All paths will start with a red edge (if u /∈ T ). Sometimes we will call a
path a red (blue) path when it starts at u in red and ends at v in red (blue).

Recall that a minor of G is a graph obtained by deleting or contracting
edges in G. The conjecture was stated by Linusson in [10] were he also proved
that if it is true for any minor of G and every set of transcendental nodes,
T ⊂ V (G), then so is also the bunkbed conjecture for G. A motivation for a
model where one needs to regard all minors of a graph is that it is enough
to show that no minimal counterexample exists, which was used to prove
the bunkbed conjecture for outerplanar graphs in the same paper. By this
model it will also be easier to use combinatorial tools.

By the same mirror argument that Linusson used to prove Lemma 1 we
will also have the following lemma.

Lemma 2. If T ⊂ V (G) contains a cutset of G that separates u from v or
u ∈ T or v ∈ T then

PET
3

(u0 ↔ v0) = PET
3

(u0 ↔ v1),

and hence BBCET
3

is true.
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3. Classes of graphs

In this section we will prove the bunkbed conjecture ET
3 to be true for

some classes of graphs, and we will also give some restrictions for minimal
counterexamples. Here a graph G will be said to be a minimal counterex-
ample if no graph obtained by deleting or contracting one or more edges of
G, or removing one or more vertices of G is a counterexample. A graph G′

obtained by deleting vertices or edges, or contracting edges of a graph G is
said to be equivalent to G if no connection probability, a probability
of the form P (x ↔ y), changes. This will be more clear when we come to
the operations in this section. We will start by presenting some useful op-
erations that will reduce the possible number of minimal counterexamples.
If nothing else is said, model ET

3 will be used in this section.
We will start by stating a result about outerplanar graphs by Linusson

(Theorem 1).
First, a planar graph is said to be outerplanar if it does not have any

K4 or K2,3 minor. Equivalently a graph is called outerplanar if it can be
embedded in the plane such that the vertices lie on a fixed circle and the
edges lie inside the disk of the circle and don’t intersect. It is also possible
to define outerplanar graphs as graphs containing a face that includes every
vertex in the graph.

Theorem 1. (Linusson) BBCET
3 and BBC is true for outerplanar graphs.

We will continue with a nice result for not-2-connected graphs.

Theorem 2. A not-2-connected graph G can not be a minimal counterex-
ample to BBCET

3 .

Proof. Assume that G is a minimal counterexample. First if G is not 1-
connected the graph has at least two components. If u and v lie in different
components we have

PET
3

(u0 ↔ v0) = PET
3

(u0 ↔ v1) = 0

and hence G can not be a minimal counterexample. Obviously G can not be
a minimal counterexample if u and v lie in the same component. This since
we can remove any edge and any vertex from the other component without
altering the connection probability.

Now assume G is 1-connected and let x be a cut vertex, i.e. a vertex
such that removing it splits the graph into two components. We start with
the case where x is such that G\{x} has a component containing neither u
nor v. Let G′ be the graph obtained from G by removing all components of
G\{x} that contain u or v. If x ∈ T then G′ does not influence the proba-
bilities P(G)(u0 ↔ v0), PG(u0 ↔ v1). Hence we can remove G′\{x} to obtain
a minor of G, and so G can not be a minimal counterexample in this case.
Now we condition on the color of the edges in G′ and get the following two
cases.

(1) There exists a path in G′ starting at x with a red edge and ending at
x with a blue edge.
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For this case we can remove G′\{x} from G and let x ∈ T to obtain a
smaller graph without altering the connection probability we are consider-
ing.

(2) There is no path in G′ that starts at x with a red edge and ends at x
with a blue edge.

In this case G′ can never be of any use for a path from u to v, so G′\{x} can
be removed to obtain a smaller graph without changing the probabilities of
going between u and v.

To complete the proof we need to show that G can not be a minimal
counterexample when G\{x} consists of two components, one containing
u and one containing v. In this case x separates u from v in G. If x is
transcendental we are done by Lemma 2, and hence we may assume x /∈ T .

We want to show that

PET
3 (G)(u0 ↔ v0)− PET

3 (G)(u0 ↔ v1) ≥ 0.

Let G1 be the subgraph of G obtained by deleting the component of
G\{x} containing v. In the same way define G2 to be the subgraph of G
obtained by deleting the component of G\{x} containing u.

A path from u to v (which must pass through x) must go in and out from
x with the same color.

We have
PET

3 (G)(u0 ↔ v0)− PET
3 (G)(u0 ↔ v1) =

= PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v0) + PET
3 (G1)(u0 ↔ x1) · PET

3 (G2)(x1 ↔ v0)

− PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v1)− PET
3 (G1)(u0 ↔ x1) · PET

3 (G2)(x1 ↔ v1)

Note that PET
3 (G)(u0 ↔ v0) is not equal to

PET
3 (G1)(u0 ↔ x0) ·PET

3 (G2)(x0 ↔ v0)+PET
3 (G1)(u0 ↔ x1) ·PET

3 (G2)(x1 ↔ v0)

since in some cases we have both the event u0 ↔ x0 and u0 ↔ x1. But for
these cases P (u0 ↔ v0) = P (u0 ↔ v1) so we do not have to consider them
for the difference.

We also have
PET

3
(x0 ↔ v1) = PET

3
(x1 ↔ v0)

and
PET

3
(x0 ↔ v0) = PET

3
(x1 ↔ v1)

by symmetry. By assumption we have

PET
3 (G1)(u0 ↔ x0)− PET

3 (G1)(u0 ↔ x1) ≥ 0

and
PET

3 (G2)(x0 ↔ v0)− PET
3 (G2)(x0 ↔ v1) ≥ 0

Hence their product is bigger or equal than zero.
The following calculation completes the proof.(
PET

3 (G1)(u0 ↔ x0)−PET
3 (G1)(u0 ↔ x1)

)(
PET

3 (G2)(x0 ↔ v0)−PET
3 (G2)(x0 ↔ v1)

)
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= PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v0) + PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v1)

− PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v1)− PET
3 (G1)(u0 ↔ x1) · PET

3 (G2)(x0 ↔ v0)

= PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v0) + PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x1 ↔ v0)

− PET
3 (G1)(u0 ↔ x0) · PET

3 (G2)(x0 ↔ v1)− PET
3 (G1)(u0 ↔ x1) · PET

3 (G2)(x1 ↔ v1)

= PET
3 (G)(u0 ↔ v0)− PET

3 (G)(u0 ↔ v1)

And hence a not-2-connected graph can not be a minimal counterexample
to BBCET

3 . �

To illustrate the last part of the proof, see for example the graph in
Figure 3.1.

