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Abstract

The problem of recreating the evolutionary tree of a species from
a set of gene trees has been studied for a long time and through the
years a number of models have been presented.
In the year 2000 Jens Lagergren and M.T Hallet published the article
”New Algorithms for the Duplication-Loss Modell” [1] where they devel-
oped algorithms based on parsimony for this problem.
In this essay we will learn the basic concepts of phylogeny, both in
terms of biology and mathematics, we will look closer at the article
mentioned above and end by making a small study in the evolution
of genes.
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2 Introduction

In this essay we will study the problem of reconstructing the evolution of
a species by looking at data in the form of genes from the species in ques-
tion. We will use [1] as our base and look closer on some of the concepts of
evolution and one of the algorithms presented in that article.
We begin with a walkthrough in the field of evolutionary biology so that
we can understand the technical part.
The structure of the Tree of Life have been altered a lot throughout history
when the ways of classification have changed and science has made new
methods possible.
The basic idea of the system used is called Cladistics where species are clas-
sified into groups called clades that consists of an ancestor and all of it’s
known ascendants.

2.1 Molecular Phylogeny

Phylogeny is a way to structure evolutionary relations in a cladistic manner,
for example in a group of genes or organisms. To illustrate these relations
graph is the general tool to use, usually in forms of binary trees where the
leafs represent species for which we have data in some form, these species
can be existing or extinct.
Observe that species can mean for example genes or animal species.
The inner vertices represents hypothetical ancestors and if there is a root it
represents the common ancestor of all species in the tree.
Two vertices with a common ancestor are closer related than two without
a common ancestor.

[2]

As we can see in the picture, it is also possible to represent a tree in
a more compact notation called Newick format, this way of writing also
gives us full understanding of the relations in the tree.
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At the inner vertices the evolutionary tree splits, this is called branch-
ing, and we have a speciation.
This means that the population has evolved so much in different directions
that parts of the population are not the same anymore.
The subject of telling biologically when a speciation has happened is de-
bated and will not be discussed in this overview.

In traditional phylogeny morphology was used to structure relations, i.e
physical similarities decides how closely related different species are, but
when genetics came into the picture one realized that even if two species
were physically similar one of them could be closer related to another species
with less physical similarity.

This is explained by looking at homologous molecular data, i.e. strings
of DNA/RNA or amino acid sequences, from different species and com-
pare the similarities.
By homology in the context of molecular data we mean sequences with a
common ancestor and a common function, for example if the DNA-sequences
of two genes in two different species are similar we can assume that they
have a common ancestry and hence are homologous.

The sequences compared are of such lengths that there is a very small
chance they can have developed into similar sequences independent of
each other[3].
We can think of the evolution of a gene as a tree (gene tree) where all the
leaves have the root as their common ancestor, we call a this set of homol-
ogous genes for a gene family.
When we say evolution of genes (sequences of DNA) we refer to mutations
of the DNA that occurs in biological processes, that is nucleotides or se-
quences of nucleotides change over time and effect the performance of the
genes.
The evolutionary distance between two homologous sequences is a measure
of how far they have evolved from each other since their common ancestor.

One might think that when building the evolutionary tree of a species,
species trees, we sequence the whole genome for different species and then
compare the genomes of all species to see which ones are most similar.
With the knowledge of today this is almost impossible since aligning se-
quences is a hard problem and it is not possible to get good results if the
aligned sequences are to long.

Instead we can choose a number of gene families and compare what
they say about the evolution of the species.
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The bigger evolutionary distance that two genes have in a gene family the
bigger distance between the species that the genes came from are in the
species tree.

We can think of this as the gene trees evolving inside the species tree,
following the evolutionary events of the species.
The edges, or branches, in the trees doesn’t mean more than the relation as
mentioned earlier if nothing else has been declared.
In other case different lengths or edges labeled by numbers could indicate
time elapsed or a measure for the amount of evolution.

Example:

This picture shows a gene tree evolving “inside” a species tree. The speciations
should be thought of as vertices and the leafs are in the bottom of the picture.

So again, if we follow the evolution of a gene from their common an-
cestor in the species tree, we can expect to find variations of that gene in all
leaves, i.e. the data that is available to us now.
The evolutionary distance between the members of the gene family cor-
responds to the evolutionary distance between the species that the genes
were found in.

