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Abstract

Bruno Buchberger initiated the theory of Gröbner bases and Buchberger’s algo-
rithm 1965, since then it has been the key to solve many problems in physics,
chemistry and last but not least computational algebra. This essay is a first
introduction to Gröbner Bases. We will go through the theoretical background
of Gröbner Bases and Buchberger’s algorithm and we will look at some applica-
tions where we use Gröbner bases to solve systems of polynomial equtions and
implicitization problems.
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Chapter 1

Introduction

The Buchberger algorithm was created to be used on computers. It is formulated
in a way which makes it easy to implement and execute on computers. The
consequence is that when you just read through the algorithm it’s hard to really
understand why the algorithm works. I want to know why it works and the
direct formulating just makes it even more interesting. Another thing which
makes Buchberger’s algorithm and Gröbner bases interesting is that it has been
found to have many applications both in mathematics and other sciences such
as chemistry and physics. It seems to be more or less a rule that with every
question answered come ten new ones and you can easily say the theory of
Gröbner bases and Buchberger’s algorithm has given us many new questions to
explore.

1.1 Bruno Buchberger

1965 Bruno Buchberger initiated the theory of Gröbner bases and Buchberger’s
algorithm in his PhD thesis. Today he is a professor at Johannes Kepler Univer-
sity, Linz, Austria and director of the Software Park Hagenberg, Austria (Buch-
berger 20090518, internet). Buchberger gave the theory the name Gröbner bases
to honour his thesis adviser Wolfgang Gröbner (Fröberg 2005).

1.2 Algebra

I will assume you know some algebra before you read this essay. You should be
familiar with basic abstract algebra such as rings, fields and ideals. The Buch-
berger algorithm is a kind of division algorithm which has the special quailty
that it works on polynomial rings so it may be to your advantage to know how
normal division algorithms over fields work.
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Chapter 2

Introductory Example

We all know how to solve system of linear equations, it’s usually not hard and
a part of our basic algebra knowledge. The question is what happens when you
get system of equations with multiple variables in higher degrees. Are we still
able to solve the system and if so, how do we do it? The answer is that if we have
a system with a finite number of solution we can use Buchberger’s algorithm to
calculate a suitable Gröbner basis and thereby solve the system. And before we
go through the actual theory of Gröbner bases and Buchberger’s algorithm we
will start with a small example on this application of Buchberger’s algorithm.

Example 2.0.1 We want to solve the system{
f1 = x2y + x = 0
f2 = x2 − y2 = 0

We let
S(f1, f2) = f3 = f1−yf2 = (x2y+x)−y(x2−y2) = x2y+x−x2y+y3 = x+y3

Since f1 = f2 = 0 we also have f3 = 0 so without changing the solution to the
system we extend it with f3. We will get back to the more formal definition of
S later.  f1 = x2y + x = 0

f2 = x2 − y2 = 0
f3 = x+ y3 = 0

In this system the same information is stored in more than one place, so
we will take away what we don’t need. f3 ⇒ x = −y3 which in f1 gives that
x2y + x = x2y + (−y3) = x2y − y3. In f2 we have x2 = y2, applied on f1 this
gives f1 = x2y − y3 = y2y − y3 = 0. If we use that x = −y3 on f2 we get
f2 = x2 − y2 = (−y3)2 − y2 = y6 − y2. The process leaves us with the following
system: {

f2 = y6 − y2 = 0
f3 = x+ y3 = 0
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S(f2, f3) = x(y6 − y2) − y6(x + y3) = xy6 − xy2 − xy6 − y9 = −xy2 − y9

Using that y6 = y2 and x = −y3 we have that
S(f2, f3) = −xy2 − y9 = −xy2 − y6y3 = −(−y3)y2 − (y2)y3 = y5 − y5 = 0

This means that {x+ y3, y6 − y2} is a Gröbner basis.
Now y6 − y2 = y2(y4 − 1) = y2(y − 1)(y + 1)(y2 + 1) = 0, which gives

y1 = 0
y2 = 1
y3 = −1
y4 = i
y5 = −i

and this gives 
x1 = 0
x2 = −1
x3 = 1
x4 = −i
x5 = i

and the system is solved.
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Chapter 3

Monomial orderings

The monomial orderings play an important part when we want to calculate
Gröbner bases. In Buchberger’s algorithm we need to be able to compare mono-
mials and therefore we need to determine an internal order between variables.
We have to decide if x1 > · · · > xn, xn > · · · > x1, or if there are some other
ordering between them.

Definition 3.0.1 A Monomial in x1, . . . , xn is a product of the form
xα1

1 · x
α2
2 · · ·xαn

n where all of the exponents α1, . . . , αn are nonnegative integers.

Definition 3.0.2 A Polynomial in x1, . . . , xn with coefficients in k is a linear
combination of monomials.

3.1 Monomial ordering

Definition 3.1.1 We define ≺ to be an admissible ordering on the set of mono-
mials M if:

• For any of monomials m,n ∈M we have m ≺ n or n ≺ m or m = n

• If m1 ≺ m2 and m2 ≺ m3 then m1 ≺ m3, mi ∈M, i = 1, 2, 3

• 1 ≺ m for any monomial m ∈M, m 6= 1

• If m1 ≺ m2, mi ∈M then mm1 ≺ mm2 for any monomial m ∈M

Different orderings give different Gröbner bases with specific qualities. Which
ordering you choose depends mainly on the problem you want to solve and choos-
ing a good ordering can do a lot for the efficiency, both while calulating and
using the Gröbner basis. We will start by going through a few examples of the
most common monomial orderings and have a short discussion on which one to
choose later.
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For the Lexicographic ordering, denoted Lex, we have that a monomial
xi11 · · ·xinn ≺Lex x

j1
1 · · ·xjnn if i1 = j1, . . . , ik = jk, ik+1 < jk+1 for some k. The

Lex− ordering can in some ways be looked at as a generalization of how words
are ordered in a lexcion and the name Lexicographic reflects that.

Example 3.1.1 x4
2x

5
3 ≺Lex x1x

3
2 since for x4

2x
5
3, x0

1 which gives i1 = 0 and for
x1x

2
2, j1 = 1 ⇒ i1 < j1.

In degree orderings as the Degree Lexicographical ordering, Deglex, and
the Degree Reverse Lexicographical ordering, Degrevlex, the main com-
parison is in the degree of the monomial. We have that a monomial m =
xi11 · · ·xinn ≺deglex x

j1
1 · · ·xjnn = n if deg(m) = i1+· · ·+in < j1+· · ·+jn = deg(n)

or if deg(m) = deg(n) and m ≺Lex n.

Example 3.1.2 In the degree lexicographical ordering
x2

1x2 ≺deglex x2x
3
3 since deg(x2

1x2) = 3 which is smaller then deg(x2x
3
3) = 4.

In the degree reverse lexicographical ordering we have that a monomial m =
xi11 · · ·xinn ≺degrevlex x

j1
1 · · ·xjnn = n if deg(m) < deg(n) or if deg(m) = deg(n)

and in = jn, in−1 = jn−1, . . . , ik = jk, ik−1 > jk−1 for some k.

Example 3.1.3 In the degree reversed lexicographical ordering we
m = x2

1x
3
2x

4
3 ≺degrevlex x3

1x
2
2x

4
3 = n since both m,n have degree 9 and for the

last component which is not equal, x2 we have ik−1 = 3 > 2 = jk−1.

So which ordering is good for what? There seems to be no easy answer to
this question. It depends on the specific problem you want to solve, what kind
of problem it is, your input and if you have demands on efficiency. Often the
best way to find a good ordering is to experiment. What we can say is that
if you have an elimination problem, for example if you want to solve a system
of equations, you will always get a useful Gröbner basis if you use the Lexico-
graphical ordering. It has been proved that for a random generated problem the
degree reversed lexicographical ordering is the fastest one. The problem is that
there is no guarantee that the Gröbner basis you get can be used for elimination
problems.

The monomial ordering gives us the possibility to separate and compare
different monomials in a polynomial. We want to be able to discuss and use
these different monomials and to do so we make the following definition.

