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Abstract

In this paper, we study consensus problems in networks of dynamic agents with

first-order, second-order and high-order dynamics, respectively. Several conditions

are obtained to make all agents reach consensus. The detailed contents are as

follows:

(1) We study guaranteed cost coordination in directed networks of agents with

uncertainty. For convergence analysis of the networks, a class of Lyapunov functions

are introduced as a measure of the disagreement dynamics. Using these Lyapunov

functions, sufficient conditions are derived for state consensus of system with desired

cost performance.

(2) We consider consensus control in directed networks of agents with double

integrator dynamics. A sufficient and necessary condition is proved by using the

eigenvector-eigenvalue method of finding solutions.

(3) We investigate consensus of high-order multi-agent systems. A new dynamic

neighbor-based control law is proposed which contains two parts, one is the local

feedback and the other is the distributed feedback of the first states of each agent.

A sufficient condition is derived for state consensus of the system.

1



Contents

1 Introduction 3

2 Preliminaries 5

2.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Some necessary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Guaranteed cost consensus control of first-order multi-agent systems 10

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Consensus control of second-order multi-agent systems 19

4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Dynamic consensus control of high-order multi-agent systems 27

5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusions 33

References 34

2



Chapter 1

Introduction

A multi-agent system is a system composed of multiple interacting intelligent agents.

Multi-agent systems can be used to solve problems which are difficult or impossible for

an individual agent or monolithic system to solve. Due to recent technological advances

in communication and computation, and important practical applications such as un-

manned vehicles, automated highway systems and mini-satellites, distributed coordination

of multi-agent systems has attracted more and more attention. Neighbor-based rules are

widely applied in multi-agent systems, inspired originally by the aggregations of groups

of individual agents in nature [1]. In contrast to conventional large-scale systems, where

dominant centralized control is the core, multi-agent systems are concerned with both

mobile individual dynamics and communication topologies (network structures for trans-

mitting information). In distributed coordination of multi-agent systems, one critical

problem is how to make all agents reach an agreement on certain quantities of interest.

This problem is usually called the consensus problem.

Consensus problems were first studied by many researchers for first-order multi-agent

systems [1]-[14]. For example, in [3], Olfati-Saber and Murray investigated a systematical

framework of consensus problems with directed communication graphs or time-delays by

a Lyapunov-based approach. Also, in [14], Lin et al. extended the results of [3] to the

case of switching topology with time-delay and disturbances and presented conditions in

terms of linear matrix inequalities for state consensus of the systems. Recently, more

and more attention is paid to consensus related problems for second-order and high-order

multi-agent systems [15]-[23]. For example, in [15, 18], Ren et al. gave several second-

order and high-order control laws and derived sufficient conditions for the case of fixed
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topology. Also, Qu [19] studied a class of nonlinear high-order multi-agent systems and

showed consensus can be achieved even though the communication graph has no spanning

trees.

In this paper, we study consensus control of multi-agent systems. First, we consider

consensus problems of the multi-agent system with uncertainty on directed graphs, ex-

tending the work of [14]. The uncertainty is assumed to be norm-bounded. A quadratic

cost function is proposed for the energy consumption of all agents. The analysis is per-

formed by a Lyapunov-based approach. Since the closed-loop system matrix is singular

and the final value of each agent might not be zero, it is hard to analyze the stability

of the system directly using the existing approaches. For convergence analysis of the

system, we introduce a new class of Lyapunov functions which filter out the agreement

dynamics and is indeed a measure of the energy of the disagreement dynamics. Based

on these Lyapunov functions, sufficient conditions are obtained for the state consensus

of the system with desired cost performance. Second, we consider consensus problems of

a class of second-order multi-agent systems with fixed topology. We introduce a simple

but effective analysis method to handle the networks of second-order agents with fixed

topology. This method can also be used to the general linear multi-agent systems and

might shed light on the nature of the consensus behavior. Third, we consider consensus

problems of high-order multi-agent systems in a way to extend the work of [15]. We intro-

duce a new feedback dynamic neighbor-based control law which contains two parts, one

is the local feedback and the other is the distributed feedback of the first states of each

agent. Then we derive sufficient conditions are derived to make all agents reach consensus

asymptotically. Different from the existing ones in [18, 19], our control law does not need

any information except the relative information of the first states of agents.
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Chapter 2

Preliminaries

Graph theory, Kronecker product and Lyapunov theory will be the main tools to study

the stability of the protocols. In this section, we briefly introduce some basic concepts

and properties about them (referring to [31, 25, 27] for more details).

2.1 Graph theory

Let G(V , E ,A) be a directed graph of order n with the sets of nodes V = {s1, · · · , sn},
the set of edges E ⊆ V × V, and a weighted adjacency matrix A = [aij] with nonnegative

elements. The node index is the element of a finite index set I = {1, 2, · · · , n}. The edge

is written as eij = (si, sj) with the first element si as the tail of the edge and the other sj

as the head. The set of neighbors of node si is denoted by Ni = {sj ∈ V : (si, sj) ∈ E}.
The adjacency element aij (i 6= j) is positive if and only if eij ∈ E , and aij is usually called

the weight of the edge eij. In addition, it is assumed that aii = 0 for all i ∈ I. For the

directed graph, we define the Laplacian as L = [lij], where lii =
∑n

j=1 aij and lij = −aij,

i 6= j. From the definition, we can see that an important fact of L is that all the row

sums of L are zero and thus 1n = [1, 1, · · · , 1] ∈ Rn is an eigenvector of L associated with

the zero eigenvalue. Here, it should be noted that the definition of Laplacian L is a bit

different from the definition in the traditional sense. If a directed graph has the property

that aij = aji for any i 6= j, the directed graph is called undirected graph. Then for the

undirected graph, the Laplacian is symmetric since aij = aji.