The idea is that if we collect the sequences for a gene family in many
different species that share these genes and label the leaves in our gene tree
with the found sequences, we can then align these sequences to see which
ones are most similar.
We now let the pairs with most similarity have a common ancestor that we
label with the aligned sequence from it’s descendants, then we can align
the ancestors to get new ancestors and so on.
Unfortunately nature is not as simple as one might hope, in the next section
we will look closer on what events that can effect the processes described.
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2.2 Building Phylogenetic Trees

There are similarities in evolutionary time between different levels of biol-
ogy from molecules to macro evolutionary patterns, one example of this is
the evolution of parasite-host relation[2].
In a similar way we look at gene- and species trees of an organism and
make the assumption that there is a relation between the evolution of the
genes and the organisms, that the gene- and species trees are isomorphic.
So if we get all the information from one of them we have all the informa-
tion of the other.
Many species trees has been carefully builded by morphologists during the
years so one often compare the results of molecular studies with the mor-
phological trees.

The more information that is gained in the form of sequence data the
more differences in the trees are usually discovered and one start to realize
that a complex relation reigns.
We want to understand what kind of evolutionary events that causes these
changes. There are several processes like lineage sorting and horizontal
gene transfer that can give rise to discrepancies but the ones that are im-
portant for us are gene duplications and gene loss.

A duplication is the event when a section of the genome is duplicated,
usually during transcription, and keeps on evolving independent of each
other.
As a consequence any genes that are in this part also get duplicated, a loss
is when a part of the genome is lost.
We can see the duplication of a gene evolving in species tree illustrated in
the following picture:

[2]

Notice that in every speciation of the species tree, all genes from the an-
cestor keeps on existing in all species.
We say that two homologous genes are orthologous if their most recent com-
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mon ancestor corresponds to a speciation and not a duplication, if it is a
duplication we call them paralogous.

The problem here is that when the information of one or more genes
are lost the gene tree will differ from the species tree, missing information
could indicate a loss or simply that we missed some genes during sequenc-
ing.
For example in the picture above, if we only get information from gene
1, 5 and 6 and align these, we would think that 5 and 6 are most alike
so the species tree will be (A, (B,C)) instead of the actual tree which is
((A,B), C).
Since it is a fact that events like losses occurs we will need information from
several different gene families to reconstruct the history of evolution.

The concept of reconciling gene trees with a species tree were introduced
by Goodman et. al.[4], where they showed how the differences in the trees
can be explained by speciations, duplications and losses.
The method they used is called Parsimony where one make the assumption
that the species tree that uses minimal number of evolutionary events to
explain the gene trees is the actual species tree.

This lead to two optimization problems[5]:

1. The Duplication problem that search for the species tree that require
the minimal numbers of duplications to reconcile the gene trees.

2. The Duplication/Loss problem that search for the species tree that
requires the minimal number duplication and losses to reconcile the
gene trees.

We are now ready to formulate the main problem for this essay:

Given a set of homologous gene trees but no information about the
species tree, how many duplications is needed for the optimal species tree
to explain all of the gene trees?.

This is a first step in solving the problem of recreating the evolutionary
tree for a species by looking at the gene trees.
We begin by defining the mathematics needed, both the basics and also
some math from [1]. Then we will analyze an algorithm from the same
article that solves the problem stated above, we will also prove that the
algorithm provides us with the right answer.
As mentioned the algorithm gives us the number of duplications but it is
possible to modify it to compute the optimal species tree, this will not be
included in this essay.
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3 Method

3.1 Basic Graph theory

Graphs allow a representation of a possible connection between objects. We
will in this section make formal definitions of different graphs and some of
there properties. [6] [7]

Definition 3.1.1. A graph is a pair G = (V,E) of a finite set VG = {s, t, u, ...}
and a setEG which elements are subsets whith two elements from V . The elements
in VG is called vertices or nodes and the elements in EG are called edges.

The edge {u, v} can be denoted uv or (u, v) and we say that the vertices
u and v are connected by edge uv. The graph G can be represented by a
diagram where VG are dots in the plane who are joined by lines if and only
if they are connected.

The degree of a vertex is the number of edges that connect a node v with
other nodes.

Definition 3.1.2. A path in a graph G between the nodes u and u′ is a series
S : u = u0, u1, u2, ..., up−1, up = u′ such that for 0 ≤ i ≤ p− 1, uiui+1 ∈ EG.
Moreover uiui+1 only exist once in S.
The number p is called the length of S. We have that an edge is a path with length
1, and a vertex is a path with length 0. The vertices u and u′ is called endpoints in
S.

