
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Automated Theorem Proving

av

Tom Everitt

2010 - No 8

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Automated Theorem Proving

Tom Everitt

Självständigt arbete i matematik 15 högskolepoäng, grundniv̊a

Handledare: Rikard Bøgvad

2010

Abstract

The calculator was a great invention for the mathematician. No longer
was it necessary to spend the main part of the time doing tedious but triv-
ial arithmetic computations. A machine could do it both faster and more
accurately. A similar revolution might be just around the corner for proof
searching, the perhaps most time consuming part of the modern mathe-
matician’s work. In this essay we present the Resolution procedure, an
algorithm that finds proofs for statements in propositional and first-order
logic. This means that any true statement (expressible in either of these
logics), in principle can be proven by a computer. In fact, there are al-
ready practically usable implementations available; here we will illustrate
the usage of one such program, Prover9, by some examples. Just as many
other theorem provers, Prover9 is able to prove many non-trivial true
statements surprisingly fast.

1

Contents

1 Introduction 3
1.1 Theoretical Preliminaries . 3
1.2 About This Essay . 4

2 Propositional Logic 6
2.1 Definitions . 7
2.2 Normal Forms . 8

2.2.1 Negation Normal Form 9
2.2.2 Dual Clause Normal Form 10
2.2.3 Clause Normal Form . 10
2.2.4 Normal Form . 11
2.2.5 A Note on Time Complexity 11
2.2.6 Proof Procedural Properties 12

2.3 Propositional Resolution . 12
2.3.1 The R Operation. 14
2.3.2 The Procedure . 15

3 Predicate Logic 18
3.1 Definitions . 18

3.1.1 Syntax . 18
3.1.2 Semantics . 19

3.2 Normal Forms . 20
3.2.1 Negation Normal Form 20
3.2.2 Prenex Form . 21
3.2.3 Skolem Form . 21
3.2.4 Clause Form . 23
3.2.5 Normal Form . 23

3.3 Herbrand’s Theorem . 23
3.3.1 Herbrand Models . 24
3.3.2 Properties of Herbrand Models 25
3.3.3 Herbrand’s Theorem . 26
3.3.4 The Davis-Putnam Procedure 27

3.4 Substitutions . 28
3.4.1 Combination . 29

3.5 Unification . 29
3.5.1 Disagreement set. 30
3.5.2 Unification Algorithm . 31

3.6 Resolution . 34
3.6.1 The Resolution Rule. 34
3.6.2 The R Operation . 36
3.6.3 The Procedure . 37

4 Applications 39
4.1 Prover9 . 39

4.1.1 Syllogism . 39
4.1.2 Group Theory . 40

4.2 Achievements . 42

2

1 Introduction

An automated theorem prover is an algorithm that uses a set of logical deduction
rules to prove or verify the validity of a given proposition. So if logical deductions
are perceived of as a formalization of correct, sound steps of reasoning, then
an automated theorem prover becomes an algorithm of reasoning. As such,
the study of automated theorem proving forms a quite natural extension to
the mathematical-philosophical programme of formalizing thought (i.e., logic)
initiated by Aristotle 300BC.

1.1 Theoretical Preliminaries

Sentences of almost any logic can be divided into three groups: the valids, the
contradictorious and the ones in between. The difference is their semantical
status. The valid ones are tautologies, they are true no matter how interpreted;
the contradictorious are unsatisfiable, they can never be true. The rest are
sentences which are sometimes true, but not always.

The set of valid sentences L> is almost the same as the set of contradictori-
ous sentences L⊥, the slight difference being the addition of a negation sign. If
P is a valid sentence, ¬P will be contradictorious, and vice versa.

In propositional logic there are never more than a finite number of inter-
pretations (valuations), making the partitioning of a propositional language L
into L>, L⊥ and Lrest = L − (L> ∪ L⊥) theoretically easy. To decide which
set a given sentence belongs to, we can simply test all possible valuations. The
problem of doing this in practice is less easy, and will be discussed later.

In predicate logic the situation is more complex. The number of interpreta-
tions are uncountably infinite, making any ”brute force”-procedure impossible.
We depend entirely on more profound techniques to determine semantical status.
Sometimes convincing informal arguments are used, e.g. to motivate axioms.
But most often we turn to proofs.

Proofs are sequences of sentences S1, . . . , Sn, where each sentence Si is either
an axiom (whose validity is originally established by an informal argument), or
follows from sentences occurring earlier in the sequence by some deduction rule
(i.e. a relation P,Q ` R between formulas P , Q, R, such that whenever P and
Q are true under an interpretation I, then so are R). Since the deduction rules
are chosen to preserve validity, the validity of Sn is proven.

Proofs can be used in two ways. Either, as above, to prove the validity of
Sn from axioms; sometimes called forward-proofs. But they can also be used to
derive the unsatisfiability of a formula Q, by proving the negation of an axiom
from Q (a backward-proof, aka proof by contradiction). The latter technique
turns out in practice to be better suited for automatic proof procedures, because
no matter what the original formula is, the goal is always the same (the negation
of some axiom).

In the resolution method, for instance, the goal is the empty clause (which is
contradictorious). Consequently, no matter the input, it always tries to derive
a clause with all literals eliminated.

3

Completeness theorems for the respective logics ensures that a sentence is
valid if and only if a proof is available (given some suitable set of deduction
rules). Furthermore, the proofs are only countably many: they are strings of
symbols, and it is easy to determine whether a string of symbols is a proper
proof or not.

Hence proofs provide us with a way to verify (in finite time) that a given
sentence P is valid (or contradictorious). Systematically stepping through an
enumeration of all proofs until a proof of P is found, is a distinct theoretical
possibility (although hardly a practical or efficient one).

Having thus in principle found a way to verify that a sentence belongs to L>
or L⊥, we would expect to find a way to verify that a sentence R is in Lrest.
After all, this problem seems much easier. We do not need to show anything
about all interpretations, we only need to find one interpretation in which R is
true, and one under which R is false.

Having also a method to verify satisfiability, we would always be able to
determine the belonging of a given sentence S. We could run the validity and
satisfiability procedures simultaneously. One of them would always stop in finite
time.

Although it is possible in many situations to find two interpretations that
gives different truth values to a formula R, it is not, surprisingly, possible to find
an algorithm that (always) succeeds. This is a consequence of a result proved
independently and almost simultaneously by Alonzo Church and Alan Turing,
in the 1930’s.

Theorem 1.1 (Turing’s Theorem). There exists no algorithm A such that A
always finishes with the correct answer (in finite time) to the question: is the
formula P a valid sentence in first-order predicate logic?

A somewhat analogous result for propositional logic essentially states that
there is no efficient procedure to determine the semantical status of a propo-
sitional formula. The satisfiability problem for propositional problem is NP -
complete[1]. This makes most scientists believe that no algorithm A exists such
that (i) A always answers correctly to the question: is the propositional formula
P satisfiable? and (ii) A always terminates in polynomial time with respect to
the size of the input. (NP -completeness has not yet been proven to imply that
no polynomial time algorithm exists, however.)

Theorem 1.2 (Cook’s Theorem). The satisfiability problem of propositional
logic is NP -complete.

1.2 About This Essay

In this essay automated theorem proving in propositional and first-order logic
will be covered. The main part of the material comes from essentially two
sources. The first is Alan Robinson’s paper ”A Machine-Oriented Logic Based
on the Resolution Principle”[5] from 1965. This is the paper where the resolution
proof procedure was first presented. The resolution procedure has ever since
dominated the area of automated theorem proving in first-order logic (cf. [3, p.
ix]). Accordingly it dominates also in this essay.

4

The second source is a textbook by Melvin Fitting, named ”First-Order
Logic and Automated Theorem Proving”[3], which has provided me the more
general picture of automated theorem proving.

I claim no originality of the ideas presented in the subsequent parts of this
essay. Although I have always written from my own understanding, the original
proof ideas etc. comes almost exclusively from the two sources I have mentioned.

On the reader’s part, I have assumed that he/she possesses a basic knowl-
edge of formal logic, approximately corresponding to a first course in logic.
So familiarity with: syntax and semantics; proof and validity; completeness,
soundness and compactness is presumed, but the reader should do fine with-
out any prior acquaintance with automated theorem proving. Some important
important logical concepts will be reviewed, however.

5

2 Propositional Logic

We have already sketched a proof procedure for sentences of propositional logic
in the introduction. There we used the simplest method at hand: we tried all
possible valuations of the occurring propositional letters.

In this section we will develop an alternative method called Propositional
Resolution. It is based on a the (propositional) resolution rule, a simple variant
of the first-order procedure that we will use later.

Its main virtue is that it forms a natural introduction to the Predicate Res-
olution procedure, but it also shares some similarities with one of the most
efficient proof procedures of propositional logic: The Davis-Putnam procedure
for propositional logic[2]. The Davis-Putnam procedure for propositional logic
will not be discussed in this essay however.

The Resolution Rule. In logic we generally motivate our choice of deduction
rules by their simpleness and intuitiveness. A good example of this is the Modus
Ponens rule:

A, (A→ B) ` B

which could hardly be any simpler or more intuitive.
In the case of automated theorem proving we are more interested in the

speed of the deductions, or, rather, deduction rules upon which we can build
fast proof procedures. It turns out that the resolution rule is suitable:

(A1 ∨ · · · ∨Ak ∨ C), (B1 ∨ · · · ∨Bl ∨ ¬C) ` (A1 ∨ · · · ∨Ak ∨B1 ∨ · · · ∨ Bl)

The key point is that C occurs in one disjunction and ¬C in another. Hence
we may eliminate C. Because any model satisfying the disjunctions to the left
must fail to satisfy either C or ¬C. In case it fails to satisfy C it must satisfy
at least one of A1 . . . , Ak. And in case it fails to satisfy ¬C, it must satisfy at
least one of B1, . . . , Bl.

In either case the model satisfies at least one of A1, . . . , Ak, B1, . . . , Bl, and
thereby the right hand formula, the resolvent, (A1 ∨ · · · ∨Ak ∨B1 ∨ · · · ∨ Bl).

Refutation Procedures. Based on the resolution rule we can build a proce-
dure that tells whether a given sentence is unsatisfiable or not. If we can deduce
a contradiction, it must be unsatisfiable, if we cannot, it must be satisfiable.

This can also be used to determine validity. Say for example that we want to
know whether a formula P is valid or not. The trick is then to let the procedure
determine the satisfiability of ¬P . If ¬P was satisfiable, then P is not valid,
and if ¬P was not satisfiable, then P is valid.

A procedure determining validity of P by refuting ¬P (i.e. proving that ¬P
is contradictorious), is called a refutation procedure. Most ATP:s (including
Resolution) are refutation procedures.

Before further investigating the resolution procedure, we need to settle some
terminology, as well as have a look at some normal forms.

6

2.1 Definitions

Language Our language consists of propositional letters A, B, C,. . . , indexed
with a natural number if necessary; together with the primary connectives ¬,
∧, ∨ and the parentheses ’(’, ’)’. The syntactic rules for their combination are
the standard ones. We call a well formed string of these symbols a formula or
sentence.

Other connectives such as →, ↔ are not considered primary. They are
defined as (A→ B) = ((¬A) ∨B) and (A↔ B) = (A→ B) ∧ (B → A).

Literal. With a literal we mean a formula that is a propositional letter or the
negation of a propositional letter. A, ¬C and ¬B1 are all examples of literals,
in contrast to (A ∨B) and ¬¬B that are non-literals.

Complement. For a propositional letter A, the complement of A is A = ¬A,
and the complement of ¬A is ¬A = A. So the complement of a literal is
also a literal. Two literals form a complementary pair if they are each others
complements.

The reason for introducing complements is that it is a convenient way of
avoiding double negations. The complement of the complement of A, for exam-
ple, is simply A; whereas the negation of the negation of A is ¬¬A.

Valuation. It is well-known that a valuation V of a formula P , is determined
by a valuation of the propositional letters in P .

We will use this by identifying a valuation with a set V of literals, such that

• for every propositional letter A in P , either A or ¬A is in V , and

• V contains no complementary pairs.

