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Abstract

Beginning with the discovery of Gauss’s Theorema Egregium, the steps taken
through the history of differential geometry are traced. The process of creat-
ing a calculus of vectors is followed as well. The theory of differential forms
is compared to that of vector analysis, with illustrations of how the former
can present a shorter and simpler way of doing calculations. From the differ-
ential forms, the path of differential geometry continues towards de Rham’s
theorems. This is a starting point for de Rham cohomology, which in three
dimensions can be expressed either with vectors or differential forms.

Sammanfattning

Med början i Gauss upptäckt av Theorema Egregium så följer vi den his-
toriska utvecklingen av differentialgeometri. Dessutom undersöks hur det
gick till att skapa en kalkyl för vektorer. I jämförelse med vektoranalys illus-
trerar vi hur differentialformer kan bidra till kortare och enklare beräkningar.
Från differentialformer så fortsätter utvecklingen mot de Rhams satser. Dessa
är början till de Rham-kohomologi, som i tre dimensioner kan uttryckas med
antingen vektorer eller differentialformer.
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Chapter 1

Introduction

When doing mathematics we use ideas, techniques and tricks that have been
refined and improved through the combined efforts of many mathematicians.
People with less sofisticated methods than we have now, have come up with
clever ideas and have helped to develop the mathematics into what it is today.
The purpose of this thesis is to follow the development of three branches of
mathematics: that of vector analysis, differential geometry - especially the
differential forms - and de Rham cohomology. We will follow the parallel
development of vector analysis and differential geometry, and from thereon
we will see how de Rham cohomology evolved.

The starting point of this history is the beginning of the 19th century when
Carl Friedrich Gauss realized that bending a surface does not change its
Gaussian curvature, which is, loosely, the two-dimensional curvature of a
surface.

The path towards vector analysis began about the same time with the
problem of expressing a complex number in the plane. It was followed by the
question of how this could be done in three-dimensional space. Sir Rowan
Hamilton found a functional apparatus for this in the quaternions, but the
system had some flaws which the vector analysis set right at the end of the
19th century.

The other path, that of differential geometry, continued with a new al-
gebra for geometrical objects, and this would eventually become an algebra
for the differential forms. The idea of a manifold was presented by Bernhard
Riemann in a famous lecture in the 1850s. At the turn of the 20th century,
Élie Cartan properly defined the differential forms, which are useful when
doing calculations on manifolds.

The third path involves Stokes’s theorem which has been stated in many
different ways. Together with ideas from Henri Poincaré, George de Rham
used this theorem to generalize Poincaré’s lemma. The theorems that he
stated would lead to the de Rham cohomology in which differential forms
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play an important part.
To emphasize how the mathematics have improved, we will look at differ-

ent proofs of Gauss’s Theorema Egregium and different expressions for the
Gaussian curvature.
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Chapter 2

Gauss’s Remarkable Theorem

Carl Friedrich Gauss made one of the first contributions to differential geom-
etry with his Theorema Egregium, which is Latin for Remarkable Theorem.
This theorem was written in his paper Disquisitiones generales circa superfi-
cies curvas (General investigations of curved surfaces) which was presented
to the Royal Society of Sciences in Göttingen on October 8 1827 [12, pp.163-
165], [16, p.iii], [24, p.7].

Theorema Egregium 2.0.1. If a curved surface is developed upon any
other surface whatever, the measure of curvature in each point remains un-
changed.

Gauss thought of developing one surface onto another as a special case of
projecting one curved surface onto another, keeping similarity in the small-
est parts [12, p.163]. In modern words we say that a surface M ⊆ R3 is
mapped onto another surface M ′ ⊆ R3 preserving distances and angles be-
tween neighbouring points. That is, we are bending the surface M into
another shape without stretching it. For example, a piece of paper can be
turned into a cylinder if we let two opposite sides meet.

The remarkable thing about Theorema Egregium is that the Gaussian
curvature is an intrinsic (inner) value, since it does not depend on the
exterior, i.e. how the surface is situated in space.

To understand Gaussian curvature we begin by explaining the curvature of
a circle. It is defined to be

1
R

where R is the radius of the circle. A small circle has large curvature and
a large circle has small curvature. On a curve, the curvature at each point
is defined to be the curvature of a circle approximating that curve. A curve
that makes a narrow turn will have large curvature there since the radius of
the approximated circle will be very small. A straight line is approximated
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by a circle with infinite radius and this has zero curvature. The normal of a
curve is defined to point towards the center of the approximated circle.

On a surface we can obtain curves by cutting with planes through the
surface. The cross section between the surface and the plane is a curve. A
plane in which the normal of a surface lies, is called a normal plane. If we
take a certain point on the surface with its corresponding surface normal then
we can cut the surface with normal planes in all directions and obtain many
curves with corresponding curvature. In particular, there will be a minimum
and a maximum value of the curvatures. The two curves corresponding
to these two values are always perpendicular according to a theorem by
Euler (also see page 28). With R1, R2 as the two radii of the two extreme
curvatures, Gaussian curvature K is defined to be

K = ± 1
R1 ·R2

at any point of the surface. The positive or negative sign depends on if the
two normals of the two curves with corresponding curvatures 1

R1
and 1

R2

have the same direction or opposite direction. A sphere has K > 0 whereas
a saddle surface has K < 0. A flat piece of paper has K = 0 because the two
extreme radii of curvature are both infinite. The paper can be bent, without
being deformed, into a cylinder or a cone and this looks different from being
flat but the Gaussian curvature is the same since at least one of the extreme
curves will be a straight line. A sphere can never be turned into a flat object
since the Gaussian curvature differs between the two. A natural example of
this is a map of the world in contrast to a globe. Some parts of the map
always look a bit distorted since a spherical object has to be stretched in
order to become flat.

2.1 Proof of Gauss’s theorem

The following proof is essentially Gauss’s own. Since vector analysis was
developed during the end of the 19th century and we are still in the late
1820s, Gauss could not use vectors and the tools that came with them:
scalar and vector product. He had to use what was at hand at the time and
therefore this proof is given in coordinate notation. But as we will see, the
possibility of using vectors almost shines through. Modern notation will be
written within parentheses to facilitate the understanding of this.

Proof of Theorema Egregium. Let the coordinates of a point on an arbitrary
surface in space be x, y, z. Let us assume that these can be expressed as
functions of two variables such that

x = x(u, v), y = y(u, v), z = z(u, v).
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Thus we let h(u, v) = (x(u, v), y(u, v), z(u, v)) be a parameterization of the
surface so that Gauss’s definitions can be explained in a modern way.

Differentiating the point will result in

dx = adu+ a′dv

(
=
∂x

∂u
du+

∂x

∂v
dv

)
dy = bdu+ b′dv

(
=
∂y

∂u
du+

∂y

∂v
dv

)
dz = cdu+ c′dv.

(
=
∂z

∂u
du+

∂z

∂v
dv

)

Gauss defines the relations

A = bc′ − cb′

B = ca′ − ac′

C = ab′ − ba′.

In modern vector notation we see that A,B,C are the x, y, z-components of
the surface normal,

n =
∂h

∂u
× ∂h

∂v
=

ab
c

×
a′b′
c′

 =

bc′ − cb′ca′ − ac′
ab′ − ba′

 .

Gauss also defines

α =
∂2x

∂u2
α′ =

∂2x

∂u∂v
α′′ =

∂2x

∂v2

β =
∂2y

∂u2
β′ =

∂2y

∂u∂v
β′′ =

∂2y

∂v2

γ =
∂2z

∂u2
γ′ =

∂2z

∂u∂v
γ′′ =

∂2z

∂v2

and

D = Aα+Bβ + Cγ

(
= 〈n, ∂

2h

∂u2
〉
)

(2.1)

D′ = Aα′ +Bβ′ + Cγ′
(

= 〈n, ∂
2h

∂u∂v
〉
)

(2.2)

D′′ = Aα′′ +Bβ′′ + Cγ′′.

(
= 〈n, ∂

2h

∂v2
〉
)

(2.3)

D,D′ and D′′ are parts of what is known as the second fundamental form,
but we use the unit normal ν = n√

A2+B2+C2
instead of n and denote the
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parts by e, f, g such that

II =
(
e f
f g

)
=

(
〈ν, ∂2h

∂u2 〉 〈ν, ∂2h
∂u∂v 〉

〈ν, ∂2h
∂u∂v 〉 〈ν, ∂2h

∂v2
〉

)
.

Furthermore Gauss writes

E = a2 + b2 + c2
(

= 〈∂h
∂u
,
∂h

∂u
〉
)

F = aa′ + bb′ + cc′
(

= 〈∂h
∂u
,
∂h

∂v
〉
)

G = a′2 + b′2 + c′2
(

= 〈∂h
∂v
,
∂h

∂v
〉
)

which are the inner products of the tangent vectors ∂h
∂u ,

∂h
∂v , and these are

part of the first fundamental form,

I =
(
E F
F G

)
.

A,B,C are related to E,F,G by A2+B2+C2 = EG−F 2 and Gauss decides
to name it ∆:

A2 +B2 + C2 = EG− F 2 = ∆.

A modern way of defining Gaussian curvature is by

K =
det II
det I

=
eg − f2

EG− F 2
. (2.4)

Since EG− F 2 > 0 we can write K as

K = det(II ·I−1).

This is connected with the first definition of K since the extreme curva-
tures 1

R1
and 1

R2
are the eigenvalues of the matrix II ·I−1. For our further

calculations we will use equation (2.4) which in Gauss’s own notation is

K =
DD′′ −D′2

(A2 +B2 + C2)2
.
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Furthermore, Gauss defines

m = aα+ bβ + cγ

(
= 〈∂h

∂u
,
∂2h

∂u2
〉
)

(2.5)

m′ = aα′ + bβ′ + cγ′
(

= 〈∂h
∂u
,
∂2h

∂u∂v
〉
)

(2.6)

m′′ = aα′′ + bβ′′ + cγ′′
(

= 〈∂h
∂u
,
∂2h

∂v2
〉
)

(2.7)

n = a′α+ b′β + c′γ

(
= 〈∂h

∂v
,
∂2h

∂u2
〉
)

(2.8)

n′ = a′α′ + b′β′ + c′γ′
(

= 〈∂h
∂v
,
∂2h

∂u∂v
〉
)

(2.9)

n′′ = a′α′′ + b′β′′ + c′γ′′.

(
= 〈∂h

∂v
,
∂2h

∂v2
〉
)

(2.10)

We want to show that Gaussian curvature is an intrinsic value, thus we need
an expression that does not depend on the surface normal. We will obtain
such an expression by eliminating A,B and C from D,D′ and D′′.