Definition 3.1.2 Let f ∈ A = k[x1, . . . , xn], f 6= 0 and suppose ≺ is an admis-
sible ordering of monomials in A. Then f can be uniquely written f = c1m1 +
· · ·+ cNmN with monomials m1 � m2 � · · · � mN and ci 6= 0, i = 1, . . . , N .We
define the support of f to be supp(f) = {mi | i = 1, . . . , N}.
We define the leading monomial of f to be lm(f) = m1, the leading term
of f to be lt(f) = c1m1 and the leading coefficient of f to be lc(f) = c1.

Example 3.1.4 Let f = 7x3
1x3+x1x

2
2−2x3 with the lexicographical ordering we

have supp(f) = {x3
1x3, x1x

2
2, x3}, lm(f) = x3

1x3, lt(f) = 7x3
1x3, and lc(f) = 7.
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Chapter 4

Monomial ideal

4.1 Initial Definitions

One of the basic criteria for an algorithm is that it will in a finite number of steps
get you to the desired destination. One of the keystones in making this likely
for Buchberger’s algorithm is the fact that monomial ideals in a polynomial ring
over a field is finitly generated. This is shown in Dickson’s lemma.

Definition 4.1.1 An ideal generated by a set of monomials, elements in
k[x1, . . . , xn] of the form xi11 · · ·xinn , is called a Monomial Ideal.

Theorem 4.1.1 Let a be a monomial ideal in k[x1, . . . , xn].
Let f = Σcimi, were ci ∈ k \ {0} and mi are different monomials. If f ∈ a then
mi ∈ a for each i

Proof We start with defining the concept of multigrading of the polyno-
mial ring k[x1, . . . , xn]. If cm = cxi11 · · ·xinn , c ∈ k \ {0}, we set mdeg(cm) =
(i1, . . . , in). Let a = 〈n1, . . . , ns〉 be a monomial ideal, and suppose f = Σcimi ∈
a. Then f = g1n1 + · · ·+ gsns for some gi = Σcimi ∈ k[x1, . . . , xn]. Let cimi be
a nonzero term in f . Then cimi equals the sum if all elements ci,jmi,jni which
are of the same multidegree as cimi. Hence cimi is a linear combination of the
n′is, so cimi ∈ a.

Definition 4.1.2 If a is a nonzero ideal in A, then we define the ideal of
leading monomials of a to be l(a) = 〈lm(f) : f ∈ a〉 = 〈lt(f) : f ∈ a〉.

4.2 Dickson’s Lemma

Lemma 4.2.1 (Dickson’s Lemma) Every monomial ideal in k[x1, . . . , xn], a
polynomial ring over a field k, is finitely generated.
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Proof By induction over n. Since every ideal in k[x] is principal, the lemma
is true for n = 1. Suppose it is true for n− 1 variabels, and let a be a monomial
ideal in k[x1, . . . , xn]. Let bj = (a : 〈xjn〉)∩k[x1, . . . , xn−1] = 〈Sj〉. Since bj is an
ideal in k[x1, . . . , xn−1], we can choose Sj to be finite. We have b0 ⊆ b1 ⊆ · · · .
It follows that ∪bj is an ideal b in k[x1 . . . , xn−1] and hence finitely gener-
ated, b = 〈S〉. If m ∈ a is a monomial then m = m′xkn for some monomial
m′ ∈ k[x1, . . . , xn−1] and some k. Since m′xkn ∈ a we get m′ ∈ a : 〈xkn〉, so
m ∈ 〈xknSk〉. Thus S′ = S0 ∪ xnS1 ∪ x2

nS2 ∪ · · · is a generating set for a. But
for some r we have that Sk = Sr if k ≥ r, so S0 ∪ xnS1 ∪ · · · ∪ xrnSr is a finite
generating set for a.

There is an additional, famous result, by the German mathematician David
Hilbert, called Hilbert’s Basis Theorem. It shows that every ideal in a polyno-
mial ring over a field is finitly generated, but since we only use the monomial
ideals we have chosen just to present Dickson’s lemma.

Lemma 4.2.2 Let ≺ be an admissible ordering on the monomials in k[x1, . . . , xn].
Then any nonempty set S of monomials has a smallest element, in other words
there is an m0 ∈ S such that m0 ≺ n for any n ∈ S, n 6= m0.

Proof Let a = 〈S〉 be the ideal generated by S. By Dickson’s Lemma, a is
finitely generated, a = 〈m1, . . . ,mr〉. Since any monomial m in S is a multiple
of some mi,m = mim

′ for some i and som m′, we can choose m0 to be the
smallest monomial in {m1, . . . ,mr} since any multiple of mi is larger than mi.

We prefer to use a reformulation of the lemma above and to make referring
easy we formulate this in a separate lemma.

Lemma 4.2.3 Any strictly decreasing sequence of monomials in an admissible
ordering � is finite.
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Chapter 5

Reduction

We will now get familiar with the reduction process, which we will later use to
calculate reduced Gröbner bases. The reduction process works in the same way
as the division algorithm for polynomials in k[x]. So we will begin with extend-
ing the already known division algorithm for k[x] to k[x1, ..., xn] and then at the
end of the chapter take a closer look on reduction. Our goal in this chapther
is to come to a point where we are able to express a polynomial f modulo an
ideal a = 〈g1, . . . , g2〉

For a division algorithm over in k[x] we have the following theorem.

Theorem 5.0.1 Let k be any field and suppose f, g ∈ k[x], g 6= 0. Then there
are uniquely defined polynomials q, r ∈ k[x] such that f = qg + r with deg(r) <
deg(g)

Note that the last part, deg(r) < deg(g) is a way to express that r is
”smaller” than g. In one variable we use the degree of the polynomial for
comparison, but when we move on to polynomials in several variables we have
to make this comparison in some other way.

Example 5.0.1 f = x3 + 2x+ 1 and g = x+ 2

x3 + 2x+ 1 = x2(x+ 2) + (−2x2 + 2x+ 1)

x3 + 2x+ 1 = x2(x+ 2) + (−2x)(x+ 2) + (6x+ 1)

x3 + 2x+ 1 = x2(x+ 2) + (−2x)(x+ 2) + 6(x+ 2) + (−11)

x3 + 2x+ 1 = (x2 − 2x+ 6)(x+ 2) + (−11)

⇒ q = x2 − 2x+ 6, r = −11, f = qg + r, where deg(−11) < deg(x+ 2)

When we extend the algorithm from k[x] to k[x1, . . . , xn] we will use the
monomial orderings introduced in chapter 3 to handle the problem of several
variables. Then we will see what to do when g is a sequence of polynomials
g = (g1, . . . , gs).
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5.1 Division algorithm in k[x1, . . . , xn]

First we will make an informal description of the algorithm and then go through
it more thoroughly. We want to be able to express a polynomial f as qg + rem
where f, g, q, rem are polynomials in k[x1, . . . , xn] and where rem stands for
the remainder of f with respect to g. So how will we define this remainder? If
f = 0 we let the remainder of f be 0. Otherwise we look at the monomials in
f which are divisible by the leading monomial in g. As an example if we use
the Lex order defined in chapter 3 and f = 2x2 + x + 3y2 and g = x + y, the
leading monomial of g, lm(g) = x and the monomials if f which are divisible
by lm(g) are {x2, x} we call this set Sf . Now let f1 = f − 2x2

x (x + y) =
2x2 + x + 3y2 − (2x2 + 2xy) = −2xy + x + 3y2. We choose to work with the
term 2x2 since x2 is the largest monomial in Sf . In the next step we look at the
monomials in f1 which are divisible by lm(g), Sf1 = {xy, x}. And here comes
a crucial part of the algorithm, we claim that the largest monomial in Sf1 is
smaller then the largest monomial in Sf and next that the largest monomial
in Sf2 will be smaller than the largest monomial in Sf1 and so on. To make
it clearer we call these ”largest” monomials in Sn, pn then our claim is that
p0 � p1 � p2 � . . . . This is a decreasing sequence under an admissible order
and thereby we know from Lemma 4.2.3 that the sequence is finite, in other
words, eventually no monomial in fN will be divisible by lm(g). This fN we
call the remainder of f with respect to g. The demand that no monomial in
fN is divisible by lm(g) correspond to deg(r) < deg(g) in the one variable case.
For our f = 2x2 + x+ 3y2 and g = x+ y we have

f1 = −2xy + x+ 3y2, Sf1 = {xy, x}

which gives

f2 = f1 −
−2xy
x

(x+ y) = −2xy + x+ 3y2 − (−2xy − 2y2) = x+ 5y2, Sf2 = {x}

which gives

f3 = f2 −
x

x
(x+ y) = x+ 5y2 − (x+ y) = 5y2 − y

Now no monomial in f3 is divisible by lm(g) = x and we have come to an end
of the algorithm.

