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Abstract. In this paper we follow the methodology of Waldhausen and apply his
construction of K-groups of Waldhausen categories to a non-Waldhausen case, namely
the category of algebraic varieties. We then deduce some results such as Ki(Vark) =
Ki(Schk) and that the groups are almost always non-trivial when k is a finite field.
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1. Prerequisites

In this chapter we will introduce the necessary mathematics that will be used through-
out this paper.

Let C be a category. By a simplicial object F in C we mean a contravariant functor
F : ∆ → C where ∆ is the category of finite ordinals. To be more precise, ∆ is the
category whose objects are ordered sets n = {0 < 1 < · · · < n}, n a non-negative
integer, and whose morphisms are non-decreasing maps. We will use the notation
Fn := F (n).

Examples:

(i) If C = Set, the category of all sets, then we call a simplicial object in C a
simplicial set for short.

(ii) If C = Cat, the category of all small categories, then we call a simplicial object
in C a simplicial category.

To every (small) category we can associate a simplicial set, its nerve, viz., given
the category C we define its nerve, NC, to be the simplicial set whose n-simplices, i.e.
elements in the set N (C)n, are diagrams in C:

X0

f0 // X1

f1 // · · · fn−1 // Xn ,

Xi ∈ Ob(C) and fi ∈ Mor(C).
Suppose we are given a simplicial category F ∈ Cat∆op

. Consider the composition

∆op F // Cat
N (−)
// Set∆

op .

This means that we have associated to F a simplicial simplicial set

NF : = N (−) ◦ F : ∆op → Set∆op

,

i.e. NF ∈ (Set∆op

)∆op
. However, there is a natural isomorphism (Set∆op

)∆op ∼=
Set∆op×∆op

(cf. [7]) and so we can see NF as a bisimplicial set. By restricting ourselves
to the diagonal of ∆op×∆op we finally get a simplicial set N∆F = N ◦F ◦∆: ∆op → Set,
with ∆: ∆op → ∆op ×∆op the canonical functor.

Suppose we are given a simplicial set F : ∆op → Set. The geometric realisation, |F |,
of F is the topological space defined as follows.

Definition 1.1. Given a morphism of ordered sets g : n→ m, we define

g : ∆n → ∆m

(x0, . . . , xn) 7→ (y0, . . . , ym)
,

where

yi =
∑

0≤j≤n
g(j)=i

xj.

Let

f :
∐
n≥0

Fn ×∆n →

(∐
n≥0

Fn ×∆n

)
/ ∼



5

be the canonical map. Equip Fn with the discrete topology. The standard n-simplex
∆n is given the usual topology, namely, the subspace topology in Rn+1. The relation ∼
is defined such that, for (x, t) ∈ Fn ×∆n and (y, s) ∈ Fm ×∆m,

(x, t) ∼ (y, s)⇐⇒ ∃ g : n→ m s.t. (x, g(t)) = (F (g)(y), s).

Using this construction we define |F | =
(∐

n≥0 Fn ×∆n

)
/ ∼ with the quotient topol-

ogy under f .
By the geometric realisation of a simplicial category we mean the geometric realisation

of the associated simplicial set. Given a (small) category C, its classifying space, B(C),
will be the geometric realisation of its nerve.

Definition 1.2. Let F and G be two simplicial sets. Then a map of simplicial sets
f : F → G is a collection of maps f = {fn}n≥0, fn : Fn → Gn, such that the diagrams

Fn
∂Fk //

fn
��

Fn−1

fn−1

��
Gn

∂Gk // Gn−1

and

Fn−1
sk //

fn−1

��

Fn

fn
��

Gn−1
sk // Gn

commute, where, for 0 ≤ k ≤ n, ∂Fk and ∂Gk are the kth face maps and sFk , s
G
k are the

kth degeneracy maps.

One important property that we have is that maps between simplicial sets induce
continuous functions between their geometric realisations. To see this, consider the
map f : F → G of simplicial sets. We then have a map (cf. [8, 10, 13]):

|f | : |F | → |G|
(x, t) 7→ (f(x), t).

As usual, let F be a simplicial set. By F nd we will mean the contravariant functor
associated to F , whose simplices are non-degenerates, i.e.,

F nd
n : = Fn \

⋃
Im(si),

where si : Fn−1 → Fn, 0 ≤ i ≤ n − 1, are the degeneracy maps. Note that F nd is not
a simplicial set as the face of a non-degenerate simplex does not actually have to be
non-degenerate. Consider the obvious sequence∐

F nd
n ×∆n

f

11

� � //
∐
Fn ×∆n

// |F | , ,

where f is the composition. Let (x, t) ∈ |F |. If x is non-degenerate, then we have
that (x, t) ∈

∐
F nd
n × ∆n. However, if x is a degenerate there exists a y ∈ Fn−1 such
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that x = si(y) for some degenerate map si. But the topology of |F | is such that
(x, t) = (si(y), t) = (y, si(t)). If y is non-degenerate we have that f(y, si(t)) = (x, t). If
not, we continue this process which eventually must terminate. Therefore we end up
with a non-degenerate after at most n steps. This means that f is surjective but also
bijective on interiors.

The structure on |F | is that of a famous topological one.

Definition 1.3. [6] A cell complex (or CW complex ) is constructed as follows:

(i) Let X0, the 0-cell, be a discrete set.
(ii) We build the n-skeleton by setting Xn = Xn−1

∐
αD

n
α/ ∼, where x ∼ φ(x) for

a continuous function φ : Sn−1 → Xn−1 and x ∈ ∂Dn
α.

(iii) Finally we let X = ∪nXn be given the weak topology

Since we have a homeomorphism ∆p ' Dp, we can identify the non-degenerate p-
simplices of F with the p-cells on an induced CW structure on |F |.
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2. Waldhausen categories

The definition of the K-groups will heavily be influenced by Waldhausens construc-
tion. Good references are ([1, 17]).

Definition 2.1. A category with cofibrations is a category C with a zero object 0 and
a collection of morphisms of C, co(C), such that

C1: Iso(C) ⊆ co(C);
C2: 0→ X is a cofibration, for all X ∈ Ob(C);
C3: If A → B is a cofibration and A → C is any morphism in C, then the
pushout B ∪A C exists and the map C → B ∪A C is a cofibration.

A cofibration is usually symbolized with the arrow � and we will stick to this no-
tation. We also have morphisms called weak equivalences, w(C), denoted by

∼−→ and
defined to fulfill the following conditions:

W1: Iso(C) ⊆ w(C);
W2: The composition of weak equivalences is a weak equivalence;
W3: If we have a diagram of the form

C

∼
��

Aoo // //

∼
��

B

∼
��

C ′ A′oo // // B′,

then the induced map B ∪A C → B′ ∪A′ C ′ is a weak equivalence.