Figure 3.1. Here we have a 1-connected graph with tran-
scendental nodes {y, z}, and a cutvertex x.

For this graph we have(
PET

3 (G1)(u0 ↔ x0)−PET
3 (G1)(u0 ↔ x1)

)(
PET

3 (G2)(x0 ↔ v0)−PET
3 (G2)(x0 ↔ v1)

)
=

= (
5
8
− 2

8
) · (5

8
− 2

8
) =

3
8
· 3

8
=

9
64

and

PET
3 (G)(u0 ↔ v0)− PET

3 (G)(u0 ↔ v1) =
28
64
− 19

64
=

9
64
.

Now we will define some operations and state and prove some lemmas
that uses them.

T-operation: If two vertices x, y ∈ T of G and xy ∈ E(G) we can contract
xy without changing the probability of any path to exist.

As a direct consequence of the T-operation we have the following lemma.

Lemma 3. If G is a minimal counterexample to BBCET
3 there can be no

two transcendental vertices in G that are adjacent.
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Also we have the following two lemmas.

Lemma 4. If G is a minimal counterexample to BBCET
3 there is no vertex

x, different from u and v, in G with degree two such that x /∈ T.

Proof. Let x be a non-transcendental vertex of degree two in G different
from u and v. Assume G is a minimal counterexample to BBCET

3 . We have
two cases. Either the two edges from x have different colors. Then vertex
x and its two edges can never be used. Thus in this case we can remove
x and its two edges without altering any probability. This gives a smaller
graph, G1 for which the statement is true by assumption. Hence G can not
be a minimal counterexample in this case. Now for the other case, when
the two edges from x have the same color. Then we can contract one of the
edges to obtain a minor, G2, of G without changing any probability. For
G2 the statement is true by assumption. Thus, G can not be a minimal
counterexample to BBCET

3 . �

In this proof we split the colorings of G into two cases. For both cases we
found that the probabilities for paths is the same as for some smaller graphs,
G1 and G2. We know the lemma to be true for these graphs by assumption
and since G is just a linear combination of these two graphs the lemma must
be true also for G. This idea will be used in other proofs without further
comments.

Lemma 5. If G is a minimal counterexample to BBCET
3 there can be no

two vertices x, y ∈ V (G) of degree two, different from u and v, such that xy
exists.

Proof. Let G be a graph with two vertices x, y ∈ V (G) of degree two, dif-
ferent from u and v, such that xy exists. Assume G is a minimal coun-
terexample to BBCET

3 . Then both x and y then must be transcendental by
Lemma 4 for the graph to be able to be a minimal counterexample. But we
can not have any two transcendental adjacent vertices by Lemma 3. Hence
G can not be a minimal counterexample to BBCET

3 . �

Recall that the graph obtained by contracting the edge e in a graph G is
denoted by G/e.

∆-operation: Let x, y, z ∈ V (G) and let xy, xz, yz ∈ E(G). Assume that
no other edges in E(G) depend on the color of these edges. Form the fol-
lowing cases:

G∆
1 = G/xy

G∆
2 = G/xz

G∆
3 = G/yz

G∆
4 = G with the edges xy, xz, yz having the same color.

If say xz and yz have the same color, but different from the color of xy,
then all paths can walk between x and y with either of the colors and hence
the case is equivalent to G∆

1 . If xy and yz have the same color, but different
from the color of xz we can walk between x and z with any of the two colors
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and hence we can contract the edge xz. This case is equivalent to G∆
2 and

is illustrated in Figure 3.2.

Figure 3.2. An illustration of the case G∆
2 .

If xy and xz have the same color but different from the color of yz we can
walk freely between y and z and hence we can contract the edge yz without
altering any probability. This is the case G∆

3 , and here G∆
3 is said to be

equivalent to G. For the last case all the edges in the triangle have the same
color. We can not be sure that we keep the probabilities while contracting
an edge since new paths can arise. See for example the case in Figure 3.3.

Figure 3.3. An illustration of why a graph obtained by con-
tracting an edge in case G∆

4 of the ∆-operation is not neces-
sarily equivalent to G∆

4 . In the figure we contract the edge e
and a path between x and y arise.

It is easy to realize that if the BBC is true for all four cases it also holds for
G. We have that G is equivalent to G∆

i , i = 1, 2, 3, 4 with equal probability
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and

PG(u0 ↔ vi) =
1
4
PG∆

1
(u0 ↔ vi) +

1
4
PG∆

2
(u0 ↔ vi)

+
1
4
PG∆

3
(u0 ↔ vi) +

1
4
PG∆

4
(u0 ↔ vi)

When we write ”PG∆
i

(u0 ↔ vi)” G∆
i implicitly tells us that model ET

3 is
used, the same for the following two models.

Note that if the color of any other edges depended on the one of xy, xz
or yz the graph obtained by contracting one of them would be a graph with
some restrictions. For example say that in a graph G xy and yz have the
same color, λ1, and xz have the same color, λ2, as another edge e ∈ E(G).
If λ1 6= λ2 we may contract the edge xz without changing any probability.
But the graph we obtain by doing this has the restriction that e and y(xz)
have different colors, and hence we can not discard G as a minimal coun-
terexample. This will be more clear while observing the Y−operation.

Restricted ∆-operation Let x, y, z ∈ V (G) such that xy, xz, yz ∈ E(G).
Assume that xy ∈ U, |U | ≥ 2 for some connected subgraph U where the
edges are required to have the same color. Assume also that the color of xz
and yz doesn’t depend on the color of any other edge. By arguments similar
to them around the ∆-operation we get the following subgraphs:

GR∆
1 = G/xz

GR∆
2 = G/yz

GR∆
3 = G but we require that xz and yz have the same color.

Again if BBCET
3 is true for GR∆

i , i = 1, 2, 3 then it is also true for G by
reasoning analogues to the ∆ case.