A directed path is made up of a series of ordered edges: (si1 , si2), (si2 , si3), · · · , where

sij ∈ V . If there is a directed path from every node to every other node, the graph is said to

be strongly connected. Moreover, if there exists a node such that there is a directed path
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from every other node to this node, the graph is said to have a spanning tree. Obviously,

any undirected graph is strongly connected if and only if it has a spanning tree.

Lemma 1. [14, 31] If the graph G has a spanning tree, then the Laplacian L of the graph

has the following properties:

(1) rank(L) = n − 1 and L has one simple eigenvalue at zero associated with the

eigenvector 1n, where 1n = [1, 1, · · · , 1]T ∈ Rn.

(2) The rest n− 1 eigenvalues all have positive real-parts. Specially, if the graph G is

undirected, then they are all positive and real.

Lemma 2. [14] Consider a directed graph G. Let D be the matrix with rows and columns

indexed by the nodes and edges of G such that

Duf =





1, if the node u is the tail of the edge f,

0, otherwise,

and E be the 01-matrix with rows and columns indexed by the edges and nodes of G

such that

Efu =





1, if the node u is the head of the edge f,

0, otherwise.

Then the Laplacian of G can be decomposed into L = DW (DT − E), where W =

diag{w1, w2, · · · , w|E|}, wi is the weight of the ith edge of G and |E| is the number of the

edges.

1 21
0.7w a  

2 32
0.7w a  

3
4
3
0
.7

w
a

 
 

4 53
0.5w a  

6 65
0.5w a  

5 54
0.6w a  

Fig.2.1 One example of directed graph that has spanning trees.
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To illustrate the concepts and results above, we give an example in Fig.2.1. In graph Ga,

all other nodes have at least one directed path to the node 1. Therefore the graph Ga has

spanning trees. The adjacency matrix of Ga is

A =




0 0 0 0 0 0

0.7 0 0 0 0 0

0 0.7 0 0 0 0

0 0 0.7 0 0 0

0 0 0.5 0.6 0 0

0 0 0 0 0.5 0




From Ga, we see that there are 6 edges. Without loss of generality, define the order

of edge randomly as e21, e32, e43, e53, e65. Then, the Laplacian of Ga can be expressed as

L = D0W0(D
T
0 − E0) =




0 0 0 0 0 0

−0.7 0.7 0 0 0 0

0 −0.7 0.7 0 0 0

0 0 −0.7 0.7 0 0

0 0 −0.5 −0.6 1.1 0

0 0 0 0 −0.5 0.5




where

D0 =




0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1




, E0 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0




and

W0 = diag{w1, w2, · · · , wn} = diag{a21, a32, a43, a53, a54, a65} = diag{0.7, 0.7, 0.7, 0.5, 0.6, 0.5}.
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2.2 Kronecker product

Definition 1. [25] Let C = [cij] ∈ Rm×l and F = [fij] ∈ Rp×q. We say

C ⊗ F =




c11F c12F · · · c1lF

c21F c22F · · · c2lF

...
...

...
...

cm1F cm2F · · · cmlF



∈ Rmp×lq

is the Kronecker product of the matrices C and F .

Proposition 1. [25] For any X0, Y0, Z0, D0 ∈ Rn×n and a0 ∈ R,

(1) (a0X0)⊗ Y0 = X0 ⊗ (a0Y0) = a0(X0 ⊗ Y0),

(2) (X0 + Y0)⊗ Z0 = X0 ⊗ Z0 + Y0 ⊗ Z0,

Z0 ⊗ (X0 + Y0) = Z0 ⊗X0 + Z0 ⊗ Y0,

(3) (X0 ⊗ Y0)(Z0 ⊗D0) = (X0Z0)⊗ (Y0D0),

(4) (X0 ⊗ Y0)
T = XT

0 ⊗ Y T
0 .

2.3 Lyapunov theory

Definition 2. (Class K, KR Functions.) [27] A function α(·) : R+ 7→ R+ belongs to class

K (denoted by α(·) ∈ K) if it is continuous, strictly increasing and α(0) = 0, where R+

denotes the set of all nonnegative real numbers. The function α(·) is said to belong to

class KR if α is of class K and in addition, α(p) →∞ as p →∞.

Definition 3. (Positive Definite Functions.) [27] A continuous function V (x, t) : Rn ×
R+ 7→ R is called a positive definite function, i.e. V (x, t) > 0, if for some α(·) of class

KR,

V (0, t) = 0 and V (x, t) ≥ α(|x|) ∀x ∈ Rn, t ≥ 0.

Lemma 3. [27] Consider a linear system given by

ẋ(t) = Fx(t) x(0) = x0, (2.1)
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where x ∈ Rn and F ∈ Rn×n is a constant matrix. If there exists a positive definite

function V (x, t) such that −V̇ (x, t) is positive definite, then limt→+∞ V (t) = 0 and the

linear system (2.1) is asymptotically stable.

2.4 Some necessary lemmas

Before presenting the main results, we first introduce some necessary lemmas.

Lemma 4. (The Schur Complement) [26] For a given symmetric matrix S with the form

S = [Sij], S11 ∈ Rr×r, S12 ∈ Rr×(n−r), S22 ∈ R(n−r)×(n−r), then, S < 0 if and only if

S11 < 0, S22 − S21S
−1
11 S12 < 0 or S22 < 0, S11 − S12S

−1
22 S21 < 0.

Lemma 5. [14] Consider the matrix given by

Ψn =




n− 1 −1 · · · −1

−1 n− 1 · · · −1

...
...

. . .
...

−1 −1 · · · n− 1




.

The following statements hold.