Note that we again require that pushouts exist. Furthermore, in this chapter the map
∼−→ always denotes a weak equivalence. In other chapters this is not the case, it might
just denote an isomorphism of groups or even a homotopy equivalence. This will be
clear from the context.

Definition 2.2. A Waldhausen category is a category C with cofibrations and weak
equivalences.

The category C will be a Waldhausen category throughout this chapter.
Let A � B be a cofibration and A → 0 the unique map, then we can consider the

pushout B/A := 0 ∪A B. The pushout is only unique up to isomorphism, so we have
different choices for B/A. The canonical morphism B → B/A will be denoted by the
arrow �. This allows us the form the following construction.
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Definition 2.3. The category SnC, n ≥ 0, has as objects triangles

An−1,n

...

OOOO

A2,3
// // . . . // // A2,n

OOOO

A1,2
// // A1,3

// //

OOOO

. . . // // A1,n

OOOO

A1
// // A2

// //

OOOO

A3
// //

OOOO

. . . // // An,

OOOO

where A1, . . . , An ∈ Ob(C) and Aij := Aj/Ai is a pushout with a specific choice in mind.
We also require the diagram to commute. A morphism in SnC is a commutative diagram

0 // //

��

A1

��

// // . . . // // An

��
0 // // B1

// // . . . // // Bn.

We can define such a morphisms to be weak equivalences if all the vertical arrows are
weak equivalences. Dito holds for cofibrations. The reason why we only need to do this
on the bottom row of the triangles, instead on all the elements of the triangle, follows
from the use of W3.

We have that S•C is a simplicial category. Note that S1C = C and that S0C = 0,
where the latter equality is by convention. The face maps are the following ones.

Definition 2.4. The functor ∂0 : SnC → Sn−1C, n ≥ 0, is defined by removing the
bottom row of our triangle. The face map ∂i : SnC → Sn−1C, for i = 1, . . . , n, is defined
by removing the ith row (counted such that the bottom row is 0 in the sequence) and
removing the column containing Ai.

This can be stretched further and S•C is actually a simplicial Waldhausen category.
We now consider the subcategory wSnC ⊆ SnC which has the additional condition

that the morphisms are w(SnC); weak equivalences. This allows us to consider the
geometric realisation |wS•C| and make the following crucial definition.

Definition 2.5. Let C be a small Waldhausen category. Then we can define its K-
groups as

Ki(C) := πi+1|wS•C|.

Indeed, this is the correct definition that generalizes Quillen’s constructions. We have
the following example which shows a striking resemblance with how the Grothendieck
group (cf. Def. 4.1) is defined for the category of algebraic varieties.
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Proposition 2.1. The Grothendieck group K0(C) is generated by elements [A] over Z,
with A ∈ Ob(C), modulo the following relations

(i) [A] = [B] if there exists a weak equivalence A
∼−→ B;

(ii) For every cofibration sequence A� B � B/A, we have [B] = [B/A] + [A].

Proof. See ([17, Prop. 8.4]). �
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3. The group Kn of the category of algebraic varieties

Throughout the text k will be a field. By Vark we mean the category of algebraic k-
varieties, i.e., the category whose objects are algebraic k-varieties and whose morphisms
are morphisms of algebraic k-varieties. We define SnVark, for n ≥ 0, to be the category
with objects equal to sequences of closed subvarieties:

(1) ∅ ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn,

Xi ∈ Vark, and morphisms are commutative diagrams

(2) ∅ ⊆ X1

f1
��

⊆ · · · ⊆ Xn

fn
��

∅ ⊆ Y1 ⊆ · · · ⊆ Yn

,

where f1, . . . , fn ∈ Mor(Vark). An isomorphism is a morphism where each fi, i =
1, . . . , n, is an isomorphism in Vark. We will call the morphisms we built the sequence
with (in our case we used closed inclusions ⊆) for cofibrations∗. The fact that this
indeed is a category is obvious.

Let the weak equivalences be the isomorphisms of SnVark. Now consider wSnVark,
the subcategory of SnVark where

Ob(wSnVark) = Ob(SnVark)

and

Mor(wSnVark) = Iso(SnVark).

This means that we consider the subcategory whose morphisms are solely the weak
equivalences. The new construction wS•Vark is also a simplicial category where a face
map ∂i applied to (1) removes the ith element in the sequence. The face map ∂0 removes
the empty set but also subtracts X1 from all the algebraic varieties in the sequence. That
is,

∂0(∅ ⊆ X1 ⊆ · · · ⊆ Xn) = ∅ ⊆ X2 \X1 ⊆ · · · ⊂ Xn \X1.

A degeneracy map si simply adds an identity morphism in the obvious place:

si(∅ ⊆ X1 ⊆ · · · ⊆ Xn) = ∅ ⊆ X1 ⊆ · · · ⊆ Xi−1 ⊆ Xi ⊆ Xi ⊆ Xi+1 ⊆ · · · ⊆ Xn.

By using the ideas we talked about previously we can apply the nerve pointwise on
wS•Vark and then look at the diagonal of ∆op × ∆op in order to get a simplicial set.
This allows us to talk about the simplicial set N∆(wS•Vark) whose n-simplicies are
diagrams of the form

∗We will use this terminology, which is inspired by Waldhausen, in order to ease things. We will
later reuse the construction in this chapter with the slight modification of considering other categories,
cofibrations and weak equivalences.
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∅ ⊆ X0
1

∼=
��

⊆ · · · ⊆ X0
n

∼=
��

∅ ⊆ X1
1

∼=
��

⊆ · · · ⊆ X1
n

∼=
��. . .

. . . . . .

. .

∼=
��

.

∼=
��

∅ ⊆ Xn
1 ⊆ · · · ⊆ Xn

n .

The face operator ∂i, 1 ≤ i ≤ n, simply just removes the ith row and ith column for
1 ≤ i ≤ n, and ∂0 maps the above diagram to

∅ ⊆ X1
2 \X1

1

∼=
��

⊆ · · · ⊆ X1
n \X1

1

∼=
��

∅ ⊆ X2
2 \X2

1

∼=
��

⊆ · · · ⊆ X2
n \X2

1

∼=
��. . .

. . . . . .

. .

∼=
��

.

∼=
��

∅ ⊆ Xn
2 \Xn

1 ⊆ · · · ⊆ Xn
n \Xn

1

The degeneracy map si, 0 ≤ i ≤ n, simply adds a copy of the ith row directly under the
current ith row, and in the same way adds a copy of the ith column.

We are now ready to define our K-theory on the category of algebraic varieties.
Take the geometric realisation of N∆(wS•Vark) and call it B(wS•Vark) for short. Our
K-groups are defined as

Ki(Vark) = πi+1(B(wS•Vark, ∅)),
for i ≥ 0.
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4. Justification for our K-theory

As it is now, we have simply written down a definition for our K-groups. We must also
show that this definition, at degree 0, agrees with the Grothendieck group for algebraic
varieties.

Recall the definition for the Grothendieck group.