• A Cycle in a graph is a path that starts and ends in the same node.

• A graphG is called connected if it for every pair of vertices in VG exists
a path that connects them.

• A subgraph of G is a subset V ′
G ∈ VG that includes all the edges from

G that has it’s endpoints in V ′
G.

Example:

This is a graphG, which is not connected, with vertices VG = {A, B, C, D, E, F}
and edges EG = {AD, AF, BE}.
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The degrees of the vertices in G are as follows:

deg(A)=2, deg(B)=deg(d)=deg(E)=deg(F)=1 and deg(C)=0.

A connected subgraph H of G have vertices VH = {A,D,F}

An example of a path P of length 2 in G is P = D,A,F

Definition 3.1.3. A Directed Graph D is a set of vertices, VD, and a set of
directed edges, AD, called Arcs.
We denote an arc pointing from u to v like (u, v), or in the graphical notation as
an arrow from u pointing at v.
Arcs are defined in the same way as edges in a graph with the difference that an arc
is a ordered pair (u, v) whereas an edge of a graph is a unordered pair (u, v).
Moreover if v, x, y ∈ VD we define the indegree for a node v as the number of
arcs on the form (x, v) in D, and the outdegree for v as the number of arcs on the
form (v, y) in D.

For a directed graph D we say that ED are the the edges of the under-
lying non-directed graph with the same set of vertices like D.
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3.2 Trees

Definition 3.2.1. A Tree is a connected graph without any cycles.

Definition 3.2.2. A Rooted Tree is a pair, (T, r), of a tree T and a vertex r ∈ VT ,
called the root of T .
Now let (T, r) be a rooted tree and let s, s′ ∈ VT , we say that

s ≤ s′ if and only if s′ is on the path that unites s and r.

It is clear that the relation ≤ has the following properties:

• Reflexive: For all s we have that s ≤ s.

• Antisymmetric: For all s and s′ we have that if s ≤ s′ and s′ ≤ s we have
s = s′.

• Transitive: For all s, u, v where s ≤ u and u ≤ v we have that s ≤ v.

So the relation ≤ is an order relation on VT of the tree T and for this order the
root r is the largest element.

For a rooted tree T we say that for two nodes u, v ∈ VT , u 6= v, v is the
parent of u if u ≤ v, we also say that u is a child of v.
The leaves of a rooted tree is defined to be the nodes u ∈ VT such that there
are no nodes v ∈ VT , v 6= u such that v ≤ u.
When each parent of a rooted tree has exactly two children we say that the
tree is a Binary Tree.
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3.3 Math from article

In this part we will look closer at the definitions made in [1].

Definition 3.3.1. A Pseudo tree is a graphG given together with a set LG ∈ VG,
called the leafs of G, so that every cycle of G contains a leaf.
The other nodes of G, VG \ LG, are called inner nodes of G.

Example Pseudo Tree:

G: H:
Observe that in a tree there is a definition for what a leaf is, but for a pseudo tree
we choose the set of leafs.
Here is an example of two graphs with common leaf set LG = LH = {D,E,F}, the
left graph is a pseudo tree while the right one is not.

Definition 3.3.2. A Leaf Path in a pseudo tree G is a path that starts in a non-
leaf, ends in a leaf, l, and contains no other leafs than l.

Definition 3.3.3. A Rooted Pseudo Tree is a directed graph D given together
with a vertex r ∈ VD, called the root, and a set LD ⊆ VD (the leafs) every path of
maximum length starts in r and ends in a leaf and only leafs have indegree ≥ 2.
The vertices of VD \ LD is called the inner vertices of D.

Example Rooted Pseudo Tree:

T:

If we choose the leaf set to be LT = {E,F,G} and root r = A this is a rooted
pseudo tree.

Definition 3.3.4. A Directed Tree is a rooted pseudo tree D such that the under-
lying non-directed graph of D is a tree.
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Definition 3.3.5. A Binary Pseudo Tree is a pseudo tree where all internal ver-
tices have degree 3.

Example of a Binary Pseudo Tree:

T:

A Binary Pseudo Tree with leaves LT = {D,E, F,G,H}

Definition 3.3.6. A Rooted Binary Pseudo Tree is a directed pseudo tree where
one node called the root has indegree 0 and outdegree 2 and the rest of the internal
vertices have indegree 1 and outdegree 2.