(1) The eigenvalues of Ψn are n with multiplicity n− 1 and 0 with multiplicity 1. The

vectors 1T
n and 1n are the left and the right eigenvectors of Ψn associated with the zero

eigenvalue, respectively.

(2) There exists an orthogonal matrix U such that UT ΨnU =

[
nIn−1 0

0 0

]
and the

last column is 1n√
n
.

(3) Let Ξ1 ∈ Rn×n be the Laplacian of any directed graph, then UT Ξ1U = [ ϑ1 0 ] ,

ϑ1 ∈ Rn×(n−1).

For simplicity of the following analysis, denote

U = [ U1 Ū1 ] ,

where Ū1 = 1n√
n

is the last column of U and U1 is the rest part.
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Chapter 2

Guaranteed cost consensus control of first-order multi-

agent systems

3.1 Model

Suppose that the network system under consideration consists of n agents, e.g., birds,

fishes, robots, etc, labeled 1 through n. Each agent is regarded as a node in a directed

graph, G. Each edge (sj, si) ∈ E corresponds to an available information link from ith

agent to jth agent at time t. Moreover, each agent updates its current state based upon

the information received from its neighbors.

Let xi ∈ R be the ith agent’s state that might be physical quantities including attitude,

position, velocity, temperature, voltage and so on. Suppose the dynamics of each agent

is a simple scalar continuous-time integrator:

ẋi(t) = ui(t), i = 1, 2, · · · , n (3.1)

where ui(t) is the control input.

We say the consensus problem is solved if the states of agents satisfy

lim
t→+∞

(xi(t)− xj(t)) = 0

for all i, j ∈ I.

To solve the above consensus problem, we use the following control law:

ui(t) =
∑

sj∈Ni
(aij + ∆aij(t))[xj(t)− xi(t)], (3.2)
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where aij quantify the way the agents influence each other, ∆aij(t) denotes the uncertainty

of aij with |∆aij(t)| =





≤ ψij, aij 6= 0

0, aij = 0

and ψij is a specified constant for i, j ∈ I. Here,

we assume ∆aij(t) is a continuous function of time t.

Our objective is to find appropriate control laws to suppress the disturbances of the

uncertainty and make all agents reach consensus.

By using control law (3.2), the network dynamics can be summarized as

ẋ(t) = −(L + ∆L)x(t) (3.3)

From (3.2), ∆L can be viewed as an uncertainty Laplacian. Then by Lemma 2, it can be

decomposed into ∆L = E1Σ(t)E2, where E1, E2 are specified constant matrices and Σ(t)

is a diagonal matrix whose diagonal elements are the uncertainties of the edges, ∆aij(t).

In terms of the decomposition of L = DW (DT − E) in Lemma 2, the form of E1, E2

correspond to D and (DT − E) respectively, whereas the form of Σ(t) correspond to W .

Specifically, in the example of Fig.2.1, the forms of E1, E2 and Σ(t) are E1 = D0, E2 =

DT
0 − E0 and Σ(t) = diag{∆a21, ∆a32, ∆a43, ∆a53, ∆a54, ∆a65}. Since |∆aij(t)| ≤ ψij, for

simplicity, we assume ψij = 1, i.e., Σ(t)T Σ(t) = Σ(t)2 ≤ In.

Many recent studies [1, 2, 7, 19] have tried to explain, by appropriately modeling,

the behavior of a group of animals, e.g., a flock of birds, whose velocities converge to

a common value. In their models, it was always assumed that the edge weights, which

describe the interactions between agents, are deterministic and unperturbed. In fact, the

interactions between agents cannot be measured precisely without any error. Considering

this situation, in the model (3.3), the uncertainty is included.

In nature, groups of animals are often moving in a most labor-saving way, e.g., flocks

of geese often fly in a V-shaped formation. So, it is meaningful to find energy-efficient

control laws for state consensus of the systems. To do this, we define the following integral
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quadratic cost function as a measure of energy consumption of all agents:

J =

∫ +∞

0

uT (t)Ruu(t)dt,

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ Rn and Ru ∈ Rn×n is a symmetric positive

definite matrix.

In this paper, our objective is to find design rules for the parameters aij to minimize

the performance index J .

3.2 Main results

In this section, we will perform the analysis for the system (3.3) respectively and present

conditions which make all agents reach consensus.

Theorem 1. For the system (3.3), if there exists a positive definite matrix P̄ ∈ R(n−1)×(n−1)

and positive scalars ε1, ε2, ε3, for all ΣT (t)Σ(t) ≤ In, such that

Γ =




ζ1 0 P̄UT
1 E1 UT

1 LT UT
1 LT RuE1

∗ ζ2 0 0 0

∗ ∗ −ε1I 0 0

∗ ∗ ∗ −R−1
u 0

∗ ∗ ∗ ∗ −ε2I




< 0, (3.4)

where ′∗′ denotes the symmetric term of Γ, ζ1 = −L̄T P̄ − P̄ L̄ + (ε1 + ε2 + ε3)Ē, ζ2 =

−R−1
u + 1

ε3
E1E

T
1 , Ē = UT

1 ET
2 E2U1 and L̄ = UT

1 LU1. Then, consensus can be achieved and

an upper bound for the cost function J is J∗ = xT (0)U1P̄UT
1 x(0).

Proof: Let

δ(t) = UT
1 x(t), δ̄(t) = ŪT

1 x(t).

Then [
δ(t)

δ̄(t)

]
= UT x(t)
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and

x(t) = U1δ(t) + Ū1δ̄(t).