Take equations (2.1), (2.5) and (2.8)

D = Aα+Bβ + Cγ

m = aα+ bβ + cγ

n = a′α+ b′β + c′γ,

multiply by bc′ − cb′, b′C − c′B and cB − bC respectively and add them.
Through this process, β and γ are eliminated,

D(bc′ − cb′) +m(b′C − c′B) + n(cB − bC) =
= α(A(bc′ − cb′) + a(b′C − c′B) + a′(cB − bC)).

We use the definitions of A,B,C,E, F and G on the left and right hand
sides,

LHS = D(bc′ − cb′) + (nc−mc′)(ca′ − ac′) + (mb′ − nb)(ab′ − ba′)
= D(bc′ − cb′) +m(aa′2 + ab′2 + ac′2 − a′aa′ − a′bb′ − a′cc′) +

+ n(a′a2 + a′b2 + a′c2 − aaa′ − abb′ − acc′)
= DA+ a(mG− nF ) + a′(nE −mF ),

RHS = α(A(bc′ − cb′) +B(a′c− ac′) + C(ab′ − a′b))
= α(A2 +B2 + C2).
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Hence,
DA = α∆ + a(nF −mG) + a′(mF − nE).

In a similar manner with (2.1), (2.5) and (2.8) we will also get

DB = β∆ + b(nF −mG) + b′(mF − nE)
DC = γ∆ + c(nF −mG) + c′(mF − nE).

Take the three equations that we have obtained, multiply by α′′, β′′ and γ′′

respectively and add them,

LHS = DAα′′ +DBβ′′ +DCγ′′ = D(Aα′′ +Bβ′′ + Cγ′′) = DD′′,

RHS = (αα′′ + ββ′′ + γγ′′)∆ + (aα′′ + bβ′′ + cγ′′)(nF −mG) +
+ (a′α′′ + b′β′′ + c′γ′′)(mF − nE)

= (αα′′ + ββ′′ + γγ′′)∆ +m′′(nF −mG) + n′′(mF − nE)
= (αα′′ + ββ′′ + γγ′′)∆− nn′′E + (nm′′ +mn′′)F −mm′′G.

Thus we have obtained an expression free of normal components:

DD′′ = (αα′′ + ββ′′ + γγ′′)∆− nn′′E + (nm′′ +mn′′)F −mm′′G.

The above process is repeated with equations (2.2), (2.6) and (2.9),

D′ = Aα′ +Bβ′ + Cγ′

m′ = aα′ + bβ′ + cγ′

n′ = a′α′ + b′β′ + c′γ′.

This will result in

D′A = α′∆ + a(n′F −m′G) + a′(m′F − n′E)
D′B = β′∆ + b(n′F −m′G) + b′(m′F − n′E)
D′C = γ′∆ + c(n′F −m′G) + c′(m′F − n′E).

Take these equations, multiply by α′, β′ and γ′ respectively and add them.
Once again we obtain an expression free of normal components:

D′2 = (α′2 + β′2 + γ′2)∆− n′2E + 2m′n′F −m′2G,

and we can compute

DD′′ −D′2 = (αα′′ + ββ′′ + γγ′′)∆− nn′′E + (nm′′ +mn′′)F −mm′′G−
− ((α′2 + β′2 + γ′2)∆− n′2E + 2m′n′F −m′2G)

= (αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2)∆ +

+ E(n′2 − nn′′) + F (nm′′ − 2m′n′ +mn′′) +G(m′2 −mm′′).
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We would like to have an expression of the Gaussian curvature where we
only use E,F,G and u, v. We recognize that

∂E

∂u
= 2m

∂F

∂u
= m′ + n

∂G

∂u
= 2n′

∂E

∂v
= 2m′

∂F

∂v
= m′′ + n′

∂G

∂v
= 2n′′

and rewrite it as

m =
1
2
∂E

∂u
n′ =

1
2
∂G

∂u

m′ =
1
2
∂E

∂v
n′′ =

1
2
∂G

∂v

m′′ =
∂F

∂v
− 1

2
∂G

∂u
n =

∂F

∂u
− 1

2
∂E

∂v
.

Also,

(αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2) =
∂

∂u
m′′ − ∂

∂v
m′

=
∂2F

∂u∂v
− 1

2
∂2E

∂v2
− 1

2
∂2G

∂u2
.

Now we can put all the obtained expressions into the equation for Gaussian
curvature

∆2K = DD′′ −D′2

and thus we have

4(EG− F 2)2K =

= E

(
∂E

∂v

∂G

∂v
− 2

∂F

∂u

∂G

∂v
+
(∂G
∂u

)2
)

+

+ F

(
∂E

∂u

∂G

∂v
− ∂E

∂v

∂G

∂u
− 2

∂E

∂v

∂F

∂v
+ 4

∂F

∂u

∂F

∂v
− 2

∂F

∂u

∂G

∂u

)
+

+G

(
∂E

∂u

∂G

∂u
− 2

∂E

∂u

∂F

∂v
+
(∂E
∂v

)2
)
−

− 2
(
EG− F 2

)(∂2E

∂v2
− 2

∂2F

∂u∂v
+
∂2G

∂u2

)
.

In the above we can see that we have managed to write the equation for
K using only E,F and G and their partial derivatives. A line element is
an infinitesimal distance between two neighbouring points, and this can be
expressed with E,F and G as parts,√

dx2 + dy2 + dz2 =
√
Edu2 + 2Fdudv +Gdv2.
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Thus, in order to find K we only need to know the expression for a line
element on the surface, since it contains all the necessary information to
calculate K.

Now, suppose that the surface M is developed upon another surface M ′

and let every point x, y, z on M have a distinct corresponding point x′, y′, z′

on M ′. On this surface, we can assume that x′, y′ and z′ are functions of u
and v. The line element onM ′ can be expressed with E′, F ′ and G′ as parts,
and these are also functions of u and v,√

dx′2 + dy′2 + dz′2 =
√
E′du2 + 2F ′dudv +G′dv2.

When developing one surface upon another, the infinitesimal distances be-
tween points on M will be the same as for the corresponding points on M ′,
that is, the line elements will be the same, and therefore

E = E′, F = F ′, G = G′.

E, F, and G remain the same when we develop the surface upon another and
therefore so does the Gaussian curvature.
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Chapter 3

Vector analysis

3.1 Early vectors in the plane

Gauss could have simplified his calculations if he had known about vectors
and the associated scalar and vector product. At the end of this section we
will see this simplification when we state his proof in vector notation. Be-
fore that, we will see how the notion of a vector and vector analysis emerged.

At the turn of the 19th century Gauss had an idea that complex numbers
can be represented geometrically. His idea was part of his proof of the fun-
damental theorem of algebra, in his doctoral dissertation of 1799. After the
dissertation Gauss waited long before publishing anything more substantial
on this idea. That was in 1831 and at that time five other men had already
published more or less influential books and treatises on the subject. They
were Caspar Wessel, Jean Robert Argand, Abbé Buée, John Warren and
C.V. Mourey. Wessel, a Norwegian mathematician, was first when he in
the same year as Gauss’s doctoral dissertation, published Om Directionens
analytiske Betegning (On the analytical representation of direction). It was
written in Danish and unfortunately most of the European mathematicians
did not see his work until it was published in a French version in 1897 [8,
pp.5-6], [26, p.89], [39].

Wessel aimed at creating geometrical methods and the geometrical repre-
sentation of complex numbers came as a part of this. We choose a line
segment of a certain length and direction and define it to be the positive
unit denoted by +1. We then take another line segment of unit length per-
pendicular to the positive unit. We let it have the same origin and denote
it by +ε. The angle of direction at +1 is 0◦ and +ε is 90◦. By taking line
segments of unit length, oppositely directed to +1 and +ε we obtain −1 and
−ε with corresponding angles 180◦ and −90◦.

The segments of two coplanar lines, a and b, can be multiplied in the
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following way: The length of the resulting line segment c is the product of
the lengths of a and b, |c| = |a| · |b|. The resulting line segment lies in the
same plane as a and b and the angle of direction of c is the sum of the angles
of the two line segments. Since the length of a unit line is one, multiplication
of unit lines is the same as adding angles.

(+1)(+1) = +1 (+1)(+ε) = +ε (+1)(−1) = −1
(−1)(−1) = +1 (−1)(−ε) = +ε (+ε)(−ε) = +1
(+ε)(+ε) = −1 (+1)(−ε) = −ε
(−ε)(−ε) = −1 (−1)(+ε) = −ε

From these expression Wessel concluded that ε =
√
−1. We thus have a

complex plane where any straight line can be represented by x+εy with real
numbers x and y.

3.2 Quaternions

Knowing how to represent numbers in two dimensions, it is a natural step to
ask how this can be done in three dimensions. Wessel answered this question
by letting x+ ηy+ εz represent any point in space, as r, ηr and εr are three
mutually perpendicular radii of a sphere with radius r. But for multiplica-
tion of vectors in three dimensions Wessel presented a somewhat incomplete
ad hoc method.

In an 1837 essay, William Rowan Hamilton showed that complex numbers
can be represented as ordered pairs of real numbers (a, b). He also posed the
question of how to represent three-dimensional numbers which he called a
Theory of Triplets. Hamilton wanted these triplets to be associative and
commutative as well as distributive. For two triplets u and v there should
be exactly one triplet x such that ux = v. Moreover, if

(a1 + b1i+ c1j)(a2 + b2i+ c2j) = a3 + b3i+ c3j

then
(a2

1 + b21 + c21)(a2
2 + b22 + c22) = a2

3 + b23 + c23

which is called the law of the moduli.
Hamilton pondered over this question for some years, and finally, on

October 16, 1843, while walking with his wife alongside the Royal Canal
toward Dublin, it struck him. What he needed was not three numbers, but
four. The structure he had been searching for would be called quaternions
and the solution to his problem was

i2 = j2 = k2 = ijk = −1.
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Stopping at a bridge called Brougham Bridge he took his knife and carved
the insight into a stone [8, pp.23-32], [13, pp.375-376]. At this day the carv-
ing is no longer possible to see, but a stone plaque has been put there to
commemorate the event.

With real numbers w, x, y, z and symbols i, j, k, quaternions are expressed
in the form

q = w + ix+ jy + kz.

The only part of the algebra that Hamilton had to give up was commutativity
of multiplication. The following rule applies:

ij = k jk = i ki = j

ji = −k kj = −i ik = −j.

The terms vector and scalar were defined by Hamilton as parts of a quater-
nion number q. The scalar part is

S.q = w

and the vector part is
V.q = ix+ jy + kz.

Multiplication of two quaternions lacking scalar parts, α = ix+ jy+ kz and
β = ix′ + jy′ + kz′, yields

S.αβ = −(xx′ + yy′ + zz′)

V.αβ = i(yz′ − zy′) + j(zx′ − xz′) + k(xy′ − yx′).

Hamilton also introduced the operator C,

C =
id

dx
+
jd

dy
+
kd

dz
, −C2 =

(
d

dx

)2

+
(
d

dy

)2

+
(
d

dz

)2

.

