SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Unconstrained Particle Swarm Optimizer for Variable Weighting
in Soft Projected Clustering of High-Dimensional Data

av

Kristoffer Vinell

2010 - No 13

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Unconstrained Particle Swarm Optimizer for Variable Weighting in
Soft Projected Clustering of High-Dimensional Data

Kristoffer Vinell

Sjalvstandigt arbete i tillampad matematik 30 hogskolepoéng, avancerad niva
Handledare: Yishao Zhou

2010

Abstract

Due to the increasing volumes of stored data arising in various fields
of business and research, the demand for efficient data analysis tools
have skyrocketed in recent years. A popular approach well-suited for
tackling high-dimensional data in particular is soft projected cluster-
ing, which aims at partitioning the data objects into disjoint subsets.
Soft projected clustering is particularly interesting from a mathemat-
ical viewpoint, since the clustering process is cast in the form of a
nonlinear optimization problem. However, most existing algorithms in-
volve a large number of bound and equality constraints, which severely
restrict the performance of the optimization method employed.

In this thesis, a new soft projected clustering algorithm called
UPSOVW is developed to overcome these issues. It uses an objective
function that enables an unconstrained search procedure by eliminating
redundant bound constraints, and employs a particle swarm optimizer
in quest for a global optimum. We formally prove that the bound
constraints can be omitted without loss of generality, and conduct a
stability analysis that provides guidelines for suitable parameter set-
tings in the algorithm. Finally, we compare UPSOVW to an existing
algorithm on a number of synthetic high-dimensional data sets.

Acknowledgements

I would like to thank my supervisor, Yishao Zhou, of the Department of
Mathematics at Stockholm University, for taking an interest in my work
at an early stage and for encouraging further research. For this I am very
grateful. T would also like to thank Yanping Lu of the Department of Com-
puter Science at University of Sherbrooke, for providing the source code for
the PSOVW algorithm and guidelines for how to generate synthetic data
sets.

iii

Contents

1 Introduction
1.1 Clustering
1.2 Disposition

2 Problem statement

3 Related work

3.1 LAC . . .
3.2 W-k-means
3.3 EWKM e

3.4 Common features

4 Particle swarm optimization
4.1 Parameter settings and velocity clamping
4.2 Handling constraintso
4.3 The CLPSO variant
4.3.1 Crossover learning
4.4 Related methods
5 The PSOVW algorithm
5.1 Computational complexity
5.2 Performance
6 The UPSOVW algorithm
7 Theoretical analysis
7.1 Previouswork
7.1.1 Deterministicmodels
7.1.2 Stochasticmodels
7.2 A stochastic model with multiplicative noise
7.2.1 Multiplicative noise and mean-square stability
7.2.2 Numerical results and stable parameter regions
8 Synthetic data simulations
8.1 Generating synthetic datasets
8.2 Parameter settings for algorithms
8.3 Results for syntheticdata
9 Conclusions and future work
A Proofs

A.1 Proof of main theorem
A2 Proof of stability criterion L.

11
14
16
16
17
19

22
25
25

27

30
30
31
34
36
37
39

42
42
44
46

50

B A short introduction to LMIs
C Generating synthetic data sets

References

vi

54

56

58

1 Introduction

There is a growing trend around the globe to collect and store more and
more data. Companies store customer data to make better marketing deci-
sions, the Internet grows like clockwork and governmental institutions like
NASA collect terabytes of cosmic data on a daily basis. The increasing
volumes of data require efficient methods of handling and analyzing these
enormous amounts. Ideally, data becomes information, and information be-
comes knowledge. This is however far from reality in many cases.

As the demand for these methods has increased in recent years, several
new fields have emerged. Data mining, which is one of them, is the process of
extracting patterns from data. Anomaly detection, on the other hand, deals
with detecting patterns in a given data set that do not conform to an already
established normal behavior. These have applications in various fields such
as credit card fraud detection ([1]), network security ([2]) and insurance
company customer prediction ([3]), to name a few. Although these fields
may seem unrelated at first sight, there is a striking resemblance between
them from a theoretical viewpoint, in that they all rely on the accuracy and
efficiency of data mining and anomaly detection algorithms. For instance,
in an intrusion detection application managing network surveillance, these
aspects are crucial. Anomalies must be rejected quickly yet accurately, so
that harmless network usage is not mistaken for anomalous behaviour.

1.1 Clustering

A common task arising in many of the above applications is clustering.
Clustering deals with partitioning a collection of data objects into a number
of disjoint subsets (clusters). The aim is to divide the given data set such
that objects in the same cluster are similar to each other with respect to
some predefined similarity measure, whereas objects in different clusters are
dissimilar. The choice of a suitable similarity measure is an important and
difficult problem in its own right, since it is application-specific and greatly
influences the cluster quality.

An example taken from insurance company customer prediction may
motivate the use of a clustering method and may also illuminate some of
the design issues therein. Suppose that an insurance company launches a
new insurance policy. The company is then interested in separating their
customers into groups to predict who would be interested in buying such
an insurance ([4]). In order to make the predictions more reliable, each
customer has a data record containing several variables valuable to the in-
surance company (age, sex, marital status, income etc.). The number of
variables suitable to consider in such an application is often in the hundreds
or even thousands, depending on the insurance of interest.

The intuitive approach in clustering high-dimensional data of this kind

would be to use a similarity measure based on a metric, such as the Euclidean
distance measure. Any two data objects that are close to each other in the
given metric space would fall into the same cluster. However, as the number
of dimensions increases, data becomes very sparse and distance measures
in the whole dimension space become pointless. This phenomenon is often
referred to as the curse of dimensionality and will be encountered many
times in the following, since high-dimensional data clustering is at the core
of this work.

An immediate consequence of increasing dimensionality is that clusters of
high-dimensional data are usually embedded in lower-dimensional subspaces,
which makes clustering a difficult task. As a matter of fact, some dimensions
may be irrelevant or redundant for clusters and different sets of dimensions
may be relevant for different clusters. Consequently, clusters should usually
be searched for in subspaces of dimensions rather than the whole dimension
space.

Three categories of clustering methods have been considered following
this approach (as defined in [5]). The first, subspace clustering, aims at
finding all subspaces where clusters can be identified (see for instance [6],
[7], [8]). Thus, algorithms that fall into this category are dedicated to find-
ing all clusters in all subspaces. The second, projected clustering, aims at
dividing the data set into disjoint clusters (see for instance [9], [10]). The
third type, hybrid clustering, falls in between the two. These algorithms are
in general intended to find clusters that may overlap (see for instance [11]).
On the other hand, these algorithms do not aim at finding all clusters in all
subspaces. In fact, some of the hybrid algorithms only compute interesting
subspaces rather than final subspace clusters. The retrieved subspaces can
then be processed by applying full-dimensional algorithms to these projec-
tions.

In recent years, a specialized version of projected clustering has been
developed, called soft projected clustering. This group of methods identify
clusters by assigning an optimal variable weight vector to each cluster (see
for instance [12], [13], [14], [15]). The clustering is carried out by minimizing
an objective function iteratively by finding better and better variable weight
configurations. The objective function is similar to the k-means objective
function introduced in [16]. Although the cluster membership of a data ob-
ject is determined by considering the whole variable space, the similarity
between each pair of objects is based on weighted variable differences. Dif-
ferent attributes are just differently weighted, but all attributes contribute
to the clustering. However, in order to define a suitable objective function,
the number of clusters & must be known beforehand, which is one of the
drawbacks of this type of clustering. On the other hand, once the objective
function is set, the problem at hand is a well-defined optimization prob-
lem, which can be tackled by any suitable optimization technique. This is a
valuable property from a mathematical viewpoint, since it divides the clus-

tering issues into the problem of firstly choosing a suitable objective function
followed by employing an efficient optimization strategy.

1.2 Disposition

The rest of the thesis is organized as follows. Section 2 gives some further
insight into the mechanics of soft projected clustering and presents a recent
method in this field, namely the PSOVW algorithm. Section 3 reviews some
previous related work on the variable weighting problem in soft projected
clustering and briefly presents three well-known clustering algorithms other
than PSOVW. The particle swarm optimization technique is covered in sec-
tion 4, which is the foundation of the search strategy employed in PSOVW.
Section 5 gives a detailed description of the PSOVW algorithm. In section
6, the UPSOVW algorithm is proposed, which is the main contribution of
the thesis. It is similar but not identical to PSOVW, in that it employs a
different search strategy. This section also presents the main theorem which
confirms the efficiency of the new search strategy. The main theorem and
the analysis of UPSOVW that follows in section 7 covers the theoretical
aspect of the thesis. In this section, an extensive literature study reveals
some important previous work concerning the stability of PSO methods,
which is followed by some new ideas for such an analysis with an emphasis
on UPSOVW. In section 8, the PSOVW and UPSOVW algorithms are run
on a variety of high-dimensional data sets and the experimental results are
presented. The final section draws a number of conclusions and suggests
directions for future work.

2 Problem statement

Soft projected clustering is a tractable yet powerful clustering method for
several reasons. A few of these have already been pointed out in the previous
section. The advantages become even more apparent in a recent article by
Lu, Wang, Li and Zhou, where a novel approach to the variable weighting
problem in soft projected clustering of high-dimensional data is proposed
(112)).

The objective of the soft projected clustering algorithm is to partition
a set of n data objects with m dimensions into k& clusters. Note that, as
with any soft projected clustering algorithm, the number of clusters must
be known beforehand. Lu et al. proposed the problem of minimizing an
objective function F': R¥*™ — R defined as

kK n

m wy 163
FOV) =Y 3> uy, <Zm_1wz> S d(Tig, 25)

1=1 i=1 j=1

subject to the constraints

0<wy; <1, 1<I<k1<j<m
S =1, wye{0,1},1<i<n.

The variable weight matrix W contains one entry for each dimension on
each cluster, where each entry appears several times in the objective func-
tion. The variable x; ; denotes the value of data object ¢ on dimension j, and
215 is the centroid of cluster [on dimension j. A cluster centroid doesn’t
necessarily have to be one of the data objects. In fact, they rarely are,
and should rather be regarded as artificial objects steering the algorithm
in the right direction. The function d is a distance function measuring the
similarity between a data object and a cluster centroid, e.g. the Euclidean
distance. The indicator variable w;; is the membership of data object i in
cluster [. It appears together with its equality constraint to ensure that
each object belongs to a unique cluster. Included in the objective function
is also a positive constant 3 that magnifies the importance of variables with
large weights, and lets them influence the separation of relevant dimensions
from irrelevant ones. A large value of 3 makes the objective function more
sensitive to changes in the weights. Generally, variables that share a strong
correlation with a cluster obtain large weights, which implies that these
variables play a strong role in the identification of data objects in the clus-
ter. Conversely, irrelevant variables in a cluster obtain small weights. The
computation of the membership of a data object in a cluster consequently
depends on the variable weights as well as the cluster centroids.

As mentioned, the performance of soft projected clustering is greatly in-
fluenced by the objective function and the search strategy employed. The

objective function determines the cluster quality, whereas the search strat-
egy has an impact on whether the optimum of the objective function can
be found. The cluster quality is closely related to the clustering accuracy,
which is referred to as the percentage of the data objects that are correctly
identified by the algorithm. This is in turn closely related to the cluster-
ing variance, which is defined as the variance of the clustering accuracy in
between runs on the same data set. It can be thought of as an indicator
to how robust the method is. Apart from these issues, the computational
complexity of the optimization method should also be taken in consideration
when deciding on a search strategy.

Lu et al. use a method that stems from a large class of optimization
techniques called particle swarm optimization (PSO) ([17]). This method
along with the objective function are the core elements of their clustering al-
gorithm named PSOVW (Particle Swam Optimizer for Variable Weighting).
The objective of this thesis is to present an algorithm, similar to PSOVW, by
altering either the objective function or the search strategy. The algorithm
should yield faster convergence while maintaining high cluster quality.

3 Related work

This section covers some related work in the field of soft projected cluster-
ing. Three algorithms are presented, namely LAC ([13]), the W-k-means
algorithm ([14]) and EWKM ([15]). These algorithms are all quite similar
to PSOVW, so the same notation will be used throughout this work for
convenience.

3.1 LAC

The LAC algorithm (Locally Adaptive Clustering) was recently proposed by
Domeniconi et al., which computes the clusters by minimizing the following
objective function:

k m
F(w) = > > (w;-Xij+h-wy-logw),
=1 j=1

Z:‘L:I Uy (x” - Zl,j)2

subject to

Siw; =1, 0<w,; <1, 1<I1<k
{ Zl:l uy; = 1, U € {0, 1}, 1<1<n.
Here, X, ; is the squared variance of cluster [along dimension j. Notably,
the constraints in LAC bear a resemblance to the ones used in PSOVW.
However, not only do they enforce upper and lower bounds on the variable
weights, but there is also an equality constraint on the variable weights.

In the following description of the algorithm U, Z and W represent the
cluster membership matrix of data objects, the cluster centroids matrix and
the dimensional weights matrix, respectively. The following formulas are
used to update the cluster membership and cluster centroids:

ug =1, 3 5wy (wig — 215)° < Ly we - (g — 245)%,
for1<qg<k (3.1)
ug; = 0, for q #1,
D UL Ti
Do Ui
exp (=X ;/h)
>y exp (= Xis/h)’

215 = for 1 <I<k,1<j<m, (3.2)

wyj = for 1 <1<k, 1<j<m. (3.3)

Given these formulas, the LAC algorithm operates as follows:

Initialization:

Select k well-scattered data objects as k initial centroids.