Since L1n = 0 and ∆L1n = 0, it follows that 1T
n (L + ∆L)T Ru(L + ∆L) = 0 and

(L + ∆L)T Ru(L + ∆L)1n = 0. Consequently,

J =

∫ +∞

0

xT (t)UUT (L + ∆L)T Ru(L + ∆L)UUT x(t)dt

=

∫ +∞

0

δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)dt

Now, we shall construct a Lyapunov function for the system (3.3):

V = xT (t)Px(t),

where P = P T ≥ 0 satisfying rank(P ) = n− 1 and P1n = 0.

Let P̄ = UT
1 PU1. Then

V = xT (t)Px(t)

= xT (t)UUT PUUT x(t)

=

[
δ(t)

δ̄(t)

]T [
P̄ 0

0 0

][
δ(t)

δ̄(t)

]

= δT (t)P̄ δ(t) > 0.

(3.5)

Calculating V̇ , we have

V̇ = 2δT (t)P̄ δ̇T (t)

= 2δT (t)P̄UT
1 [−(L + ∆L)UUT x(t)]

= −2δT (t)P̄UT
1 [LU1 + ∆LU1, 0n×1]

[
δ(t)

δ̄(t)

]

= −δT (t)[(L̄ + ∆L(t))T P̄ + P̄ (L̄ + ∆L(t))]δ(t)

(3.6)

where ∆L = UT
1 ∆LU1.
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For any given matrices Y1, Y2 ∈ Rn×n and any matrix S ∈ Rn×n satisfying ST S ≤ In,

Y T
1 SY2 + Y T

2 ST Y1 ≤ a−1Y T
1 Y1 + aY T

2 Y2 (3.7)

where a is a positive scalar.

By (3.7), we have

−δT (t)[P̄∆L(t) + ∆L(t)T P̄ ]δ(t)

= −δT (t)[P̄UT
1 E1Σ(t)E2U1 + (UT

1 E1Σ(t)E2U1)
T P̄ ]δ(t)

≤ 1
ε1

δT (t)P̄UT
1 E1E

T
1 U1P̄ δ(t) + ε1δ

T (t)UT
1 ET

2 E2U1δ(t)

≤ δT (t)( 1
ε1

P̄UT
1 E1E

T
1 U1P̄ + ε1Ē)δ(t)

where ε1 > 0. Similarly,

δT (t)UT
1 LT Ru∆LU1δ(t) + δT (t)UT

1 ∆LT RuLU1δ(t)

≤ δT (t)[ 1
ε2

UT
1 LT RuE1E

T
1 RuLU1 + ε2Ē]δ(t)

where ε2 > 0. Therefore,

V̇ ≤ δT (t)(−L̄T P̄ − P̄ L̄ + 1
ε1

P̄UT
1 E1E

T
1 U1P̄ + ε1Ē)δ(t)

≤ δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)

+ δT (t)(−L̄T P̄ − P̄ L̄ + 1
ε1

P̄UT
1 E1E

T
1 U1P̄ + ε1Ē)δ(t)

≤ δT (t)Θδ(t)

(3.8)

where

Θ = φ1 + UT
1 ∆LT Ru∆LU1 = φ1 + UT

1 ET
2 ΣT ET

1 RuE1ΣE2U1

with

φ1 = −L̄T P̄ − P̄ L̄ + (ε1 + ε2)Ē + 1
ε1

P̄UT
1 E1E

T
1 U1P̄

+ UT
1 LT RuLU1 + 1

ε2
UT

1 LT RuE1E
T
1 RuLU1.

14



By the Schur Complement Lemma, we have

Θ < 0 ⇔ φ =

[
φ1 UT

1 ET
2 ΣT ET

1

E1ΣE2U1 −R−1
u

]

=

[
φ1 0

0 −R−1
u

]
+

[
UT

1 ET
2

0

]
ΣT

[
0

E1

]T

+

[
0

E1

]
Σ

[
UT

1 E2

0

]T

< 0.

Again, by (3.7), we have

φ ≤
[

φ1 0

0 −R−1
u

]
+ ε3

[
UT

1 ET
2

0

][
UT

1 E2

0

]T

+ 1
ε3

[
0

E1

][
0

E1

]T

=

[
φ1 + ε3Ē 0

0 −R−1
u + 1

ε3
E1E

T
1

]

, φ̄

with ε3 > 0. Note that

φ̄ =

[−L̄T P̄ − P̄ L̄ + (ε1 + ε2 + ε3)Ē 0

0 −R−1
u + 1

ε3
E1E

T
1

]

+

[
P̄UT

1 E1 UT
1 LT UT

1 LT RuE1

0 0 0

]

× diag{ 1
ε1

In, Ru,
1
ε2

In}
[

P̄UT
1 E1 UT

1 LT UT
1 LT RuE1

0 0 0

]T

.

Then, by the Schur Complement Lemma, we have φ̄ < 0 is equivalent to Γ < 0. Then the

condition Γ < 0 guarantees Θ < 0 and hence V̇ < 0 from (3.8). It follows from Lemma 3

that V (+∞) = lim
t→+∞

V (t) = 0 and hence lim
t→+∞

δ(t) = 0. Note that x(t) = U1δ(t)+ Ū1δ̄(t),

where Ū1 = 1n√
n

and δ̄(t) ∈ R. Then lim
t→+∞

[xi(t)−xj(t)] = lim
t→+∞

[(xi(t)− 1√
n
δ̄(t))− (xj(t)−

1√
n
δ̄(t))] = 0. That is, all agents can reach consensus under the condition Γ < 0.

In addition, from (3.6) and (3.8), Θ < 0 implies that

V̇ = −δT (t)(L̄ + ∆L(t))T P̄ δ(t)− δT (t)P̄ (L̄ + ∆L(t))δ(t)

+ δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)

< δT (t)Θδ(t).
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Thus,

V̇ < −δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)

and hence

−V (0) = V (+∞)− V (0) =
∫ +∞

0
V̇ dt

< − ∫ +∞
0

δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)dt.

