
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Arbitrary-precision arithmetic in various algebraic structures

av

Gabriel Netterdag

2010 - No 1

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Arbitrary-precision arithmetic in various algebraic structures

Gabriel Netterdag

Självständigt arbete i matematik 30 högskolepoäng, grundniv̊a

Handledare: Torsten Ekedahl

2010

Abstract

This report will present some of the more commonly used methods for per-
forming arbitrary-precision arithmetic. The ability to do arithmetic e�-
ciently with numbers containing hundreds or thousands of digits and in some
cases even more, is vital in many computational �elds. Cryptography is a
major real-world example which takes advantage of these methods. It will
introduce, as a reference, the Di�e-Hellman key exchange protocol. Further-
more, it will discuss the methods of classic arithmetic, modular arithmetic
and Karatsuba arithmetic. The report will also introduce arithmetic methods
based on the Fourier transform and its generalization as well as special repre-
sentations in �nite �elds. Finally some concrete computer implementations
are given with comparisons between the di�erent algorithms.

Contents

1 Arbitrary-precision arithmetic 1
1.1 Introduction . 1
1.2 Di�e-Hellman key exchange 2

2 The algorithms and their properties 5
2.1 Classical arithmetic algorithms 5

2.1.1 Addition . 6
2.1.2 Subtraction . 8
2.1.3 Multiplication . 8

2.2 Modular arithmetic . 12
2.3 Karatsuba multiplication . 19
2.4 Toom-Cook multiplication . 21
2.5 Fourier transform multiplication 24

2.5.1 The Discrete Fourier Transform and convolutions . . . 24
2.5.2 The Fast Fourier Transform 29
2.5.3 Generalized DFT . 32
2.5.4 Schönhage-Strassen multiplication 35

2.6 Precalculation and Zech's logarithm 36
2.7 Polynomial representation and normal basis 39

2.7.1 Polynomial representation 39
2.7.2 Normal basis . 43

3 Computer implementations 45
3.1 Classic multiplication . 45
3.2 Karatsuba multiplication . 46
3.3 Cooley-Tukey multiplication 50
3.4 Cooley-Tukey with Zech's logarithm 51
3.5 Practice and theory comparisons 53
3.6 Comments . 54

A Source code 56

i

Chapter 1

Arbitrary-precision arithmetic

1.1 Introduction
From their introduction to the present time, computers have been used for
arithmetic calculations of various sorts. They are capable of performing basic
arithmetic like addition and multiplication e�ciently. One limiting factor of
a normal general-purpose computer is that it performs arithmetic using a
�xed number of registers each having a �xed size for representing numbers.
The operands of a computer instruction are expected to be given in these
registers and the result is usually returned in some other register. Today,
personal computers commonly have instructions that operate on register sizes
and memory element sizes of 32 bits or 64 bits. We call these registers and
memory elements a computer word. For example, a 32-bit computer can
represent unsigned integers in the interval [0, 232) and for a 64-bit computer
the interval would be [0, 264). Calculating with larger quantities poses a
problem as we are limited to these word sizes. The general idea to overcome
this limitation is to use the main memory of a computer to represent these
larger integers. Usually the main memory has much more storage capacity
than the set of registers available in the computer.

Arbitrary-precision arithmetic is a collection of methods and techniques,
making it possible for computers to do arithmetic calculations involving ar-
bitrary numbers of digits.1 This enables the possibility to do computer arith-
metic involving millions of digits or more. As the number of digits increase,
it is of great importance to have methods that are e�cient with respect to
computational time. We want to spend as little time as possible performing
these arithmetic calculations. Later, we will discuss the e�ciency of methods

1As computers have �nite storage capacity, the word arbitrary should not be taken
literally. The arbitrariness is limited to the computers storage capacity.

1

with respect to time, given a certain amount of input.

De�nition 1. If the worst-case computational time for an algorithm is f(x)
where x is the problem size, we say that f(x) is of complexity order O(g(x))
when x →∞ if and only if

∃x0, ∃M > 0,∀x > x0 : |f(x)| ≤ M |g(x)|

This will be denoted as f(x) ∈ O(g(x)). Furthermore, the computational
time f(x) is said to be polynomial if g(x) can be chosen to be a polynomial
function.

Algorithms that have polynomial time complexity are considered as "fea-
sible" computations as opposed to super-polynomial time, which is anything
slower.

Example If the computational time for some algorithm is f(x) = 4x3−3x+7
we have that

|4x3−3x+7| ≤ |4x3+3x+7| ≤ |4x3+3x3+7x3| = 14x3, x > 1 (1.1)

Therefore f(x) ∈ O(x3) and it is polynomial.

One area where arbitrary-precision arithmetic is extensively used is in cryp-
tography. With the growth of the Internet we are doing more sensitive trans-
actions of information that need protection from any unauthorized party.
Naively, one may say that the greater length of encryption keys etc. the
harder it is is to attack such an encryption protocol. Such lengths of en-
cryption keys require e�cient arithmetic in order to be useful. There are of
course other areas where arbitrary-precision methods are used. This includes
error correcting codes, �nding large primes and calculating π with billions of
digits, the latter perhaps more of a recreational nature.

Even though it isn't the primary concern of this report to present cryp-
tographic theory, it is nevertheless a good idea to have some basic under-
standing of some well known cryptographic method in order to get a grasp of
the computations performed. The chosen method is the Di�e-Hellman key
exchange which uses simple algebraic properties and is easily explained.

1.2 Di�e-Hellman key exchange
The Di�e-Hellman key exchange is a cryptographic protocol for establishing
a secure key between two parties over an insecure communication medium.

2

This key may then be used with other encryption methods for the remainder
of the communication session. The procedure was invented in 1976, jointly
by Whit�eld Di�e and Martin Hellman.2

The protocol is based on two parties, let's call them A and B, agreeing
on the the following two things:

• A cyclic group G of �nite order.

• A generator g ∈ G.

The two items above is generally decided long before any other part of the
protocol is set in action.

In order to have A and B agree on a secret key the following steps are
performed.

1. A picks a random number a ∈ Z+ and sends ga to B,
2. B picks a random number b ∈ Z+ and sends gb to A,

3. A computes (gb)a,

4. B computes (ga)b.

Because of the associative axiom of a group both A and B are in the posses-
sion of the element (gb)a = gba = gab = (ga)b, which is the secret key.

As a simple example, let G = Z∗5 and let g = 3 as the generator for this
group. Following the algorithm above, we get

1. A picks the random number a = 7 and therefore
sends 37 mod 5 = 2

2. B picks the random number b = 10 and therefore
sends 310 mod 5 = 4

3. A computes 47 mod 5 = 4

4. B computes 210 mod 5 = 4

Both A and B have computed the same secret key which is 4. The
example is of course very simpli�ed. A real-world implementation would
require much larger values for a, b and the order of G to make it secure (for
a given de�nition of secure) for any eavesdropping.

2M. Hellman has pointed out that their protocol is based on concepts introduced by
Ralph Merkle, so Hellman suggested that if names are to be associated with this protocol
it should be called: Di�e-Hellman-Merkle key exchange.

3

The security aspect of the algorithm is based on the fact that even if
we know the generator g and see the values ga and gb passing between A
and B, it is di�cult to calculate the secret key shared by A and B (given
that a, b and the order of G is selected appropriately). This is due to the
Di�e-Hellman problem which states that the following is a hard problem:

Given g and the values of gx, gy �nd gxy.

The most e�cient way known to solve this problem is to solve the related
discrete logarithm problem,

Given g and gx, �nd the residue of x modulo |G|
As of this date, no publicly known way of solving these problems in poly-
nomial time has been discovered and it remains an open question if these
problems indeed are hard to solve as no formal proof of this exists. The
naive approach would be to compute gk for each k until gk = gx. There
are some more sophisticated algorithms which is computationally faster than
the naive approach but still not in polynomial time. They are in fact of
exponential order.

It should be pointed out that this doesn't make the protocol invulnerable.
A man-in-the-middle (denoted C) attack could intercept the values passed
between A and B and substitute these with its own. This would make A and
C share one key and B and C share another key. Now C may receive messages
from either one and then re-compose (potentially changing) the message and
send it on to the other using that particular shared key.3

Using the Di�e-Hellman protocol with, for example, the multiplicative
group of integers modulo m would require us to calculate powers of the
generating element g. In addition to this, we could expect that the order
of G is large and that the powers of the generating element g are integers
with several hundred digits, in order to ful�ll some notion of security. With
these constraints at our hand, we see that it in order to use such a method
e�ectively, we need ways of doing fast arithmetic with large integers. Later
sections will introduce di�erent techniques and representations for �nite �elds
which could be used for doing fast arithmetic in the Di�e-Hellman case.

3This vulnerability is due to the lack of authentication between A and B which isn't
considered in the Di�e-Hellman protocol.

4

Chapter 2

The algorithms and their
properties

2.1 Classical arithmetic algorithms
All arithmetic methods presented here are based on the very simple fact that
we may express integers in a positional system. This enables us to work
with the individual digits that constitute the whole integer, simplifying the
arithmetic. Seen in this light, these methods are an example of a divide and
conquer technique as we break a large problem into several smaller ones.

The algorithms calculate the results much in the same way as we would
do with pencil and paper. Let us consider how we usually add two integers.
We write them one over the other, digit by digit. Starting from the right we
add the digits in the same column, propagating any carry that may occur to
the next column, until we have gone through all columns.

The multiplication algorithm is sometimes referred to as �naive� multi-
plication. The �naiveness� has to do with the fact that there are algorithms
that use a smaller number of arithmetic operations and would therefore be
executional faster when it comes to computer implementations. This be-
comes especially important as the number of digits increase. Before we look
further into this arithmetic we should do some kind of formalization of the
key tool we are going to use in this section. Furthermore, to make the pre-
sentation more straightforward, we assume that we work with non-negative
integers and polynomials over these integers. A computer implementation
may for example use an externally handled sign and take appropriate action
whenever necessary in order to handle negative integers with the methods
presented here.

5

Theorem 1. Every integer n ≥ 0 can be written uniquely on the form,

a0 + a1B + · · ·+ am−1B
m−1

for some integers m > 0, B > 1 and 0 ≤ ak < B for k = 0, 1, . . . , m− 1.

Proof. By the division algorithm we have

n = q0 = q1B + r1

q1 = q2B + r2

...
qm−2 = qm−1B + rm−1

qm−1 = qmB + rm

...

where 0 ≤ rs < B for s = 0, 1, . . . Whenever qk > 0 we have that 0 ≤ qk+1 <
qk. For some k + 1, say k + 1 = m, we have qm = 0. Substituting back into
the relations above gives us

n = ((. . . (rmB + rm−1)B + rm−2)B + rm−3) . . .)B + r1

= rmBm−1 + rm−1B
m−2 + · · ·+ r2B + r1

(2.1)

The coe�cients ak in the theorem above are called digits and B is called
the radix. The digit am−1 is called the most signi�cant digit and the digit
a0 is called the least signi�cant digit. For radix B = 2 we may equivalently
use the word bit as a synonym for digit. An integer written on the form
n = a0 + · · · + am−1B

m−1 has radix representation B, or radix B for short.
Furthermore, every integer n in radix representation B has m digits if n < Bm

for some integer m.

2.1.1 Addition
Slightly expanding on the previous theorem we could write an integer a as
the polynomial a(x) evaluated at point B. That is

a = a(B), a(x) = a0 + a1x + · · · an−1x
n−1 (2.2)

Addition of two integers a, b would then translate to the addition of the two
polynomials

a(x) = a0 + · · ·+ an−1x
n−1, b(x) = b0 + · · ·+ bn−1x

n−1 (2.3)

6

which would result in

a(x) + b(x) = (a0 + b0) + · · ·+ (an−1 + bn−1)x
n−1 (2.4)

Two things should be noted here. First, we have assumed a and b to be
n-digit integers, because if a is an m-digit integer where m < n we may very
well write a as

a = a0 + · · ·+ am−1x
m−1 + amxm + · · · an−1x

n−1 (2.5)

where ak = 0, k = m, . . . , n− 1.
Second, when we have performed the addition in (2.4) we must conceptu-

ally make a second �pass� over the resulting coe�cients in order to propagate
carries to the position k +1 whenever ak + bk ≥ B. In a computer implemen-
tation this �pass� is of course done as a step when adding the corresponding
coe�cients. This is known as carry propagation. Now as 0 ≤ ak < B we have

ak + bk ≤ (B − 1) + (B − 1) = 1 ·B + (B − 2) (2.6)

which shows that the carry digit is either 0 or 1. To determine the carry we
simply need to compare if ak + bk ≥ B and, if that is the case, add 1 to the
next coe�cient and reduce the current one with B, i.e. ak + bk −B.

Example Let us consider a simple example of adding 123 and 789. We
assume radix B = 10 and associate these integers with the polynomials

p(x) = 1x2 + 2x + 3, q(x) = 7x2 + 8x + 9 (2.7)

Adding p(x) and q(x) results in,

p(x) + q(x) = (1 + 7)x2 + (2 + 8)x + (3 + 9) = 8x2 + 10x + 12 (2.8)

Now propagating carries, from right to left, results in

p(x) +B q(x) = 9x2 + 1x + 2 (2.9)

which evaluated, at point B = 10, gives us the expected result of 912
(here +B denotes addition with carry propagation in base B).

Given two n-digit numbers, we perform n additions, and therefore the
complexity order of the addition algorithm is O(n). For a computer imple-
mentation, it is of importance to choose the radix B in such a way that it
minimizes the number of digits and that it utilizes the underlying machine
hardware in the best way. For example, a computer which has a word size

7

of 216 and is able to perform e�cient addition with this word size, would
only need one �digit� to represent the numbers 123 and 789 in radix 216.
This would reduce the number of operations to one compared to three in the
example above.

A �nal observation following from the carrying process is that we know
how many digits the result from the addition will hold. Let's make this a bit
more explicit

a + b ≤ (B − 1) + . . . (B − 1)Bn−1 + (B − 1) + . . . (B − 1)Bn−1

= (Bn − 1) + (Bn − 1) = 2Bn − 2 < Bn+1 (2.10)

which states that the sum of two n-digit integers will be an n+1-digit integer.
This is of interest when it comes to computer implementations, as it gives us
the memory storage requirements when performing integer addition.

2.1.2 Subtraction
Following the same principle as for addition, with the assumption that a ≥ b,
we have

a− b =
n−1∑

k=0

akx
k −

n−1∑

k=0

bkx
k = a0 ª b0 + · · ·+ (an−1 ª bn−1)x

n−1 (2.11)

Care has to be taken when considering the subtraction of digits ak ª bk

as we are exclusively working with non-negative integers. If ak ≥ bk we
perform the subtraction as usual, that is ak ª bk = ak − bk. Else we let
ak ª bk = (B + ak)− bk. Parentheses indicate addition before subtraction to
exclude any non-negative integers. We also set bk+1 to bk+1 + 1 to re�ect the
�borrowing� that has been done. The expression bk+1 is well-formed as we
have, by assumption, that a ≥ b, which implies an−1 ≥ bn−1. In other words,
we don't have any �borrowing� procedure for the last digit.