Set initial weights w; ; = 1/m, for each dimension in each cluster.
Repeat:

Update the cluster membership matrix U by (3.1).

Update the cluster centroids matrix Z by (3.2).

Update the dimension weights W by (3.3).

Until: (no change in the centroids’ coordinates is observed, or the number
of function evaluations reaches a specified threshold).

The parameter h is chosen to maximize (or minimize) the influence of
X ; onwy ;. In practice, the tuning of A is problem-specific and should there-
fore be empirically determined, which is a difficult problem in its own right.
It should be noted that the LAC technique is centroid-based, like PSOVW,
because weightings depend on the centroid. The computed weights are used
to update the cluster membership matrix, and therefore the centroids’ co-
ordinates.

3.2 W-k-means

In 2005, Huang, Ng, Rong and Li proposed a different objective function
and presented an algorithm known as the W-k-means algorithm ([14]). The
objective function is given by

k n m

Flw) =323 i wf - d(wig, ;)

=1 i=1 j=1

subject to

Sriwi=1, 0<w; <1, 1<1<k
Y =1, w; €{0,1}, 1<i<n.

The most notable difference compared to LAC and PSOVW is that there
is only one weight variable for each dimension, whereas LAC and PSOVW
use one variable for each dimension for each cluster. The immediate conse-
quence of this design is that the objective function in W-k-means measures
the sum of the within-cluster distances along variable subspaces rather than
over the entire variable space. The variable weights are enforced by the same

equality and bound constraints used in LAC. W-k-means also operates much
like LAC except that the weights are updated by

0, if D; =0
wi = m [DY/GB=D\"1
j <Zs:1 5]) , it Dj #0,

where

k n
Dy =" up-d(wig, 215,

=1 i=1

and the cluster memberships are updated by

ug =1, 3 YT w] - d (i, 25) < ST w] - d (@i, 2,)
for1 <g<k
ug; =0, forq#L.

The W-k-means algorithm is largely influenced by the k-means algorithm
([16]). A weight is assigned to each dimension and the algorithm aims at
minimizing the sum of all the within-cluster distances in the same subset
of dimensions. A large weight is reflected by a small sum of within-cluster
distances in a dimension, implying that the dimension contributes more to
the cluster than a dimension with a small weight tied to it.

Moreover, both the objective function and the updating procedure is
largely influenced by the value of the parameter 5. In the analysis by Huang
et al., it is proposed that one should choose either 8 < 0 or 8 > 1 for best
performance. This decision is especially crucial when dealing with high-
dimensional data. Their analysis also shows that the algorithm converges
to a local minimal solution in a finite number of iterations. Despite this,
Lu et. al ([12]) argue that the W-k-means algorithm does not employ an
efficient search strategy, which is the major drawback of the algorithm. As
a consequence, clusters embedded in different subsets of variables are often
left unexplored by the algorithm. Due to the fact that it assigns a unique
weight to each dimension for all clusters, the W-k-means algorithm is in
general not suited for high-dimensional data clustering where each cluster
has its own subset of relevant dimensions.

3.3 EWKM

In an attempt to improve the W-k-means algorithm, Jing, Ng and Huang
introduced the entropy weighting k-means algorithm, or EWKM, for short
([15]). It operates in a similar fashion to W-k-means, but is better suited for
dealing with high-dimensional clustering since it assigns one weight to each
variable for each cluster. The objective function is also adjusted to cope with

the numerous challenges that may be encountered in high-dimensional clus-
tering, as it accounts for both the within-cluster dispersion and the weight
entropy. The concept of entropy has actually been encountered before, as it
is included in the LAC objective function. The objective function utilized
in EWKM is given by

n m

m
F(w) = Z Z Zul,i cwp e (2 — zl,j)2 + - wa -logwy
=1

=1 |[i=1 j=1 j=
subject to

S iwj=1, 0<w,; <1, 1<1<k
diquwi=1, w,;€{0,1}, 1<i<n

The constraints of the above function are exactly the ones that need to
be met in the LAC algorithm. The weights are updated according to

exp(Dl / 7)
»J § : 2
wy ;= s Dm’ = Ui X5 — 21,5) -
! Z;n_—l exp (D l,s/f}/) i=1 l (" J>

The idea behind the algorithm is closely related to the weight entropy
concept. In subspace clustering, a decrease of weight entropy in a cluster is
reflected by an increase of certainty of a subset of dimensions. Hence, the
objective function should simultaneously minimize both the within-cluster
dispersion as well as the weight entropy in order to stimulate more dimen-
sions to contribute to the formation of a cluster. This minimization process
is heavily influenced by the parameter . Therefore, v should be tuned such
that the entropy component has the desired effect on the objective function
and the search strategy.

3.4 Common features

Notably, the LAC, the W-k-means and EWKM algorithms are similar in
several ways. Firstly, they all converge to a local optimum in a finite number
of iterations. Moreover, it can be shown that the computational complexity
of the three algorithms is O(mnkT'), where T is the number of iterations
and m, n, k are the number of dimensions, the number of data objects
and the number of clusters, respectively. The computational complexity
thus increases linearly as the number of dimensions, the number of data
objects or the number of clusters increase, which is considered as a relatively
small price compared to many other algorithms appearing in soft projected
clustering.

However, since they are all derived from the k-means algorithm, they
have a few problems in common. For instance, their respective objective

functions are not satisfactory in some ways, many of which have been men-
tioned already. Another drawback is that the cluster quality generated by
the algorithms is highly sensitive to the choice of the initial cluster cen-
troids, which was recently shown by experiments carried out by Lu et al.
([12]). Further, all the three algorithms utilize local search strategies to op-
timize their objective functions, which severely restrict the search space and
increase the risk of getting trapped in local optima. As a result, good conver-
gence speed is achieved at the expense of cluster quality. Beside poor design
of the search strategies, all of the above algorithms require a user-defined
parameter that is empirically set and not easily tuned.

10

4 Particle swarm optimization

Particle swarm optimization is an optimization technique especially suited
for optimizing continuous nonlinear functions. It was introduced by Kennedy
and Eberhart in 1995 ([17]) and has been an increasingly popular optimiza-
tion method in several fields since, soft projected clustering being no excep-
tion.

Swarm behaviour is a common phenomenon in nature, and can be seen
in bird flocks, fish schools as well as in ant colonies and among mosquitoes.
As can be seen, these animal groups all follow an ordered structure among
them, each organism contributing to a uniform choreography. Although the
formation may change shape and direction, they seem to move as a coherent
unit. This observation is especially apparent during the search for food and
is often referred to as swarm intelligence.

In PSO, social behaviour of this kind is simulated in quest for an optimal
solution. Each solution to the given optimization problem is regarded as a
particle in the feasible space, and each particle contribute to the swarm.
FEach particle has a position, which is usually a feasible solution to the
problem given, and a velocity. The positions are evaluated by a fitness
function supplied by the user, i.e. the objective function. During each
iteration, the velocities, and consequently the positions of the particles, are
updated by a formula heavily influenced by the swarms best positions found
so far. Because of the dependence on historical best positions, the particles
successively fly towards better regions of the search space, influenced by
their own experiences as well as the experiences of the whole swarm. By
this fact, the population converges to an optimal or near-optimal solution.

The velocity and position of the ith particle are updated as follows:

vit+1) = Avi(t) + dprp [pi(t) — zi(8)] + dgrg [9(t) — ()], (4.1)
zit+1) = zi(t) + vt + 1), (4.2)

where x; is the position of the ith particle, v; is its corresponding velocity
and p; is its personal best position found so far according to the fitness
function (which is often denoted pBest in the literature). The variable g
is the global best position retrieved up to now by the whole swarm (often
denoted gBest), i.e. the best value among the personal best positions. The
parameter A is called inertia weight, which is tuned to control the influence of
the global versus the local search capabilities. The parameters ¢, and ¢, are
acceleration factors, which are often referred to as the cognitive parameter
and the social parameter, respectively. They have an impact on how much
the particles should be biased toward the personal best and the global best.
The method is given a stochastic nature by r, and rg, which are random
numbers uniformly distributed in the range [0, 1]. These are updated at each
iteration.

11

Before running the algorithm, the number particles of the population
must be set, apart from tuning the parameters introduced above. The swarm
size is largely dependent on the objective function, i.e. the anticipated diffi-
culty of the problem at hand, and the search space, i.e. the dimensionality
and constraints, if any. However, a value in between 10 and 50 particles
should do it for most applications. One should keep in mind that there is
a trade-off related to this decision. A large population size increases the
algorithm’s chances of finding a global optimum, but the swarm will require
more iterations to converge.

The PSO algorithm for a minimization problem is summarized as follows,
given the objective function f:

Initialization:
Randomly initialize the position and velocity swarms, X and V.

Initialize the personal best positions by setting p; = x;, for each par-
ticle in X.

Store the swarm of personal bests as P.
Evaluate the fitness of each particle in X by the objective function f.

Initialize the global best position by setting g to the best particle in
P:
g = arg miin f(pi)

Repeat:
Update for each particle in V' according to (4.1).
Update for each particle in X according to (4.2).

Update for each particle in P according to

pm{ 20 1) < 1)

pi, otherwise
Update the global best according to

g = argmin f (pi)

Until: (the objective function reaches a global minimum value, or the num-
ber of function evaluations reaches a specified threshold).

In PSO, convergence can always be guaranteed because it has mem-
ory. While the swarm may change during each iteration, the best position

12

found so far is always kept, which guarantees convergence of the algorithm.
However, although PSO always converges, it may not be guaranteed that
the global optimum is reached. In some circumstances, there is stagnation,
which is said to occur if the personal bests, and consequently the global
best, do not change over some iterations ([18]). PSO can even suffer from
premature convergence in severe cases, where the swarm gets trapped in
local optima. In other cases, the swarm will unavoidably slow down as it
approaches optima. This phenomenon occurs when the swarm is to one side
of the optimum in scope and is moving as a coordinated entity down the
function gradient.

Needless to say, the outcome of the algorithm is largely dependent on the
diversity of the swarm, i.e. how well the particles are scattered in the search
space. During initialization, the particles are randomly spread in the search
space. It is important that the particles are well spread, because at the first
iteration, the particles are influenced only by the global best position in the
swarm and not by their personal bests (since any personal best corresponds
to the particle itself after initialization). This is clear from formula (4.1),
where the factor (p; — x;) is zero at the first iteration.

Generally, one is looking for a balanced exploration and exploitation ca-
pability, where swarm diversity plays a strong role. When the particles
are away from good enough solutions and are diverse enough, the algo-
rithm should have more exploitation capability than exploration capability,
meaning that the swarm should focus more on the converging process. On
the other hand, when the particles are clustered and are away from good
enough solutions, the swarm should have more exploration than exploita-
tion capability, that is, it should be more in the diverging process. It is
possible to maintain a level of diversity throughout the run by the use of
certain strategies. For instance, Parsopoulos and Vrahatis utilized repulsion
to keep particles away from previously located optima ([19]). Blackwell and
Bentley, on the other hand, treated the particles as charged, as they incor-
porate electrostatic repulsion between the particles ([20]). These particles
mutually repel each other but eventually start to converge, following an or-
bit surrounding a core of "neutral” particles. A similar behaviour can be
seen among atoms. Charged swarms of this kind can detect and respond to
changes in the optimum within their orbit and are therefore able to observe
relatively drastic changes. None of these methods are however used in the
original implementation of PSO. Luckily, the swarm diversity can be con-
trolled to some extent by the use of proper parameter settings; the values
of the inertia weight and the acceleration factors, as well as by the use of
velocity clamping.

13

4.1 Parameter settings and velocity clamping

The inertia weight, A, was actually not included in the original version of
PSO. Instead, one used the formula

vi(t +1) = vi(t) + dprp [pi(t) — 2i(t)] + dgry [9(t) — i(D)],

for the velocity dynamics (which is, in effect, the formula obtained by setting
A =1 in (4.1)). Because the inertia weight was omitted, the acceleration
factors were inclined to play a much stronger role in keeping the swarm
diverse and at the same time maintaining convergence to an optimum. As
can be seen, the values ¢,r, and ¢474 introduce a kind of stochastic weight-
ing in the system, where the acceleration factors determine the magnitude
of the stochastic influence on the algorithm. The cognitive parameter, ¢,
determines the random force in the direction of the personal best position,
whereas the social parameter, ¢,, determines the random force in the direc-
tion of the global best position.

The values of the acceleration factors have a great impact on the be-
haviour of PSO. Low values tend to let particles move far away from target
regions before being restrained, while high values result in abrupt movement
toward, or past, target regions. An interesting point is that we can inter-
pret the components ¢,r,(p; — x;) and ¢47¢(g — ;) as attractive forces in
a spring-mass system with springs of random stiffness. In this setting, the
motion of a particle can be approximated by applying Newton’s second law.
Then, the entities ¢,/2 and ¢4/2 represent the mean stiffness of the springs
attracting a particle. With this interpretation, it is clear that the choice of
the acceleration factors can make the PSO more or less "tense” and possibly
even unstable, with particles speeding without control. This can be more or
less harmful to the search procedure and happened frequently in the early
days of PSO, when the parameter values ¢, = ¢4 = 2 were used without
further insight in the stability issues.