That is,

∫ +∞
0

δT (t)UT
1 (L + ∆L)T Ru(L + ∆L)U1δ(t)dt < V (0) = δT (0)P̄ δ(0) = xT (0)U1P̄UT

1 x(0).

This completes the proof.

Remark 1. In Theorem 1, we only discuss the fixed topology case. Since the analysis is

performed based on the Lyapunov theory, the results can be extended to the case where

the edge weights are time-varying and the links between agents are dynamically changing,

if there exists a common Lyapunov function for all possible topology graphs.

Remark 2. In [24], V. Gupta et al. tried to set up the LQR problem for the problem

of controlling a discrete-time network of agents with fixed topology. The cost function is

taken as

J =
∞∑

k=0

{xT (k)Qx(k) + uT (k)Ruu(k)},

where Q > 0 and Ru ≥ 0. This cost performance index is invalid for our model, because

all agents might converge to a nonzero common value and J might tend to infinity as

time goes on. Actually, to measure the disagreement dynamics of the networks, we can

use the following cost function:

J =

∫ +∞

0

{xT (s)Qx(s) + uT (s)Ruu(s)}ds

where Q is a symmetric positive semi-definite matrix, Q1n = 0 and Ru is a positive

definite matrix.
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3.3 Simulations

Here numerical simulations will be given to illustrate the theoretical results obtained

in the previous sections. These simulations are performed with four agents. Fig.3.1 shows

the communication topology graph which has a spanning tree.

Fig.3.1 The communication topology.

Suppose the uncertainty matrices for the network as shown in Fig.3.1 are

E1 =




0.3 0 0 0

0 0.3 0 0

0 0 0.3 0.3

0 0 0 0




,

E2 =




0.3 0 0 −0.3

−0.3 0.3 0 0

−0.3 −0.3 0.3 0

0 0 0.3 0




.

Then, applying Theorem 1 and taking Ru = I, it is solved that a feasible solution is

P̄ = I and

L =




0.5419 0 0 −0.5419

−0.3255 0.3255 0 0

−0.2765 −0.2576 0.5341 0

0 0 0 0




.
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Fig.3.2 State trajectories of the network of agents.
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Fig.3.3 The cost function J of the network and one of its upper bounds

J∗ = xT (0)U1P̄UT
1 x(0) = xT (0)U1U

T
1 x(0).

The state trajectories of all agents and the corresponding cost function J of the network

are shown in Fig.3.2 and Fig.3.3, respectively. It is clear from Fig.3.2 that all agents

asymptotically reach consensus whereas from Fig.3.3 the cost performance index J is

smaller than the bound J∗ = xT (0)U1P̄UT
1 x(0) = xT (0)U1U

T
1 x(0) which is consistent

with Theorem 1.

18



Chapter 4

Consensus control of second-order multi-agent systems

4.1 Model

We assume that each agent is a node in a directed graph, G. Each edge (sj, si) ∈ E
corresponds to an available information link from ith agent to jth agent. Moreover, each

agent updates its current state based upon the information received from its neighbors.

Let xi be the position state of the ith agent, vi be the speed. Suppose each agent has the

dynamics as follows

ẋi = vi

v̇i = ui

(4.1)

where xi(t) ∈ R is the position state, vi(t) ∈ R is the velocity state, and ui(t) ∈ R is the

control input.

We say that the control law ui(t) solves the consensus problem if the states of agents

satisfy lim
t→+∞

[xi(t) − xj(t)] = 0, and lim
t→+∞

vi(t) = 0, for all i, j ∈ I. Furthermore, if

lim
t→+∞

xi(t) = 1
n

n∑
j=1

xj(0), we say the control law ui solves the average consensus problem.

To solve the above consensus problems is a challenging task. One needs to find suitable

distributed state feedback controller for each agent not only to solve the agreement of the

position states of network but also to stabilize the speeds of the network. To solve the

consensus problem, we use the following control law:

ui(t) = −2k1vi + k2

∑
sj∈Ni

aij(xj(t)− xi(t)). (4.2)
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Let v̄i = vi

k1
+ xi. Then it follows that

ẋi = −k1xi + k1v̄i

˙̄vi = vi + v̇i

k1
= −vi + k2

k1

∑
sj∈Ni

aij(xj(t)− xi(t))

= k1xi − k1v̄i + k2

k1

∑
sj∈Ni

aij(xj(t)− xi(t))

Denote

ξ = [x1, v̄1, · · · , xn, v̄n]T , A =

[−k1 k1

k1 −k1

]
, B =

[
0 0

k2

k1
0

]
.

Using the control law (4.2) the network dynamics can be summarized as

ξ̇ = Φξ (4.3)

where Φ = In ⊗ A− L⊗B and L is the Laplacian of the graph G.

4.2 Main Results

Lemma 6. Consider the equation

x2 + 2c1x + c2(a + bı) = 0 (4.4)

where a > 0, c1, c2, a, b ∈ R and ı denotes the imaginary unit. The zeros of (4.4) are on

the open left-half-plane(LHP) if and only if
c21
c2

> b2

4a
, c1 > 0, c2 > 0.

Proof: If c1 ≤ 0, there is at least one root of (4.4) not located on the open LHP according

to the Theory of Vieta.

Then, let x = σ + wı, and we get

σ2 − w2 + 2c1σ + c2a = 0 (4.5)

2σw + 2c1w + c2b = 0 (4.6)
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It can be checked that σ = 0 and w = 0 when c2 = 0, and σ = 0 and w = − c2b
2c1

when

c21
c2

= b2

4a
(c2 6= 0). Namely, the equation (4.4) has at least one root on the imaginary axis

if
c21
c2

= b2

4a
(c2 6= 0) or c2 = 0.