Y-operation Let x ∈ V (G)\T such that deg(x)=3 and x 6= u, v.. Let
us call the neighbours of x for x1, x2, x3. Assume that the color of no other
edges is dependent of the colors of the edges xxi. If say xx1 and xx2 have
the same color but different from the color of xx3 then xx3 can not be used
(since x /∈ T ) so we may remove it without altering any probability. We can
also contract xx1, and we end up with a graph, GY

1 , equivalent to G without
any restrictions. By the same reasoning we end up with the following four
cases:

GY
1 = (G\xx1)/xx2

GY
2 = (G\xx2)/xx3

GY
3 = (G\xx3)/xx1

GY
4 = G with the edges xx1, xx2, xx3 having the same color.

As for the other operations we see that if conjecture 3 is true for Gi, i =
1, 2, 3, 4 it is also true for G.

The operations will be used to exclude some graphs that can’t be minimal
counterexamples. When using them we need to be careful so that there are
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no restrictions on the minors Gi, such as edges having the same (or different)
color. For example, it is easy to realize that contracting one of the edges xxi

in GY
4 does not change any probability. We end up with a minor, GY ′

4 , for
which we have a restriction of two edges having the same color. If we assume
that G is a minimal counterexample to BBCET

3 we have that GY
i , i = 1, 2, 3

are not counterexample. But we do not have the same for GY ′
4 since we have

a restriction on this graph.

3.1. Wheels. A graph consisting of an outer cycle and an inner vertex such
that all vertices on the cycle is adjacent to the inner vertex will be called a
wheel. The vertices on the cycle will be called outer vertices. We will first
prove the bunkbed conjecture ET

3 to be true for wheels.

Figure 3.4. An example of a wheel.

Lemma 6. If G is a minimal counterexample to conjecture 3 (BBCET
3 )

then G does not have a non-transcendental vertex x ∈ G such that x has
degree three and such that x 6= u, v belongs to two triangles.

Proof. Assume that G is a minimal counterexample, and that there exists
a vertex x in G such that x /∈ T , x 6= u, v and deg(x) = 3. Applying the
∆-operation on one of the triangles containing x in G we have

PG(u0 ↔ v0) =
1
4
PG∆

1
(u0 ↔ v0) + . . .+

1
4
PG∆

4
(u0 ↔ v0).

Since G∆
i , i = 1, 2, 3 are minors of G we already know that

PG∆
i

(u0 ↔ v0) ≥ PG∆
i

(u0 ↔ v1)

for i = 1, 2, 3 by assumption, and hence we may assume that all the edges in
one of the triangles containing x have the same color, λ1. Further by using
the restricted ∆-operation we may by the same reasoning assume the two
non colored edges of the other triangle containing x have the same color,
λ2. We can now contract the edge between x and the other vertex contained
in both triangles without changing any probability. To realize that the
probabilities are contained the importance of the degree of x comes in. If
deg(x) > 3 contracting the edge as above could arise new paths. We end
up with a minor of the graph for which the conjecture is known to be true.
Note that if x = u, v the contraction might change the probability of the
events. �
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Figure 3.5. An illustration of the case in lemma 6.

Theorem 3. Let G be a finite wheel such that each edge is coloured either
red or blue wiht equal probability. Then

PET
3

(u0 ↔ v0) ≥ PET
3

(u0 ↔ v1),

where 0 and 1 stands for starting/ending on a red or blue edge respectively,
or u/v transcendental. In other words, BBCET

3 is true for wheels.

Proof. Assume thatG is a minimal counterexample to BBCET
3 . By Lemma 6

we know that G can’t contain any outer, non-transcendental vertex x 6= u, v.
Also, two transcendental vertices can not be neighbours in a minimal coun-
terexample by Lemma 3. So whenever two transcentental outer vertices are
adjacent we use the T -operation to contract the edge between them. Also if
u or v (or both of them) are transcendental the theorem holds by Lemma 2.
If there are five (or more) outer vertices at least three of them must be non-
transcendental. If the center vertex is transcendental no outer vertex can
be transcendental. Hence by Lemma 6 only u and v can be outer vertices.
This gives an outerplanar graph for which BBCET

3 is already known to be
true. These things gives us that if G is a minimal counterexample it must
be one of the following two graphs:

(1) G has four outer vertices, u, v and two trancendental nodes.
(2) G has three outer vertices, u, v and one trancendental node.

The second case can not be a minimal counterexample by Lemma 6 ap-
plied around the center vertex. Computing the probability to get from u to
v ending up on a red edge and comparing it with the probability that the
last edge is blue in the first case completes the proof. �

To prove that also BBC holds for wheels one must prove BBCET
3 also for

all minors of wheels. By using Lemma 6, the T-operation and the following
lemmas on all the minors of wheels we can find that it is only finitely many
cases to check to prove the bunkbed conjecture for wheels.
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Figure 3.6. An illustration of (1) where x, y ∈ T. We have
P (u0 ↔ v0) = 95

128 and P (u0 ↔ v1) = 89
128 .

Figure 3.7. An illustration of (2) where x ∈ T. We have
P (u0 ↔ v0) = 3

4 and P (u0 ↔ v1) = 1
2 .

Lemma 7. If G is a minimal counterexample to BBCET
3 then there can be

no non-transcendental vertex of degree three, different from u and v, with
two transcendental neighbours.

Proof. Let G be a finite graph with a non-transcendental vertex x of degree
three, different from u and v, and such that x has at least two transcendental
neighbours (see Figure 3.8).

By using the Y -operation around x we find that if G is a minimal coun-
terexample all the edges from x must have the same color (GY

1 , G
Y
2 and GY

3

gives smaller graphs without changing any probabilities). If the three edges
from x have the same color we can always walk freely between y and z, going
in and out with any color. By contracting xy and xz we do not change any
probability, and the smaller graph has no restrictions. Hence G can not be
a minimal counterexample. �

For the next lemma we will use the following operation:

Y∆−operation: Let G be a graph with a non-transcendental vertex, x,
of degree three, different from u and v, with neighbours y, z, w such that the
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Figure 3.8. An illustration of the case in Lemma 7, where
y and z are in T .

edges xy, xz and xw all have the same color. Then we can remove x, and
put out new edges yz, zw and wy all with the same color, without changing
the probability to get from u to v. The operation is illustrated in Figure 3.9.

