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Abstract. In this project we study bialgebras and Hopf algebras, bialgebras
equipped with an antipode, in the context of the theory of Lie algebras and

the theory of renormalisation of quantum field theories (QFT).

We study the classic Poncaré-Birkhoff-Witt theorem which states an iso-
morphism s : S(L)→ U(L) between the symmetric algebra and the universal

enveloping algebra for any Lie algebra L. We prove a slightly strengthened

version of PBW theorem for vector spaces equipped with an arbitrary skew-
symmetric binary operation not necessarily satisfying the Jacobi identity

We also study a Hopf algebra structure defined on vector spaces of graphs
(following the ideas of Connes-Kreimer). Some specialised (tree) version of our

Hopf algebra are proven by Connes-Kreimer to play an important role in the

theory of renormalisation of QFT.
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1. Introduction

We study the classic Poncaré-Birkhoff-Witt theorem, in the Lie theory, which
can be formulated as follows: Let L be a Lie algebra and let U(L) = T (L)/J be
the universal enveloping algebra of L. If {l1, ..., lp} is a basis of L, then U(L) is
isomorphic, as a vector space, to F [l1, .., ln], the polynomial ring generated by the
formal variables {l1, .., ln}. So there exists a vector space isomorphism s : S(L)→
U(L) between the symmetric algebra and the universal enveloping algebra for any
Lie algebra L. The universal enveloping algebra (U(L), ?) is known to have a Hopf
algebra structure, with the multiplication,?, induced from the tensor product in
T (L) and the co-multiplication given by the formulas

∆(1) = 1⊗ 1

∆(a) = 1⊗ a+ a⊗ 1, a ∈ L

and extended to all of U(L) through ∆(a1 ? ... ? an) = ∆(a1) ? ... ? ∆(an). The
antipode is defined by

S(1) = 1

S(a1 ? ... ? an) = (−1)nan ? an−1 ? ... ? a1

We note that U(V ) = T (V )/J make sense as a quotient associative algebra for
arbitrary vector space V , equipped with any binary skew-symmetric operation [, ] :
Λ2V → V , and prove a slightly strengthened version of PBW theorem which states
that the natural symmetrization map s : S(V ) → U(V ) is an isomorphism if and
only if the binary operation [, ] satisfies the Jacobi identity, i.e. if and only if V is
a Lie algebra. In general dimSn(V ) ≥ dimUn(V ), that is, in general the universal
enveloping algebra is smaller than the symmetric algebra over the same arbitrary
vector space V .

We also study a Hopf algebra structure on a vector space of graphs (following
the ideas of Connes-Kreimer)[Con, Kr 1][Con, Kr 2] . One of the most commonly
used methods in OFT is pertubation calculations, in general resulting in ill-defined
integral. The systematic treatment of these divergent integrals is known as renor-
malization. Connes and Kreimer develop a new technique of renormalization using
Hopf algebras. They showed that the vector spaces generated by Feynman graphs,
which govern the process of renormalization, have Hopf algebra structures. The
combinatorics of renormalization can be described in terms of rooted trees and
some other specialised families of graphs. In this paper we will study the vector
space G spanned by linear combinations of admissible graphs of any genus. The
multiplication is defined to be the disjoint union and co-multiplication is defined
on connected admissible graphs by the formula

∆1 = 1⊗ 1

∆G = 1⊗ G + G ⊗ 1 +
∑
GA⊂G

GA ⊗ G/GA

where summation goes over all admissible subgraphs GA and extended to all of G
by ∆(G1,G2, ...,Gn) = ∆(G1)∆(G2), ...,∆(Gn). We show in detail that this multipli-
cation and co-multiplication make G into a Hopf algebra. That is, the Hopf algebra
structure of rooted trees may be extended to all admissible graphs of any genus.
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2. Multilinear maps and the tensor product

2.1. Universality and Multilinear Maps. Let A,S and X be sets and let f, g
be functions with domain A such that f : A→ S and g : A→ X. Further suppose
that there exists a unique function i : S → X for which g = i ◦ f , that is, that the
diagram

A
f //

g
  @

@@
@@

@@
S

i

��
X

commutes.
What does this say about the relationship between the functions f and g and

their action on A? It says that any information in g is also in f , which is usually
expressed by saying that g can be factored through f . Now let S be a family of
sets including S and let F be a family of functions including f . Suppose that for
all sets X in S and all functions g : A → X in F there exists a unique function
i : S → X for which g = i ◦ f or equivalently, that the diagram above commutes.
That is, every function g in F can be factored through f and since f itself is in
F the information in f is precisely the same as the information in the entire family
F. So in this sense a single pair (S, f : A→ S ) may capture the concept of a hole
family of functions. This is the idea of universality, put in to a formal definition as
follows:

2.1.1. Definition. Let S be a family of sets and let F be a family of functions
from a set A to members of S. Let H be a family of functions on members of S.
(Assume that H has the following properties: it contains the identity function for
each member of S, it is closed under composition of functions and composition of
functions is associative. Also assume that for any i ∈ H and f ∈ F, the composition
is defined and a member of F). A pair (S, f : A → S ), where S ∈ S and f ∈ F
is a universal pair for (F,H), if for any X ∈ S and any g : A → X in H there
exists a unique function i : S → X for which g = i ◦ f . That is, every function g in
F can be factored through f .

For this definition to make sense, we must show that if such universal pairs exist
then they are essentially unique, that is, unique up to isomorphism. For otherwise
functions in F may be factored through two essential different functions.

2.1.1. Theorem (Universal pairs are essentially unique). Let (S, f : A→ S)
and (T, g : A→ T ) be universal pairs for (F,H). Then there is a bijective function
µ ∈ H for which µ(S) = T .

Proof. If (T, g : A → T ) and (S, f : A → S) are both universal pairs for (F,H),
then there exist unique functions i : S → T resp. i′ : T → S for which g = i ◦ f
resp f = i′ ◦ g. Hence combining this,

f = i′ ◦ i ◦ f



7

So both i′ ◦ i and id, the identity map, are members of H that make the diagram

A
f //

f ��?
??

??
??

S

i′◦i=id

��
S

commute and the uniqueness requirement implies i′ ◦ i = id. The same argument
gives i ◦ i′ = id, so i and i′ are inverses and the bijective function µ ∈ H for which
µ(S) = T . �

Next let us restrict the family of functions, to include only multilinear ones. Let
V1 × ... × Vn denote the Cartesian product of vector spaces V1, ..., Vn, that is, the
set of all n-tuples (v1, .., vn) where vi ∈ Vi.

2.1.2. Definition. Let V1, ..., Vn and W be vector spaces over the same base field
F , a function f : V1 × ... × Vn → W is called multilinear if it is linear in each
variable separately, that is, if

f(v1, ..., vm−1, rvm + sv′m, vm+1, ..., vn) = rf(v1, ..., vm−1, vm, vm+1, ..., vn) +
sf(v1, ..., vm−1, v

′
m, vm+1, ..., vn)

for all 1 ≤ m ≤ n and scalars r, s belonging to the field F . For the special case
n = 2, f is called bilinear.

The set of all such multilinear functions f : V1× ...×Vn →W for some fixed set
V1, ..., Vn, W of vector spaces will be denoted by hom(V1, ..., Vn;W ).

2.2. Tensor Product. Let V1, ..., Vn be vector spaces over the same base field F .
We wish to define the tensor product V1 ⊗ ... ⊗ Vn as the vector space over F ,
which satisfies the universal property. That is, we wish to show that there exists
a multilinear map f : V1 × ... × Vn → V1 ⊗ ... ⊗ Vn defined by f(v1, ..., vn) →
v1 ⊗ ...⊗ vn such that for any vector space W over F and for any multilinear map
g : V1 × ...× Vn →W there is a unique linear map i : V1 ⊗ ...⊗ Vn →W such that
g = i ◦ f . We shall show that such a product does in fact exists and is unique (up
to isomorphism)

Let S be any set and F any field, then we can construct a vector space spanFS
as the set of all possible finite linear combinations of elements of S

spanFS = {λ1s1 + ...+ λnsn| n ≥ 1, λi ∈ F, si ∈ S}
Let V1, ..., Vn be vector spaces over the same field F and let S = V1× ...× Vn be

the Cartesian product of V1, ..., Vn as sets. Construct

M := spanFS = {λ1(v1
1 , ..., v

1
n) + ...+ λn(vn1 , ..., v

n
n)| λi ∈ F, vij ∈ Vi}

so M is clearly a vector space. Let M0 be a subspace of M generated by all elements
of the form

(v1, ..., vi + v′i, ..., vn)− (v1, ..., vi, ..., vn)− (v1, ..., v
′
i, ..., vn)

(v1, ..., λvi, ..., vn)− λ(v1, ..., vi, ..., vn)
There is a natural map f : V1 × ...× Vn →M/M0 given by

f(v1, ..., vn) = [(v1, .., vn)]

where [(v1, .., vn)] denotes the equivalents class of (v1, .., vn) in M/M0.
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2.2.1. Theorem. The map f is multilinear

Proof. We wish to verify that for all 1 ≤ m ≤ n
f(v1, ..., vm−1, λvm + λ′v′m, vm+1, ..., vn) = λf(v1, ..., vm−1, vm, vm+1, ..., vn) +