Now, we will prove that the zeros of (4.4) are on the open LHP if and only if
c21
c2

>

b2

4a
, c1 > 0, c2 > 0 by contradiction.

Sufficiency From(4.5)(4.6), for any σ > 0 and any c1 > 0, we have

σ2 − ( c2b
2σ+2c1

)2 + 2c1σ + c2a = 0 (4.7)

Note that a > 0,
c21
c2

> b2

4a
, c2 > 0, and hence

σ2 − ( c2b
2σ+2c1

)2 + 2c1σ + c2a

> σ2 + 2c1σ + c2a− ( c2b
2c1

)2

> σ2 + 2c1σ > 0

(4.8)

Clearly, (4.8) contradicts with (4.7). It implies that the roots of (4.4) are on the open

LHP if
c21
c2

> b2

4a
, c1 > 0, c2 > 0.

Necessity Suppose that both roots of (4.4) are on the LHP with
c21
c2

< b2

4a
, (c2 6= 0).

Then, we have σ < 0 and |σ| < 2c1 according to the Theory of Vieta again. It follows

that

0 = σ2 − ( c2b
2σ+2c1

)2 + 2c1σ + c2a

< σ2 + 2c1σ + c2a− ( c2b
2c1

)2 < 0

(4.9)

This yields a contradiction.

Lemma 7. [29] Consider a linear system given by

ẋ(t) = Fx(t) x(0) = x0 (4.10)
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where x(t) ∈ Rn is the state, and x(0) ∈ Rn is the initial condition. Suppose that the

characteristic polynomial of F can be written as

f(s) = (s− µ1)
σ1(s− µ2)

σ2 · · · (s− µl)
σl

where µi, i = 1, 2, · · · , l are all different eigenvalues of F . Then the solution of (4.10) can

be given by

x(t) =
l∑

j=1

eµjtx0j[

σi−1∑
i=0

ti(A− µjIn)i

i!
]

where x0j ∈ Uj and
∑l

j=1 x0j = x(0) with Rn = U1⊕U2⊕· · ·⊕Ul, Ui = {ξ|(µjIn−A)σiξ =

0} and ′⊕′ denotes direct sum.

Denote

k0 = max
|λi|6=0

{ [Im(λi)]
2

4Re(λi)
}

where λi is the eigenvalue of the Laplacian L, and Im(λi), Re(λi) are the imaginary part

and real part of λi respectively.

Theorem 2. Consider a directed network of agents with fixed communication topology

G that has a spanning tree. Then, under the control law (4.2) the multi-agent system

(4.1) can reach consensus if and only if k1 > 0, k2 > 0 and
k2
1

k2
> k0.

Proof: Firstly, we will prove that Φ has only one eigenvalue at zero, and its other 2n− 1

eigenvalues located on the open LHP if and only if k1 > 0, k2 > 0 and
k2
1

k2
> k0.

Since the graph has a spanning tree, according to Lemma 1 there exists an nonsingular

matrix W such that

M = W−1LW =




0

J1

. . .

Js



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where J2, · · · ,Js are Jordan blocks and the eigenvalue of Ji has positive real part. Then,

(W−1 ⊗ I2)Φ(W ⊗ I2)

= (W−1 ⊗ I2)(In ⊗ A− L⊗B)(W ⊗ I2)

= (W−1 ⊗ A)(W ⊗ I2)− (W−1L)⊗B(W ⊗ I2)

= In ⊗ A−M ⊗B

=




A

A− λ2B ∗
. . . ∗

A− λnB




where λ2, · · · , λn are the nonzero eigenvalues of L.

Consider the characteristic polynomial of Φ, we have

det(Φ− sI2n)

= det(A− sI2)
n∏

i=2

det(A− λiB − sI2)

= s(s + 2k1)
n∏

i=2

(s2 + 2k1s + k2λi)

From Lemma 1, Re(λi) > 0, i = 2, · · · , n. Then by Lemma 6, the roots of s2 + 2k1s +

k2λi are on the open LHP if and only if k1 > 0, k2 > 0,
k2
1

k2
> k0. Thus, all the eigenvalues

of Φ have negative real-parts except one at zero if and only if k1 > 0, k2 > 0,
k2
1

k2
> k0.

Noting that

Φ1n ⊗ [ 1 1 ]T

= (In1n)⊗ (A [ 1 1 ]T )− (L1n)⊗ (B [ 1 1 ]T )

= 02n,

we have the vector 12n is the eigenvector of Φ associated with the zero eigenvalue. There-

fore, from Lemma 7,

lim
t→+∞

v̄j(t) = lim
t→+∞

v̄i(t) = lim
t→+∞

xi(t) = lim
t→+∞

xj(t) =
1

n

n∑
i=1

(xi(0) +
vi(0)

2k1

)
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lim
t→+∞

vi(t) = 0, i = 1, 2, · · · , n, j = 1, 2, · · · , n.

This implies that consensus is achieved.

Corollary 1. Consider an undirected network of agents with fixed communication topol-

ogy G that is connected. Then, under the control law (4.2), limt→∞ xi(t) = 1
n

∑
i(xi(0) +

vi(0)
2k1

) and limt→∞ vi(t) = 0 for any i ∈ I if and only if k1 > 0, k2 > 0. Furthermore, if the

initial speeds satisfy
∑n

i=1 vi(0) = 0, average-consensus will be achieved.