Figure 3.9. With all edges in the figure having the same
color this illustrates how the Y∆−operation works.

Lemma 8. Let G be a minimal counterexample to BBCET
3 . Then we can

not have a triangle xyz with x non-transcendental and both x and y having
degree three, different from u and v. And such that the vertices, x′ and y′,
adjacent to x and y respectively are transcendental.

Proof. Let G be a finite graph with a triangle xyz with x non-transcendental,
x and y having degree three, different from u and v. And such that the
vertices, x′ and y′, adjacent to x and y respectively are transcendental.
Assume G is a minimal counterexample.
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By Lemma 7 y must be non-transcendental. And from Lemma 6 the edges
x′z and y′z can not exist (so if G is a wheel x′ and y′ must have degree two).
By using the Y−operation around x we find that for G to be a minimal
counterexample all the edges from x must have the same color. Now by
using the Y∆−operation around x we end up with two edges between y
and z. If they have the same color we may remove one of them without
changing any probability and then G can not be a minimal counterexample
by lemma 7. If they on the other hand have different colors we may contract
the edges yz without changing the probability to get from u to v. The lemma
follows. �

Figure 3.10. An illustration of Lemma 8.

Lemma 9. BBCET
3 is true when |T | = 0, 1.

The proof is analogues to the one Linusson gave in [10] for model Ep,T
2 .

Proof. If we don’t have any transcendental node we are done since it is
impossible to use a blue edge, and hence we can not reach v with a blue
edge. Now assume that we have exactly one transcendental node, x. We will
condition on wether or not there is a path from u0 (a path starting from u
in a red edge) to x0 (and ending in x with a red edge). If such a path does
not exist we can never find a path ending in v with a blue edge, and we are
done. And if such a path exists we have that

PET
3

(x0 ↔ v0) ≥ PET
3

(x0 ↔ v1),

since we can only effect the probability (PET
3

(x0 ↔ v0)) in a positive way
by conditioning on a red path to exist. �
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3.2. BBC for wheels. Now to one of the main result of this thesis, which
is a new result.

Theorem 4. BBCET
3 holds for all minors of wheels and hence BBC holds

for wheels.

To prove the theorem we will look at a construction of minors of wheels.
To understand the construction, and verify that all minors are included we
need the following lemma.

Lemma 10. For a minor of a wheel to be a minimal counterexample to
BBCET

3 the center vertex must be non-transcendental.

Proof. Assume G is a minor of a wheel, with the center vertex transcenden-
tal. Then by Theorem 1 G can not be outerplanar. By Lemma 3 there can
be no transcendental outer vertex of degree three since an outer vertex of
degree three is adjadent to the center vertex and we can have no transcen-
dental neighbors. Now assume we have a transcedental outer vertex, x, of
degree two. Then x can not be adjacent to a vertex different from u and v
of degree two by Lemma 5. We also have that x can not be adjacent to a
vertex of degree three, different from u and v by Lemma 7. Hence the only
possible case is the graph in Figure 3.11.

Figure 3.11. The squares denote the transcendental nodes.
In this figure all nodes but u and v are transcendental.

By Lemma 2 there can be no cutset separating u from v in a minimal
counterexample. Hence the graph in Figure 3.11 can not be a minimal
counterexample. �

Now to the construction. Every wheel can be constructed from L-formed
pieces, see Figure 3.12, we call the L-formed pieces the first construction
pieces.

We want to find the construction pieces for minors of wheels, which are
possible minimal counterexamples. The minors of wheels can be constructed
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Figure 3.12. The wheel to the right is constructed from five
L-formed pieces such as the one to the left.

by minors of the first construction pieces. If we from one L-formed piece,
in a minor of a wheel G, remove the outer edge the graph, G, will become
outerplanar. Thus for a graph (a minor of a wheel) to be a possible minimal
counterexample the outer edge of each L-formed piece must exist. It is
possible to remove the other edge from some of the pieces. We must also
consider all combinations of transcendental nodes, but we know that the
center vertex can not be transcendental by Lemma 10. Also by Lemma 3
we can not have both outer vertices of one L-formed piece transcendental.
We get the new construction pieces shown in Figure 3.13, we call them the
second construction pieces.

When we construct a minor of a wheel we will always start with the vertex
u, then some construction pieces, v, some more pieces and then end in u.
For example uacbvdu is a minor of a wheel. First we will only consider the
cases when the center vertex is different from u and v, later we will find this
enough. We will use combinations of the second construction pieces to find
new parts, which we will refer to as the construction pieces.

We can not have b first in the string of construction pieces since in a
minimal counterexample u must be non-transcendental. The only parts
that fits with b are c and e. We can thus remove b and instead put fb
(number 1 in Figure 3.14) and cb (number 2 in Figure 3.14). Further we
can not have c at the end of the string of construction pieces (between u
and v) since for the graph to be a minimal counterexample v must be non-
transcendental. c fits with e only (since we removed b), thus we can remove c
and put ce instead (number 6 in Figure 3.14). Again we can never use either
of e and f alone but we can combine them to fe (number 5 in Figure 3.14)
and remove both of them. Now we have found the construction pieces (see
Figure 3.14) we will use to find all the minors of wheels that are possible
minimal counterexamples.

We have the following theorem.
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Figure 3.13. These are the second construction pieces. The
squares stands for transcendental nodes and the circles for
non-transcendental nodes.

Theorem 5. All minors of wheels which are possible minimal counterex-
amples can be constructed by combinations of the pieces in Figure 3.14. A
combination is of the form ux1, . . . xkvy1 . . . yl where xi and yi are construc-
tion pieces.

We can glue the pieces together in different ways but by using some of the
properties we have found for minimal counterexamples we find only a few
to be valid. When we glue the pieces together we will start with the vertex
u then some construction pieces, v, some more pieces and end in u. For
example we have the possible minimal counterexample u3314v5u in Figure
3.15.

Now we want to know how can we combine these construction pieces to
build possible minimal counterexamples to BBCET

3 . We will use the follow-
ing lemmas to exclude some combinations.

Lemma 11. 4, 5 and 6 can not be followed by any piece in a minimal
counterexample to BBCET

3 for minors of wheels.