λ′f(v1, ..., vm−1, v
′
m, vm+1, ..., vn)

for λ, λ′ ∈ F . By definition of f we have

f(v1, ..., vm−1, λvm + λ′v′m, vm+1, ..., vn) = [(v1, ..., vm−1, λvm + λ′v′m, vm+1, ..., vn)]

Splitting addition and multiplication with scalar we wish to verify that,

(v1, ..., vi + v′i, ..., vn) +M0 = [(v1, ..., vi, ..., vn) +M0] + [(v1, ..., v
′
i, ..., vn) +M0]

(v1, ..., λvi, ..., vn) +M0 = λ(v1, ..., vi, ..., vn) +M0

but this follows immediately from the construction. Since M/M0 is a quotient
space, so ((v1, ..., vi, ..., vn) + (v1, ..., v

′
i, ..., vn)) + M0 = ((v1, ..., vi, ..., vn) + M0) +

((v1, ..., v
′
i, ..., vn)+M0) and (v1, ..., vi+v′i, ..., vn) is congruent to (v1, ..., vi, ..., vn)+

(v1, ..., v
′
i, ..., vn) mod M0 so

(v1, ..., vi + v′i, ..., vn) +M0 = [(v1, ..., vi, ..., vn) + (v1, ..., v
′
i, ..., vn)] +M0 =

[(v1, ..., vi, ..., vn) +M0] + [(v1, ..., v
′
i, ..., vn) +M0]

The second equality follows in the same way. Which completes the proof. �

Define the tensor product V1 ⊗ ...⊗ Vn by

V1 ⊗ ...⊗ Vn = M/M0

v1 ⊗ ...⊗ vn = (v1, ..., vn) +M0 ∈ V1 ⊗ ...⊗ Vn
Let us next show that the tensor product has the required universal property.

2.2.2. Theorem (The universal property for the Tensor product). Let V1, ..., Vn
be vector spaces over the field F. The pair (V1⊗...⊗Vn, f : V1×...×Vn → V1⊗...⊗Vn),
where f is defined by f(v1, ..., vn) → v1 ⊗ ... ⊗ vn has the following property. If
g : V1 × ... × Vn → W is any multilinear function from V1 × ... × Vn to W over F
then there exists a unique linear transformation i : V1 ⊗ ... ⊗ Vn → W such that
g = i ◦ f or equal, that the diagram

V1 × ...× Vn
f //

g

((QQQQQQQQQQQQQQ V1 ⊗ ...⊗ Vn
i

��
W

commutes.

Proof. Assume first that i exists, then the condition g = i ◦ f uniquely determines
the value of i on v1 ⊗ ...⊗ vn.

i(v1 ⊗ ...⊗ vn) = i ◦ f(v1, .., vn) = g(v1, .., vn)

i.e. if i exists, it is unique.
To prove the existence define for all v1⊗ ...⊗ vn ∈ V1⊗ ...⊗ Vn the function i to

be
i(v1 ⊗ ...⊗ vn) = g(v1, ..., vn) (∗)
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We have to show that this definition makes sense. Take any v1 ⊗ ...⊗ vn and let V
be any element in V1 × ...× Vn such that

f(V ) = v1 ⊗ ...⊗ vn
Such an element obviously exists, take for example V = (v1, .., vn). If V ′ is another
element such that f(V ′) = v1 ⊗ ... ⊗ vn, then f(V − V ′) = 0 so V − V ′ ∈ kerf .
That is, V − V ′ = V ′′ where

V ′′ ∈M0

moreover, by multilinearity of g, g vanish on M0. Finally i does not depend on the
choice of V since if V ′ is another element such that f(V ′) = v1 ⊗ ...⊗ vn, then

g(V ) = g(V ′ + V ′′) = g(V ′) + g(V ′′) = g(V ′)

So the map i, given by (∗), is well-defined and makes the diagram commute. �

From the construction of the tensor product it thus follows that for all 0 ≤ i ≤ n
and a ∈ F we have the following two formulas,

(v1 ⊗ ...⊗ (vi + v′i)⊗ ...⊗ vn) = (v1 ⊗ ...⊗ vi ⊗ ...⊗ vn) + (v1 ⊗ ...⊗ v′i ⊗ ...⊗ vn)

(v1 ⊗ ...⊗ λvi ⊗ ...⊗ vn) = λ(v1 ⊗ ...⊗ vi ⊗ ...⊗ vn)

2.2.1. Remark. The tensor product may be called associative in the sense that
there exists a canonical isomorphism

τ : (V1 ⊗ ...⊗ Vn)⊗ (W1 ⊗ ...⊗Wm)→ V1 ⊗ ...⊗ Vn ⊗W1 ⊗ ...⊗Wm

for which

τ((v1 ⊗ ...⊗ vn)⊗ (w1 ⊗ ...⊗ wm)) = v1 ⊗ ...⊗ vn ⊗ w1 ⊗ ...⊗ wm
The tensor product (v1 ⊗ v2) ⊗ v3 ∈ (V1 ⊗ V2) ⊗ V3 can therefore be canonically
identified with v1 ⊗ (v2 ⊗ v3) ∈ V1 ⊗ (V2 ⊗ V3) and hence can be viewed as one and
the same element v1 ⊗ v2 ⊗ v3 in V1 ⊗ V2 ⊗ V3 .

3. Associative algebras

3.1. Unital associative algebra.

3.1.1. Definition. An associative algebra is a vector space A over a base field F
together with bilinear map ψ : A ⊗ A → A which is associative. The associativity
is expressed by the commutativity of the following diagram.

A⊗A⊗A
ψ⊗id //

id⊗ψ
��

A⊗A

ψ

��
A⊗A

ψ
// A

The diagram implies that for all a, b, c ∈ A we have (ab)c = a(bc).
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3.1.2. Definition. The algebra A is unital if moreover there is a unit 1 in it. This
is expressed by the commutativity of the following diagram

F ⊗A
µ⊗id //

∼
%%JJJJJJJJJJ A⊗A

ψ

��

A⊗ F
id⊗µoo

∼
yytttttttttt

A

where µ : F → A defined by µ(λ) = λ1.

3.1.3. Definition. An unital associative algebra is said to be commutative if
further the following diagram

A⊗A

ψ
""F

FF
FF

FF
FF

T // A⊗A

ψ
||xx

xx
xx

xx
x

A

where T : A⊗A→ A⊗A is the twist map defined by T (a⊗ b) = (b⊗a) commutes.

3.1.4. Definition. Let A and A′ be two unital associative algebras, a linear map
f : A→ A′ is called a linear map of algebras if the following two diagrams

A⊗A
f //

ψ

��

A′ ⊗A′

ψ′

��
A

f
// A′

F

A
f

//

µ
??�������

A′

µ′
``AAAAAAA

commute.

3.2. Tensor algebra. Our first example of an associative algebra is the tensor
algebra. For any vector space V over F , and any nonnegative integer p the pth

tensor power of V is the tensor product of V with itself p times, V ⊗ ... ⊗ V ,
denoted T p(V ) or V ⊗p. So T p(V ) consist of all tensors on V of rank p.

3.2.1. Definition. To any vector space V one can associate its tensor algebra
T (V ), defined by:

T (V ) =
⊕
0≤k

V ⊗k

with V ⊗0 = F .

The space T (V ) has a natural algebraic structure ψ : T (V ) ⊗ T (V ) → T (V )
defined by

ψ(v1 ⊗ ...⊗ vn, u1 ⊗ ...⊗ um) = v1 ⊗ ...⊗ vn ⊗ u1 ⊗ ...⊗ um
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the embedding of the ground field into T (V ) gives the unit map µ, that is, the unit
in T (V ) is the unit in F . Which completes the definition of the algebraic structure.
The tensor algebra is obviously associative since the tensor product is.

3.3. Endomorphism algebra. A second example of an associative algebra is the
endomorphism algebra. For any vector space, the set End(P ) = hom(P, P ). In-
deed, End(P ) is a vector space. The product in End(P ) is defined by the compo-
sition of maps,

ψ : End(P )×End(P )→ End(P )

f × g → f ◦ g
where f ◦ g(a) = f(g(a)) is the composition map in the usual sense.

3.4. The symmetric algebra. A third example of an associative algebra is the
symmetric tensor algebra.

3.4.1. Definition. Let A be an associative algebra. A subspace I ⊂ A is called a
(two-sided) ideal if for any r ∈ I, a ∈ A

ra ∈ I, ar ∈ I

3.4.2. Definition. Let A be an associative algebra. An ideal of the form

< a1, ..., an >= {
∑

b1a1c1 + ...+ bnancn|bi, ci ∈ A}

is called the ideal generated by a1, .., an ∈ A.

As the next lemma shows, for any algebra A, the quotient vector space of A by
any (two-sided) ideal is itself an algebra with an induced algebraic structure given
below.

3.4.1. Lemma. For any (two-sided) ideal I in A, the quotient vector space

B = A/I

has an induced algebraic structure defined by

[b1][b2] = [b1b2]

Proof. Since [b1] = b1 + I and [b2] = b2 + I the product [b1][b2] might be written as

[b1][b2] = (b1 + I)(b2 + I) = b1b2 + b1I + Ib2 + II

Since I is an two-sided ideal b1I + Ib2 + II is in the ideal and hence

[b1][b2] = b1b2 + I = [b1b2]

�

The symmetric tensor algebra may now be defined in the following way
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3.4.3. Definition. Consider a vector space V and let J be an ideal in the tensor
algebra T (V ) generated by all elements of the form

< vi ⊗ vj − vj ⊗ vi >
where vi, vj ∈ V . The quotient of T (V ) by the ideal J is called the symmetric
tensor algebra.