Proof: Note that

1T
n ⊗ [ 1 1 ] Φ

= 1T
n ⊗ [ 1 1 ] (In ⊗ A− L⊗B)

= (1T
nIn)⊗ [[ 1 1 ] A− 1T

nL⊗ [ 1 1 ] B]

= 02n

(4.11)

Then,
∑

i ẋi + ˙̄vi = 0. Thus,
∑

i xi + v̄i is an invariant quantity and
∑

i[xi(t)+ v̄i(t)] =
∑

i[xi(0) + v̄i(0)] for any t ≥ 0. Since the graph is undirected, then k0 = 0. Thus,

according to Theorem 2, we have

lim
t→∞

xi(t) = lim
t→∞

v̄i(t) =
1

2n

∑
i

[xi(0) + v̄i(0)] =
1

n

∑
i

(xi(0) +
vi(0)

2k1

)

and

lim
t→∞

vi(t) = 0

for any i ∈ I, if and only if k1 > 0, k2 > 0.

4.3 Simulation results

In this section, we will present some numerical simulations to illustrate the theoretical

results obtained in the previous sections. These simulations are performed with 6 agents,
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whose initial conditions are set randomly. Fig.4.1 denotes topology structure of the multi-

agent network. The weight of each edge is 0.5 and by simple computations it is solved that

k0 = 0.375. Fig.4.2-4.4 show the state trajectories. It is clear that the multi-agent system

reaches consensus when
k2
1

k2
> k0, oscillates when

k2
1

k2
= k0 and diverges when

k2
1

k2
< k0. This

is consistent with Theorem 2.
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Fig.4.1 Topology

Case 1
k2
1
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= 0.5 > k0

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

6

Fig.4.2(a) Position trajectories of the network Fig.4.2(b) Velocity trajectories of the network

Case 2
k2
1

k2
= 0.375 = k0.
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Case 3
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= 0.2 < k0
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Fig.4.4(a) Position trajectories of the network Fig.4.4(b) Velocity trajectories of the network
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Chapter 5

Dynamic consensus control of high-order multi-agent

systems

5.1 Model

Suppose that the multi-agent system under consideration consists of n agents. Each agent

is regarded as a node in an undirected graph G. Suppose the dynamics of the ith agent

(i ∈ I) is

ξ̇
(0)
i (t) = ξ

(1)
i (t)

...

ξ̇
(l−2)
i (t) = ξ

(l−1)
i (t)

ξ̇
(l−1)
i (t) = ui(t)

yi(t) = ξ
(0)
i (t)

(5.1)

where ξ
(j)
i ∈ R is the jth variable of ξi, j = 0, 1, · · · , l − 1, ui(t) ∈ R is the control input

and yi(t) is output function of each agent. Here, each agent can only get the output

function yi(t) information from its neighbors.

We say the control law ui asymptotically solves the consensus problem, if the states

of agents satisfy

lim
k→+∞

[ξi(t)− ξj(t)] = 0, (5.2)

for all i, j ∈ I.
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In order to solve the consensus problem, we use the following consensus control law:

ṗi = −γpi +
∑

sj∈Ni(t)

aij(ξ
(0)
j (t)− ξ

(0)
i (t))

ui = −
l−1∑
j=1

kjξ
(j)
i (t)− ∑

sj∈Ni(t)

aij(ξ
(0)
j (t)− ξ

(0)
i (t)) + pi

(5.3)

for any i ∈ I, where pi(0) = 0, kj > 0 and γ > 0 are specified parameters.

Let ψi(t) = [ξT
i (t), pT

i (t)]T and ψ = [ψ1(t)
T , ψ2(t)

T , · · · , ψn(t)T ]T . Then under the

control law (5.3), the network dynamics of the multi-agent system is

ψ̇(t) = (In ⊗ A)ψ(t)− (L⊗B)ψ(t). (5.4)

where L is the Laplacian of the graph G,

A =




0 1 0 0 0

0 0 1 0 0

...
. . . . . . . . . 0

0 −k1 · · · −kl−1 1

0 · · · · · · 0 −γ




∈ R(l+1)×(l+1),

and

B =




0l−1 0(l−1)×l

1 01×l

1 01×l


 ∈ R(l+1)×(l+1).

5.2 Main Results

In this section, we first perform a model transformation and turn the original systems

into equivalent ones that will be used in the following analysis.

Lemma 8. Let β(t) = eĀt 1
n

n∑
i=1

ξi(0) and δ(t) = ψ(t)− 1n ⊗ [β(t)T , 01×1]
T , where

Ā =




0 1 0 · · · 0

0 0 1
. . . 0

...
. . . . . . . . .

...

0 −k1 · · · −kl−2 −kl−1



∈ Rl×l.
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Then (1T
n ⊗ Il+1)δ(t) = 0. Moreover, the system (5.4) is equivalent to

δ̇(t) = (In ⊗ A− L⊗B)δ(t). (5.5)

Proof: Since G is undirected, it follows from (5.3) that
n∑

i=1

ṗi(t) = −γ
n∑

i=1

pi(t). Since

pi(0) = 0 for any i ∈ I, we have
n∑

i=1

pi(t) = e−γt
n∑

i=1

pi(0) = 0. Similarly, it can be

obtained that 1
n

n∑
i=1

ξ̇i(t) = 1
n
Ā

n∑
i=1

ξi(t) and thus 1
n

n∑
i=1

ξi(t) = eĀt 1
n

n∑
i=1

ξi(0). Evidently,

(1T
n ⊗ Il+1)δ(t) = 0.

δ̇(t) = ψ̇(t)− 1n ⊗ [β̇(t)T , 01×1]
T

= (In ⊗ A− L⊗B)(δ(t) + 1n ⊗ [β̇(t)T , 01×1]
T )− 1n ⊗ [Āβ(t)T , 01×1]

T

= (In ⊗ A− L⊗B)δ(t) + 1n ⊗ [Āβ(t)T , 01×1]
T − 1n ⊗ [Āβ(t)T , 01×1]

T

= (In ⊗ A− L⊗B)δ(t).