Eventually, researchers dealt with this problem, not by changing the
values of the parameters, but by introducing a concept known as wvelocity
clamping. It first appeared in the work by Eberhart, Simpson and Dobbins
([21]) just about a year after the PSO algorithm had been proposed. The
technique introduces a maximum velocity threshold, vy ax, that may not be
traversed by any velocity on any dimension. If an update would result in a
dimension exceeding the threshold, then the velocity on that dimension is
limited to vyax. This ensures that each dimension for each particle velocity
is kept within the range [—vmax, Umax). The threshold vpyay is therefore an
important parameter, since it determines the resolution, or fineness, with
which regions between the present position and the targets (personal best
and global best positions) are searched. If vy, is too high, particles may fly
past better regions. On the other hand, if vyax is too low, particles might
not be able to fully explore regions beyond the present local scope. It is even

14

plausible that the particle could become trapped in local optima, without
any chance of moving far enough to reach a better position in the search
space.

Because the parameter vy appears to influence the interplay between
exploration and exploitation, it should be chosen with care. Although the
optimal value for the parameter is problem-specific, there are no general
guidelines and the user must in most cases discover a suitable value empir-
ically. However, once the parameter is set, the initialization of the particle
velocities are easily determined, as they are simply randomly scattered in the
range [—Umax, Umax|- 1f velocity clamping is not applied, then the user must
come up with a different scheme to initialize them. This decision should be
based on the size of the search space, since there is no point in setting vyax
to a value that allows the particles to fly outside the search space.

In an attempt to eliminate the need for velocity clamping, the concept
of inertia weight was coined and introduced a few years later by Shi and
Eberhart ([22]). It has improved the performance of PSO in numerous ap-
plications and may be interpreted from a scientific viewpoint, much like the
acceleration factors. By considering ¢prp(pi — i) + ¢grg(g — ;) as an exter-
nal force, F;, applied to a particle, then the change in a particle’s velocity
(i.e. the particle’s acceleration) can be expressed as Av; = F; — (1 — A)v;.
Thus, the factor 1 — A is in effect a friction coefficient. In fluid dynam-
ics, the parameter A\ would be interpreted as the fluidity of the medium in
which the swarm moves. This may serve as an explanation to why some
research on the subject has encouraged the use of a large inertia weight at
first and then to gradually reduce it to a much lower value. A high value
yields extensive exploration by the swarm (which would correspond to a low
viscosity medium in the terminology of fluid dynamics), and a low value to
detailed exploitation (a dissipative medium). A popular approach is to let
the inertia weight decay linearly from 0.9 to 0.4 during the search. There
have however been numerous propositions in the literature. Eberhart and
Shi proposed an adaptation of the inertia weight using a fuzzy system ([23]),
i.e. a system that analyzes analog input in terms of logical variables that
take on continuous values in the range [0, 1], which is in contrast to digital
logic. This approach is more complicated to implement and analyze than
using a linearly decaying inertia weight, but studies have shown that it can
significantly improve the performance of PSO. Another method that has
useful is to use an inertia weight with a random component, rather than
time-decaying. For instance, Eberhart and Shi achieved good results using
an inertia weight that was drawn from a uniform distribution in the range
[0.5,1] at each iteration (][24]). Successful experiments have even been car-
ried out by Zheng, Ma, Zhang and Qian using increasing inertia weights

([25])-

15

4.2 Handling constraints

Since many algorithms in soft projected clustering use objective functions
with several constraints, it may be of interest to see how these issues can be
resolved in PSO.

The most straight-forward way of dealing with constraints is to always
preserve feasibility of the solutions. Any update that would cause a par-
ticle to fly outside the feasible space is discarded, and the particle is left
unchanged until the next iteration. In this way, the swarm searches the
whole space but only keeps tracking feasible solutions. To accelerate this
process, all the particles are randomly initialized in the feasible space. The
major drawback of this approach is that every time an update is discarded,
an iteration for that particle is ”lost”, which can slow down convergence. It
is on the other hand easily implemented and may be utilized for any kind
of constraint.

There are however several methods, more or less fruitful, that deal with
constraints in PSO. Koziel and Michalewicz divided these into four cate-
gories ([26]): methods based on preserving feasibility of solutions, methods
based on penalty functions, methods that make a clear distinction between
feasible and infeasible solutions, and other hybrid methods. The principles
of the first category have already been explained. The second widely used
group are based on penalty functions. These methods use penalty functions
to penalize particles that are outside the feasible space, by giving them
worse fitness values than particles that are feasible. In this way, infeasible
solutions are encouraged to fly towards the feasible space. Although penalty
functions are easily implemented, the penalty factors that determine the im-
pact of the penalty function are difficult to set to a suitable value. One way
of getting around this difficulty is to use a self-adapting scheme instead. He
and Wang did just that ([27]). They used two swarms in a co-evolutionary
fashion; one swarm kept track of self-adapting penalty factors and the other
was used in parallel to find good decision solutions. Ray and Liew extend
the use of penalty functions by introducing a constraint matrix with one
entry for each particle on each constraint ([28]). The constraint matrix is
then updated according to the penalty functions to find good solutions in
the feasible space.

4.3 The CLPSO variant

The Comprehensive Learning Particle Swarm Optimizer (CLPSO) was pro-
posed by Liang, Qin, Suganthan and Baskar in 2006 ([29]), and has recently
risen to become one of the most well-known modifications of PSO. The mo-
tivation behind the algorithm was to come to terms with the problem of
premature convergence in the original PSO. It has been found that PSO
may easily get trapped in a local optimum when solving complex multi-

16

modal problems where several local optima arise. In the original version
of PSO, each particle learns from its personal best and the swarm’s global
best in parallel. Restricting the social learning ability to only the global
best makes the original PSO converge fast. On the down-side, because all
particles in the swarm learn from the global best even if the current global
best happens to be far from the global optimum, the swarm may easily be
attracted to a region containing the global best and get trapped in a local
optimum if the search environment is complex enough. CLPSO employs a
different learning strategy to avoid this, where all particles’ historical best
positions are used to update the particle velocities. This approach preserves
the diversity of the swarm to prevent premature convergence.
In CLPSO, the particles are updated according to

vilt+1) = Avi(t) + or[ei(t) — a(t)], (4.3)
xi(t—l—l) = .%'z(t) —i—vi(t—i—l), (4.4)

where the parameter ¢ is an acceleration factor and r is a random number
uniformly distributed in the range [0, 1] that is updated at each iteration.

4.3.1 Crossover learning

Notably, there is a different information-sharing strategy in CLPSO than
in classic PSO. In the particle velocity update above, ¢; is a comprehensive
learning result for particle ¢ (which is sometimes denoted Cpbest in the
literature). It is produced from the personal best position of the particle
itself and one of the other best personal positions in the swarm according to
a crossover operation such that the particle learns from a good exemplar.

The update of a comprehensive best largely depends on the probability
P,, called the learning probability, which can take different values for different
particles. For each dimension of a particle, a random number in between zero
and one is generated by the algorithm. If the random number happens to be
larger than the P. value for that particle, the corresponding dimension will
learn solely from its own personal best, otherwise it will learn from another
particle’s personal best. The other personal best is obtained through a
tournament mechanism which operates as follows:

- Firstly, two particles of the swarm are chosen randomly which excludes
the particle whose velocity is being updated.

- The fitness values of the selected particles are then compared, and
only the better one is considered onwards (depending on whether a
minimization or a maximization problem is considered).

- The winner is then used to learn from for that dimension. If all ex-
emplars of a particle happens to be its own, a dimension is randomly

17

chosen to learn from another particle’s corresponding dimension. In
this way we can always guarantee a social behaviour of each particle.

All the comprehensive bests have the ability to generate new positions in
the feasible space using information provided by different particles’ history.
Since each dimension is treated separately, the comprehensive best is rarely
influenced by only one particle, in contrast to PSO where the particle is
influenced only by its personal best and the swarm global best. To further
ensure that a particle learns from good exemplars in CLPSO, and also to
avoid searching along poor directions, the particle is allowed to learn from
the exemplars until the particle no longer improves for a certain number of
iterations. This threshold is called the refreshing gap, and whenever it is
reached for a particle, the comprehensive best for the particle is reassigned.
The tuning of the refreshing gap is problem-specific, but a value in between
5 and 10 can be recommended for most applications.

The CLPSO algorithm for a minimization problem is summarized as
follows, given the objective function f (the maximization problem is treated
analogously):

Initialization:
Randomly initialize the position and velocity swarms, X and V.

Initialize the personal best positions by setting p; = x;, for each par-
ticle in X.

Store the swarm of personal bests as P.
Evaluate the fitness of each particle in X by the objective function f.

Initialize the global best position by setting g to the best particle in
P:

g = argmin f(p;)
Repeat:

Produce the comprehensive best positions ¢; from P, for each particle
in X.

Update for each particle in V' according to (4.3).
Update for each particle in X according to (4.4).

Update for each particle in P according to

b= { z, if f(zi) < f(pi)

p;, otherwise

18

Update the global best according to

g = arg miin f(pi)

Until: (the objective function reaches a global minimum value, or the num-
ber of function evaluations reaches a specified threshold).

Notably, there are essentially three aspects where CLPSO is different
from classic PSO:

e The information-sharing strategy: instead of using a particle’s own
personal best and the swarm global best as influences, all particles’
personal bests can potentially be used as exemplars to learn from.

e Instead of learning from the same exemplar particle for all dimensions,
each dimension of a particle in general learns from different personal
bests for different dimensions during a few iterations. In other words,
each dimension of a particle may learn from the corresponding dimen-
sion of different particles’ personal bests.

e Contrary to PSO, where the particles learn from two exemplars (per-
sonal and global best) at the same time in every iteration, each dimen-
sion of a particle learns from just one exemplar during a few iterations
in CLPSO.

4.4 Related methods

Apart from PSO and its variants, there have been many other computa-
tional intelligence-based algorithm proposed to solve the variable weighting
problem in soft projected clustering. Two of the most widely used are the
genetic algorithm (GA) and the ant colony optimization (ACO) technique.

GA is a stochastic search procedure based on the dynamics of natu-
ral selection, genetics and evolution. In GA, problems are thus solved by
simulating processes that can be seen in nature, similar to PSO. Based on
Darwin’s principle of survival of the fittest, GA iteratively finds new and
better solutions with few assumptions on the objective function. The idea
is to keep a population of candidate solutions, each of which are within
the feasible space. FEach solution is in general coded as a binary string
called chromosome. When the chromosome has been decoded, its fitness is
evaluated using the objective function. Prominent chromosomes with better
fitness values than others then go through a series of genetic operations such
as crossover and mutation, like in nature, to form a new population. This
procedure is repeated and evolves towards better solutions over generations
until a satisfactory solution is obtained.

19

Although GA has been to converge to global optima when applied to
several common test functions, there are a few drawbacks. One problem
is that there are many internal parameters that have to be set for each
problem, in contrast to PSO which only has a few. Tuning might be very
time-consuming but is essential for obtaining good results. Another draw-
back is the huge number of fitness evaluations required by the algorithm,
due to its relatively poor local search capability. In between 50 000 and
100 000 evaluations is not uncommon for normal usage, which is a consid-
erable workload. Population diversity is also often a critical issue in GA. If
the population is not diverse enough, it may cause repeated search and even
lead to premature convergence.

ACO is a swarm intelligence technique that was introduced a few years
before PSO. In nature, ants initially wander randomly, and upon finding
food return to their colony while laying down pheromone trails. If other ants
happen to traverse the trail, they are likely to start following it, instead of
continuing their random walk, returning and reinforcing it if they eventually
find food. Based on this principle, it is essentially a probabilistic method for
solving problems arising in graph theory, but can be applied equally well to
optimization problems. For instance, it has been used to find near-optimal
solutions to the traveling salesman problem. In this interpretation, ants
correspond to feasible solutions of the shortest path problem. The more one
certain possible solution is chosen the more likely it gets to be the optimum
solution. Every solution for a given path happens with a certain probability
which depends on the pheromones. The probabilities can be thought of as
measures of how attractive a path is. The more one path is chosen the more
attractive it becomes for other ants.

All computational intelligence-based techniques, such as the above, are
suitable for several optimization problems where other methods fail to con-
verge. Beside yielding good convergence in many cases, they often do not
require much from the objective function, such as continuity or unimodal-
ity. Hence these methods have an advantage over traditional gradient-based
approaches and can even perform well on black-box optimization problems
(where the objective function is not known explicitly). They can thus be
effectively applied to nonlinear optimization problems. PSO is no exception,
and has capable of generating high-quality solutions within an acceptable
computational cost and stable convergence characteristics. It is therefore a
strong competitor to both GA and ACO and other intelligence-based tech-
niques for solving the variable weighting problem for high-dimensional clus-
tering. A few of its advantages are:

e PSO is mathematically tractable and easier to implement. PSO only
needs two simple arithmetic operations (addition and multiplication),
while GA requires implementations of much more complicated op-
erators for dealing with selection and mutation. PSO is also more

20

computationally efficient than both GA and ACO. There are fewer
user-dependent parameters to adjust.