S(V ) = T (V )/J

There is a natural projection π : T (V )→ S(V ) defined by,

π(v1 ⊗ ...⊗ vn) = v1 � ...� vn
and from lemma it follows that S(V ) is an associative algebra, with an induced
natural structure of a commutative associative algebra ψ : S(V ) ⊗ S(V ) → S(V )
given by

ψ(v1 � ...� vn, u1 � ...� un)→ v1 � ...� vn � u1 � ...� un

3.4.4. Remark. For charF = 0 the symmetric tensor algebra may alternatively
be regarded as a subspace of the tensor algebra rather than a quotient space. Let
σ be any permutation in Sp, the multilinear map fσ : V ×p → T p(V ) defined by
fσ(v1, ..., vp) = (vσ(1) ⊗ ... ⊗ vσ(p)) determines, by universality, a unique linear
operator λσ on T p(V ) for which λσ(v1 ⊗ ... ⊗ vp) = vσ(1) ⊗ ... ⊗ vσ(p). Let B =
{e1, ..., en} be a basis for V , then the set B = {ei1 ⊗ ...⊗ eip |eij ∈ B} is a basis for
T p(V ). λσ is a bijection of B so λσ is an isomorphism of T p(V ). A tensor t ∈ T p(V )
is called symmetric if λσ(t) = t for all permutations σ ∈ Sp. If charF = 0 we can
identify S(V ) with a subspace of T (V ) by the following mapping

v1 � ...� vn →
∑
σ∈Sn

1
p!
vσ(1) ⊗ ...⊗ vσ(p)

If we choose a base B = {e1, ..., en} in V , then S(V ) can be identified with the
polynomial ring, F [e1, .., en], generated by the formal variables e1, ..., en.

3.5. Lie algebra. We shall be interested below in associative algebras which are
associated to Lie algebras, let us first give a definition of the latter concept.

3.5.1. Definition. A vector space L over a field F is called a Lie algebra if there
is a bilinear map, called the Lie bracket

[, ] : L⊗ L→ L

(li, lj)→ [li, lj ]
that satisfies the conditions,

[li, lj ] = −[lj , li]
[li, [lj , lk]] + [lj , [lk, li]] + [lk, [li, lj ]] = 0

for all li, lj , lk ∈ L. The second condition is called the Jacobi identity.

3.5.2. Remark. Let A be an associative algebra. Define the commutator of li and
lj to be [li, lj ] = lilj − lj li, where then product is the associative product of the
algebra A. This commutator obvious satisfies the two conditions above making A
a Lie algebra, usually denoted Lie(A). As a vector space Lie(A) is isomorphic to
A.
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3.6. Graded and filtered algebras. Let us end this section on associative alge-
bras by defining the concept of graded and filtered algebras.

3.6.1. Definition. Let A be an associative algebra over F . A is said to be graded
if for each integer n ≥ 0, there is a subspace An of A such that:

(G.1) A is the direct sum of all the An, and 1 ∈ A0

(G.2) AmAn ⊆ Am+n ∀m,n ≥ 0

3.6.2. Definition. Let A be an associative algebra over F . A is said to be filtered
if for n ≥ 0, there is a subspace A(n) of A such that:

(F.1) 1 ∈ A0 and A(0) ⊆ A(1) ⊆ A(2) ⊆ ... and ∪A(n) = A

(F.2) A(m)A(n) ⊆ A(m+n)∀m,n ≥ 0

So what is the connection between graded and filtered algebras? How can one
construct a filtered algebra starting from a graded one and vice versa, i.e. how to
construct a graded algebra starting from a filtered?

Let A be a graded algebra and let An a subspace of A satisfying condition (G.1)
and (G.2) above. Put A(n) =

∑n
p=0Ap, then it is easily verified that A becomes

a filtered algebra, called the filtered algebra associated with the graded
algebra A.

Now let A be a filtered algebra and let A(n) a subspace of A for filling condition
(F.1) and (F.2) in the definition. Put Bn = A(n)/A(n−1) and let πn be the natural
map of A(n) onto Bn, and denote the direct sum of Bn by B. Construct the
product in B in the following way: given b′1 ∈ Bn and b′2 ∈ Bm choose b1 ∈ A(n)

and b2 ∈ A(m) such that πn(b1) = b′1 and πm(b2) = b′2 . Define b′1b
′
2 = πn+m(b1b2).

It is easy to verify that the product is well-defined and independent of the choices
of b1, b2. The map from Bn × Bm into Bn+m defined by (b′1, b

′
2)→ b′1b

′
2 is bilinear

and extends to a bilinear map B ×B → B given by (b′1, b
′
2)→ b′1b

′
2. We call it the

graded algebra associated with the filtered algebra A, and denote it from
now on by Agr.

4. Coalgebras

4.1. Co-unital co-associative coalgebras. Coalgebras are objects that are dual
to algebras. Axioms for coalgebras can be produced from axioms of algebras by
just inverting arrows in all diagram.

4.1.1. Definition. A co-associative coalgebra is a vector space C over a base
field F together with a bilinear map ∆ : C → C ⊗ C which is co-associative. The
co-associativity is the same as the commutativity of the following diagram,

C
∆ //

∆

��

C ⊗ C

∆⊗id
��

C ⊗ C
id⊗∆
// C ⊗ C ⊗ C
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4.1.2. Definition. A coalgebra C is called co-unital if there is a co-unit. That is,
if there exists a linear function ε : C → F such that the following diagram

C
∼

yytttttttttt

∆

��

∼

%%JJJJJJJJJJ

F ⊗ C C ⊗ C
ε⊗id
oo

id⊗ε
// C ⊗ F

commutes.

4.1.3. Definition. A coalgebra is called co-commutaive if the following diagram

C
∆

{{xx
xx

xx
xx

x
∆

##F
FF

FF
FF

FF

C ⊗ C
T

// C ⊗ C

where T : A⊗A→ A⊗A is the twist map defined by T (a⊗ b) = (b⊗a) commutes.

4.1.4. Definition. Let C and C ′ be two co-unital co-associative coalgebras, a linear
map g : C → C ′ is called a linear map of coalgebras if the following two diagrams

C
g //

∆

��

C ′

∆′

��
C ⊗ C

g⊗g
// C ′ ⊗ C ′

C
g //

ε
��@

@@
@@

@@
C ′

ε′~~}}
}}

}}
}

F
commute.

4.2. Tensor coalgebra. To any vector space V one can associate its tensor coal-
gebra TC(V ) which, as a vector space, can be identified with T (V ).

4.2.1. Definition. Let V be any vector space and let TC(V ) denote its tensor

coalgebra with the co-product ∆ : T (V )→ T (V )
−
⊗ T (V ) defined by

∆(v1⊗...⊗vn) = 1
−
⊗v1⊗...⊗vn+v1⊗...⊗vn

−
⊗1+

n−1∑
p=1

(v1⊗...⊗vp)
−
⊗(vp+1⊗...⊗vn)

and extended by linearity to all of T (V ).

It is easy to verify that ∆ is in fact co-associative. For example, for v1 ⊗ v2 ∈
TC(V ) we have

(∆
−
⊗ id)∆(v1 ⊗ v2) = (∆

−
⊗ id)(1

−
⊗ v1 ⊗ v2 + v1 ⊗ v2

−
⊗ 1 + v1

−
⊗ v2) =

∆(1)
−
⊗ v1 ⊗ v2 + ∆(v1 ⊗ v2)

−
⊗ 1 + ∆(v1)

−
⊗ v2 =

1
−
⊗ 1

−
⊗ v1 ⊗ v2 + 1

−
⊗ v1 ⊗ v2

−
⊗ 1 + v1 ⊗ v2

−
⊗ 1

−
⊗ 1 +

v1

−
⊗ v2

−
⊗ 1 + 1

−
⊗ v1

−
⊗ v2 + v1

−
⊗ 1

−
⊗ v2
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and

(id
−
⊗∆)∆(v1 ⊗ v2) = (id

−
⊗∆)(1

−
⊗ v1 ⊗ v2 + v1 ⊗ v2

−
⊗ 1 + v1

−
⊗ v2) =

1
−
⊗∆(v1 ⊗ v2) + v1 ⊗ v2

−
⊗∆(1) + v1

−
⊗∆(v2) =

1
−
⊗ 1

−
⊗ v1 ⊗ v2 + 1

−
⊗ v1 ⊗ v2

−
⊗ 1 + 1

−
⊗ v1

−
⊗ v2 +

v1 ⊗ v2

−
⊗ 1

−
⊗ 1 + v1

−
⊗ 1

−
⊗ v2 + v1

−
⊗ v2

−
⊗ 1

so that (∆
−
⊗id)∆(v1⊗v2) = (id

−
⊗∆)∆(v1⊗v2). The co-unit is given by the natural

projection of TC(V ) onto F .

5. Bialgebras and Hopf algebras

5.1. Bialgebra.

5.1.1. Definition. A bialgebra B is a vector space, endowed with an algebra
structure (defined by ψ, µ) and a coalgebra structure (defined by ∆, ε) such that
the following three diagrams

B ⊗B ⊗B ⊗B
id⊗t⊗id // B ⊗B ⊗B ⊗B

ψ⊗ψ
��

B ⊗B
ψ

//

∆⊗∆

OO

B
∆

// B ⊗B

(where t : B ⊗B → B ⊗B is the transposition map bi ⊗ bj → bj ⊗ bi.)