Later on this symbol would change into ∇ and be called nabla.

Remark 3.2.1. In modern language we may think of {1, i, j, k} as a basis
for the space of quaternions.

3.3 Vector analysis by Gibbs and Heaviside

In the quaternions we can see many similarities to vector analysis and hence
it may not come as a surprise that vector analysis was developed from the
quaternions. Josiah Willard Gibbs and Oliver Heaviside did this almost si-
multaneously and in the same manner, but they did not know about each
other’s existence until Heaviside received a copy of Gibbs’s pamphlet Ele-
ments of vector analysis in 1888 [8, pp.151-168].
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Both of them had an interest in electricity and magnetism which led them
to read A treatise on electricity and magnetism from 1873 by James Clerk
Maxwell. In some of the calculations Maxwell had used quaternions. Since
neither Gibbs nor Heaviside knew anything about quaternions they felt a
need to study that too. At that time Peter Guthrie Tait was an influential
figure in this area, so a natural step was to read his work. With a little more
knowledge at hand, both Gibbs and Heaviside realized that although liking
the idea of the quaternions, they did not think that quaternion methods were
natural in physical applications.

In vector analysis the quaternion is divided into two independent pieces and
the scalar part is changed to be positive. It is, for example, more natural
to think of the length of a vector as positive. A vector is now a quaternion
without scalar part. The notational style of Gibbs is very similar to those
of Tait and Hamilton. Gibbs called the scalar product α.β, direct product,
which is the same as Tait’s −Sαβ or Hamilton’s −S.αβ. The vectors (or
quaternions) α and β may be interchanged as follows:

α.β = β.α

Sαβ = Sβα.

The vector product α× β, which Gibbs called skew product, is the same as
Tait’s V αβ or Hamilton’s V.αβ. Vector multiplication is anti-commutative,
as is the vector part of quaternion multiplication of α and β:

α× β = −β × α
V αβ = −V βα.

From one type of multiplication with quaternions

αβ = −(xx′ + yy′ + zz′) + (yz′ − zy′)i+ (zx′ − xz′)j + (xy′ − yx′)k,

we will get the two
α.β = xx′ + yy′ + zz′

and
α× β = (yz′ − zy′)i+ (zx′ − xz′)j + (xy′ − yx′)k.

3.4 A shorter proof

This section is concluded with another proof of Gauss’s Theorema Egregium
using vectors.

Proof of Theorema Egregium. As in the previous proof we let

h(u, v) = (x(u, v), y(u, v), z(u, v))
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be a parameterization of a surface, and let hi and hij denote the first and
second partial derivatives ∂h

∂i and ∂2h
∂i∂j . The first and second fundamental

forms are thus (
E F
F G

)
=
(
〈hu, hu〉 〈hu, hv〉
〈hu, hv〉 〈hv, hv〉

)
(
e f
f g

)
=

(〈
huu,

hu×hv√
EG−F 2

〉 〈
huv,

hu×hv√
EG−F 2

〉〈
huv,

hu×hv√
EG−F 2

〉 〈
hvv,

hu×hv√
EG−F 2

〉) .
We use the formula for Gaussian curvature,

K =
eg − f2

EG− F 2
,

and rewrite it as

K(EG− F 2) = eg − f2

= 〈huu,
hu × hv√
EG− F 2

〉〈hvv,
hu × hv√
EG− F 2

〉 − 〈huv,
hu × hv√
EG− F 2

〉2

=
1

EG− F 2

(
〈huu, hu × hv〉〈hvv, hu × hv〉 − 〈huv, hu × hv〉2

)
.

Since
〈a, b× c〉 = det(at, bt, ct)

for vectors a, b, c, where each vector is a row-vector, we have

K(EG− F 2)2 =
= det(htuu, h

t
u, h

t
v) · det(htvv, h

t
u, h

t
v)− det(htuv, h

t
u, h

t
v) · det(htuv, h

t
u, h

t
v)

= det

huuhu
hv

 · (htvv, htu, htv)
− det

huvhu
hv

 · (htuv, htu, htv)


= det

〈huu, hvv〉 〈huu, hu〉 〈huu, hv〉〈hu, hvv〉 E F
〈hv, hvv〉 F G

−
− det

〈huv, huv〉 〈huv, hu〉 〈huv, hv〉〈hu, huv〉 E F
〈hv, huv〉 F G


= 〈huu, hvv〉 · det

(
E F
F G

)
+ det

 0 〈huu, hu〉 〈huu, hv〉
〈hu, hvv〉 E F
〈hv, hvv〉 F G

−
− 〈huv, huv〉 · det

(
E F
F G

)
− det

 0 〈huv, hu〉 〈huv, hv〉
〈hu, huv〉 E F
〈hv, huv〉 F G


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= det

〈huu, hvv〉 − 〈huv, huv〉 〈huu, hu〉 〈huu, hv〉〈hu, hvv〉 E F
〈hv, hvv〉 F G

−
− det

 0 〈huv, hu〉 〈huv, hv〉
〈hu, huv〉 E F
〈hv, huv〉 F G

 .

The following part is close to Gauss’s treatment and the relations are the
same as Gauss’s m,m′,m′′, n, n′, n′′ on page 9, which we deduce by differen-
tiation of E,F and G.

〈huu, hu〉 =
1
2
Eu 〈huv, hv〉 =

1
2
Gu

〈huv, hu〉 =
1
2
Ev 〈hvv, hv〉 =

1
2
Gv

〈hvv, hu〉 = Fv −
1
2
Gu 〈huu, hv〉 = Fu −

1
2
Ev

With

1
2
Guu = 〈huuv, hv〉+ 〈huv, huv〉

Fuv −
1
2
Evv = 〈huuv, hv〉+ 〈huu, hvv〉

we also have

〈huu, hvv〉 − 〈huv, huv〉 = Fuv −
1
2
Evv −

1
2
Guu.

We put the above into the eqation for Gaussian curvature and get

K(EG− F 2)2 =

= det

Fuv − 1
2Guu −

1
2Evv

1
2Eu Fu − 1

2Ev
Fv − 1

2Gu E F
1
2Gv F G

−
− det

 0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

 .

We have thus obtained an equation only depending on intrinsic values, that
is, E,F and G, and the rest of the theorem follows.
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Chapter 4

Differential forms

4.1 Theory of Extension

Hamilton published his first paper on quaternions in 1844. In the same
year, Hermann Grassmann, a teacher from Stettin, Pomerania (today in
Poland), published a book with the long name Die lineale Ausdehnungslehre,
ein neuer Zweig der Mathematik dargestellt und durch Anwendungen auf die
übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre
vom Magnetismus und die Krystallonomie erläutert, or in short Theory of
extension. The long title may be a pointer to how the rest of the book was
written, at least in the eyes of contemporary mathematicians. In general it
was considered to be too cumbersome to read and therefore it did not gain
much popularity at first.

Grassmann’s idea was to develop a theory that would work in dimensions
of arbitrary size, and he could have competed with Hamilton’s quaternions
in becoming the forerunner of vector analysis. But unfortunately, the influ-
ence of Grassmann’s ideas was weak since his contemporaries had difficulties
with understanding what he had written [8, pp.47-77][13, p.362].

Grassmann introduced something he calls forms. A form can be a point,
a directed line segment (Strecken), an oriented area, et cetera. A point has
order zero and if we let the point move in one direction we will obtain a line.
This is a first order system. If the line is moved in a rectilinear direction,
a plane is produced. This is a second order system. The procedure can be
continued to obtain systems of higher order.

Forms can be joined by connections to produce new forms. The connec-
tions can be addition and subtraction as well as multiplication and division.
If two forms are connected by multiplication, then in general a form of higher
order will be obtained. Multiplication in the eyes of Grassmann was any dis-
tributive operation.

Grassmann introduced a type of multiplication which was called outer
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multiplication (or exterior multiplication). Outer multiplication can be
illustrated by multiplication of two directed line segments in a plane. This
can be seen as letting the directed line segment ab move along the directed
line segment ac to produce an oriented area in the plane, the parallelogram
abdc.

-a b

6

c d

e f

J
J
JJ]

J
J
JJ







�









This oriented area has been called a bivector by later authors [3, 32] since it
by moderns terms is made of two vectors. The orientation can be understood
with the help of vector analysis. The cross product of two vectors is a vector
perpendicular to the two first. The third vector will point in a direction
according to the right hand rule. If any of the two multiplied vectors point
in opposite direction, then the vector produced will have a direction opposite
to the vector produced in the first case.

Since Grassmann did not have the tools of vector analysis at hand, he
probably did not think of orientation in terms of a perpendicular vector
pointing in one direction or the other. It is more likely that he thought of
orientation as taking a walk around the perimeter of the parallelogram in
one direction or the other. For example, if a positive orientation is given
by walking around the perimeter in the order a − b − d − c − a, then a
negative orientation is obtained by walking around the perimeter in the order
a− c− d− b− a. Thus the oriented area produced by letting ab move along
ae differs from the one where ab move along ea = −ae. One is positively
oriented whereas the other is negatively oriented.

If we try to move ab along ef we realize that no parallelogram is produced.
That is, the product of two parallel line segments is zero.

The distributive rule is exemplified by moving ab along ae and then ec.
The sum of the two oriented areas obtained equals the oriented area obtained
when ab move along ac = ae + ec. Moreover, the oriented area of ab along
ae, is the same as the oriented area we obtain by first letting ab move along
ac and then ce = −ec. The rules for outer multiplication of forms would
eventually become algebraic rules for calculus on differential forms.

4.2 Manifolds

At the age of 27, Bernhard Riemann took a major step in the development
of differential geometry. Riemann wanted to obtain a lecturing position at
the University of Göttingen and for this he had to hold a lecture. Gauss who
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was a professor at Göttingen had chosen the topic of the lecture out of three
that Riemann had proposed. This was the only topic that Riemann had
not prepared and it took him almost two months to finish it. The lecture is
called Über die Hypothesen, welche der Geometrie zu Grunde liegen (On the
hypotheses which underlie geometry) and was given on June 10 1854 [13, p.
650].

The lecture is almost completely free from mathematical formalism and the
focus lies on reasoning and explaining concepts and ideas. Riemann proba-
bly did like this as he wanted all members of the faculty to understand the
lecture, even those who where not familiar with mathematics [37, p.133].
One thing that Riemann introduced was making a distinction between met-
ric and topological properties. Making this distinction made it possible to
explore the general notion of a manifold.

A manifold is essentially a set of objects (Bestimmungsweisen). It can be
discrete or continuous depending on if there is a discrete transition between
objects or a continuous transition. In the former case the objects are called
elements and in the latter points. Riemann proposes that an example of a
continuous manifold in three-dimensional space is color. Goethe’s Theory of
colours was published in 1810 [18] and with that as a background the example
of color may very well have been an example that was well understandable
by a 19th century person. In a rainbow the colors span from red to violet
in such a way that it is not possible to point out exactly where red turns
orange and so on. This is a one-dimensional continuous manifold. Lightness
(from black to white) and saturation (from greyish to clear) add two more
dimensions to the continuous manifold.