PSO has an intelligent information-sharing mechanism. Every particle
remembers its own historic best position, whereas every ant in ACO
needs to track down a series of its own previous positions and indi-
viduals in GA have no memory at all. As a result, a particle in PSO
requires less time to calculate its fitness value than an ant in ACO.

PSO is better suited for preserving swarm diversity and consequently
better at avoiding premature convergence. Because of its information-
sharing mechanism, the particles fly in the feasible space using their
own previous best position as well as the swarm’s previous best po-
sition. In GA, there is no cooperation, only survival of the fittest
according to natural selection; the worst individuals are rejected and
only the good ones survive. Neither ACO has direct cooperation be-
tween individuals and it may easily lose population diversity because
ants are attracted by the largest pheromone trail.

PSO has proven robust in many settings, especially in solving con-
tinuous nonlinear optimization problems, whereas GA and ACO are
preferred for constrained discrete optimization problems. ACO has an
advantage over genetic algorithm approaches and other evolutionary
methods when the graph may change dynamically, because the ant
colony algorithm can be run continuously and adapt to changes in
real time.

21

5 The PSOVW algorithm

It is now time to present the PSOVW algorithm in detail. As mentioned,
it was introduced by Lu et al. in 2009 to solve the variable weighting prob-
lem in clustering high-dimensional data ([12]). In PSOVW, the following
objective function is employed:

k n

m wr ﬂ
F(W)zzzzul,i(zmm) gy (5)

w
1=1 i=1 j=1 s=1"ls

subject to the constraints

S ui=1, wye{0,1},1<i<n.

Notably, the constraints are simpler than in most other algorithms aris-
ing in soft projected clustering applications, such as the LAC, the EWKM
and the W-k-means algorithms. These three all include not only bound
constraints but also equality constraints involving the variable weights. In
PSOVW, these equality constraints are omitted by using a normalized rep-
resentation of the variable weights in the objective function instead, which
is one major advantage of PSOVW.

Another advantage of PSOVW is its search strategy, which is based on
CLPSO. As previously stated, any PSO variant is well-suited for optimizing
nonlinear functions with discontinuous gradients, with gradients that are
hard to calculate explicitly or in any other situation where gradient-based
methods are not applicable. It should also be noted that PSO requires that
the equality constraints are eliminated. Otherwise, every particle would
have to keep track of the other particles, such that no bounds would be
exceeded. With only bound constraints, the particles need to be responsible
only for themselves, making sure that the bound constraints are not violated
on their part.

The objective function in PSOVW is actually a generalization of a col-
lection of objective functions already employed in soft projected clustering.
If 8 = 0, function (5.1) shares a strong resemblance to the objective function
used in the k-means algorithm. In fact, the only differences between them
are the representation of variable weights and the constraints. If § = 1,
function (5.1) is also similar in the same way to the objective function in
EWKM, except for the terms including weight entropy. If we drop the sec-
ond index on the variable weights, that is, w; ; = w;, then (5.1) is similar to
the objective function in the W-k-means algorithm, which assigns a single
variable weight vector. The difference is once again in the representation of
variable weights and the constraints.

22

In PSOVW, five swarms are kept:

e The position swarm W of variable weights
e The velocity swarm V

e The swarm Z of cluster centroids

e The swarm of personal bests P

e The swarm of comprehensive bests C

In each of the swarms, an individual is represented by a k x m matrix. Apart
from these swarms, the algorithm keeps track of the cluster memberships
(represented by a vector of size n) and the global best position found so far
(also represented by a k X m matrix).

At the first stage of the algorithm, the position swarm W, the veloc-
ity swarm V and the swarm of cluster centroids Z are chosen randomly.
Then, given the variable weight matrix and the cluster centroids, the cluster
membership of each data object is determined by the following formula:

. . B . 8
Uy = 17 if Z;nzl (%) . d(?«’l,jm’l?i,j) < Z;nzl (%) . d(Zq7j733i,j>7
for 1 < g <k,
u; =0, forq#l
(5.3)

Once the cluster membership is obtained, the cluster centroids are calculated
by

n n
ay = (Zulzx”> / (Zu“> , for1<i<k1<j<m.
i=1 =1

In this formula, the denominator is the number of objects in the cluster [
resulting from the membership update in (5.3). The numerator is the sum
of the values of the data objects in the cluster along dimension j. Hence,
each dimension of a centroid is updated by the mean of the values of the
data objects on that dimension. This is a straight-forward and intuitive
approach, as it centralizes the cluster centroids among the objects in the
cluster. The same strategy is employed in the LAC, the W-k-means and the
EWKM algorithms. Should an empty cluster result from the membership
update by (5.3), the PSOVW algorithm will randomly select a data object
out of the data set to reinitialize the cluster centroid.

23

The PSOVW algorithm can be summarized as follows:

Initialization:

Randomly initialize the velocity swarm V' in the range [—vmax, Vmax],
where vpyax is the velocity clamping threshold.

Randomly initialize the position swarm W in the range [0, 1].

Randomly initialize the swarm Z of cluster centroids by selecting a set
of k data objects out of the data set.

For each position in W, evaluate its fitness by (5.1).
Initialize the swarm of personal bests P.
Initialize the swarm of comprehensive bests C' from P.

Initialize the global best position g.

Repeat:
Update the swarm of comprehensive bests C' from P.
Update the velocity swarm V' by (4.3).
Update the position swarm W by (4.4).
For each position in W,

If W lies in the range [0, 1],

Evaluate its fitness by (5.1).
Update the position’s personal best and store it in P.

Otherwise,
W is neglected.
End

If P has changed, update the global best g.

Until: (the objective function reaches a global minimum value, or the num-
ber of function evaluations reaches a specified threshold).

Post-processing: (partition the data objects by formula (5.3) with the
weights of the global best position).

24

5.1 Computational complexity

Let s be the swarm size utilized in the algorithm, i.e. the number of particles
in the swarm, and let T' be the number of iterations needed for convergence.
Then the runtime complexity of PSOVW can be analyzed as follows. If
we assume that the effects of the initialization and the post-processing are
negligible, then we can focus only on the main loop. During an iteration in
the main loop, the following is performed:

e Particle updates. The comprehensive best, the velocity and the
position is firstly updated for each particle. Since these three are all
represented by k x m matrices, this procedure needs O(mk) operations
for each particle, so the complexity is O(smk) in total.

e Fitness evaluations. Given the weight matrix W and the cluster
centroids matrix Z, each particle’s fitness value is evaluated. Dur-
ing this step, the data objects are partitioned and then new clusters
centroids are determined. The cluster membership update requires
O(mnk) operations for each particle, which adds up to a total cost of
O(smnk) operations. The complexity for assigning new cluster cen-
troids is O(mk) for each particle. In total, the procedure of evaluating
all particles fitness values needs O(smnk) operations.

e Personal best updates. In the last step, each particle’s personal
best position is updated. This operation requires O(mk) operations
for each particle, since each personal best particle is stored as an k xm
matrix. This yields a complexity of O(smk) in total.

Consequently, if 7" is the number of iterations performed, then the total
computational complexity is O(smnkT). Hence, the PSOVW algorithm
is scalable to the swarm size, the number of dimensions, the number of
data objects and the number of clusters. The corresponding computational
cost for the LAC, the W-k-means and the EWKM algorithm is O(mnkT),
so their computational complexity is lower and increases linearly as the
number of dimensions, the number of data objects or the number of clusters
increases.

5.2 Performance

Although PSOVW needs more resources than the other algorithms, it has
been suggested that the extra computational time is acceptable in relation
to the clustering results achieved. In [12] for instance, Lu et al. performed
an extensive comparison between the four methods, using several simulated
data sets. Their conclusion was that PSOVW outperformed the other algo-
rithms in terms of clustering accuracy and clustering variance on most data

25

sets, at a cost of longer running time, but at a running time that was found
acceptable.

Three main reasons behind PSOVW’s superior performance were pro-
posed:

e Foremost, PSOVW has a much more complicated and efficient search
strategy than its contestants. Because it employs the PSO approach
to the clustering problems, the particles do not work independently
but interact with each other to move to better regions, in contrast to
the other algorithms.

e PSOVW combines a k-means like function with a normalized represen-
tation of variable weights to form an objective function that is subject
only to bound constraints. The other algorithms are subject to both
bound constraints as well as equality constraints.

e PSOVW is less sensitive to the initial cluster centroids than the other
algorithms. This resulted in the least variance in clustering accuracy
in most of the data sets during the numerical experiments.

It should however be pointed out that PSOVW requires more parameters
to be set by the user than other k-means like algorithms. The PSOVW
is consequently more reliant on the user’s parameter choices compared to
similar algorithms in this field. When it comes to PSOVW, good results are
often synonymous with good parameter choices.

26

6 The UPSOVW algorithm

Having introduced and presented the PSOVW algorithm in detail, we are
now ready to fully analyze the algorithm and to propose a few potential
improvements of it.

As mentioned, any successful algorithm in soft projected clustering is
largely dependent on its objective function and its search strategy. In
PSOVW, the choice of objective function is partly motivated by the de-
sire to eliminate the equality constraints on the variable weights. These can
be omitted by using a normalized representation of variable weights, leaving
only bound constraints. The bound constraints are then handled by pre-
serving feasibility of the solutions, which is the natural way of dealing with
this type of constraint. Any update that would cause a dimension to exceed
a bound is discarded, which guarantees feasible solutions at any stage of the
algorithm. The major drawback of this approach is that every time an up-
date is discarded, an iteration for that dimension is ”lost”, which affects the
corresponding particle’s trajectory and may result in slower convergence.

Instead, we propose a different approach for getting around this problem
without diminishing the search capabilities. By introducing a suitable scal-
ing of the objective function used in PSOVW, we can guarantee that the
resulting variable weights are in the feasible space. Before describing the
scaling in detail, we introduce the modified objective function

kK n m |w | B
CLERD9)) ST (L) RO

I=1 i=1 j=1 2= [wigl
which is essentially the same objective function F used in PSOVW, except
that the absolute values of the variable weights are considered. This is in
effect the same as applying F' to a variable weight matrix with nonnegative
entries. So, the design of GG implies that the resulting variable weights meet
the lower bound of the bound constraints in (5.2). It remains to deal with
the upper bound of the constraints. One can show that F', as well as G,
is unaffected by scaling, that is F(aW) = F(W), for all scalars . Hence,
if there is a scalar such that the resulting variable weights are within the
limits, we can drop the bound constraints altogether. The next theorem
provides the details on how such a scalar may be obtained and how this
strategy can be used to transform the optimization problem considered in
PSOVW into an equivalent one without bound constraints.

Main theorem. Consider the optimization problem

min G(W)
k
subject to Zuu =1, wu,;€{0,1},1<i<n. (6.1)
=1

27

Suppose that W* € R¥*™ is a minimizer of G subject to (6.1). Further, let

¥ be the entry of maximum magnitude of this matrix, that is,

wmax

w :max{]wij]:lglgk,l <j<m}.

max

Define a new matrix W1 with entries

*
‘wl,j
wr, i =

S 1<i<k1<i<m.
max

Then W1 is a minimizer of F' and meets the bound constraints in (5.2) used
in PSOVW.

Although a seemingly simple observation, the theorem gives an idea of
how a PSO method (or in fact any optimization method we may see fit)
can be used without having to deal with bound constraints on the variable
weights. The theorem essentially states that we may equally well solve the
optimization problem involving G with fewer constraints than to solve the
more complicated problem involving F'. Beside the objective function, the
variable weights have an impact on the membership update (5.3) in PSOVW.
However, by the same reasoning as in the proof above, we can show that the
clustering is unaffected by scaling of the variable weights.

The theorem is the main theorem in the thesis, simply because it will
serve as the foundation of our proposed algorithm for soft projected clus-
tering of high dimensional data. We call it Unconstrained Particle Swarm
Optimizer for Variable Weighting (UPSOVW)!, since it is reminiscent of
PSOVW but employs an unconstrained search strategy. In UPSOVW, we
will stick to the CLPSO method for two reasons; firstly because it is an ef-
ficient optimization method for this kind of problem, and secondly because
we would like to measure the impact of our new approach attributed to the
main theorem.

The UPSOVW algorithm can be summarized as follows:

Initialization:

Randomly initialize the velocity swarm V' in the range [—vmax, Umax],
where vpax 18 the velocity clamping threshold used in PSOVW.

Randomly initialize the position swarm W in the range [0, 1].

Randomly initialize the swarm Z of cluster centroids by selecting a set
of k data objects out of the data set.

For each position in W, evaluate its fitness by (5.1).

!Not to be confused with the Unified Particle Swarm Optimizer (UPSO), which is a
variant of PSO. See [30].

28

Initialize the swarm of personal bests P.
Initialize the swarm of comprehensive bests C' from P.
Initialize the global best position g.
Repeat:
Update the swarm of comprehensive bests C' from P.
Update the velocity swarm V' by (4.3).
Update the position swarm W by (4.4).
For each position in W,

Evaluate its fitness by (5.1).

Update the position’s personal best and store it in P.
If P has changed, update the global best g.

Until: (the objective function reaches a global minimum value, or the num-
ber of function evaluations reaches a specified threshold).

Post-processing: (partition the data objects by formula (5.3) with the
weights of the global best position).