B ⊗B
ε⊗ε //

ψ

��

F ⊗ F
∼
��

B ε
// F

B ⊗B F ⊗ F
µ⊗µoo

B

∆

OO

Fµ
oo

∼

OO

commute.

5.1.2. Definition. An element v in a bialgebra B is called primitive if

∆(v) = 1⊗ v + v ⊗ 1

5.1.3. Definition. Let B and B′ be two bialgebras, a linear map f : B → B′ is
called a linear map of bialgebras if it is a linear map of algebras and also a
linear map of coalgebras.
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5.2. Hopf algebra.

5.2.1. Definition. Let A be an algebra and C a coalgebra over the same field F .
Define an algebraic structure on hom(C,A), the set of all linear maps from C to
A, by

∗ : hom(C,A)⊗ hom(C,A)→ hom(C,A)

f ⊗ g → f ∗ g
where f ∗ g : C → A is given by the composition

C
∆→ C ⊗ C f⊗g→ A⊗A ψ→ A

This product is called the convolution product.

The convolution product is associative since A is associative and C co-associative.

5.2.2. Definition. Let H be a bialgebra, a linear map S : H → H is called an
antipode of the bialgebra H if S is the inverse of the identity map id : H → H
with respect to the convolution product in hom(HC , HA), that is, if the following
diagram

H ⊗H
S⊗id // H ⊗H

ψ

##G
GG

GG
GG

GG

H

∆

;;wwwwwwwww ε //

∆ ##G
GG

GG
GG

GG F
µ // H

H ⊗H
id⊗S

// H ⊗H
ψ

;;wwwwwwwww

commutes. A bialgebra H having an antipode is called a Hopf algebra.

5.2.3. Example. (The group algebra) Let G be a group, and let G(F ) be the
associative group algebra over the field F . This is an F -vector space with basis
{gi|gi ∈ G} so its elements are of the form

∑
λigi.

The associative product ψ : G(F )⊗G(F )→ G(F ) is defined by the product of
G extended to a bilinear map from G(F )×G(F ) to G(F):

(λ1g1)(λ2g2) = (λ1λ2)(g1g2)

for any λ1, λ2 ∈ F and g1, g2 ∈ G. The unit µ is given by the neutral element e of
G i.e. µ : F → G(F ) is given by µ(λ) = λe.

The space G(F ) has a coalgebra structure ∆ : G(F )→ G(F )⊗G(F )) given by:

∆(
∑

λigi) =
∑

λigi ⊗ gi

with the co-unit ε : G(F )→ F given by ε(
∑
λigi) =

∑
λi.

To show that G(F ) is an Hopf algebra we must show that the product and
coproduct are compatible, that is turns G(F ) into a bialgebra, and that it has an
antipode.

For any to elements g1, g2 in G

∆(g1g2) = (g1g2)⊗ (g1g2) = (g1 ⊗ g1)(g2 ⊗ g2) = ∆(g1)∆(g2)

that is, ∆ is an algebra morphism.
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It remains to show the existence of an antipode. Let S : G(F ) → G(F ) be
defined by

S(g) = g−1

for any g ∈ G and extended linearly. This is an antipode of the bialgebra G(F )
since

ψ(S ⊗ id)∆(g) = ψ(S ⊗ id)g ⊗ g = ψ(S(g)⊗ g) = S(g)g = g−1g = e

and e = 1 ◦ ε(g) for any g ∈ G, and similarly for ψ(id⊗ S)∆(g)

5.3. Graded connected bialgebras. Finally let us show that for any graded
connected bialgebra the antipode comes for free making it a Hopf algebra.

5.3.1. Definition. Let B be a bialgebra (B,ψ,∆, ε, µ). B is said to be a graded
connected bialgebra if it permits a decomposition into a direct sum

B =
⊕
n≥0

Bn

such that

(1) the multiplication and co-multiplication preserves the grading, i.e. for all
b ∈ Bn and b′ ∈ Bm

ψ(b, b′) ∈ Bm+n

∆(b) ∈
⊕
n=k+l

Bk ⊗Bl

(2) the unit and co-unit maps ε, µ are graded i.e.

ε : B0 → F

µ : F → B0

so the image of ε is zero on all Bn≥1 and the image of µ is in B0.
the connectedness is expressed by the following condition

(3) B0 is identified with the base field F

B0 = F

Any graded bialgebra is obviously filtered by the canonical filtration associated
with the grading

B(n) =
n⊕

m=0

Bm

Let, as usual, hom(B,B) denotes the set of all linear maps from B onto itself.
Because of linearity this may be written as

hom(B,B) = hom(
⊕
n≥0

Bn,
⊕
m≥0

Bm) =
⊕
n,m

hom(Bn, Bm)

5.3.2. Definition. For any natural number k

homk(B,B) :=
⊕
n≥0

hom(Bn, Bn+k)



18

Now let k = n−m and we can write

hom(B,B) =
⊕
k

homk(Bn, Bn+k)

so any function f ∈ hom(B,B) may be written as a direct sum

f =
⊕
k

fk

for some fk ∈ homk(B,B). Such functions are called homogeneous of degree k.

5.3.1. Lemma. Let fk ∈ homk(B,B) and gl ∈ homl(B,B), then

fk ∗ gl ∈ homk+l(B,B)

Proof. Since the co-product preserves the grading, for any b ∈ Bn we have

∆(b) =
∑
i+j=n

b′i ⊗ b′′j

where i, j ≥ 1. So the convolution product becomes

fk ∗ gl(b) =
∑
i+j=n

ψ(fk(b′i)gl(b
′′
j ))

but fk(b′i) ∈ Bk+i and gl(b′′j ) ∈ Bl+j plus remembering that the product also
respects the grading we may conclude

fk ∗ gj(Bn) ∈ Bn+k+l

�

From lemma we may conclude that for any f, g ∈ hom0(B,B), the set of all
linear maps f : B → B such that f(Bn) ⊂ Bn, their convolution product f ∗ g also
lies in hom0(B,B)

5.3.2. Theorem. Any connected graded bialgebra B has canonically a unique an-
tipode S, making it a Hopf algebra. The antipode can be given explicitly, using the
following notation, for any b ∈ Bn, n ≥ 1 let∑

n=i+j i,j 6=n

b′i ⊗ b′′j = ∆(b)− (b⊗ 1 + 1⊗ b)

By induction on the grading we define the antipode by

S(1) = 1

S(b) = −b−
∑

n=i+j i,j 6=n

S(b′i)b
′′
j = −b−

∑
n=i+j i,j 6=n

b′iS(b′′j )

Proof. Let e := µ ◦ ε. Since the image of ε is zero on Bn≥1 and just the idenity
map on B0 we have that,

e(B0) = B0

e(Bn≥1) = 0
For any f0 ∈ hom0(B,B) =

⊕
n≥0

hom(Bn, Bn) we may write

f0 = f0
0 ⊕ f1

0 ⊕ f2
0 ⊕ ...
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we can extend fn0 to an element in hom0(B,B) by assuming that fn0 (Bk) = 0 for
k ≥ n. Using this notation we can write e = e0⊕e1⊕ ... where e0 = id and en≥1 = 0
and id = id0 ⊕ id1 ⊕ ...

The map S : B → B is an antipode if the diagram

B ⊗B
id⊗S // B ⊗B

ψ

��
B

∆

OO

ε // B
µ // B

commutes, that is, if
id ∗ S = e

We define S by induction over n,

S = S0 ⊕ S1 ⊕ ...⊕ Sn ⊕ ...

S0 = id solves id∗S(B0) = e(B0). Assume we constructed S = S0⊕S1⊕...⊕Sn such
that id ∗ S(b) = e(b) for any b ∈ B(n). Let us find Sn+1 such that id ∗ S(b) = e(b)
holds for any b ∈ B(n+1). We may assume that b ∈ Bn+1 so the equation becomes
id ∗ S(b) = 0, i.e.

1S(b) + bS(1) +
∑

n+1=i+j, i,j 6=n+1

b′ib
′′
j = 0

For b ∈ Bn+1 we have S(b) = Sn+1(b), thus

Sn+1(b) = −b−
∑

n+1=i+j, i,j 6=n+1

b′iSj(b
′′
j )

but we already constructed Sj<n+1, so we see that there is a unique formula for
Sn+1. This completes the induction. A similar calculation shows that this also
satisfies S ∗ id = e which completes the proof. �

6. The universal enveloping algebra

6.1. The universal enveloping algebra. We have already seen that every asso-
ciative algebra A can be turned into a Lie algebra Lie(A) by replacing its multipli-
cation by the commutator [li, lj ] = lilj − lj li. Now consider the reverse situation,
starting from a Lie algebra L we wish to find an associative algebra A such that the
Lie algebra Lie(A) contains L. This algebra will be called the universal enveloping
algebra, and will be denoted by U(L).