We can here see that the main difference of a pseudo tree and a tree is
that we allow the leafs to have degree ≥1, that is they can have multiple
ancestors.
The idea with this is if we find species in the gene trees that belong to the
same leaf in the species tree we can unite them in the same leaf.

Definition 3.3.7. Let T be a rooted binary pseudo tree and let v ∈ VT , then any
vertex reachable from v by a directed path is a descendant of v (that is v is a de-
scendant of v) and we say that the leaf set LT (v) ⊆ LT is the set of leaves of T
reachable from v by directed paths.
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Definition 3.3.8. If T is a directed tree and L ⊆ LT , we define the least common
ancestor, LCA, of L in T as follows:

(i) If L = {l}, then the LCA is l

(ii) Otherwise, the LCA is the vertex v such that

L ⊆ LT (v) but L * LT (u)

for any descendant u 6= v of v.

So for the tree T and a set of leafs, L ∈ LT , we say that the LCA of L is
the node v in T from which we can reach all of the leafs in L via directed
paths, and we can not reach all leafs in L from any descendant of v.

Example Least Common Ancestor:

T:

Examples of LCA:s for some different leaf sets in T:
LCA({E,F}) = B , LCA({G, I}) = C, LCA({E,H}) = A

• We denote a disjoint union by
⊎

.

• By a gene tree we mean a rooted binary pseudo tree.

• By a simple gene tree we mean a rooted binary tree.

• By a unrooted gene tree we mean a binary pseudo tree.

• By a species tree we mean a rooted binary tree.

Definition 3.3.9. We say that a gene tree T and a species tree S are Compatible
if LT ⊆ LS .
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Definition 3.3.10. Let T be a gene tree, S a compatible species tree and let v be a
vertex in T .
An LCA Mapping φ : VT → VS is defined as follows:

φ(v) is the LCA of LT (v) in S

Assume that T is a gene tree and S a compatible species tree.
Then if we call the set of leaves in a gene tree T reachable from v for M so
M = LT (v). Since T and S are compatible we know that M has a corre-
sponding set in S that we can call N .
So if N has the LCA u in S then φ(v) = u.

LCA-mapping:

The LCA-mappings for some vertices in T:
φ(c) = φ(h) = φ(b) = B, φ(j) = F, φ(i) = C, φ(a) = A

The algorithm described later is based on dynamic programming and
to be able to return the optimal solution we must have all the partitions of
the species tree among the gene trees.
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Definition 3.3.11. Let T be a unrooted gene tree (Binary Pseudo tree), and let
e = (x, y) ∈ ET be an edge in T .
We define the Partition of e as PT (e) = {L1, L2}, where L1 and L2 are the leafs
reachable by leaf paths in T \ e from x and y respectively.
We denote all partitions of T as PT = ∪e∈ET

PT (e) ∪ {LT }.

Similarly if T is a (simple) rooted gene tree, then for each arc a = (x, y) ∈ AT ,
PT (a) = LT (y) (this is similar to the unrooted case since LT (y) is the set of leafs
reachable from y by leaf paths).
Moreover PT = {PT (a) : a ∈ AT } ∪ {LT } and for any set of arcs F ⊆ AT ,
PT (F ) = ∪e∈FPT (e).

Example Partitions:

T:

This tree is described by T = ((E,F ), ((G,H), F )) and the partitions of
T is:

PT = {(E,F ), (G,H), (G,H, I), (E,F,G,H, I), E, F,G,H, I}

Definition 3.3.12. Let T be a gene tree and S a compatible species tree. Then we
define the Duplication Cost θ(T, S) like:

θ(T, S) = |{x : ∃(x, y) ∈ AT , φ(x) = φ(y)}|

Moreover let θ(T1, . . . , Tr, S) denote the sum
∑r

i=1 θ(Ti, S) over all duplications
needed for S to explain the gene trees T1 . . . Tr, and let δ denote the tree S that
minimizes θ(T1, . . . , Tr, S), so δ is the optimal species tree.