5y2 − y is the remainder of 2x2 + x+ 3y2 with respect to x+ y

At this piont you might ask yourself if the the remiander depends on the mono-
mial ordering. This is not the case, though when we move on to the case where
we have a sequence (g1, . . . , gk) we will see that the reminder will depend on
the order of the sequence. But First we will go through the theory of when g
equals a single polynomial in a more formal way. We have

f, g ∈ k[x1, . . . xn], and ≺ an admissible monomial ordering.

15



If f = 0 we let the remainder of f to be 0.
Otherwise we let

m = lm(g), Sf = {n ∈ supp(f) | m divides n}

Let p0 be the largest element in Sf and cp0 be the p0 − coefficient in f

Then we let
f1 = f − cp0p0

lc(g)m
g

And
Sf1 = {n ∈ supp(f1) | m divides n}

If p1 is the largest element in Sf1 then p1 ≺ p0 since

supp(f1) ⊆ (supp(f) ∪ supp(p0

m
g) \ {p0})

If p1 ∈ supp(f) \ {p0} then obviously p1 ≺ p0.
We have

lm(
p0

m
g) =

p0

m
lm(g) =

p0

m
m = p0

Hence we also get p1 ≺ p0 if p1 ∈ supp(p0m g) \ {p0}.
We continue the process and define

f2 = f1 −
cp1p1

lc(g)m
g , Sf2 = {n ∈ supp(f2) | m divides n} and p2 = max(Sf2)

The sequence p0 � p1 � p2 � . . . is finite according to lemma 4.2.3, hence after
a finite number of steps no element in supp(fN ) is divisible by m. We have
fn = f − hg for some polynomial h, and we define fN to be the remainder of
f with respect to g.

Example 5.1.1 f = 5x2
1 + x1x

2
2 + x1x2 − x2, g = (x1 + x2

2) and let ≺ be Lex
Then we have supp(f) = {x2

1, x1x
2
2, x1x2, x2} and m = x1 which gives Sf =

{x2
1, x1x

2
2, x1x2}, p0 = x2

1 and cp0 = 5.

f1 = 5x2
1 + x1x

2
2 + x1x2 − x2 − ( 5x2

1
x1

(x1 + x2
2)) = 5x2

1 + x1x
2
2 + x1x2 − x2 −

5x2
1 − 5x1x

2
2 = −4x1x

2
2 + x1x2 − x2

Sf1 = {x1x
2
2, x1x2}, p1 = x1x

2
2, cp1 = −4

f2 = −4x1x
2
2 +x1x2−x2− (−4x1x

2
2

x1
(x1x2)) = −4x1x

2
2 +x1x2−x2 + 4x1x

2
2 +

4x3
2 = x1x2 + 4x3

2 − x2

Sf2 = {x1x2}, p2 = x1x2, cp2 = 1

f3 = x1x2+4x3
2−x2−(x1x2

x1
(x1+x2

2)) = x1x2+4x3
2−x2−x1x2−x3

2 = 3x3
2−x2

f3 = 3x3
2 − x2 is the remainder of f with respect to g

16



Now let g = (g1, . . . , gs) be an ordered sequence of nonzero polynomials and
f a polynomial.
We recursively define

rem(f, (g1, . . . , gs)) = rem(f − ngk, (g1, . . . , gs))

where k is the smallest index such that lm(gk) divides lm(f) and n is a term
chosen so that lt(f) = lt(ngk). If no lm(gi) divides lm(f)
we define

rem(f, (g1, . . . , gs)) = lt(f) + rem(f − lt(f), (g1, . . . , gs))

In both cases the process reduce f with the leading monomial and thereby it is
finite.

Example 5.1.2 If we have

f = x3 + y, g = (x2 − 1, y − 1) and the Lex− ordering

Then
rem(f, g) = rem(x3 + y − x(x2 − 1), (x2 − 1, y − 1)) =

= rem(x+ y, (x2 − 1, y − 1))

Now no lm(gi) divides lm(f), so

rem(x3+y, (x2−1, y−1)) = rem(x+y, (x2−1, y−1)) = x+rem(y, (x2−1, y−1)) =

= x+ rem(y − (y − 1), (x2 − 1, y − 1)) = x+ rem(1, (x2 − 1, y − 1))

no lm(gi) divides 1 so

rem(x3 + y, (x2− 1, y− 1)) = x+ 1 + rem(0, (x2− 1, y− 1)) = x+ 1 + 0 = x+ 1

Thus x+ 1 is the remainder of x3 + y with respect to (x2 − 1, y − 1).

5.2 Reduction

We have defined the remainder rem(f) of a polynomial f when dividing with a
sequence (g1, . . . , gk). Now let a be an ideal, a = 〈g1, . . . , gk〉 and note that the
rem(f, (g1, . . . , gk)) ≡ f modulo a.

Example 5.2.1 Given

f = x2 + x+ y ∈ k[x1, . . . , xn], a = 〈x2 − x, y〉 and Lex− ordering

We want to write f modulo a so we calculate the remainder of f with respect
to 〈g1 = x2 − x, g2 = y〉.

rem(f, (g1, g2) = rem(f − ng1, (g1, g2))

17



let
f1 = f − ngk = x2 + x+ y − 1(x2 − x) = 2x+ y

Then we have rem(f, (g1, g2) = rem(f1, (g1, g2)). Now no leading monomial in
(g1, g2) divides lm(f1) so the

rem(f1, (g1, g2)) = lt(f1) + (f1 − lt(f1), (g1, g2))

f2 = f1 − lt(f1) = 2x+ y − 2x = y

rem(f2, (g1, g2)) = rem(f2 − ng2, (g1, g2))

f3 = f2 − ng2 = y − 1y = 0 and now rem(f3, (g1, g2)) = rem(0, (g1, g2)) = 0

and we have come to the end. It’s time to look at what we really have.
rem(f, (g1, g2)) = rem(f1, (g1, g2)) =
lt(f1) + rem(f2, (g1, g2)) = lt(f1) + rem(f3, (g1, g2)) = lt(f1) + 0 = lt(f1) = 2x

2x is the remiander of f with respect to (g1, g2)

x2 + x+ y ≡ 2x modulo a

We could do the same thing in a slightly smoother way. We work in modulo
a so the generators of a, g1 ≡ · · · ≡ gn ≡ 0 mod(a) which in our example gives{

g1 = x2 − x ≡ 0
g2 = y ≡ 0 mod(a)

in other words {
x2 ≡ x
y ≡ 0 mod(a)

This can we use to directly reduce f. In our example f = x2 + x + y and now
we know that from g1 that x2 ≡ x mod(a) and from g2 that y ≡ 0 mod(a) so if
we want to express f mod(a) we use that knowledge. First we use g1 and get

f = x2 + x+ y ≡ x+ x+ y ≡ 2x+ y mod(a)

then we use g2 and get

f = 2x+ y mod(a) ≡ 2x+ 0 ≡ 2x mod(a)

We call 2x for the reduction of x2 + x + y modulo(x2 − x, y) it is called
reduction since the remainder of f usually is ”smaller” than f . Note that re-
duction process works in exactly the same way as the division algorithm though
it doesn’t present the quotients.