Proof. If we put any piece after 4, 5 or 6 we end up with a non-transcendental
vertex of degree 2 (different from u and v), which can not exist in a minimal
counterexample by Lemma 4. �

Lemma 12. Neither of the combinations 12, 15, 16, 21, 25, 26, 11, 22 can
exist in a minimal counterexample to BBCET

3 for minors of wheels.

Proof. For the case 12 we have that the part in Figure 3.16 exist in the
graph. There is a vertex (x 6= u, v) of degree three with two transcendental
neighbours which can not exist in a minimal counterexample by Lemma 7.
The proofs of the other cases are analogoues to the proof of the case 12. �
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Figure 3.14. The six construction pieces for minors of
wheels. The squares stands for transcendental nodes and
the circles for non-transcendental nodes.

Lemma 13. The combinations 133, 23, 332, 336 and 333 can not exist in
a minimal counterexample to BBCET

3 for minors of wheels.

Proof. Again we will only prove the lemma rigorously for one case, the other
follows in the same way. Take 133, the graph in Figure 3.17. We have a
nontranscendental vertex of degree three, different from u end v, contained
in two triangles. Such a vertex can not exist in a minimal counterexample
due to Lemma 6.

�

Lemma 14. The combinations 131, 132, 231, 135, 136 and 232 can not
exist in a minimal counterexample to BBCET

3 for minors of wheels.

Proof. All of the combinations (131, 132, 231, 135, 136 and 232) gives a
triangle xyz with x non-transcendental and both x and y having degree
three, different from u and v. And such that the vertices, x′ and y′, adjacent
to x and y respectively are transcendental. This can not exist in a minimal
counterexample to BBCET

3 by Lemma 8. �
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Figure 3.15. The construction u3314v5u, where the
squares are considered transcendental and the circles non-
transcendental.

Figure 3.16. The combination 12, as usual the squares
markes the transcendental nodes.

We can now state the theorem below.

Theorem 6. All possible minimal counterexamples to BBCET
3 that are mi-

nors of wheels (not wheels) is of the form uXvY u where X and Y are some
of the combinations listed below, and u and v are different from the center.
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Figure 3.17. The combination 133, as usual the squares
markes the transcendental nodes.

1 5 33 34 334 134 3313
2 6 35 13 335 314 33134
3 31 14 36 313 3314
4 32 24 324 331 3134

Proof. We will go through all combinations of pieces by start looking at all
start pieces.

1: For the first case, let us start by 1. We can of course have 1 alone.
By Lemma 12 1 can not be followed by 1, 2, 5 or 6. Thus we can
only continue by 3 or 4.
13: If we start by 13 we have of course the combination 13. By

Lemma 14 we can not continue with 1, 2, 5 or 6 and by Lemma
13 the combination 133 is not allowed. The only way to continue
is with 4.
134: We have the combination 134 and can not continue due

to Lemma 11.
14: 14 is a valid combination and we can not continue due to Lemma

11.
2: We have 2 alone as a valid piece. We can not continue with 1, 2, 5

or 6 by Lemma 12. Also 23 is a non-valid combination by Lemma
13. We can only continue with 4.
24: 24 is a valid combination and we can not continue due to Lemma

11.
3: 3 alone is valid. We can continue with any of the six pieces.

31: From above (when we list the combinations starting with 1) we
can continue with 3 and 4. 31 alone is of course also valid.
313: 313 is a valid combination. By Lemma 14 we can not

add 1, 2, 5 or 6. By Lemma 13 we can not continue by 3
either. 4 is the only piece possible to continue with.
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3134: We have 3134 but can not continue by Lemma 11.
314: 314 is a valid combination but by Lemma 11 we can not

continue.
32: From above we find that 2 can only be followed by 4.

324: We have the combination 324 but we can not add any
piece by Lemma 11.

33: We have 33 alone. By Lemma 13 we can not continue with 2, 3
or 6. 1, 4 and 5 are valid to continue with.
331: 331 alone is valid. According to above we can continue

with 3 and 4.
3313: 3313 is a valid combination. We can not add 1, 2,

5 or 6 by Lemma 14. By Lemma 13 we can not
continue with 3. The only possibility is to add 4.

33134: 33134 is valid and by Lemma 11 we can not con-
tinue.

3314: 3314 is a valid combination. By Lemma 11 we can
not continue.

334: We have the combination 334 but can not add another
piece by Lemma 11.

335: 335 is a valid combination but we can not continue by
Lemma 11.

34: 34 is valid. By Lemma 11 we can not continue with any piece.
35: 35 is a valid combination but we can not continue according to

Lemma 11.
36: We have 36 but can not continue by Lemma 11.

4: 4 alone is valid but according to Lemma 11 we can not continue with
any piece.

5: 5 is valid and by Lemma 11 we can not continue.
6: 6 alone is valid but we can not continue by Lemma 11. �

We find that in all 26 combinations above there are at most one transcen-
dental nodes. In 3 and 4 there is no transcendental nodes and hence if X
or Y is equal to 3 or 4 the graph uXvY u can not be a minimal counterex-
ample to BBCET

3 by Lemma 9 since the graph, uXvY u, has at most one
transcendental node. Now we have at most 242 graphs that can be mini-
mal counterexamples to BBCET

3 for wheels (we choose two, not necessarily
different, combinations X and Y ).

Proof. BBC for wheels. Let G be a minor of a wheel, and a minimal coun-
terexample to BBCET

3 . First, a wheel can not be a minimal counterexample
to BBCET

3 by Lemma 3. By Lemma 10 we have that the center vertex in G
can not be transcendental. A possible graph with u (or v) in the center can
be written uXu (vXv). By Lemma 9 neither u nor v can be in the center
since every combination X contains at most one transcendental node. We
have 242 cases left according to Theorem 6, some of them are outerplanar
or can be omitted by some other lemma. To make it easy all these 242 cases
was checked by computer simulations. �

As a direct consequence we also have:
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Corollary 1. (To Theorem 4) BBC holds for all minors of wheels.

To prove the bunkbed conjecture also for graphs with only one inner
vertex it is probably possible to use the lemmas of this section to get a finite
number of possible minimal counterexamples to check. This does not seem
like a very good method to prove BBC for larger graphs, it is mostly lots of
computations.