2.1.3 Multiplication
The process of multiplication also take advantage of a radix representation
of the operands. We again de�ne our integers, a and b, to have some radix
B representation with the help of the polynomials

a(x) =
n−1∑

k=0

akx
k, b(x) =

m−1∑

k=0

bkx
k, ak, bk ∈ {0, . . . , B − 1} (2.12)

8

Here a(x) represents an n-digit integer and b(x) represents an m-digit integer.
By the de�nition of polynomial multiplication, we have that

c(x) = a(x)b(x) =
n+m−1∑

k=0

ckx
k, ck =

k∑
r=0

arbk−r, (2.13)

where ai = 0 for i ≥ n and bj = 0 for j ≥ m. One small observation in (2.13)
is that cn+m−1 = 0 because ar = 0 when r ≥ n and bn+m−1−r = 0 when
m + n− 1− r ≥ m ⇔ n− 1 ≥ r. The result c = ab is an n + m-digit integer
as

ab ≤ (Bn − 1)(Bm − 1) = Bn+m −Bn −Bm + 1 < Bn+m (2.14)
For the remainder we will consider integers a, b such that they have the same
number of digits. Their radix representations will then satisfy

deg a(x) = deg b(x) = n (2.15)
The runtime complexity may be estimated by looking at the number of

multiplications performed, as these are assumed to be more expensive com-
pared to the operations of addition. The number of multiplications performed
may be found by writing a(x)b(x) as
a0(b0+b1x+· · · +bn−1x

n−1)+· · ·+an−1x
n−1(b0+b1x+· · · +bn−1x

n−1) (2.16)
Each ak(0 ≤ k < n) is involved in n multiplications and there are n such ak.
It follows that we perform n2 multiplications and the runtime complexity is
of order O(n2).

The carry propagation is a bit di�erent compared to addition and sub-
traction. It usually involves calculating ck mod B and bck/Bc in order to
�nd the resulting digit and the carry to propagate. This could be done for
each multiplication but as the operations of division and modulus is costly,
usually at least as costly as multiplication, it will a�ect the overall perfor-
mance. A better alternative is to delay the carry propagation until some last
separate step. This will put some restrictions on the number of digits that
can be handled without over�owing the chosen word size. In this case the
carry propagation works by �nding new coe�cients c′k for the result by using
the following procedure

c′0 ← c0

c′1 ← c1 + bc′0/Bc
c′2 ← c2 + bc′1/Bc...
c′2n−2 ← c2n−2 + bc′2n−3/Bc
c′2n−1 ← c2n−1 + bc′2n−2/Bc = bc′2n−2/Bc

9

and noting that the result of a(x)b(x) is

a(x)b(x) = c′0 mod B + (c′1 mod B)x + · · ·+ (c′2n−1 mod B)x2n−1 (2.17)

From the above procedure we introduce the following recursive formula

c′0 = c0

c′k = ck + bc′k−1/Bc, 1 ≤ k ≤ 2n− 1
(2.18)

Each ck in (2.13) is maximized when aj = bj = B − 1(0 ≤ j < n). In this
case we write the coe�cients as

ck =

{
(k + 1)(B − 1)2 0 ≤ k ≤ n− 1
(2n− (k + 1))(B − 1)2 n ≤ k ≤ 2n− 1

(2.19)

Combining (2.18) and (2.19) we �nd the following closed form

c′k = ck +





0 k = 0
kB − (k + 1) 1 ≤ k ≤ n
(2n− k)(B − 1) n + 1 ≤ k ≤ 2n− 1

(2.20)

For k = 0 the formula (2.20) is true. For k = 1 we have by (2.18)

c′1 = c1 + bc′0/Bc = c1 + bc0/Bc = c1 + b(B − 1)2/Bc =

= c1 + B − 2 = c1 + B − (1 + 1)
(2.21)

which equals (2.20). Now assume that there exists k ∈ {2, . . . , n} such that

ck + bc′k−1/Bc 6= ck + kB − (k + 1) (2.22)

By the well-ordering principle there is a smallest such k. But then

c′k = ck + bc′k−1/Bc = ck + bck−1 + kB − (k + 1)c =

= ck + b(k(B − 1)2 + (k − 1)B − k)/Bc =

= ck + b(kB2 − kB −B)/Bc = ck + kB − (k + 1)

(2.23)

which contradicts the existence of such a k. By doing a similar argumentation
for the case k ∈ {n + 1, n + 2, . . . , 2n − 1}, we may conclude that (2.20) is
equivalent to (2.18). After somewhat tedious calculations, which we will
omit, it is possible to show that

c′k ≤ c′k+1, k = 0, 1, . . . , n− 2 (2.24)
c′k ≥ c′k+1, k = n, n + 1, . . . , 2n− 2 (2.25)
c′n ≤ c′n−1 (2.26)

10

and thereby concluding that

c′n−1 ≥ c′k, k ∈ {0, 1, . . . , 2n− 1} (2.27)

The value c′n−1 may not be larger than the largest value possible for the
chosen computer word. Using (2.20) and (2.19) we �nd that for a binary
computer, the number of digits n we may handle have to satisfy the relation

n ≤ 2w − 1 + B

B2 −B
(2.28)

where w is the number of bits in the value representation of the chosen
computer word.

Example With a word size of 32-bits the following table shows some possible
digit lengths.

B (radix) n (digits)
2 2147483649

10 47721858
256 65793

1024 4100
4096 256

We end this discussion about classic multiplication with an observation
made by Crandall and Pomerance [6]. It suggests that we can do compu-
tationally better when it comes to squaring. The coe�cients (2.13) can be
written as

ck =
k∑

r=0

arak−r (2.29)

For k odd we have an even number of terms which can be written as

ck = 2

bk/2c∑
r=0

arak−r (2.30)

due to the symmetry. For k even we have an odd number of terms with a
�middle� term for r = k− r, that is r = k/2. The coe�cients in (2.13) is now

ck = 2

bk/2c∑
r=0

arak−r − a2
k/2 (2.31)

11

Putting these together, we get

ck = 2

bk/2c∑
r=0

arak−r −
{

0 k odd
a2

k/2 k even (2.32)

This is roughly half the work compared to using the general multiplication
algorithm with the same operand twice. The operation of exponentiation is
common in cryptographic algorithms, and this optimization of squaring is
important. We have already seen the need for exponentiation in the intro-
duction where the Di�e-Hellman key exchange was given.

2.2 Modular arithmetic
This section introduces some properties of modular arithmetic, primarily
based on the presentation made by Knuth [8].1

We may take advantage of modular arithmetic when working with large
integers. The idea is to map the ring of integers Zm to the direct product
ring Zm1 ×Zm2 × · · · ×Zmn , mk ∈ Z+ for k = 1, 2, ..., n. All the arithmetic is
then carried out in this direct product ring. For example to multiply integers
a and b, we would �rst map a and b to Zm1 × Zm2 × · · · × Zmn which would
give us ([a1]m1 , ..., [an]mn) and ([b1]m1 , ..., [bn]mn). To multiply these, we only
need to consider component-wise multiplication (modulus some mk).

One of the advantages of this follows from the fact that if we have mk < m,
we may reduce large integers into several smaller ones, which are more easily
dealt with. The following theorem gives us the justi�cation for the idea of
using a mapping from an integer ring to a direct product ring.

Theorem 2. Let m = m1m2...mn where gcd(mi,mj) = 1 whenever i 6= j.
Then Zm is isomorphic to Zm1 × Zm2 × · · · × Zmn.

Proof. De�ne Φ : Zm −→ Zm1×Zm2×· · ·×Zmn by Φ([x]m) = ([x]m1 , [x]m2 , ..., [x]mn).
If [x]m = [y]m we have x − y = qm = qm1m2 · · ·mn for some q ∈ Z, which
implies that [x]mk

= [y]mk
for k = 1, 2, ..., n, and so Φ is well-de�ned.

The function Φ is injective since if Φ([x]m) = Φ([y]m) we have [x]mk
=

[y]mk
for k = 1, 2, ..., n, and so x ≡ y (mod mk) for k = 1, 2, ..., n. By

assumption gcd(mi,mj) = 1 whenever i 6= j, which implies that [x]m =
[y]m. As Φ is an injective map between two �nite sets it follows that Φ is
surjective as well. Finally, we have to argue that Φ preserves multiplication

1Carl Friedrich Gauss is considered to be the original inventor of modular arithmetic.

12

and addition

Φ([x]m[y]m) = Φ([xy]m) = ([xy]m1 , [xy]m2 , . . . , [xy]mn)

= ([x]m1 [y]m1 , [x]m2 [y]m2 , . . . , [x]mn [y]mn)

= ([x]m1 , [x]m2 , . . . , [x]mn)([y]m1 , [y]m2 , . . . , [y]mn)

= Φ([x]m)Φ([y]m)

Φ([x]m + [y]m) = Φ([x + y]m) = ([x + y]m1 , [x + y]m2 , . . . , [x + y]mn)

= ([x]m1 + [y]m1 , [x]m2 + [y]m2 , . . . , [x]mn + [y]mn)

= ([x]m1 , [x]m2 , . . . , [x]mn) + ([y]m1 , [y]m2 , . . . , [y]mn)

= Φ([x]m) + Φ([y]m)

The range of integers that can be handled by this technique is equal to
m = m1m2 · · ·mn. Choosing each mk close to a computer word size, and
having roughly n components in the modular representation we can handle
n-digit numbers. This would imply that the time required for addition, sub-
traction and multiplication is proportional to n, which is of advantage when
it comes to compound operations involving multiplication of integers, but
not for addition and subtraction.

On the other hand, the method under discussion is very attractive when
it comes to computer architectures which allows parallel computing. In such
a case, it would be theoretically possible to compute the components all at
once for addition, subtraction and multiplication, and this could be done in
constant time.

However, this modular representation is not optimal for some properties.
There is no easy way of testing which integer of a = ([a1]m1 , . . . , [an]mn) and
b = ([b1]m1 , ..., [bn]mn) is the larger one. Division is also di�cult to perform.
In the modular representation there is no straightforward correlation between
the components of di�erent integers.

If we let 0 ≤ ak, bk < mk(k = 1, 2, . . . , n) be the representatives (as we
may add/subtract multiples of mk to put them in the desired range) for the
components of a, b ∈ Zm1 × Zm2 × · · · × Zmn , the following operations for
component-wise addition, subtraction and multiplication may be used

ak + bk mod mk = ak + bk −mk o ak + bk ≥ mk o (2.33)
ak − bk mod mk = ak − bk + mk o ak < bk o (2.34)

akbk mod mk = akbk − bakbk/mkcmk (2.35)

13

Here, the notation oexpro has the following meaning

oexpro =
{

1 if expr is true
0 otherwise (2.36)

From a computer's standpoint, we would normally like m = m1 · · ·mn

to be as large as possible. One way to achieve this is by selecting m1 as
the largest odd integer that will �t in the computers word size, and then
choose m2 as the next odd integer such that m2 < m1 and gcd(m1,m2) = 1,
proceeding with this until the desired range has been achieved.

When dealing with binary computers, it is convenient to choose

mk = 2tk − 1 (2.37)

and to require
0 ≤ ak < 2tk , a ≡ ak (mod 2tk − 1) (2.38)

In this setup, ak = 2tk − 1 is another way of saying ak = 0. This will enable
the operations of addition, subtraction and multiplication to be de�ned in
terms of modulo 2tk , instead of modulo 2tk − 1. These operations now take
the following forms

ak ⊕ bk = ak + bk mod 2tk + oak + bk ≥ 2tk o (2.39)
ak ª bk = ak − bk mod 2tk − oak < bk o (2.40)
ak ⊗ bk = akbk mod 2tk ⊕ bakbk/2

tkc (2.41)

A veri�cation of the above for ak, bk ∈ {1, 2, · · · , 2tk − 1} shows that the
operations indeed give us the result we expect.

ak ⊕ bk = ak + bk mod 2tk + oak + bk ≥ 2tk o
= ak + bk − 2tk o ak + bk ≥ 2tk o+ o ak + bk ≥ 2tk o
= ak + bk − (2tk − 1) o ak + bk ≥ 2tk o

(2.42)

As ak ⊕ bk = 0 when ak + bk = 2tk − 1 with our convention introduced above
it follows that

ak ⊕ bk = ak + bk mod 2tk − 1 (2.43)
The operator ª is veri�ed in a similar way. For the operator ⊗ we let
q = bakbk/2

tkc, so
ak ⊗ bk = akbk mod 2tk ⊕ q = akbk − q2tk ⊕ q

= akbk − q2tk + q − 2tk o akbk − q(2tk − 1) ≥ 2tk o+ o akbk − q(2tk − 1) ≥ 2tk o
= akbk − (2tk − 1)(q + oakbk − q(2tk − 1) ≥ 2tk o)

(2.44)

14

akbk − q(2tk − 1) < 2tk

For akbk − q(2tk − 1) = 2tk − 1, we have ak ⊗ bk = 0 = akbk mod 2tk − 1.
For akbk− q(2tk − 1) < 2tk − 1, we have q ≤ akbk

2tk−1
< q + 1 ⇔ b akbk

2tk−1
c = q and

therefore ak⊗bk = akbk−q(2tk−1) = akbk−b akbk

2tk−1
c(2tk−1) = akbk mod 2tk−1.

akbk − q(2tk − 1) ≥ 2tk

akbk − q(2tk − 1) ≥ 2tk ⇔ akbk > 2tk − 1 + q(2tk − 1) ⇔ akbk

2tk−1
> 1 + q.

With the bounds q ≤ 2tk − 2 and akbk − q2tk ≤ 2tk − 1, we get
akbk − q2tk + q ≤ 2tk − 1 + q ≤ 2tk − 1 + 2tk − 2 < 2(2tk − 1) ⇔ akbk

2tk−1
< q + 2

So q + 1 < akbk

2tk−1
< q + 2 ⇔ b akbk

2tk−1
c = q + 1, and therefore we have

ak⊗ bk = akbk− (2tk − 1)(q + 1) = akbk− (2tk − 1)b akbk

2tk−1
c = akbk mod 2tk − 1

These operations have the advantage of being quite e�cient when it comes
to binary computers. Arithmetic operations modulo 2tk is equivalent to the
lower tk digits (bits) in the performed operation and division with 2tk is
equivalent to shifting the digits (bits) tk positions to the right.

In order to use the mapping to direct product rings, as shown in theorem
2, we need a simple way do determine when 2r − 1 and 2s − 1 are relatively
prime.

Lemma 1. Let m,n > 0 be two integers. Then

2n − 1 mod 2m − 1 = 2n mod m − 1 (2.45)

Proof. If n < m then 2n − 1 mod 2m − 1 = 2n − 1 and 2n mod m − 1 = 2n − 1,
so the equality (2.45) holds. For n ≥ m, let n = qm+ r for some q ∈ Z+ and
0 ≤ r < m.