6.1.1. Definition. Let L be a Lie algebra with Lie bracket [, ]. Let J be the ideal
of T (L) generated by all elements of the form

< li ⊗ lj − lj ⊗ li − [li, lj ] >

then the universal enveloping algebra of L is define as the quoitent algebra

U(L) = T (L)/J
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The canonical mapping φ : L→ T (L) induces a mapping σ : L→ T (L)→ U(L)
called the canonical mapping of L onto the quotient algebra U(L) = T (L)/J such
that for all li, lj ∈ L

σ(li)σ(lj)− σ(lj)σ(li) = σ([li, lj ])

6.1.1. Theorem (The universal property for the universal enveloping al-
gebra). Let L be a Lie algebra over a field F . The pair (U(L), σ : L → U(L)),
where σ is the canonical mapping has the following property. If A is any algebra,
and g : L → Lie(A) is any Lie algebra homomorphism, then there exists a unique
algebra homomorphism iσ : U(L)→ A such that g = iσ ◦ σ.

L
σ //

g
!!C

CC
CC

CC
CC

U(L)

iσ

��
A

Proof. Since the algebra U(L) is generated by 1 and σ(L) the algebra homomor-
phism iσ,if it exists, is clearly unique.

Let φ : L→ T (L) be the canonical map inducing σ

L
φ //

g
!!C

CC
CC

CC
CC

T (L) //

iφ

��

U(L)

iσ
{{wwwwwwwww

A

Let iφ be the unique homomorphism of T into A such that g = iφ ◦ φ. For all
li, lj ∈ L

g(li)g(lj)− g(lj)g(li) = g([li, lj ])

so
iφ(li ⊗ lj − lj ⊗ li − [li, lj ]) = g(li)g(lj)− g(lj)g(li)− g([li, lj ]) = 0

hence iφ(J) = 0 and, by passage to quotient, iφ defines a homomorphism iσ of
U(L) such that g = iσ ◦ σ. �

We have now shown that the universal enveloping algebra, as defined above,
exists, is universal in the usual sense of the word and unique up to isomorphism.
Based on this result, we may consider U(L) as the unique universal enveloping
algebra.

6.2. The Poincaré-Birhoff-Witt theorem. Let {l1, .., ln} be a basis in L, and
let I = (i1, .., ip) be any finite sequence of integers in the set {1, 2, ..., n}.

6.2.1. Definition. By a monomial we mean any tensor which is either 1 or of the
form

li1 ⊗ ...⊗ lip
for p ≥ 1 and i1, .., ip ∈ I. Let I be linearly ordered, a standard monomial is a

tensor which is either 1 or of the form li1 ⊗ ...⊗ lip for p ≥ 1 and i1 ≤ ... ≤ ip ∈ I.
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It is clear that for any basis {l1, .., ln} in L the image under the canonical map
in U(L) of tensor monomials li1 ⊗ ... ⊗ lip span the universal enveloping algebra
over F , since they span the tensor algebra. In fact we will show, in this section,
that even the canonical image of the standard monomials span U(L), and does in
fact form a basis for U(L). By using the Lie brackets we will show that the image
of any monomial in U(L) may be rewritten as a sum of standard ones.

6.2.2. Definition. Let Up(L) denote the canonical image in U(L) of⊕
0≤k≤p

T k(L)

that is,
U0(L) = F
U1(L) = F ⊕ σ(L)

If I is a linearly ordered set one can define the defect as the number of terms in
a standard monomial that is ’out of place’ relative to there order in the index set.
More precisely,

6.2.3. Definition. Let d =defect(li1 ⊗ ... ⊗ lip) denote the number of pairs (r, s)
such that 1 ≤ r < s ≤ p but ir > is.

We write Udp (L) for the linear span formed by the image of all monomials of
degree p and defect d. That the defect is zero if and only if the monomial is
standard, moreover Up(L) is obviously the sum over all possible defects Udp (L).

6.2.4. Definition. Denote the canonical image of li in U(L) by ui and set uI =
ui1 ...uip . For any integer i we write i ≤ I if i ≤ i1, ..., i ≤ ip.

6.2.1. The Poincaré-Birhoff-Witt theorem. Let L be a Lie algebra and let
U(L) = T (L)/J be the universal enveloping algebra of L. Suppose that {l1, ..., lp}
is an ordered basis of L. Then uI = ui1 ...uip form a basis of U(L) as a vector space
over F .

Before attending to prove the theorem in general we will first do a study of the
cases where t is a monomial of defect at most 2 and degree at most 4, and show
that all such monomials can be uniquely rewritten in terms of standard ones, to
highlight some of the important steps of the proof. In fact the proof will take the
form of an induction over the defect and the degree.

6.2.5. Example. For p = 0, 1 the situation is clear.
If p = 2 every monomial x⊗ y with x > y, may be rewritten according to

x⊗ y = y ⊗ x+ [x, y]

so every none standard monomial can obviously be rewritten in the standard form
since the commutator is in U1(L).

If p = 3, there are two possibilities for x⊗ y⊗ z not to be standard it can either
have defect 1 or 2. First consider the case p = 3, d = 1. Let us assume x > y but
x, y < z. Using the previous result

x⊗ y ⊗ z = (y ⊗ x+ [x, y])⊗ z = y ⊗ x⊗ z + [x, y]⊗ z
the first term on the right-hand side being standard and the second of lower degree.



22

The other possibilities follow analogously. There is also the second case where
p = 3, d = 2. That is x > y > z, there is now two ways to rearranges them either
first interchanging x and y (then x and z and finally y and z) or first interchanging
y and z. So it remains to show not only that the monomial can be rewritten in this
way but also that rewriting in terms of standard monomials are unique.

x⊗ y ⊗ z = (y ⊗ x+ [x, y])⊗ z =
y ⊗ x⊗ z + [x, y]⊗ z =
y ⊗ z ⊗ x+ y ⊗ [x, z] + [x, y]⊗ z =
z ⊗ y ⊗ x+ [y, z]⊗ x+ y ⊗ [x, z] + [x, y]⊗ z

The last three terms may be rewritten again using the same formula

x⊗ y ⊗ z = z ⊗ y ⊗ x+ [y, z]⊗ x+ y ⊗ [x, z] + [x, y]⊗ z =
z ⊗ y ⊗ x+ x⊗ [y, z] + [[y, z], x] + [x, z]⊗ y + [y, [x, z]] + z ⊗ [x, y] + [[x, y], z]

Using the second order for rearrangement

x⊗ y ⊗ z = x⊗ z ⊗ y + x⊗ [y, z] =
z ⊗ x⊗ y + [x, z]⊗ y + x⊗ [y, z] =
z ⊗ y ⊗ x+ z ⊗ [x, y] + [x, z]⊗ y + x⊗ [y, z]

so the two rearrangements differ by a factor

[[y, z], x] + [y, [x, z]] + [[x, y], z]

which is, exactly the Jacobi identity i.e. it vanishes.

Last consider the case p = 4 and d = 2 but the two defects do not interact.
Again there are two possible ways to do this

x⊗ y ⊗ z ⊗ q = y ⊗ x⊗ z ⊗ q + [x, y]⊗ z ⊗ q =
y ⊗ x⊗ q ⊗ z + y ⊗ x⊗ [z, q] + [x, y]⊗ z ⊗ q =
y ⊗ x⊗ q ⊗ z + y ⊗ x⊗ [z, q] + [x, y]⊗ q ⊗ z + [x, y]⊗ [z, q]

and

x⊗ y ⊗ z ⊗ q = x⊗ y ⊗ q ⊗ z + x⊗ y ⊗ [z, q] =
y ⊗ x⊗ q ⊗ z + [x, y]⊗ q ⊗ z + x⊗ y ⊗ [z, q] =
y ⊗ x⊗ q ⊗ z + x⊗ y ⊗ [z, q] + [x, y]⊗ q ⊗ z + [x, y]⊗ [z, q]

so they are in fact identical.

Proof. The proof progresses through a series of lemmas. To show that uI = ui1 ...uip
form a basis for U(L) one must show that the elements are linearly independent over
U(L) and that they span U(L). We start with proving the latter. For a monomial
not to be standard it must have some indices which are not correctly ordered, that
is, there exist a least one index j such that ij > ij+1. As noted previously the
canonical image of the monomials span U(L) and from the following lemma, we
shall see, that so do the standard monomials.
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6.2.2. Lemma. Let l1, .., lp ∈ L, σ be the canonical mapping of L into U(L) and
let π be a permutation of the numbers 1,...,p, then

σ(l1)...σ(lp)− σ(lπ(1))...σ(lπ(p))

is in Up−1(L).

Proof. By induction over the degree of tensors and, for every fixed degree, by
induction over the defect, it suffices to consider the case when π = (j, j + 1), that
is the transposition of j and j + 1. Which follows directly from the equality

σ(lj)σ(lj+1)− σ(lj+1)σ(lj) = σ([lj , lj+1])

�

Proving the linearly independence of standard monomials take some more work.
Let P be the algebra F [r1, .., rn] of polynomials in n indeterminates r1, .., rn. For
any non-negative integer i let Pi be the set of elements of P of degree less or equal
to i. If I = (i1, .., ip) is a sequence of integers between 1 and n, let rI = ri1ri2 ...rip .