3.3. Series-parallel graphs. While trying to prove the bunkbed con-
jecture for series-parallel graphs we found lots of interesting results. The
results concerning the bunkbed conjecture will be presented in this section
and some other results will be presented in Section 7. The definition of
series-parallel graph that will be used here, and is the most common, is the
following.

Definition 1. A multigraph G with no loops is a series-parallel (SP for
short) multigraph if it can be generated from an edge by the operations of
subdividing an edge, i.e. replacing it by two edges (series) and doubling an
edge, i.e. replacing it by two edges (parallel).

Figure 3.18. This is an example of a construction of a
series-parallel graph using series and parallel operations.

Definition 2. A simple series-parallel graph is a series-parallel graph with-
out multiple edges.

For the non-simple graphs we have the following lemma.

Lemma 15. A non-simple graph can not be a minimal counterexample to
BBCET

3 .
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Proof. Let G be a minimal counterexample to BBCET
3 and assume G is

non-simple. Then there must be at least one double edge, {e1, e2}. We have
two cases. If e1 and e2 have the same color we may just remove one of them
to obtain a smaller graph for which the statement is true by assumption. If
e1 and e2 have different color we may contract the edges and again obtain
a smaller graph for which the statement is true by assumption. �

The alternative to this definition is that a series-parallel graph is con-
structed from a double edge using series and parallel operations. The al-
ternative construction require the graph to be 2-connected. We have the
following well-known theorem proved by Duffin in [4]. Recall that a subdi-
vision of a graph G is a graph obtained by repeatedly subdividing edges of
G.

Theorem 7. A 2-connected graph is series-parallel if and only if it does not
contain a subdivision of K4.

We will now introduce another useful way to look at series-parallel graphs,
to be able to prove conjecture 3 for a subclass of SP graphs.

Lemma 16. A 2-connected graph consisting of at least 3 vertices is series-
parallel iff it can be constructed from a cycle with non-crossing cords (a
2-connected outerplanar graph), replacing some (or all) of the cords with
connected series-parallel graphs.

Note that a cord, that is just an edge between two vertices, is a series-
parallel graph itself so we can say that we change all the cords to connected
series-parallel graphs.

Proof. For the first direction, let G be a 2-connected series-parallel graph.
Then G can be constructed using the operations of series and parallel. By
taking the biggest outer cycle from this construction G can be constructed
by putting in 2-connected series-parallel cords in the cycle.

For the other direction, we know that the cycle with some cords (only
edges here) is series-parallel, since it is outerplanar. And since any 2-
connected series-parallel graph can be constructed from one (double) edge
using series and parallel operations the graph must be series-parallel, se
Figure 3.19. �

We will use this characterization of series-parallel graphs to prove that
BBCET

3 is true for a subset of the series parallel-graphs.

Definition 3. The series-parallel graphs constructed from a cycle with
cords, where connected series-parallel graphs are placed parallel to some
cords will be called SP0 graphs.

The difference from before is that we require the cord to stay, this will be
necessary for the proof method we use.

We are now ready to state and prove one of the main results of this thesis,
a generalization of the bunkbed conjecture for SP0 graphs.

Theorem 8. Let G be a SP0 graph with every edge colored either red or
blue with equal probability. Then G can not be a minimal counterexample to
BBCET

3 .
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Figure 3.19. If the graph to the right is series-parallel then
so is also the one to the left.

Proof. To get a contradiction, assume that G, together with some set of
transcendental nodes, is a minimal counterexample. Call the two paths
from u to v on the outer cycle outer paths. We start by proving that u must
have degree two. Assume deg(u) > 2, then there must be a cord (since we
kept all the cords) that does not separate u from v, and one such x is as close
to u as possible along the outer path. Then by using Lemma 4 we have that
all vertices different from u and v of degree two are transcendental. And
also by using the T-operation we find that there must be a triangle with two
vertices on the outer path from u to x, with one vertex of degree two. By
using the ∆−operation we find that since G is a minimal counterexample
all the edges in the triangle can be assumed to have the same color. We
may then remove the vertex of degree two without altering any probability.
Hence u must have degree two.

Let x and y be the two neighbours of u. Note that u /∈ T. If any of the
edges ux, uy are blue we may remove it (since they can never be used), and
contract the red edge (if one) to obtain a smaller graph without alterning
the probability, and G can not be a minimal counterexample. Hence both
ux and uy must be red.

Now if xy is not an edge then one of x and y have degree two, say y. If
not there is a cord not separating u from v and a minimal such. Since G is
a minimal counterexample this is not possible for the same reason as above.
By contracting uy we obtain a minor of G with the restriction of ux being
red. This will be handled later.

If on the other hand xy is an edge in G we have two cases. Either the
edge is red or it is blue. If xy is blue we may contract xy since we can walk
between x and y along both a red and a blue path. We may also contract
uxy, since the edge is red, and we obtain a minor of G for which the theorem
is true. If xy is red we may contract uy (we can assume that y had degree 2)
without altering the probability. Again we end up with a minor of G with
the condition that ux is red.
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For G to be a minimal counterexample then some of the minors with the
restriction that one edge from u is red must be. And hence there must be
a minimal such graph. For such a graph to be a minimal counterexample,
again if the other edge from u is blue we may remove it and contract the red
edge. Hence we have the case where both the edges from u are red. This is
handled above. �

The idea of the proof above can of course be used on all graphs constructed
from a cycle with cords, were any graph can be put parallel to the cords.
Linusson used this idea to prove the conjecture for outerplanar graphs (and
all minors that are again outerplanar).

3.4. Minimal counterexamples - summary. To summarize we now have
an idea of how a minimal counterexample must look. We can not have any
of the following:

(1) Adjacent transcendental nodes.
(2) u ∈ T.
(3) v ∈ T.
(4) Non-transcendental vertices of degree two, different from u and v.
(5) T ⊂ V (G) containing a cutset of G that separates u from v.
(6) A non-transcendental vertex x ∈ G such that x has degree three and

such that x 6= u, v belongs to two triangles.
(7) A non-transcendental vertex of degree three, different from u and v,

with two transcendental neighbours.
(8) A triangle xyz with x and y non-transcendental of degree three,

different from u and v, and such that the other vertices, x′ and y′,
adjacent to x and y respectively are transcendental.