Using induction, an n-dimensional manifold can be created. We take
objects that can form a continuous manifold and move from one point to
another in a well determined way. The objects we pass form a curve, or
as Riemann also called it, a simply extended manifold. The only possible
directions are forwards and backwards. This curve can also move in a well
determined way to another curve, such that every point on the first curve
moves to a corresponding point on the second curve. These objects form
a surface, or a doubly extended manifold. A triply extended manifold is
obtained by taking this doubly extended manifold and letting it move in a
well determined way to another doubly extended manifold. By continuing
this procedure we will get manifolds of higher dimensions.

Remark 4.2.1. Grassmann’s nth order systems are created in almost the
same way as Riemann’s n-dimensional manifolds. So it seems that Riemann
could have gotten his idea from Grassmann, but Riemann claims in his lec-
ture that he had only been influenced by Gauss and Herbart, a German
philosopher [37, p.136]. Considering that few people had read Grassmann’s
Theory of Extension, this seems probable.
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Following Riemann, many mathematicians contributed to the clarifica-
tion of the definition of a manifold. Hermann Weyl made the first intrinsic
definition of a manifold in 1912. In 1936 Hassler Whitney made the first
modern statement of a manifold. Before him, there were both intrinsic and
extrinsic definitions. Whitney’s embedding theorem linked intrinsic and ex-
trinsic definitions, stating that any differentiable manifold can be embedded
in R2m+1 [1, p.144, 161], [40].

Definition 4.2.2. An n-dimensional differentiable manifoldM is a topo-
logical space where every point has an open neighbourhood Mi homeomor-
phic to an open set in Rn, i.e. there is a continuous map φi : Mi → Rn which
has a continuous inverse φ−1

i .
Furthermore, for two connected subsetsMi andMj ofM , the coordinate

change φj ◦ φ−1
i : φi(Mi ∩Mj)→ φj(Mi ∩Mj) is differentiable.

An example of a manifold is Euclidean space itself.

Definition 4.2.3. A manifold-with-boundary M is as in the above defi-
nition except that every point has an open neighbourhood homeomorphic to
either Rn or Hn = {x ∈ Rn : xn ≥ 0}. The set of all points of the latter type
is called the boundary of M , denoted by ∂M , and can be seen to form a
differentiable manifold of dimension n− 1.

We will assume that every manifold satisfies the Hausdorff separation
axiom, that every two distinct points have disjoint open neighbourhoods.

In the proofs of Theorema Egregium we denoted the tangent vectors by
∂h
∂u and ∂h

∂v for a surface parameterized by h(u, v). In a modern point of view
it is convenient to consider the differential operator ∂

∂u a tangent vector.
Thus ∂

∂u and ∂
∂v constitutes a basis for all tangent vectors on the surface.

The space of tangent vectors at a point p on a manifold M is called a
tangent space, denoted by TpM . The set of all tangent vectors ∂

∂ui
thus

constitutes a basis for the tangent space.
We define a vector field X to be a function that assigns a vector to

each point p in M ,

X(p) =
n∑
i=1

ai(p)
∂

∂ui


p

and it is said to be differentiable if all the ai’s are differentiable.

Definition 4.2.4. Given a differentiable manifoldM , a Riemannian met-
ric g on M is a mapping such that with each point p ∈ M we associate an
inner product gp : TpM ×TpM → R. This inner product satisfies the follow-
ing property: If U is any open set in M and X,Y are differentiable vector
fields on U , then the function g(X,Y ) : U → R given by

g(X,Y )(p) = gp(X|p, Y |p)
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is differentiable on U .
A Riemannian manifold M is a differentiable manifold with a Rie-

mannian metric.

4.3 Defining differential forms

Grassmann’s ideas on geometry were spread to a wider audience with the
aid of two Italian mathematicians, Giuseppe Peano and his assistant Ce-
sare Burali-Forti. Peano’s book on geometric calculus Calcolo geometrico
secondo l’Ausdehnungslehre di H. Grassmann was published in 1888 and in
1897 Burali-Forti followed with his Introduction à la géométrie différentielle,
suivant la méthode de H. Grassmann (Introduction to differential geometry).
Peano and Burali-Forti concretized Grassmann’s abstract ideas and used his
methods for calculations on geometric objects in three-dimensional space.
Partly inspired by Burali-Forti, the French mathematician Élie Cartan used
these ideas and applied them on a more general setting with differential forms
on manifolds.

Differential forms, or differential expressions, where properly defined for the
first time in 1899 by Cartan in his Sur certaines expressions différentielles
et sur le problème de Pfaff (On certain differential expressions and the Pfaff
problem). They were introduced as a part of solving the Pfaff problem,
meaning solving systems of first order differential equations. Differential
forms before Cartan’s definition had foremost been seen as those things that
appear under integral sign [4, 21].

Definition 4.3.1. Given n variables x1, x2, . . . , xn, differential forms are
homogeneous expressions ω formed by a finite number of additions and mul-
tiplications of n differentials dx1, dx2, . . . , dxn and certain differentiable co-
efficient functions of x1, x2, . . . , xn.

In general, a differential form of order p, a p-form ω, can be written as

ω =
∑

fi1,...,ip dxi1 ∧ . . . ∧ dxip

where i1, . . . , ip range from 1 to n. The symbol ∧, called wedge, is the oper-
ator for exterior multiplication. For a manifold M , we let Ωp(M) denote the
set of all p-forms on M . A 0-form is defined to be a differentiable function.
Henceforth we will assume that all p-forms are C∞.

Cartan closely followed his predecessors in notational style. As an exam-
ple, Burali-Forti defined first order forms to be of the type

x1P1 + x2P2 + . . .+ xnPn
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where x1, . . . , xn are real numbers and P1, . . . , Pn represent points. A second
order form is

x1P1Q1 + x2P2Q2 + . . .+ xnPnQn

where PiQi is a line segment between the points Pi and Qi. A third order
form is

x1P1Q1R1 + x2P2Q2R2 + . . .+ xnPnQnRn

where PiQiRi is a triangle with the points Pi, Qi and Ri as vertices. Forms of
higher order are obtained in a similar manner. Cartan’s first order differential
forms are of the type

A1 dx1 +A2 dx2 + . . .+An dxn

where Ai are functions of x1, . . . , xn and dx1, . . . , dxn are differentials. A
second order differential form is

A1 dx1 ∧ dx2 +A2 dx2 ∧ dx3 + . . .+An dxn ∧ dx1

where each dxi ∧ dxj is a differential 2-form.

Remark 4.3.2. A classical notion of dxi is that it is an infinitesimal change
of xi. In a sense we can think of it as an infinitesimal line segment with direc-
tion. Burali-Forti’s second order forms and Cartan’s first order differential
forms thus share similarities in the sense that they are sums of line segments
with coefficients. Although, in a modern sense, with the differential forms
Cartan uses the dual of a vector, which is also known as a covariant vector.

The rules for exterior multiplication, which originated from Grassmann
and was exemplified with an oriented area on page 18, can be applied to
differential forms. We use the 1-forms dx, dy, dz for an illustration.

The oriented area made of ab and ac have the same area as the oriented
area of ab and ca = −ac except for a difference in signs. In the same way
differential forms change sign if two forms are interchanged, that is, the
wedge product is anti-commutative,

dx∧ dy = − dy ∧ dx .

The parallelogram of two parallel line segments has zero area. For differential
forms we interpret this as

dx∧ dx = 0.

This can also be deduced from the first relation since dx∧ dx = − dx∧ dx
must mean that the product is zero. The distributive law was shown by
letting ab move along ae and then ec which is the same as letting ab move
along ac. In differential forms we write it as

dx∧(dy+ dz) = dx∧ dy+ dx∧ dz .
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The wedge product is bilinear, so for p-forms ω, q-forms θ and 0-forms f ,
the following rules apply:

ω ∧ (θ1 + θ2) = ω ∧ θ1 + ω ∧ θ2
(ω1 + ω2) ∧ θ = ω1 ∧ θ + ω2 ∧ θ
fω ∧ θ = ω ∧ fθ = f · (ω ∧ θ).

The product of ω and θ is a (p+ q)-form ω ∧ θ. Since the wedge product is
anti-commutative, changing the order of multiplication will result in

ω ∧ θ = (−1)pqθ ∧ ω.

Finally, the wedge product is associative:

ω ∧ (θ ∧ η) = (ω ∧ θ) ∧ η.

4.4 The differential in differential forms

The term differential form indicates that it should be possible to differentiate
a form. Cartan’s first attempt was after having defined differential forms.
He called it a derived expression (expréssion dérivée) [4].

For a 1-form
ω = A1 dx1 +A2 dx2 + . . .+An dxn

the derived expression ω′ is a 2-form

ω′ = dA1 dx1 + dA2 dx2 + . . .+ dAn dxn .

Cartan also introduced higher order derivatives as products of ω and ω′. For
example ω′′ = ωω′ and ω′′′ = 1

2ω
′2. The derived expressions did not prove to

be useful, and in 1901 he made a more general definition of the differential
[20].

Definition 4.4.1. For a p-form ω =
∑

I fIdxI with I = (i1, . . . , ip) and
dxI = dxi1 ∧ . . . ∧ dxip , the exterior differential is

dω =
∑
I

(dfI) ∧ dxI .

The form dω is of order (p+ 1). The exterior derivative of a function f
is a 1-form,

df =
∑
i

∂f

∂xi
dxi .

The exterior differential is a linear operator,

d(ω + θ) = dω + dθ.

If ω is a p-form, then the exterior derivative of ω ∧ θ is

d(ω ∧ θ) = (dω) ∧ θ + (−1)pω ∧ dθ.
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4.5 Moving frames and Gaussian curvature

In general a manifold does not naturally have a tangent space. Therefore it
needs to be equipped with one for each point of the manifold. The union
of all tangent spaces of a manifold is called a tangent bundle. Comparing
tangent vectors at different points of the manifold can be tricky, but with
Cartan’s moving frames we can overcome this difficulty.

A moving frame is a function that assigns an ordered basis of vectors,
i.e. a frame, to each tangent space of the manifold M at p,

p 7→ (V1(p), . . . , Vn(p)).

A 1-form on M is a real valued function on the tangent bundle of M ,
and at each point this function is linear. This means that, for each tangent
vector V (p) ofM , a 1-form ω defines a real number ω(V ), and for each point
p ∈M , ωp : TpM → R is a linear function. We say that ωp is an element of
the dual space of TpM . Thus 1-forms are duals of vector fields.

For an orthonormal basis (E1(p), . . . , En(p)) we let (ω1, . . . , ωn) be a dual
basis such that

ωi(Ej) = δij .