For a propositional letter A in P , we gather that

• V evaluates A to true if A is in V , and

• V evaluates A to false if ¬A is in V .

It is clear from the definition of valuations that exactly one of these cases must
arise. The evaluation of the formula P as a whole is then recursively determined
from the valuation of its subformulas.

Satisfaction. A valuation satisfies a formula P if it evaluates P to true. And
it satisfies a set S of formulas if it evaluates each member of S to true.

A formula P is said to be satisfiable if there exist some valuation under
which P is true, and P is said to be valid if all valuations renders P true.

Two formulas P and Q are equivalent if they are satisfied by exactly the
same valuations. And P and Q are considered equisatisfiable if either both are
satisfiable, or both are unsatisfiable.

7

Generalized conjunctions and disjunctions. Normal forms based on gen-
eralized conjunctions and generalized disjunctions will be an important com-
ponent of much of the subsequent theory. Therefore we will take the time
to define some extra operations and notation for these. A formula on the
form (P1 ∧ · · · ∧ Pn) is a generalized conjunction, and a formula on the form
(P1 ∨ · · · ∨ Pn) is a generalized disjunction, given that they do not contain the
same formula more than once (the Pi’s must be pairwise distinct).

To emphasize that a formula is a generalized conjunction (disjunction),
rather than just any conjunction (disjunction), we will use different parentheses:
〈P1 ∧ · · · ∧ Pn〉 for generalized conjunctions and [P1 ∨ · · · ∨ Pn] for generalized
disjunctions.

We shall also apply the following set-conventions to generalized conjunctions
and disjunctions:

• The order of the subformulas will be immaterial, e.g. 〈A ∧ B〉 will be
considered the same as 〈B ∧A〉.

• The set operations ∪,−,∈ receive the following meaning: for P = 〈P1 ∧
· · · ∧ Pm〉 and Q = 〈Q1 ∧ · · · ∧Qn〉:

– P ∪Q = 〈P1 ∧ · · · ∧ Pm ∧Q1 ∧ · · · ∧Qn〉 (duplicates removed).

– If A = Pi for some i, we have that A ∈ P . Otherwise A 6∈ P .

– P − 〈Pi〉 = 〈P1 ∧ · · · ∧ Pi−1 ∧ Pi+1 ∧ · · · ∧ Pm〉, also denoted P − Pi

when there is no risk of confusion. If A 6∈ P , then P − 〈A〉 = P .

The same applies to generalized disjunctions. The union of a generalized
conjunction and a generalized disjunction is undefined.

The empty generalized conjunction, denoted 〈〉, is always true; and the empty
generalized disjunction, denoted [], always false.

Clause and Dual Clause. A clause is simply a generalized disjunction of
literals, and a dual clause the conjunctive counterpart. So if A1, A2, A3 are
distinct propositional letters, then [A1 ∨ ¬A2 ∨ ¬A3] is a clause and 〈A1 ∨ A2〉
a dual clause.

Clauses are a central component of the normal form we will work with the
most: the clause normal form (see below).

2.2 Normal Forms

Normal forms fixate the structure of a sentence in some way. This is a very
useful feature. In the case of an automated theorem prover, knowing that a
sentence is in some normal form drastically reduces the number of cases one
needs to take into account.

Generally it is possible to convert any formula P to an equivalent formula
Q on some normal form N , by successively rewriting P according to some tau-
tologies. Sometimes, however, the conversion can be performed faster if we only
require Q to be equisatisfiable. This is for example the case with clause normal
form, as we shall see below.

8

In many cases equisatisfiability is sufficient. To show, for instance, that
a formula P is unsatisfiable, it is enough to show that a formula Q that is
equisatisfiable to P , is contradictorious.

Three normal forms for propositional logic will be discussed: negation normal
form, clause normal form, and dual clause normal form.

2.2.1 Negation Normal Form

A formula is said to be on negation normal form if all negation signs prefixes
propositional letters.

Conversion. To convert a formula to negation normal form we make use of
De Morgans Laws to make negations ”travel inwards”, and The Law of Double
negation to make double negations disappear.

Example. The formula ¬((P ∨Q)∧ (¬P)) will be converted the following way:

1. ¬((P ∨Q) ∧ (¬P)) (Original formula)

2. (¬(P ∨Q) ∨ (¬(¬P))) (De Morgan),

3. (¬(P ∨Q) ∨ P) (Double Negation),

4. ((¬P ∧ ¬Q)) ∨ P) (De Morgan).

More formally, to convert a formula P to negation normal form, do the following.
While P is not a literal, depending on the following cases, do:

• If P = ¬¬Q, then replace P withQ, and continue convertingQ to negation
normal form.

• If P = ¬(Q1∧Q2), then replace P with ((¬Q1)∨ (¬Q2)) and convert ¬Q1

and ¬Q2 to negation normal form.

• If P = ¬(Q1∨Q2), then replace P with ((¬Q1)∧ (¬Q2)) and convert ¬Q1

and ¬Q2 to negation normal form.

• If P = (Q1 ∧Q2), then convert Q1 and Q2 to negation normal form.

• If P = (Q1 ∨Q2), then convert Q1 and Q2 to negation normal form.

When this algorithm has been carried out till the end our formula will con-
sist of literals combined only by ∧ and ∨ (¬ will only prefix propositional letters).

We verify this with structural induction:
It is clear that the algorithm applied to an atomic formulas will yield an

equivalent formula where ¬ only prefixes propositional letters (it will simply do
nothing at all).

Assume now that it will work on formulas Q1 and Q2. Then it is clear that
it will also work on the formulas ¬¬Q1, ¬(Q1 ∧Q2), ¬(Q1 ∨Q2), (Q1 ∧Q2) and
(Q1 ∨Q2).

Hence it will work on any formula.

9

2.2.2 Dual Clause Normal Form

Dual clause normal form (or sometimes disjunctive normal form or simply
clause form) is quite easy to characterize. A formula on dual clause form is
simply a generalized disjunction of dual clauses. So any formula on the form

[〈L11 ∧ · · · ∧ L1k1〉 ∨ · · · ∨ 〈Ln1 ∧ · · · ∧ Lnkn〉]

is on dual clause form, given that each Lij is a literal.

Conversion. A given sentence S has a finite number of satisfying valuations
V1, . . . , Vn. These can easily be determined by trying all possible valuations for
S. And from each valuation Vi we can form the generalized conjunction Pi of
all members of Vi. Since all members of Vi are literals, Pi will be a dual clause.

Now, to get an equivalent sentence S′ on dual clause form, simply let S′ be
the generalized disjunction of all Pi:s, i.e. let S′ = [P1 ∨ · · · ∨ Pn]

S and S′ will then be satisfied by exactly the same valuations, and S′ be on
normal form.

As an example, consider the sentence R = (A ∧ (B ∨ A)). Two valuations
satisfies R, {A,B} and {A,¬B}. So an equivalent sentence on dual clause form
is R′ = [〈A ∧B〉 ∨ 〈A ∧ ¬B〉].

2.2.3 Clause Normal Form

There is also a normal form based on the clause, the clause normal form (also
known as conjunctive normal form or just clause form). It is just like the dual
clause form, except that the generalized disjunctions switched place with the
generalized conjunction. Hence, any formula on the form

〈[L11 ∨ · · · ∨ L1k1
] ∧ · · · ∧ [Ln1 ∨ · · · ∨ Lnkn

]〉

where each Lij is a literal, is on clause normal form.

Conversion. To convert a formula S to an equivalent formula S′ on clause
normal form, let first T be ¬S converted to dual clause normal form. Then let
S′ be ¬T converted to negation normal form. Then S′ will be equivalent to S,
and, due to a De Morgan law, S′ will be on clause normal form.

Alternative (more efficient) Conversion. In many situations it is suffi-
cient to find an equisatisfiable formula on clause form. This can be done much
faster. To convert for example the formula P = ¬(A ∧ (B ∨ C)), we assign a
new propositional letter α1, α2, . . . to every subformula of P . To (B ∨ C) we
assign α1, to (A ∧ (B ∨ C)) we assign α2 and to ¬(A ∧ (B ∨ C)) we assign α3.

Now, we can express the fact that α1 should be true if and only if at least
one of B and C is true, by the clauses

[¬α1 ∨B ∨ C], [¬B ∨ α1], [¬C ∨ α1]

And to express that α2 should be true if and only if both α1 and A are true, we
use the clauses

[¬A ∨ ¬α1 ∨ α2], [¬α2 ∨A], [¬α2 ∨ α1]

10

Finally, the clauses
[¬α3 ∨ ¬α2], [α2 ∨ α3]

express α3’s relation to α2.
Now, let Q be the conjunction of all these clauses and [α3]. If Q is satisfied

by some valuation V , then V also satisfies P . And, conversely, if V satisfies P ,
then there is an extension of V that also satisfies Q. Hence we have found an
equisatisfiable formula

Q = 〈[¬α1 ∨B ∨ C] ∧ [¬B ∨ α1] ∧ [¬C ∨ α1]∧
[¬A ∨ ¬α1 ∨ α2] ∧ [¬α2 ∨A] ∧ [¬α2 ∨ α1]∧
[¬α3 ∨ ¬α2] ∧ [α2 ∨ α3]∧
[α3]〉

The example covers virtually any case that can arise. For a general formula
we go ahead much the same way. First we assign new predicate letters to each
subformula. Then, for each new predicate letter, we express its relation to its
subformula by a few clauses. Finally we create a clause that states that the full
formula is true, and form the conjunction of them all.

2.2.4 Normal Form

Normal form will just be short for clause normal form in the case of propositional
logic.

2.2.5 A Note on Time Complexity

Definition. An algorithm is considered efficient if the time it requires only
grows polynomially with the size of the input. It is considered inefficient if the
time grows faster than polynomially, e.g. exponentially. A problem is easy if
there exists an efficient algorithm solving it.

Conversion to negation normal form is efficient. Essentially only one operation
is applied to each subformula, and the number of subformulas in a formula P
only grows linearly with the size of P .

The conversions to dual clause and clause form are inefficient, for the number
of valuations of P grows exponentially with the number of distinct propositional
letters in P (and in the worst case, all propositional letters are distinct). In fact,
it could not be that there was an efficient algorithm for conversion to dual clause
form. For if there were an efficient procedure, we could use that the satisfiability
problem for dual clause formulas is easy (see next section 2.2.6), to get an
efficient procedure solving the general satisfiability problem of propositional
logic. But due to Cook’s theorem 1.2, no such procedure can exist.1

The alternative conversion procedure for clause form is efficient however,
it grows linearly with the number of subformulas (just as the negation form
procedure). The price is, of course, equivalency.

1Is likely to exist, if one should be precise. See section 1.1.

11

2.2.6 Proof Procedural Properties

When one wants to determine satisfiability of a formula it is generally advan-
tageous to know that the formula is on some normal form, rather than having
no structural information at all. But whether it is on clause or dual clause
normal form also has a significant impact on the time it will take to determine
satisfiability.

The Dual Clause Form. The dual clause form is especially well suited for
determining satisfiability. Take a sentence

P = [C1 ∨ · · · ∨ Cn] = [〈L11 ∧ · · · ∧ L1k1
〉 ∨ · · · ∨ 〈Ln1 ∧ · · · ∧ Lnkn

〉]

(the Lij :s literals and the Ci:s dual clauses).
P is then satisfiable if and only if at least one dual clause Ci is satisfiable.

But it is easy to see that a conjunction Ci of literals is satisfiable if and only if
it contains no complementary pair (i.e. B and ¬B for some propositional letter
B).

That means that P is unsatisfiable if and only if each Ci contains a com-
plementary pair. This can be verified in polynomial time in the number of
propositional letters and the size of the formula.

The Clause Form. There is no similarly straightforward procedure for for-
mulas on clause form. The problem of determining satisfiability for a formula
on clause form is NP -complete; an immediate consequence of Cook’s theorem
1.2, and the fact that we efficiently can convert any formula to clause form with
maintained satisfiability.