6.2.6. Definition. A representation of a Lie algebra in a vector space V is a
bilinear map

L× V → V

(l, v)→ l ◦ v

such that

l1 ◦ (l2 ◦ v)− l2 ◦ (l1 ◦ v) = [l1, l2] ◦ v

for any l1, l2 ∈ L and v ∈ V

By the next lemma we will show that there exists a bilinear map ψ of L×P into
P such that

ψ(li, rI) = rirI , ∀i ≤ I

ψ(li, ψ(lj , rJ)) = ψ(lj , ψ(li, rJ)) + ψ([li, lj ], rj) ∀i, j, J

that is, there exists a representation g of L in P such that

g(li)rI = rirI ∀i ≤ I

Since the existence of a map g : L×P → P is equivalent to the existence of a map
g : L→ End(P ) and since, by the universal property of U(L), there exists a unique
algebra homomorphism i of U(L) into End(P ) such that g = i◦σ we conclude that

rirI = g(li)rI = (i ◦ σ(li))rI = i(ui)rI ∀i ≤ I

If i1 ≤ i2 ≤ ... ≤ ip we may deduce step by step that since the elements rI , for any
increasing I, are independent in P so are the elements uI , and we have

i(ui1 ...uip) · 1 = ri1 ...rip

where 1 is the identity in P .
The following lemma shows that such a representation exists.
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6.2.3. Lemma. For any non-negative integer p, there exists a unique homomor-
phism ψ from L⊗ Pp to P such that

(1) ψp(li ⊗ rI) = rirI for i ≤ I, rI ∈ Pp
(2) ψp(li ⊗ rI)− rirI ∈ Pq for rI ∈ Pq, q ≤ p
(3) ψp(li ⊗ ψp(lj ⊗ rJ)) = ψp(lj ⊗ ψp(li ⊗ rJ)) + ψp([li, lj ]⊗ rJ) for rJ ∈ Pp−1

The restriction of ψp to L ⊗ Pp−1 is ψp−1. (Note that the terms in condition (3)
are meaningful by virtue of (2).)

Proof. The lemma is shown by induction on p.
Let p = 0, from (1) we have ψp(li⊗ 1) = ri and the remaining conditions follows

immediately.
Assume the existence and uniqueness of ψp−1 for some p greater then zero. First

note that if ψp exists, then the restriction of ψp to L ⊗ Pp−1 satisfies (1)-(3) so it
is equal to ψp−1.

Thus it remains to show ψp−1 has a unique extension that satisfies conditions
(1)-(3). That is we must define ψp(li ⊗ rI) for any increasing sequence I of length
p. Suppose i ≤ I, from (1) ψp(li ⊗ rI) must be defined as rirI , on the other hand
if i > I let j be the first element of I, delete j from I and call the new sequence J ,
that is, I = (j, J). Then i > j ≤ J and

rI = rjrJ = ψp−1(lj ⊗ rJ)

so from (1)
ψp(li ⊗ ψp−1(lj ⊗ rJ)) = ψp(li ⊗ rI)

and from (3)

ψp(li ⊗ rI) = ψp(lj ⊗ ψp−1(li ⊗ rJ)) + ψp−1([li, lj ]⊗ rJ)

By (2) ψp−1(li ⊗ rJ) = rirJ + w for w ∈ Pp−1 so

ψp(li ⊗ rI) = rjrirI + ψp(lj ⊗ w) + ψp−1([li, lj ]⊗ rJ)

This is a unique extension of ψp−1 that satisfies (1)-(2) plus (3) for i > j ≤ J .
Because of anti-symmetry [li, lj ] = −[lj , li] condition (3) is also satisfied for i < j ≤
J . Since (3) is trivially true for i = j, we conclude that (3) is true if i ≤ J or j ≤ J .
Suppose neither i ≤ J nor j ≤ J are satisfied. Clearly the length of J is grater then
zero, so let k be the first element of J , delete k from J , and call the new sequence
K, that is J = (k,K), then k ≤ K and k < i, k < j. By the induction assumption

ψp(li ⊗ lj) = ψp(lj ⊗ ψp(lk ⊗ rK)) =
ψp(lk ⊗ ψp(lj ⊗ rK)) + ψp([lj , lk]⊗ rK)) =
ψp(lk ⊗ rjrK) + ψp(lk ⊗ w) + ψp([lj , lk]⊗ rK))

where w = ψp(lj ⊗ rK)− rjrK ∈ Pp−2. Therefore,

ψp(li ⊗ ψp(lj ⊗ lJ)) = ψp(li ⊗ ψp(lk ⊗ rjrK)) +
ψp(li ⊗ ψp(lk ⊗ w)) + ψp(li ⊗ ψp([lj , lk]⊗ rK))

since k ≤ K and k < j (3) can be applied to the first term on the right-hand side.
By the induction assumption (3) may also be applied to the other two terms. This
yields

ψp(li ⊗ ψp(lj ⊗ lJ)) = ψp(lk ⊗ ψp(li ⊗ ψp(lk ⊗ rK))) + ψp([li, lk]⊗ (lj ⊗ rK)) +
ψp([lj , lk]⊗ (li ⊗ rK)) + ψp([li[lj , lk]]⊗ rK)
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Interchanging i and j and cancelling term by term

ψp(li ⊗ ψp(lj ⊗ lJ))− ψp(lj ⊗ ψp(li ⊗ lJ)) = ψp(lk ⊗ (ψp(li ⊗ ψp(lj ⊗ rK))− ψp(lj ⊗ ψp(li ⊗ rK)))
+ψp([li[lj , lk]]⊗ rK)− ψp([lj [li, lk]]⊗ rK) =
ψp(lk ⊗ ψp([li, lj ]⊗ rK)) + ψp([li[lj , lk]]⊗ rK)−
ψp([lj [li, lk]]⊗ rK) =
ψp([li, lj ]⊗ ψp(lk ⊗ rK)) + ψp([lk[li, lj ]]⊗ rK) +
ψp([li[lj , lk]]⊗ rK)− ψp([lj [li, lk]]⊗ rK)

using the Jacobi identity

ψp(li ⊗ ψp(lj ⊗ lJ))− ψp(lj ⊗ ψp(li ⊗ lJ)) = ψp([li, lj ]⊗ rK)

Thus (3) for all possibilities. �

So the elements uI = ui1 ...uip are linearly independent over U(L) and that they
span U(L) which completes the proof. �

6.3. The universal enveloping algebra as a filtered algebra. Let L be a Lie
algebra over F , and let U(L) be the universal enveloping algebra over L. As before,
let Up(L) denote the canonical image in U(L) of

⊕p
k=0 T

k(L), then the Up(L) are
subspace of U(L) and defines an increasing filtration of U(L)

U0(L) ⊂ U1(L) ⊂ ... ⊂ Up(L) ⊂ ...

However U(L) is not a graded algebra.

6.4. The graded algebra associated with the universal enveloping algebra.
Let Ugr(L) denote the graded algebra associated with U(L), in accordance with
section 3.6, that is

Ugr(L) =
∑

Ugrn (L)

where

Ugrn (L) = Un(L)/Un−1(L)

and the map: Um(L)×Un(L)→ Um+n(L) given by (a, b)→ ab defines (by passage
to quotient) a bilinear map: Ugrm (L) × Ugrn (L) → Ugrm+n(L), so Ugr(L) is a graded
algebra.

By the PBW theorem we have a canonical isomorphism as vector spaces between
the universal enveloping algebra U(L) and the symmetric algebra S(L) and an
isomorphism of algebras between the graded algebra associated with the universal
enveloping algebra Ugr(L) and the symmetric algebra S(L). So we can state that
the symmetric algebra is the graded algebra associated with U(L).
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6.5. The universal enveloping algebra as a Hopf algebra. Let us now show
that the universal enveloping algebra U(L) has a Hopf algebra structure.

Define the multiplication ψ : U(L)⊗ U(L)→ U(L) by

ψ(a1 ⊗ a2) = a1 ? a2

for all a1, a2 ∈ U(L). This clearly defines an associative algebra since (U(L),?) is a
qoutient of the associative tensor algebra T (L) by an ideal.

Define the co-multiplication ∆ : U(L)→ U(L)⊗U(L) by setting its action on 1
and L to be

∆(1) = 1⊗ 1

∆(a) = 1⊗ a+ a⊗ 1
for all a ∈ L ⊂ U(L) and extend to all of U(L) through

∆(a1 ? ... ? an) = ∆(a1) ? ... ?∆(an)

where each ∆(ai) ⊂ U(L) ⊗ U(L). One may check that this is well defined, take
for example a1 ∗ a2 then

(∆⊗ id)∆(a1 ∗ a2) = (∆⊗ id)(1⊗ a1 ∗ a2 + a2 ⊗ a1 + a1 ⊗ a2 + a1 ∗ a2 ⊗ 1) =
∆(1)⊗ a1 ∗ a2 + ∆(a2)⊗ a1 + ∆(a1)⊗ a2 + ∆(a1 ∗ a2)⊗ 1 =
1⊗ 1⊗ a1 ∗ a2 + 1⊗ a2 ⊗ a1 + a2 ⊗ 1⊗ a1 +
1⊗ a1 ⊗ a2 + a1 ⊗ 1⊗ a2 + 1⊗ a1 ∗ a2 ⊗ 1 +
a2 ⊗ a1 ⊗ 1 + a1 ⊗ a2 ⊗ 1 + a1 ∗ a2 ⊗ 1⊗ 1

(id⊗∆)∆(a1 ∗ a2) = (id⊗∆)(1⊗ a1 ∗ a2 + a2 ⊗ a1 + a1 ⊗ a2 + a1 ∗ a2 ⊗ 1) =
1⊗∆(a1 ∗ a2) + a2 ⊗∆(a1) + a1 ⊗∆(a2) + a1 ∗ a2 ⊗∆(1) =
1⊗ 1⊗ a1 ∗ a2 + 1⊗ a2 ⊗ a1 + 1⊗ a1 ⊗ a2 +
1⊗ a1 ∗ a2 ⊗ 1 + a2 ⊗ 1⊗ a1 + a2 ⊗ a1 ⊗ 1 +
a1 ⊗ 1⊗ a2 + a1 ⊗ a2 ⊗ 1 + a1 ∗ a2 ⊗ 1⊗ 1

It is well known that the antipode S on U(L) is given by

S(1) = 1

S(a1 ? ... ? an) = (−1)nan ? an−1 ? ... ? a1

se for example [Sh,St] for a detailed proof.