With the help of moving frames we can in yet another way prove Gauss’s
Remarkable Theorem, but for this we will need an equation for Gaussian
curvature in a more modern dressing.

Gaussian curvature in vector notation

For a surface M in R3, the normal map, or Gauss map, ν : M → S2

maps the direction of the surface normal to the unit sphere. With this,
Gauss could define Gaussian curvature at a point p ∈M as

K =
area of ν(A)
area of A

where A ⊆M is an infinitely small area element at p. This equation can be
equally well written in vector notation. We let h = h(u, v) be a parameter-
ization of M and choose a coordinate system (u, v) such that a point p on
M and its corresponding point ν(p) on S2 have the same u, v. The vectors

hu =
∂h

∂u
, hv =

∂h

∂v

span the tangent plane at p. Both M and S2 have the same normal, so their
tangent planes are parallell, and to make it easier for ourselves, we say that
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the tangent vectors lie in the same plane. Thus νu and νv can be expressed
as linear combinations of hu and hv,

νu = phu + qhv

νv = q′hu + rhv.

The following will show us that

νu × νv = K hu × hv.

The vector product of νu and νv is

νu × νv = (phu + qhv)× (q′hu + rhv)
= pr(hu × hv) + qq′(hv × hu)
= (pr − qq′)hu × hv.

By scalar multiplication with hu and hv of the linear combinations for νu and
νv we obtain expressions with coefficients of the first and second fundamental
form,

−e = 〈hu, νu〉 = 〈hu, phu + qhv〉 = pE + qF

−f = 〈hv, νu〉 = 〈hv, phu + qhv〉 = pF + qG

−f = 〈hu, νv〉 = 〈hu, q′hu + rhv〉 = q′E + rF

−g = 〈hv, νv〉 = 〈hv, q′hu + rhv〉 = q′F + rG.

From 0 = ∂
∂i〈ν, hj〉 = 〈νi, hj〉+ 〈ν, ∂2h

∂i∂j 〉 we see that e, f and g are the same
as on page 6. We put the above in matrix form(

−e −f
−f −g

)
=
(
p q
q′ r

)(
E F
F G

)
and the determinant is

eg − f2 = (pr − qq′)(EG− F 2).

Since K =
eg − f2

EG− F 2
, we see that νu × νv = K hu × hv.

Gaussian curvature with differential forms

From linear algebra, an area element on the surface M is given by

|hu × hv| du∧ dv

and on the unit sphere by

|νu × νv| du∧ dv .
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Thinking in terms of comparing area elements on M and S2, we can write
the equation for Gaussian curvature as

|νu × νv| du∧ dv = K |hu × hv| du∧ dv .

This will lead us to an expression for K in differential form. First, we let
h = (x(u, v), y(u, v), z(u, v)) be the position vector of the point p = h(u, v).
Using exterior differentiation we get a vector with 1-forms as coefficients,

dh = (dx, dy, dz)

and if we use the parameterization we can write this as

dh = hu du+hv dv .

We let (E1, E2, E3) be a right-hand orthonormal frame for the surface with
E1, E2 spanning the tangent plane and E3 being normal to M . We also let
the differential 1-forms θ1, θ2, θ3 be the duals of the vector fields E1, E2, E3

such that θi(Ej) = δij . For every tangent vector V ∈ TpM ,

θi(V ) = 〈V,Ei(p)〉, i = 1, 2, 3.

The dual form θ3(V ) is zero since E3 is orthogonal to the tangent plane.
Now we can write dh in the basis of the moving frame as

dh = θ1E1 + θ2E2,

here simplifying the writing by omitting V and p. The vector product is

dh× dh = (θ1E1 + θ2E2)× (θ1E1 + θ2E2) =
= (θ1 ∧ θ2)(E1 × E2) + (θ2 ∧ θ1)(E2 × E1).

For tangent vectors V and W

θ1 ∧ θ2(V,W ) = θ1(V )θ2(W )− θ1(W )θ2(V )
= −

(
θ2(V )θ1(W )− θ2(W )θ1(V )

)
= −θ2 ∧ θ1(V,W )

and with
(θ2 ∧ θ1)(E2 × E1) = (− θ1 ∧ θ2)(−E1 × E2)

we obtain
dh× dh = 2(θ1 ∧ θ2)E3.

The 2-form θ1 ∧ θ2 is called the area form. An area form θ1 ∧ θ2(V,W ) is
the oriented area of the parallellogram spanned by V and W . We can also
express this with hu and hv,

2(θ1 ∧ θ2)E3 = dh× dh = (hu du+hv dv)× (hu du+hv dv) =
= (hu × hv)(du∧ dv) + (hv × hu)(dv ∧ du) = 2(hu × hv)(du∧ dv).
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The vector hu × hv has the same direction as the surface normal E3 and it
follows that

θ1 ∧ θ2 = |hu × hv| du∧ dv .
By differentiating Ei(p), i = 1, 2, 3, we have the directional derivative of

Ei(p) as a point p moves along a curve on M with direction V ,

dEi(p) = ωi1(V )E1(p) +ωi2(V )E2(p) +ωi3(V )E3(p) .

We call ωij the connection form of the frame field and it can be computed
by ωij(V ) = 〈dEi(p), Ej(p)〉. It states the initial rate at which Ei rotates
toward Ej as p moves in the direction of V on M . From the dEi we will
know how the frame rotates if we move it to another point. Since the vectors
in the frame are orthogonal, with 〈Ei, Ej〉 = δij , we have

0 = d〈Ei, Ej〉 = 〈dEi, Ej〉+ 〈Ei, dEj〉

which is
ωij + ωji = 0

and especially,
ωii = 0.

We have defined E3 as being normal toM . Thus it is a normal map fromM
to S2, mapping points p in M to points E3(p) in S2. Since E3 is orthogonal
to both surfaces, the tangent planes are spanned by E1 and E2. We obtain
a tangent vector on S2 by differentiating E3:

dE3 = ω31E1 +ω32E2 .

We can obtain an area form on S2 in the same way as we obtained an area
form θ1∧θ2 onM , namely ω31∧ω32 = |νu × νv| du∧ dv. Now we can express
Gaussian curvature as

ω31 ∧ ω32 = Kθ1 ∧ θ2.

The connection between different expressions for Gaussian
curvature

Our first definition of Gaussian curvature, on page 4, was

K = ± 1
R1 ·R2

.

With moving frames we can see how this expression is connected with the
above differential expression. We begin by differentiating the vector dh a
second time and this is always zero.

0 = d(dh) = d(θ1E1 + θ2E2) = (dθ1)E1 − θ1 ∧ dE1 + (dθ2)E2 − θ2 ∧ dE2

⇐⇒
(dθ1)E1 + (dθ2)E2 = θ1 ∧ dE1 + θ2 ∧ dE2 =
= θ1 ∧ (ω12E2 + ω13E3) + θ2 ∧ (ω21E1 + ω23E3)
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What we have obtained here is Cartan’s first structural equation of
Euclidean space,

dθj =
∑
i

θi ∧ ωij .

For our further calculations we are interested in dθ3 = 0, which is

θ1 ∧ ω13 + θ2 ∧ ω23 = 0. (4.1)

We multiply this with θ2 to obtain

θ2 ∧ θ1 ∧ ω13 = 0.

The forms θ1, θ2 and ω13 are linearly dependent since the equation is zero.
From the definition of θi(V ) we know that θ1 and θ2 are linearly independent
and therefore ω13 must be a linear combination of those two, such that
ω13 = aθ1 + b′θ2. In a similar manner we have ω23 = bθ1 + cθ2. If we put
these into equation (4.1)

θ1 ∧ (aθ1 + b′θ2) + θ2 ∧ (bθ1 + cθ2) = b′θ1 ∧ θ2 + bθ2 ∧ θ1 = 0,

we can see that b′ = b. Thus we have the expressions

ω13 = aθ1 + bθ2

ω23 = bθ1 + cθ2 (4.2)

where a, b, c are functions of the chosen frame E = (E1, E2, E3).
Let E1 and E2 be the principal directions in which the normal cur-

vatures (the curvatures obtained by cutting the surface by normal planes as
explained on page 4) take their minimum and maximum values, 1

R1
and 1

R2
.

As before mentioned, the connection form ω23 states the initial rate as E2

rotates toward E3 when we move along a curve on M from a point p in the
direction V . This direction is tangent to M and when E1 = V the frame
(E1, E2, E3) is called a Darboux frame. The Darboux frame is a forerun-
ner to Cartan’s moving frame named after Gaston Darboux. According to
a theorem by Euler, the normal curvature in a direction making an angle ϕ
with E1 is

1
R1

cos2 ϕ+
1
R2

sin2 ϕ.

If we rotate the frame around E3 we obtain a new frame E′ = (E′1, E
′
2, E

′
3)

such that E′1 makes an angle ϕ with E1, E′2 makes an angle +π
2 with E′1 and

E′3 = E3. The normal curvatures in the directions E′1 and E′2 are

a(E′) =
1
R1

cos2 ϕ+
1
R2

sin2 ϕ,

c(E′) =
1
R1

sin2 ϕ+
1
R2

cos2 ϕ.
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We define ω23 to be the geodesic torsion. In the principal directions the
geodesic torsion is zero. The geodesic torsion in the direction of E′1 is denoted
by b(E′). We can obtain this from the coefficient for E′2 in dE3,

dE3 = ω′31E
′
1 + ω′32E

′
2.

We write E1 and E2 as linear combinations of E′1 and E′2,

E1 = cosϕE′1− sinϕE′2
E2 = sinϕE′1 + cosϕE′2

and put it into

dE3 = ω31E1 +ω32E2

= ω31(cosϕE′1− sinϕE′2) + ω32(sinϕE′1 + cosϕE′2).

We group the coefficients for E′2 and use the linear combination of ω13 and
ω23 from (4.2),

ω′32 = −ω31 sinϕ+ ω32 cosϕ
= ω13 sinϕ− ω23 cosϕ
= (aθ1 + bθ2) sinϕ− (bθ1 + cθ2) cosϕ
= (a sinϕ− b cosϕ)θ1 + (b sinϕ− c cosϕ)θ2.

The duals θ1 and θ2 are

θ1(E′1) = 〈E′1, E1〉 = cosϕ, θ2(E′1) = 〈E′1, E2〉 = sinϕ

and we have

ω′32 = (a sinϕ− b cosϕ) cosϕ+ (b sinϕ− c cosϕ) sinϕ

= (a− c) sinϕ cosϕ− b(cos2 ϕ− sin2 ϕ).

Here a, b, c are functions of the frame E, where the geodesic torsion b(E) = 0
and a(E) = 1

R1
, c(E) = 1

R2
. Thus,

ω′23 = (c− a) sinϕ cosϕ =
(

1
R2
− 1
R1

)
sinϕ cosϕ

and we have

b(E′) =
(

1
R2
− 1
R1

)
sinϕ cosϕ.