Unfortunately, the clause form is more common than the dual clause form.
Not only is it much faster to convert a formula to clause normal form, but it also
arises naturally from the predicate logic proof procedures we shall discuss later.
One can of course convert a clause form formula to a dual clause form formula,
but it is not a practically useful: the time required for conversion is as great as
the time required to check satisfiability of a clause form formula directly.

This makes it much more interesting to develop proof procedures for clause
form formulas than for dual clause ones. Consequently, both the resolution
procedure and the Davis-Putnam procedure (mentioned in the introduction of
this section), are developed for clause form formulas. The satisfiability problem
for formulas on clause form is generally referred to as the clause normal form
satisfiability problem (or simply CNF-Sat) in the literature.

2.3 Propositional Resolution

We are now ready for the proof procedure of this section. It is essentially a
satisfiability checker for normal form formulas, but as we have seen in the intro-
duction we can easily reduce the proof problem of any formula to the satisfiabil-
ity problem of a normal form formula by negating the formula and converting it
to normal form. Also, the satisfiability problem of a normal form formula will
arise naturally by itself in predicate logic that we will come to later.

Example. We introduce a main example that will stay with us through the
section, hopefully making the formal definitions more intelligible.

12

Assume we want a procedure to tell us whether the normal form formula

〈[¬A ∨B] ∧ [A ∨B] ∧ [¬B]〉

is satisfiable or not (we can easily see that it is not, but we want a procedure to
tell us that).

A natural way to go ahead would be to try to prove a contradiction from
the formula. In case it implies a contradiction, it must be unsatisfiable; and in
case not, we should be able to find a model for the formula.

Our satisfiability checker will be based on the resolution rule (stated above
on page 6) as its only rule of deduction. It will be convenient to restate the
resolution rule specifically for clauses, using the extra terminology introduced
with generalized conjunctions.

The Propositional Resolution Rule. Assume P = [A1∨ · · ·∨Am∨C] and
Q = [B1 ∨ · · · ∨Bn ∨ ¬C] are both clauses. Then

R = (P − [C]) ∪ (Q− [¬C]) = [A1 ∨ · · · ∨Am ∨B1 ∨ · · · ∨Bn]

is the resolvent of (the ordered pair) P and Q with respect to C. Often we
will simply talk about a resolvent of P and Q, without specifying the predicate
letter C. Then the resolvent will not necessarily be P and Q’s only resolvent,
as they may have resolvents with respect to other predicate letters as well.

Two properties of this rule will be important:
(i) Any model satisfying P and Q will also satisfy R (this is just to say that

the rule is valid, which we argued for above on page 6).
(ii) If P and Q are clauses, then any resolvent R of P and Q must also be a

clause. This must be, since R inevitably will be generalized disjunction of only
literals if P and Q contain only literals.

Definition. Two sentences S and T are equisatisfiable if each model satisfying
S satisfies T and vice versa.

Proposition 2.1. Assume that S is a normal form formula containing clauses
P and Q, and that R is a resolvent of P and Q. Then S ∪ 〈R〉 is equisatisfiable
with S, and S ∪ 〈R〉 is on clause normal form.

Proof. First note that any model satisfying all clauses of S ∪ 〈R〉 must also
satisfy the clauses of S (they form a subset of the clauses of S ∪ 〈R〉).

Now, assume that a model M satisfies S. Then M satisfies P and Q, and
thereby also their resolvent R. Hence M satisfies all clauses of S ∪ 〈R〉.

Finally we note that since R is a clause, S ∪〈R〉 will be on normal form.

Example. Using proposition 2.1 we could then go ahead and appending every
resolvent we can find to 〈[¬A ∨ B] ∧ [A ∨ B] ∧ [¬B]〉. Writing the generalized
conjunction as a list, we would get:

1. [¬A ∨B]

2. [A ∨B]

13

3. [¬B]

4. [B]

5. []

where 4 is a resolvent of 1 and 2, and 5 is a resolvent of 3 and 4. Since 5 is the
empty clause, and hence unsatisfiable, we have reached the desired contradiction
here.

The success of the above example might tempt us to formulate a procedure
for an arbitrary formula S, along the lines of: Take a pair of clauses C and D of
S. If they have a resolvent B, update S by substituting B for C and D. Then
apply the same procedure on S again.

This would have worked fine in the above example. It would also have had
the nice feature of successively reducing the number of clauses; leading to a very
efficient proof procedure, had it always worked.

Unfortunately we can only append new resolvents, not substitute them for
old clauses. Otherwise this might have happened:

1. [¬A ∨B]

2. [A ∨B]

3. [¬B]

4. [A]

(4 is a resolvent of 2 and 3). If we had replaced 2 and 3 with 4, we would have
been stuck.

Hence, we can merely append clauses, not replace. We express this formally
with the R operation, which extends a formula with all available resolvents.

2.3.1 The R Operation.

Definition. For S on normal form and R a clause, we call the formation of
S ∪ 〈R〉 from S to append (the clause) R to S.

The result of appending to a sentence S each resolvent, of every pair of clauses
of S, will be denoted R(S).

In our main example, where

S = 〈[¬A ∨B] ∧ [A ∨B] ∧ [¬B]〉

this means to append the clauses: [B] (from clause 1 and 2), [¬A] (from clause
1 and 3) and [A] (from clause 2 and 3). Which gives

R(S) = 〈[¬A ∨B] ∧ [A ∨B] ∧ [¬B] ∧ [B] ∧ [¬A] ∧ [A]〉

To get the empty clause we have to apply the R operation once more. It is
a resolvent of clause 3 and 4 (and of clause 5 and 6!) of R(S).

Applying R n times to a formula S will be denoted Rn(S).

Proposition 2.2. For any normal form formula S and any natural number n,
then Rn(S) is equisatisfiable with S.

14

Proof. It follows directly from proposition 2.1 that R(S) will be equisatisfiable
with S for any normal form formula S. And since R preserves the sentence on
normal form (also by proposition 2.1), applying R any number of times, will
still yield an equisatisfiable sentence.

Definition. A formula S to which no new clauses are added by the R operation
(i.e. R(S) = S), is said to be R-satisfied.

2.3.2 The Procedure

The propositional resolution procedure can now be defined by the pseudocode
of Algorithm 1. For a given sentence S (that should be on normal form), it will
keep applying the R procedure until either no new clauses are added (in which
case S is satisfiable) or the empty clause is added (S is unsatisfiable).

Algorithm 1 The-Propositional-Resolution-Procedure(S)

i← 0
loop
i+ +
if Ri(S) = Ri−1(S) then

return satisfiable

else if Ri(S) contains the empty clause then
return unsatisfiable

end if
end loop

If n is the number of laps we go trough the loop, either of these has to
happen before n ≥ 22l (where l is the number of distinct propositional letters
of S). For in each application of R at least one new clause has to be appended
(otherwise the first break criteria will be met). But only a finite number of
clauses can be constructed from the finite number of propositional letters of S.
In fact, exactly 22l different clauses can be constructed. 2l is the number of
literals constructable from l letters, and each literal can either be part of, or not
be part of, a clause (a clause is completely determined by its literals).

Now, it follows immediately from proposition 2.2 that if the second break
criteria is met at some i, i.e. [] ∈ Ri(S), then S cannot be satisfiable. But
are all R-satisfied formulas not containing [] satisfiable? The following lemma
answers that question in the positive.

Definition. A set of literals, not containing any complementary pair, is called
a partial valuation. A partial valuation V contradicts a clause C if, for each
literal L in C, the complement L is in V .

A partial valuation V is a full valuation (or simply a valuation) of a formula
S, if for each literal L in S, either L or L is in V .

The partial valuation is used to successively build up a full valuation.

Lemma 2.3. Any R-satisfied formula not containing [] is satisfiable.

Proof. Assume that S is an R-satisfied formula, [] 6∈ S, containing propositional
letters A1, . . . , An. Then we construct a model for S by successively extending

15

a partial valuation the following way:

Let M0 = ∅.
For i between 1 and n, let

Mi =

{
Mi−1 ∪ {Ai} if Mi−1 ∪ {Ai} does not contradict any clause of S.

Mi−1 ∪ {¬Ai} if Mi−1 ∪ {¬Ai} does not contradict any clause of S.

It is clear that if this definition is successful, Mn will be a full valuation of S.
Furthermore, for each clause E in S, Mn will evaluate at least one literal of E to
true (otherwise Mn would have contradicted E). Hence Mn will be a model of
every clause in S. Therefore Mn will be a model of S (which is what we sought).

What we have left to verify is that Mi is well-defined, i.e. that at least one
of the cases above must always arise. The proof of this is by contradiction.

Assume that neither of the cases are true for some j, and that j is the
smallest number such that neither case arise. Then

(i) Mj−1 ∪ {Aj} contradicts some clause C of S, and

(ii) Mj−1 ∪ {¬Aj} contradicts some other clause D of S, and

(iii) Mj−1 does not contradict any clause of S (by the minimality of j).

From this we can conclude that C contains ¬Aj and nothing but comple-
ments of Mj−1. Otherwise it would not have been contradicted by Mj . The
same goes for D, except that it contains Aj instead of ¬Aj .

This also shows that C 6= D, because Aj 6∈ C, but Aj ∈ D.

Since ¬Aj is in C, Aj is in D and C 6= D, we can form the resolvent

B = (C − ¬Aj) ∪ (D −Aj)

B can contain nothing but complements to the literals of Mj−1, i.e. it is con-
tradicted by Mj−1.

But B must be part of S since S is R-satisfied. So Mj−1 contradicts a clause
B in S, which is impossible because of (iii) above.

Example. Suppose we run the resolution procedure on the sentence

S = 〈[A ∨B] ∧ [¬A ∨B] ∧ [¬B ∨ ¬C]〉

As a table, the successive addings of the R operation are:

S R(S) R2(S) R3(S)
[A ∨B] [B] [¬C]
[¬A ∨B] [A ∨ ¬C] [B ∨ ¬C]
[¬B ∨ ¬C] [¬A ∨ ¬C]

where we see that no new resolvents are found the third time we apply R. Nei-
ther has the empty clause been added at any point, which means that R2(S) is

16

R-satisfied and that we should be able to find a model for R2(S).

Start with M0 = ∅, and the order A,B,C of the propositional letters. Since
{A} does not contradict any clause, we let M1 = {A}. Moving on, we find that
neither {A,B} contradicts any clause, rendering to M2 = {A,B}.

But {A,B,C} contradicts for example [¬C] in the R2(S) column, hence we
are compelled to choose M3 = {A,B,¬C}.

Verifying M3 against S shows that M3 indeed satisfies every clause of S, and
hence is a model of S.

To sum up we now know that our satisfiability checker will determine satisfia-
bility of a given sentence in finite time. In fact, we even have an upper bound of
the time consumption: 22l. Also, if we wanted, we could use the algorithm in the
proof of lemma 2.3 to return a satisfying valuation instead of just satisfiable
in case the given sentence was satisfiable.

The fact that it always solves the problem is the most important aspect
however, and as a grand finale we express this as a theorem:

Theorem 2.4 (Completeness). For any sentence S on normal form, the propo-
sitional resolution procedure will, in finite time, return the correct answer to the
question whether S is satisfiable or not.

17

3 Predicate Logic

In this section we will mainly be focusing on extending the resolution procedure
to sentences of predicate logic.

The most striking difference between sentences of propositional and predicate
logic is that the latter ones contain variables. In the normal form we will be
using, all variables will be universally quantified. This enables us to search
for resolvents not only from the formulas as they stand, but also from any
instantiation of the universally quantified variables.

Consider, for instance, the clauses

[A(y)], [¬A(f(a)) ∨B(a)]

A(y) (in the first clause) and ¬A(f(a)) (in the second clause) are not comple-
ments. Therefore we can not apply resolution immediately. But the variable y
is universally quantified, and can thus be instantiated with, or substituted for,
any term. Substituting it for f(a), for example, would yield a complementary
pair; and thereby the resolvent [B(a)].

A significant part of the theory developed will address the question of finding
the right substitutions, i.e. substitutions yielding new and useful resolvents.
Before that a number of definitions will be postulated; the relevant normal
forms be discussed; and Herbrand’s theorem, which is central to the theory of
ATP for predicate logic, be proven.