6.6. A generalisation of the Poncaré-Birkhoff-Witt theorem. Let us now
look at the problem from a new perspective. We know that for any Lie algebra
L there exists an isomorphism as vector spaces between the symmetric algebra
S(L) and the universal enveloping algebra U(L). Now note that the definition of
the universal enveloping algebra makes sense for arbitrary vector space equipped
with any skew-symmetric map [, ] : Λ2V → V . We define the universal enveloping
algebra of (V, [, ]) as before,

U(V ) = T (V )/ < vi ⊗ vj − vj ⊗ vi − [vi, vj ] >

There is a natural projection:

π : T (V )→ U(V )
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define by
v1 ⊗ ...⊗ vn → v1 ? ... ? vn

where v1 ? ... ? vn denotes the equivalence class of [v1 ⊗ ... ⊗ vn] mod < vi ⊗ vj −
vj ⊗ vi − [vi, vj ] > so there exists a canonical map

s : S(V )→ U(V )

defined by

v1 � ...� vn →
∑
σ∈Sn

1
p!
vσ(1) ? ... ? vσ(p)

We know that if V is a Lie algebra then the map s is an isomorphism by the
PBW theorem. Now we can invert this statement.

6.6.1. The Poncaré-Birkhoff-Witt theorem (a generalisation). Let V be a
vector space equipped with an arbitrary skew-symmetric map [, ] : Λ2V → V , then
the map

s : S(V )→ U(V )

is an isomorphism if and only if (V, [, ]) is a Lie algebra.

Proof. By the PBW theorem it remains to show that if s is an isomorphism then
(V, [, ]) is a Lie algebra. Assume that s is an isomorphism. We have already shown
that the symmetric algebra and the universal enveloping algebra have natural fil-
trations such that the mapping s preserves them. If s is an isomorphism so is
s1 : S1(V )→ U1(V )

F ⊕ V → F ⊕ π(V )

Since the map [, ] is anti-symmetric it suffices to show that it fulfils the Jacobi
identity. Since the Jacobi identity holds trivially for dimV < 3, assume dimV ≥ 3
and let e1, e2, e3 be distinct base vectors in V .

For any pair of vectors (vi, vj) in U(L) we have the identity

vi ? vj = vj ? vi + [vi, vj ]

So in particular for the base vectors e1, e2, e3 we have,

(e1 ? e2) ? e3 = e2 ? e1 ? e3 + [e1, e2] ? e3 =
e2 ? e3 ? e1 + e2 ? [e1, e3] + [e1, e2] ? e3 =
e3 ? e2 ? e1 + [e2, e3] ? e1 + e2 ? [e1, e3] + [e1, e2] ? e3

and

e1 ? (e2 ? e3) = e3 ? e2 ? e1 + e3 ? [e1, e2] + [e1, e3] ? e2 + e1 ? [e2, e3]

and their difference may be written as

(e1 ? e2) ? e3 − e1 ? (e2 ? e3) = [e2, e3] ? e1 + e2 ? [e1, e3] + [e1, e2] ? e3 −
e3 ? [e1, e2] + [e1, e3] ? e2 + e1 ? [e2, e3] =
([e2, e3] ? e1 − e1 ? [e2, e3]) + (e2 ? [e1, e3]−
[e1, e3] ? e2) + ([e1, e2] ? e3 − e3 ? [e1, e2]) =
[[e2, e3], e1] + [e2, [e1, e3]] + [[e1, e2], e3] =
[[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2]



28

Let {ei}i∈I be a basis in V , then

[ei, ej ] =
∑
k∈I

cki,jek

for some ckii ∈ F . Now [[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2] may be written as∑
m,l

(cm1,2c
l
m,3 + cm2,3c

l
m,1 + cm3,1c

l
m,2)el =

∑
λl(c)el

which is in fact in U1(V ). But U(V) is associative so (v1 ?v2)?v3−v1 ? (v2 ?v3) = 0
that is ∑

λl(c)el = 0

Now {ei} form a basis for U1(V ) if and only if λl(c) = 0 for all l. But U1(V ) is
isomorphic to V , as a vector spaces, since S1(V ) = V and s1 is an isomorphism.
So since {ei}i∈I are linearly independent in V they are also linearly independent
in U1(V ), and the Jacobi identity holds for all elements in V making (V, [, ]) a Lie
algebra. �

6.6.2. Corollary. Assume that V is finite dimensional, then (in the assumption of
Theorem 6.5.1) we have

dimUgrn (V ) ≤ dimSn(V )

Proof. Let us construct ∑
λl(c)el = 0

as in the last paragraph of the proof above. The {ei} forms a basis for U1(V ) if
and only if λl(c) = 0 for all l. But λl(c) = 0 for all l exactly when V satisfies the
Jacobi identity so dimU1(V ) ≤ dimV = dimS1(V ). �

6.6.1. Remark. Equality holds if and only if (V, [, ]) is an Lie algebra, so the
universal enveloping algebra gets smaller if the Jacobi identity does not hold for
the underlying algebra.

7. Combinatorial graphs as a Hopf algebra

7.1. Combinatorial graphs. We will start by introducing the basic concepts of
combinatorial graphs.

7.1.1. Definition. A graph G is defined by two set
(1) a finite set VG called vertices.
(2) a finite set FG called flags.

such that
(a) each flag f ∈ FG is incident to exactly one vertex v ∈ VG , denoted v = δG(f),

defining a map δG : FG → VG .
(b) some pairs of flags may be connected, that is, there is a function jG : FG →

FG such that (jG)2 = id.

7.1.2. Definition. Pairs of flags f 6= f ′ with jG(f) = f ′ form a set called edges,
denoted EG .
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7.1.3. Definition. We call G connected if its geometric realisation is such.

7.1.4. Definition. Let G and G′ be two graphs. The graph G′ is called a subgraph
of G if, G′ is non-empty, VG′ ⊆ VG and EG′ ⊆ EG , where each edge in EG′ is incident
with vertices in VG′ .

7.1.5. Definition. Let G′ be a subgraph of G different from the empty graph and
from the whole of G, the contracted graph, denoted G/G′, is the graph obtained
by shrinking all edges of G′ to one point, inside G.

7.1.6. Example. Let G and G′ be the two graphs,

G =

◦ ◦

◦ ◦
◦

??
??

��
��

����
????

and G′ =

◦
◦�

��
�

such that G′ is the subgraph of G consisting of the centre vertex and vertex in the
up right corner of together with the edge connecting them. The contracted graph
G/G′ is then,

G/G′ =

◦

◦ ◦
◦����

7.2. Hopf algebra of admissible graphs. Let G be an arbitrary graph and select
among its vertices one witch will be ”special” and market by •.

G =

• ◦

◦ ◦
◦

??
??

��
��

����
????

7.2.1. Definition. Call such a graph with one ”special” vertex admissible. A
subgraph G′ ⊂ G will be called admissible if it contains that special vertex.

Let GC denote the set of all connected graphs under the condition that every
vertex has at least one edge connected to it. Define a function ∆ : GC → GC ⊗GC
by

∆1 = 1⊗ 1

∆G = 1⊗ G + G ⊗ 1 +
∑
GA⊂G

GA ⊗ G/GA

Here summation is over all possible proper admissible subgraphs G′, that is, all
except the empty graph and the whole of G. Using the convention that whenever
the ”special” vertex and some other vertex is contracted the new vertex will inherit
the property of being ”special”.
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7.2.1. Theorem. The co-product ∆ of an admissible graph is co-associative

Proof. We wish to show that this ∆ is a coassociative, that is,

(∆⊗ Id)∆G = (Id⊗∆)∆G
using he definition of ∆ we get,

(∆⊗ Id)∆G = (∆⊗ Id)(1⊗ G + G ⊗ 1 +
∑
GA⊂G

GA ⊗ G/GA) =

1⊗ 1⊗ G + ∆(G)⊗ 1 +
∑
GA⊂G

∆(GA)⊗ G/GA =

1⊗ 1⊗ G + 1⊗ G ⊗ 1 + G ⊗ 1⊗ 1 +
∑
GA⊂G

GA ⊗ G/GA ⊗ 1

+
∑
GA⊂G

1⊗ GA ⊗ G/GA +
∑
GA⊂G

GA ⊗ 1⊗ G/GA +

∑
GB⊂GA⊂G

GB ⊗ GA/GB ⊗ G/GA

as well as

(Id⊗∆)∆G = (Id⊗∆)(1⊗ G + G ⊗ 1 +
∑
GA⊂G

GA ⊗ G/GA) =

1⊗∆(G) + G ⊗ 1⊗ 1 +
∑
GA⊂G

GA ⊗∆(G/GA) =

1⊗ 1⊗ G + 1⊗ G ⊗ 1 + G ⊗ 1⊗ 1 +
∑
GA⊂G

1⊗ GA ⊗ G/GA +

∑
GA⊂G

GA ⊗ 1⊗ G/GA +
∑
GA⊂G

GA ⊗ G/GA ⊗ 1 +

∑
GB′⊂G/GA

GA ⊗ GB′ ⊗ (G/GA)/GB′

so it remains to show that∑
GB⊂GA⊂G

GB ⊗ GA/GB ⊗ G/GA =
∑

GA⊂G,GB′⊂G/GA

GA ⊗ GB′ ⊗ (G/GA)/GB′

That is, that there is an one-to-one correspondence between the set {GB ⊂ GA ⊂
G} of all pairs of admissible subgraphs GA,GB , such that GB ⊂ GA, and the set
{GA ⊂ G,GB′ ⊂ (G/GA)} of all pairs of admissible subgraphs GA,GB′ , such that
GA ⊂ G and GB′ ⊂ (G/GA)

Let GB denote the pre-image in G of the subgraph GB′ in G/GA, that is, the
subgraph in G such that its image in G/GA is GB′ .