(2m − 1)(1 + 2m + · · ·+ (2m)q−1) = 2mq − 1
⇐⇒

2r(2m − 1)(1 + 2m + · · ·+ (2m)q−1) = 2r(2mq − 1)
⇐⇒

2r(2m − 1)(1 + 2m + · · ·+ (2m)q−1) = 2r(2mq − 1) + 1− 1
⇐⇒

2r(2m − 1)(1 + 2m + · · ·+ (2m)q−1) = 2mq+r − 1− (2r − 1)
⇐⇒

2n − 1 = (2m − 1)[2r(1 + 2m + · · ·+ (2m)q−1)] + (2n mod m − 1)

As r = n mod m < m it follows that 2n mod m − 1 < 2m − 1 which gives us,

2n − 1 mod 2m − 1 = 2n mod m − 1

15

Theorem 3. Let m, n > 0 be two integers. Then

gcd(2m − 1, 2n − 1) = 2gcd(m,n) − 1 (2.46)

Proof. We assume without, loss of generality, that n ≥ m. The Euclidean
algorithm may be used to determine gcd (2m − 1, 2n − 1) by letting A0 =
2n − 1, A1 = 2m − 1 and Ak = Ak−2 mod Ak−1 and using the known fact
from this algorithm that there exists a t ∈ {2, 3, . . .}, for which At = 0, and
therefore

gcd(2n − 1, 2m − 1) = At−1

Let B0 = n,B1 = m and Bk = Bk−2 mod Bk−1. The claim is that

Ak = 2Bk − 1, k = 2, 3, . . . , t

which is certainly true for k ∈ {2, 3} by the previous lemma. If the formula
wouldn't be as claimed, we would have, by the well-ordering principle, a
smallest k, such that Ak 6= 2Bk−1. This is a contradiction as Ak = Ak−2 mod
Ak−1 = 2Bk−2 − 1 mod 2Bk−1 − 1 = 2Bk−2 mod Bk−1 − 1 = 2Bk − 1, once again
using the previous lemma. When At = 0, we have 2Bt − 1 = 0 if, and only
if, Bt = 0, so gcd (n,m) = Bt−1. Putting this together, we arrive at

At−1 = 2Bt−1 − 1 ⇔ gcd (2n − 1, 2m − 1) = 2gcd(n,m) − 1

One immediate consequence of this is that 2r−1 and 2s−1 are relatively
prime if and only if r and s is relatively prime.

Let us consider a simple example. By assuming a binary computer with
a word size of w = 232 and selecting

m1 = 232 − 1,m2 = 231 − 1,m3 = 229 − 1,m4 = 227 − 1,m5 = 225 − 1

it would be possible to e�ciently perform addition, subtraction and multi-
plication of integers in the range m1 · · ·m5 > 2143.

The e�ectiveness of the method under discussion may be dependent on the
cost of doing the conversions between Zm and Zm1×Zm2×· · ·×Zmn ,mk ∈ Z+

for k = 1, 2, ..., n.2 Going from n ∈ Zm to the modular representation may be
done by dividing n with m1,m2, . . . , mn and using the remainder. The other
way around, going from the modular representation a ∈ Zm1×Zm2×· · ·×Zmn

to a′ ∈ Zm, is a bit more complicated. This may be done with the help of
the Chinese Remainder Theorem.

2Doing multiple operations between conversions is to be prefered, if possible, in order
to keep this conversion overhead at a minimum.

16

Theorem 4. Let m1,m2, . . . , mn be positive integers, all pairwise co-prime.

gcd (mi,mj) = 1, whenever i 6= j

Then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)
... (2.47)
x ≡ an (mod mn)

has a solution.

If we assume the theorem without proof, we need to �nd an integer a′

such that a′ ≡ a1 (mod m1), . . . , a
′ ≡ an (mod mn). The theorem gives us

no help with this, but to assert the existence of such an integer. It is useless
when it comes to actually �nding it. Naively, we would have to try

a′ = s, s + 1, . . . (for some given s ∈ Z+)

until we �nd a value for which

a′ ≡ a1 (mod m1)
... (2.48)

a′ ≡ an (mod mn) (2.49)

A bit more help is given by considering a constructive proof of the Chinese
Remainder Theorem

Proof of theorem 4. Let m = m1m2 · · ·mn. For 1 ≤ j ≤ n we have

gcd (mj, m/mj) = 1

By the Euclidean algorithm we conclude that

rjmj + sjm/mj = 1

for some integers rj and sj. Let

x =
n∑

i=1

aim/mi

17

Choosing q arbitrarily, such that 1 ≤ q ≤ n, we �nd that

x− aq = a1s1m/m1 + · · ·+ aqsqm/mq + · · ·+ ansnm/mn − aq =

= a1s1m/m1 + · · ·+ aq(sqm/mq − 1) + · · ·+ ansnm/mn =

= a1s1m/m1 + · · ·+ aq(−rqmq) + · · ·+ ansnm/mn =

= mq(a1s1m/m1mq + · · ·+ aq(−rq) + · · ·+ ansnm/mnmq)

This shows that
x ≡ aq (mod mq)

and it follows that x is a solution to the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)
... (2.50)
x ≡ an (mod mn)

However, calculating a solution x, now requires us to do multiplication
of large numbers m/mi. This is what we wanted to avoid by introducing
modular arithmetic in the �rst place. A better method, using

(
n
2

)
constants,

cjk, where
cjkmj ≡ 1 (mod mk), (2.51)

where 1 ≤ j < k ≤ n, was suggested by Garner in 1958. The constants
cjk are computed by using the extended Euclidean algorithm which for any
given j and k computes the relation

umj + vmk = gcd (mj,mk) = 1 (2.52)

and we choose cjk = u. For these cjk we may do the following

let b1 = a1 mod m1

let b2 = (a2 − b1)c12 mod m2

let b3 = ((a3 − b1)c13 − b2)c23 mod m3

...
let bn = (. . . ((an − b1)c1n − b2)c2n − · · · − vn−1)c(n−1)n mod mn

(2.53)

Then, the integer

a′ = bnmn−1 · · ·m2m1 + · · ·+ b3m2m1 + b2m1 + b1 (2.54)

18

satisfy the conditions

0 ≤ a′ < m, a′ ≡ ak (mod mk), 1 ≤ k ≤ n (2.55)

The relation in (2.54) is called mixed-radix representation of a′. Methods for
converting this mixed-radix representation to binary or decimal representa-
tion is presented in Knuth [8], but we will not go into the details here.

One last observation regarding these conversions is that we may show
that if p mod q = d and pc mod q = 1, then the relation

(1 + 2d + 22d + · · ·+ 2(c−1)d)(2p − 1) ≡ 1 (mod 2q − 1) (2.56)

holds. As our moduli mk have the special form as given in (2.37), we have a
relatively simple relation for the calculation of the constants cjk in (2.51).

2.3 Karatsuba multiplication
In 1960 A. Karatsuba [7] discovered an algorithm to multiply integers which
uses fewer multiplication operations than the classical �naive� multiplication
algorithm discussed previously in (2.1.3).

If we let x and y denote two n-digit integers, we may write these as

x = x1B
m + x0 and y = y1B

m + y0 (2.57)

for some radix B and m < n. B is chosen to be a value that is easily shifted.
For example, a modern binary computer could have B = 2. The integer m
is usually chosen to be near n/2.

From the above, it follows that

xy = (x1B
m + x0)(y1B

m + y0) = x1y1B
2m + (x1y0 + x0y1)B

m + x0y0 (2.58)

Normally, xy requires four multiplications to calculate the four subproducts
x1y1, x1y0, x0y1 and x0y0, thereby requiring xy to be calculated with four
multiplications and some additions and shifting. We consider the time taken
for addition, subtraction and shifting to be negligible compared to the time
taken for the operation of multiplication. In total, this suggests that we
haven't come up with something better regarding computational time than
the classical multiplication algorithm.

The key observation to make here is that if we let

U = x1y1 (2.59)
V = x0y0 (2.60)
W = (x1 + x0)(y1 + y0)− U − V (2.61)

19

it follows that xy = UB2m + WBm + V as we have

W = (x1y1 + x1y0 + x0y1 + x0y0)− x1y1 − x0y0 = x1y0 + x0y1 (2.62)

Calculating U, V, W now requires three multiplications and some additions
and subtractions, saving one operation of multiplication compared to the
classical multiplication algorithm. Furthermore, we may apply the method
above recursively to calculate the values of U, V and W . This makes it
possible to handle integers of arbitrary length. We split the integers involved
into smaller units until we can e�ectively compute their products.

As a simple example, we may assume a decimal computer with B = 10,
capable of multiplying 3-digit integers. In order to multiply 1234 by 5678 we
choose m = 2 and write these integers as

x = 12 · 102 + 34 and y = 56 · 102 + 78

Now let

U = 12 · 56 = 672

V = 34 · 78 = 2652

W = (12 + 34)(56 + 78)− 672− 2652 = 2840

We then have

1234 · 5678 = 672 · 104 + 2840 · 102 + 2652 =

= 6720000 + 284000 + 2652 = 7006652

In our decimal computer, the evaluation of 672·104 and 2840·102 corresponds
to simple shifts and is therefore considered cheap with respect to computing
time. If our decimal computer had only been capable of multiplying 1-digit
integers, we would have applied the method recursively to calculate the values
of 12 · 56, 34 · 78 and (12 + 34)(56 + 78). To make the recursion e�ective it
is usually a good idea to have the number of digits equal to some power of
two, that is n = 2k for some integer k > 0.

The complexity analysis of the Karatsuba algorithm performed in Knuth
[8] is given here in a somewhat expanded form. Let T (n) denote the time it
takes to multiply n-digit integers. It follows from the discussion above that
we have

T (2n) ≤ 3T (n) + cn (2.63)
for some constant c, as we have three multiplications with some shifts, addi-
tions and subtractions. Now consider the inequality

T (2k) ≤ c(3k − 2k) (2.64)

20

For k = 1, we have T (2) ≤ c(3 − 2) = c, so we may choose c such that
T (2) ≤ c holds. Let us now assume that

T (2k) ≤ c(3k − 2k) (2.65)

holds for k ≥ 1 with the above chosen c.
If we combine T (2k+1) = T (2 · 2k) with (2.63) it follows that

T (2 · 2k) ≤ 3T (2k) + c2k (2.66)

By assumption (2.65), we have T (2k) ≤ c(3k − 2k), which gives us

3T (2k)+c2k ≤ 3(c(3k−2k))+c2k = c3k+1−3c2k+c2k = c(3k+1−2k+1) (2.67)

This shows that
T (2m) ≤ c(3m − 2m), m ≥ 1 (2.68)

holds for some c.

We may now derive an upper bound for T (n) as follows

T (n) = T (2log2 n) ≤ T (2dlog2 ne) (2.69)

From (2.68), in combination with (2.69), we may conclude that T (2dlog2 ne) ≤
c(3dlog2 ne− 2dlog2 ne) for some c. By the de�nition of the ceiling function, dxe,
we have dlog2 ne < log2 n + 1 which implies 3dlog2 ne < 3log2 n+1. It follows
that

T (n) ≤ c(3dlog2 ne − 2dlog2 ne) < 3c · 3log2 n = 3cnlog2 3 (2.70)
Relation (2.70) shows that the time used for multiplication with the Karat-
suba method is in the order of nlog2 3 ≈ n1.585, which makes this algorithm
substantially faster than the classical multiplication algorithm, when n is
large.

2.4 Toom-Cook multiplication
We will brie�y mention the Toom-Cook algorithm, of which the Karatsuba
algorithm is a special case. The Toom-Cook algorithm depends on the idea
that given two polynomials

p(x) = p0 + p1x + · · ·+ pn−1 (2.71)
q(x) = q0 + q1x + · · ·+ qn−1 (2.72)

21

the polynomial product r(x) = p(x)q(x) is determined by evaluating r(x) at
2n− 1 distinct points. Given two integers, p and q, we select a radix B such
that the radix representations of p and q, given by the polynomials p(x) and
q(x), contains at most n digits. The name Toom-n is a synonym of the Toom-
Cook algorithm and thus re�ects the number of digits it operates on. For
example, the Toom-3 variant for an integer m has the radix representation

a(x) = a0 + a1x + a2x
2 (2.73)

for some radix B such that m = a(B).
Toom-n multiplication of integers p and q may be performed by using the

following steps
Initialize Form the polynomials p(x) and q(x) each of degree n − 1 such

that p(x) and q(x) is the radix representation of p and q in some radix
B. That is p = p(B) and q = q(B).

Evaluate Evaluate r(x) = p(x)q(x) at 2n− 1 distinct points.

Interpolation Find the coe�cients of r(x).

Reconstruction Find the �nal result by evaluating r(B).
When evaluating a polynomial, we make use of a special evaluation point,
the point of in�nity.
De�nition 2. The evaluation of a polynomial, p(x) = a0 + · · ·+ an−1x

n−1 ∈
R[x], at the point of in�nity is de�ned as

p(∞) := lim
x→∞

p(x)

xdeg p(x)
= an−1

The explanation of the Toom-Cook algorithm below is based on a sim-
ple example, where we will multiply the integers 123456 and 654321, using
Toom-3. The selection of B = 100 as the radix gives us the following radix
representations

p(x) = 12x2 + 34x + 56 (2.74)
q(x) = 65x2 + 43x + 21 (2.75)

In order to determine the polynomial r(x) = p(x)q(x), we need to evaluate
r(x) at �ve distinct points

r(0) = p(0)q(0) = 1176 (2.76)
r(1) = p(1)q(1) = 13158 (2.77)

r(−1) = p(−1)q(−1) = 1462 (2.78)
r(−2) = p(−2)q(−2) = 7020 (2.79)
r(∞) = p(∞)q(∞) = 780 (2.80)

22

To �nd the polynomial r(x) = r0 + r1x + · · · + r4x
4, we need to solve the

equation



r(0)
r(1)

r(−1)
r(−2)
r(∞)




=




1 01 02 03 04

1 11 12 13 14

1 (−1)1 (−1)2 (−1)3 (−1)4

1 (−2)1 (−2)2 (−2)3 (−2)4

0 0 0 0 1







r0

r1

r2

r3

r4




(2.81)

Solving such a system could be done using Gaussian elimination or, if the
evaluation points have been chosen suitably, by multiplication of the inverse
matrix. 



r0

r1

r2

r3

r4




=




1 0 0 0 0
1
2

1
3
−1 1

6
−2

−1 1
2

1
2

0 −1
−1

2
1
6

1
2

−1
6

2
0 0 0 0 1







r(0)
r(1)

r(−1)
r(−2)
r(∞)




(2.82)

Even though the matrix contain fractions the resulting coe�cients of the
polynomial r(x) are integers. This means that we may perform the cal-
culations using additions, subtractions and multiplication/division by small
constants.

One way of e�ectively calculate the above, as suggested by Bodrato [12],
is to use the following sequence of operations, which we apply to our example

r0 ← r(0) = 1176
r4 ← r(∞) = 780

r3 ← r(−2)−r(1)
3

= −2046

r1 ← r(1)−r(−1)
2

= 5848
r2 ← r(−1)− r(0) = 286
r3 ← r2−r3

2
+ 2r(∞) = 2726

r2 ← r2 + r1 − r(∞) = 5354
r1 ← r1 − r3 = 3122

The resulting polynomial is then given by

r(x) = 1176 + 3122x + 5354x2 + 2726x3 + 780x4 (2.83)

Note that the matrix used only depends on the degree of the resulting poly-
nomial and the evaluation points. For di�erent inputs, the inverse of the
matrix does not need to be re-calculated, as long as these parameters are
�xed.

23

In order to reconstruct the result of the multiplication, we evaluate r(B).

r(B) = 1176 + 3122 · 100 + 5354 · 1002 + 2726 · 1003 + 780 · 1004 =

= 1176 + 312200 + 53540000 + 2726000000 + 78000000000 =

= 80779853376 = 123456 · 654321

(2.84)

Normally, one chooses B so that the evaluation of r(B) is e�ective with
respect to an implementation. In our example, we have used B = 100,
meaning that we just left-shift each coe�cient zero, two, four, six or eight
steps.

The Toom-3 algorithm reduces the number of multiplications from 9 to
5. It can be shown that the time used for multiplication is proportional to
n

log2 5
log2 3 ≈ n1.465. In general, Toom-k executes in a time proportional to c(k)nm,

where m = log2(2k − 1)/ log2 k, nm is the time used for sub-multiplications
and c is the time spent on additions and multiplications by small constants.
By using larger k, one may lower the value nm, but unfortunately the function
c grows so rapidly when k →∞ that we would need extremely huge values of
n in order to have any signi�cant improvement over Karatsuba multiplication.
An improvement was suggested by Toom. It is possible to obtain better
results by letting k vary with n and by choosing larger and larger values of k,
as n increases. For a more detailed exposition of the Toom-Cook algorithm,
the reader is directed to Knuth [8] and Crandall and Pomerance [6].