3.1 Definitions

3.1.1 Syntax

Language The predicate language extends the propositional language with
the following components:

• Variables x, y, z, . . . , and constants a, b, c

• Functions f, g, h, . . . , or, more formally, with an integer k determining its
arity (i.e. the number of arguments it takes). The function fk takes k
arguments. A function with arity 0 is effectively a constant.

• Predicate letters A,B,C, . . . , also together with an integer determining
their arity when such precision is advantageous. Ak is a predicate letter
taking k arguments. A predicate letter of arity 0 is essentially a proposi-
tional letter.

All of which may be indexed with a natural number when a greater number of
symbols are required.

Finally, the quantifiers ∀,∃ are also added to the language.

Term. A term is either a variable or a constant, or a function of arity k with
terms t1, . . . , tk as arguments. For example fk(t1, . . . , tk), although we will often
omit the k and just write f(t1, . . . , tk).

We will often denote terms with t or s.

18

Atomic Formula. An atomic formula is a predicate letter of arity k together
with k terms. For instance Ak(s1, . . . , sk), or simply A(s1, . . . , sk).

Formula. A formula is either (i) an atomic formula, or (ii) one or two formulas
combined with a propositional connective, or (iii) a quantifier followed by a
variable followed by a formula.

For example A(t), (P ∨Q), or ∀xP (where t is a term, A a unary predicate
letter, and P and Q formulas).

Literal. A literal is either an atomic formula, or the negation of an atomic
formula.

Example: A(t), ¬B(s1, s2, s3), but not (A(t) ∧B(s1, s2, s3)).
Tightly connected to this is the concept of the complement of a literal L,

written L. For an atomic formula A, the complement of A is ¬A, and the
complement of ¬A is A.

L and L are complements, they form a complementary pair.

Closed and Grounded. An expression E (i.e. either a term or a formula) is
considered grounded if it contains no variables. And E is closed if all variables
in E are bound by some quantifier.

For instance, the term f(g(x, y)) is not grounded since it contains the vari-
ables x and y. The formula ∀xA(f(x, a)) is closed (since x is bound), but it is
not grounded since it contains a variable x.

For terms there is no difference between closed and grounded. And for
formulas, groundedness implies closedness.

Generalized Conjunction and Disjunction, Clause and Dual Clause.
The definitions and notations of these are identical to the propositional case.
See section 2.1.

3.1.2 Semantics

Model. A model M is an ordered pair 〈D, I〉 where D is a nonempty set called
the domain, and I an interpretation, i.e. a function that maps:

• each constant c to an element cI in D,

• each k-ary function symbol fk to a function (fk)I : Dk → D, and

• each k-ary predicate letter Ak to a k-ary relation on D, (which can be
identified with its extension, i.e. a subset (Ak)I ⊆ Dk).

We shall also let f(t1, . . . , tn)I denote f I(tI1, . . . , t
I
n), i.e. the object f I takes on

input (tI1, . . . , t
I
n), and let A(t1 . . . , tn)I be true if and only if (tI1, . . . , t

I
n) satisfies

the relation AI (is an element in the extension AI).

Assignment. When free variables are involved, we need to extend the inter-
pretation with an assignment.

An assignment in a model M = 〈D, I〉 is a function A that maps each free
variable x to an element xA ∈ D.

19

Satisfiability. A formula P is satisfiable if it is satisfied by some model.
For example is ∀xA(x) satisfiable, since it is satisfied by the model M =
〈{1, 2, . . . }, I〉, where I assigns the universal relation to A (i.e. AI = D).

A formula is valid if it is satisfied by every model.
Two formulas are equivalent if they are satisfied by exactly the same models.

Two formulas P and Q are equisatisfiable if: P satisfiable ⇐⇒ Q satisfiable.

3.2 Normal Forms

Ultimately we want to work with formulas on the form

∀x1 . . . ∀xn〈[L11 ∨ · · · ∨ L1k1] ∧ · · · ∧ [Lm1 ∨ · · · ∨ Lmkm]〉

where each Lij is a literal that contains no other variables than x1, . . . , xn.
Of great importance is that the clauses contains no quantifiers, and that only

universal quantifiers remain. The latter means that we cannot find an equiva-
lent formula on normal form for all formulas, only an equisatisfiable one. That
will suffice though, since our method only determines satisfiability anyway. (To
have it determine validity, negate the input. See page 6.)

The conversion of a formula P1 to normal form, can be divided into steps.
First we convert it to an equivalent formula P2 on negation normal form. Then
we move all quantifiers in P2 to the front, making it prenex.

The result P3 is then skolemized, in order to get rid of the existential quan-
tifiers. Finally, the result of that, P4, is converted to a clause form formula
P5.

P5 will then be on the desired form, as we shall see.

3.2.1 Negation Normal Form

A first order formula is on negation normal form when all negation signs prefixes
atomic formulas. To achieve that we can simply extend the algorithm we used
in the propositional case (cf. section 2.2.1), with rules for the quantifiers.

The rules, building on tautologies of predicate logic, are

• ¬∀xP converts to ∃x¬P , and

• ¬∃xP converts to ∀x¬P .

Apart from these additions, the method is identical to the propositional one.

Example. The formula ¬∀x∃y(A(x) ∨B(y)) becomes:

1. ¬∀x∃y(A(x) ∨B(y))

2. ∃x¬∃y(A(x) ∨B(y))

3. ∃x∀y¬(A(x) ∨B(y))

4. ∃x∀y(¬A(x) ∧ ¬B(y))

20

3.2.2 Prenex Form

The next step of the conversion is to move all quantifiers to the front. This is
rather easy to do on a formula already on negation normal form, since we can
simply ”move out” quantifiers due to the equivalences

• (∀xP ∧Q)⇔ ∀x(P ∧Q),

• (Q ∧ ∀xP)⇔ ∀x(Q ∧ P),

• (∀xP ∨Q)⇔ ∀x(P ∨Q),

• (Q ∨ ∀xP)⇔ ∀x(Q ∨ P),

which are all the types of subformulas we may encounter in a negation normal
form formula.

The equivalences are however only valid if Q does not contain x. In the
event that Q would contain x, we have to do a a variable substitution first, as
explained in the following example.

Example. Suppose we want to convert ∃x1(A(x1)∧∀x1B(x1)) to prenex form.
Directly moving out the ∀ quantifier, would yield the non-equivalent formula
∃x1∀x1(A(x1) ∧B(x1)).

If we instead change the variable x1 to another variable x2 in the subformula
∀x1B(x1), we would get (the equivalent formula)

∃x1(A(x1) ∧ ∀x2B(x2))

where we can safely move out the ∀ quantifier, yielding

∃x1∀x2(A(x1) ∧B(x2))

which is equivalent to the original formula ∃x1(A(x1)∧∀x1B(x1)) and on prenex
form.

The idea is that whenever we have a quantifier binding x, we have to check
that x is not bound by another quantifier within the scope of the first one. If x
is bound by an inner quantifier, we change the variable of the inner quantifier
(together with all occurrences bound by the inner quantifier) to a new variable
y.

Substituting a variable this way has no semantical impact at all, so the
formula with a substituted variable is always equivalent to the original one.

3.2.3 Skolem Form

The goal is to get rid of all existential quantifiers. By successively exchanging
existential quantifiers to new function symbols we get an equisatisfiable formula
on skolem form (it will not always be equivalent, see example below).

A formula without existential quantifiers is on skolem form. The process of
successively exchanging quantifiers for function symbols is called skolemization.

Lemma 3.1. The formula ∀x1 . . . ∀xn∃yP (x1, . . . , xn, y) is equisatisfiable with
∀x1 . . . ∀xnP (x1, . . . , xn, f(x1, . . . , xn)) (as long as P does not contain the func-
tion symbol f).

21

Proof. We will show that if we have a model satisfying ∀x1 . . . ∀xn∃yP (x1, . . . , xn, y),
we can transform that into a model satisfying ∀x1 . . . ∀xnP (x1, . . . , xn, f(x1, . . . , xn)).
And vice versa.

Assume that ∀x1 . . . ∀xn∃yP (x1, . . . , xn, y) is satisfied by some model M1 =
〈D, I1〉. Then ∀x1 . . . ∀xnP (x1, . . . , xn, f(x1, . . . , xn)) is satisfied by some model
M2 = 〈D, I2〉, where I2 only differ from I1 in the interpretation of f .

By assumption, we can for any n-tuple d1, . . . , dn ∈ Dn find an e ∈ D such
that P I1(d1, . . . , dn, e) is satisfied. This means that we can express the choice
of e as a function of d1, . . . , dn: for any choice of d1, . . . , dn, let ed1,...,dn be an
element e ∈ D such that P I1(d1, . . . , dn, ed1,...,dn) is satisfied.

Now, let I2 be as I1 except for the interpretation of f . In fact, let f I2(d1, . . . , dn) =
ed1,...,dn

for every d1, . . . , dn ∈ Dn.
Then P (x1, . . . , xn, f(x1, . . . , xn)) must be satisfied by M2.

The converse is more straightforward. Assume

∀x1 . . . ∀xnP (x1, . . . , xn, f(x1, . . . , xn))

is satisfied by M2 = 〈D, I2〉. Then P I2(d1, . . . , dn, f
I2(d1, . . . , dn)) for all choices

of d1, . . . , dn.
Hence M2 also satisfies ∀x1 . . . ∀xn∃yP (x1, . . . , xn, y). Choose namely an

n-tuple d1, . . . , dn ∈ Dn. Then we can find an e such that P I2(d1, . . . , dn, e),
namely e = f I2(d1, . . . , dn). But the choice of d1, . . . , dn was arbitrarily made,
hence we can find an e for every choice of d1, . . . , dn.

Having proved the lemma, it is now easy to see that any formula P can be
converted into an equisatisfiable formula on skolem form.

By first converting P to negation normal form and prenex form, it is easy
to see that successively applying the lemma until all existential quantifiers are
gone, will render a formula on skolem form.

Example. Skolemizing the the formula ∀x(¬∀yA(x, y) ∨ ∃zA(x, z)). The first
step is to rewrite it on negation normal form and prenex form:

∀x∃y∃z(¬A(x, y) ∨A(x, z))

This make us go clear of the potential difficulty of the second universal quantifier
essentially being an existential quantifier (due to the preceding negation sign).

The skolemization is then straightforward:

1. ∀x∃y∃z(¬A(x, y) ∨A(x, z))

2. ∀x∃z(¬A(x, f1(x)) ∨A(x, z))

3. ∀x(¬A(x, f1(x)) ∨A(x, f2(x)))

It is easy to see that the last formula is not equivalent to the first one. The
formulas are only equisatisfiable.

22

3.2.4 Clause Form

The clause form (or clause normal form) for predicate logic is just like the
clause form for propositional logic, with the addition that quantifiers should be
outside the generalized conjunction.

The argument that any prenex formula can be converted to clause form is
essentially identical to the argument for propositional formulas. Neither the
conversion procedures require any substantial modifications (cf. 2.2.3).

Example. ∀x∃y〈[A(x, y)∨B(x)]∧[A(x, x)]〉 is a formula on clause normal form.

3.2.5 Normal Form

Since sentences on negation-, prenex-, clause- and skolem normal form will be
so frequently used, we will simply say that any such formula is on normal form.
It should be clear from the discussion above that we can rewrite any formula P
on normal form with maintained satisfiability. We state that in a theorem for
future reference.

Theorem 3.2. For any formula P there is an equisatisfiable formula P ′ on
normal form.

Normally we will only consider formulas with all variables bound (i.e. closed
formulas), and since the only type of quantifier in a normal form formula is the
universal one, we will sometimes adopt the convention of dropping the quanti-
fiers. This is no loss of information, we know that all variables are universally
quantified.

We will also make frequent use of the equivalence

∀x1 . . . ∀xm〈P1 ∧ · · · ∧ Pn〉 ⇔ 〈(∀x1 . . . ∀xmP1) ∧ · · · ∧ (∀x1 . . . ∀xmPn)〉

The right form is especially useful when we wish to instantiate one of the clauses
of a formula separately, which is a rather common situation when dealing with
resolution.