Notably, the UPSOVW algorithm behaves similarly to PSOVW, except
for in a few crucial respects. First and foremost, the particles are never
deemed infeasible solutions, so every update on every particle of each itera-
tion contributes to the overall convergence of the algorithm. Although the
bound constraints could have been handled with one the methods explained
in section 4.2 instead, for instance by using penalty functions, the theorem
actually makes it possible to get rid of their effect altogether. However,
it should be noted that all particles are initialized in the range [0, 1], i.e.
within the feasible space of PSOVW, which is mostly conventional. The
second difference between UPSOVW and PSOVW is that velocity clamp-
ing is not employed in the former. However, the individuals in the velocity
swarm are initially set within the range of the velocity clamping threshold,
ie. in [~Umax, Umax).- In UPSOVW, the threshold value is also chosen by
convention, since it has a small impact on the final result of the algorithm,
in contrast to PSOVW where it plays a much stronger role. Otherwise,
the guidelines for tuning the parameters in UPSOVW should follow those
of PSOVW. The computational complexity of the algorithms are the same,
although one may suspect that PSOVW needs more iterations to converge
to the global optimum.

29

7 Theoretical analysis

We have already argued that the major advantage of UPSOVW lies in its
unrestrained search capability based on the CLPSO method. However, be-
cause neither the particles’ positions nor the corresponding velocities are
bounded on their magnitudes, contrary to PSOVW, the immediate question
of stability arises. Does UPSOVW yield a stable process as iterations go
by? Even so, can convergence to the global optimum be guaranteed? Need-
less to say, a thorough analysis is in place to further motivate the use of
UPSOVW and to analytically examine how its internal parameters should
be set to ensure stability and at the same time sustain high performance of
the algorithm.

Although there has been a considerable amount of research on the anal-
ysis of particle swarm optimization techniques, there is to date no coherent
analysis that focuses exclusively on the CLPSO method. Despite this, most
results attributed to classic PSO will be of interest in the study of UPSOVW
as well, since CLPSO is essentially a particle swarm optimization technique.
In other cases, the methods need only slight adjustments to fit into the
framework of CLPSO.

7.1 Previous work

The PSO method may seem simple at first sight; it is easy to implement
and requires only a few of the arithmetic operators. However, viewed from
a strictly theoretical aspect, the PSO offers several challenging problems of
interest to anyone eager to understand swarm intelligence through theoret-
ical analysis. In fact, there is to date no extensive mathematical model of
particle swarm optimization that encapsulates all theoretical aspects. There
are numerous reasons for this.

First and foremost, the particle swarm technique is founded on a large
number of cooperating individuals (the particles). Although the principles
of a single individual’s movement and the rules of its interaction with other
particles are trivial, the behaviour of the whole swarm is not. The difficulties
in modeling the swarm dynamics can largely be attributed to the particles’
self-awareness. Since each particle is provided with memory and the ability
to decide when to update the memory, each particle is capable of changing
its current direction from one iteration to the next. Secondly, the forces
acting on the particles are stochastic. Hence, any attempt to analyze the
stability issues should avoid classical analysis methods used in dynamical
systems, such as eigenvalue analysis. Thirdly, since PSO is an optimization
tool, the objective function in consideration naturally plays a strong role
in the performance of the algorithm. There are however infinitely many
objective functions and it is consequently extremely difficult to draw any
general conclusions that apply to all of them. In fact, this is difficult even

30

in special cases, when the objective function is known explicitly. Because
the particles are randomly scattered in the search space during initialization
and the particles are also influenced by stochastic forces, infinitely many
scenarios can potentially be created because of the stochastic nature of the
algorithm.

Despite these issues, several useful contributions have been presented in
this fields in recent years. Some of them will be summarized in this section.

7.1.1 Deterministic models

Many attempts to fully understand the subtleties of the PSO method from
a theoretical viewpoint have failed, and several researchers in the PSO com-
munity have had to revert to the study of more mathematically tractable
models instead. These models are often based on simplifying assumptions.
For instance, models that only consider single isolated particles are com-
mon. Models that focus exclusively on convergence during stagnation (when
no improved solutions are found) and models that disregard the stochastic
aspect altogether are other popular approaches. Some models combine sev-
eral assumptions to simplify the analysis. Although the simplifications may
illustrate some of the features of the algorithm more clearly, their effect
on the swarm dynamics may interfere with the true dynamics of the algo-
rithm. Consequently, any results obtained from such an observation should
be treated as approximations and should be determined empirically with
the original system.

The first analysis of a deterministic model worthy of recognition was
carried out by Ozcan and Mohan a few years after the advent of PSO ([31]).
They studied a simplified model with a swarm consisting of a single parti-
cle, in isolation, in one dimension and during stagnation. Also, no inertia
weight nor velocity clamping was considered, and every effect of random-
ness was discarded. In their following work on the subject, many of these
assumptions were dropped, and the model was instead extended to hold for
swarms containing several multi-dimensional particles ([32]). In this setting,
they were able to derive solution trajectories for the particles. They found
that, in search for a global optimum, each particle in the system randomly
chooses a path on a sinusoidal wave by altering the wave’s frequency and
amplitude. Consequently, a particle does not ”fly” in the search space, but
rather "surfs” it on these sine waves, and the phenomenon is therefore called
”surfing the waves”. Their second discovery showed an interesting coupling
between the acceleration factors, ¢, and ¢,. Apparently, the behaviour of
PSO depends on the value of the sum ¢, + ¢4. For instance, the model
proposed that in case ¢, + ¢, > 4, the particles will oscillate with increasing
amplitudes, which may eventually lead to an explosion of the system. Con-
versely, for ¢, + ¢4 < 4, the model suggested that particles follow bounded
periodic oscillations, yielding stable dynamics.

31

Similar assumptions were used in a model developed by Clerc and Kennedy
a few years later ([33]). They considered a single particle of one dimension,
under no stochastic influence and during stagnation. The propagation of
the resulting swarm could then be expressed as a linear dynamical system
in discrete-time. The dynamics of the state (position and velocity) of the
particle could then be computed by finding the eigenvalues and the cor-
responding eigenvectors of the state transition matrix. Depending on the
eigenvalues, it was suggested that the particle would converge to an equilib-
rium point; a weighted average of the particle’s best position found so far
and the global best, the acceleration factors acting as the weights. Accord-
ing to classical systems theory, the particle will converge to equilibrium if
the eigenvalues lie within the unit circle. Since the eigenvalues of the sys-
tem are essentially dependent on the internal parameters in PSO, the model
could provide some guidance of how parameters should be chosen so as to
achieve convergence.

Their study is summarized in more detail below, although the effect
of the inertia weight is also studied in the following. If the swarm is in a
stagnation phase, with no fitness improvements, each particle effectively acts
independently. So, it is sufficient to observe a single particle in this setting.
Thus, we may drop the indices, and express the equations describing the
particle’s motion as

v(t+1) = do(t) +wp(t) [p(t) — 2()] + w,(t) [9(t) — 2(t)],
z(t+1) = z@)+o(t+1).

This is a more compact way of describing the dynamics of the particle. The
parameters w, and w, are in this interpretation the stochastic forces acting
on the system. They are random numbers uniformly distributed in the range
[0, ¢p] and [0, ¢g4], respectively, where ¢, and ¢, are the acceleration factors.
It should be noted that everything except for the inertia weight is considered
to be time-varying, although the analysis may be extended to hold for time-
varying inertia weights as well. As a next step, we may introduce the state
vector by £(t) = [v(t) z(t)]". Moreover, under the assumption that the
stochastic forces are in fact constant, that is w,(t) = ¢, and wy(t) = ¢4, we
can formulate the particle dynamics as the following dynamical system:

)

This system is linear time-invariant (LTT) with exogenous inputs. Although
the exogenous input vector containing p and g generally depends on the state
vector in PSO, we can neglect the effect of this dependence if stagnation
is assumed, i.e. if the exogenous input remains constant. From standard
results in control theory follows that the stability of the system depends on

32

the eigenvalues of the system matrix. The eigenvalues r; and 7y are the
solutions to the characteristic equation

24+ (¢p+ g — A —1)r+ A =0.

The necessary and sufficient condition for stability of the system is that both
of these eigenvalues (whether real or complex) lie within the unit circle of
the complex plane. This condition can easily be verified without computing
the eigenvalues explicitly. A result derived from the Routh-Hurwitz theorem
states that the equation 22 + az + b = 0 has its roots within the unit circle
if

o] < 1,
1+a+b > 0,
l—a+b > 0.

In our case, the condition for stability thus becomes

-1 < A < 1,
0 < dptog < 2(1+A).

The parameter region giving stability is presented as the triangular area
in figure 1. Interestingly enough, the same stability region is obtained if
this simplified model is applied to CLPSO instead. Notably, the eigenvalue
analysis holds for the corresponding CLPSO system by setting ¢ = ¢, + ¢,.
Although the analysis is inaccurate due to the assumptions it relies on, it
clearly shows that the inertia weight and the acceleration factors cannot
be set in isolation. Because the stability effectively depends on the sum of
the acceleration factors, and not on the bounds of ¢, and ¢, individually,
the analysis suggests that there are opportunities to control the level of
exploration and exploitation while maintaining stability.

Campana, Fasano, Peri and Pinto reused and extended the view of the
population dynamics as a dynamical system ([34]). In addition, they also
included the inertia weight in their model, which Clerc and Kennedy effec-
tively had omitted in [33]. On the condition that no random behaviour is
taken into account, the corresponding model turns into a discrete-time, lin-
ear and stationary system. Thus, the system’s state space trajectories can
be expressed as the sum of two separate trajectories: the free response and
the forced response. Because the system at hand is discrete-time, these can
both be expressed explicitly by solving the recursive relation given by the
system. They observed that the free response is independent of the personal
bests and the global best, but uniquely dependent on the initial state of the
system. Conversely, the forced response depends uniquely on the personal
bests and the global best, and is independent of the initial state. However,

33

they were only able to give a detailed analysis of the free response, since the
forced response is consequently dependent on the structure of the fitness
function. Nevertheless, an eigenvalue analysis was carried out that illus-
trated the behaviours that can be expected from a particle given a set of
parameter values. The analysis also suggested a few interesting guidelines
on how the particles’ positions and velocities should be initialized in order
to obtain good results.

Contours of stability regions

4 [7
———CLPSO .
— — — PSO (stochastic) o
3.5 - — — PSO (deterministic) 7

Acceleration coefficient (¢)

/ 1 1 1 1 1 1

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Inertia weight (A)

1 1 1 J

Figure 1: Parameter regions ensuring stability according to different meth-
ods of analysis.

7.1.2 Stochastic models

As have been seen, much of the research from the PSO community has, as
a result of simplifying assumptions, evolved around deterministic systems,
i.e. systems that do not account for the stochastic nature of swarm intel-
ligence. Although this approach offers some tractable mathematical tools
for analysis, it may also severely restrict the accuracy of the analysis, which
makes a deterministic model hard to justify in this context. In PSO, there
are stochastic forces acting on each particle, and the methods of analysis
should be chosen accordingly. The rest of this section is therefore dedicated

34

to stochastic models for analysis of particle swarm optimization.

A pioneering work in this field was carried out only a year after the ad-
vent of PSO, in 1996, by Rudolph ([35]). His study was actually not exclu-
sively aimed at swarm theory, but was intended to explain the consequences
of randomness in any evolutionary algorithm. Instead, the evolutionary al-
gorithm was viewed as a homogeneous Markov chain. In this setting, the
population is modified by genetic operators that generate a new population
at the next iteration. The resulting population only depends on the previous
population and the probabilistic modifications caused by the genetic opera-
tors. Although this model is more suitable for evolutionary algorithms that
already use genetic operators, such as the genetic algorithm, it could work
equally well for PSO in principle. The necessary computations for such an
application are however very complex in practice.

A similar approach was adopted by Poli, Langdon, Clerc and Stephens
only a few years ago ([36]). They proposed a model based on discrete Markov
chains that was designed to apply to arbitrary continuous problems. Their
idea was to discretize the objective function using a finite element method
(FEM) grid which would generate corresponding distinct states in the search
algorithm. In contrast to the work of Rudolph, the discretization makes the
computation of the transition matrix describing the system straight-forward.
FEmpirical results confirmed that the predictions of the Markov chain were
surprisingly accurate.

Poli also published a study on his own recently, but with a different as-
pect of the problem at hand ([37]). Under the sole assumption of stagnation,
he studied the dynamics of the first and second moments of the sampling
distribution in PSO, i.e. the mean and variance of the particle trajectories.
Based on these results, the study revealed that the sampling distribution
does not depend on where the personal bests and swarm best are located
in the search space. An especially fundamental property of the stability
was also presented; in order for a particle to converge, it is not sufficient
to require that the mean of the the corresponding trajectory converges to
an equilibrium point, but we must also have that the variance goes to zero.
A few examples of converging trajectories were presented for some common
parameter settings, but the parameter region ensuring stability was never
determined analytically.

Jiang, Luoa and Yanga published a similar study ([38]), also involving
the dynamics of the moments and providing a few guidelines on parameter
selection. Kadirkamanathan, Selvarajah and Fleming, on the other hand,
used Lyapunov theory and the concept of passive systems to prove stability
in the presence of randomness ([39]). Their model included a single particle,
the swarm best, with inertia weight and during stagnation. The particle
trajectory was described by a dynamical system with nonlinear feedback
control, and several useful results were found by means of control theory.
For instance, they found the transfer function of the particle, proved ob-

35

servability and controllability of the system, found a quadratic Lyapunov
function and found sufficient conditions on the PSO parameters that guar-
antee convergence.