2.5 Fourier transform multiplication
The most e�cient algorithms to multiply large integers are based on the
Fast Fourier Transform (FFT), which in turn is just an e�ective way of
computing the Discrete Fourier Transform (DFT). Multiplication of large
integers exploit the intimate relationship between the DFT and what later
is de�ned as the discrete cyclic convolution.3

2.5.1 The Discrete Fourier Transform and convolutions
Let us, as a starting point, de�ne the complex Discrete Fourier Transform.

De�nition 3. Let N > 1 be an integer, and let x = (x0, x1, . . . , xN−1), where
xk ∈ C for k = 0, . . . , N − 1 be a vector. Then the complex Discrete Fourier

3The DFT multiplication is an example of Toom-Cook multiplication.

24

Transform is de�ned as the vector

y = (y0, y1, . . . , yN−1), (y)k = yk =
N−1∑
n=0

xnω
nk, k = 0, . . . , N − 1 (2.85)

where ω = e
2πi
N .

If we now let

AN
ω =




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

· · · · · · · · · · · · · · ·
1 ωN−1 ω2(N−1) · · · ω(N−1)2




(2.86)

we may write the transformation in the de�nition above as the matrix mul-
tiplication

F(x) = AN
ω xT =




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

· · · · · · · · · · · · · · ·
1 ωN−1 ω2(N−1) · · · ω(N−1)2







x0

x1

· · ·
xN−1




(2.87)
Furthermore, if we consider the expression

1

N
AN

ω−1AN
ω =

1

N




1 · · · 1
1 · · · ω−(N−1)

· · · · · · · · ·
1 · · · ω−(N−1)2







1 · · · 1
1 · · · ω(N−1)

· · · · · · · · ·
1 · · · ω(N−1)2


 (2.88)

and number the rows and columns so that the element at 0, 0 is at the top
left in the resulting matrix, we have in the position r, s of this matrix

1

N

N−1∑

k=0

ωrkω−sk =
1

N

N−1∑

k=0

ωk(r−s) =

{
1 r = s
0 r 6= s

(2.89)

This is evidently the identity matrix. The sum in (2.89) above is zero for
r 6= s as it is the geometric series

1

N

N−1∑

k=0

ωk(r−s) =
1

N

(ω(r−s))N − 1

ωr−s − 1
= 0 (2.90)

25

Note that we generally have ωm = 1(m ∈ Z) if, and only if, N |m. From this,
we see that the numerator is zero in (2.90). Remembering that r 6= s, we
have that r − s ∈ {±1,±2, . . . ,±(N − 1)}, which implies that N - (r − s),
and therefore the denominator in (2.90) is non-zero, so the expression is
well-formed and has the value asserted. We may conclude that the inverse
transformation is given by

F−1(y) = AN
ω−1yT , y = (y0, y1, . . . , yN−1) (2.91)

The key element of using DFTs as a means of multiplying large integers
is the discrete cyclic convolution and its relationship to the DFT. We will
de�ne this term and arrive at what is known as the convolution theorem,
which makes this relationship explicit.

De�nition 4. Let N > 1 be an integer, and let

x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1)

be vectors with xk, yk ∈ C for k = 0, . . . , N − 1. We de�ne the discrete cyclic
convolution x ∗ y of the vectors x and y to be the vector

z = x ∗ y = (z0, z1, . . . , zN−1) (2.92)

where

(z)k = zk =
N−1∑
r=0

xryk−r mod N , k = 0, . . . , N − 1 (2.93)

De�nition 5. Let N > 1 be an integer and let

x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1)

be vectors with xk, yk ∈ C for k = 0, . . . , N−1. We de�ne the component-wise
product x¯ y of the vectors x and y to be the vector

z = x¯y = (z0, z1, . . . , zN−1), (z)k = zk = xkyk, k = 0, . . . , N−1 (2.94)

Theorem 5 (Convolution theorem). Let N > 1 be an integer and let

x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1)

be vectors with xk, yk ∈ C for k = 0, . . . , N − 1. Then

F(x ∗ y) = F(x)¯F(y) (2.95)

26

Proof. Choose a k such that k ∈ {0, 1, . . . , N − 1}

(F(x ∗ y))k =
N−1∑
r=0

ωrk(x ∗ y)r =
N−1∑
r=0

ωrk

N−1∑
s=0

xsyr−s mod N

=
N−1∑
s=0

xs

N−1∑
r=0

ωrkyr−s mod N =

x0(y0ω
0k + y1ω

k + y2ω
2k + · · ·+ yN−1ω

(N−1)k)+

x1(yN−1ω
0k + y0ω

k + y1ω
2k + · · ·+ yN−2ω

(N−1)k)+

x2(yN−2ω
0k + yN−1ω

k + y0ω
2k + · · ·+ yN−3ω

(N−1)k)+

...
xN−1(y1ω

0k + y2ω
k + y3ω

2k + · · ·+ y0ω
(N−1)k) = . . .

Rearranging and using the fact that ωn = ωn mod N for n ∈ Z we have

. . . =x0(y0ω
(0+0)k + y1ω

(0+1)k + · · ·+ yN−2ω
(0+N−2)k + yN−1ω

(0+N−1)k) +

x1(y0ω
(1+0)k + y1ω

(1+1)k + · · ·+ yN−2ω
(1+N−2)k + yN−1ω

(1+N−1)k) +

x2(y0ω
(2+0)k + y1ω

(2+1)k + · · ·+ yN−2ω
(2+N−2)k + yN−1ω

(2+N−1)k) +

...
xN−1(y0ω

(N−1+0)k + y1ω
(N−1+1)k + · · ·+ yN−1ω

(N−1+N−1)k) =

=
N−1∑
s=0

xs

N−1∑
r=0

yrω
(s+r)k =

N−1∑
s=0

xsω
sk

N−1∑
r=0

yrω
rk = (F(x)¯F(y))k

As k was arbitrarily chosen from {0, 1, . . . , N − 1}, it follows that
(F(x ∗ y))k = (F(x)¯F(y))k, ∀k ∈ {0, 1, . . . , N − 1}

which implies
F(x ∗ y) = F(x)¯F(y)

From (2.91) and the theorem above it immediately follows that

x ∗ y = F−1(F(x)¯F(y)) (2.96)

The calculating of the discrete cyclic convolution of two vectors x, y may now
proceed by �rst determining the DFT of x and y, followed by a component-
wise multiplication and �nally applying an inverse DFT. This will be of great
importance as we now move on to multiplication of polynomials.

27

Let us consider two polynomials a(x), b(x), where deg a(x) = n− 1, and
deg b(x) = m− 1 respectively. That is

a(x) =
n−1∑

k=0

akx
k, b(x) =

m−1∑

k=0

bkx
k, ak, bk ∈ C (2.97)

Multiplying a(x) by b(x) gives us a new polynomial c(x)

c(x) =
n+m−2∑

k=0

ckx
k =

n−1∑

k=0

akx
k

m−1∑

k=0

bkx
k (2.98)

The coe�cients ck of the polynomial c(x) may be derived by using the
discrete cyclic convolution. Let N = deg a(x) + deg b(x) + 1 and represent
the coe�cients of the polynomials a(x) and b(x) by the following two vectors
of length N

â = (a0, a1, . . . , an−1, 0, . . . , 0), b̂ = (b0, b1, . . . , bm−1, 0, . . . , 0) (2.99)

by �expanding� the coe�cient vectors for a(x), b(x) with zero's, so they have
length N. Calculating the discrete cyclic convolution ĉ = â ∗ b̂ by using
de�nition (4) gives us

(ĉ)0 = a0b0

(ĉ)1 = a0b1 + a1b0

(ĉ)2 = a0b2 + a1b1 + a2b0

(ĉ)3 = a0b3 + a1b2 + a2b1 + a3b0

...
(ĉ)n−1 = a0bn−1 + a1bn−2 + · · ·+ an−1b0

...
(ĉ)n+m−3 = an−2bm−1 + an−1bm−2

(ĉ)n+m−2 = an−1bm−1

(2.100)

This is exactly those coe�cients that we would have got from (2.98) for the
polynomial c(x), using the usual de�nition of polynomial multiplication. To
be a little more explicit, we have that

ck = (ĉ)k, k = 0, 1, . . . , n + m− 2 (2.101)

As the discrete cyclic convolution can be expressed in terms of the DFT (see
2.96), we have a method for multiplication of polynomials, and given that

28

carry propagation is handled properly, we also have a method for multiplying
integers. Assume that a(x) and b(x) are the polynomials introduced previ-
ously and that c(x) = a(x)b(x). We �nd the coe�cients of c(x) by doing the
following,

1. Let N = deg a(x) + deg b(x) + 1.

2. Let â = (a0, a1, . . . , aN−1) and b̂ = (b0, b1, . . . , bN−1), where ar are the
coe�cients for the polynomial a(x) with ar = 0 for r > deg a(x) and bs

are the coe�cients for the polynomial b(x) with bs = 0 for s > deg b(x).

3. Calculate the DFTs F(â) and F(b̂).

4. Calculate the component-wise product F(â)¯F(b̂)

5. Calculate the inverse DFT ĉ = F−1(F(â)¯F(b̂)).

6. Each coe�cient ck for the polynomial c(x) is now given by ck = (ĉ)k.

7. Handle carry propagation.

The complexity for the method above is bounded by the complexity of
the DFT. Using the de�nition (3) naively will give a complexity of O(N2),
where N is the vector length given to the DFT.

If the vector x = (x0, . . . , xN−1), all have real components, that is, if
Im(xk) = 0 for k = 0, . . . , N − 1, we have the following usable relation

(F(x))k = (F(x))N−k mod N (2.102)

which requires roughly half of the necessary computations.

2.5.2 The Fast Fourier Transform
We go on to the possibility of computing the DFT more e�ciently, using a
FFT algorithm. There are numerous algorithms for implementing a FFT.
One of the more popular is an algorithm known as the Cooley-Tukey algo-
rithm [10], named after J.W. Cooley and John Tukey who described it in a
paper from 1965 [5]. This algorithm uses a divide and conquer strategy to
divide a DFT transformation of size N = N1N2 into two interleaved trans-
formations of size N1 and N2, which may be further recursively transformed.
This decomposition of the transformation can be traced back to work of Carl
Friedrich Gauss, who used it for trajectory calculations in astronomy. Cooley
and Tukey adapted the algorithm for e�cient computer implementation as
we will see later.

29

N needs to be highly composite for the algorithm to be as e�cient as
possible. This will ensure that the base cases in the recursion are small
prime numbers. We will restrict ourselves to transformation sizes of N = 2n

for some n ∈ Z+. In practice, this restriction is of no great concern as the
application usually has some freedom to choose the size of the input vector
for the transformation at hand, by padding the vector with zero's.

Let N = 2n for some n ∈ Z+ and let x ∈ CN . By the de�nition of the
DFT, we have for k = 0, . . . , N − 1

(F(x))k =
N−1∑
m=0

xmωmk = [odd and even components] =

=

N/2−1∑
m=0

x2mω2mk +

N/2−1∑
m=0

x2m+1ω
(2m+1)k =

=

N/2−1∑
m=0

x2mω2mk + ωk

N/2−1∑
m=0

x2m+1ω
2mk

(2.103)

Let the vector a contain the components from x with even indices. That is
a = (x0, x2, , xN−2). Similarly, we let b = (x1, x3, . . . , xN−1) contain the
components of x with odd indices. Furthermore, we have

ωk = ωqN/2+r = (−1)qωr, q ∈ {0, 1}, r = 0, . . . , N/2− 1 (2.104)
which may be written as

ωk = (−1)ok≥N/2oωk mod N/2, k = 0, . . . , N − 1 (2.105)
The sums in (2.103) both have a term ω2mk

ω2mk = (ωk)2m = ((−1)ok≥N/2oωk mod N/2)2m =

= ω2m(k mod N/2) (k = 0, . . . , N − 1)
(2.106)

We also note that
ω2 = (e

2πi
N)2 = e

2πi
N/2 (2.107)

Putting all this together we arrive at
N/2−1∑
m=0

x2mω2mk + ωk

N/2−1∑
m=0

x2m+1ω
2mk =

N/2−1∑
m=0

am(ω2)m(k mod N/2) + (−1)ok≥N/2oωk mod N/2

N/2−1∑
m=0

bm(ω2)m(k mod N/2) =

(F(a))k mod N/2 + (−1)ok≥N/2oωk mod N/2(F(b))k mod N/2

(2.108)

30

Rewriting (2.108) in a somewhat di�erent form gives us

(F(x))k = (F(a))k + ωk(F(b))k (0 ≤ k < N/2)

(F(x))k+N/2 = (F(a))k − ωk(F(b))k (0 ≤ k < N/2)
(2.109)

In order to compute F(x) we �rst need to compute F(a) and F(b), which are
both DFTs of length N/2, and then to combine these two transformations to
get F(x). In other words, we have re-expressed a DFT of length N in two
DFTs of length N/2. This process can then be applied recursively for F(a)
and F(b).

If we denote T (N) as the runtime of this algorithm, we have

T (N) = 2T (N/2) + cN for some constant c (2.110)

and by the Master theorem [11], we conclude

T (N) = N log N (2.111)

The algorithm described so far is of recursive nature, and a typical imple-
mentation would need to allocate temporary storage for the results from the
two interleaved DFTs and then combine them. What Cooley and Tukey
observed in their paper was that if the components of the input vector
x = (x0, . . . , xN−1) is arranged in a certain way, the algorithm can be carried
out non-recursive, in-order and in-place [6]. In-order means in natural order
of a DFT. In-place means that there is no need for temporary storage as it
replaces the values in the input vector with the result from the DFT. This
is a very attractive property when it comes to computer implementations,
which is one of the reasons for its popularity.

Given a vector x = (x0, . . . , xN−1), where N = 2m for some m ∈ Z+, the
arrangement of a new vector x′ is the permutation which takes the compo-
nent at index i in x to index i′, where i′ is the bit-reversal of i when i is
considered in base 2. As an example, if N = 8 and x = (x0, . . . , x7), then
x′ = (x0, x4, x2, x6, x1, x5, x3, x7) because the indices are permutated as

0 = 0002 7−→ 0002 = 0
1 = 0012 7−→ 1002 = 4
2 = 0102 7−→ 0102 = 2
3 = 0112 7−→ 1102 = 6
4 = 1002 7−→ 0012 = 1
5 = 1012 7−→ 1012 = 5
6 = 1102 7−→ 0112 = 3
7 = 1112 7−→ 1112 = 7

31

2.5.3 Generalized DFT
The DFT introduced previously may be generalized to other algebraic struc-
tures than the complex �eld. The proofs are more or less identical to the
ones given for the complex DFT. For the sake of completeness some of them
will be repeated in this more general setting.

De�nition 6. Let R be a ring with identity. An element ω ∈ R is a nth

primitive root of unity if n > 1 is the smallest integer for which the following
holds,

1. ω 6= 1

2. ωn = 1

De�nition 7. Let R be a ring with identity. An element ω ∈ R is a nth

principal root of unity if ω is a nth primitive root of unity and
n−1∑

k=0

ωmk = 0, ∀m ∈ {1, 2, . . . , n− 1} (2.112)

Theorem 6. Let R be a ring with identity. If ω ∈ R is a nth primitive
root of unity and (ωm − 1)−1 ∈ R for m ∈ {1, 2, . . . , n− 1}, then ω is a nth

principal root of unity.