Example. The normal form formula 〈[A∨B(x, y)]∧ [B(z, z)]〉 is understood to
mean

∀x∀y∀z〈[A ∨B(x, y)] ∧ [B(z, z)]〉

Or, if more useful,

〈(∀x∀y∀z[A ∨B(x, y)]) ∧ (∀x∀y∀z[B(z, z)])〉

3.3 Herbrand’s Theorem

Normally we make a clear distinction between the syntactical and the semantical
aspects of our logic. The syntactics is about the language as a system of symbols.
Alphabets and grammars, the criteria for a well formed formula, free variables
and substitutions, are all syntactical features.

To the semantics belong concepts such as interpretations, instantiations and
valuations, domains, validity and satisfiability: essentially anything that is re-
lated to the meaning of the formulas.

23

We may for example have a formal theory about algebraic groups, about
the natural numbers, or about any other (non-logical) structure. When we
then make deductions in the theory we say that we derive properties about the
structure that it is about. If we have a proof in a formalization of the natural
numbers, we take a proof in that theory to be a proof of a certain property of
natural numbers.

Herbrand’s theorem essentially states that whenever we have a formula (or
a set of formulas) we never need to interpret it to talk about something non-
logical. Rather, we can always take it to talk about its own terms. We can
interpret it under a Herbrand model.

3.3.1 Herbrand Models

Formally, we define the Herbrand universe HS of a sentence S, as the set of
grounded terms that we can create from the function set of S. The function
set FS is the set of all constants, parameters and functions in S, if there is at
least one constant or parameter in S. Otherwise it is the set of functions of S
together with a new constant a.

Example. The Herbrand universe of ∀xA(f(x, c)) is

{c, f(c), f(f(c)), . . . }

(the function set is {c, f}).

Example. The function set of

B(f(x), g(x, y))

is {a, f, g}. Hence we get the Herbrand universe

{a, f(a), g(a, a), f(f(a)), f(g(a, a)), g(a, f(a)), g(a, g(a, a)) . . . }

Here we see the reason of adding the parameter a to the function set. Had we
not done so, the Herbrand universe would have been empty.

Definition. A finite subset of a Herbrand universe is called a Herbrand domain.

The concept of a Herbrand universe extends easily to a set of sentences or a
whole language. Simply let S stand for a set or a language instead of a sentence
in the above definition.

The Herbrand universe of a language is the base of the definition of Herbrand
model.

Definition. A Herbrand model for a language L is a model 〈H, I〉 such that

1. the domain H is the Herbrand universe of L, and

2. the interpretation I maps every grounded term t to itself (i.e. tI = t).

Such models have several advantages:

24

• Interpretations become rather redundant, every sentence is already its
own interpretation. The only thing an interpretation does is specifying
relations (extensions) for the predicate letters.

• Assignments are simply a special form of substitutions (substitutions to
grounded terms).

• The interpretation of the quantifiers becomes very straight forward:

– ∀xA(x) is true if and only if A(t) is true for every grounded term t,

– ∃xA(x) is true if and only if A(t) is true for some grounded term t.

So already here we see how the concepts of Herbrand universes and models tie
semantical concepts to syntactical. Herbrand models make the language talk
not of objects of some other sphere, but of the terms of the language. Universal
and existential statements become statements about the existence of certain
grounded terms.

This will pave the the road for Herbrand’s theorem which reduces satisfiabil-
ity problems of predicate logic to satisfiability problems of propositional logic.
The latter having the nice feature of being decidable.

We will now have a closer look at some of the properties of Herbrand models.

3.3.2 Properties of Herbrand Models

The first important property of Herbrand models, is that whenever there is any
model satisfying a formula, there is also a Herbrand model doing the same job.
That means that if we are interested in the determining the satisfiability of a
formula, it will be enough to investigate whether there is any Herbrand model
satisfying it. If we show that no such Herbrand model can exist, we have shown
that no satisfying model at all exists, so the sentence must be contradictory.

Theorem 3.3. A formula P is satisfiable if and only if there is a Herbrand
model satisfying it.

Proof. By theorem 3.2 we can assume that P is on normal form, and that it is
satisfied by some model MD = 〈D, ID〉. We shall show that there is a Herbrand
model MH = 〈H, IH〉 satisfying P (where H is the Herbrand universe of P).

Define MH the following way:

• for each grounded term t, define tIH = t,

• for each predicate letter Ak, define the extension of

(Ak)IH = {(t1, . . . , tk) ∈ H : Ak(t1, . . . , tk)ID}

(remember that Ak(t1, . . . , tk)ID means that (tID1 , . . . , tIDk) satisfies the
relation (Ak)ID , cf. section 3.1).

From the definition of MH it follows that for any grounded atomic formula
Q, then QIH if and only if QID .

For assume that A(t1, . . . , tk) is a grounded atomic formula that is true under
MD. Then (tID1 , . . . , tIDk) is in the extension of AID , and hence (tIH1 , . . . , tIHk) =
(t1, . . . , tk) is in the extension of AIH , according to the definition.

25

Conversely assume that A(t1, . . . , tk) is not true under MD. Then (t1, . . . , tk)
will not be in the extension of AIH .

From this it is immediate that all propositional combinations Q of grounded
atomic formulas (i.e. any grounded formula Q not containing quantifiers), will
have the same truth value in MD and MH .

Now we only have one case left to consider, the universally quantified formula
∀x1 . . . ∀xnQ(x1, . . . , xn), where Q(x1, . . . , xn) is quantifier-free and contains no
other free variables than x1, . . . , xn. Assume that ∀x1 . . . ∀xnQ(x1, . . . , xn) is
satisfied by MD. Then the implication

∀x1 . . . ∀xnQ(x1, . . . , xn) =⇒ Q(t1, . . . , tn)

gives that Q(t1, . . . , tn)ID for all grounded terms t1, . . . , tn.
Since Q contains no quantifiers, we know that

Q(t1, . . . , tn)ID ⇐⇒ Q(t1, . . . , tn)IH

from above.
Hence Q(t1, . . . , tn)IH for all grounded terms t1, . . . , tn, and thereby also

(∀x1 . . . ∀xnQ(x1, . . . , xn))IH . Which was to be proven.

Herbrand Expansion. For a sentence P (x1, . . . , xn) that contains no other
free variables than x1, . . . , xn, the Herbrand expansion over a set D of grounded
terms is the set {P (t1, . . . , tn) : ti ∈ D}, denoted E(P,D).

Example. A(x) expanded over D = {a, f(a)} is E(A,D) = {A(a), A(f(a))}.

In the case of a normal form formula P (x1, . . . , xn) (where we normally take
the variables to be implicitly universally quantified), we still let the Herbrand
expansion E(P (x1, . . . , xn), D) = {P (t1, . . . , tn) : ti ∈ D}.

By means of a Herbrand expansion we can express the fact that a sen-
tence ∀x1, . . . , xnQ(x1, . . . , xn) is true in a Herbrand model M if and only if
Q(t1, . . . , tn) is true in M for all ti ∈ HQ.

(This is an immediate consequence of the definition of the universal quanti-
fier. A universally quantified formula is true if and only if the formula is true
for every element in the domain.)

Proposition 3.4. Assume Q(x1, . . . , xn) is a sentence containing no other
variables then x1, . . . , xn. Then ∀x1 . . . ∀xnQ(x1, . . . , xn) is true in a Herbrand
model M if and only if M satisfies (every member of) E(Q,HQ).

3.3.3 Herbrand’s Theorem

We are now ready for the main result of this section:2

2A more common version of Herbrand’s theorem is the equivalent:
∃x1, . . . , xnA(x1, . . . , xn) is valid if and only if [A(t11, . . . , tn1) ∨ · · · ∨ A(t1k, . . . , tnk)]
is valid for some tij ∈ HS and k ∈ N.

26

Theorem 3.5 (Herbrand’s Theorem). Consider a formula P on normal form
(with dropped quantifiers). Then P is unsatisfiable if and only if some finite
subset K ⊆ E(P,HP) is unsatisfiable.

Proof. By theorem 3.3 we have that P is satisfiable if and only if P is satisfiable
by some Herbrand model.

That means that we from proposition 3.4 can draw the conclusion: P is
satisfiable if and only if E(P,HP) is satisfiable.

And the compactness theorem gives that a set E(P,HP) is satisfiable if and
only if every finite subset of E(P,HP) is satisfiable. (See [3, p. 132] for a proof
of the compactness theorem.)

Combined and rephrased: P is unsatisfiable if and only if some finite subset
K ⊆ E(P,HP) is unsatisfiable.

Corollary 3.6. A normal form formula with dropped quantifiers P is unsatis-
fiable if and only if E(P,DP) is unsatisfiable for some Herbrand domain DP of
P .

Proof. It is immediate that every E(P,DP) is satisfiable if P is.
Conversely assume that P is unsatisfiable. Then theorem 3.5 gives a finite

unsatisfiable K ⊆ E(P,HP). But K is included in E(P,DP) for DP = ”the set
of grounded terms occurring in K” (which is a Herbrand domain of P).

And since E(P,DP) contains an unsatisfiable subset K, then E(P,DP) must
itself be unsatisfiable, which was to be proven.

3.3.4 The Davis-Putnam Procedure

The Davis-Putnam procedure[2] is the proof procedure almost immediately sug-
gested by corollary 3.6. (The version of the Davis-Putnam procedure that is
described here does not follow the original version very closely. The principle is
the same however.)

The corollary states that we can reduce the satisfiability problem of any
sentence, to finite sets of grounded sentences. And a grounded set of sentences
is essentially a set of sentences of propositional logic.

We can namely read each atomic formula A(t1, . . . , tk) (where t1, . . . , tk are
closed terms) as a propositional letter. A Herbrand model M will then turn
into a valuation of these ”propositional letters”: A(t1, . . . , tk) will be evaluated
to true if (t1, . . . , tk) is in the extension of AM , and false otherwise.

From this it follows easily that a set of grounded sentences is essentially a
set of propositional sentences, just apply the same argument to every sentence
in the set.

Hence it is as easy to determine satisfiability for a set of grounded sentences,
as it is to determine satisfiability for a propositional sentences. We state this as
a proposition, as it will come to use later as well.

Proposition 3.7. The satisfiability problem of (a set of) grounded sentence(s),
is essentially the same as the satisfiability problem for the propositional coun-
terpart.

So to show that a formula P is unsatisfiable, we only need to systematically
go through all Herbrand domains DP (which are countably infinitely many),
and check whether E(P,DP) is satisfiable or not.

27

Once we find a DP such that E(P,DP) is unsatisfiable, we have proven P to
be unsatisfiable. Such a DP is called a proof set. Corollary 3.6 gives that there
is such a DP if P is unsatisfiable, so as long as we systematically go through
the Herbrand domains, we will find a proof.

A possible, reasonably efficient, way to go through all Herbrand domains of
P is this (where FP is the function set of P):

• Let D0 = ”the constants of FP ”.

• Let Di+1 = Di∪ ”the terms we can create applying the functions of FP

to terms of Di”.

This will generate an (infinite) sequence of Herbrand domains. It is also clear
that each finite subset of HP will be included in some Di, which is sufficient to
eventually find a proof set if there is one (all supersets of a proof set are also
proof sets).

As all proof procedures of predicate logic, this procedure is only guaranteed
to stop if it is given an unsatisfiable formula (due to Turing’s theorem 1.1 a
proof procedure cannot be guaranteed to stop for all sentences). The major
drawback of the Davis-Putnam procedure, is that the Di:s might get quite big
before we find a proof set. Especially when the function set contains functions
of higher arity.

The resolution procedure (discovered shortly after the Davis-Putnam proce-
dure) features a more sophisticated search procedure, making it more efficient
in many situations. The main difference between the two is the unification
algorithm, described below.