Definition 4.1. The Grothendieck group on the category of algebraic varieties is the
free abelian group on the objects of Vark modulo the following relations.

(i) If A ∼= B, then [A] = [B], and
(ii) if A is a closed subvariety of B, then [B] = [B \ A] + [A].

To make this identification we must take a detour into the simplicial settings. We
start with a general construction called the simplicial fundamental group, πs1, which is
due to Gabriel-Zisman ([3])

Definition 4.2 (cf. [7]). A precategory consists of a set of objects, O, and a set of
arrows, A. We also have have a pair of functions A ⇒ O, ∂0 and ∂1. The domain of
f ∈ A is ∂0f and its codomain is ∂1f .

A precategory is also sometimes called a graph; the objects are then called vertices
and the arrows are called edges.

Definition 4.3. The path category, or the free category, of a precategory A⇒ O is the
category whose objects are O and morphisms Hom(a, â) are of the form

a0
f1−→ a1

f2−→ . . .
fn−→ an,

with a0, . . . , an ∈ O, f1 ∈ A and a = a0, â = an.

Let F be a simplicial set and let ∗ be a 0-simplex.† We construct a precategory XF

by letting its objects equal to F0, the arrows equal to F1 and letting A
∂0 //

∂1

// O be the

two face maps (cf. [4]). We then take the path category P(XF ) over our precategory X
and consider the groupoid GF (cf. page 33 in [3]). This means that we are dealing with
sequences (y0, . . . , yn), of arbitrary lengths, where yi either equals an element x living
in F1, or equals a formal 1-simplex x̄ such that

∂0x̄ = ∂1x, and

∂1x̄ = ∂0x.

We also require that

∂0y0 = ∂1yn = ∗, and(3)

∂0yi = ∂1yi−1, for 0 < i ≤ n.(4)

Composition of sequences is given by juxtaposition

(y0, . . . , yn)× (y′0, . . . , y
′
m) = (y0, . . . , yn, y

′
0, . . . , y

′
m),

where we have the condition that (y)× (ȳ) = (ȳ)× (y) is the identity.

†In our case the simplicial sets will only have a single 0-simplex.
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The conditions (3) and (4) will be trivial in our case because of the fact that we only
have a single 0-simplex.

We also have the following relations. For all ∗ ∈ F0 and all x ∈ F2:

s0∗ = id∗, and(5)

∂1x = (∂0x)× (∂2x).(6)

That is, consider (y0, . . . , yi, yi+1, . . . , yn) (with all yi ∈ F1) and the 2-simplex x

∗0

x

















yi+1

22222222222222

z

∗1 yi
∗2,

where ∗0, ∗1, ∗2 are 0-simplices Then

(y0, . . . , yi, yi+1, . . . , yn) = (y0, . . . , yi−1, x, yy+2, . . . , yn),

where

∂0z = yi;

∂1z = x;

∂2z = yi+1.

If (. . . , y0, y1, . . . ) = (. . . , x, . . . ) we also set (. . . , ȳ0, ȳ1, . . . ) = (. . . , x̄, . . . ).
We can now construct πs1(F, ∗), the simplicial fundamental group, to be the group

which equals GF but with the additional condition that we fix a 0-simplex ∗ and only
consider sequences such that ∂0y0 = ∂1yn = ∗.

There is, for each 1-simplex y, a canonical path, ŷ, in |F | given by

ŷ : [0, 1] = ∆1 → |F |
t 7→ (y, t)

,

and for each ȳ a path
ˆ̄y : [0, 1] = ∆1 → |F |

t 7→ (y, 1− t).
Using the above construction one can show that the simplicial fundamental groupoid

πs1(F, ∗) is isomorphic to the ”standard” fundamental group π1(|F |, ∗) where the iso-
morphism is given by

πs1(F, ∗) → π1(|F |, ∗)
(y0, . . . , yn) 7→ ŷ0 � · · ·� ŷn.

The operator � denotes the usual concatenation of paths in a topological space. See
([4]) for a proof of the isomorphism.

Consider the map
φ : Vark → πs1(wS•Vark, ∅)
X 7→ 〈X〉
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where 〈X〉 is the equivalence class of

∅ ⊆ X

∅ ⊆ X

,

in πs1(Vark, ∅).
The results from (A.1) and (A.2) tell us that 〈∅〉 acts like the identity element. By

(A.3), (A.1), (A.2) and (A.4) we get that X ∼= Y ⇒ 〈X〉 = 〈Y 〉. The second condition
(4.1.ii) we needed to show was that 〈X〉 = 〈Y 〉+ 〈X \Y 〉, when Y is a closed subvariety
of X. We get this from (A.5). These properties also hold for the equivalence classes of
the corresponding formal 1-simplices.

For ease of notation we will write πs1(Vark) : = πs1(Vark, ∗).

Theorem 4.1. The set πs1(Vark) is an abelian group under the operation ×.

Proof. Let 〈Y1〉, 〈Y2〉 ∈ πs1(Vark). We want to show that 〈Y1〉 × 〈Y2〉 = 〈Y2〉 × 〈Y1〉. For

this, consider the algebraic variety Y1tY2. It has two closed subvarieties Ŷ1, Ŷ2 ⊆ Y1tY2

such that Ŷ1
∼= Y1 and Ŷ1

∼= Y1. We also have that Y1tY2\ Ŷ1 = Ŷ2 and Y1tY2\ Ŷ2 = Ŷ1.
The theorem then readily follows from the following 2-simplex:

〈Y1tY2〉

����������������

〈Ŷ0〉

〈Ŷ1〉

�

Note that the equivalence class of a formal 1-simplex, 〈X̄〉, is the inverse of its asso-
ciated 1-simplex 〈X〉.

Now we can consider the obvious homomorphism

[·] : πs1(Vark) → K0(Vark)
〈X〉 7→ [X]

The equivalence class of a formal 1-simplex 〈X̄〉 is mapped to −[X].
We know that πs1(wS•Vark, ) is generated by the 1-simplices of the form 〈X〉. Fur-

thermore we have shown that this is a well-defined map. Surjectivity follows easily as
K0(Vark) is generated by elements of the form [X]. On the other hand we also have a
map

〈·〉 : K0(Vark) → πs1(Vark)
[X] 7→ 〈X〉

that clearly is surjective. Composing the maps [·] and 〈·〉 give us the identity maps
which can be seen on the generators. This proves that our definition of the K-groups
coincide with the Grothendieck group in degree 0.
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5. Comma categories and some properties

Let C be a (small) category and X an object of C.

Definition 5.1. The comma category (C ↓ X) has as objects pairs (Y, f), or f : Y → X,
such that Y is an object of C and f ∈ HomC(Y,X). A morphism g : (Y, f)→ (Y ′, f ′) is
a commutative diagram

Y
g //

f

  AAAAAAAA Y ′

f ′

��
X.