One of the purpose of reduction is to get an unambiguous representation of
polynomials in k[x1, . . . , xn]/a, a normal form. The reduction process alone is
not enough to give us that, as we will show below, though in the next chapter
we will define Gröbner bases and with there aid we will eventually get a unique
normal form.
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Example 5.2.2 If we want to reduce

x3y + x2y2 + y2 modulo the ideal a = (xy, y2 − 2)

we can first use that g1 = xy ≡ 0 mod(a) then

x3y + x2y2 + y2 ≡ x2(0) + 0 + y2 ≡ y2 modulo a

and then use g2 in which we have y2 ≡ 2 mod(a) and get

x3y + x2y2 + y2 ≡ y2 mod(a) ≡ 2 mod(a)

But we can also switch the order of the gi to (y2 − 2, xy) without effecting
the ideal a. If we first use y2 ≡ 2 mod(a) we get

x3y + x2y2 + y2 ≡ x3y + x2(2) + (2) ≡ x3y + 2x2 + 2 modulo a

and then use xy ≡ 0 mod(a) and get

x3y + x2y2 + y2 ≡ x3y + 2x2 + 2 mod(a) ≡ x2(0) + 2x+ 2 ≡ 2x+ 2 mod(a)

This means that rem(f, (g1, . . . , gn)) depend on the order of (g1, . . . , gn) and
this is no good. So what will we do? We will of course try to fix it. We will try
to find a better set of generators {g1, . . . , gn} to a, a Gröbner basis, and we will
see that we get a remainder which only depends on the ideal a and not on the
generating set.
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Chapter 6

Gröbner bases

Gröbner bases are important since they make it possible to express every poly-
nomial in k[x1, . . . , xn] in a uniqe normal form with respect to the ideal. To
start with we will summarize some fact from the previous chapter in a lemma.

Lemma 6.0.1 Let f, g1, . . . , gs ∈ k[x1, . . . , xn]. Then f−rem(f, (g1, . . . , gs)) ∈
〈g1, . . . , gs〉. In particular, if the rem(f, (g1, . . . , gs)) = 0 then f ∈ 〈g1, . . . , gs〉.

Now it’s time to answer the big question, what is a Gröbner basis?

Definition 6.0.1 Let a be an ideal in k[x1, . . . , xn]. A set {g1, . . . , gs} of ele-
ments in a such that 〈lm(g1), . . . , lm(gs)〉 = l(a) is called a Gröbner basis
for a.

Lemma 6.0.2 If {g1, . . . , gs} is a Gröbner basis for a, then 〈g1, . . . , gs〉 = a

Proof 〈g1, . . . , gs〉 ⊆ a since gi ∈ a for all i. Let f ∈ a. Then lm(f) ∈
〈lm(g1), . . . , lm(gs)〉, hence lm(f −ngk) ≺ lm(f) for some gk and some term n.
Since f − ngs ∈ a, we get by recursiveness that f ∈ 〈g1, . . . , gs〉.

6.1 Normal Forms

We will soon define what we mean with a normal form, but first we need some
theory to support the definition.

Proposition 6.1.1 Let {g1, . . . , gs} be a Gröbner basis for the ideal
a = 〈g1, . . . , gs〉. Then rem(f1, (g1, . . . , gs)) = rem(f2, (g1, . . . , gs)) if and only
if f1 − f2 ∈ a. In particular rem(f, (g1, . . . , gs)) = 0 if and only if f ∈ a.
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Proof Suppose rem(f1, G) = rem(f2, G), where G = (g1, . . . , gs). Since
fi − rem(fi, G) ∈ a, i = 1, 2,cf Lemma 6.0.1, we get f1 − rem(f1, G) − (f2 −
rem(f2, G)) = f1 − f2 ∈ a. Now suppose f1 − f2 ∈ a. Then rem(f1, G) −
rem(f2, G) = (f3 − rem(f2, G)) − (f1 − rem(f1, G)) + (f1 − f2) ∈ a since
fi − rem(fi, G) ∈ a, i = 1, 2. But rem(f1, G), i = 1, 2 is a linear combina-
tion of monomials outside l(a). If rem(f1, G) 6= rem(f2, G) we would have
lm(rem(f1, G) − rem(f2, G)) /∈ a. But rem(f1, G) − rem(f2, G) ∈ a gives
lm(rem(f1, G)− rem(f2, G)) ∈ a, a contradiction.

The rem(f,G) is a linear combination of monomials outside l(a). We can use
this rem(f,G) to represent elements in k[x1, . . . , xn]/a since f − rem(f,G) ∈ a.
We know that the monomials outside l(a) generate k[x1, . . . , xn]/a as a vector
space over k and these monomials are linearly independent modulo a, since if
λ1m1+λ2m2+· · ·+λnmn ∈ a one of these monomials must be the largest, saymi

which gives that mi is the leading monomial in λ1m1 + λ2m2 + · · ·+ λnmn ∈ a
and thereby mi ∈ l(a) a contradiction. Thus we have that the monomials
outside l(a) constitute a k-basis of k[x1, . . . , xn]/a and we have found a way to
uniquely represent polynomials in k[x1, . . . , xn]/a. We are now ready to define
the normal form of a polynomial f in k[x1, . . . , xn]/a.

Theorem 6.1.1 Let f ∈ k[x1, . . . , xn] and let G = (g1, . . . , gs) be a Gröbner
basis for the ideal a. Given a fix monomial ordering we have a that the rem(f,G)
is uniquely defined and doesn’t depend on the Gröbner bases, G, of a. We call
rem(f,G) for the normal form of f and denote it NF(f).

6.2 Reduced Gröbner bases

Gröbner bases are not unique and since we want unique stuff, we introduce the
concept of reduced Gröbner bases which are unique.

Definition 6.2.1 We define G to be a reduced Gröbner basis if

• {lm(g1), . . . , lm(gs)} constitutes a minimal set of generators for l(a)

• gi are monic

• no lm(gi) divides any monomial in supp(gj), i 6= j

Proposition 6.2.1 A reduced Gröbner basis exists and is unique.

Proof Given a Gröbner basis, G you can construct a reduced Gröbner basis.
You start with picking a subset G′ = {gi1 , . . . , gik} of G so that the first condi-
tion in the definition is fulfilled. Then multiply each git with lc(g−1

it
) so we get

monic elements. Last, take the remainder of each git with respect to G′ \ {git}.
Thus the reduced Gröbner basis exists. This reduced Gröbner basis is unique
since if {g1, . . . , gs} and {h1, . . . , hs} are two reduced Gröbner bases for an ideal
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a with lm(gi) = lm(hi) we get that gi − hi ∈ a. If gi − hi 6= 0 we would have
lm(gi − hi) ∈ lm(a), but the leading terms in gi and hi are equal, hence cancel
in, gi−hi. But gi−hi is a linear combination of monomials outside l(a), which
gives a contradiction.

The proof might be a little bit hard to follow, but there are two main points
which we want to observe.

• A minimal set of monomial generators in an monomial ideal is unique.

• Every monomial in a monomial ideal is divisible by one of the generators.
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Chapter 7

S-polynomials

7.1 Initial Definition

Starting with one generating set for an ideal you want to calculate a new gen-
erating set, a Gröbner basis, for the ideal. To do this we use the S-polynomial.
The definition might look a bit complicated but it’s not as hard as it lookes as
you will see when we reflect back to the introductory example. First we need a
definition.

Definition 7.1.1 Let f and g be nonzero polynomials.
Then h is a least common multiple of f and g, lcm(f, g), if both f and g divide
h and if any other polynomial which is a multiple of both f and g is a multiple
of h.