3.4 Substitutions

A substitution is a set {t1/x1, . . . , tk/xk}. The variable components x1, . . . , xn
are pairwise distinct, and t1, . . . , tk are terms (called the term components).
The ti/xi:s are called substitution components, and must fulfill xi 6= ti.

Applying a substitution σ = {t1/x1, . . . , tk/xk} to a sentence S (or term u)
is to replace each occurrence of the variable xi with the term ti. (In this essay
we will only be interested in applying substitutions to normal form formulas
with dropped quantifiers, so we do not need to worry about bound variables.)
The result is written Sσ (or uσ).

Two substitutions are considered equal if they have the same effect on all
expressions.

The possibility of some term ti containing a variable xj , requires us to be
quite clear on the point that we do not first apply the substitution {t1/x1}, and
then, on the result, apply {t2/x2} etc. Rather we apply them all ”simultane-
ously”. For example

〈[A(x, y)]〉{y/x, b/y} = 〈[A(y, b)]〉

which is not to be confused with

(〈[A(x, y)]〉{y/x}) {b/y} = 〈[A(y, y)]〉{b/y} = 〈[A(b, b)]〉

This makes it, of course, extra important that no variable occurs twice in a
substitution.

28

3.4.1 Combination

The combination of two substitutions σ, λ can be identified with one set. After
all, the combination only have one impact on each variable.

Assume σ = {t1/x1, . . . , tm/xn} and λ = {s1/y1, . . . , sm/ym}. Then, quite
naturally,

σλ = {t1λ/x1, . . . , tnλ/xn} ∪ λ′

where λ′ is a subset of λ containing only those si/yi such that yi 6= xj for every
j between 1 and n. Also, any substitution components ui/zi where ui = zi, is
removed from σλ.

Example. If, as in the above example, we have σ = {y/x} and λ = {b/y}, we
would get σλ = {y{b/y}/x} ∪ {b/y} = {b/x, b/y}.

This combination is transitive both in the sense that (σλ)θ = σ(λθ), and that
(Pσ)λ = P (σλ) and (tσ)λ = t(σλ) for any formula P or term t.

Starting with the latter, it is enough to verify that for any variable x and
substitutions σ, λ, then (xσ)λ = x(σλ). Depending on whether x is substituted
by σ or not, the following cases arise.

1. If x is substituted for some term t = xσ by σ, then (xσ)λ will become tλ.
This is exactly how x(σλ) is defined.

2. If x is not substituted by σ, then (xσ)λ will simply be xλ. This also agrees
with x(σλ). If x is substituted by λ but not by σ, x will be substituted
by a substitution component from λ′ in the substitution σλ.

This proves the following proposition.

Proposition 3.8. For P formula, t term, and σ, λ substitutions: (Pσ)λ =
P (σλ) and (tσ)λ = t(σλ).

Corollary 3.9. For σ, λ, θ substitutions, (σλ)θ = σ(λθ).

Proof. Take an arbitrary formula P . Then, from proposition 3.8, we have:
P ((σλ)θ) = (P (σλ))θ = ((Pσ)λ)θ = (Pσ)(λθ) = P (σ(λθ)). Hence (σλ)θ have
the same effect as σ(λθ) on every variable, and hence they must be equal.

3.5 Unification

The ingenious trick of the resolution procedure is to instead of fully instantiat-
ing the given formula (with ground terms) over and over again, only ”pseudo-
instantiate” the formula with terms still containing free variables, but are spe-
cific enough to render a resolvent.

A resolvent found in the Davis-Putnam procedure is final since it only con-
tains grounded terms, but a resolvent of the resolution procedure can be used
for further instantiation.

Example. Consider the (somewhat artificially chosen) sentence

S = 〈C1 ∧ C2 ∧ C3〉 = 〈[A(x) ∨ ¬B(x)] ∧ [¬A(f(x))] ∧ [B(f(g(x, y)))]〉

First applying the substitution σ = {f(x)/x} to the first clause, makes C1

become C1σ = [A(f(x)) ∨ ¬B(f(x))].

29

From C1σ = [A(f(x)) ∨ ¬B(f(x))] and C2 = [¬A(f(x))], we find the resol-
vent R1 = [¬B(f(x))].

Applying a new substitution τ = {g(x, y)/x} to R1, gives us the empty
clause as resolvent from R1τ = [¬B(f(g(x, y)))] and C3 = [B(f(g(x, y)))].

This should give an idea of the gained efficiency of only ”pseudo-instantiating”
free variables. Had we in the example chosen σ to be a ground term, and applied
a similar substitution to C2 to get our resolvent, we would not have been able
to continue from R1 to get the empty clause. Instead we would have had start
over with a more complicated substitution to find the empty clause.

The idea to instantiate ”as little as possible” in order to have the utmost
freedom left to find another resolvent, is perhaps the main benefit of the res-
olution procedure. The unification algorithm is used to find the least limiting
substitution available (called the most general unifier below), that still enables
application of the resolution rule.

The principal example of its usage is when we have a formula A(t) in one
clause, and, in another, ¬A(s). We then ask ourselves, is there a substitution
σ that unifies A(t) with A(s), i.e. a σ such that A(t)σ = A(s)σ? Such a
substitution is what is required to infer a resolvent.

In the general case however, it is not just two formulas we want to unify,
but several. Hence we will develop the unification algorithm for a finite set N
of formulas.

Definition. We say that a set N of formulas is unified by a substitution σ if
Nσ is a singleton, i.e. for every P1, P2 ∈ N , P1σ = P2σ. Any substitution λ
that unifies N is a unifier for N .

Example. Let N = {A(x), A(f(y)), A(f(f(z)))}. Then N is unified by the
substitution σN = {f(f(z))/x, f(z)/y} since for every P in N so is PσN =
A(f(f(z))). Hence NσN = {A(f(f(z)))}.

A special kind of unifier is the most general unifier. A most general unifier for
a set N is a unifier λN for N such that if θ also unifies N , then θ = λNσ for
some substitution σ.

3.5.1 Disagreement set.

For two formulas to be identical, they need to comprise the same predicate letter
and the same arguments. The same goes for terms: they need to share function
letter, and share term arguments.

Say that we want to unify A(f(x)) with A(f(f(y))). Then the formulas
do agree on predicate letters, but have (slightly) disagreeing arguments. The
arguments in turn (i.e. f(x) and f(f(y))) agree on function letter, but have
disagreeing arguments.

Moving down another level, we find that the arguments of the arguments
(i.e. x and f(y)), do disagree on their function letter (if we consider x its own
function letter). Intuitively this is our disagreement set. That is, a ”highest” set
such that the function letters (or predicate letters) disagree, is a disagreement
set.

Unifying all disagreement sets of a set of formulas Γ, will unify Γ.

30

Definition. We call, for an atomic formula A(t1, . . . , tn) or term f(t1, . . . , tn),
the ti:s the arguments (of the expressions) and A and f the expression letters.
Constants, parameters and variables have zero arguments, and are their own
expression letters. Predicate and function letters, constants and parameters are
called unmodifiable letters, since they are unaffected by substitutions.

Expressions may differ in respect of their expression letter or in respect of their
arguments.

Example. A(f(x)) is different from A(g(x)) with respect to their argument,
whereas f(x) and g(x) are different with respect to their expression letter (but
have identical arguments).

In our unification algorithm we will be interested finding a disagreement set for
a set of expressions S containing at least two elements. This is the job of the
recursively defined procedure Algorithm 2.

Algorithm 2 Disagreement-Set(S)

if the expression letters of the members of S are not all identical then
return S

else
pick a k such that the k:th argument is not the same for all members of S
return the result of Disagreement-Set(the set of the k:th arguments).

end if

A disagreement set for S is simply any set that can be returned by the above
procedure applied to S.

Example. Find a disagreement set for the set S =
{A(x, y), A(x, x), A(f(z), g(x, f(z)))}. The expressional letter is A for each
member of S. Hence we shall look for an argument for which they disagree.
Since they disagree on the first argument, we apply the procedure once again
on the set {x, x, f(z)} = {x, f(z)}. This time the members do not share expres-
sional letter, and so we have found our disagreement set: {x, f(z)}.

3.5.2 Unification Algorithm

With the concept of disagreement set available the unification algorithm is ready
to be defined (Algorithm 3). The idea is a rather simple one: Starting with a
finite nonempty set N and an empty substitution σ we successively update σ
to unify more and more disagreement sets (the variable U in the algorithm).

Each pass through the while loop will update σ to unify two terms of a
disagreement set. Eventually, either all disagreement sets will be unified and σ
will be the unifier we seek; or a disagreement set which is not unifiable will be
found, in which case we return fail. The correctness of the algorithm will be
proven below.

Example. Consider N = {A(x), A(f(y)), A(f(f(z)))} as in an example above.
Applying the unification algorithm on N , we first check whether N{} is a sin-
gleton (line 2). As it is not a singleton we enter the while loop.

31

Algorithm 3 Unification-Algorithm(N)

1: σ ← ∅
2: while Nσ is not a singular do
3: U ←Disagreement-Set(Nσ)
4: if U contains no variable then
5: return fail

6: else
7: pick a variable v from U ,
8: pick a term t from U − v,
9: if x occurs in t then

10: return fail,
11: else
12: σ ← σ{t/v}
13: end if
14: end if
15: end while
16: return σ.

Finding the disagreement set U = {x, f(y), f(f(z))}, we proceed to line 4.
Passing the fail criteria, we choose the variable x (line 7), and pick the term,
say, f(y) (line 8). Accordingly, σ updates to σ = {f(y)/x} (line 9).

Starting the while-loop over with the new σ, we get: The disagreement set
for Nσ = {A(f(y), A(f(f(z)))} becomes U = {y, f(z)}. Hence y will become
our variable, and f(z) our term. σ updates to σ{f(z)/y} = {f(y)/x}{f(z)/y} =
{f(f(z))/x, f(z)/y} according to the combination rule.

We now see that Nσ = N{f(f(z))/x, f(z)/y} = {A(f(f(z)))} is a singleton,
which means that we are done. N was unifiable. σ = {f(f(z))/x, f(z)/y} is
returned (line 16).

Example. Let us also consider an ununifiable example: N = {A(x), A(f(x))}.
At line 3 the disagreement set would be U = {x, f(x)}, rendering x the variable
and f(x) the term. This will make the algorithm return fail due to the fail
criteria at line 9, the variable x occurs in f(x).

It is clear that no substitution could ever have unified N , since whatever we
would substitute x for, would then also occur inside f(x).

To verify that the unification algorithm is correct, we wish to prove the following
theorem:

Theorem 3.10. For any finite nonempty set N of atomic formulas the unifica-
tion algorithm returns a most general unifier σN if N is unifiable, and returns
fail otherwise.

Proof. The theorem follows directly from lemma 3.14 and 3.15 below.

Lemma 3.11. The algorithm will terminate in finite time.

Proof. Assume the set Nσ have n distinct variables at one pass through the
while loop. Then the next pass Nσ will have at most n − 1 distinct variables,
for in each pass the variable v (chosen at line 7) will disappear from Nσ.

32

And since we are starting with a finite number of variables in N (N must
be a finite set), the algorithm could never go through the while loop an infinite
number of times.

Lemma 3.12. Assume that N is a finite nonempty set of literals that is unified
by λ, and assume that there is a disagreement set U for N . Let v be a variable
in U and t a term in U − v. Then {t/v}σ = σ.

Proof. σ unifies N by assumption, and must hence unify every disagreement set
of N . So it unifies U , and thereby also v and t (i.e. vσ = tσ).

Now, {t/v}σ = σ if and only if they have the same effect on all variables. It
is clear that for any variable x 6= v, x{t/v}σ = xσ (since x{t/v} = x). But we
also have v{t/v}σ = tσ = vσ (the last equality by assumption).

Hence we have proved the desired equality {t/v}σ = σ.

Lemma 3.13. If a disagreement set U for a literal set N contains no variables,
or if one of the variables in U appears inside one of the non-variables in U ,
then U is not unifiable.

Proof. Assume that U is a disagreement set that contains no free variables.
Then the members of U do not all have the same expressional letter. And since
substitutions only affect the expression letter of variables, no substitution can
ever unify U .