LetX be an algebraic variety. We shall consider comma categories VarX : = (Vark ↓ X)
and their K-groups Ki(VarX). These are defined in the obvious way: N∆(wS•VarX)
has as n-simplices

∅ ⊆ (X0
1 → X)

∼=
��

⊆ . . . ⊆ (X0
n → X)

∼=
��

...
...
∼=
��

. . .
...
∼=
��

∅ ⊆ (Xn
1 → X) ⊆ . . . ⊆ (Xn

n → X),

where X i
j → X ∈ VarX , for 0 ≤ i ≤ n, 1 ≤ j ≤ n. We also want X i

j ⊆ X i
j+1, the

cofibrations, and that X i
j → X factors through X i

j+1 → X via the inclusion map.

The weak equivalences are isomorphisms X i
j → X i+1

j such that we have a commutative
diagram

X i
j

//

  AAAAAAAA
X i+1
j

}}zzzzzzzz

X.

The rest is clear.
The category Vark has a final object, namely Spec(k), and therefore we have a natural

isomorphism of the categories Vark and VarSpec(k). This is how this connects back to
our theory.

Given a (covariant) functor F : C → C ′ of (small) categories, we have an induced
function BF : BC → BC ′ (cf. [10]). To see this, note that we have an obvious map
between the nerves of the categories, FN : NC → NC ′, where the map is considered as
a map of simplicial sets. The n-simplex

X0

f1 // X1

f2 // · · · fn // Xn .

is mapped to

FN(X0)
FNf1 // FN(X1)

FNf2 // · · · FNfn// FN(Xn) .
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This is the same for bisimplicial sets. Note that if we have functors

G ◦ F : C
F // C ′

G // C ′′

then (G ◦ F )N = FN ◦GN .
Next we assume that we are given a map of simplicial sets F : X → Y . From it we

get an induced map on the geometric realisations (cf. [13] chapter 2.1 and [8] §14)

|F | : |X| → |Y |
(x, t) 7→ (F (x), t).

Again note that if we have two maps of simplicial sets F : X → Y and G : Y → Z, then
|G ◦ F | = |G| ◦ |F | since

|G ◦ F |(x, t) = (G ◦ F (x), t) = |G|(F (x), t) = |G| ◦ |F |(x, t).

Furthermore, suppose that U, V,W are topological spaces and consider two continuous
functions F : U → V and G : V → W . Each map, say F , induces a homomorphism on
the homotopy groups (i > 0)

Fπ : πi(U) → πi(V )
〈α〉 7→ 〈F ◦ α〉.

Note once again that (G ◦ F )π(〈α〉) = 〈G ◦ F ◦ α〉 = Gπ(〈F ◦ α〉) = Gπ(Fπ(〈α〉)) =
(Gπ ◦ Fπ)(〈α〉).

Rewinding back to our functor F : C → C ′, we see that we get an induced homomor-
phism F∗ : Ki(C)→ Ki(C

′) (assuming we can construct theK-groups in a relevant way).
If we have another functor G : C ′ → C ′′, then (G ◦ F )∗ = G∗ ◦ F∗ : Ki(C)→ Ki(C

′′).

Theorem 5.1. Let f : X → X ′ be a morphism of algebraic varieties. Then we get
an induced homomorphism f∗ : Ki(VarX) → Ki(VarX′). Moreover, if g : X ′ → X ′′ is
another morphism, then (gf)∗ = g∗ ◦ f∗ : Ki(VarX)→ Ki(VarX′′).

Proof. The morphism f : X → X ′ induces a functor f∗ : VarX → VarX′ on categories
given by

Y

��

Y

��� // X

��
X X ′.

A triangle

Y //

  AAAAAAAA Y ′

��
X



17

gets mapped to

Y //

!!BBBBBBBB Y ′

��
X

��
X ′.

Note that, given this definition of the induced map, the property that (g ◦ f)∗ = g∗ ◦
f∗ : VarX → VarX′′ follows readily. The rest follows from the discussion above. �

We also get a pullback.

Theorem 5.2. Given the same maps as in the previous theorem, we get an induced ho-
momorphism f ∗ : Ki(VarX′)→ Ki(VarX). We also have that (g◦f)∗ = f ∗◦g∗ : Ki(VarX′′)→
Ki(VarX).

Proof. Define f ∗ : VarX′ → VarX by

Y

��

Y ×X′ X

��

� //

X ′ X

so that we have a Cartesian diagram

Y ×X′ X //

��

Y

��
X // X ′.

Calculations give us that, by applying (g ◦ f)∗,

Y

��
X ′′

is mapped to

Y ×X′′ X

��
X.

On the other hand, if we first apply g∗ we get

Y ×X′′ X ′

��
X ′,
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and if we then apply f ∗ we get

(Y ×X′′ X ′)×X′ X

��
X.

But there is a natural isomorphism (Y ×X′′ X ′)×X′ X ∼= Y ×X′′ X, and so the theorem
follows. �

The proof is not as innocent as one might think. When applying a pullback we get
choices of different Cartesian diagrams given by the universal definition of fibre products.
Therefore (f ◦ g)∗ and f ∗ ◦ g∗ need not to be equal on a category theoretical level (as
functors). The fix is easy: We first make a specific choice of Cartesian diagram when
pulling back by g and then a specific choice when pulling back by f . We then select
a specific Cartesian diagram when pulling back by (f ◦ g) such that we tautologically
have an equality (f ◦ g)∗ = f ∗ ◦ g∗. When we work over the K-groups the choices do
not matter and we will always have an equivalence of homomorphisms. The reason for
this is that natural isomorphisms between functors on the category of groups reduces
to an equivalence of homomorphisms between groups.

Suppose we are given a morphism of varieties f : U → X. We can use it to construct
a functor Ff : VarY → VarX×Y given by

W

��

U ×W

��

� //

Y X × Y.

We know from the previous discussions that it induces a homomorphism

Ff∗ : Ki(VarY )→ Ki(VarX×Y ).

The Grothendieck group K0(VarX) is generated by morphisms U → X, with U ∈ Vark,
and so we get a homomorphism K0(VarX)×Ki(VarY )→ Ki(VarX×Y ) that takes U

f

��
X

, x

 7→ Ff∗(x)

and is expanded linearly.
If U → X, V → X are equal under the equivalence relations of the grothendieck

group, i.e. if [U → X] = [V → X] ∈ K0(VarX), then clearly we must have that
[U → X] and [V → X] induce the same homomorphism Ki(VarY )→ Ki(VarX×Y ). The
same thing goes for the second equivalence relation, i.e. Definition 4.1.ii. Therefore
me must also make sure K0(VarX) × Ki(VarY ) → Ki(VarX×Y ) obeys the equivalence
relations of the Grothendieck group K0(VarX). We start off with the first equivalence
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relation, Definition 4.1.i. Consider the commutative diagram

U
∼= //

f   AAAAAAAA U ′

f ′

��
X.