7.2 A stochastic model with multiplicative noise

The UPSOVW algorithm is essentially based on conflicting interests; the
aim is to let the swarm explore as much of the whole space as possible in
quest for the global minimum, but at the same time make sure that the
searching process is stable. The following paragraphs present a well-suited
model applicable to the analysis of CLPSO that take this compromise in
consideration. We also give a detailed study of the parameters therein, with
an emphasis on parameter settings ensuring stability.

Any suitable model for analyzing swarm intelligence algorithms should
be true to the real behaviour of the algorithms and at the same time be
sufficiently tractable from a mathematical viewpoint. The CLPSO method
is no exception to this rule of thumb. No matter how simplified a model
may be, any model that aims at analyzing CLPSO is in general derived from
the equations describing particle motion:

Ui(t + 1) =)\Ui(t) + w(t) [Cl'(t) — l’z(t)] ,
zi(t+1) = xi(t) ot +1).

The parameter w is as usual the stochastic force acting on the particle. It
is a random number uniformly distributed in the range [0, ¢], where ¢ is
the acceleration factor. It should be noted that everything except for the
inertia weight is considered to be time-varying, although the analysis may
be extended to hold for time-varying inertia weights as well.

The study of such stochastic systems is central to the field of robust con-
trol theory. It aims at controlling uncertain dynamical systems such that the
resulting system can tolerate variability and uncertainty. The uncertainties
can be attributed to imperfect knowledge of some of the components of the
system, or to changes in their behaviour due to altered operating condi-
tions. Another cause stems from physical parameters whose values are only
approximately known or time-varying. However, exogenous effects such as
disturbances or measurement noise should not be considered as model un-
certainty.

Because the swarm behaviour of CLPSO differs in some aspects to that
of classic PSO, the assumptions that our model relies on should be adapted
accordingly. During a swarm stagnation phase in PSO, neither the personal
bests nor the global best are updated, so the particles can be considered
to act independently in this setting. CLPSO, on the other hand, automati-
cally changes the comprehensive best particles during stagnation, such that

36

each particle learns from a good exemplar. A particle’s comprehensive best
is updated only if the particle has not improved during a fixed number of
iterations, which is set by the refreshing gap. Consequently, a particle is
influenced by the same exemplar as long as it improves at some point be-
fore the refreshing gap threshold is encountered. We will thus not assume
stagnation, which is common in classic PSO analysis, but instead consider
a single particle that successively improves as iterations go by.

With this assumption, we may drop the indices in the equations to indi-
cate that an arbitrary particle is observed, and let the comprehensive best
be constant, ¢ = ¢(t). Moreover, to get rid of the exogenous component al-
together, we introduce a new variable y(t) = z(¢) — ¢, and can then express
the particle’s dynamics as the linear dynamical system

dern =y 70| (1)

where ¢ is the state vector, £(t) = [v(t) y(t)]”. Because of its linearity, we
can compute the equilibrium point of the system, £*. The equilibrium point
satisfies the equation

E(t+1)—¢&*(t)=0, forallt>0,

which is rearranged into a linear system yielding the unique (trivial) solu-
tion &* = [0 0]7, implying that v* = 0 and 2* = ¢ when the system is in
equilibrium. This is quite a remarkable result since we are dealing with a
stochastic system, whose parameters vary randomly from one iteration to
the next.

Apart from this property, and the advantageous properties of linearity
and the absence of exogenous inputs, the analysis is considerably simplified
by the fact that velocity clamping is not included in UPSOVW. Since the
velocities are unbounded on their magnitudes, they are completely deter-
mined by system (7.1), which guarantees high accuracy of the analysis. On
the other hand, the fact that the system is time-varying makes the analysis
significantly more complex. Unfortunately, an eigenvalue analysis similar to
the above cannot be extended to these systems, so we must turn to other
methods.

7.2.1 Multiplicative noise and mean-square stability

Recently, Wakasa, Tanaka and Akashi proposed an interesting aspect to
the robust stability issues in particle swarm optimization ([40]). Instead of
making unnecessary assumptions on the particle dynamics to obtain a more
tractable problem, they considered a system similar to that of (7.1) and
treated the stochastic components as multiplicative noise. Inspired by this

37

approach, we will derive a similar model that holds for CLPSO, but may
easily be extended to hold for similar swarm intelligence algorithms.
We first consider the discrete-time stochastic system

§(t+1) = (Ao + App(t) (), (7.2)

where Ag and A; are constant matrices of appropriate size and p(0), p(1), ...,
are independent, identically distributed (i.i.d.) random variables with mean
and variance according to

Ep(t) =0, Ep(t)?=o0c%

This is known as single multiplicative noise, since there is a single noisy
parameter p in the model and the noise is propagated through multiplication
(in contrast to additive noise) by a constant matrix.

Next, we define M (t), the state correlation matrix at time k, as

M(t) = EE()E)T

If we assume that the initial state £y = £(0) is independent of the process p,
it can then be shown by straight-forward computation that M satisfies the
linear (deterministic) recursion

M(t+1) = AgM(t)Af + 0?A,M(t)AL, M(0) = E&&; . (7.3)

If this recursion is stable, for arbitrary choices of £y, we say that the system
is mean-square stable. The following definition provides further details about
this type of stability.

Definition (Mean-square stability). The solution { = 0 of the stochastic
system (7.2) is said to be exponentially stable in the mean-square sense if
there exist constants a > 0, L > 0 such that

BT < Le " E&oég (7.4)
for any &, and any ¢ > 0.

Mean-square stability is a strong form of stability. In particular, it im-
plies stability of the mean E(¢) and that all trajectories converge to zero
with probability one ([41], [42]). This approach is quite similar to that of
Poli ([37]) in that the mean-square stability analysis also investigates the
behaviour of the mean. However, there are two relevant linear systems in
Poli; one for the mean and one for the variance of the trajectories. Once
these are derived, the eigenvalues of the corresponding system matrices must
be found to find necessary conditions for stability, which are both hard to
compute in explicit form, let alone analyze.

38

Instead of solving the linear recursion (7.3) explicitly for the state corre-
lation matrix M and perform an eigenvalue analysis, we will use Lyapunov
methods to examine stability. By virtue of Lyapunov theory, it can be shown
that mean-square stability is equivalent to the existence of a positive-definite
matrix P satisfying the inequality

AfPAy— P+ 0”AlPA, <0. (7.5)

The inequality symbol in (7.5) means that the left-hand side must be negative-
definite to satisfy the inequality, which is called a linear matriz inequality

(LMI) since it is linear in the matrix variable P. The proof that (7.5) is in

fact a sufficient and necessary condition can be carried out by applying a

linear Lyapunov function of the form V(M) = trace (M P). The details are

found in appendix A.2. A brief introduction to LMIs is also included (see ap-

pendix B), which provides some basic definitions that are useful throughout

this section as well as some fundamental properties aimed at the interested

reader.

Before the Lyapunov method can be applied to the system of interest
(7.1), it must be rewritten on the form of an affine system as of (7.2).
By introducing a random variable 6(¢) uniformly distributed in the range
[—1/2,1/2], we see that

EO(t) =0, BO®? =0 = %
and
wlt) = - 0(t) + 2,

which ensures that w is effectively uniformly distributed in the range [0, ¢].
The corresponding affine system is thus given by

§(t+1) = (Ao + 400(1))£ (1),

where

Ap = [)\ ¢/2},

A 1-g)2
Ay = [8 :;ﬂ

7.2.2 Numerical results and stable parameter regions

What is left is thus the investigation of how the parameters A and ¢ affect
feasibility of the following LMIs:

39

P > 0,
ATPAy— P+ c%*ATPA, < 0.

In particular, we are interest in finding a parameter region in the A¢-plane
that ensures stability. However, feasibility (or infeasibility for that matter)
of the LMIs are not easily proved analytically, even for fixed values of A
and ¢. Fortunately, there are computational tools that can check feasibility
and, if so, even calculate a Lyapunov matrix P that satisfies the LMIs. We
have used the LMI Control Toolbox featured in MATLAB and in particular
its LMI solver feasp to determine feasibility ([43]).

We have incorporated this functionality in a simple bisection algorithm
to get an approximate parameter region for stability. Its objective is to max-
imize the parameter ¢ having A given while maintaining a feasible solution
to the LMIs. Since previous analyses have indicated that A must have a
magnitude less than one, values in this range will only be considered. The
bisection algorithm can be summarized as follows:

- Produce a vector Ay of equidistant points in the range [—1, 1].
- Set a threshold A for the absolute error of the computations.
- For each point A in Ayec,

Set upper and lower bound on ¢,
Let ¢1ow = 0 and Qbhigh = 4.
Repeat while |@nigh — ¢low| > A,

Let ¢ = (¢high + ¢10W)/2'
Compute the matrices Ay and Ay.
Check feasibility of the corresponding LMIs.

If feasible,
Let drow = ¢-
Otherwise,
Let dnigh = ¢.
End
End

Store ¢1ow together with A.

End

40

The resulting parameter region ensuring stability can be viewed in figure 1.
In the computations we have used A = 5-107%, so there is a guaranteed
accuracy in 3 decimals.

With little effort, this approach can be extended to hold for the classic
PSO method as well. The only difference is that there are two stochastic
forces in this setting, w), and wy, and a different equilibrium point. However,
if we assume that the acceleration factors coincide, that is, ¢, = ¢4 = ¢,
the resulting system can be expressed in terms of multiplicative noise, and
can thus be treated in a similar manner to obtain a stable parameter region.
The contours of this region are included in figure 1. Notably, under these
assumptions, the parameter region of PSO is much smaller than that of
CLPSO. For PSO, we may also conclude that the stochastic method with
multiplicative noise is more restrictive than the deterministic method using
eigenvalue analysis.

41

8 Synthetic data simulations

In this section a comprehensive study is conducted to evaluate the perfor-
mance of the UPSOVW algorithm compared to that of PSOVW. The study
is comprised of several scenarios, where the algorithms are run under the
same conditions to ensure a fair comparison.

To conduct the comparisons, some underlying test data must be used,
where the actual cluster structures are known beforehand. The algorithms’
clustering results can then be compared to the intended clusters to deter-
mine the efficiency and accuracy of each algorithm. In real data sets there
are often some missing data values, or they consist of a mix of discrete,
continuous or even categorical and ordinal data. A few assumptions must
inevitably be used to deal with these issues, which can be misleading or give
erroneous results. For example, it is not obvious how a distance measure
should be designed to cope with categorical or ordinal data values. The
interested reader can find a variety of real data sets in the UCI database 2.

8.1 Generating synthetic data sets

Instead of tackling the issues that arise in the study of real data sets, we will
instead use synthetic data sets that are randomly generated according to a
set of predetermined rules. Synthetic test data is favourable in that it offers
complete control of cluster overlapping and dimensionality. This is a crucial
property since we are interested in how well and how fast each algorithm is
able to retrieve known clusters in subspaces of very high-dimensional data,
under various conditions of cluster overlapping. It is known from previ-
ous research that the performance of clustering algorithms of k-means type
generally depend on whether the data set contains well separated clusters,
which motivates tests in various scenarios.

We generate high-dimensional data sets with clusters embedded in dif-
ferent subspaces using a data generator, derived from, but not identical to,
the generation algorithm used in [15]. The algorithm used is summarized
in appendix C. In order to better measure the difficulties of the generated
data sets, three parameters are explicitly controlled in the generator. In the
description of these parameters, we assume that the (sub)space of a cluster
consists of its relevant dimensions.

subspace ratio The subspace ratio, £, of a cluster is the average ratio of the
dimension of the subspace to that of the whole space, i.e. it determines
the average size of the subspace of each cluster and lies in the range
e € [0,1]. The subspace ratio is defined mathematically by Jing et al.
in [15] as

http://kdd.ics.uci.edu

42

L
e=— Y my,

where my; is the number of relevant dimensions in the lth cluster, m is
the total number of dimensions in the data set and k is the number of
clusters.

relevant dimension overlap ratio The (relevant) dimension overlap ra-

data

tio, p, of a cluster, is also defined in [15]. It is the ratio of the dimension
of the overlapping subspace, which also belongs to another cluster, to
the dimension of its own subspace. For example, suppose that the sub-
space of cluster A is {2,5,8,9,14,17,18,22}, whereas that of cluster
B in the same data set is {1, 3, 5,6, 10,11, 14, 15,18}. The overlapping
subspace A and B is thus {5, 14, 18} and its dimension size is 3. Since
the dimension size of the subspace of cluster A is 8, the dimension over-
lap ratio of cluster A with respect to cluster B is p = 0.375. According
to this definition, each generated cluster is guaranteed to have a di-
mension overlap ratio p with at least one other cluster, for any given
p. Consequently, the dimension overlap ratio of a generated cluster
with respect to any other generated cluster could be either greater or
smaller than p. Despite this disambiguity, the dimension overlap ratio
is still a good measure of the true overlapping if relevant dimensions
between clusters in a data set.

overlap ratio The data overlap ratio, «, is a special case of the con-
cept of overlapping rate that was proposed in [44] and [45]. In these
articles, the overlapping rate between two Gaussian clusters was de-
fined as the ratio of the minimum of the mixture probability density
function (pdf) on the ridge curve linking the centers of two clusters to
the height of the lower peak of the pdf. Although complex in nature, it
has been shown that this measure is a better indicator of the separabil-
ity between two clusters than the more conventional concept based on
the Bayesian classification error ([46]). In the one-dimensional case, if
the variance of the two clusters is fixed, then the overlap rate is solely
determined by the distance between their respective centroids. In the
data generation scheme presented in this section, the data overlap ra-
tio is a parameter that controls the distance between two adjacent
clusters; the centroid of the cluster currently being generated and the
centroid of the cluster generated in the previous step on each of the
overlapped relevant dimensions.