Similarly, if a variable v of U is a proper subexpression of some term t in
U − v, no substitution can ever unify v and t. No matter what substitution λ
we choose, vλ will always be a proper subexpression of tλ, hence vλ 6= tλ for all
λ, and so λ can not unify U .

Lemma 3.14 (Main Lemma). The algorithm will terminate with a most general
unifier, if presented a unifiable set N .

Proof. Here we will introduce a loop invariant, i.e. a condition that is true each
time we are about to enter the while loop. Assume that our input set N is
unified by θ, and that σ is the substitution we want to make a most general
unifier by successively extending it. Then our invariant is: θ = σθ. The proof
that our invariant is indeed an invariant (is true for each pass through the while
loop) is by induction:

The invariant is obviously satisfied in the first pass, for then σ = ∅.
Assume that the invariant is satisfied in the k:th iteration and that Nσ is

not a singleton. Then we can find a disagreement set U for Nσ. Now, U must
be unifiable if Nσ is, and Nσ is unified by θ since (Nσ)θ = N(σθ) = Nθ. Hence
U is unifiable.

By Lemma 3.13 we then know that we can pick a variable v from U , and a
term t from U − v, such that v does not occur in t. Thus v and t can be unified
with {t/v}. Extending σ with {t/v} gives σnew = σ{t/v}.

Then it only needs to be verified that the loop invariant is still satisfied for
the new substitution σnew. But the loop invariant must be satisfied, because
σnewθ = (σ{t/v})θ = σ({t/v}θ) = σθ = θ (where the second last equality is
from Lemma 3.12 and the last one holds by assumption).

Since Lemma 3.11 assures that the algorithm cannot run forever, we will
eventually find a σ such that the while loop breaks (Nσ is a singleton). Hence
the algorithm will finish with a unifier σ. But since θ could be any unifier for

33

N , the invariant gives that σ is a most general unifier. (It satisfies the equality
θ = σλ for any unifier θ and some λ. In fact it will always satisfy the stronger
condition θ = σθ for any unifier θ.)

Now there’s only one thing left to verify, namely that

Lemma 3.15. The algorithm returns fail if presented an ununifiable set.

Proof. We know that the condition of the while loop (that Nσ is singleton) can
only be fulfilled if there exists a unifier σ. And Lemma 3.11 assures that the
while loop cannot run eternally. Hence the only possibility is that the algorithm
breaks and returns the fail statement.

3.6 Resolution

First-order resolution is a procedure for normal form formulas. We will therefore
adopt the convention that formula is always understood to mean normal form
formula (with quantifiers dropped) for the rest of this section.

3.6.1 The Resolution Rule.

In the propositional version, a resolvent R′ of the (propositional) clauses P ′ and
Q′, with respect to some predicate letter B, was simply

R′ = (P ′ − [B]) ∪ (Q′ − [¬B])

Similarly, R is a first-order resolvent of the (first-order) clauses P and Q if, for
some substitutions α, β,

R = (Pα− [A]) ∪ (Qβ − [¬A])

where A is in Pα and ¬A in Qβ.
To be able to fully utilize the unification algorithm, it will be necessary to

express this rule in a different, and slightly restricted, way. First of all, we
cannot depend on two different substitutions α and β; the same job has to be
done by only one substitution θ. To not lose any deductive power, the variables
of P and Q must be separate. The following standard substitutions are used to
separate variables.

Definition. If v1, . . . , vn are the variables of a formula S (in, say, lexical order),
then ξS = {x1/v1, . . . , xn/vn} and ηS = {y1/v1, . . . , yn/vn}.

This means that we can express the resolution rule as

R = (PξPα
′ − [A]) ∪ (QηQβ

′ − [¬A])

= (PξP θ − [A]) ∪ (QηQθ − [¬A])

where α = ξPα
′, β = ηQβ

′ and θ = α′ ∪ β′ (θ is a well-defined substitution,
since α′ and β′ operates on disjoint sets of variables).

Second, we wish to move out θ, i.e. express the resolution rule as

R = (PξP θ − [A]) ∪ (QηQθ − [¬A])

= (PξP − L)θ ∪ (QηQ −M)θ

34

where L ⊆ PξP and M ⊆ QηQ, such that Lθ = [A], Mθ = [¬A]. Choosing
L = {B ∈ PξP : Bθ = A} and M = {B ∈ QηQ : Bθ = ¬A} should make it
clear that it is possible find such subsets L and M .

Finally, in the procedure we will wish to start by picking a subset L ⊆ PξP
containing only positive atomic formulas, and a subset M ⊆ QηQ containing
only negative atomic formulas; and then run the unification algorithm on N =
L∪M ′ (where M ′ is like M but with negation signs removed). The criteria for
the subsets are formalized by key triples.

Definition. A key triple for an ordered pair of clauses P and Q is a triple
〈L,M,N〉 such that

• L is a non-empty subset of PξP containing unnegated atomic formulas
with the same predicate letter A,

• M is a non-empty subset of QηQ containing negated atomic formulas with
the predicate letter A,

• N is L∪M ′, where M ′ contains the formulas of M without negation sign,
and,

• N should be unifiable by some most general unifier σN .

This gives us our final, procedural, way of describing a resolvent. R is a resolvent
of P and Q, if there is a key triple 〈L,M,N〉 for P and Q such that

R = (PξPσN − LσN) ∪ (QηQσN −MσN)

= (PξP − Lmax)σN ∪ (QηQ −Mmax)σN

where Lmax = {B ∈ P : BσN ∈ LσN} and Mmax = {B ∈ Q : BσN ∈ MσN}.
(Note that LσN = [A] and MσN = [¬A] for some atomic formula A.)

This last version is the version we will be using from here on. It is slightly
restricted compared to the version we started out with, but as we shall see it is
still powerful enough to build a complete proof procedure on. In the following,
it is this last version we will mean by resolution/resolvent.

Example. Consider the clauses P = [A(f(x))∨B(x)] and Q = [¬A(x)∨¬A(y)].
Then PξP = [A(f(x1)) ∨B(x1)] and QηQ = [¬A(y1) ∨ ¬A(y2)].

An available key triple 〈L,M,N〉 is this:

• L = {A(f(x1))} ⊆ PξP

• M = {¬A(y1),¬A(y2)} ⊆ QηQ

• N = L ∪M ′ = {A(f(x1)), A(y1), A(y2)}

A most general unifier for N is σN = {f(x1)/y1, f(x1)/y2}. Thereby a resolvent
for P and Q is:

R = (PξPσN − LσN) ∪ (QηQσN −MσN)

= ([A(f(x1)) ∨B(x1)]− [A(f(x1))]) ∪ ([¬A(f(x1))]− [¬A(f(x1))])

= [B(x1)]

35

Theorem 3.16 (Soundness). If R is a resolvent of P and Q, then any model
satisfying both P and Q will also satisfy R.

Proof. Assume that R is a resolvent of P and Q with respect to some key triple
〈L,M,N〉, i.e.

R = (PξPσN − LσN) ∪ (QηQσN −MσN)

and assume that M = 〈H, I〉 is a model satisfying both P and Q.
Then M will also satisfy PξPσN and QηQσN . Now, let A be the single

formula of LσN , and ¬A the single formula of MσM .
Then we can write

PξPσN = [C1 ∨ · · · ∨ Cn ∨A]

QηQσN = [D1 ∨ · · · ∨Dm ∨ ¬A]

R = [C1 ∨ · · · ∨ Cn ∨D1 ∨ · · · ∨Dm]

for some atomic formulas C1, . . . , Cn and D1, . . . , Dm.
Now, just as in the propositional case, M will satisfy exactly one of A and

¬A (any free variables in A consider universally quantified). In case M satisfies
A, then M satisfies at least one of D1, . . . , Dm. And in case M satisfies ¬A,
then M satisfies at least one of C1 . . . , Cn. Hence M satisfies R, which was to
be proven.

3.6.2 The R Operation

Just as in the propositional case; if S is a formula, then R(S) is S extended
with all resolvents to clauses of S.

To show that the successive application of the R rule yields a complete
proof procedure (i.e. that any the successive application of R to an unsatisfiable
formula S, sooner or later will yield the empty clause), we will need the following
lemmas.

Lemma 3.17. For any formula S and Herbrand domain DS, the R operation
applied to the Herbrand expansion is included in the Herbrand expansion of
R(S). Formally

R(E(S,DS)) ⊆ E(R(S), DS)

Proof. Assume that R is in R(E(S,DS)). Then, if R ∈ E(S,DS), then R is also
in R(E(S,DS)), since the latter is a superset of the former.

Hence, suppose that R is not in E(S,DS), but is a resolvent of two clauses
PξPα and QηQβ in E(S,DS) (where α and β are DS-instantiations of PξP and
QηQ respectively, and P and Q are clauses of S.

Now, to show that R is also in E(R(S), DS), we should show that R is a
DS-instantiation of a resolvent T from two clauses in S. In fact, the two clauses
are P and Q, as shall be apparent.

R is a resolvent of PξPα and QηQβ. Hence, for some atomic formula A

R = (PξPα− [A]) ∪ (QηQβ − [¬A])

36

Since α and β operate on disjoint sets of variables (α on x1, x2, . . . , and β
on y1, y2, . . .), we can let θ = α ∪ β and write

R = (PξP θ − [A]) ∪ (QηQθ − [¬A])

= (PξP − L)θ ∪ (QηQ −M)θ

(where L and M are subsets of PξP and QηQ respectively).
So θ unifies L and M , and hence also N = L∪M ′ (where M ′ is like M , but

with negation signs removed from its components). This means that N is also
unified by a most general unifier σN (see unification above), and that θ = σNλ
for some DS-instantiation λ.

Thereby we have motivated that 〈L,M,N〉 is a key triple for P and Q.
Hence

T = (PξP − L)σN ∪ (QηQ −M)σN

is a resolvent of P and Q.
And it is also apparent that R is a DS-instantiation of T , namely T instan-

tiated with λ, for

R = (PξP − Lmax)θ ∪ (QηQ −Mmax)θ

= ((PξP − Lmax) ∪ (QηQ −Mmax))θ

= ((PξP − Lmax) ∪ (QηQ −Mmax))σNλ

= Tλ

Which is what we wanted.

Induction yields that Rn(E(S,DS)) ⊆ E(Rn(S), DS). Intuitively we can just
”move in” the n R operators one by one. Hence

Lemma 3.18. Rn(E(S,DS)) ⊆ E(Rn(S), DS).

3.6.3 The Procedure

Just as in the propositional case we keep applying the R operation to the given
formula S until either Rn(S) contains the empty clause, or Rn(S) = Rn+1(S)
and Rn(S) does not contain the empty clause (Algorithm 4).

Algorithm 4 The-Resolution-Procedure(S)

i← 0
loop
i+ +
if Ri(S) = Ri−1(S) then

return satisfiable

else if Ri(S) contains the empty clause then
return unsatisfiable

end if
end loop

The completeness theorem 3.20 below shows that unsatisfiable will be
returned eventually if S is unsatisfiable, and the soundness theorem 3.16 above
shows that unsatisfiable can be returned only if S is unsatisfiable.

37

It is also clear that satisfiable is returned only if we are completely stuck,
with no hope ever finding the empty clause.

Hence we can confidently let the resolution procedure run and know that we
can trust the returned answer.

Unfortunately we cannot know that it will always return satisfiable for
satisfiable formulas. Turing’s theorem 1.1 renders any theorem proving proce-
dure thus powerful impossible.

Lemma 3.19 (Grounded Completeness). The resolution procedure applied to
a grounded, unsatisfiable, normal form formula S will find the empty clause in
finite time.

Proof. Reading each atomic formula as a propositional letter (see proposition
3.7), the resolution rule becomes the same as the propositional resolution rule
(substitutions are not available on grounded formulas).

Hence completeness theorem 2.4 for propositional logic applies.

Theorem 3.20 (Completeness). Rn(S) will contain the empty clause for some
n, if S is unsatisfiable.