We need to show that Ff ′∗ = Ff∗. Now, Ff∗ is the function induced by the map

W

g

��

U ×W

f×g

��

� //

Y X × Y

and Ff ′∗ is the function induced by the map

W

g

��

U ′ ×W

f ′×g

��

� //

Y X × Y.

Note that since U ∼= U ′ we have that U ×W ∼= U ′×W . We do have a strict equivalence
if we pick a fix fibre product so that they all agree no matter what representative we
choose of a class in K0(VarX). This gives us an equality of homomorphisms Ff∗ = Ff ′∗.

Let U ⊆ V ∈ Vark be a closed subvariety with f : U → X, g : V \U → X ∈ VarX such
that there exists h : V → X ∈ VarX and we have the equivalences f = h|U , g = h|V \U .
We need to show that Fh∗ = Ff∗ + Fg∗.

The homomorphism Ff∗+Fg∗ is induced by the composition of the following functors

VarY → VarX×Y × VarX×Y
t−→ VarX×Y

where the first functor is given by

W

��
Y

7→


U ×W

��
X × Y,

(V \ U)×W

��
X × Y


.

In order to show that the induced homomorphism equals Fh∗, we need to consider a new
construction. Define Var↪→X to be the category whose objects are commutative triangles

X

A
� � //

??��������
B,

``AAAAAAA
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with A→ X,B → X ∈ VarX , and morphisms are Cartesian diagrams

A
� � //

��

B

��
C

� � // D.

We have two functors Var↪→X ⇒ VarX given by

A
� � //

  @@@@@@@ B

~~~~~~~~~~

X

7→
A

��
X

and

A
� � //

  @@@@@@@ B

~~~~~~~~~~

X

7→
(B \ A)

��
X.

We can construct the K-groups of Var↪→X be letting cofibrations be Cartesian diagrams
of the form

A
� � //

� _

��

B� _

��
C

� � // D

and weak equivalences are Cartesian diagrams of the form

A
� � //

'
��

B

'
��

C
� � // D.

We have the following additivity theorem

Theorem 5.3 ([2]). The product of the two functors from above induces a homotopy
equivalence

B(wS•Var↪→X )
∼−→ B(wS•VarX)×B(wS•VarX).

Let U → X, V → X be the morphisms previously mentioned and consider the two
functors VarY ⇒ Var↪→X×Y given by

h1 : W 7→ U ×W

%%LLLLLLLLLL
� � // V ×W

yyrrrrrrrrrr

X × Y
and

h2 : W 7→ U ×W

%%KKKKKKKKKK
� � // U ×W t (V \ U)×W.

uukkkkkkkkkkkkkk

X × Y
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Consider the composition

VarY → Var↪→X×Y
∼−→ VarX×Y × VarX×Y ,

where the last map is the homotopy equivalence in the additivity theorem. This compo-
sition gives the same result no matter if the first functor is h1 or h2. By the additivity
theorem (Theorem 5.3), the canonical maps B(h1) and B(h2) are homotopic and there-
fore induce the same maps on the K-groups.

If we now look at the functor Var↪→X×Y → VarX×Y given by

A

##GGGGGGGGG
� � // B

{{wwwwwwwww

X × Y
7→

B

��
X × Y,

we see that it induces the homomorphisms Ff∗ + Fg∗ and Fh∗ when composed with h1

and h2, respectively. Since we already have seen that h1 and h2 are homotopic, we can
conclude that the compositions induce the same homomorphisms, i.e., Fh∗ = Ff∗+Fg∗.

We now turn to a theorem on the interaction of the pullbacks and pushouts.

Theorem 5.4 (Base-change formula). Suppose we are given a Cartesian diagram

X ′

f ′

��

g′ // X

f

��
Y ′ g

// Y.

We then have (f ′)∗(g
′)∗ = g∗f∗ : Ki(VarX)→ Ki(VarX′).

Proof. As before, it is important to remember that we do not always have an equality
of functors, but we do have an equality on the K-groups. Pick U → X ∈ VarX . We
have

g∗ ◦ f∗(U → X) = g∗(U → X → Y ) = U ×Y Y ′ → Y ′.

We also have

(f ′)∗ ◦ (g′)∗(U → X) = (f ′)∗(U ×X X ′ → X ′) = U ×X X ′ → X ′ → Y ′.

But if we use the fact that the diagram above is a Cartesian diagram the result follows
since

U ×X X ′ = U ×X (X ×Y Y ′) ∼= U ×Y Y ′.
This means that we have U ×XX ′ ∼= U ×Y Y ′ and we do get a strict equality if we make
the correct choises of Cartesian diagrams, which we can. This concludes the proof. �

We will now slightly manipulate the product formula

× : K0(VarX)×Ki(VarY )→ Ki(VarX×Y ).

Let Y = X and consider the diagonal morphism ∆: X → X × X. This induces a
homomorphisms ∆: Ki(VarX)→ Ki(VarX×X). There exists a canonical homomorphism
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· : K0(VarX)×Ki(VarX)→ Ki(VarX) such that we have a commutative diagram

K0(VarX)×Ki(VarX) //

))TTTTTTTTTTTTTTT
Ki(VarX)

∆
��

Ki(VarX×X),

where K0(VarX) × Ki(VarX) → Ki(VarX×X) is our previous product formula and is
called the exterior product. The latter product K0(VarX) × Ki(VarX) → Ki(VarX) is
called the interior product. The interior product is defined as follows. If [U → X] ∈
K0(VarX), then we have a functor

VarX → VarX

given by

V

��

U ×X V

��

� //

X X.

This functor induces a homomorphism Ki(VarX) → Ki(VarX) that is then, as before,
expanded linearly. This definition gives us the following theorem.

Theorem 5.5 (Projection formula). Let u ∈ K0(VarX), v ∈ Ki(VarY ) and f : Y → X
be a morphism of varieties. Then f∗(f

∗u·v) = u·f∗v, where we use the interior products.

Proof. It is enough to show this on the level of categories because the result will then
also be true for the induced homomorphisms on the K-groups. Let u = g : U → X ∈
K0(VarX) and recall the definition U · = Fg∗ : Ki(VarX)→ Ki(VarX),

W

��

U ×X W

��

� //

X X.

We have the maps

f∗ : VarY → VarX ,

f ∗ : VarX → VarY

and

f ∗U · : VarY → VarY ,
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where the latter is defined by

W

��

U ×X Y ×Y W

��

� //

Y Y.

If we for each V → Y ∈ VarY fix a fibre product we can simply write f ∗U · (V → Y ) as
U ×X W in an unambiguous way since U ×X Y ×Y W ∼= U ×X W .

We need to show that the diagram

VarY
f∗ //

f∗U ·
��

VarX

U ·
��

VarY
f∗ // VarX

is commutative. Let W → Y ∈ VarY . Then

U · (f∗(V → Y )) = U · (V → X) = V ×X U → X.