Proof. Let m ∈ {1, 2, . . . , n− 1}. Then we have,

n−1∑

k=0

ωmk =1 + ωm + ω2m + · · ·+ ω(n−1)m =

=(1 + ωm + ω2m + · · ·+ ω(n−1)m)(ωm − 1)(ωm − 1)−1 =

=(ωnm − 1)(ωm − 1)−1 = ((ωn)m − 1)(ωm − 1)−1 = 0 · (ωm − 1)−1 = 0

Corollary 1. Let K be a �eld. If ω ∈ K is a nth primitive root of unity, then
ω is a nth principal root of unity.

Theorem 7. Let R be a ring with identity. If ω ∈ R is a nth principal root
of unity, then ω−1 ∈ R is a nth principal root of unity.

Proof. As ω is a nth primitive root of unity we have,

ωn = ωn−1+1 = ωn−1ω1 = 1

32

which shows that ω−1 ∈ R. It is clear that ω−1 6= 1 and that ω−n = (ω−1)n =
1. For ω−1 to be a nth primitive root of unity, we have to show that n is the
smallest integer such that ω−n = 1. Suppose there is an integer 1 < m < n
such that ω−m = 1. Then,

ω−m = 1 ⇔ ωmω−m = ωm · 1 ⇔ 1 = ωm

which is a contradiction of ω being a nth primitive root of unity.
For some �xed integer m ∈ {1, . . . , n− 1}, we have

n−1∑

k=0

ωmk = 1 + ωm + ω2m + · · ·+ ω(n−1)m = 0

⇐⇒
(ω−1)(n−1)m[1 + ωm + ω2m + · · ·+ ω(n−2)m) + ω(n−1)m] = 0

⇐⇒
(ω−1)(n−1)m + (ω−1)(n−2)m + (ω−1)(n−3)m + · · ·+ (ω−1)m + 1 = 0

⇐⇒
n−1∑

k=0

(ω−1)mk = 0

This establishes ω−1 to be a nth principal root of unity.

De�nition 8. Let R be a ring with identity and let ω ∈ R be a nth principal
root of unity. Then the Generalized Discrete Fourier Transform, F , is de�ned
to be,

F : Rn −→ Rn

x ∈ Rn 7−→ y ∈ Rn

where y is the n-tuple (y0, y1, . . . , yn−1) and

ym =
n−1∑

k=0

xkω
mk, m ∈ {0, . . . , n− 1} (2.113)

Theorem 8. Let R be a ring with identity, and let ω ∈ R be a nth principal
root of unity. Let n−1 ∈ R. Then the inverse Generalized Discrete Fourier
Transform, F−1, is given by

F−1(y) = (x0, x1, . . . , xn−1), xm = n−1

n−1∑

k=0

ykω
−mk, m ∈ {0, . . . , n− 1}

(2.114)

33

Proof.

n−1

n−1∑

k=0

ykω
−mk = n−1

n−1∑

k=0

n−1∑
j=0

xjω
kjω−mk = n−1

n−1∑
j=0

xj

n−1∑

k=0

ωk(j−m)

When j = m, we have

n−1

n−1∑
j=0

xj

n−1∑

k=0

1 = n−1

n−1∑
j=0

xj(1 + 1 + · · ·+ 1) = n−1nxj = xm

When j > m, we have by de�nition (7)

n−1

n−1∑
j=0

xj

n−1∑

k=0

ωk(j−m) = n−1

n−1∑
j=0

xj · 0 = 0

When j < m we have by theorem 7,

n−1

n−1∑
j=0

xj

n−1∑

k=0

ωk(j−m) = n−1

n−1∑
j=0

xj

n−1∑

k=0

(ω−1)k(m−j) = n−1

n−1∑
j=0

xj · 0 = 0

In the theorem above we have used that n = n · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

∈ R,

so the notation n−1 makes sense. The requirement that n−1 ∈ R is necessary
because there are rings which contain nth principal roots but n−1 /∈ R. As
an example we have Z4 that contains 3 as a 2nd principal root of unity but
2−1 /∈ Z4. Another example is Z10, which has 7 as a 4th principal root of
unity, but in this case 4−1 /∈ Z10.

For a �eld K, we may relax the above requirement as it is implicit in this
case. We have to make sure that n·1 = 1+1+· · ·+1 6= 0. The characteristic,
char K, for K is either 0 or p for some prime p. For char K = 0, this is not an
issue. For char K = p, we know that |K| = pm for some integer m ≥ 1. As
a principal root of unity is a generator for a subgroup of the multiplicative
group in K, we have, by the theorem of Lagrange, that n|pm − 1. Suppose
n·1 = 0 ∈ K. Then p|n ⇔ n = pq, (q ∈ Z+). But this would imply pq|pm−1,
which is impossible.

The de�nition of the discrete cyclic convolution and the proof of the con-
volution theorem may also be put in this more general setting. This will
enable the possibility to do e�cient arithmetic in, for example, a �eld. As
the proofs are more or less identical to the previous ones, we don't repeat

34

them here. Note that the proof of the convolution theorem now requires a
commutative ring with identity. We also observe that R and Z both lack
primitive roots of unity. This is the reason why we introduced the complex
DFT as it uses the complex �eld, which for ω = e

2πi
n has nth principal roots of

unity for all integers n > 1. This property makes it possible to use DFTs of
any length. But the computations performed uses �oating-point calculations
that may introduce numerical errors and also, as we are only interested in
integer multiplication, this may not be an optimal solution. With the Gen-
eralized DFT we have the option to perform fast multiplication in algebraic
structures using only integer arithmetic.

2.5.4 Schönhage-Strassen multiplication
The Schönhage-Strassen algorithm for integer multiplication is an example
of the generalized DFT in the ring Z2n/2+1, where n is a power of two. In
this ring one may observe that

2n/2 ≡ −1 (mod 2n/2 + 1) (2.115)

which implies that
2n ≡ 1 (mod 2n/2 + 1) (2.116)

Furthermore, n = 2k for some k ∈ Z+, so gcd (n, 2n/2 + 1) = 1 shows that
n is a unit in Z2n/2+1. Another important property is given by the following
theorem.
Theorem 9. If n = 2j for some j = 1, 2, . . . then

n−1∑

k=0

2mk = 0, m ∈ {1, 2, . . . , n− 1}

in the ring Z2n/2+1.
Proof. By using the relation for the �rst n terms in a geometric series and
(2.116) one may write

n−1∑

k=0

2mk = (2n)m − 1 = 0 (mod 2n/2 + 1) (2.117)

From the discussion above, we �nd that 2 ∈ Z2n/2+1 is a nth principal
root of unity and that we may use the inverse DFT as n−1 ∈ Z2n/2+1. For a
binary computer, there are some advantages in using this ring when it comes
to implementation

35

• As all principal roots are on the form 2k for some k, multiplication and
division of an integer by this principal root may be implemented as
simple shifts.

• It is possible to use a modi�ed form of the convolution theorem, known
as negacylic convolution, which is both more e�cient than the normal
convolution and has the reduction modulo 2n/2 + 1 as a side e�ect.

• The carry propagation may take advantage of the fact that reducing a
value modulo 2n/2 +1 can be done using only shift and add operations.

2.6 Precalculation and Zech's logarithm
For �nite �elds of moderate orders, it is possible to precalculate the multipli-
cation and addition tables. The operands are then used as indices into the
corresponding row and column of the table to �nd the result of the operation.
Given a �eld with q elements, this would require two tables, each consuming
q2 elements of storage. It is possible to do marginally better with respect to
storage requirements. By removing 0 and 1 from the multiplication table,
and removing 0 from the addition table, and handle these cases separately.
With multiplication, we have that if one of the operands is 0 then the result
is 0, and if one of the operands is 1, the result is the other operand. With
addition, we have that if one of the operands is 0, the result is the other
operand. This would require (q− 1)2 + (q− 2)2 of total storage for the table
elements. The ratio between these two table storage requirements is

(q − 1)2 + (q − 2)2

2q2
= 1− 3

q
+

5

2q2
(2.118)

This expression quite rapidly tends to 1 as q get larger. For q = 128 we
have that the saving is 763 elements and the expression in (2.118) is approx-
imately 0.98. For q = 1024, the saving is 6139 elements and the ratio is
approximately 0.997. This suggests that this kind of optimization may not
be worth doing, especially as it slightly increases the complexity because of
the special handling of 0 and 1.

There exists another approach based on this idea of this precalculation
technique, which requires slightly more computations but with lesser storage
requirement for the precalculated data. If we let K denote a �nite �eld, with
|K| = q, we may write

K = K∗ ∪ {0} (2.119)
where K∗ is the multiplicative group of K. It is known that K∗ contains a gen-
erator α. Each element β ∈ K∗ is on the form αk for some k ∈ {0, 1, . . . , q−2}.

36

If we use the symbol ∞, and denote 0 ∈ K as α∞, we have that each
β ∈ K is on the form αγ for some γ ∈ {0, 1, . . . , q − 2} ∪ {∞}. For
γ ∈ {0, 1, . . . , q − 2} ∪ {∞}, we de�ne

γ +∞ = ∞, ∞+ γ = ∞ (2.120)

∞− γ = ∞, γ 6= ∞ (2.121)
∞ mod n = ∞ (2.122)
n mod 0 = n (2.123)

Multiplication of two elements β, β′ ∈ K is then given by

ββ′ = αγαγ′ = αγ+γ′ mod q−1 γ, γ′ ∈ {0, 1, . . . , q − 2} ∪ {∞} (2.124)

and addition is given by

β + β′ = αγ + αγ′ γ, γ′ ∈ {0, 1, . . . , q − 2} ∪ {∞} (2.125)

In the case of addition, whenever β 6= 0, we may use the relation

β + β′ = αγ + αγ′ = (1 + αγ′−γ mod q−1)αγ (2.126)

The restriction β 6= 0 in (2.126) is simply a way to avoid de�nitions and
notations which do not add anything of interest to the discussion at hand.
One example is that the expression 0 + β′ would lead to

0 + β′ = α∞ + αk = (1 + αk−∞ mod q−1)α∞ (2.127)

At �rst, we haven't de�ned αk−∞. Secondly, for some de�nition of this ex-
pression, we still end up with a factor of α∞, which we previously de�ned
to be 0. It would be a bit awkward to have the relation in (2.127) equal β′

instead of 0, so we choose to handle this case separately.
Expression on the form 1 + αγ is related to the Zech's logarithm, which

we now de�ne.

De�nition 9. Let K be a �nite �eld with |K| = q and α ∈ K∗ a generator
for K∗. Then, the Zech's logarithm z(γ) is de�ned to be the mapping,

z : {0, 1, . . . , q − 2} ∪ {∞} −→ {0, 1, . . . , q − 2} ∪ {∞}

such that,
αz(γ) = 1 + αγ

37

Let us now assume a �nite �eld K with |K| = q and with a generator α.
As each element is on the form

αγ, γ ∈ {0, 1, . . . , q − 2} ∪ {∞} (2.128)

we use γ as the identi�er for these elements. Multiplication of two elements
β = αγ, β′ = αγ′ ∈ K may then proceed by the rule given in (2.124). Addi-
tion is accomplished by combining the rule given in (2.126) and the Zech's
logarithm (de�nition 9), whenever β 6= 0. For β = 0, we note that the result
of the addition is β′. That is, (for β 6= 0)

β + β′ = αγ + αγ′ = (1 + αγ′−γ mod q−1)αγ = αz(γ′−γ mod q−1)αγ (2.129)

where the �nal product αz(γ′−γ mod q−1)αγ is calculated by using (2.124). Note
that the expression z(γ′ − γ mod q − 1) is implemented as an e�cient table
lookup of precomputed values for the Zech's logarithm.

Example The �eld Z5 may be seen as having 3 as a generator with the
following properties

30 ≡ 1 (mod 5) (2.130)
31 ≡ 3 (mod 5) (2.131)
32 ≡ 4 (mod 5) (2.132)
33 ≡ 2 (mod 5) (2.133)

in addition to de�ning 3∞ ≡ 0 (mod 5). Multiplication of 3 and 4 is
computed in the normal way

3 · 4 = 31 · 32 = 31+2 = 33 = 2 (2.134)

Addition of 3 and 4 is done by using the Zech's logarithm which has
the following mapping

0 7→ 3 (2.135)
1 7→ 2 (2.136)
2 7→ ∞ (2.137)
3 7→ 1 (2.138)
∞ 7→ 0 (2.139)

This mapping is then used in the calculation

3 + 4 = 31 + 32 = (1 + 32−1)31 = (1 + 31)31 =

= [z(1) = 2] = 3231 = 33 = 2
(2.140)

38

Concerning storage requirements, this method requires q elements of pre-
calculated data for the Zech's logarithm. This is substantially more e�ective,
with respect to storage requirement, compared to the method using complete
precalculated tables which needed room for 2q2 elements.

2.7 Polynomial representation and normal ba-
sis

The elements of a �nite �eld may be represented in a multitude of ways.
Further, we will explore some of the most common representations and how
they a�ect arithmetic in a �nite �eld. Most proofs are omitted in this section.
The reader is instead directed to Svensson [9] or Beachy and Blair [2] for the
full exposition of these proofs. Furthermore, all occurrences of the symbol
p is meant to denote a prime number, and Fpn is meant to denote the �nite
�eld with pn elements, for some integer n.

2.7.1 Polynomial representation
In the polynomial representation each element of the �eld Fpn may be rep-
resented by a polynomial. The theorems below and the following discussion
will demonstrate how to create such representations.

Theorem 10. For every n ∈ Z+, there exists an irreducible polynomial of
degree n in Zp[x].

Theorem 11. Let K be a �eld and let q(x) ∈ K[x] be an irreducible polyno-
mial over K. Then the quotient ring K[x]/〈q(x)〉 is a �eld.

Theorem 12. Two �nite �elds are isomorphic if, and only if, they have the
same number of elements.

With these theorems, we are in the position of putting together a �recipe�
for actually constructing the �eld Fpn where, n ∈ Z+:

1. Choose an irreducible polynomial q(x) of degree n in Zp[x]. This poly-
nomial exists by theorem 10.

2. By theorem 11, we have that Zp[x]/〈q(x)〉 is a �eld. It contains poly-
nomials on the form a0 + a1x + · · · + an−1x

n−1 where ak ∈ Zp for
k = 0, . . . , n − 1. Each ak may be selected in p ways and we have n
coe�cients. By the multiplication principle, we therefore conclude that
the �eld Zp[x]/〈q(x)〉 contains pn elements.

39

3. Theorem 12 states that Zp[x]/〈q(x)〉 is isomorphic to Fpn

In order to reduce the notation slightly, we interchangeably use Zp[x]/〈q(x)〉
and Fpn . One consequence of this is that we assume Fpn to contain polyno-
mials on the form

a0 + a1x + · · ·+ an−1x
n−1, ak ∈ Zp (k = 0, . . . , n− 1)

We also denote (an−1 . . . a1a0) as an alternative to the polynomial given
above.

To construct the �eld F9 = F32 we �rst �nd an irreducible polynomial
of degree 2 in Z3[x]. Such a polynomial is given by x2 + 1, and therefore
Z32/〈x2 + 1〉 is a �eld containing 9 elements. The elements are:

0 x 2x
1 x + 1 2x + 1
2 x + 2 2x + 2

Addition in Fpn is done by adding the polynomials in the usual way, reduc-
ing each resulting coe�cient modulo p. Multiplication is also done in the
usual way by multiplying the polynomials, reducing the result modulo the
irreducible polynomial q(x).