Example 7.1.1 Let f = xy and g = x2 then we have
lcm(f, g) = lcm(xy, x2) = x2y

7.2 S-polynomial

Definition 7.2.1 Let (fi, fj) be a fixed pair of monic elements in a set of gener-
ators of an ideal with an given ordering ≺. The S-polynomial of (fi, fj) in ≺ is

Si,j = S(fi, fj) =
lcm(lm(fi), lm(fj))

lm(fi)
fi −

lcm(lm(fi), lm(fj))
lm(fj)

fj

The S-polynomials are used in the construction of and as a criterion for
Gröbner bases. Say that we have an ideal generated by a = 〈f1, . . . , fk〉 to
this set we calculate the reduced S-polynomials S(fi, fj) were i, j = 1, . . . , k. If
Si,j 6= 0 we are to extend the generating set (f1, . . . , fk) with the
rem(Si,j , (f1, . . . , fk)) and calculate all new S-polynomials and so on. If we add
an S-polynomial fk+1 to the generators (f1, ..., fk,) then
lm(fk+1) /∈ (lm(f1), ..., lm(fk)). Since the monomial ideal l(f1, ..., fk) is finitely
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generated, we reach it after a finite number of steps, so eventually all S-polynomials
reduce to 0 and this gives us the Gröbner bases, {f1, . . . , fn}. Thus we have the
criterion for Gröbner basis formulated in the theorem after the example.

Example 7.2.1 If we recall the Introductory Example in chapter 2{
f1 = x2y + x
f2 = x2 − y2

and want to calculate the S-polynomial of f1 and f2, S(f1, f2), we have

lcm(lm(f1), lm(f2))
lm(f1)

=
lcm(x2y, x2)

x2y
= 1

and
lcm(lm(f1), lm(f2))

lm(f2)
=
lcm(x2y, x2)

x2
= y

So when we calculate the S-polynomial, S(f1, f2) we get
S(f1, f2) = f3 = lcm(lm(f1),lm(f2))

lm(f1)
f1 − lcm(lm(f1),lm(f2))

lm(f2)
f2 = f1 − yf2 = (x2y +

x)− y(x2 − y2) = x2y + x− x2y + y3 = x+ y3

Theorem 7.2.1 Let (f1, . . . , fk) be a sequence of monic elements in k[x1, . . . , xn]
and let Si,j = S(fi, fj) be the S-polynomials. Then {f1, . . . , fk} is a Gröbner
basis of 〈f1, . . . , fk〉 if and only if rem(Si,j , (f1, . . . , fk)) = 0 for all i, j.

The proof of the theorem is rather tricky and technical so we have chosen to
exclude it here, but we warmly recommend futher reading in ”An Introduction
to Gröbner bases” by Fröberg.
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Chapter 8

Buchberger’s algorithm

8.1 Buchberger’s algoritm for calculating Gröbner
bases

If we start with an ideal

a = 〈f1, . . . , fk〉

Calculate all S-polynomials, Sfi,fj and reduce them with respect to (f1, . . . , fk),
we denote the reduced S-polynomial with Si,j . If Si,j = 0 we move on and cal-
culate the next S-polynomial. If Si,j 6= 0, we extend (f1, . . . , fn) with Si,j and
get (f1, . . . , fk, fk+1). This will not change the ideal since the S-polynomial
already lies in the ideal and we stay within the ideal while we reduce. Then we
start over and calculate all new S-polynomials, Si,k+1, i = 1, . . . , k, and reduce
them. Continue until all S-polynomials reduce to zero.
If the Si,j 6= 0 we have lm(Si,j , (f1, . . . , fn)) /∈ 〈lm(f1), . . . , lm(fn)〉 so each
time we extend the generating set, we also extend the monomial ideal generated
by the leading monomials of the generators. Since we know that the monomial
ideal is finitely generated, by Dickson’s Lemma, all S-polynomials will even-
tually be reduced to zero. Thus the final result will be a Gröbner basis, by
Theorem 7.2.1.

Example 8.1.1 Calculate a Gröbner basis for the ideal a using Lex.

a = 〈x2
1 + x2, x1x2 − x2

2〉

{
f1 = x2

1 + x2

f2 = x1x2 − x2
2

S(f1, f2) = x2
1x2

x2
1

(x2
1 + x2) − x2

1x2
x1x2

(x1x2 − x2
2) = x2

1x2 + x2
2 − x2

1x2 + x1x
2
2 =

x2
2 + x1x

2
2
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Then we reduce S(f1, f2) and use that f2 = x1x2 − x2
2 ≡ 0 mod(a) ⇒ x1x2 ≡

x2 mod(a)

S(f1, f2) = x1x
2
2 + x2

2 ≡ x2
2x2 + x2

2 ≡ x3
2 + x2

2 mod(a)

S(f1, f2) = x3
2 + x2

2 f1 = x2
1 + x2

f2 = x1x2 − x2
2

f3 = x3
2 + x2

2

S(f1, f3) = x2
1x

3
2

x2
1

(x2
1+x2)−x

2
1x

3
2

x3
2

(x3
2+x2

2) = x2
1x

3
2+x4

2−x2
1x

3
2−x2

1x
2
2 = x4

2−x2
1x

2
2

We reduce with the aid of f1 and f3we get

S(f1, f3) = x4
2 − x2

1x
2
2 ≡ x4

2 + x3
2 ≡ −x3

2 + x3
2 ≡ 0 mod(a)

S(f1, f3) = 0

S(f2, f3) = x1x
3
2

x1x2
(x1x2 − x2

2) − x1x
3
2

x3
2

(x3
2 + x2

2) = x1x
3
2 − x4

2 − x1x
3
2 − x1x

2
2 =

−x4
2 − x1x

2
2

we reduce with the aid of f2 and f3 and get

S(f2, f3) = −x4
2 − x1x

2
2 ≡ −x4

2 − x3
2 ≡ −x2(−x2

2)− x3
2 ≡ x3

2 − x3
2 ≡ 0 mod(a)

S(f2, f3) = 0

And thereby all the S-polynomials are reduced to zero and the criterion for a
Gröbner basis is fulfilled. 〈x2

1 + x2, x1x2 − x2
2, x

3
2 + x2

2〉 is a Gröbner basis for
the ideal a
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Chapter 9

Applications

In this chapter we will look at two applications of Gröbner bases. We will use
the software maple12 to do the calculation which is not suitable to do by hand
and plots. The maple-code is available in the appendix.

9.1 To solve systems of polynomial equations

First we will note that if we have a homogeneous system of polynomial equations,
the polynomials in the system will generate an ideal. The solutions to the system
are exactly the zeros to all the polynomials in the ideal.

Theorem 9.1.1 If f1 = · · · = fk = 0 has a finite number of solutions then the
number of solutions, counted with multiplicity equals

dimC
C[x1, . . . , xn]

l(a)

We will use the theorem in our applications, but we have chosen not to prove
it here.

Since the monomials outside l(a) constitutes a base for the factor ring then,
if the system has a finite number of solutions, there is for every variable xi an
element xai

i for some positive ai otherwise there would be infinitely many xni
outside l(a). If we use the Lex order then there will be a xan

n in l(a). In other
words there is a Gröbner basis element with xan

n as leading monomial, but the
only monomials that are smaller than xan

n is lower order of xn which gives an
equation in only one variable. This equation we have to solve in some good
way, then we can substitute the solutions in to the system of equations and get
a system of equations with n − 1 unknown variables. For the same reasons as
above we will have an equation which only depends on the variable xn−1 and
so on. In the end we have solved all equations in the system. As an example
we can look at the Gröbner basis in the introductory exampel, {x+ y3, y6− y2}
were we solve the equation y6 − y2, then substitute y in the second equation
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x+y3 and get an equation which only depends on x. When we have solved that
equation we have solved the whole system of equations.