On the other hand, going in the other direction gives

f∗(f
∗U · (V → Y )) = f∗(U ×X V → Y ) = U ×X V → X

and so these are equal, completing the proof. �
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6. A homotopy equivalence

Consider the two functors

F : Vark → Schk

X 7→ X

and

G : Schk → Vark
X 7→ Xred

.

Suppose that the composition G ◦F is the identity on Vark. Suppose also that we have
a canonical morphism F ◦ G ↪→ idSchk

and we would like to show that this somehow
gives us a homotopy equivalence between Ki(F ◦ G) and Ki(idSchk

). This would mean
that Ki(Vark) = Ki(Schk) for all i ≥ 0. Note that in order to construct Ki(Schk)
we follow the usual construction method and let the cofibrations be inclusion of closed
subschemes and weak equivalences are isomorphism of schemes.

Recall the following famous theorem (cf. [10, Prop. 2] and [11, Prop. 2.1]).

Theorem 6.1. Let C,C ′ be categories, S, T : C → C ′ functors and ϕ : S → T a natural
transformation. Then B(S) ∼ B(T ) are homotopic.

The proof is due to Segal.

Proof. Let ∆1 be the category consisting of two objects, 0 and 1. Let the morphisms
of ∆1 be the following three: 0 → 0, 0 → 1 and 1 → 1. Regard ϕ as a functor
ϕ : C ×∆1 → C ′. This induces a morphism B(ϕ) : B(C ×∆1)→ C ′. But we do have a
canonical homeomorphism B(C ×∆1)→ B(C)×B(∆1) ([10]) and B(∆1) = I, the unit
interval. This shows that B(ϕ) is a homotopy between B(S) and B(T ). �

Lets elaborate this proof. Define the functor F 
 G : C × ∆1 → C ′ to take values
F 
 G(c, 0) = F (c) and F 
 G(c, 1) = G(c). Note that we have canonical morphisms
F 
 G((c, 0) → (c′, 0)) = F (c) → F (c′) and F 
 G((c, 1) → (c′, 1)) = G(c) → G(c′).
Recall that for a morphism f : c→ c′ the natural transformation has the property that
we get a commutative diagram

F (c)
F (f)

//

ϕC

��

F (c′)

ϕc′

��
G(c)

G(f)
// G(c′).

Therefore we have that F 
 G((c, 0) → (c, 1)) = F (c)
ϕc−→ G(c), F 
 G((c′, 0) →

(c′, 1)) = F (c′)
ϕc′−−→ G(c′) and F 
 G((c, 0) → (c′, 1)) = F (c) → G(c′), where the last

arrow is the compositions G(f) ◦ ϕc = ϕc′ ◦ F (f).
Next we take the step towards the nerves. Note that the n-simplices of N (∆1)• are

of the form

N (∆1)n : 0→ 0→ · · · → 0→ 1→ · · · → 1.
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We will from now on assume the last 0 in the sequences is in the ith place. The functor
F 
 G induces a map of simplicial sets given by

N (F 
G)(c0 → · · · → cn, 0→ · · · → 0→ 1→ · · · → 1)

= F (c0)→ · · · → F (ci)→ G(ci+1)→ · · · → G(cn).

This, in turn, induces a homotopy on the geometric realisations

B(F 
 G) : B(C)× I → B(C ′),

giving a homotopy B(F ) ∼ B(G).
Going back to our construction of Ki(Schk), we can see that the nerves are of the

form

Y0
∼−→ · · · ∼−→ Yn,

where each Yi ∈ wSjSchk, for some j. The maps “
∼−→” above are induced by isomor-

phisms of schemes. So if we would try to copy the previous construction of a homotopy
equivalence we would get

N (FG)(Y0
∼−→ · · · ∼−→ Yn, 0→ · · · → 0→ 1→ · · · → 1)

= FG(Y0)
∼−→ · · · ∼−→ FG(Yi)

ϕ−→ Yi+1
∼−→ · · · ∼−→ Yn

= (Y0)red
∼−→ (Yi)red

ϕ−→ Yi+1
∼−→ · · · ∼−→ Yn.

The problem is that we want ϕ to be a weak equivalence when it in fact is a map induced
by the cofibration

(Yi)red ↪→ Yi+1,

i.e., a map induced by inclusion of closed subschemes. This can be fixed but we need
some more theory in order to do that.

When X•,• is a bisimplicial set we can talk about its nerve |X•,•|, which by definition is
a simplicial set and not a topological space. We do not want to give the exact definition
but will instead use the following proposition which essentially says that it equals to
X•,• ◦∆: ∆op → Set where ∆: ∆op → ∆op ×∆op is the diagonal functor.

Lemma 6.2 ([4]). Let X•,• be a bisimplicial set. Then |X•,•| and X•,•◦∆ are isomorphic.

Theorem 6.3 ([16, Lem. 1.7] and [4, Prop. 1.7]). Let X•,• and Y•,• be bisimplicial sets.
If f•,• : X•,• → Y•,• is a map such that fk,• : Xk,• → Yk,• is a homotopy equivalence for
all k ≥ 0, then |f•,•| : |X•,•| → |Y•,•| is a homotopy equivalence.
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Consider the bisimplicial set N•(wS•Schk) and a bisimplex of bidegree (n,m):

∅ ⊆ X0
1

∼=
��

⊆ · · · ⊆ X0
n

∼=
��

∅ ⊆ X1
1

∼=
��

⊆ · · · ⊆ X1
n

∼=
��. . .

. . . . . .

. .

∼=
��

.

∼=
��

∅ ⊆ Xm
1 ⊆ · · · ⊆ Xm

n .

In order to apply Theorem 6.3, we fix m and look at the simplicial set Nm(wS•Schk).
We are going to construct a homotopy equivalence ϕ• : Nm(wS•Schk) × N•(∆1) →
Nm(wS•Schk) such that

ϕn|Nm(wSnSchk)×{0→···→0} = N (F ◦G)

and

ϕn|Nm(wSnSchk)×{1→···→1} = N (idSchk
),

for all n ≥ 0.
Consider the n-simplex S given by

∅ ⊆ X0
1

∼=
��

⊆ · · · ⊆ X0
n

∼=
��

∅ ⊆ X1
1

∼=
��

⊆ · · · ⊆ X1
n

∼=
��. . .

. . . . . .

. .

∼=
��

.

∼=
��

∅ ⊆ Xm
1 ⊆ · · · ⊆ Xm

n .