Example Addition of (2x + 1) and 2x is carried out as

(2x + 1) + 2x = 4x + 1 which reduces to x + 1 (2.141)

and multiplication of (x + 1) and (2x + 2)

(x + 1)(2x + 2) = 2x2 + 4x + 2 which reduces to x (2.142)

With this brief introduction to polynomial representation of elements in
�nite �elds, we turn our attention to a special �eld. Namely the binary
�eld, F2n . This �eld has some appealing properties when it comes to binary
computer implementations.

By the following de�nition, we introduce addition in F2n .

De�nition 10. We de�ne the function xor(x, y) to be

xor : Z2 × Z2 −→ Z2

(x, y) ∈ Z2 × Z2 7−→ x + y ∈ Z2

40

The result of xor(x, y) is 1 if and only if exactly one of the operands x, y
is 1. Addition of x and y in the �eld F2n may now be de�ned as

x ¢ y := (xor(xn−1, yn−1) . . . xor(x1, y1) xor(x0, y0)) (2.143)
As −1 ≡ 1 (mod 2), it follows that addition and subtraction in Z2 are equiv-
alent operations.
De�nition 11. We de�ne the left shift of an element x = (an−1 . . . a1a0) ∈
F2n to be

lshift : F2n −→ F2n+1

(an−1 . . . a1a0) 7−→ (an−1 . . . a1a00)

and we de�ne
x J k := lshift(lshift(. . . lshift(x) . . .))︸ ︷︷ ︸

k

Multiplication is then performed using shifts and additions.
Example

(x4 + x2 + x + 1)(x6 + x3 + x) =

x4(x6 + x3 + x) + x2(x6 + x3 + x) + x(x6 + x3 + x) + (x6 + x3 + x) =

((1001010) J 4) ¢ ((1001010) J 2) ¢ ((1001010) J 1) ¢ (1001010) =

(10010100000) ¢ (100101000) ¢ (10010100) ¢ (1001010) =

(00110111100)

(2.144)
The result is then reduced by the irreducible polynomial that is asso-
ciated with the �eld F2n .

The reduction of a polynomial may be done using additions and shifts until
the result is a member of F2n .
Example The �eld F23 has x3+x+1 = (1011) as an irreducible polynomial.

Reducing x7 + x6 + x4 + 1 = (11010001) in this �eld is achieved by

11010001
¢ 10110000 [(1011) J 4]

01100001
¢ 01011000 [(1011) J 3]

00111001
¢ 00101100 [(1011) J 2]

00010101
¢ 00010110 [(1011) J 1]

00000011 = (x + 1)

41

If a polynomial f(x) ∈ Z2[x] has an even number of non-zero coe�cients, we
note that f(1) = 0 for all such polynomials. By the factor theorem, we may
write f(x) as

f(x) = (x− 1)q(x), q(x) ∈ Z2[x] (2.145)
In this case, f(x) is reducible, which makes f(x) impossible to use as a
reduction polynomial in the �eld F2n . Neither may f(x) = xn, for some
n > 1, be used. In fact, a proper reduction polynomial must contain an odd
number of terms, and at least three of them must be non-zero.

Squaring of elements in binary �elds is done by using the following result.

Theorem 13. If a = a0 + a1x + · · ·+ an−1x
n−1 ∈ F2n, then

a2 =
n−1∑

k=0

a2
kx

2k =
n−1∑

k=0

akx
2k

Proof. Let qm = a0 + a1x + · · · + am−1x
m−1 ∈ F2n (1 ≤ m < n). The

claim above certainly holds for (q1)
2 = a2

0 = a0 and (q2)
2 = (a0 + a1x)2 =

a2
0 + 2a0a1x + a2

1x
2 = a0 + a1x

2. If the claim is false, we have, by the well-
ordering principle, a smallest m such that q2

m 6= ∑m−1
k=0 akx

2k. But

q2
m = (qm−1 + am−1x

m−1)2 =

= q2
m−1 + 2qm−1am−1x + a2

m−1x
2(m−1) =

=
m−2∑

k=0

akx
2k + am−1x

2(m−1) =
m−1∑

k=0

akx
2k

which would be a contradiction.

This suggests that squaring is done by inserting 0's between the binary
digits in (an−1 . . . a1a0), and, as a result, we get (an−10 . . . 0a10a0). A most
e�cient way of doing this insertion is by creating a table that maps a given
value to a corresponding value containing 0's at the correct positions. A
typical computer implementation could map 16-bit values to 32-bit values.
This would require a table of 216 = 65536 elements, each 32-bit wide. One
may also note that there are 15 places where to insert a 0 between digits in
a 16-bit value. Therefore, the result of the insertions will occupy 31 bits. By
letting the most signi�cant bit be 0 in each 32-bit entry of the table, one
may easily use the table for arbitrary lengths of bits in the squaring operand.
It is just a simple matter of concatenating the 32-bit table results for each
corresponding 16-bit value.

42

2.7.2 Normal basis
The discussion above shows us an e�ective way of computing squares in F2n .
With the use of normal basis, we can take this operation of squaring a bit
further. Given a �eld Fpn we may view this as the vector space Fpn over the
�eld Fp.

De�nition 12. Let Fpn be the vector space over the �eld Fp. Then the set
{β βp . . . βpn−1}, for β ∈ Fpn, forms a normal basis if the set {β βp . . . βpn−1}
is linearly independent.

It is known that for every �eld Fpn , there exists such a normal basis. We
can now represent each element α ∈ Fpn as

α = a0β + a1β
p + · · ·+ an−1β

pn−1

, a0, . . . , an−1 ∈ Fp (2.146)

We also note that the multiplicative group F∗pn contains pn− 1 elements and
recall from group theory that

γpn−1 = 1, γ ∈ F∗pn (2.147)

Let us now shift our attention to the �eld F2n . Assuming that {β β2 . . . β2n−1}
forms a normal basis for F2n , we have that

α2 = (
n−1∑

k=0

akβ
2k

)2 =
n−1∑

k=0

akβ
2k+1

=
n−1∑

k=0

a(n−1+k mod n)β
2k (2.148)

This may be shown using a similar argument as in theorem 13 and by applying
(2.147) to β2n

(= β2n−1β = β).
To summarize, we have achieved the following

α2 = (a0 a1 . . . an−1)
2 = (an−1 a0 . . . an−2) (2.149)

This implies that squaring is done by rotating the vector one step to the right.
Note that general multiplication using normal basis representation may be a
very expensive operation.

43

44

Chapter 3

Computer implementations

In this chapter, there are some concrete implementations of the theory in-
troduced in the former chapter. The main algorithms will be presented with
a table of time measurements for di�erent input sizes. The test data used
for measurement is the �rst n decimals of π and the �rst n decimals of e,
where n is the operand length. The classic algorithm implementation has
also served as a reference implementation as its results where saved and later
used to check the other algorithms for correctness. The source code is writ-
ten in standard C++. The algorithms were executed on a HP Compaq nx
7400 portable computer with a 1.83 Ghz Intel Centrino Duo and 2 Gb of
RAM, running Windows Vista 32-bit. All source code were compiled using
Microsoft Visual Studio 2005 (VC++ v8.0) with highest code optimization
and preferring speed over size.

3.1 Classic multiplication
The implementation of the classic multiplication algorithm is a straightfor-
ward application of the de�nition of polynomial multiplication. By using
C++ templates, the function is parameterized on the type used by the co-
e�cients. This makes the algorithm usable with all types that ful�ll the
requirements of addition and multiplication. It is then possible to choose a
type that represents the problem domain in the best way.

Classic multiplication algorithm

namespace classic {

template<typename ForwardIterator1, typename ForwardIterator2>
void multiply(ForwardIterator1 op1first, ForwardIterator1 op1last,

45

ForwardIterator1 op2first, ForwardIterator1 op2last,
ForwardIterator2 result)

{
std::fill_n(result, std::distance(op1first, op1last) + std::distance(op2first, op2last),

typename std::iterator_traits<ForwardIterator2>::value_type());

for (; op1first != op1last; ++op1first, ++result) {
ForwardIterator2 res = result;
for (ForwardIterator1 first = op2first; first != op2last; ++first, ++res) {

*res += *op1first * *first;
}

}
}

} // namespace classic

Classic multiplication execution time

digits time digits time digits time
23 0.18 µs 29 0.45 ms 215 1.95 s
24 0.51 µs 210 1.76 ms 216 7.86 s
25 1.83 µs 211 7.04 ms 217 31.3 s
26 6.94 µs 212 29.0 ms 218 137 s
27 28.6 µs 213 125 ms 219 1113 s
28 111 µs 214 489 ms 220 3850 s

The algorithm was specialized using the type unsigned int, which in this
implementation may hold values in [0, 232 − 1].

3.2 Karatsuba multiplication
The algorithm source presented here is based on a simple implementation
provided by Burch [4]. The source code implemented here uses parameteri-
zation, as with the classic algorithm, in order to be as general as possible. In
addition, there is an analysis of how many digits it is possible to use without
distorting the result.

Karatsuba is a recursive algorithm, which needs to pass partial results
up the call chain in order to combine them to the �nal result. There are
typically two ways of achieving this

a) Have each step allocate a storage area and return this up to the caller.

b) Have an overall storage area that is used for all recursive calls.

46

Option a) usually performs much worse than option b) as the operation
of allocating storage along the way is too costly when the number of digits
get large. With option b), we pre-allocate storage which uses a size of 6 · n
elements, where n is the digit length. This area holds the sub-results and the
�nal result, which occupies 2 · n elements. It also uses a threshold value for
which the algorithm switches to use classic multiplication. This threshold is
used because the classic algorithm is more e�ective for small n.

One implementation issue that is of concern is how to choose a computer
word and a digit length such that the algorithm doesn't over�ow. In the
classic algorithm, the largest valued coe�cient, cmax, is found by letting all
digits in the operands have the value B−1. The algorithm will thus calculate
cmax as

cmax =
n−1∑

k=0

(B − 1)2 = n(B − 1)2 (3.1)

where n = 2m(m > 0) is the number of digits in one operand and B is
the radix representation. The Karatsuba algorithm will �nd the value cmax

slightly di�erent

cmax = (. . . ((22m(B − 1)2)− 22m−1(B − 1)2)− · · ·)− 2m(B − 1)2 (3.2)

Note that the value of cmax is the same in both the classical and Karatsuba
algorithm and both algorithms need to consider a computer word such that
the calculation doesn't over�ow. But the di�erence is that the Karatsuba
algorithm starts out with calculating the intermediate result 22m(B − 1)2,
which is 2m times larger in magnitude than the �nal result. One way to
remedy the situation is to select a computer word capable of holding this
intermediate result. The problem with this approach is that we must use
more storage and that it will potentially slow down the computational time.
A better approach is given below.

We begin with a de�nition of the modulus operator

a mod N := a− ba/NcN, (a ≥ 0, N > 0) (3.3)

followed by the relations

((a mod N)− (b mod N)) mod N = (a− b) mod N (3.4)
((a mod N)(b mod N)) mod N = (ab) mod N (3.5)

(3.6)

47

If we let q1 = ba/Nc, q2 = bb/Nc, relation (3.4) follows from

(a mod N)− (b mod N)) mod N =

= (a− q1N − (b− q2N))− b(a− q1N − (b− q2N))/Nc =

= a− b−N(q1 − q2)− b(a− b)/N − q1 + q2cN
= a− b−N(q1 − q2)− (b(a− b)/Nc − q1 + q2)N

= a− b− b(a− b)/NcN −N(q1 − q2)−N(q2 − q1)

= a− b− b(a− b)/NcN = a− b mod N

(3.7)

Relation (3.5) may be shown using the same principle.
When using unsigned integer types in C++ one is guaranteed that calcu-

lations involving such types are reduced modulo 2w, where w is the number
of bits in the value representation [1]. Assuming such a type N = 2w and in
combination with (3.4) and (3.5), relation (3.2) becomes

(((. . . (22m mod N · (B − 1)2 mod N) mod N−
(22m−1 mod N · (B − 1)2 mod N)) mod N−
· · ·) mod N)− 2m mod N(B − 1)2 mod N) mod N =

= (((. . . (22m(B − 1)2 mod N − 22m−1(B − 1)2 mod N) mod N−
· · ·) mod N)− 2m(B − 1)2) mod N =

= (. . . ((22m(B − 1)2)− 22m−1(B − 1)2)− · · ·)− 2m(B − 1)2 mod N

(3.8)

If

(. . . ((22m(B− 1)2)− 22m−1(B− 1)2)− · · ·)− 2m(B− 1)2 mod N < N (3.9)

the relation is equivalent to (3.2). It follows that we have the same require-
ment for the Karatsuba algorithm as with the classical algorithm with respect
to the over�ow constraint. We should select a computer word, depending on
the number of digits, as

n(B − 1)2 < 2w (3.10)
where w is the number of bits in the value representation for some unsigned
type. The use of delayed carry propagation will need to tighten the require-
ment slightly, as given in (2.28).

Karatsuba multiplication algorithm

namespace karatsuba {

const int threshold = 16;

48

template<typename RandomAccessIterator, typename T>
void multiply(RandomAccessIterator a,

RandomAccessIterator b,
RandomAccessIterator ret, T d)

{
const T d_half = d / 2;
const T d5 = d * 5;

RandomAccessIterator alo = a, ahi = a + d_half;
RandomAccessIterator blo = b, bhi = b + d_half;
RandomAccessIterator asum = ret + d5;
RandomAccessIterator bsum = asum + d_half;
RandomAccessIterator x1 = ret;
RandomAccessIterator x2 = ret + d;
RandomAccessIterator x3 = x2 + d;

if (d <= threshold) {
classic::multiply(a, a + d, b, b + d, ret);
return;

}

for (T i = 0; i < d_half; ++i) {
asum[i] = ahi[i] + alo[i];
bsum[i] = bhi[i] + blo[i];

}

multiply(alo, blo, x1, d_half);
multiply(ahi, bhi, x2, d_half);
multiply(asum, bsum, x3, d_half);

for (T i = 0; i < d; ++i)
x3[i] = x3[i] - x1[i] - x2[i];

for (T i = 0; i < d; ++i)
ret[i + d_half] += x3[i];

}

} // namespace karatsuba

Karatsuba multiplication execution time

49

digits time digits time digits time
23 0.20 µs 29 0.18 ms 215 134.6 ms
24 0.54 µs 210 0.54 ms 216 411.0 ms
25 1.76 µs 211 1.65 ms 217 1.22 s
26 5.77 µs 212 5.07 ms 218 3.67 s
27 18.6 µs 213 14.7 ms 219 11.0 s
28 56.8 µs 214 44.7 ms 220 33.1 s

The algorithm was specialized using the type unsigned int, which in this
implementation may hold values in [0, 232 − 1].

3.3 Cooley-Tukey multiplication
The algorithm used is an implementation of the presentation given by Cran-
dall and Pomerance [6] with the possibility to parameterize the algorithm.