Example 9.1.1 We want to solve the system:
x3 + xy + y2 − z2 = 0
x2 − xz + y + 2z − 2 = 0
x4 + xyz + yz + z2 − 2 = 0
x2 − y − 2z + 1 = 0

we use maple to calculate the Gröbner basis G

G = [z − 1, y, x− 1]

which gives  z − 1 = 0
y = 0
x− 1 = 0

⇒

 z = 1
y = 0
x = 1

Example 9.1.2 We want to decide maximum and minimum of f = x3+2xyz−
z2 under the condition g = x2 + y2 + z2 = 1. We use Lagrange multipliers and
then solve the system with the aid of Gröbner basis. Lagrange’s multipliers give

∂f
∂x = λ ∂g∂x
∂f
∂y = λ∂g∂y
∂f
∂z = λ∂g∂z
g = 1

⇒


3x2 + 2yz − 2λx = 0
2xz − 2λy = 0
2xy − 2z − 2λz = 0
x2 + y2 + z2 − 1 = 0

We calculate the Gröbner basis G using the lex order with λ ≺ z ≺ y ≺ x to get
an equation which only depends on x
G = −6x2 − 25x3 − 18x4 + 25x5 + 24x6, 6xy + 25yx2 + 24yx3, 51x2 + 72x3 −
51x4− 72x5 + 10y2x, 14x2− 5y2 + 18x3− 14x4− 18x5 + 5y4, 6xy+ 11yx2 + 2y−
2y3 +2xz, 51x2 +67x3−51x4−72x5 +5x+5yz, x2 +y2 +z2−1,−88x2−10y2 +
10− 159x3 + 78x4 + 144x5 + 10λ

−6x2 − 25x3 − 18x4 + 25x5 + 24x6 = 0
6xy + 25yx2 + 24yx3 = 0
51x2 + 72x3 − 51x4 − 72x5 + 10y2x = 0
14x2 − 5y2 + 18x3 − 14x4 − 18x5 + 5y4 = 0
6xy + 11yx2 + 2y − 2y3 + 2xz = 0
51x2 + 67x3 − 51x4 − 72x5 + 5x+ 5yz = 0
x2 + y2 + z2 − 1 = 0
−88x2 − 10y2 + 10− 159x3 + 78x4 + 144x5 + 10λ = 0
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

x1 = 0
x2 = 0
x3 = 0
x4 = 0
x5 = − 3

8
x6 = − 3

8
x7 = − 2

3
x8 = − 2

3
x9 = 1
x10 = −1

⇒



y1 = 0
y2 = 0
y3 = 1
y4 = −1
y5 = 3

16

√
22

y6 = − 3
8

√
22

y7 = 1
3

y8 = − 1
3

y9 = 0
y10 = 0

⇒



z1 = 1
z2 = −1
z3 = 0
z4 = 0
z5 = − 1

16

√
22

z6 = 1
16

√
22

z7 = 2
3

z8 = − 2
3

z9 = 0
z10 = 0

and now it is easy to decide maximum and minimum for f under the condtition
g=1

maximum = 1,minimum = −28
27

Some times it is enough to calculate the number of solutions of a system.
This can also be done with the aid of Gröbner bases.

Example 9.1.3 Determine the number of solutions to xy − 1 = 0
yz − x = 0
z2 − y = 0

We calculate the Gröbner basis with the Degrevlex order

G = [z2 − y− 1, yz− x, y2 − xz+ y, xy− 1, x2 − z] and l(a) = [z2, yz, y2, xy, x2]

which gives that the set of monomials outside l(a) is {1, x, y, z, xz, yz, x, y, z}

dimC
C[x, y, z]
l(a)

= 7

The system has 7 solution counted with multiplicity.

Example 9.1.4 Calculate the number of solutions to the following system:
a+ b+ c+ d+ e = 0
ab+ bc+ cd+ de+ ea = 0
abc+ bcd+ cde+ dea+ eab = 0
abcd+ bcde+ cdea+ deab+ eabc = 0
abcde− 1 = 0

We calculate the Gröbner basis, G with the lex-ordering.
G = [−1 − 122e5 + 122e10 + e15,−55d2 + 987e2 − 979e7 + 233de − 231de6 − 8e12 −
2de11 +55d2e5, 128103e2−127116e7 +48787de−48554de6−55d2−1042e12−398de11 +
55d5e2 + 165d6e + 55d7,−55c − 144e + 143e6 + e11 + 55ce5,−275ec + 136674e2 −
136763e7 + 53913de− 53911de6 + 275d2 − 1121e12 − 442de11 − 275d3e4 + 1210d5e2 +
440d6e+275cd, 69307e3 +28018de2 +550d2e−550ce2−69289e8−568e13−28336de7−
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232de12 + 550d5e3 + 275d6e2 − 550d4e4 + 550c2e + 275c3,−144e + 143e6 + e11 − 55b +
55be5,−42124e2+42218e7−15106de+15092de6+346e12+124de11+275d3e4−440d5e2−
110d6e−275d4e3−275eb+275bd, 550ec−105873e2 +105776e7−40726de+40722de6−
550d2 + 867e12 + 334de11 + 275d3e4 − 1045d5e2 − 330d6e + 275c2 − 275d4e3 − 275eb +
275bc, 179073e2−178981e7+69019de−69003de6+275d2−1467e12−566de11−550d3e4+
1650d5e2 + 550d6e + 275d4e3 + 825eb + 275b2, a + b + c + d + e] we get

l(a) = {e15, d2e5, d7, e5c, cd, c3, e5b, bd, bc, b2, a}

And get the number of solutions to 70

9.2 Implicitization

We want to rewrite a function on parametric form to implicit form. This is a
form of elimination since we eliminate the parameters and get an equation with
the variables we are interested in. We will make an informal description of what
happens. Suppose that we have

f =


x1 = h1(t1, . . . , tm)

...
xn = hn(t1, . . . , tm)

and we want to find the polynomial equations in the xi which define f . We now
look at the equations

x1 − h1(t1, . . . , tm) = 0
...

xn − hn(t1, . . . , tm) = 0

and the idea is to eliminate the variables t1, . . . , tm from these equations. We
calculate the Gröbner basis with the lex order and let t1 � · · · � tm � x1 �
· · · � xn which will give us a Gröbner basis which contains polynomials that
only involve x1, . . . , xn since t1, . . . , tm will be eliminated first. The equations
when the polynomials that only involve x1, . . . , xn equal zero will be the implicit
form of the function f .

Example 9.2.1 We want to write f on implicit form

f(t) =
{
x = t

1+t

y = 1− 1
t2

We calculate the Gröbner basis of using a special elimination ordering in which
you divide the parameters you want to eliminate and the variables you want to
keep in two blocks. The order uses the lex−ordering between the blocks, in other
words t1 � . . . ,� tm � x1 � · · · � xn and the degrevlex− ordering within the
blocks. In this example we want to eliminate t so we use lexdeg([t], [x, y]) and
get the following Gröbner basis:

G = [1− 2x+ yx2,−yx+ 1 + yt− t, x+ xt− t]
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In the Gröbner basis above we have one polynomial which only depends on x, y
as a consequence of the lexdeg − ordering and the equation we get when we let
this polynomial equal zero is in fact the implicit form of the function.

f(x, y) = 1− 2x+ yx2 = 0

Example 9.2.2

f(t) =

{
x = −1024t3

256t4+32t2+1

y = −2048t4+128t2

256t4+32t2+1

We calculate the Gröbner basis, G = [−16x2 + 8yx2 + 8y3 + x4 + 2y2x2 +
y4, y2 +x2 + 16xt, 16x+ 16y2t+ 128yt−y2x−x3,−2y−y2−x2 + 256t2 + 32yt2]
and

f(x, y) = −16x2 + 8yx2 + 8y3 + x4 + 2y2x2 + y4

For fun we have also plotted the curve.
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Example 9.2.3 We want the implicit form of f where

f(t) =
{
x = t8

y = t12 + t14 + t15

We calculate the Gröbner basis which we find is to large to present here, but
we single out the polynomial which only depend on x, y and get

f(x, y) = 4y2x9 − 21x14 + 24y3x9 + 20y2x11 + 26y4x7 − 16yx12 + 8y5x5 −
6y4x6 − 6x13 + 8yx11− 16y3x8 + 4x3y6 − 36x10y2 + x15 − y8 + 8x13y − x12 As
you can imagine this implicitization problem would be hard to solve without the
aid of computers and Gröbner bases.

Example 9.2.4 We can also solve implicitization problem where we start with
a surface on parametric form.

f(u, v) =

 x = uv − 1
y = u2 − v2

z = u2

We calculate the Gröbner basis

G = [x2+1+yz−z2+2x, xv+yu−zu+v,−zv+xu+u, v2+y−z,−x+uv−1,−z+u2]

and get the implicit form of f

f(x, y, z) = x2 + 1 + yz − z2 + 2x
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Chapter 10

Monomial orderings
examples

10.1 Elucidatory examples

In the chapter about Monomial orderings we mentioned that you should take
care to choose an good ordering. We will give some examples. We use Maple12
to do the calculations. The Maple-code is available in the appendix.