Define ϕn by letting ϕn(S, 0 → · · · → 0 → 1 → · · · → 1) equal to the n-simplex where
we substitute all X`

p for (X`
p)red in S, ` = 0, . . . ,m, whenever p ≤ i. Note that, as usual,

the last 0 in the sequence 0→ · · · → 1 is on the ith position.
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We need to show that ϕ• indeed is a simplicial map in order for us to have the
desired homotopy. What we need to do is to show that ϕ• commutes with the face
and degeneracy maps (cf. Definition 1.2). When dealing with the degeneracy maps
this is straightforward. Consider the degeneracy map σk with k ≤ i. If we apply σk to
ϕn(S, 0 → · · · → 1), the result is just obtained by adding a copy of the kth row and
column. This extra column will contain reduced schemes since k ≤ i. On the other
hand, if we first take σk × σk(S, 0→ · · · → 1) we expand S with a copy of the kth row
and column. Since k ≤ i we also add an extra 0 to 0 → · · · → 1 and so again we take
the reduced schemes of the first (i+ 1) columns and get the same result as above. The
case k > i is just as easy to check. The difference is that we add an 1 to 0 → · · · → 1
and, on the other hand, also expand the column which we have not applied the reduced
scheme operator on. This shows that ϕ• commutes with the degeneracy maps.

The face map ∂i, i > 0, are just as easy. We essentially just remove rows, columns
and digits instead of adding new ones. The verification is straightforward and it all turn
out well. The issue is with the face map ∂0 since it does not only remove the columns,
it also take complements. To see the issue, let S equal to

∅ ⊆ X0
1

∼=
��

⊆ X0
2

∼=
��

∅ ⊆ X1
1 ⊆ X1

2

and consider the sequence 0→ 0→ 1 ∈ N2(∆1). If we first apply ϕ2 we get

∅ ⊆ (X0
1 )red

∼=
��

⊆ X0
2

∼=
��

∅ ⊆ (X1
1 )red ⊆ X1

2

and then, by applying ∂0, get

∅ ⊆ X0
2 \ (X0

1 )red

∼=
��

∅ ⊆ X1
2 \ (X1

1 )red.

On the other hand, if we first apply ∂0 × ∂0 we get

∅ ⊆ X0
2 \X0

1

∼=
��

∅ ⊆ X1
2 \X1

1 .

Then, by applying ϕ1, we get

∅ ⊆ X0
2 \X0

1

∼=
��

∅ ⊆ X1
2 \X1

1 .
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The question is whether or not these are equal. Let X be a closed subscheme of Y . Since
X and Xred are homeomorphic as topological spaces, the underlying spaces of Y \ X
and Y \ (X)red will be equal and their structure sheaves will both be the restriction of
OY to this space. Thus, the simplices above are equal.

If we instead look at 0→ 0→ 0 we will face the simplices

∅ ⊆ (X0
2 \X0

1 )red

∼=
��

∅ ⊆ (X1
2 \X1

1 )red

and

∅ ⊆ (X0
2 )red \ (X0

1 )red

∼=
��

∅ ⊆ (X1
2 )red \ (X1

1 )red.

However, (Y \X)red = Yred \Xred and so these are also equal. These are only two special
cases arising when considering the face map ∂0. The rest will follow easily, making
ϕ• commute with the face map. Thus ϕ• is a simplicial map. We can then, by using
Theorem 6.3, conclude that Ki(Vark) = Ki(Schk).
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7. Finite sets, monoids and non-triviality

Let Setf be the category whose objects are finite sets and morphisms are functions
between (finite) sets. We can define the K-groups in the exact same way that we defined
them for Vark. The cofibrations are inclusions and the weak equivalences are bijections.
Thus, the category wSnSetf will have as objects sequences of inclusions

∅ ⊆ S1 ⊆ · · · ⊆ Sn,

Si ∈ Setf , for i = 1, . . . , n, and morphisms will be commutative diagrams

∅ ⊂ S1

��

⊂ . . . ⊂ Sn

��

∅ ⊂ S ′1 ⊂ . . . ⊂ S ′n,

where the vertical maps are bijections.
The functor wS•Setf is a simplicial category. We can take its nerve, the diagonal

functor, the geometric realisation and finally the homotopy groups, just as in our con-
struction of Ki(Vark). This gives us the K-groups

Ki(Setf ) := πi+1(B(wS•Setf )).

Assume that k is a finite field. We then have functors

F : Setf → Vark
S 7→

⊔
S Spec k,

and
G : Vark → Setf

X 7→ X(k).

Define S∗ :=
⊔
S Spec k. A sequence of subsets S ⊂ T will be mapped to a sequence of

closed subvarieties S∗ ⊂ T ∗. It is also obvious that a sequence of closed subvarieties will
be mapped to a sequence of subsets via the latter functor. Note that the composition
Setf → Vark → Setf is the identity. This means that Ki(Setf ) is a direct factor of
Ki(Vark), so in particular if Ki(Setf ) 6= 0, then we must have Ki(Vark) 6= 0.

Construct SnSetf to be the category whose objects are

S• : ∅ � � // S1
� � // S2

� � // . . . � � // Sn

∅ � � // S1
2

� � // . . . � � // S1
n

...

∅ � � // Sn−1
n

with bijections φmk : Smk → Sk \ Sm. Note that the rows are sequencesof subsets (in
spite of our use of arrows) and not just sequences of injections. Furthermore, we also
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want the following diagrams to commute

Sij
� � //

φij
��

Sij+1

φi(j+1)

��
Sj \ Si �

� // Sj+1 \ Si,

for all 0 ≤ i < j ≤ n. A morphism F• : S• → T• is a collection of morphisms {f ij}0≤i<j≤n
with f ij : Sij → T ij a bijection of (small) sets. We furthermore want the following dia-
grams to commute

Sij
� � //

f ij
��

Sij+1

f ij+1

��
T ij

� � // T ij+1.

This makes SnSetf into a category.
We can define functors

∂i : SnSetf → Sn−1Setf

where ∂0 removes the top row. The functor ∂i, 1 ≤ i ≤ n, removes the ith column and
(i+ 1)th row (counted downwards). Thus

∂(S•)
k
l =


Skl , l, k < i

Sk+1
l+1 , k ≥ i

Skl+1, k < i, l ≥ i.

We also have functors

si : SnSetf → Sn+1Setf

where we add a copy of the ith row so that this new copy is on the (i + 1)th row and
every row above it is given a new ith column that is a copy of the previous ith column.

Example 7.1. If

S4 : ∅ � � // S1
� � // S2

� � // S3
� � // S4

∅ � � // S1
2

� � // S1
3

� � // S1
4

∅ � � // S2
3

� � // S2
4

∅ � � // S3
4 ,
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then

s2(S4) : ∅ � � // S1
� � // S2

� � // S2
� � // S3

� � // S4

∅ � � // S1
2

� � // S1
2

� � // S1
3

� � // S1
4

∅ � � // ∅ � � // S2
3

� � // S2
4

∅ � � // S2
3

� � // S2
4

∅ � � // S3
4 .

It is easy to verify that this makes S•Setf into a simplicial category.
Notice that we have a canonical simplicial map

F• : S•Setf → S•Setf .