Three categories of synthetic data sets are generated. They differ in the
number of dimensions, which are 100, 1 000 and 2 000. In these synthetic
data sets, each cluster has its own relevant dimensions, which are randomly

43

determined based on € and can overlap. The data values are normally dis-
tributed on each relevant dimension of each cluster. The corresponding
mean is uniformly distributed in the range [0,100] and the corresponding
variance is set to 1. In contrast, the data values for irrelevant dimensions
are uniformly distributed in the range [0,10]. The dimension overlap ratio
p and the data overlap ratio o are chosen from the sets {0.25,0.5,0.75} and
{0.5, 1,2}, respectively. The subspace ratio € is set to 0.375. In general, the
larger the value of p and the smaller the value of «, the more complicated
the synthetic data sets are to cluster, in terms of dimension overlapping and
data overlapping in common relevant dimensions. All in all, a total number
of 27 data sets are generated. For each category of data, there are 9 data
sets, each of which has 500 data objects divided into 10 clusters of size 50.
All data sets are generated using MATLAB.

8.2 Parameter settings for algorithms

To guarantee that the two competing algorithms are run under identical
conditions, it is crucial to supply each algorithm with the same set of pa-
rameters. In most cases we use the same parameter settings that was previ-
ously used in the study of Lu et al. ([12]), the developers of PSOVW, that
conducted a similar comparison between PSOVW and a few other common
soft projected clustering algorithms.

The Euclidean distance is used as the dissimilarity measure between two
data objects. The parameter 3 is set to 2. The swarm size s is set to 10,
independently of the dimensionality of the data sets. The inertia weight A
is set to 0.7 and the acceleration factor ¢ is set to 1.45. These parameter
settings yield a stable evolution of UPSOVW according to the stability re-
gion presented in figure 1. For the PSOVW algorithm, the velocity clamping
threshold is set to vmax = 0.25, i.e. one-fourth of the allowed range for a
variable weight in PSOVW. Although velocity clamping is not employed in
UPSOVW, we use this value to constrain the magnitudes of the particle
velocities during initialization, so that the velocities effectively start off in
the range [—Vmax, Umax|-

In order to sustain good population diversity, particles in both algorithms
are required to have different exploration and exploitation abilities, which
is controlled by the P, probabilities. For this reason it has been proposed
that each particle should have a different P. value. The P, probabilities are
therefore computed according to

19 O

PO = 5% 20 a1
1—1
h) = 10-
where f(17) P

44

for all particles i = 1,2,...,s. The formula was empirically determined for
CLPSO in [29]. The values of the learning probabilities P, thus range from
0.05 to 0.5. Another consequence is that a particle with higher particle id
is more likely to learn from other personal bests than a particle with lower
id. The learning probabilities are presented graphically in figure 2. We use
this implementation for computing the P, values and set the refreshing gap
to b for both algorithms.

There must also be a fair stopping criterion imposed on the algorithms.
At first, it may seem suitable to specify a maximum number of iterations
allowed for each run. However, since the particles in PSOVW are only
updated if they are within the allowed range, we suspect that PSOVW
will perform an iteration much faster than UPSOVW that updates each
particle of each iteration. On the other hand, if we specify a maximum
number of fitness evaluations, the UPSOVW will finish considerably faster
than PSOVW in the same scenario. Taking these aspects into account,
it is clear that a fair stopping criterion should be based on the respective
running times of the algorithms. We will therefore restrict both algorithms
to a running time of 40, 100 and 150 seconds for the data sets with 100,
1 000 and 2 000 dimensions, respectively. In this way the comparisons will
be fair as long as each run is carried out on the same machine.

PC probabilities

T
0.5 *
0.4r R
0.3 R
o
o
0.2} %]
0.1F % |
*
* * * * * *
0 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
Particle id (i)

Figure 2: P, probabilities for a swarm consisting of 10 particles.

45

8.3 Results for synthetic data

The clustering has been performed on a PowerBook G4 laptop equipped with
a 1.5 gigahertz PowerPC G4 processor and 1.25 gigabytes random access
memory. The code for the PSOVW algorithm was provided by Yanping Lu,
one of the authors of [12], and the UPSOVW algorithm was implemented
by the author. Both algorithms were implemented in C++.

Each algorithm is run 10 times on each data set. The rationale for
studying a number of trials (instead of just one) lies in the stochastic nature
of the algorithms. Because of the random influence, it is plausible that
the outcome of each run will differ in some ways. However, if we let the
algorithms run for a number of times a pattern should emerge, arguably
after no more than 10 runs. Apart from the stochastic effects on the particle
updates and initializations, both algorithms rely on randomly initialized
cluster centroids. The effect of these initializations are often studied in
performance evaluations regarding clustering algorithms of k-means type,
since it can serve as a measure of the robustness of the method in scope.

To compare the clustering performance of the algorithms, we first present
the average cluster quality. The cluster quality is in general measured by the
clustering accuracy, which is the ratio of the data objects that are correctly
recovered by an algorithm to the number of objects in the whole data set.
However, the problem of computing the clustering accuracy can be a chal-
lenging one, since the clustering can yield a very large number of possible
outcomes. Correctly identified data objects are also dependent on whether
other objects are considered as correct, which dismisses any intuitive idea
of how the accuracy computation should be tackled. So, instead of counting
the correctly identified objects, one can count the number of erroneous clas-
sifications as a measure of an algorithms performance. One such measure is
known as the Classified Error Rate ([47]), which is defined in the following.

Definition (Classified Error Rate). Let G; be the original clusters pro-
duced by a data generator and let C} be the clusters produced by a clustering
algorithm applied to a data set S, such that

k k
Ua=Ja=5
=1 =1
where k is the number of clusters. Define the function ¢ as

0, if there exists j such that o1,00 € G|
) C) = ’ . ’
(01, 02, C1) { 1, otherwise,

where 01,09 € Cj. Then, the Classified Error Rate is defined as

_ Zle Zm,nECl 6(m’ n, Cl)
i (3)

46

CER

Y

where N; is the number of data objects in Cj.

Because clustering algorithms may produce clusters of different sizes,
there is no easy way of converting between clustering accuracy and CER.
So, we will in the following measure the cluster quality in terms of CER,
which is suitable in this context since we are only interested in comparing
different CER values. It is also easily computed compared to the clustering
accuracy. Apart from this performance measure, the variance of the cluster
quality is also important. A low variance implies a small dependence of
the initial cluster centroids and the stochastic effects on the final result.
However, since PSOVW and UPSOVW are very similar in both of these
aspects, we will not include the variances in the study, but solely focus on
the CER as a performance measure.

Tables 1, 2 and 3 below show the average classified error rate over 10
runs of the two algorithms for data sets consisting of 100, 1 000 and 2 000
dimensions, respectively, with different values for p and «.

Table 1 Average Classified Error Rate of PSOVW and UPSOVW over
10 trials on each data set with 100 dimensions

p\a 0.5 1 2 Algorithm
0.25 0.1773 0.2580 0.0594 PSOVW
0.1938 0.2686 0.0391 UPSOVW
0.5 0.2443 0.2176 0.1996 PSOVW
0.4689 0.1806 0.1405 UPSOVW
0.75 0.4011 0.3255 0.3927 PSOVW
0.6114 0.2631 0.3928 UPSOVW

Table 2 Average Classified Error Rate of PSOVW and UPSOVW over
10 trials on each data set with 1 000 dimensions

p\a 0.5 1 2 Algorithm
0.25 0.0834 0.0871 0.1236 PSOVW
0.1886 0.1819 0.1313 UPSOVW
0.5 0.1478 0.1041 0.2265 PSOVW
0.2584 0.2641 0.2388 UPSOVW
0.75 0.1312 0.2410 0.1046 PSOVW
0.2819 0.2864 0.2004 UPSOVW

47

Table 3 Average Classified Error Rate of PSOVW and UPSOVW over
10 trials on each data set with 2 000 dimensions

p\a 0.5 1 2 Algorithm
0.25 0.1228 0.1052 0.1561 PSOVW
0.1524 0.1613 0.2201 UPSOVW
0.5 0.1848 0.1579 0.1804 PSOVW
0.2919 0.2660 0.2977 UPSOVW
0.75 0.3192 0.2253 0.1206 PSOVW
0.3089 0.2931 0.3104 UPSOVW

A number of observations can be made from the results in Table 1, 2 and
3. Firstly, PSOVW seems to perform better than UPSOVW on most of the
data sets. In fact, it surpasses UPSOVW on 22 of the 27 data sets. This is
reflected by a lower CER value, which is indicated by bold face typesetting.
In some cases, the differences in cluster quality is negligible, and in others,
it is clearly in favour of PSOVW. Secondly, there is a clear pattern in the
performance of the algorithms that can be attributed to the variations in the
complexity of the data sets. Clearly, the cluster quality seems to drop with
increasing dimension overlap ratio p, with a few minor exceptions. On the
other hand, it was expected that the results would reveal a strong connection
between the cluster quality and the data overlap ratio «, but there seems
to be no trend that promotes such a conclusion. This is quite a surprising
fact, since larger o corresponds to more separated clusters that should be
more easily identifiable by the algorithms.

Moreover, we initially suspected a better performance from UPSOVW,
because of its unconstrained search capability. In UPSOVW, each particle
is updated at each iteration, contrary to PSOVW. This is reflected by the
number of iterations performed by each algorithm until the stopping cri-
terion is met. On average, PSOVW carries out in between two and four
times as many iterations as UPSOVW, depending on the test case. Despite
the superior performance of PSOVW in terms of clustering accuracy, the
minimum fitness value recovered by UPSOVW is in fact smaller than that
of PSOVW. Table 4 through 6 present the average minimum for the two al-
gorithms on each data set. Notably, UPSOVW outperforms PSOVW when
it comes to optimizing the objective function on all 27 data sets, although
PSOVW seems to perform better in terms of clustering accuracy.

48

Table 4 Average minimum fitness value of PSOVW and UPSOVW over
10 trials on each data set with 100 dimensions

p\a 0.5 1 2 Algorithm
0.25 3113.1 3095.1 3072.8 PSOVW
2911.6 2918.8 2886.4 UPSOVW
0.5 3091.7 3156.3 31174 PSOVW
1961.9 2918.0 2900.1 UPSOVW
0.75 3023.0 3124.9 2991.6 PSOVW
1912.0 2902.5 2815.0 UPSOVW

Table 5 Average minimum fitness value of PSOVW and UPSOVW over
10 trials on each data set with 1 000 dimensions

p\a 0.5 1 2 Algorithm
0.25 343.1 343.4 339.7 PSOVW
323.0 329.4 320.1 UPSOVW
0.5 343.1 341.7 342.2 PSOVW
322.2 326.1 323.4 UPSOVW
0.75 341.5 340.6 340.2 PSOVW
322.5 315.8 319.6 UPSOVW

Table 6 Average minimum fitness value of PSOVW and UPSOVW over
10 trials on each data set with 2 000 dimensions

p\a 0.5 1 2 Algorithm
0.25 172.9 173.6 174.0 PSOVW
166.6 167.0 165.8 UPSOVW
0.5 172.9 172.4 173.7 PSOVW
165.5 166.0 164.8 UPSOVW
0.75 170.5 171.2 171.1 PSOVW
164.1 162.2 163.7 UPSOVW

49

9 Conclusions and future work

As a response to the increasing demand for data analysis tools that can
handle high-dimensional data sets efficiently, this thesis has proposed an
algorithm for the variable weighting problem in soft projected clustering,
called UPSOVW. It is derived from a recent algorithm called PSOVW that
has shown some promising results in relation to traditional clustering meth-
ods.

The choice of objective function and search strategy is crucial to any soft
projected clustering algorithm. PSOVW utilizes particle swarm optimiza-
tion to find optimal weights in a k-means weighting function. Despite good
clustering accuracy, it has been argued in previous work that the PSOVW
algorithm is time-consuming in comparison to other projected clustering al-
gorithms. UPSOVW has been developed to speed up the convergence rate
of PSOVW by refining its search capability. In order to do so, we have
proposed a modified objective function that excludes all bound constraints
on the variable weights by normalizing the weight matrix. The objective
function effectively coincides with that of PSOVW as it also calculates the
sum of the within-cluster distance for each cluster along relevant dimensions
in preference to irrelevant ones. The main difference between the two is that
UPSOVW permits search in the whole space in quest for a global minimum,
in contrast to PSOVW that is restrained by bound constraints. The normal-
ization technique is not restricted uniquely to this type of objective function,
but can readily be applied to any optimization problem that meets certain
requirements.