Example 10.1.1 Calculate Gröbner Bases for a using the Lex- and Degrevlex-
ordering.

a = 〈x5 + y4 + z2 − 1, x3 + y3 + z − 1〉

With Lex-ordering we get the following Gröbner basis:
5z +30zy6 +10y9 +z5 +5z4y3 +10z3y6 +10z2y9−6y12+y15−3z4y4−3y4−13z2 +5y3−10y6−20y3z +

3y8−z6+30y3z2+6y4z2+10z3−20z3y3−30z2y6−20zy9−3z2y8−2z4+5zy12,−80zy−80z+2z3y2−48zy6−

32y5+128y7−10z5y13−6z6y12−y4z10−80y9+8z9x+7z11+z12x+39z5+283z4y3+92z3y6+58z2y9+54z5y+

22z3y−94z3y8−292z4y5−138z5y2 +84z5x+16y12+2z11y3 +14yz8−56z6y7−41z4y11+76z4y9 +11z5y8 +

z6y14−40zy10−76z2y7−76z3y4−80y10−3z9 +17z10+z12−120z3y7 +16y14+126z3y10−66z7x−34z5y6−

2z9y7 + 2z7y11− 20z7y9 + z8y8 + 6yz10 + z10y6 − z8y10 + 12z8y5 + 14z2y13 + 32y4z7 + 10z9y2 − 37z4y4 −

40zy11−32y4 +88z2−80y3 +24zy13+3z4y14−9z8y6−52z6y10+72z6y5−33z8x+16y13+14z7y2−30z4y13−

24z5y12+2y4z9+10z2y12+z6x+15z10x−171y3z6+145y4z6+24y14z−4z3y14−19z8y3−16z7y6−80z5y10−

29z8+128y6+120y3z−80z7y7−36z5y11+48z5y9−51z6y8−14z3y13−20z4y12−3y4z8+80y8+88yz2−80y2z+

88y2z2 + 192y5z− 14z7y + 250z5y7 + 104z3y11− 4z5y3 − 175z4y6 + 12z3y9 + 104z5y5 + 228z4y8 + 38z2y10 +

6z5y14+ 9z10y3 + 91z6 + 18z2y11+ 192y4z +16z4y7 − 22y3z2 − 72y4z2 − 48y7z +106z3 − 118z6y− 150z5y4 −

176z3y3−108z2y6−40zy9+10z4y−80z2y5−64z3x+48z4x+132z4y2+20z3y5−62z2y8−168z4−69z7−120zy8−

48z6y2 +24zy12+6z11x−80y11+18z2y14+58z7y3 +163z6y6 +95z4y10−12z8y7 +9z6y11−54z6y9 +7z7y8 +

18yz9 +6z9y6−6z7y10+4z7y5 +20z8y2, 8192+18768zy−51888z−16384xzy+46422z3y2−73552zy6 +1568y5−

7296y7−17072y9+2374z9x+201z11+23359z5−8192x+9139z4y3−42336z3y6−16098z2y9−20526z5y−126z3y−

8192y+49972z3y8+17056z4y5−9668z5y2+8316z5x+2800y12+3048yz8−14798z6y7−8233z4y11+16198z4y9−

10987z5y8−17544zy10−36164z2y7+8948z3y4+4432y10+2681z9+1312z10−35564z3y7+2800y14+29092z3y10−

7163z7x+36217z5y6+746z2y13−1314z3y12−722y4z7−48343z4y4−14984zy11+22048y4+97528z2−35504y3+
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3544zy13+1111z4y14+1619z9y3 +1111z8y6−1111z6y10−336z6y5 +30z8x−272y13+3070z7y2−2010z4y13−

1206z5y12−201y4z9+1966z2y12−8021z6x+1111z10x+15234y3z6+6302y4z6+5080y14z−38z3y14−997z8y3−

2450z7y6−9811z5y10−2442z8 +31616y6 +104152y3z−6144xz2 +8192xy−2222z7y7 +1619z5y11−8954z5y9 +

1312z6y8−5080z3y13−4254z4y12+497y4z8 +7856y8−15624yz2 +16384xz +1360y2z−21256y2z2−7584y5z +

678z7y − 3350z5y7 − 4914z3y11 − 40337z5y3 − 25057z4y6 + 9090z3y9 + 13240z5y5 + 6832z4y8 + 9202z2y10 +

201z5y14 + 402z10y3 − 8020z6 + 29126z2y11− 35232y4z + 58660z4y7 − 135730y3z2 + 19496y4z2 + 41136y7z −

67474z3−3784z6y+27207z5y4+8192z2yx+85934z3y3+76764z2y6+23928zy9+24552z4y+50352z2y5−13248z3x+

14352z4x− 22142z4y2− 76708z3y5− 57018z2y8 +1734z4− 5183z7 +3880zy8 +204z6y2− 1064zy12+201z11x−

12976y11−1242z2y14−3912z7y3−2514z6y6−10987z4y10−402z8y7+402z6y11−4020z6y9+201z7y8+1206yz9+

201z9y6−201z7y10+2412z7y5+2010z8y2, 1−x−2z+z2−2y3+xz2+2y3z+xy4+y6, 16384−35120zy−93488z+

110886z3y2−130256zy6 +97568y5−24704y7−32768y2xz−27952y9 +32768y2x+3478z9x+449z11+68231z5−

16384x + 158043z4y3 + 66208z3y6 − 1874z2y9 + 16384xy3z − 34366z5y − 112398z3y + 51092z3y8 − 4192z4y5 −

19108z5y2 + 18588z5x + 2928y12 + 4008yz8 − 29406z6y7 − 20641z4y11 + 41878z4y9 − 26835z5y8 + 6072zy10 +

110044z2y7 + 174932z3y4 + 30416y10 + 3697z9 + 2464z10 − 178828z3y7 − 3216y14 + 56196z3y10 − 9699z7x +

74993z5y6 + 5914z2y13 + 2414z3y12− 3522y4z7 − 133727z4y4 − 77384zy11 + 17696y4 + 118072z2 − 77104y3 −

4328zy13+2015z4y14+2683z9y3+2015z8y6−2015z6y10−6352z6y5−2130z8x−6288y13+2190z7y2−4490z4y13−

2694z5y12− 449y4z9 − 3394z2y12− 4461z6x + 2015z10x + 36850y3z6 + 18478y4z6 + 11544y14z − 1910z3y14−

4477z8y3−7298z7y6−20091z5y10−7610z8+61312y6−16384x2z+170008y3z+16384xz2−4030z7y7+2683z5y11−

10666z5y9+2464z6y8−6680z3y13−6702z4y12+1577y4z8−16384xy3−32768y2−81616y8+84792yz2+16384xz+

4096x2z2+109264y2z−158408y2z2−225440y5z−1034z7y+20250z5y7+12510z3y11−128841z5y3−132249z4y6−

33806z3y9 +39416z5y5 +44848z4y8 − 53278z2y10+449z5y14+898z10y3 − 17460z6 +43030z2y11+47968y4z +

88324z4y7 − 114210y3z2 − 162072y4z2 +23344y7z +20350z3 − 3720z6y +39119z5y4 − 41794z3y3 +69628z2y6 +

47544zy9 +95144z4y +243504z2y5−11712z3x−12912z4x+4096z4x2−17422z4y2−133508z3y5−161898z2y8−

111850z4 +761z7 +8192x2z3 +157160zy8 +876z6y2 − 6888zy12+449z11x +27344y11+630z2y14− 2056z7y3 +

3390z6y6−5075z4y10−898z8y7 +898z6y11−8980z6y9 +449z7y8 +2694yz9 +449z9y6−449z7y10+5388z7y5 +

4490z8y2,−1024 + 1680zy + 5776z + 1024yx2z − 8818z3y2 + 8816zy6 − 7008y5 + 896y7 + 2048y2xz + 2192y9 −

2048y2x−258z9x−35z11−5909z5−11921z4y3−3424z3y6 +502z2y9−2048xy3z +2938z5y +7722z3y +1024y−