So θ(T, S) is the number of duplications needed to explain the gene tree
T under the species tree S.
The way to understand this is that whenever we have a duplication they
happen in between speciations in a reconciled tree, so at these events the
LCA mapping will be the same for both of the duplicated nodes.
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4 Algorithm

In this section we will study definitions and the dynamic programming al-
gorithm that computes the number of duplications needed for the optimal
species tree to explain the input gene trees.
The algorithm runs in polynomial time which means that the time it takes
to make a run is limited and changes with the size of the input.
For computer scientists this is important and the time complexity is proved
in [1] but we are satisfied by just making the statement.

When the algorithm is given all the partitions from the optimal species
tree among the gene trees it will produce the number of duplications needed
for the optimal species tree to describe all the given gene trees.
We will discuss how to get all partitions in the last section.
From now on, in this part, we will assume that all partitions from the gene
trees, P , includes the partitions from the optimal species tree Pδ.
As mentioned it is possible to modify the algorithm so that it produces the
optimal specie tree δ but this will not be done here.

4.1 Preparations

Definition 4.1.1. We say that a species tree S is P-restricted if and only if PS ⊆
P

That is if the partitions of the species tree is a subset of all partitions
from all gene trees.

Definition 4.1.2. Let P(i) denote the subsets from PT with size i, that is:

P(i) = {A ∈ P : |A| = i}

Also let P(≤i) denote the subsets from P with size ≤ i, that is:

P(≤i) = {A ∈ P : |A| ≤ i}

4.2 Pseudocode

The algorithm below takes as input a set of genetrees T1, . . . , Tr with parti-
tions P such that the optimal species tree is P-restricted, and computes the
number of duplications, θ(T1, . . . , Tr, δ), needed to explain the gene trees.
In the algorithm d should be interpreted as the number of duplications
needed at vertex a in a species tree S with leaf set LS(a) = A and childrens
a1 and a2 such that LS(a1) = A1 and LS(a2) = A2.

17



Input: Gene trees T1, . . . , Tr s.t. LTi ⊆ L and P s.t. ∪A∈PA = L and
L ∈ P

for i = 1 to |L| do
for each A ∈ P(i) do

Let M(A) := min{M(A1) +M(A2) + d} where
A1

⊎
A2 = A, A1, A2 ∈ P(≤i) and

d = |{x : ∃(x, y) ∈ ATi ; 1 ≤ i ≤ r; LTi(x), LTi(y) ⊆ A; LTi(x), LTi(y) *
A1; LTi(x), LTi(y) * A2}|

end for
end for

Output: M(L)

L includes the partitions from δ and we assumed that the gene trees
also includes all of these partitions.
The algorithm always save the results of the previous subproblems M(A1)
and M(A2) so we need to prove that M(A) is the optimal solution to the
subproblem.

Definition 4.2.1. Let S be a species tree and T a gene tree, also let A ∈ PS . We
define ψT,S(A) to be the number

ψT,S(A) = |{x : ∃(x, y) ∈ AT : φ(x) = φ(y), and A ⊆ LS(φ(x))}|

(We can think of this as the duplication cost for a subtree of S with leaf set A.)
Moreover we define ψT1,...,Tr(A,P) to be the minimum of

∑r
i=1 ψTi,S(A), taken

over all P-restricted species trees S such that A = LS .

Observation

If the partitions of the optimal species tree δ is a subset of the partitions
of the gene trees then:

θ(T1, . . . , Tr, δ) = ψT1,...,Tr(L,P)

So an optimal solution to the subproblem is an optimal solution to the
original problem.

We show in the following theorem that the algorithm computes the op-
timal solutions to the subproblems.
Notice that M(A) in the algorithm corresponds to ψT1,...,Tr(A,P) in 4.2.1
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Theorem of minimum number of duplications from [1]:

Theorem 1. If A ∈ P(i) then

ψT1,...,Tr(A,P) = min{ψT1,...,Tr(A1,P) + ψT1,...,Tr(A2,P) + d(A,A1, A2))}

where the minimum is taken over all A1, A2 ∈ P(≤i−1) such that A1 ∪ A2 = A
and A1 ∩A2 = ∅ and where d(A,A1, A2) equals:

|x : ∃(x, y) ∈ A(Ti); 1 ≤ i ≤ r;LT (x), LT (y) ⊆ A;LT (x), LT (y) * A1;LT (x), LT (y) * A2|

Proof. We start by proving the inequality

ψT1,...,Tr(A,P) ≤ min{ψT1,...,Tr(A1,P)+ψT1,...,Tr(A2,P)+d(A,A1, A2)} (1)