Clearly, the system (5.4) is equivalent to the system (5.5). 2

Lemma 9. [30] Consider an equation given by

a0s
n + a1s

n−1 + · · ·+ an−1s + an = 0, (5.6)

where a0, a1, · · · , an ∈ R. The roots of (5.6) all have negative real parts if all ai are

positive and

ai−1ai+2 < 0.4655aiai+1 (5.7)

for i = 1, 2, · · · , n− 2.

Theorem 3. Let αl+1 = λmax(γ + 1), α0
l = γk1 + λmin, α

1
l = γk1 + λmax, αl−1 = k2γ +

k1, αl−2 = k3γ + k2, · · · , α2 = kl−1γ + kl−2, α1 = kl−1 + γ, α0 = 1, where λmin denotes the

smallest nonzero eigenvalue of L and λmax denotes the largest eigenvalue of L. Consider a

network of high-order agents with a fixed topology G that is connected. Then the multi-

agent system (5.4) can reach consensus if αi > 0, i = 0, 1, · · · , n, αi−1αi+2 < 0.4655αiαi+1,

i = 1, 2, · · · , l − 3, αl−3α
1
l < 0.4655αl−2αl−1 and αl−2αl+1 < 0.4655αl−1α

0
l .
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Proof: By Lemma 1, we can denote the eigenvalues of L as 0 = λ1 < λ2 ≤ · · · ≤ λn.

There exists an orthogonal matrix W ∈ Rn×n such that W T LW = diag{0, λ2, · · · , λn}. It

follows that

(W T ⊗ Il+1)(In ⊗ A− L⊗B)(W ⊗ Il+1)

= diag{A,A− λ2B, · · · , A− λnB}.
(5.8)

By Lemma 1 again, we see that the first column of W is 1√
n
. Let W̄ denote the rest

n − 1 columns of W and δ̄(t) = (W̄ ⊗ Il+1)
T δ(t). By Lemma 5, δT (t)(W ⊗ Il+1) =

[ 01×(l+1) δ̄T (t) ]. Thus,

(W ⊗ Il+1)
T δ̇(t) = diag{A,A− λ2B, · · · , A− λnB}(W ⊗ Il+1)

T δ(t). (5.9)

It follows that the system (5.5) is equivalent to

˙̄δ(t) = Φδ̄(t),

where Φ = diag{A − λ2B, · · · , A − λnB}. Calculating the characteristic polynomial of

A− λiB, we have

det(sI − A + λiB) = (s + γ)(λi + sl +
l−1∑
j=1

kjs
j) + λi

= α0s
l+1 + α1s

l + · · ·+ αl−1s
2 + (γk1 + λi)s + λi(γ + 1)

= 0.

Note that λi(γ + 1)αl−2 ≤ αl+1αl−2 < 0.4655α0
l αl−1 ≤ 0.4655(γk1 + λi)αl−1 and (γk1 +

λi)αl−3 ≤ α1
l αl−3 < 0.4655αl−2αl−1. Then by Lemma 9, we have all the eigenvalues of

A− λiB, i = 2, · · · , l, have negative real parts under the condition given by Theorem 3.

It follows that

lim
t→+∞

δ̄(t) = 0

and

lim
t→+∞

δ(t) = 0.
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Thus,

lim
t→+∞

ξi(t) = 0

for any i ∈ I. This implies that the multi-agent system reach consensus. This completes

the proof. 2

5.3 Simulations

Numerical simulations are given to illustrate the theoretical results obtained in the pre-

vious sections. Fig.5.1 shows a graph with n = 4 nodes. Suppose that the weight of each

edge is 1 and each agent has three-order dynamics. By computation, we have the largest

eigenvalue of the Laplacian of the graph in Fig.5.1 is 4 and the smallest nonzero eigenvalue

is 2. The initial condition is set as ψ(0) = [1 0 0 0 2 0 0 0 − 2 0 0 0 − 4 0 0 0]T and

the parameters are taken as (γ, k1, k2) = (1, 6, 2). Therefore, corresponding to Theorem

3, α0 = 1, α1 = 3, α2 = 8, α0
3 = 8, α1

3 = 10 and α4 = 8. Clearly, α0α
1
3 < 0.4655α1α2 and

α1α4 < 0.4655α2α
0
3.

Fig.5.1 The network topology.

Figs.5.2, 5.3 and 5.4 show the state trajectories of all agents. It is clear that all agents

reach consensus, which verifies Theorem 3.
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Fig.5.2 The trajectories of the first variables of all agents.
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Fig.5.3 The trajectories of the second variables of all agents.
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Fig.5.4 The trajectories of the third variables of all agents.
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Chapter 6

Conclusions

In this paper, we first investigates guaranteed cost coordination in directed networks

of agents with norm-bounded uncertainty, where each agent updates its state based on a

simple neighbor rule. The analysis is performed by a Lyapunov-based approach. A class

of Lyapunov functions are introduced as a measure of the disagreement dynamics. Using

these Lyapunov functions, sufficient conditions are derived which make all agents reach

consensus asymptotically while satisfying desired cost performance. Second, we consider

consensus control for networks of agents with double integrator dynamics. To solve the

consensus problem, a control law is adopted which contain two aspects, the agreement of

the position states and the convergence to zero of the speed states. The corresponding

convergence analysis was provided. A sufficient and necessary condition was established

by using the eigenvector-eigenvalue method of finding solutions. Third, we investigate

consensus of high-order multi-agent systems. A new dynamic neighbor-based control law

is proposed which contains two parts, one is the local feedback and the other is the

distributed feedback of the first states of each agent. Sufficient conditions are derived for

state consensus of the system.
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