Now we can calculate the wedge product of ω13 and ω23,

ω13 ∧ ω23 = (a θ1 +b θ2) ∧ (b θ1 +c θ2)

= ac θ1 ∧ θ2 +b2 θ2 ∧ θ1
= (ac− b2) θ1 ∧ θ2,
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and since ω13 ∧ ω23 = −ω31 ∧ −ω32 = ω31 ∧ ω32, we see that K = ac − b2,
which is also

ac− b2 =
(

1
(R1)2

+
1

(R2)2

)
sin2 ϕ cos2 ϕ+

1
R1R2

(sin4 ϕ+ cos4 ϕ)−

−
(

1
R2
− 1
R1

)2

sin2 ϕ cos2 ϕ

=
1

R1R2
(sin4 ϕ+ cos4 ϕ+ 2 sin2 ϕ cos2 ϕ)

=
1

R1R2
(sin2 ϕ+ cos2 ϕ)2

=
1

R1R2
.

A second expression for Gaussian curvature with differential
forms

Our last expression for K will be obtained by first differentiating dE1 =
ω12E2 +ω13E3 a second time,

0 = d(dE1)
= d(ω12E2 + ω13E3)
= (dω12)E2 − ω12 ∧ dE2 + (dω13)E3 − ω13 ∧ dE3

= (dω12)E2 + (dω13)E3 − ω13 ∧ ω32E2−ω12 ∧ω31E3 .

The relation
dω12 = ω13 ∧ ω32

from the coefficients for E2, is a special case of Cartan’s second structural
equation of Euclidean space,

dωij =
∑
k

ωik ∧ ωkj .

Since
ω13 ∧ ω32 = −ω31 ∧ ω32

we can write our last equation for Gaussian curvature as

dω12 = −K θ1 ∧ θ2 .

4.6 A short proof of the Remarkable Theorem

Theorema Egregium will now be proven in a third way, with differential
forms. We begin by restating the theorem, where we will use the term
isometry. An isometry is a distance preserving mapping, that is, one that
does not stretch the surface.
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Theorema Egregium 4.6.1. If f is an isometry such that f : M → M ′,
then K(p) = K ′(f(p)), for all p ∈M .

What we are saying is that if we have a mapping that preserves distances
then the Gaussian curvature remains the same.

In this proof we will use pushforward and pullback of forms and for that
we will use a C∞ map f : M →M ′. The pushforward

f∗ : TpM → Tf(p)M
′

takes a tangent vector originating at the point p onM and moves it - pushes
it forward - so that we obtain a corresponding tangent vector at the point
f(p) on M ′. The pullback

f∗ : Ωk
f(p)(M

′)→ Ωk
p(M)

is a linear map that takes a C∞ k-form defined in a neighbourhood of f(p)
on M ′ and moves it - pulls it back - so that we obtain a smooth k-form in a
neighbourhood of p on M . The pushforward and the pullback are connected
by

f∗ω(V1, . . . , Vk) = ω(f∗V1, . . . , f∗Vk)

for a k-form ω ∈ Ωk
f(p)(M

′) and V1, . . . , Vk ∈ TpM . Properties of the pullback
that we will need, with k-forms ω and θ, are

f∗(ω ∧ θ) = (f∗ω) ∧ (f∗θ)
f∗(dω) = d(f∗ω)

f∗g = g ◦ f, g ∈ Ω0
f(p)(M

′).

Proof of Theorema Egregium with differential forms. For a point p in M we
choose a frame (E1, E2), that is tangent to M , on some neighbourhood of
p. With pushforward we can obtain a corresponding tangent frame (E′1, E′2)
around f(p) in M ′ with

E′i(f(p)) = f∗(Ei(p)), i = 1, 2, p ∈M.

This will provide us with the ability to compare M and M ′. We let θ1, θ2 be
the duals of E1, E2 and θ′1, θ′2 be the corresponding duals of E′1, E′2 with

f∗θ′i(Ej) = θ′i(f∗Ej) = θ′i(E
′
j) = δij = θi(Ej).

Using pullback we can transfer the connection form ω′12 (which measures the
rate of change as E′1 rotates towards E′2) from M ′ to M such that

f∗ω′12 = ω12.
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We will begin in M ′ with the formula for Gaussian curvature

dω′12 = −K ′θ′1 ∧ θ′2.

To be able to compare Gaussian curvature on M and on M ′ we use pullback
on dω′12 to transfer it from M ′ to M ,

f∗(dω′12) = f∗(−K ′θ′1 ∧ θ′2)
= −f∗(K ′)f∗(θ′1) ∧ f∗(θ′2)
= −K ′(f) θ1 ∧ θ2 .

Since f∗(dω′12) = d(f∗ω′12) = dω12 we have

dω12 = −K ′(f) θ1 ∧ θ2 .

Comparing this with
dω12 = −K θ1 ∧ θ2

we see that K = K ′(f), and especially K(p) = K ′(f(p)).

4.7 Integration of differential forms

There are two terms that are particularly useful when integrating differential
forms. These are the notions of closed and exact forms.

Definition 4.7.1. A p-form ω is said to be exact if there is a (p− 1)-form
θ such that ω = dθ. If dω = 0 then ω is said to be closed.

Proposition 4.7.2. An exact form is always closed, that is, d2ω = 0.

Proof. The exterior differential is a linear operator, so it is sufficient to con-
sider a p-form ω = fI dxI with exterior derivative

dω = (dfI) ∧ dxI =
∑
j

∂fI
∂xj

dxj ∧ dxI .

It follows that

d2ω = d(dω) = d

∑
j

∂fI
∂xj

dxj ∧ dxI

 =

=
∑
j

d

(
∂fI
∂xj

)
∧ (dxj ∧ dxI) =

∑
i,j

∂2fI
∂xi∂xj

dxi ∧ dxj ∧ dxI

This sum can be separated into three parts: i < j, i = j and i > j. For

i = j the sum is zero, and since
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
and dxi ∧ dxj ∧ dxI =

−dxj ∧ dxi ∧ dxI for i 6= j we have

d2ω =
∑
i<j

(
∂2fI
∂xi∂xj

− ∂2fI
∂xi∂xj

)
dxi ∧ dxj ∧ dxI = 0.
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4.8 Vector analysis analogy

In vector analysis a scalar field φ is said to be a potential of a vector field
F if F can be written as the gradient of φ,

F = ∇φ.

F is said to be a vector potential of a vector field G if

G = ∇× F.

These two can be compared with the analogous exact form. Analogues to
the closed form are

∇× F = 0

where F is said to be irrotational, or

∇ · F = 0

where F is said to be solenoidal. Just as d2 = 0 for differential forms, an
easy calculation shows that

∇× (∇φ) = 0

and
∇ · (∇× F ) = 0.

From this we can see that a vector field that has a potential is irrotational
and a vector field with a vector potential is solenoidal. The converse though,
that an irrotational vector field has a potential or a solenoidal field has a
vector potential, is not true for all domains.

Example 4.8.1. Take for example the function

F (x, y, z) =
(
−y

x2 + y2
,

x

x2 + y2
, 0
)

in R3 with the z-axis removed. This function is irrotational, or closed, since
∇ × F = 0. In order for this function to have a potential, or be exact, we
will need a function φ = φ(x, y, z) such that

F = ∇φ =
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
.

To check whether this is true, we integrate F along a curve γ which goes
around the origin in the x-y-plane.

γ = (r cos θ, r sin θ, 0), 0 ≤ θ < 2π, r positive and fixed
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We change the coordinates of F to x = r cos θ, y = r sin θ, z = z, such that

F =
(
− sin θ
r

,
cos θ
r

, 0
)
.

Integrating F along γ yields
ˆ
γ
F dγ =

ˆ 2π

0
F · dγ

dθ
dθ =

ˆ 2π

0
F · (−r sin θ, r cos θ, 0) dθ =

=
ˆ 2π

0
(sin2 θ + cos2 θ) dθ =

ˆ 2π

0
dθ = 2π.

By the chain rule we have

d

dθ
φ(cos θ, sin θ, z) =

∂φ

∂x
· dx
dθ

+
∂φ

∂y
· dy
dθ

+
∂φ

∂z
· dz
dθ

= ∇φ · dγ
dθ
,

and in the integration along γ, we exchange F for ∇φ,
ˆ
γ
F dγ =

ˆ 2π

0
F · dγ

dθ
dθ =

ˆ 2π

0
∇φ · dγ

dθ
dθ =

=
ˆ 2π

0

dφ

dθ
dθ =

ˆ 2π

0
dφ = φ(1, 0, 0)− φ(1, 0, 0) = 0.

The integration of F along γ have resulted in both 2π and 0, so the assump-
tion that F has a potential φ is wrong.

Thus we see that in the punctured plane, an irrotational vector field does
not always have a potential. This is also true for the analogous differential
forms. But, in a star-shaped domain, all closed forms are exact.

Definition 4.8.2. A subset U ⊆ Rn is said to be star-shaped with respect
to a point x ∈ U , if for each y ∈ U the line segment

λx+ (1− λ)y, 0 ≤ λ ≤ 1

is contained in U .

A first proof of a sufficient condition for a closed form to be exact was
stated by Vito Volterra in 1889 [21], although it is more commonly named
after Henri Poincaré.

Theorem 4.8.3 (Poincaré’s lemma). Let U be an open and star-shaped sub-
set of Rn. For p ≥ 1, if ω is a closed p-form in U then it is exact.
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4.9 Stokes’s general theorem

A particularly useful theorem concerning integration on manifolds is Stokes’s
general theorem.

Theorem 4.9.1. Let ω be a p-form on a (p + 1)-dimensional orientable
manifold M with p-dimensional boundary ∂M . Then

ˆ
M
dω =

ˆ
∂M

ω.

This theorem has appeared in many different shapes. Classical examples
are Gauss’s, Green’s and Stokes’s theorems. In differential form notation we
see them as a 2-form in three-dimensional space, a 1-form in two-dimensional
space and a 1-form in three-dimensional space respectively.

Gauss’s theorem

Considering the usefulness of these theorems in electromagnetic theory and
other physical applications it is no wonder that they would be written in
vector form. In an 1882-1883 paper, The Relations between Magnetic Force
and Electric Current, Heaviside stated and proved Gauss’s and Stokes’s the-
orems [8, pp.163-164], [19]. Heaviside called Gauss’s theorem the Theorem
of Divergence.

We have a closed surface S forming a boundary of a volume V . With A =
(X,Y, Z) being a force, for example electric force, dS the surface element,
dV the volume element and ε the angle between A and the outward normal
n, we write

¨
A cos ε dS =

˚ (
dX

dx
+
dY

dy
+
dZ

dz

)
dV .