Assume that S1 and S2 are P-restricted species trees such that

A1 = LS1 , A2 = LS2

then

ψT1,...,Tr(A1,P) =
r∑

i=1

ψTi,S1(A1)

and

ψT1,...,Tr(A2,P) =
r∑

i=1

ψTi,S2(A2)

respectively according to 4.2.1.
Let S be the rooted binary tree obtained by attaching S1 as a left subtree
and S2 as right subtree to root a.
Since S1 and S2 are P-restricted, and moreover since A ∈ P , then S is P-
restricted.
By the construction LS = A it is straightforward to verify that

r∑
i=1

ψTi,S(A) = ψT1,...,Tr(A1,P) + ψT1,...,Tr(A2,P) + d(A,A1, A2))

This equality gives (1).

We now prove the inequality

ψT1,...,Tr(A,P) ≥ min{ψT1,...,Tr(A1,P)+ψT1,...,Tr(A2,P)+d(A,A1, A2)} (2)

Assume that S is a P-restricted species tree such that:

A = LS and ψT1,...,Tr(A,P) =
r∑

i=1

ψTi,S(A)
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Let a be the root of S. Let S1 and S2 be the left and the right subtrees of S
at a; moreover, let A1 = LS1 , and A2 = LS2 . It is straightforward to verify
that

ψT1,...,Tr(A,P) =
r∑

i=1

ψTi,S(A) =
r∑

i=1

ψTi,S1(A1)+
r∑

i=1

ψTi,S2(A2)+d(A,A1, A2)

This equality yeilds (2).

20



5 Simulation Of Gene Trees

As we have seen earlier in the algorithm part we need all partitions from
the optimal species tree among the gene trees, but how can we know any-
thing about the partitions of an unknown species tree?
In the article [1] there is a whole section about how to choose the set of par-
titions P .
Here we wanted to try another approach by simulating gene families ac-
cording to an evolutionary model, with different parameters to see how
often we found all partitions for a known species tree. We used a program
called Aladen that was made by Bengt Sennblad at SBC for simulation of
gene trees.

5.1 The Gene Evolution Model

Aladen uses the Gene Evolution Model, GEM described in [8] and [9], to
generate gene trees in a species tree, the result is a gene tree with leaves
labeled according to the leaves in the species tree.
GEM takes the same parameters as a linear birth- death model described by
Kendall [10], that is a birth parameter λ that represents gene duplications
and a death parameter µ that represents gene loss, but GEM is modified to
develop in the form of trees.
Now consider a species tree S where each arc (x, y) is labeled with a time
t(y).
GEM let genes evolve along the arcs of S starting from the root of S, when
they reach a speciation vertex in S they split into two new genes that evolve
independently. At every time step there is a chance for a duplication or loss
according to the variables λ and µ.
A duplication give rise to two new genes that develop independently and
a loss removes that gene. Finally when all genes reaches the leaves of the
species tree we have a gene tree.
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Example:

GEM simulating a gene tree in a species tree:

In this simple example we can see how GEM is generating a gene tree inside a
given species tree. Filled circles represents speciation events, white squares dupli-
cations and white circles are losses.
The leaves in the gene tree are labeled according to which leaf in the species tree it
came from.

In this way the generated gene trees can have anything between zero
and many leaves in each of the species (leaves) in the species tree. Follow-
ing the definitions above we let all leafs from one species be represented by
one.

This means that if we look at our example above we have a species tree
on the form S = (A, (B,C)) with partitionsPS = {(B,C ), (A,B,C ), A,B,C },
the generated gene tree is on the form T = ((a1, a2), (( b1, b2), c )).
Since we are only interested in finding the partitions from the species tree,
a1 and a2 gives us the same information, same for b1 and b2, so this gene
tree gives us all the partitions from the species tree.
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An example of the case when we don’t find the partitions could be:

With partitions PT = {(a, b), a, b}

5.2 Experiment

In our simulation we generated genes with GEM in the species tree for
Yeast that have 17 leafs.
We generated 100 gene trees at a time and started with low values of the
birth/death parameters, for each value of the birth parameter we changed
the death parameter in a small interval around the value of birth parameter
to see how the evolution of the 100 gene trees behaved.
A program named parsePartition, see appendix, was written in the lan-
guage Python by the author to treat the data and see how often the gener-
ated set of gene trees together had all the partitions from the species tree.
parsePartition also counts how many of the generated trees that in them-
selves includes all partitions from the species tree and how many of them
that were bijections of the species tree.
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5.3 Results and Discussion

The simulations were made 10 times for each choice of parameter and then
we made Logistic Regression in Matlab to plot the probability of finding all
partitions in the species tree among the surviving gene trees.
In the plot below the “x”-axis, that goes from 0-10, show the birth param-
eter, the “y”-axis the difference of the birth- and death parameters and the
“z”-axis show the probability of finding all partitions among the gene trees.