(9) An outerplanar graph.
(10) A SP0 graph.
(11) A wheel.
(12) A minor of a wheel.
(13) A non-2-connected graph.
(14) A triangle with a vertex of degree two, different from u and v.
(15) |T | = 0, 1.

We can use these facts to see that small graphs can not be minimal coun-
terexamples. For graphs with only two nodes it is clear. For a graph with
three nodes we have either a triangle, no transcendental nodes or a transcen-
dental cutset. Also graphs on three vertices are outerplanar. Continuing to
larger graphs we have the following by using the other facts and computing
the probabilities in a few small cases.

Lemma 17. No graph with at most four vertices can be a minimal coun-
terexample to BBCET

3 , and hence BBC holds for graphs with at most four
vertices.

Proof. Let G be a minimal counterexample to BBCET
3 . All graphs on at

most four vertices are outerplanar but K4. Thus, if G is a minimal coun-
terexample it must be K4. Since we can not have a non-transcendental vertex
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different from u and v contained in two neighbour triangles by Lemma 6,
both the vertices different from u and v must be transcendental. But since
these two verices are neighbours G can not be a minimal counterexample by
Lemma 3. �

By using some of the criteria for minimal counterexamples, and some
computer simulations we also have the theorem below.

Theorem 9. BBC holds for graphs with at most five vertices.
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4. A set of start points

One can also analyze whether or not the bunkbed conjecture is true when
we have a set of startpoints or endpoints (or both). To me the following two
conjectures seems likely to be true.

Conjecture 4. Let G be a finite graph and let H = G ×K2 be the corre-
sponding bunkbed graph then

PS(S0 ↔ T0) ≥ PS(S0 ↔ T1).

where S0 and T0 is a set of vertices in the zero-layer and T1 in the one-layer.

And also we have the following conjecture for the red-blue model.

Conjecture 5. Let G be a finite graph with every edge colored red or blue
with equal probability. Then

PS(S0 ↔ T0) ≥ PS(S0 ↔ T1).

Where the index 0 (1) stands for starting / ending in a red (blue) edge or
the start / end points are transcendental, analogous with earlier.

Intuitively it seems like the proof method used in the proof of Theorem
8 can be used for outerplanar graphs for the two conjectures above. The
problem is that we can not always be sure there is a u ∈ S of degree two
with a neighbor of degree two.
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5. Directed acyclic graphs

Another way to prove that the conjecture holds for a graph would be to
define a map from all the colorings containing only blue paths to a subset of
the set of colorings containing only red paths, and finding the inverse. This
tends to be easy for most concrete examples of graphs but it seems hard to
do it otherwise. For example for some graphs you may define the map to
change color on the blue edges, on the blue paths from v and to the first
trancendental node. If this gives any extra red paths we change the color
to blue on some edges in those paths. This idea will be useful when talking
about directed graphs.

Model 3. (Model D) Let G be a finite acyclic directed graph with vertices
u and v such that no edges are directed from v and no edges are directed to
u, and such that all edges are colored either red or blue with equal probability.
A path may change color at a vertex in T ⊂ V (G).

Note that we can assume that u is the unique source and that v is the
unique sink. If there were another source or sink we may just remove it since
it can never be used.

Conjecture 6. (BBCD). Let G be a finite graph in model D. Then for
any u, v ∈ V (G), with the properties of model D, we have

PD(u0 ↔ v0) ≥ PD(u0 ↔ v1),

where v0 means ending up in a red edge and v1 in a blue (or v ∈ T ). We
always start with a red edge (or u ∈ T ), as usual.

This conjecture also seems likely to be true. It is also likely that the
conjecture is true for all directed graphs (not only acyclic). We will prove
the conjecture to be true for some special sets of transcendental nodes.

Theorem 10. If T ⊂ V (G) contains a cutset separating u from v or u ∈ T
or v ∈ T then

PD(u0 ↔ v0) ≥ PD(u0 ↔ v1)
holds.

Also this theorem can be proven using the same mirror argument Linusson
used to prove Lemma 1. And for the case when T ⊂ V (G) contains a cutset
separating u from v we can prove it in the following way.

Proof. Let A ⊂ T ⊂ V (G) be a cutset separating u from v. Define a function
f to fix the color of all the edges between u and the vertices in A and change
the color on all the other edges. The inverse is trivial. And if we apply f
on all the colorings containing only blue paths the image will be a subset of
the colorings containing only red paths from u to v. With a blue (red) path
we mean a path starting in u with a red edge an ending in v with a blue
(red) edge. �

Se for example Figure 5.1 to understand the function f.

Theorem 11. Conjecture 5.1 is true when subset S ⊂ T can be expanded
to a cutset A such that no paths from u to v contains a vertex in A\T.
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Figure 5.1. f is the function changing color on all the edges
but them below the transcendental cutsen {x, y}.

Proof. We can use the same function as in the proof of Theorem 10 since
the non-transcendental vertices in the cutset can never be used for a path
from u to v. �

Theorem 12. Conjecture 5.1 is true when T is an antichain.

Proof. Let G be a finite graph in model D. Let T be the set of transendental
nodes in G and assume that T forms an antichain of G. To prove the theorem
for G we will define a function, f, from all the colorings containing only blue
paths to (a subset of) the set of colorings containing only red paths.

Let f be the function changing the color on all edges included in paths
(even though the path is not valid because of the coloring) from a transcen-
dental node to v. The inverse is trivial. Since all blue paths must go through
a transcendental node all blue paths will be changed into red, and no blue
paths can arise. �
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6. Another approach

To find a polynomial in p describing P (u0 ↔ v0) and P (u0 ↔ v1), it is
easiest to count the number of ways to put out i edges in G̃ which gives paths
u ↔ v, multiplying it by the probability of the graph having i edges and
sum over all the possible number of edges in the graph. The probability that
a bunkbed graph containing eH edges, all of them existing with probability
p, gets i edges is pi(1− p)eH−i. But we are only interested in the coefficients
in front of this number (for all i) to compare P (u0 ↔ v0) and P (u0 ↔ v1).
Let us name the coefficients α0, . . . , αeH and β0, . . . , βeH respectively. We
will call these coefficients probability constants.