The left hand integral is taken over the surface of V , and the right hand
integral is taken over the volume. A more modern way of writing this is

‹
S
A · ndS =

˚
V
∇ ·AdV .

We leave Heaviside for a while and turn to Gauss. In 1813 he stated and
proved three special cases of the divergence theorem and it has therefore
been named after him [15, 20].

Gauss begins his proof by considering a surface in space which bounds a
solid body. We let P be a point in an infinitesimal surface element ds of the
surface and PQ the exterior normal vector to the surface at P . The angles
that PQ makes with the positive x-, y- and z-axes we denote by QX,QY
and QZ. In the y-z-plane we consider an infinitesimal element dΣ. From dΣ
a cylinder is erected. This cylinder passes through the surface and an even
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number of surface elements ds′, ds′′, ds′′′, . . . is made. We want the relation
between dΣ in the y-z-plane and any ds on the surface and recognize that

dΣ = ±ds′ cosQX ′ = ±ds′′ cosQX ′′ = ±ds′′′ cosQX ′′′ = . . .

The sign is positive if the angle QX is acute and negative if the angle is
obtuse. If the cylinder enters where the angle is obtuse, then it will exit
where the angle is acute. Therefore,

dΣ = −ds′ cosQX ′ = +ds′′ cosQX ′′ = −ds′′ cosQX ′′′ = . . .

Summation leads to the first conclusion: if the integral
´
ds cosQX is taken

over the whole surface it is equal to zero. Secondly, if T,U, V are rational
functions such that T = T (y, z), U = U(x, z) and V = V (x, y), then

ˆ
(T cosQX + U cosQY + V cosQZ) ds = 0.

The third case is when we take cylinders of cross sectional area dΣ and length
x to approximate the volume of the body. It follows that the volume of the
body is expressed by

´
ds.x cosQX (expression in Gauss’s own notation)

over the whole surface.
A general proof of Gauss’s theorem was given by the Russian Michael

Ostrogradsky in 1826 [20] and the theorem is sometimes attributed to him.
Given a solid which is bounded by a surface, we let ε and ω be the surface

element and volume element respectively. We denote the angles QX,QY,QZ
by α, β, γ. We let a, b, c be constants and denote by p, q, r differentiable
functions of x, y, z. The right hand integral is taken over a solid and the left
hand integral over its boundary surface. We write the equation as

ˆ
(ap cosα+ bq cosβ + cr cos γ)ε =

ˆ (
a
∂p

∂x
+ b

∂q

∂y
+ c

∂r

∂z

)
ω.

By letting a = b = c = 1 we can deduce Gauss’s three special cases. We
let p = 1 and q = r = 0 for the first case. In the second case we let
∂p
∂x = ∂q

∂y = ∂r
∂z = 0 and for the third case we let p = x and q = r = 0.

Example 4.9.2. An example of Gauss’s theorem is the flow of an electric
field E(r) through a closed surface S. This is proportional with constant k
to the electric charge Q that is bounded by the surface,

‹
S
E · ndS = kQ.

Q is connected with the charge density ρ(r) by the equation

Q =
˚

V
ρ dV
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where V is the volume bounded by S. With Gauss’s theorem we thus have
‹
S
E · ndS =

˚
V
∇ · E dV = k

˚
V
ρ dV

⇐⇒˚
V

(∇ · E − kρ) dV = 0

⇐⇒
∇ · E = kρ.

This leads us to Maxwell’s equations.

Example 4.9.3. Maxwell’s equations are often written in vector notation
as

∇ · E = 4πρ
∇ ·B = 0

∇× E = −1
c

∂B

∂t

∇×B =
4π
c
J +

1
c

∂E

∂t

where B is magnetic field, E electric field, J electric current density and ρ
charge density. The constant c is the speed of light.

Remark 4.9.4. In order to fit with quaternion notation Maxwell defined
that the convergence of E equals −4πρ. This was changed in 1878 by
William Kingdon Clifford in his Elements of Dynamic. There he used the
negative of Maxwell’s convergence and called it divergence [8, p.142].

In free space where J = 0 and ρ = 0, Maxwell’s equations are reduced to

∇ · E = 0 (4.3)
∇ ·B = 0 (4.4)

∇× E = −1
c

∂B

∂t
(4.5)

∇×B =
1
c

∂E

∂t
. (4.6)

With differential forms the equations can be reduced further. We begin by
letting B = (Bx, By, Bz), E = (Ex, Ey, Ez) and construct the 2-form

ω = Bx dy ∧ dz+By dz ∧ dx+Bz dx∧ dy+
+ (Ex dx+Ey dy+Ez dz) ∧ c dt .
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With the convention that Bij = ∂Bi
∂j , i, j = x, y, z, t we calculate dω,

dω = d
(
Bx dy ∧ dz+By dz ∧ dx+Bz dx∧ dy+

+ (Ex dx+Ey dy+Ez dz) ∧ c dt
)

= (Bxx +Byy +Bzz) dx∧ dy ∧ dz+
+
(
(Bxt + cEzy − cEyz) dy ∧ dz+

+ (Byt + cExz − cEzx) dz ∧ dx+
+ (Bzt + cEyx − cExy) dx∧ dy

)
∧ dt .

Bxx+Byy+Bzz in the above equation can be recognized from equation (4.4),

Bxx +Byy +Bzz = ∇ ·B = 0.

The remaining part is a reformulation of (4.5),

∂B

∂t
+∇× cE = 0.

Hence,
dω = 0.

We continue by constructing another 2-form from B and E,

θ = −(Bx dx+By dy+Bz dz) ∧ c dt+
+ Ex dy ∧ dz+Ey dz ∧ dx+Ez dx∧ dy .

The exterior derivative is

dθ = d
(
− (Bx dx+By dy+Bz dz) ∧ c dt+

+ Ex dy ∧ dz+Ey dz ∧ dx+Ez dx∧ dy
)

= (Exx + Eyy + Ezz) dx∧ dy ∧ dz+
+
(
(Ext − cBzy + cByz) dy ∧ dz+

+ (Eyt − cBxz + cBzx) dz ∧ dx+
+ (Ezt − cByx + cBxy) dx∧ dy

)
∧ dt .

The above equation corresponds to (4.3) and (4.6) and we can conclude that

∇ · E +
∂E

∂t
−∇× cB = 0.

This means that also
dθ = 0.

The Hodge star operator ∗ is a linear operator such that given an
orthonormal basis e1, . . . , en

∗(e1 ∧ · · · ∧ ep) = ep+1 ∧ · · · ∧ en
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with 0 ≤ p ≤ n. Applying the Hodge star operator to ω will result in

∗ω = ∗
(
Bx dy ∧ dz+By dz ∧ dx+Bz dx∧ dy+

+ (Ex dx+Ey dy+Ez dz) ∧ c dt
)

= −(Bx dx+By dy+Bz dz) ∧ c dt+
+ Ex dy ∧ dz+Ey dz ∧ dx+Ez dx∧ dy

= θ.

Maxwell’s equations can thus be expressed by two short equations,

dω = 0
d∗ω = 0.

Here we have calculated our way from expressions dependent on the coordi-
nate system (x, y, z, t) to the two equations above that are independent of
any coordinate system.

Stokes’s theorem

We now turn to Stokes’s theorem, referred to by Heaviside as the Theorem
of Version [19].

We let a surface be bounded by a closed curve. A is any vector, for
example representing magnetic force. A1 is a vector (X1, Y1, Z1) and for X1

we have the relation (
dZ

dy
− dY

dz

)
dy dz = X1 dy dz,

with analogous formulation for Y1 and Z1. The angle between A and the
curve element dr is ε. The angle between A1 and the outward normal of
the surface element dS is ε1. The equation states that the line integral of A
equals the surface integral of A1,ˆ

A cos ε dr =
¨

A1 cos ε1 dS .

Since A1 = ∇×A, a more modern way of writing this is
˛
C
A · dr =

¨
S

(∇×A) · ndS .

Stokes’s theorem was first seen in print in 1854. It appeared as a question in
the Smith’s Prize Exam at Cambridge which George Stokes had set. He had
recieved this equation in a letter four years earlier from William Thomson
(also known as Lord Kelvin) [20].

We let dS be an element of a bounded surface and ds an element of
its boundary line. The cosines of the angles QX,QY,QZ are denoted by
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l,m, n and X,Y, Z are functions of x, y, z. The integrals are taken over the
surface and its boundary respectively and the question was to prove that the
following equality holds,

ˆ (
X
∂x

∂s
+ Y

∂y

∂s
+ Z

∂z

∂s

)
ds =

=
¨ {

l

(
∂Z

∂y
− ∂Y

∂z

)
+m

(
∂X

∂z
− ∂Z

∂x

)
+ n

(
∂Y

∂x
− ∂X

∂y

)}
dS .

By letting the surface lie in a plane and Z = 0 we arrive at Green’s
theorem, ˆ (

X
∂x

∂s
+ Y

∂y

∂s

)
ds =

¨ (
∂Y

∂x
− ∂X

∂y

)
dS .

Here n = 1 since the normal of the plane is parallell to the z-axis. Green’s
theorem was proved by Riemann in his doctoral thesis of 1851 [20].

Gauss’s, Green’s and Stokes’s theorems are all special cases of the general
Stokes’s theorem. This general theorem has been stated by many mathemati-
cians and among them Poincaré. In 1899 he stated that for an r-dimensional
manifold in n-dimensional space,

ˆ ∑
Adω =

ˆ ∑∑
k

± dA
dxk

dxk dω .

The left hand integral is taken over the (r− 1)-dimensional boundary of the
manifold and the right hand integral is taken over the entire manifold. A is
a function of n variables and dω is a product of (r− 1) of the dxi’s with the
sum being taken over all such distinct products.

Cartan presented the general Stokes’s theorem in a course he held in
Paris 1936-1937 [20]. For any oriented (p + 1)-dimensional domain A with
p-dimensional boundary C we have

ˆ
C
ω =
ˆ
A
dω.
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Chapter 5

de Rham cohomology

5.1 Two theorems by de Rham

In 1895, an article named Analysis situs by Poincaré was published. The
expression analysis situs is the old term for topology and this article can
be considered a starting point for modern topology [11, p.15], [35, p.123].
With inspiration from Poincaré’s ideas in Analysis situs, Cartan and the
Swiss mathematician Georges de Rham some years later worked on a way
to generalize Poincaré’s lemma. In 1929 Cartan stated three conjectures
which de Rham proved in his doctoral thesis Sur l’analysis situs des variétés
a n-dimension in 1931 [21]. We will look at two of the theorems which are
commonly referred to as de Rham’s theorems and for that we need some
knowledge of simplices and chains.

Definition 5.1.1. A k-simplex [P0P1 . . . Pk] in Euclidean space, is a k-
dimensional analogue of a triangle determined by k + 1 points.