Cooley-Tukey multiplication algorithm

namespace fourier {

template<typename RandomAccessIterator, typename Comp>
void cooley_tukey(RandomAccessIterator first, RandomAccessIterator last, Comp comp)
{

typedef typename std::iterator_traits<RandomAccessIterator>::difference_type size_type;
typedef typename Comp::value_type value_type;

const size_type n = std::distance(first, last);

fourier_detail::scramble(first, n);

for (size_type m = 1; m < n; m *= 2) {
for (size_type j = 0; j < m; ++j) {

const value_type twiddle = comp.twiddle(j, m);
for (size_type i = j; i < n; i += (m * 2)) {

const value_type tmp = first[i];
first[i] = comp.add(tmp, comp.mul(twiddle, first[i + m]));
first[i + m] = comp.sub(tmp, comp.mul(twiddle, first[i + m]));

}
}

}
}

} // namespace fourier

50

Cooley-Tukey multiplication execution time

digits time digits time digits time
23 18.1 µs 29 2.22 ms 215 215 ms
24 42.0 µs 210 4.81 ms 216 494 ms
25 94.5 µs 211 10.3 ms 217 1.37 s
26 212 µs 212 22.4 ms 218 3.00 s
27 468 µs 213 48.3 ms 219 6.55 s
28 1.03 ms 214 101 ms 220 14.3 s

The algorithm was specialized using the type std::complex<double> where
double follows the de�nition given by IEEE 754.

3.4 Cooley-Tukey with Zech's logarithm
In this section, there is an example of a combination of the Cooley-Tukey
algorithm with the idea of using pre-calculated tables for certain operations.
By using the generator α for the multiplicative group of a �eld, and by using
a special symbol to denote 0, we may represent each element in the �eld K
by its corresponding exponent n such that

β = αn (β ∈ K) (3.11)

As previously, multiplication becomes addition of exponents, and addition
become addition of exponents, using Zech's logarithm.

A good candidate for use in an implementation is the �eld Z257. The �eld
contains relatively few elements, thereby making it possible to use in combi-
nation with pre-calculated tables, such that the use of storage is somewhat
feasible. The multiplicative group of Z257 has 3 as a generator and therefore

Z257 = 〈3〉 ∪ {0} (3.12)

One may also note that as 3 is a 256th principal root of unity, 32 is a 128th prin-
cipal root of unity, 34 is a 64th principal root of unity and so on. This makes
it possible to use the Cooley-Tukey algorithm for transformation lengths 256,
128, 64, and so on. We also de�ne

0 := 3256 (3.13)

in this �eld. Finally, in order to use these transformation lengths, we know
that there exists an irreducible polynomial q(x) in Z257[x] with degree n such
that

Z257[x]/〈q(x)〉 (3.14)

51

forms a �eld with 257n elements.
We may now provide the general outline of the multiplication algorithm

of a, b ∈ Z257[x]/〈q(x)〉.
1. Each element in the vector a, b is represented by its exponent, and we

use the special exponent of 256 to denote the number 0.

2. Transform a, b with the use of the Cooley-Tukey FFT. The FFT takes
advantage of the exponential representation (multiplication becomes
addition, etc.).

3. Perform pointwise multiplication, once again taking advantage of the
exponential representation.

4. Perform the inverse transformation

5. Perform, if necessary, any required reduction of the result.
As the implementation of the Cooley-Tukey algorithm is parameterized, it is
easy to adapt to use this new scheme. We simply create a new composition
class which implements our new rules. It also uses pre-calculated tables for
the Zech's logarithm, additive inverses and the twiddle factor, which is the
principal root of unity raised to some exponent. The example implementa-
tion also uses the classic algorithm as a reference to compare the results for
correctness. Below is some timing results presented. Note however that the
implementation does not perform any form of polynomial reduction and that
the execution time of conversions between representations is not accounted
for, so the results presented are not completely accurate. The focus of the
example is the implementation part of the FFT for this particular represen-
tation. Nevertheless, it is interesting to have some kind of comparison of the
algorithms. The source code is given in the appendix. One �nal observation
concerning the Zech's logarithm. It is possible to use twice the storage for the
table, using repeated values. This would avoid the necessity to do modulo
calculation for the index into the table. In this case the table should be of
moderate size in order to avoid any cache misses, which could introduce a
high penalty for this kind of optimization.

Multiplication execution time in Z257/〈q(x)〉

Algorithm digits time
Classic 64 53.5µs

FFT+Zech's 64 29.7µs
Classic 128 212.4µs

FFT+Zech's 128 64.9µs

52

The algorithm was specialized using the type int, which in this implementa-
tion may hold values in [−231, 231 − 1].

3.5 Practice and theory comparisons
For some selected measurements, comparisons between the algorithms are
presented below. The comparisons use the execution time spent in each
algorithm, for a given input size, and computes the ratio between these two
values. It also presents the theoretical ratio, which is the ratio between values
for the theoretical execution time, given a �xed input size. If we assume that
any constants are equal, they will cancel when forming the theoretical ratio.

From the tables below, it is seen that the actual and theoretical values
can di�er by several magnitudes. The assumption about equal constants
is not entirely correct. In fact, these constants re�ect the overhead intro-
duced by regular bookkeeping for computer programs. For example memory
management, function call, etc.

Classic / Karatsuba

n time ratio n2/nlog2 3

24 0.94 3.16
27 1.54 7.49
210 3.26 17.8
213 8.50 42.1
216 19.1 99.8
219 101 237

Classic / Cooley-Tukey

n time ratio n2/n log2 n
24 0.01 64
27 0.06 896
210 0.37 10240
213 2.59 106496
216 15.9 1048576
219 170 9961472

Karatsuba / Cooley-Tukey

53

n time ratio nlog2 3/n log2 n
24 0.01 1.27
27 0.04 2.44
210 0.11 5.77
213 0.30 15.0
216 0.83 41.1
219 1.68 117

3.6 Comments
This chapter presented concrete computer implementations of the classical
multiplication algorithm, the Karatsuba multiplication algorithm and the
FFT multiplication algorithm. Alongside, measurements of their di�erent
execution times have been presented. These measurements indicate, that the
classical algorithm is preferred for small number of digits, but at 25 digits,
the Karatsuba algorithm starts to be more e�cient with respect to execution
time. Nevertheless, with small number of digits, the di�erence between them
might be considered negligible and one may in that case prefer the classic
algorithm due to its simplicity and non-recursive nature. As for the FFT
multiplication algorithm, it starts to outperform the classic algorithm for 212

digits. And compared to the Karatsuba multiplication algorithm, we need to
have at least 218 digits in order to get performance bene�ts. But once again,
the sheer execution time may not alone be the most important algorithm
selection factor. Depending on the problem at hand, it is reasonable to choose
some other algorithm that excels in some other area. As an example, the
Karatsuba algorithm is 3 times faster than the FFT algorithm for 213 digits.
On the other hand, it uses 2 times more storage and it uses recursion, which
also imposes some overhead with respect to storage. Now, the di�erence is
48.3 ms − 14.7 ms = 33.6 ms, which might be considered as acceptable in
order to use less storage.

A word should be said about arbitrary precision software, which is used
in real-world, industrial-strength, applications. They tend to use the fastest
algorithms, some of them presented in this paper. They also implement
them with great care, both with respect to the actual algorithm and the
underlying hardware architecture. One important property to achieve is
to have good locality. Implementations that exhibit good locality tends to
run faster than implementations that lacks this property. Locality come
in two forms: temporal locality and spatial locality. Implementations that
have good temporal locality will, after referencing a memory location once,
have a high probability of referencing the same memory location multiple

54

times in the near future. Implementations that have good spatial locality
will, after referencing a memory location once, have a high probability of
referencing a nearby memory location in the near future [3]. The goal is
to have the software reference memory location that will reside in cache
memory, in contrast to fetch the location from main memory. This can have
a major impact on running performance for arbitrary precision arithmetic,
especially when the number of digits get large. The algorithms, or part of
them, are usually implemented with "handcrafted" assembler code that will
outperform the code generated by any high-level language compiler. When
the underlying architecture is known, the implementation of the algorithm
can be expressed with optimal instructions. These instructions may also be
ordered in an optimal sequence in the CPU execution pipeline, for highest
throughput of instructions.

Arbitrary precision implementations may also adapt themselves, depend-
ing on the size of the input. As we have seen from the tables, in this chapter,
describing the execution times for the di�erent implementations, they out-
perform each other in di�erent ranges of input sizes. For small digit lengths,
the classical algorithm is used. When the number of digits get larger, the
Karatsuba algorithm is used. Finally, for very large digit lengths, the FFT
algorithm is used.

55

Appendix A

Source code

// compiler.hpp

#ifndef COMPILER_HPP_INCLUDED
#define COMPILER_HPP_INCLUDED

// Optimize library implementation for release version
#ifdef _DEBUG
define _SECURE_SCL 1
#else
define _SECURE_SCL 0
#endif

#endif // COMPILER_HPP_INCLUDED

// measure.hpp

#ifndef MEASURE_HPP_INCLUDED
#define MEASURE_HPP_INCLUDED

#include "compiler.hpp"

#include <iostream>
#include <ctime>

#include "misc.hpp"

namespace measure {

template<typename Op>

56

double duration(Op& op, int clock_mult = 1)
{

typedef misc::uint32_t uint32_t;

clock_t t0 = clock();
clock_t t1 = t0;
uint32_t c = 0;
while (t1 < t0 + clock_mult * CLOCKS_PER_SEC) {

op();
++c;
t1 = clock();

}
return (t1 - t0 + 0.0) / c / CLOCKS_PER_SEC;

}

} // namespace measure

#endif // MEASURE_HPP_INCLUDED

// misc.hpp

#ifndef MISC_HPP_INCLUDED
#define MISC_HPP_INCLUDED

#include "compiler.hpp"

#include <exception>
#include <fstream>
#include <string>

#include <boost/lexical_cast.hpp>

namespace misc {

typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;

const double pi = 3.1415926535897932384626433832795;
const char pi_digits_file[] = "pi-digits-4m.txt";
const char e_digits_file[] = "e-digits-2m.txt";

template<typename Iter>
void propagate_carry(Iter first, Iter last, typename std::iterator_traits<Iter>::value_type base)

57

{
typename std::iterator_traits<Iter>::value_type c = 0;

while (first != last) {
*first += c;
c = *first / base;
*first -= c * base;
++first;

}
if (c != 0) throw std::runtime_error("overflow");

}

template<typename Iter>
void read_digits(Iter first, Iter last, std::istream& is)
{

char c;
while (first != last && is >> c) {

*first++ = c - '0';
}
if (first != last || !is)

throw std::runtime_error(std::string("failed to read from stream"));
}

template<typename Iter>
void read_digits(Iter first, Iter last, const char* fname)
{

std::ifstream is(fname);
if (!is)

throw std::runtime_error(std::string("failed to open file: '") + fname + '\'');

read_digits(first, last, is);
}

template<typename Iter>
void write_digits(std::ostream& os, Iter first, Iter last)
{

while (first != last && os) {
char c = static_cast<char>(*first) + '0';
os << c;
++first;

}
if (first != last)

throw std::runtime_error("failed to write to stream");

58

}

template<typename T>
std::string digits_filename(T digits)
{

return std::string("digits-") + boost::lexical_cast<std::string>(digits) + ".txt";
}

template<typename Iter>
void check_result(Iter first, Iter last)
{

typename std::iterator_traits<Iter>::difference_type digits = std::distance(first, last);
std::ifstream is(digits_filename(digits).c_str());

if (!is)
throw std::runtime_error(std::string("failed to open digits file:") +
digits_filename(digits));

char c;
while (is >> c && first != last) {

if (c - '0' != *first)
throw std::runtime_error("check_result found a digit mismatch");
++first;

}
if (first != last)

throw std::runtime_error("check_result got digit underflow");
}

void generate_testdigits(uint32_t digits);

} // namespace misc

#endif // MISC_HPP_INCLUDED

// classic.hpp

#ifndef CLASSIC_HPP_INCLUDED
#define CLASSIC_HPP_INCLUDED

#include "compiler.hpp"

#include <algorithm>

59

#include <iterator>

namespace classic {

template<typename ForwardIterator1, typename ForwardIterator2>
void multiply(ForwardIterator1 op1first, ForwardIterator1 op1last,

ForwardIterator1 op2first, ForwardIterator1 op2last,
ForwardIterator2 result)

{
std::fill_n(result, std::distance(op1first, op1last) + std::distance(op2first, op2last),
typename std::iterator_traits<ForwardIterator2>::value_type());

for (; op1first != op1last; ++op1first, ++result) {
ForwardIterator2 res = result;
for (ForwardIterator1 first = op2first; first != op2last; ++first, ++res) {
*res += *op1first * *first;

}
}

}

} // namespace classic

// karatsuba.hpp

#ifndef KARATSUBA_HPP_INCLUDED
#define KARATSUBA_HPP_INCLUDED

#include "compiler.hpp"

#include "classic.hpp"

namespace karatsuba {

const int threshold = 16;

template<typename RandomAccessIterator, typename T>
void multiply(RandomAccessIterator a,

RandomAccessIterator b,
RandomAccessIterator ret, T d)

{
const T d_half = d / 2;
const T d5 = d * 5;

60

RandomAccessIterator alo = a, ahi = a + d_half;
RandomAccessIterator blo = b, bhi = b + d_half;
RandomAccessIterator asum = ret + d5;
RandomAccessIterator bsum = asum + d_half;
RandomAccessIterator x1 = ret;
RandomAccessIterator x2 = ret + d;
RandomAccessIterator x3 = x2 + d;

if (d <= threshold) {
classic::multiply(a, a + d, b, b + d, ret);
return;

}

for (T i = 0; i < d_half; ++i) {
asum[i] = ahi[i] + alo[i];
bsum[i] = bhi[i] + blo[i];

}

multiply(alo, blo, x1, d_half);
multiply(ahi, bhi, x2, d_half);
multiply(asum, bsum, x3, d_half);

for (T i = 0; i < d; ++i)
x3[i] = x3[i] - x1[i] - x2[i];

for (T i = 0; i < d; ++i)
ret[i + d_half] += x3[i];

}

} // namespace karatsuba

#endif // KARATSUBA_HPP_INCLUDED

// fourier.hpp

#ifndef FOURIER_HPP_INCLUDED
#define FOURIER_HPP_INCLUDED

#include "compiler.hpp"

#include <algorithm>

61

#include <iterator>

namespace fourier {
namespace fourier_detail {

template<typename RandomAccessIterator>
void scramble(RandomAccessIterator first,

typename std::iterator_traits<RandomAccessIterator>::difference_type n)
{

typedef typename std::iterator_traits<RandomAccessIterator>::difference_type size_type;

const size_type n_half = n / 2;

size_type j = 0;
for (size_type i = 0; i < n - 1; ++i) {

if (i < j)
std::swap(first[i], first[j]);

size_type k = n_half;
while (k <= j) {
j -= k;
k /= 2;

}
j += k;

}
}

} // namespace fourier_detail
} // namespace fourier

namespace fourier {

template<typename RandomAccessIterator, typename Comp>
void cooley_tukey(RandomAccessIterator first, RandomAccessIterator last, Comp comp)
{

typedef typename std::iterator_traits<RandomAccessIterator>::difference_type size_type;
typedef typename Comp::value_type value_type;

const size_type n = std::distance(first, last);

fourier_detail::scramble(first, n);

for (size_type m = 1; m < n; m *= 2) {
for (size_type j = 0; j < m; ++j) {

62

const value_type twiddle = comp.twiddle(j, m);
for (size_type i = j; i < n; i += (m * 2)) {

const value_type tmp = first[i];
first[i] = comp.add(tmp, comp.mul(twiddle, first[i + m]));
first[i + m] = comp.sub(tmp, comp.mul(twiddle, first[i + m]));

}
}

}
}

} // namespace fourier

#endif // FOURIER_HPP_INCLUDED

// misc.cpp

#include "classic.hpp"