The decreasing line through the system follows y = 0, which means
that both parameters has the same values.
When discussing evolution, researchers often assume that the parameters
in the birth and death process are equal but that must not necessarily be
true, so we tried to simulate the evolution for different more or less realis-
tic values of the parameters to see how the trees would behave.

We can see in the picture that when death>birth we almost never find
all the partitions, this would mean that some of the species have lost genes
during evolution.
When birth>death we can expect to almost always find all partitions from
the species tree.
When birth=death we see a decreasing chance of finding all the parameters
when the values of the parameters increase.

Evolution of homologous genes are slow and gradual and tends to change
about the same rate in many related organisms. The rate of change for dif-
ferent genes depend on how the structure where they are located is con-
strained, for example the gene that codes for cytochrome c has evolved al-
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most as much in animal as in plants and fungi, about 10% change of amino
acid sequence every 200 million years. The change of hemoglobins in ver-
tebrates is bout 10% every 55 million years [11].
This can be counted by looking at the fossil record for some species where
it is very well preserved and then compare the difference in homologous
genes for these species.
Genes from ancient duplications can be found in all life and is therefore a
good way of measure evolution.
For example the globin family family of vertebrates that have myoglobin as
there anscestral globin and has then developed into the hemoglobins(α, ζ, β, δ, γ
and ε) by mutations.

This is an illustration of the evolution of globins. The Scale is in millions of
years, length of edges represent time.

Since we assume that we can recreate the evolutionary tree for species
if we can find all the partitions among the gene trees, results like this can
help us to estimate our chances to succeed depending on the size of our
molecular data.

Future studies might for example be to try and recreate the species tree
with different amounts of molecular data and see how often we get the
correct tree by using this method.
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Appendices

A parsePartition

import sys
import os
from string import ascii_letters

letters=ascii_letters
allFound=False
bijection=False
allPartitions = []
tmpTree=[]
realbijection=0
spPartNr=16

def usage():
"""Displays a usertext"""
print """
Usage: parsePartition <Speciestree> <Genetrees> <Resultfile>

This program takes a file with a speciestree and one file
with 0 to many genetrees and checks if the partitions of
the speciestree exists in the genetrees.
It will also tell if there is a bijective image of the
speciestrees among the genetrees."""

def wrongInput():
"""Makes shure that the input has been made in
the correct way"""
length=len(sys.argv)
if length==4:

return 0
elif length==3:

return 1
else:

return 2

def makeDict(speciesTree):
"""Makes a dictionary from the input species tree with
a boolean for each element."""

f=open(speciesTree,'r')
tree=f.read()
parsePartition(tree,0)
newTree=tuple(allPartitions)
treeDict=dict([(x,False) for x in newTree])
f.close()
return treeDict
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def sortPartition(partition):
"""Takes a partition, delets all doubles and order
the elements by name."""
newPartition=[]
for i in partition:

if i not in newPartition:
newPartition.append(i)

newPartition.sort()
return newPartition

def makeIntersection(bigPart,partition):
"""Makes the intersection of two lists with partitions."""
if len(partition)>0:

for i in partition:
if i not in bigPart:

bigPart.append(i)
return bigPart

def uniteLeafs(partition):
"""Inserts the partition but if it is already found
the new one is deleted."""
newPart=sortPartition(partition)
partStr=''
i=0
while i<len(newPart):

partStr=partStr+newPart[i]
i=i+1

if len(partStr)>4:
newPart=[partStr]

else:
newPart=[]

return newPart

def getTree(tree,spTree):
"""Picks the trees out of the file, counts them and run
parsePartition.
getTree also checksif all partitions in the speciestree
can be found in one of the genetrees."""
global bijection,tmpTree,realbijection
f=open(tree,'r')
trees=0
bijections=0
for line in f:

tmpTree=[]
trees=trees+1
partitions,i=parsePartition(line,0)
if checkAll(tmpTree,spTree):

bijections=bijections+1
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bijection=True
if len(tmpTree)==spPartNr:

realbijection=realbijection+1
print tmpTree
print "Treenumber:",trees

f.close()
return trees,bijections

def checkAll(partitions,speciesDict):
"""Checks if all the partitions in the speciesTree have
been found."""
for i in speciesDict:

speciesDict[i]=False
for i in partitions:

if i in speciesDict:
speciesDict[i]=True

for i in speciesDict:
if speciesDict[i]==False:

return False
return True

def getToken(treeStr, index):
"""Reads the symbol where the index is and returns it or the
leaf if there is one."""
i=index
symbol = treeStr[i]
if symbol == '[':

while symbol != ']':
i=i+1
symbol=treeStr[i]

if symbol==']':
i=i+1
symbol=treeStr[i]
return symbol,i

elif symbol in letters:
leaf = ''
while symbol in letters:

leaf=leaf + symbol
i=i+1
symbol=treeStr[i]

if symbol == '[':
while symbol != ']':

i=i+1
symbol=treeStr[i]

return(leaf,i)
else:

return symbol, i

def parsePartition(tree, index_in):
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"""Goes trough a tree with the leaf-partitions and makes a
list of partitions."""
global allPartitions,tmpTree
index=index_in
#To have something when start reading a tree:
symbol=' '
myPart=[]
if len(tree)<=14:
#To get rid of trees with only one leaf.

return [],0
while symbol != ')':
#When this sign occur we have a partition end.

index=index+1
symbol,index=getToken(tree,index)
if symbol == '(':

#This is the begining of a new partition, so we make a new one.
newPart,index=parsePartition(tree,index)
myPart=makeIntersection(myPart,newPart)
#Add the new partition to original.
symbol,index=getToken(tree,index)

elif symbol[0] in letters:
#This part detects and combine the leaves.

myPart.append(symbol)
#Because we found a letter we found a leaf.

symbol,index=getToken(tree,index)
while symbol not in ['(',')']:

if symbol[0] in letters:
tmpPart=[symbol]
#Because makeIntersection
#expects two lists.
myPart=makeIntersection(myPart,tmpPart)
symbol,index=getToken(tree,index)

else:
index=index+1
symbol,index=getToken(tree,index)

symbol,index=getToken(tree,index-1)
elif symbol==';':

return myPart,index
partitionString=uniteLeafs(myPart)
allPartitions=makeIntersection(allPartitions,partitionString)
tmpTree=makeIntersection(tmpTree,partitionString)
return myPart,index+1

def main():
global allPartitions
if wrongInput()==2:

usage()
sys.exit(2)

print "Input:",wrongInput()
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spTree = makeDict(sys.argv[1])
allPartitions=[]
trees,bijections=getTree(sys.argv[2],spTree)
name=str(sys.argv[1])+" "+str(sys.argv[2]+"\n")
first="There were "+str(trees)+" genetrees, "+
str(bijections)+ " bijections and "+str(realbijection)+
" true bijections in the file.\n"
if wrongInput()==0:

filename=sys.argv[3]
f=open(filename,'a')
f.write(name)
f.write(first)
if checkAll(allPartitions,spTree):

f.write("-parseParitions found all
partitions from the speciestree in
the genetrees.\n")
f.write("\n")

else:
f.write("-parsePartitions did not find all
partitions in the speciestreee in
the geenetrees.\n")

f.write("\n")
f.close()

elif wrongInput()==1:
print name
print first
if checkAll(allPartitions,spTree):

print "-parseParitions found all partitions
from the speciestree in the genetrees.\n"

else:
print "-parsePartitions did not find all
partitions in the speciestreee in
the geenetrees.\n"
print "\n"

if __name__ == '__main__':
main()
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B Logistic Regression

Matlab code:

% F i t the model :
[ b dev s t a t s ]= g l m f i t ( [ data ( : , 1 ) data ( : , 4 ) ] , data ( : , 3 ) , ’ binomial ’ )

% get predic ted values :
yhatu=glmval ( b , uniquepred , ’ l o g i t ’ ) ;
% S c a t t e r p l o t :
s c a t t e r 3 (ZU( : , 1 ) ,ZU( : , 2 ) ,ZU( : , 3 ) , ’ f i l l e d ’ )
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