Proof. We know from corollary 3.6 that S is unsatisfiable if and only if there is
a Herbrand domain DS for S such that E(S,DS) is unsatisfiable.

And due to lemma 3.19 the resolution procedure applied to the grounded
set E(S,DS) will eventually yield the empty clause (i.e. that [] ∈ Rn(E(S,DS))
for some n), if E(S,DS) is unsatisfiable.

But we also have from lemma 3.18 that for any Herbrand domain DS and
natural number n, then Rn(E(S,DS)) ⊆ E(Rn(S), DS).

So if S is unsatisfiable, then Rn(E(S,DS)) will contain the empty clause (for
some DS), and thereby also [] ∈ E(Rn(S), DS). But a Herbrand expansion of
Rn(S) will never contain the empty clause if not Rn(S) does. Hence Rn(S)
must contain the empty clause.

This theorem does not, of course, say anything about the size of n when the
empty clause will be found. It only states that if the input is an unsatisfiable
formula, the empty clause will be found eventually. There is no guarantee that
n will not grow absurdly large before the empty clause is found.

In fact, n will sometimes grow absurdly large. For there can be no computable
function f : L → N, such that f forms an upper bound for n. This is a rather
strong statement, considering that for example

f(x) = x100x
100x

is a perfectly computable function. The reason is that if there was one such
function f , we could, for any input formula S, let the procedure go through the
loop f(S) times. If the empty clause still was not found, we would know that
it would never be found. We would have had a (terribly inefficient) decision
procedure for the satisfiability problem of first-order logic. But according to
Turings theorem 1.1, no such procedure can exist.

Therefore any proof procedure for first-order logic is doomed to consume a
terrible amount on time on at least some inputs. Paradoxically, this does not
stop this algorithm from being rather quick on many inputs, as we shall see in
the next section.

38

4 Applications

A natural question to raise is whether the theory developed so far is usable at
all. Can it actually be mathematically useful?

In order to answer that we will no longer depend on theoretical arguments.
Instead we will need an implementation of the resolution principle; that is an
actual computer program, runnable on a normal computer, making use of the
theory we have developed.

Fortunately, several such programs have already been developed. In fact,
every year a competition is held between the best automated theorem provers,
called CADE - Conference on Automated Deduction[6]. We shall have a closer
look at a theorem prover by the name Prover9.

4.1 Prover9

Prover9[8] is a freely available (open source) automated theorem proving imple-
mentation, building on the resolution principle.

The resolution principle is extended with a couple of extra rules. Some of
them are variations on the resolution rule (unit resolution, hyper resolution e.g.),
others are rules introduced to handle equality (paramodulation, rewriting, flip).
For some of them, short explanations are provided when they occur in proofs
below.

Now lets have a look at what using Prover9 can look like.

4.1.1 Syllogism

Let us first see if Prover9 can prove the famous syllogism of Aristotle:

1. All men are mortal.

2. Socrates is a man.

3. Hence, Socrates is mortal.

Prover9 wants to be fed a set of assumptions (a natural choice would be item
1 and 2), and a set of goals (item 3 in this case), in a text file. It can look
something like this.

formulas(assumptions).

all x (man(x) -> mortal(x)).

man(socrates).

end_of_list.

formulas(goals).

mortal(socrates).

end_of_list.

39

Prover9 will then generate the following output.
============================== PROOF =================================

% Proof 1 at 0.02 (+ 0.00) seconds.

% Length of proof is 7.

% Level of proof is 3.

% Maximum clause weight is 0.

% Given clauses 0.

1 (all x (man(x) -> mortal(x))) # label(non_clause). [assumption].

2 mortal(socrates) # label(non_clause) # label(goal). [goal].

3 man(socrates). [assumption].

4 -man(x) | mortal(x). [clausify(1)].

5 mortal(socrates). [resolve(3,a,4,a)].

6 -mortal(socrates). [deny(2)].

7 $F. [resolve(5,a,6,a)].

============================== end of proof ==========================

The first lines represents some general info about the proof: the time con-
sumed, the length of the proof etc. This is an easy proof, and, accordingly, it
went pretty fast.

The rest is the actual proof. We see that it first restates the given assump-
tions and the goal. In step 4 it then clausifies the ”man so mortal” statement
(i.e. it puts it on normal form), and then it finds the resolvent 5 from 3 and 4.

Combining 5 with the negation of the goal, it finds the empty clause (repre-
sented with $F).

4.1.2 Group Theory

Now let us consider some mathematically more interesting examples, namely
two propositions of group theory.

A group is any structure satisfying the three axioms of group theory. The
axioms are easily expressed as a list of assumptions in the Prover9 syntax.

formulas(assumptions).

all x all y (x*y)*z=x*(y*z).

all x ((x*e=e*x) & (e*x=x)).

all x exists y ((x*y=e) & (y*x=e)).

end_of_list.

Prover9 natively supports first-order logic with equality, so there is no need
to supply with the axioms of equality. To handle equalities, it frequently uses a
deduction rule called paramodulation. The paramodulation rule is most easily
explained by an example: given the formulas A(f(x)) and f(x) = y, we can
infer A(y).

Formally, in its full generality, it becomes: For a formula P (t) and an equality
s1 = s2, such that for some substitutions σ and λ we have that P (t)σ is P (u)
and (s1 = s2)λ is u = s3, we can infer P (s3).

40

Example 1. We wish to prove (from nothing but the group axioms), that
every equation a ∗x = b has a unique solution x. A by no means obvious conse-
quence of the group axioms for anyone not familiar with the workings of group
theory. The proposition can be formulated as the goal

formulas(goals).

exists x (a*x=b & all y (a*y=b -> y=x)).

end_of_list.

Feeding Prover9 with the group axioms above and the goal, it quickly gen-
erates a proof. The proof is rather compact however, so we have used a utility
called prooftrans (that comes bundled with Prover9), to expand it.

% Proof 1 at 0.02 (+ 0.01) seconds.

% Length of proof is 15.

% Level of proof is 4.

% Maximum clause weight is 11.

% Given clauses 15.

1 (all x all y (x * y) * z = x * (y * z)) # label(non_clause). [assumption].

2 (all x (x * e = e * x & e * x = x)) # label(non_clause). [assumption].

3 (all x exists y (x * y = e & y * x = e)) # label(non_clause). [assumption].

4 (exists x (a * x = b & (all y (a * y = b -> y = x)))) # label(non_clause)

label(goal). [goal].

5 (x * y) * z = x * (y * z). [clausify(1)].

7 e * x = x. [clausify(2)].

8 x * f1(x) = e. [clausify(3)].

9 f1(x) * x = e. [clausify(3)].

10 a * x != b | a * f2(x) = b. [deny(4)].

11 a * x != b | f2(x) != x. [deny(4)].

13A e * x = y * (f1(y) * x). [para(8(a,1),5(a,1,1))].

13B x = y * (f1(y) * x). [para(7(a,1),13A(a,1))].

13 x * (f1(x) * y) = y. [copy(13B),flip(a)].

16A e * x = f1(y) * (y * x). [para(9(a,1),5(a,1,1))].

16B x = f1(y) * (y * x). [para(7(a,1),16A(a,1))].

16 f1(x) * (x * y) = y. [copy(16B),flip(a)].

19 a * f2(f1(a) * b) = b. [resolve(10,a,13,a)].

20 f2(f1(a) * b) != f1(a) * b. [resolve(11,a,13,a)].

32A f1(a) * b = f2(f1(a) * b). [para(19(a,1),16(a,1,2))].

32B f2(f1(a) * b) = f1(a) * b. [copy(32A),flip(a)].

32 $F. [resolve(20,a,32B,a)].

The first 11 steps are just conversion to normal form.
In 13A paramodulation is applied to sentences 5 and 8. 5 is instantiated

to (y ∗ f1(y)) ∗ x = y ∗ (f1(y) ∗ x) and 8 to y ∗ f1(y) = e, which yields 13A:
e ∗ x = y ∗ (f1(y) ∗ x).

13B is simply from the transitivity of equality, but it can also be expressed
as an application of the paramodulation rule. To complete step 13, a flip makes
it x ∗ (f1(x) ∗ y) = y (Prover9 prefers to keep the ”heavier” side of the equation
to the left).

The rest of the steps are performed in similar ways to what have already

41

been discussed.

Example 2. Another theorem of group theory is that if all elements in a group
G are their own inverses, G will be abelian (commutative). Starting with the
same assumptions as in the last example (i.e. the group axioms), we wish the
following goal to be proven.

formulas(goals).

all x x*x=e -> (all y all z y*z=z*y).

end_of_list.

This is not a problem for Prover9. The following proof (expanded with
prooftrans) is generated almost instantaneously.

% Proof 1 at 0.02 (+ 0.00) seconds.

% Length of proof is 14.

% Level of proof is 5.

% Maximum clause weight is 11.

% Given clauses 12.

1 (all x all y a(a(x,y),z) = a(x,a(y,z))) # label(non_clause). [assumption].

2 (all x (a(x,e) = a(e,x) & a(e,x) = x)) # label(non_clause). [assumption].

4 (all x a(x,x) = e) -> (all y all z a(y,z) = a(z,y)) # label(non_clause)

label(goal). [goal].

5 a(a(x,y),z) = a(x,a(y,z)). [clausify(1)].

6 a(e,x) = a(x,e). [clausify(2)].

7 a(e,x) = x. [clausify(2)].

10 a(x,x) = e. [deny(4)].

11 a(c2,c1) != a(c1,c2). [deny(4)].

12A x = a(x,e). [para(7(a,1),6(a,1))].

12 a(x,e) = x. [copy(12A),flip(a)].

17A a(e,x) = a(y,a(y,x)). [para(10(a,1),5(a,1,1))].

17B x = a(y,a(y,x)). [para(7(a,1),17A(a,1))].

17 a(x,a(x,y)) = y. [copy(17B),flip(a)].

18A e = a(x,a(y,a(x,y))). [para(10(a,1),5(a,1))].

18 a(x,a(y,a(x,y))) = e. [copy(18A),flip(a)].

24A a(x,e) = a(y,a(x,y)). [para(18(a,1),17(a,1,2))].

24B x = a(y,a(x,y)). [para(12(a,1),24A(a,1))].

24 a(x,a(y,x)) = y. [copy(24B),flip(a)].

28 a(x,y) = a(y,x). [para(24(a,1),17(a,1,2))].

29 $F. [resolve(28,a,11,a)].

Again we see that the main part of the job is done by paramodulation.

4.2 Achievements

Perhaps not very surprisingly, abstract algebra is one of the areas where auto-
mated theorem proving has been most useful; proving a number of theorems
previously unknown.

D.W. Loveland mentions a few of these in his article Automated deduction:
achievements and future directions[4]. Another article exposing the power au-

42

tomated theorem proving applied to group theory is Computer proofs in Group
Theory [9] by Yuan Yu.

The theory of automated theorem proving has also successfully been used
in programming languages such as Prolog[7], which has a form of resolution
built in. This allows the programmer to only specify a few logical relations,
the actual proceedings of the calculations will be handled by the underlying
automated theorem prover; ideally generating very comprehensive and easily
maintainable source code.

43

References

[1] Stephen A. Cook, The complexity of theorem-proving procedures Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, ACM,
New York, 1971

[2] Martin Davis, Hilary Putnam, A Computing Procedure for Quantification
Theory, Journal of the ACM (JACM), ACM, New York, 1960

[3] Melvin Fitting, First-Order Logic and Automated Theorem Proving,
Springer, New York, 1996

[4] Donald W. Loveland, Automated deduction: achievements and future di-
rections, Communications of the ACM, 2000

[5] Alan Robinson, A Machine-Oriented Logic Based on the Resolution Prin-
ciple, Journal of the ACM, 1965

[6] Geoff Sutcliffe, The CADE-20 Automated Theorem Proving Competition
AI Communications, 2010

[7] Prolog, 16 April 2010, URL: http://www.swi-prolog.org/

[8] Prover9. 15 April 2010. URL: http://www.cs.unm.edu/˜mccune/mace4/

[9] Yuan Yu, Computer proofs in Group Theory, Springer Netherlands, 2004

44