Construct two functions ψ : {GB ⊂ GA ⊂ G} → {GA ⊂ G,GB′ ⊂ (G/GA)}, φ :
{GA ⊂ G,GB′ ⊂ (G/GA)} → {GB ⊂ GA ⊂ G} such that

ψ(GB ⊂ GA ⊂ G) = {GB ⊂ G, (GA/GB) ⊂ (G/GB)}
φ(GA ⊂ G,GB′ ⊂ G/GA) = {GA ⊂ GB ⊂ G}

Let us show that the two composition maps are in-fact the identity

φ ◦ ψ(GB ⊂ GA ⊂ G) = φ({GB ⊂ G, (GA/GB) ⊂ (G/GB)})
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Using the notation GA′ for GA/GB to mirror the notation above, so that the pre-
image of GA′ is GA we get

φ({GB ⊂ G, (GA/GB) ⊂ (G/GB)}) = {GB ⊂ GA ⊂ G}

that is φ ◦ ψ = id. Reversing the order

ψ ◦ φ(GA ⊂ G,GB′ ⊂ G/GA) = ψ({GA ⊂ GB ⊂ G}) = {GA ⊂ G, (GB/GA) ⊂ (G/GA)}

once again making us of the fact that GB denotes the pre-image of GB′ in G/GA, so
also ψ ◦ φ = id which completes the proof. �

7.2.2. Example. As an example, let us study the following admissible graph

G =

◦ •

◦ ◦
and all possible sets of admissible subgraphs {GA ⊂ G,GB′ ⊂ G/GA} and {GB ⊂
GA ⊂ G}.

Let us begin with the letter, there are 3 possible admissible subgraphs GA each
of which has 2 admissible subgraph GB such that GB ⊂ GA.

GA =

◦ •

◦
with subgraphs GB = ◦ • or GB =

•

◦

GA =

•

◦ ◦
with subgraphs GB =

•

◦
or GB =

•

◦

GA =

◦ •

◦
with subgraphs GB =

•

◦
or GB =

•

◦
If we instead study the first set there are ones again 3 admissible subgraphs GA
such that there is a subgraph GB′ ⊂ G/GA.

GA = ◦ • which gives G/GA =

•

◦ ◦��
��

��
��

�

GA =

•

◦
which gives G/GA =

◦ •

◦�
��

��
��

��

GA =

•

◦
which gives G/GA =

◦

• ◦
each G/GA has 2 admissible subgraphs G′B

G/GA =

•

◦ ◦��
��

��
��

�

with subgraphs G′B =

•

◦
or G′B =

•

◦�
��

��
��

��
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G/GA =

◦ •

◦�
��

��
��

��

with subgraphs G′B = ◦ • or G′B =

•

◦�
��

��
��

��

G/GA =

◦

• ◦
with subgraphs G′B =

◦

•
or G′B =

• ◦
so both sets consists of six elements. To see the one-to-one correspondents consider
the pre-image of all the graphs GB′ respectively.

G′B =

•

◦
→ GB =

◦ •

◦
, G′B =

•

◦�
��

��
��

��

→ GB =

◦ •

◦

G′B = ◦ • → GB =

◦ •

◦
, G′B =

•

◦�
��

��
��

��

→ GB =

•

◦ ◦

G′B =

◦

•
→ GB =

•

◦ ◦
, G′B =

• ◦
→ GB =

◦ •

◦
so they both equal to the set

{(
◦ •
◦
, ◦ •), (

◦ •
◦
,
•
◦
), (

•
◦ ◦

,
•

◦
), (

•
◦ ◦

,
•
◦
), (
◦ •
◦

,
•

◦
), (
◦ •
◦

, ◦ •)}

7.2.3. Remark. It is a necessary condition for the graph G to be admissible for
∆ to be co-associative. If not the one-to-one correspondence will fail since the set
{GA ⊂ G,GB′ ⊂ (G/GA)} of all pairs of subgraphs GA,GB′ , such that GA ⊂ G and
GB′ ⊂ (G/GA) is getting bigger including subgraphs GB′ such that the pre-image
GB does not necessarily obey the relation GA ⊂ GB

Let G be the vector space generated by all linear combinations of connected
graphs. We now wish to extend ∆ to include the whole of G. Let G be some
non-connected graph such that G = (Gi,Gj) (the disjoint union of the two graphs
Gi and Gj) and set

∆(G) = ∆(Gi)∆(Gj)
Both Gi and Gj may be non-connected but repeating this procedure eventually jails

∆(G) = ∆(G1)∆(G2), ...,∆(Gn)

for (G1,G2, ...,Gn) connected. Since ∆(Gi) ∈ G⊗G for connected Gi, so is ∆(G).

7.2.2. Corollary. The co-product ∆ on linear combinations of admissible graph is
co-associative

Proof. We wish to show ∆⊗ Id(∆(G)) = Id⊗∆(∆(G)) for some arbitrary G ∈ G.
Since G is in G its a linear combination of some connected graphs G1,G2...Gn, using
the definition we have

∆(G1,G2, ...,Gn) = ∆(G1)∆(G2), ...,∆(Gn)

so

∆⊗ Id(∆(G1,G2, ...,Gn)) = ∆⊗ Id(∆(G1))∆⊗ Id(∆(G2))...∆⊗ Id(∆(Gn))
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But G1,G2, ...,Gn, are in GC so ∆ ⊗ Id(∆(Gi)) = Id ⊗∆(∆(Gi)) for all 1 ≤ i ≤ n
which gives,

∆⊗ Id(∆(G1,G2, ...,Gn)) = ∆⊗ Id(∆(G1))∆⊗ Id(∆(G2))...∆⊗ Id(∆(Gn)) =
Id⊗∆(∆(G1))Id⊗∆(∆(G2))...Id⊗∆(∆(Gn)). =
Id⊗∆(∆(G1,G2, ..,Gn))

Which completes the proof. �

We wish to show that vector space of all linear combinations of connected ad-
missible graphs, with at least one edge, may be given a Hopf algebra structure.
Define the co-product ∆ : G → G ⊗ G as above and the product ψ : G ⊗ G → G
as the disjoint union of graphs (this product is clearly associative). Let the unit
element 1 of G br the empty graph (the graph with no vertices), define the unit
map µ : F → G by µ(λ) = λ1 and the co-unit map ε : G→ F by being zero on all
of Gn≥1 and on G0 ε(λ1) = λ.

By construction we have ∆(G,G′) = ∆(G)∆(G′) for any two elements G,G′ ∈ G,
so (G,ψ,∆, ε, µ) has a bialgebra structure. Infact (G,ψ,∆, ε, µ) is a connected
graded bialgebra since it permits a decomposition into subspaces

G =
⊕
l≥0

Gl

where Gl is the set of all graph with l edges, such that both the product and
co-product respects this grading, since for any G ∈ Gn and G′ ∈ Gm, clearly

ψ(G,G′) ∈ Gn+m

and for any G ∈ Gn
∆G =

⊕
n=l+k

Gk ⊗Gl

Finally G is connected since the set of graphs with no edge, under the condition
that every graph has at least one edge, is the empty set, i.e. G0 = F .

7.2.3. Theorem. Admissible graphs has a Hopf algebra structure

Proof. Follows immediately from Theorem 5.3.1. Since (G,ψ,∆, ε, µ) is a connected
graded bialgebra its also a Hopf algebra. �

7.3. Trees.

7.3.1. Definition. A tree T is defined by the following data;
(1) a finite set VT called vertices.
(2) a distinguished element rT ∈ VT called root vertex.
(3) two sets V iT called internal vertices and V tT called tail vertices.

such that
(a) V iT and V tT are both subsets of VT \ {rT }.
(b) VT = {rT } ∪ V iT ∪ V tT
(c) there is a map a NT : VT → VT for which NT (rT ) = rT , for all v ∈ VT ,

Nk
T (v) = rT for k >> 1, and there exists a unique vertex v ∈ VT , v 6= rT

such that NT = rT .
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7.3.2. Definition. Pairs (v,NT (v)), where v 6= rT form a set called edges, denoted
ET .

•
◦

◦ ◦
◦ ◦

◦◦

OO

??����
__????

??����
__????
__????
??����

Trees are a subset of our G. Moreover such trees have naturally a distinguished
vertex i.e. the root vertex. It is easy to see that our ∆ preserves this subspace
and hence makes it into a Hopf algebra. This Hopf algebra has been studied by
Connes-Kreimer who used it to give a new renormalization procedure in a class of
QFT.
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