Example 1. Let, for giving an easy example, G be the graph consisting of
two vertices and one edge connecting them. Let one of them be u and v the
other.

Figure 6.1. Here G consists of only two vertices with an
edge between them, and the corresponding bunkbed graph,
G̃ is in the figure.

The probability constants are listed below.

(1− p)4 p(1− p)3 p2(1− p)2 p3(1− p) p4

P (u0 ↔ v0) 0 1 3 4 1
P (u0 ↔ v1) 0 0 2 4 1

It seems likely to be true that all the probability constants for u0 ↔ v0

are bigger than the probability constants in front of u0 ↔ v1 respectively.
This is computed to be true if the graph G contains no more than 4 vertices.
Some random simulations has also been done, and they all gave the expected
result. We formulate the following conjecture.

Conjecture 7. Let G be a finite graph, and G̃ the corresponding bunkbed
graph. Then for all the probability constants we have αi ≥ βi for all choices
of u, v ∈ G.

Obviously BBC follows from this conjecture, and hence the bunkbed con-
jecture is true if the bunkbed graph contains no more than eight vertices.
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Note also that the conjecture above is true for the first n + 1 probability
constants, where n is the least number of edges for a path from u0 to v0.
We know that αn+1 ≥ αn · (|E(H)| − n) since we may put out the extra
edge in all free positions without getting any repetitions. We also have that
βn+1 = αn · (n + 1), since we can choose any of the n + 1 vertical edges to
get to the 1-layer. We have at least 2n+ n+ 1 edges in the bunkbed graph
and hence

αn+1 ≥ αn · (|E(H)| − n) ≥ αn · (2n+ 1) > αn · (n+ 1) = βn+1.

It is not true in general that there are more ways to put out i edges in a
graph and having a path from u to v than from u to x if the path with the
least number of edges from u to v contains less edges than the one from u
to x, or if the probability to get from u to v is greater than the probability
to get from u to x. Take for example the graph in Figure 6.

Figure 6.2. This graph is commonly used as a counterex-
ample when talking about percolation and random walks.

In the case of figure 6 we have P (u ↔ v) = p and P (u ↔ x) = 2p2 − p4

and hence for some p
P (u↔ v) ≥ P (u↔ x).

Also we have 4 = α4 < β4 = 5 for the same example. Even though this is
not true in general it seems likely to be true for bunkbed graphs.
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7. Characterization of series-parallel graphs

While trying to prove the bunkbed conjecture for all series-parallel graphs
we instead manage to prove the three theorems below. We also found a
result (Theorem 16) that seemed useful. The idea was to use the definition
of series-parallel graphs as a cycle with series-parallel cords, and use the
theorem on the series-parallel cords but it failed for case (2).

The first result is most likely already known, but we have not found it
anywhere. The same for Theorem 15.

Theorem 13. A 3-connected graph with at least six edges can not be series-
parallel.

Proof. For the proof we use theorem 7 and find a K4 minor. Let G be a
3-connected graph containing at least six edges and take any cycle C of G
with minimal length. Since the graph G is 3-connected and has at least six
edges, it must have a node, x, that does not lie on the cycle, C. By Menger’s
Theorem there are three node-disjoint paths from x to three distinct nodes
of C, which we call a, b and c. By some deletions and contractions the cycle
and the three paths can be reduced to a K4 minor with x, a, b and c as
vertices. �

For the relations between series-parallel graphs and outerplanar graphs
we found a nice way to prove the theorem below.

Theorem 14. If G is a series-parallel graph without K2,3 minors, then G
is outerplanar.

Proof. Let G be a connected SP graph without K2,3 minors and let C be a
cycle of G of maximum length. Suppose first that G has a node x that does
not lie on C. Since G is 2-connected there exist two edge disjoint paths from
x to distinct nodes y and z on C so that these paths have only the node x in
common. If the edge yz exists and is an edge of C, then C can be extended
to a longer cycle using the two paths which contradicts the maximality of
C. If y and z are not joined by an edge of C then C and the two paths
are easily reduced to a K2,3 minor of G, which gives another contradiction.
Hence all nodes of G must be nodes of C.

To prove that the graph is outerplanar we can, without loss of generality
assume that G is a simple graph. Now draw C as a circle in the plane. Also
draw the remaining edges as straight line segments. If any two such edges
cross, then these edges plus C can be reduced to a K4 minor of G which
contradicts that G is series-parallel. Thus, no cords cross, and we have an
outerplanar drawing of G in the plane. �

Theorem 15. Every series-parallel graph can be constructed from any two
adjacent vertices of the graph, using operations of series and parallel.

Proof. The proof is by induction over the number of operations done. Let
G be any graph constructed by n operations, and assume that G can be
constructed from any edge in the graph. Let G′ be a graph constructed
from G using one more operation. If it was the parallel operation it is clear
that also G′ can be constructed from any edge in the graph. If it was the
series operation on an edge ab ∈ G we now have edges ax and xb in G′ where
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x is the added vertex. We know that G′ can be constructed from any edge
but ax and xb so we only need to concentrate on these two edges.
G′ can be constructed from ax by first double the edge ax and then place

a new vertex, b, on that new edge. This gives us the edge ab and we already
know that G′ can be constructed from this edge. The construction steps are
listed in figure 7.1. If we do the same construction as for G we will end up
with the graph G′∪ab. But it is easy to realize that when G was constructed
from ab the first step was to double the edge. By skipping this step we can
construct G′ from ab. The same works for xb. �

Figure 7.1. The construction stes used in theorem 15.

While trying to prove BBCET
3 for series-parallel graphs we found the

following theorem, in [9], that seemed useful.

Theorem 16. Every (non-null) simple series-parallel graph G has one of
the fol lowing:

(1) a vertex of degree at most one,

(2) two distinct vertices of degree two with the same neighbors,

(3) two distinct vertices x, y and two not necessarily distinct vertices
w, z ∈ V (G)\{x, y} such that the neighbors of y are x and w, and
every neighbor of x is equal to y, w, or z, or

(4) ve distinct vertices y1, y2, x1, x2, w such that the neighbors of w are
x1, x2, y1, y2, and for i = 1, 2 the neighbors of yi are w and xi.
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