A 0-simplex is a point [P0], a 1-simplex is a directed line segment [P0P1],
a 2-simplex is a triangle [P0P1P2], a 3-simplex is a tetraeder [P0P1P2P3] and
so on. If two points are interchanged then the orientation of the simplex
will change. For example, the 2-simplex [P0P1] is the same as −[P1P0]. A
k-simplex on a manifold M can be obtained from the C∞ bijective image of
a k-simplex in Rn.

Definition 5.1.2. A k-chain Ck is a linear combination of k-simplices aki
with integer coefficients λi, such that

Ck =
∑

λia
k
i .

New k-chains can be created by adding and subtracting k-chains and
multiplying them by integers.

The boundary of a point [P0] is the empty set, ∂[P0] = ∅. The boundary

41



of a directed line segment [P0P1] is its end point subtracted by its starting
point,

∂[P0P1] = P1 − P0.

The boundary of the sum of two directed line segments [P0Q] + [QP1] is

∂([P0, Q] + [Q,P1]) = (Q− P0) + (P1 −Q) = P1 − P0.

The boundary of an oriented triangle [P0P1P2], a 2-chain, is the 1-chain
consisting of the directed line segments on the boundary of that triangle.
That is, if [P0P1], [P1P2] and [P2P0] form the boundary of that triangle,
then

∂[P0P1P2] = [P0P1] + [P1P2] + [P2P0].

A plus sign indicates that the direction of the line segment is consistent with
the direction of the triangle and a minus sign indicates that the line segment
and the triangle have opposite directions. Thus, with directed line segments
[P0P1], [P1P2] and [P0P2], the boundary will be

∂[P0P1P2] = [P0P1] + [P1P2]− [P0P2].

Definition 5.1.3. A k-chain C is the boundary of a (k + 1)-chain D if
C = ∂D. A k-cycle is a k-chain C with ∂C = ∅.

The boundary of a boundary is the empty set, ∂ ◦ ∂ = ∅, as we can see
in the above example with the boundary of a triangle,

∂(∂[P0P1P2]) = ∂([P0P1] + [P1P2] + [P2P0]) =
= (P1 − P0) + (P2 − P1) + (P0 − P2) =
= ∅.

Boundaries and cycles have a neat analogue in the exact form ω = dθ and
the closed form dω = 0 for k and (k−1)-forms ω and θ. We can also compare
∂ ◦ ∂ = ∅ with d2 = 0.

Now, for some manifold D, we let C1, . . . , Cm be cycles whose linear combi-
nation forms a boundary of that manifold, that is,

m∑
i=1

aiCi = ∂D.

Remark 5.1.4. Poincaré defined this in terms of linear combinations of
independent closed manifolds instead of cycles. If we say that each Ci is
instead a manifold Mi and ai > 0 in the above linear combination, then
each aiMi is the sum of ai distinct manifolds obtained from Mi by slight
deformations [11, p.19].
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The value of the integral of a form ω over the boundary of D is equal to
the linear combination of the values of the integrals taken over the indepen-
dent cycles Ci,

ˆ
∂D

ω =
ˆ

P
aiCi

ω =
m∑
i=1

ai

ˆ
Ci

ω.

For a closed k-form ω and k-cycles C, Poincaré called these values periods
of the integral, denoted by ˆ

C
ω.

Stokes’s theorem gives us that there are two cases when the period is
zero: if ω is exact or if C is a boundary. If ω is exact, there is a θ such that
ω = dθ and ˆ

C
ω =
ˆ
C
dθ =

ˆ
∂C
θ =
ˆ

∅
θ = 0.

We state the first theorem remembering that Poincaré’s lemma tells us
that on a star-shaped domain in Rn a closed form is exact.

Theorem 5.1.5 (First theorem of de Rham). A closed form ω is exact if
all of its periods are zero, that is if

ˆ
C
ω = 0 for all C.

The second case with the period being zero, is when C is a boundary of
D such that C = ∂D andˆ

C
ω =
ˆ
∂D

ω =
ˆ
D
dω =

ˆ
D

0 = 0.

This means that
m∑
i=1

ai

ˆ
Ci

ω = 0.

Since we have m independent k-cycles Ci, the maximum number of lin-
early independent periods is m. Poincaré claimed that there would always
be integrals for which we could obtain the maximum number of periods and
this was proven by de Rham.

Theorem 5.1.6 (Second theorem of de Rham). Suppose that all independent
k-cycles Ci on a manifold M are given distinct values, per(Ci), with the
condition that when

∑
i aiCi is a boundary then

∑
i ai per(Ci) = 0.

Then there is a closed k-form ω on M which, integrated over each Ci,
takes the given values

ˆ
Ci

ω = per(Ci) for all Ci.
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5.2 The de Rham cohomology

The content of de Rham’s thesis was to be the starting point of the de Rham
cohomology. However, it was not called cohomology until the Moscow con-
ference of 1935 where the topic of cohomology was presented. Before that
everything was defined using homology, which is alike but with chains in-
stead of forms [21].

For a general manifold M , Ωp(M) is the set of all p-forms on M . We let
Bp(M) be the set of all exact p-forms on M such that

Bp(M) = {dβ : β ∈ Ωp−1(M)},

and Zp(M) the set of all closed p-forms on M such that

Zp(M) = {α ∈ Ωp(M) : dα = 0}.

Definition 5.2.1. The pth de Rham cohomology of M is

Hp(M) =
Zp(M)
Bp(M)

.

These quotient spaces turn out to represent certain topological aspects
of the manifold. In a sense they can be thought of as measuring the number
of p-dimensional holes in M that prevents it from being able to shrink to a
point. For H0(M) this is seen as the number of connected components in
M . If M has k connected components, then

H0(M) = Rk.

A star-shaped manifoldM has one connected component and thus H0(M) =
R. Two disjoint spheres S1, S2 will have H0(S1 ∪ S2) = R2.

H1(M) can be seen as the number of holes that prevents a circle from
shrinking to a point. The punctured plane has one hole in the origin and
therefore

H1(R2\{0}) = R.

The plane on the other hand, can be contracted to one point so

H1(R2) = 0.

H2(M) measures the number of hollow cavities. A sphere, S2, has exactly
one hollow cavity and

H2(S2) = R.

For an n-dimensional sphere the pth de Rham cohomology is

Hp(Sn) ∼=
{

R p = 0, n
0 otherwise.
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In three dimensions we can use vector analysis to express the de Rham
cohomology. When using differential forms we define the de Rham cohomol-
ogy to be the quotient space of closed forms modulo exact forms. In the
same way we can say that the first de Rham cohomology of an open subset
U ⊆ R3 is the irrotational vector fields modulo the vector fields that has a
potential,

H1(U) =
{F ∈ C∞(U,R3) : ∇× F = 0}
{∇φ : φ ∈ C∞(U,R)}

.

The second de Rham cohomology of U is the solenoidal vector fields modulo
the vector fields that has a vector potential,

H2(U) =
{F ∈ C∞(U,R3) : ∇ · F = 0}
{∇ × F : F ∈ C∞(U,R3)}

.

Following, H0 is defined to be the scalar fields where the gradient equals
zero

H0(U) = {φ ∈ C∞(U,R) : ∇φ = 0}.

For the plane we know that H1(R2) = 0 and this is the same as saying that
all irrotational vector fields that has potential are conservative. That is, any
line integral of F along a closed curve is zero. In the example preceding
Poincaré’s lemma we learned that in a plane with the origin removed, a line
integral around the origin is not zero. The corresponding cohomology is as
above, H1(R2\{0}) = R.
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Chapter 6

Conclusion

A milestone for the differential geometry was Gauss’s realization in the Theo-
rema Egregium that Gaussian curvature is an intrinsic property. The knowl-
edge that extrinsic coordinates were not necessary for the computation of
the curvature, opened a way for the idea of doing calculations independent
of an extrinsic coordinate system. This was at a time when the idea of a
vectorial system was still new. Wessel had found a representation for di-
rected line segments in the complex plane, and expressed them as x + εy.
Hamilton followed with his four-dimensional quaternions w + ix + jy + kz.
He coined the term vector for the quaternion part ix+ jy + kz. Gibbs and
Heaviside then improved the theory of quaternions and this resulted in the
vector analysis.

When Hamilton was busy with his quaternions, Grassmann developed
the idea of doing computations with geometrical objects, which he called
forms. One of the multiplications he defined was the exterior multiplication;
this was explained by multiplying directed line segments producing oriented
areas. The ideas of Grassmann were brought forward by Peano and Burali-
Forti to Cartan, who realized that this kind of multiplication could be used on
differential forms. The differential forms are in a sense duals of geometrical
objects, and they have the advantage of being very convenient for working
in a coordinate-free setting.

Riemann constructed the geometrical framework for a generalization of
space which he called manifolds. Grassmann had made a similar construc-
tion, but his was not as general as Riemann’s since it merely described
Euclidean space. It can be very unnatural to perceive a manifold as being
defined by means of an exterior coordinate system, but since each point in
a manifold has a neighbourhood which locally resembles Euclidean space we
can instead switch to an interior point of view. Differential forms are func-
tions of one or several tangent vectors. These can be intrinsically defined.
Since the differential forms only need intrinsic information, they are very
convenient to use when we want to do calculations on manifolds.
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We have seen that the calculus of differential forms have analogues in
vector analysis. The exterior derivative of a 0-form, 1-form and 2-form cor-
responds to the gradient, curl and divergence. In vector analysis each kind of
differentiation has to be treated differently, whereas with differential forms
we only need the d-operator. There is a similar simplification in the scalar
and vector multiplication, since the differential forms only have exterior mul-
tiplication. In three-dimensional space the exterior product of a 1-form and
a 2-form corresponds to the scalar product, and the exterior product of two
1-forms corresponds to the vector product.

Vector analysis has the advantage that the use of a fixed coordinate sys-
tem makes it easier for us to picture geometrically what happens when we
do computations. The downside is that we have to use different kinds of
differentiations and multiplications, and a wrong choice of coordinate sys-
tem can lead to cumbersome calculations. However, as we saw in the proof
of Theorema Egregium, the introduction of vector notation did simplify cal-
culations. But, changing to differential forms can bring the simplification
even further, and it has the advantage that we do not need to rely on any
coordinate system.

Poincaré’s lemma showed us that closed forms are exact in star-shaped
domains. Cartan continued on this idea and stated conjectures which de
Rham later proved. In his two theorems, de Rham used Stokes’s theorem to
create a link between chains and differential forms. This would later become
a link that connects homology and cohomology.

There is an advantage of using cohomology over homology. When we
construct a de Rham cohomology we use the exterior derivative. A homology
is constructed in a similar way by using the boundary. To know the boundary
of a manifold, we need to have certain information about the whole manifold,
that is, we need global information. The exterior derivative only needs local
information. Thus, changing from homology to cohomology means changing
from using global information to using local information.
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