#include <iostream>
#include <vector>

#include "misc.hpp"

void misc::generate_testdigits(uint32_t digits)
{

typedef uint32_t size_type;

std::vector<size_type> a(digits); // Operand 1
std::vector<size_type> b(digits); // Operand 2
std::vector<size_type> r(2 * digits); // Result = Operand1 * Operand2

read_digits(a.begin(), a.end(), pi_digits_file);
read_digits(b.begin(), b.end(), e_digits_file);

std::cout << "Calculating result using " << digits << " digits\r";
classic::multiply(a.begin(), a.end(), b.begin(), b.end(), r.begin());
std::cout << digits << " digits ready. \n";
misc::propagate_carry(r.begin(), r.end(), 10);

std::ofstream os(digits_filename(2 * digits).c_str());

if (!os)

63

std::runtime_error("failed to open result file for writing");

write_digits(os, r.begin(), r.end());
}

// test_classic.cpp

#include "compiler.hpp"

#include <iostream>
#include <vector>

#include "classic.hpp"
#include "measure.hpp"

class classic_multiply {
public:

typedef misc::uint32_t size_type;

explicit classic_multiply(size_type digits) :
a(digits), b(digits), r(2 * digits) {

misc::read_digits(a.begin(), a.end(), misc::pi_digits_file);
misc::read_digits(b.begin(), b.end(), misc::e_digits_file);

}

void operator()() {
classic::multiply(a.begin(), a.end(), b.begin(), b.end(), r.begin());

}

void check_result() {
misc::propagate_carry(r.begin(), r.end(), 10);
misc::check_result(r.begin(), r.end());

}

private:
std::vector<size_type> a, b, r;

};

void test_classic()
{

for (misc::uint32_t i = 3; i <= 20; ++i) {

64

classic_multiply classic(1 << i);

double d = measure::duration(classic);
std::cout << "Classic: " << d << " s.\n";

classic.check_result();
}

}

// test_karatsuba.cpp

#include "compiler.hpp"

#include <iostream>
#include <vector>

#include "karatsuba.hpp"
#include "measure.hpp"

class karatsuba_multiply {
public:

typedef misc::uint32_t size_type;

explicit karatsuba_multiply(size_type digits) :
a(digits), b(digits), r(6 * digits) {

misc::read_digits(a.begin(), a.end(), misc::pi_digits_file);
misc::read_digits(b.begin(), b.end(), misc::e_digits_file);

}

void operator()() {
karatsuba::multiply(a.begin(), b.begin(), r.begin(), a.size());

}

void check_result() {
r.resize(2 * a.size());
misc::propagate_carry(r.begin(), r.end(), 10);
misc::check_result(r.begin(), r.end());

}

private:
std::vector<size_type> a, b, r;

65

};

void test_karatsuba()
{

for (misc::uint32_t i = 3; i <= 20; ++i) {
karatsuba_multiply karatsuba(1 << i);

double d = measure::duration(karatsuba);
std::cout << "Karatsuba: " << d << " s.\n";

karatsuba.check_result();
}

}

// test_cooley_tukey.cpp

#include "compiler.hpp"

#include <iostream>
#include <complex>
#include <vector>

#include "fourier.hpp"
#include "measure.hpp"

template<int S>
struct compositions {

typedef std::complex<double> value_type;

static std::complex<double> add(const std::complex<double>& a,
const std::complex<double>& b) {

return a + b;
}

static std::complex<double> sub(const std::complex<double>& a,
const std::complex<double>& b) {

return a - b;
}

static std::complex<double> mul(const std::complex<double>& a,
const std::complex<double>& b) {

return a * b;

66

}

template<typename T>
std::complex<double> twiddle(T j, T m) const {

const std::complex<double>::value_type arg = S * misc::pi * j / m;
return std::complex<double>(std::cos(arg), std::sin(arg));

}
};

class cooley_tukey_multiplication {
public:

typedef misc::uint32_t size_type;

explicit cooley_tukey_multiplication(size_type digits) : d(digits),
ao(2 * digits), bo(2 * digits), a(2 * digits), b(2 * digits),
c(2 * digits), r(2 * digits) {

misc::read_digits(ao.begin(), ao.begin() + digits, misc::pi_digits_file);
misc::read_digits(bo.begin(), bo.begin() + digits, misc::e_digits_file);

}

void operator()() {
// Setup for multiplication (needed as the algorithm is in-place
// and we will call this function several times)

std::fill(a.begin(), a.end(), std::complex<double>());
std::fill(b.begin(), b.end(), std::complex<double>());
std::copy(ao.begin(), ao.begin() + d, a.begin());
std::copy(bo.begin(), bo.begin() + d, b.begin());

compositions<1> forward_transformation;
compositions<-1> inverse_transformation;

// Forward FFT
fourier::cooley_tukey(a.begin(), a.end(), forward_transformation);
fourier::cooley_tukey(b.begin(), b.end(), forward_transformation);

// Pointwise multiplication
for (size_type i = 0; i < a.size(); ++i)
c[i] = forward_transformation.mul(a[i], b[i]);

// Inverse FFT
fourier::cooley_tukey(c.begin(), c.end(), inverse_transformation);

67

for (size_type i = 0; i < c.size(); ++i)
r[i] = static_cast<size_type>((1.0 / r.size() * c[i].real()) + 0.5);

}

void check_result() {
misc::propagate_carry(r.begin(), r.end(), 10);
misc::check_result(r.begin(), r.end());

}

private:
size_type d;
std::vector<std::complex<double> > ao, bo;
std::vector<std::complex<double> > a, b, c;
std::vector<size_type> r;

};

void test_cooley_tukey()
{

for (misc::uint32_t i = 3; i <= 20; ++i) {
cooley_tukey_multiplication cooley_tukey(1 << i);

double d = measure::duration(cooley_tukey);
std::cout << "Cooley-Tukey: " << d << " s.\n";

cooley_tukey.check_result();
}

}

// test_cooley_tukey_z257.cpp

#include "compiler.hpp"

#include <iostream>
#include <cassert>
#include <sstream>
#include <cstdlib>
#include <ctime>

#include "classic.hpp"
#include "fourier.hpp"

68

// Calculate base^exponent mod modulus
int exp(int base, int exponent, int modulus)
{

if (base == 0 || exponent == modulus - 1)
return 0;

int result = 1;
for (int i = 0; i < exponent; ++i)

result = (result * base) % modulus;
return result;

}

// Find n such that element = base^n
int log(int element, int base, int modulus)
{

assert(element >= 0 && element < modulus);

if (element == 0)
return modulus - 1;

for (int i = 0; i < modulus; ++i) {
if (element == exp(base, i, modulus))
return i;

}
// Shouldn't get here
assert(false);
std::ostringstream os;
os << "log failed. element=" << element;
throw std::runtime_error(os.str());

}

// Find a such that element * a mod modulus = 1
int multiplicative_inv(int element, int modulus)
{

assert(element >= 0 && element < modulus);

for (int i = 1; i < modulus; ++i) {
if ((element * i) % modulus == 1)
return i;

}
// Shouldn't get here
assert(false);
std::ostringstream os;

69

os << "multiplicative inverse failed. element=" << element;
throw std::runtime_error(os.str());

}

// Find a such that element + a mod modulus = 0
int additive_inv(int element, int modulus)
{

assert(element >= 0 && element < modulus);

for (int i = 0; i < modulus; ++i) {
if ((element + i) % modulus == 0)
return i;

}
// Shouldn't get here
assert(false);
std::ostringstream os;
os << "additive inverse failed. element=" << element;
throw std::runtime_error(os.str());

}

// Find n such that generator^n = (1 + generator^exponent)
int zech(int exponent, int generator, int modulus)
{

if (exponent == modulus - 1)
return 0;

int a = exp(generator, exponent, modulus);
++a;
if (a == modulus)

return modulus - 1;

int b = log(a, generator, modulus);
return b;

}

// Calculate Zech's logarithm
template<typename T, T Generator, T Modulus>
const T* precalc_zech()
{

static T table[Modulus] = {};

for (T i = 0; i < Modulus; ++i) {
const T e = log(i, Generator, Modulus);

70

table[e] = zech(e, Generator, Modulus);
}
return table;

}

// Calculate "twiddle" factor for use by Cooley-Tukey FFT
template<typename T, T Size, T Principal, T Modulus>
const T (*precalc_twiddle())[Size / 2]
{

static T table[Size / 2 + 1][Size / 2] = {};

for (T m = 1; m < Size; m *= 2) {
for (T j = 0; j < m; ++j) {
table[m][j] = (Size / (2 * m) * j * Principal) & (Modulus - 2);

}
}
return table;

}

// Calculate additive inverse
template<typename T, T Generator, T Modulus>
const T* precalc_addinv_exp()
{

static T table[Modulus] = {};

for (T i = 0; i < Modulus; ++i) {
table[log(i, Generator, Modulus)] = log(additive_inv(i, Modulus), Generator, Modulus);

}
return table;

}

// Encapsulate modulo arithmetic. To be used by classic multiplication
template<typename T, T M>
class zmod {
public:

zmod(T value = T()) : v(value) {}

zmod& operator+=(const zmod& other) {
assert(is_member(v) && is_member(other.v));

v = (v + other.v) % M;
assert(is_member(v));

71

return *this;
}

zmod operator*(const zmod& other) const {
assert(is_member(v) && is_member(other.v));
return zmod((v * other.v) % M);

}

T value() const {
return v;

}

private:
bool is_member(T m) const {

return m >= 0 && m < M;
}

T v;
};

// Encapsulate arithmetic based on exponents for a given Generator
template<typename T, T Modulus, T Generator, T Size, T Principal, bool Forward>
class zmod_exp {
public:

typedef T value_type;

zmod_exp() {
addinv_table = precalc_addinv_exp<T, Generator, Modulus>();
zech_table = precalc_zech<T, Generator, Modulus>();
twiddle_table = precalc_twiddle<T, Size, Principal, Modulus>();

}

T add(T a, T b) const {
assert(a >= 0 && a <= Modulus - 1);
assert(b >= 0 && b <= Modulus - 1);

if (a == Modulus - 1)
return b;

if (b == Modulus - 1)
return a;

72

const T d = b >= a ? b - a : b + Modulus - 1 - a;
return mul(a, zech_table[d]);

}

T sub(T a, T b) const {
assert(a >= 0 && a <= Modulus - 1);
assert(b >= 0 && b <= Modulus - 1);

return add(a, addinv_table[b]);
}

T mul(T a, T b) const {
assert(a >= 0 && a <= Modulus - 1);
assert(b >= 0 && b <= Modulus - 1);

if (a == Modulus - 1 || b == Modulus - 1)
return Modulus - 1;

a += b;
return a < Modulus - 1 ? a : a - (Modulus - 1);

}

T twiddle(T j, T m) const {
return exp_sign<Forward>::value(twiddle_table[m][j]);

}

private:
template<bool B>
struct exp_sign {

static T value(T t) {
return t;

}
};

template<>
struct exp_sign<false> {

static T value(T t) {
return t == 0 ? 0 : Modulus - 1 - t;

}
};

const T* addinv_table;
const T* zech_table;
const T (*twiddle_table)[Size / 2];

73

};

void test_cooley_tukey_z257()
{

const int size = 128; // 2, 4, ..., 64, 128
const int modulus = 257;
const int generator = 3;
const int princroot = (modulus - 1) / (2 * size);
const int size_inv = log(multiplicative_inv(2 * size, modulus), generator, modulus);

// Multiplication using classic algorithm

typedef zmod<int, modulus> zm;

zm a1[size] = {};
zm b1[size] = {};
zm r1[2 * size] = {};

// Create operands with "random" values
srand(time(0));
for (int i = 0; i < size; ++i) {

a1[i] = rand() % modulus;
b1[size - i - 1] = rand() % modulus;

}

// Do the classic multiplication
classic::multiply(a1, a1 + size, b1, b1 + size, r1);

// Multiplication using Cooley-Tukey algorithm

int a2[2 * size] = {};
int b2[2 * size] = {};

// Use the same values as for classic multiplication
for (int i = 0; i < size; ++i) {

a2[i] = a1[i].value();
b2[i] = b1[i].value();

}

// Convert to exponential representation
for (int i = 0; i < 2 * size; ++i) {

a2[i] = log(a2[i], generator, modulus);

74

b2[i] = log(b2[i], generator, modulus);
}

// Create our transformation objects (forward and inverse)
zmod_exp<int, modulus, generator, 2 * size, princroot, true> forward_transform;
zmod_exp<int, modulus, generator, 2 * size, princroot, false> inverse_transform;

// Forward transformations
fourier::cooley_tukey(a2, a2 + 2 * size, forward_transform);
fourier::cooley_tukey(b2, b2 + 2 * size, forward_transform);

// Pointwise multiplication
for (int i = 0; i < 2 * size; ++i) {

a2[i] = forward_transform.mul(a2[i], b2[i]);
}

// Inverse transformation
fourier::cooley_tukey(a2, a2 + 2 * size, inverse_transform);

// Multiply each element with inverse of transformation length (2 * size)
for (int i = 0; i < 2 * size; ++i) {

a2[i] = inverse_transform.mul(size_inv, a2[i]);
}

// Convert back to non-exponential representation
for (int i = 0; i < 2 * size; ++i) {

a2[i] = exp(generator, a2[i], modulus);
}

// Check if the result matches classical multiplication
for (int i = 0; i < 2 * size; ++i) {

assert(r1[i].value() == a2[i]);
if (r1[i].value() != a2[i]) {
throw std::runtime_error("multiplication results mismatch");

}
}

}

// main.cpp

#include <exception>
#include <iostream>

75

extern void test_classic();
extern void test_karatsuba();
extern void test_cooley_tukey();
extern void test_cooley_tukey_z257();

int main()
{

try {
test_classic();
test_karatsuba();
test_cooley_tukey();
test_cooley_tukey_z257();

}
catch (const std::exception& ex) {

std::cout << "Exception: " << ex.what() << '\n';
}

}

76

Bibliography

[1] International Standard ISO/IEC 14882:2003 Programming languages �
C++. American National Standards Institute, 25 West 43rd Street, New
York, New York 10036, second edition, 2003.

[2] John A. Beachy and William D. Blair. Abstract Algebra. Waveland
Press, Inc., third edition, 2006.

[3] Randal E. Bryant and David O'Hallaron. Computer Systems - A Pro-
grammer's Perspective. Pearson Education Internation, Prentice Hall,
2006.

[4] Carl Burch. Karatsuba multiplication � http://ozark.hendrix.edu/
~burch/proj/karat/index.html, 1999.

[5] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation,
19(90):297�301, 1965.

[6] R. Crandall and C. Pomerance. Prime Numbers�a Computational Ap-
proach. Springer, New York, second edition, 2005.

[7] A. Karatsuba and Yu Ofman. Multiplication of many-digital numbers
by automatic computers. Doklady Akad. Nauk SSSR, 145:293�294, 1962.

[8] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, third edition, 1997.

[9] Per-Anders Svensson. Abstrakt Algebra. Studentlitteratur, 2005.

[10] Wikipedia. Cooley-tukey �t algorithm � wikipedia, the free encyclope-
dia, 2008. [Online; accessed 5-March-2008].

[11] Wikipedia. Master theorem � wikipedia, the free encyclopedia, 2008.
[Online; accessed 5-March-2008].

77

[12] Wikipedia. Toom-cook multiplication � wikipedia, the free encyclope-
dia, 2009. [Online; accessed 18-January-2009].

78