The map Fn just takes a sequence

∅ ↪→ S1 ↪→ . . . ↪→ Sn

to the triangle with Sij := Sj \ Si. On each level, n ≥ 0, we also have a map

Gn : SnSetf → SnSetf

which simply forgets everything in the triangle but the first row. This gives us the
property that Gn ◦ Fn = idSnSetf . It is important to note that the canonical function

G• : S•Setf → S•Setf is not a simplicial map, that is, it does not satisfy Definition 1.2.
The map F• is, however, a simplicial map. The problem with the former function has
to do with the fact that ∂0 ◦Gn 6= Gn−1 ◦ ∂0.

Construct the K-groups of S•Setf in the way we did it for S•Setf and call them
Ki(Setf ).

Theorem 7.2. Given the constructions above,

Ki(Setf ) ∼= Ki(Setf ).

Proof. Given the claim that on each level Gn and Fn are adjoint functors, by Theorem
6.3 the result follow. To prove the claim we need to show that

HomSnSetf (A,GnB) = HomSnSetf (FnA,B),

for all A ∈ SnSetf and B ∈ SnSetf . Suppose we are given f : FnA→ B, then we have
a canonical map f̂ : A→ GnB given by only looking at the map f restricted to the first
row.

Going in the other direction. Suppose we are given f : A→ GnB, where

A : ∅ ↪→ T1 ↪→ . . . ↪→ Tn
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and

B : ∅ � � // S1
� � // . . . � � // Sn

...

∅ � � // Sn−1
n .

We want to define a map f̂ : FnA → B. On the first row there is the obvious choice;
f̂ 0
j := fj. For f̂ ij : Tj \ Ti → Sij we proceed as follows. Remember that we have a

commutative diagram

Sij
� � //

φij
��

Sij+1

φi(j+1)

��
Sj \ Si �

� // Sj+1 \ Si.

The obvious definition is then f̂ ij := φ−1
ij ◦ fj|Tj\Ti . This shows that the functors are

adjoint. �

Consider the category Σ of finite ordinals. We have a monoid structure on Σ given
by

Σ× Σ → Σ
(m,n) 7→ m+ n.

We can take its classifying space and construct its K-groups Ki(Σ). We can also use
the method of constructing triangles

0
� � // n1

� � // n1 + n2
� � // n1 + n2 + n3

� � // . . . � � // n1 + . . . nm

0
� � // n1

2
� � // n1

2 + n1
3

� � // . . . � � // n1
2 + · · ·+ n1

m

...

0
� � // nm−1

m ,

with bijections nkl → (n1 + . . . nl) \ (n1 + · · ·+ nk) that induce commutative diagrams

nii+1 + · · ·+ nij

��

� � // nii+1 + · · ·+ nij+1

��
(n1 + · · ·+ nj) \ (n1 + · · ·+ ni)

� � // (n1 + · · ·+ nj+1) \ (n1 + · · ·+ ni).

It is important to note that (n1 + n2) \ n1 6= n2, but we do have a natural bijection
between the two sets.
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This triangle is a simplicial category for exactly the same reason as the triangle
constructed out of Setf was. Call the K-groups for Ki(Σ

T ) ‡. Once again we have maps

F : S•Σ→ S•Σ

and on each level we have a functor

Gn : SnΣ→ SnΣ,

where Gn forgets everything but the first row. The map Fm takes

n1 ↪→ n1 + n2 ↪→ . . . ↪→ n1 + · · ·+ nm

to

0
� � // n1

� � // n1 + n2
� � // n1 + n2 + n3

� � // . . . � � // n1 + · · ·+ nm

0
� � // n2

� � // n2 + n3
� � // . . . � � // n2 + . . . nm

0
� � // n3

� � // . . . � � // n3 + · · ·+ nm

...

0
� � // rm.

Again, F• is a simplicial map but there is no way of making the functors Gi to a
simplicial map. For the same reason as before, this does not matter and we get that

Ki(Σ) ∼= Ki(Σ
T ).

The category Σ is actually a subcategory of Setf as we can view ordinals as sets.

0 = ∅
1 = {0}

n+ 1 = n ∪ {n}.
This gives a simplicial map

f• : S•Σ→ S•Setf .

On each level we have a functor

gn : SnSetf → SnΣ,

induced by the functor that takes a set to its cardinality. By composing these functors
level-wise we will always have that for every n ≥ 0, gn ◦ fn = idSnΣ and so f• is an
equivalence.

It is a well known fact that B(Σ) equals to the sphere-spectrum (cf. [12]). This
means that Ki(Σ) = πsi (S

0), where the s means that we consider the stable homotopy
groups. These groups are known to be non-trivial for arbitrarily large i. We conclude
this chapter with the following theorem that sums the chapter up.

‡T as in Triangle.
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Theorem 7.3. For k a finite field, the algebraic K-groups of Vark are non-trivial for
an infinite number of indices.
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Appendix A. Some relations in πs1

1. If X and Y are isomorphic:


∅ ⊆ ∅

∅ ⊆ ∅
,

∅ ⊆ Y

∼=
��

∅ ⊆ X

 ∼

∅ ⊆ Y

∼=
��

∅ ⊆ X


via the 2-simplex

∅ ⊆ Y ⊆ Y

∅ ⊆ Y ⊆ Y

∅ ⊆ X ⊆ X.

2. If X and Y are isomorphic:


∅ ⊆ Y

∼=
��

∅ ⊆ X
,

∅ ⊆ ∅

∅ ⊆ ∅

 ∼

∅ ⊆ Y

∼=
��

∅ ⊆ X


via the 2-simplex

∅ ⊆ ∅ ⊆ Y

∅ ⊆ ∅ ⊆ Y

∅ ⊆ ∅ ⊆ X.

3. If X and Y are isomorphic:


∅ ⊆ ∅

∅ ⊆ ∅
,

∅ ⊆ Y

∼=
��

∅ ⊆ X

 ∼

∅ ⊆ Y

∼=
��

∅ ⊆ Y


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via the 2-simplex

∅ ⊆ Y ⊆ Y

∅ ⊆ X ⊆ X

∅ ⊆ Y ⊆ Y.

4. If X and Y are isomorphic:
∅ ⊆ Y

∼=
��

∅ ⊆ X
,

∅ ⊆ ∅

∅ ⊆ ∅

 ∼

∅ ⊆ X

∼=
��

∅ ⊆ X


via the 2-simplex

∅ ⊆ ∅ ⊆ X

∅ ⊆ ∅ ⊆ Y

∅ ⊆ ∅ ⊆ X.

5. If Y is a closed subvariety of X:
∅ ⊆ X \ Y

∼=
��

∅ ⊆ X \ Y
,

∅ ⊆ Y

∼=
��

∅ ⊆ Y

 ∼

∅ ⊆ X

∼=
��

∅ ⊆ X


via the 2-simplex

∅ ⊆ Y ⊆ X

∅ ⊆ Y ⊆ X

∅ ⊆ Y ⊆ X.
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