4604z3y8 + 416z4y5 + 1772z5y2 − 2004z5x− 336y12− 312yz8 + 2266z6y7 + 1635z4y11− 3522z4y9 + 2105z5y8 +

472zy10−5524z2y7−12028z3y4−880y10−275z9−192z10+13092z3y7+176y14−5068z3y10+969z7x−5939z5y6−

590z2y13−266z3y12+262y4z7+10909z4y4+5336zy11−352y4−8104z2+3728y3−72zy13−157z4y14−209z9y3−

157z8y6+157z6y10+496z6y5+246z8x+176y13−170z7y2+350z4y13+210z5y12+35y4z9−58z2y12+455z6x−

157z10x−2838y3z6−1418y4z6−840y14z+162z3y14+375z8y3+582z7y6+1553z5y10+686z8+1024x2−3712y6−

10824y3z−512xz2+314z7y7−209z5y11+830z5y9−192z6y8+520z3y13+522z4y12−123y4z8+2048xy3+2048y2+

4464y8 − 1024yx2 − 6312yz2 − 1024x2z2 − 7024y2z + 10840y2z2 + 14304y5z + 158z7y− 1742z5y7 − 858z3y11 +

9723z5y3+10059z4y6+1898z3y9−2920z5y5−3408z4y8+3034z2y10−35z5y14−70z10y3+1340z6−3778z2y11−

3616y4z− 7948z4y7 + 10726y3z2 + 9416y4z2 − 1424y7z + 262z3 + 536z6y− 3085z5y4 + 1030z3y3 − 6004z2y6 −

2856zy9 − 7224z4y − 17296z2y5 + 1344z3x − 48z4x + 1642z4y2 + 11404z3y5 + 12606z2y8 + 7294z4 + 181z7 −

9912zy8 +60z6y2 +184zy12−35z11x−1392y11+30z2y14+280z7y3−186z6y6 +313z4y10+70z8y7−70z6y11+

700z6y9−35z7y8−210yz9−35z9y6 +35z7y10−420z7y5−350z8y2, 1−x2−z2 +x2z−y4 +y3x2, x3 +y3 +z−1

With Degrevlex-ordering we get the following Gröbner basis:
[x3+y3+z−1, 1−x2−z2+x2z−y4+y3x2, 1−x−2z+z2−2y3+xz2+2y3z+xy4+y6]

From the same Ideal!
To get an idea of the difference in workload we use the showtime-command in
Maple which display the time and space used by Maple for the execution of each
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statement and got the following result for the calculation of the Gröbner bases:
Ordering Time Space

Lex 0.55 seconds 2754263 bytes
Degrevlex 0.03 seconds 12851 bytes

And remember the Gröbner basis itself is usually not the answer to your
question. The purpose of this example was to show that you can save a lot of
space and time by using a suitable monomial ordering and I think you get the

picture now. Note that the showtime result variates, depending on the
circumstances, but it will give you a hint.

Unfortunately, the fastest ordering will not always help you to solve your
problem and we will give an example of that.

Example 10.1.2 Solve the following system of equations: f1 = x2 − y
f2 = y2 − z
f3 = z2 − y

If we calculate Gröbner basis,G1, for a = 〈x2 − y, y2 − z, z2 − y〉 with the
degrevlex order we see thatG1 = a and will not help us solve the system. But
if we calculate the Gröbner basis, G2, with the lex order we get G2 = 〈−z +
z4,−z2+y,−z2+x2〉 and we can solve the system by solving the equation −z+z4

and the use the result to solve the other two.
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Wilson & sons

[3] Kreuzer, Martin, Robbiano, Lorenzo: Computational Commutative Algebra
1, Germany(2000) Springer-Verlag Berlin Heidelberg

Internet

Buchberger, Bruno<bruno.buchberger@risc.uni-linz.ac.at>:Homepage of Bruno
Buchberger, <http://www.risc.uni-linz.ac.at/people/buchberg/>, last modified:2005-
05-25, access date:2009-05-18

38



Appendix

We have used Maple12 to do calculations and plots in chapter 9 and chapter
10. This is the script for the input, example by example.

Example 9.1.1

>with(Groebner)
>f := {x^2-y-2*z+1, x^2+x*y+y^2-z^2, x^2-x*z+y-2, x^4+x*y*z+y*z+z^2-2}
>g := Basis(f, plex(x, y, z))

Example 9.1.2

>with(Groebner)
>f := {2*x*z-2*lambda*y, 3*x^2+2*y*z-2*lambda*x,
2*x*y-2*z-2*lambda*z, x^2+y^2+z^2-1}
>g := Basis(f, plex(lambda, z, y, x))
>solve(g)

Example 9.1.3

>with(Groebner)
>f := {z^2-y, x*y-1, y*z-x}
>g := Basis(f, tdeg(x, y, z))

Example 9.1.4

>with(Groebner)
>with(PolynomialIdeals)
>f := {a*b*c*d*e-1, a+b+c+d+e, a*b+b*c+c*d+d*e+a*e,
a*b*c+b*c*d+c*d*e+d*e*a+e*a*b, a*b*c*d+b*c*d*e+c*d*e*a+d*e*a*b+e*a*b*c}
>g := Basis(f, plex(a, b, c, d, e))
>NumberOfSolutions(<g>))
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Example 9.2.1

>with(Groebner)
>f := {x = t/(1+t), y = 1-1/t^2}
>g := Basis(map(proc (eq) options operator, arrow;
numer(lhs(eq)-rhs(eq)) end proc, f), lexdeg([t], [x, y]))

>remove(has, %, t)

Example 9.2.2

>with(Groebner)
>with(plots)
>f := {x = (-1024*t^3)*(1/(256*t^4+32*t^2+1)),
y = (-2048*t^4+128*t^2)/(256*t^4+32*t^2+1)}

>g := Basis(map(proc (eq) options operator, arrow;
numer(lhs(eq)-rhs(eq)) end proc, f), lexdeg([t], [x, y]))
>remove(has, %, t)
>plot([(-1024*t^3)*(1/(256*t^4+32*t^2+1)),
(-2048*t^4+128*t^2)/(256*t^4+32*t^2+1), t = -50 .. 50],
axes = none, numpoints = 250)

>implicitplot(-16*x^2+8*y*x^2+8*y^3+x^4+2*y^2*x^2+y^4 = 0,
x = -6 .. 6, y = -10 .. 2, axes = none, numpoints = 10000)

Example 9.2.3

>with(Groebner)
>f := {x = t^8, y = t^12+t^14+t^15}
>g := Basis(map(proc (eq) options operator, arrow;
numer(lhs(eq)-rhs(eq)) end proc, f), lexdeg([t], [x, y]))

>remove(has, %, t)

Example 9.2.4

>with(Groebner)
>with(plots)
>f := {x = u*v-1, y = u^2-v^2, z = u^2}
>g := Basis(map(proc (eq) options operator, arrow;
numer(lhs(eq)-rhs(eq)) end proc, f), lexdeg([u, v], [x, y, z]))

>remove(has, %, [u, v])
>plot3d([u*v-1, u^2-v^2, u^2], u = 0 .. 1, v = -1 .. 1,
shading = zgrayscale, style = patchnogrid, style = patchcontour,
title = parametricplot3d, lightmodel = light2)

>implicitplot3d(x^2+1+y*z-z^2+2*x = 0, x = -5 .. 3, y = -4 .. 4,
z = 0 .. 4,grid = [20, 20, 20], shading = zgrayscale,
style = patchnogrid, style = patchcontour, title = implicitplot3d,
lightmodel = light2)
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Example 10.0.1

>with(Groebner)
>f := {x^3+y^3+z-1, x^5+y^4+z^2-1}
>showtime
>on
g:=Basis(f,plex(x,y,z))
g1:=Basis(f,tdeg(x,y,z))
off

Example 10.0.2

>with(Groebner)
>f := {x^2-y,y^2-z,z^2-y}
>g:=Basis(f,tdeg(x,y,z))
>g1 := Basis(f, plex(x, y, z))
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