We have compared the performance of the two algorithms on a variety of
high-dimensional synthetic data sets. The study shows that PSOVW yields
better clustering accuracy than UPSOVW, although the differences are small
under many circumstances. None of the algorithms perform perfectly in
terms of clustering accuracy on the whole, which implies that they fail to
recover the relevant dimensions totally. The dimensionality of the data
sets and the number of relevant dimensions for each cluster are extremely
high compared to the number of data points, resulting in very sparse data
sets. This might a reason why the algorithms fail to recover all relevant
dimensions.

Although PSOVW performs better than UPSOVW in terms of clustering
accuracy, UPSOVW is superior to PSOVW when it comes to minimizing
the objective function. This can be explained by the unconstrained search
strategy employed in UPSOVW, which is especially advantageous if the
global minimum happens to be in close proximity to a vertex resulting from
the bound constraints used in PSOVW. In PSOVW, whenever a particle is
near optima of this kind, there is always the possibility that the particle will
try to fly outside of the allowed search space, resulting in a lost update for
that particle. It is therefore more difficult for PSOVW to home in on these

50

optima.

Because of the improved search strategy, the fact that UPSOVW yields
poorer clustering accuracy than PSOVW is an ambiguous result, since smaller
minima should be reflected by more accurate clustering. One explanation
might be that the scheme for updating cluster centroids is not well-suited for
UPSOVW. Both the membership update mechanism and the fitness func-
tion use the Euclidean distance, in contrast to the centroid update scheme
which computes the mean of all data points in the corresponding cluster.
Instead, one possibility could be to compute the mean-square of the data
objects to be consistent with the other formulas. Further investigations are
needed.

Two other issues must be focused on in future research. Firstly, the ma-
jor issue in UPSOVW, as well as in PSOVW, is the requirement of knowing
the number of clusters beforehand. In reality, the structure of the data at
hand is completely unknown in general, which makes it very difficult to pro-
vide a suitable number of clusters in real-world data mining applications.
Although a number of attempts have been made to determine the number of
clusters automatically in recent years (see for instance [48] and [49]), there
exists no successful method up to date, in particular for high-dimensional
data sets.

Secondly, since the performance of UPSOVW largely depends on an un-
constrained searching technique, it is crucial that the internal parameters
of the algorithm ensure a stable behaviour. The underlying optimization
method, CLPSO without the effect of velocity clamping, is heavily influ-
enced by the acceleration factor and the inertia weight. In this thesis, we
have conducted a stability analysis that accounts for the stochastic forces
acting on the particle dynamics, but have done so under a few simplifying
assumptions. A more accurate analysis is needed to give clear directions for
parameter choices ensuring stability. On the other hand, stability is not the
sole interest. Rather, a comprehensive analysis should provide guidelines for
parameter choices that enhance performance while sustaining stability of the
method. In general, to improve the search capability of a global optimiza-
tion algorithm, such as CLPSO, it is imperative to find a balance between
exploration and exploitation. The L? gain can be interpreted as a measure
of the exploration ability of the CLPSO algorithm, while the decay rate can
be interpreted as the exploitation ability or the convergence speed of the
algorithm. A study of these measures with an emphasis on classic PSO is
carried out by Wakasa et al. in [40]. The computation of the L? gain and
the decay rate are casted in the form of LMIs. A simple bisection algorithm
can then be applied to each LMI to find the smallest upper bound on the
L? gain and the largest lower bound on the decay rate. Of course, this idea
can easily be altered to hold for the CLPSO algorithm as well.

o1

A Proofs

A.1 Proof of main theorem

Firstly, we show that the bound constraints in (5.2) are satisfied for W7.
Clearly, we have that all entries w; ;/ are nonnegative. Morever, because of

the definition of w}, .,

*

axs for all entries, and so

we have ’wl*j‘ < w

*
’wz,j

wy i = <1, 1<I<E1<j<m.

*
max

Hence, the bound constraints are satisfied.
It remains to show that W7 is a minimizer of F as defined in (5.1). By
definition, we have

k n m

B
wy 5/
POV = 3 3 > i (Zm ” /> - d(i g, 21)
=1 i=1 j=1 s=1 "hs
B
k n m ‘wl*J /wfnax
S 9) SR (e i)
I=1 i=1 j=1 P ‘wz,s /Wihax
k? * * ﬁ
n.onn Wmax wl,j
2D 3)) BTN (e LN VAR
=1 i=1 j=1 wr*nax s=1 ‘ l,s
k n m ’w;‘,] 7
= 3> wa | ~d(zi g, 2,5)
=1 i=1 j=1 D et ‘wzk,s
= G(W™)
< GW),

for all W € R¥*™_ since W* is a minimizer of G. Finally, this holds for
all real-valued matrices and must therefore hold for all matrices with non-
negative entries. However, from the definitions of F' and G follow that they
coincide for these matrices, which shows that

G(W) = FW),

for all matrices that satisfy the bound constraints in (5.2). Hence, we have
shown that F(W7) < F(W), for all matrices W that meet the constraints,
and the proof is complete.

52

A.2 Proof of stability criterion

We now prove that condition (7.5) is a sufficient and necessary condition
for mean-square stability. Firstly, we prove that condition (7.5) is sufficient.
Let P > 0 satisfy (7.5). Moreover, introduce the linear Lyapunov function
V(M) = trace(M P), which is positive on the cone of nonnegative matrices,
and can hence serve as a Lyapunov candidate function. For M (t),t > 0,
satisfying (7.3), we then have that

V(M(t+1)) = trace ([AoM(t)Af + 0 A,M(t)AL] P)
= trace (AgM(t) ATP) + o? - trace (A, M (¢)AZP)
= trace (M(t)AO PAy) + o - trace (M(t)AZPAO)
= trace (M(t) [Af PAg + 0 AT PAg])

where we have used the linear relationship, trace (¢ A + 3B) = a-trace (A)+
B - trace (B), and the identity trace (AB) = trace (BA), that both hold for
all square matrices. Further, since P satisfies (7.5), we have that

trace (M (t) [AgPAO + UQAZPAO]) < trace (M (t)P),

for all nonzero M (t) satisfying (7.3). Hence, V (M (t + 1)) < V (M(t)), for
all t > 0, which shows that M (t) converges to zero as t — oo according to a
standard argument from Lyapunov theory.

To prove that condition (7.5) is also necessary, we assume that the system
is mean-square stable. By the definition of mean-square stability (7.4), this
implies that for every positive-semidefinite initial condition M (0) > 0, the
solution to the linear recursion (7.3) goes to zero as t — oo. In fact, the
linearity of system (7.3) implies that, for an arbitrary choice of M(0), the
corresponding solution M () converges to zero, that is, (7.3) is stable. We
now rewrite (7.3) as a linear system m(t + 1) = Am(t), where m(t) is a
vector containing the n? elements of M(t) and A is a real matrix expressed
via Kronecker products:

A=Ag® Ay + 02 A, @ A,

Now, stability of A is equivalent to that of A”. By a standard result con-
cerning Kronecker products, namely,

AT = (Ag®@Ag+02 A, @A)
= AJQAj+0% A AT,

we see that stability of (7.3) is equivalent to that of the matrix difference
equation

93

N(t+1) = AJN(t)Ag + o ALN(t) Ap. (A1)

Further, let N(0) > 0 and let N(¢) be the corresponding solution to (A.1).
Since N (k) satisfies a stable difference equation of first order with constant
coefficients, the function

has a finite limit as t — oo, which we call P. From N(0) > 0 follows that
P > 0. The recursion (A.1) implies

P(t+1) = N(0)+ ATP(t)A+ 0® AL P(t) A,.

Taking the limit ¢ — co shows that P satisfies (7.5).

B A short introduction to LMIs

A linear matrix inequality (LMI) has the form

m
F(x)=Fy+ Y x;F, >0, (B.1)
i=1
where x € R™ is the variable and the matrices F; € R"*", i = 0,1,...,m,

are symmetric and given beforehand. The inequality symbol means that
F(z) is positive-definite, that is, v F(z)v > 0, for all nonzero v € R™. This
LMI is known as strict, in contrast to a nonstrict LMI, which has the form

F(z)>0.

The strict and the nonstrict LMI are closely related. In fact, it turns out
that a feasible nonstrict LMI can be reduced to an equivalent strict LMI in
most cases. The reduction is in principle carried out by eliminating implicit
equality constraints and then reducing the resulting LMI by removing any
constant nullspace.

The strict LMI in (B.1) implies a convex constraint on z, i.e. the set
{z: F(z) > 0} is convex. Given an LMI F(z) > 0, the corresponding LMI
problem (LMIP) is to find a feasible vector xy such that F(xy) > 0 or
determine that there is no such vector, in which case we say that the LMI
is infeasible.

Although the LMI in (B.1) may appear to be of a specialized form, it can
in fact be applied to numerous problems that present convex constraints on
xz. For instance, linear inequalities as well as matrix norm inequalities can
be expressed as LMIs. In particular, many Lyapunov and convex quadratic
matrix inequalities arise in the form of LMIs, which is the major reason

54

for studying LMIs in the context of control theory and stability analysis of
dynamical systems.

Beside the flexibility of the standard form (B.1), it permits a straight-
forward treatment of systems of LMIs. In particular, given a number of
LMIs Fi(xz) > 0,...,Fy(z) > 0 can be cast in the form of the single LMI
diag (Fi(x),...,Fy(x)) > 0.

Some LMI problems are so frequently encountered in various situations
that they are often referred to as standard problems. One is the obvious
LMIP F(z) > 0 mentioned above, whereas the others are briefly explained
in the following;:

eigenvalue problems The eigenvalue problem (EVP) is to minimize the
maximum eigenvalue of a matrix that depends affinely on a variable,
subject to an LMI constraint. The general form of an EVP is

min A
subject to A — A(z) >0, B(z) >0,

where A and B are symmetric matrices that are affine functions of the
variable z, yielding a convex optimization problem.

generalized eigenvalue problems The generalized eigenvalue problem
(GEVP) is closely related to the EVP. A GEVP is to minimize the
maximum generalized eigenvalue of a pair of matrices that are affine
functions of a variable, subject to an LMI constraint. More formally,
this can be formulated as

min A

subject to AB(z) — A(x) >0, B(x) >0, C(z)>0,

where A, B and C are symmetric matrices that depend affinely on x.

matrix determinant problems Although the previous problems are the
most common, sometimes one encounters the following problem, which

we abbreviate MDP:
min logdet A(z)!
subject to A(x) >0, B(x)>0.
As usual, A and B are symmetric matrices that are affine functions

of . This is a convex optimization problem, since when A > 0,
logdet A~! is a convex function of A.

95

The standard problems are both tractable from a mathematical and a
practical viewpoint, in that they can be solved in polynomial-time. In this
context, finding a solution means to determine whether or not the problem
is feasible, and if it is, compute a feasible point according to a desired accu-
racy. There are several algorithms that can solve these problems efficiently,
one being the ellipsoid algorithm ([50]), which is suitable because of its sim-
plicity. However, in practice, interior-point algorithms, such as the method
of centers ([51]), are far more efficient.

C Generating synthetic data sets

The algorithm for generating a synthetic data set is derived from but not
identical to the one presented by Lu et al. in [12], which was used to compare
the performance of PSOVW to similar algorithms arising in soft projected
clustering. This data generation algorithm was in turn inspired by the one
presented by Jing et al. in [15], that was used to test the performance of
the EWKM algorithm.

- Set parameters

Specify the number of clusters k, the number of dimensions m and
the number of objects n. Set the parameters £ (the subspace ratio),
p (the dimension overlap ratio), a (the data overlap ratio) and o (the
variance for relevant dimensions).

- Determine relevant dimensions for each cluster
For each cluster ¢,

Assign a random integer m, in the range [2,m], such that
Ymg=c¢c-k-m.

End
For cluster 1,

Randomly choose mj relevant dimensions for Cj.
For each cluster ¢ > 2,

Randomly choose p - m, relevant dimensions from the relevant
dimensions of Cy_1.

Randomly choose (1 — p) - m, relevant dimensions from the other
dimensions.

End

o6

- Generate the mean p for each relevant dimension of each cluster
For cluster 1,
Randomly set 11 ;j with a uniform distribution in the range [0, 100].
For each cluster ¢ > 2,
If the relevant dimension j is not a common relevant dimension

of clusters Cy and C,_1,

Randomly set p4; with a uniform distribution in the range
[0, 100].

Otherwise,
If Pg—15 +t -0 > 100,

Mq’]:'u/qila]_a‘o-'
Otherwise,

Haj = Hq-1,4 + Q- 0.
End

End
End

- Generate data points for each cluster
For each cluster g,

For each dimension j,
If j is a relevant dimension of Cy,
Produce the data points with a normal distribution N (yg j,0).
Otherwise,
Produce the data points with a uniform distribution in
the range [0, 10].
End
End

End

o7

References

[1]

[10]

CuAN, P., FAN, W., ProDrROMIDIS, A., & STOLFO, S. (1999) Dis-
tributed data mining in credit card fraud detection. IEEE Intelligent
Systems, Vol. 14, No. 6, pp. 67 - 74.

Bass, T. (2000) Intrusion detection systems and multisensor data fu-
sion. Communications of the ACM, Vol. 43, No. 4, pp. 99 - 105.

SmiTH, K. A., WiLLis, R. J., & Brooks, M. (2000) An analysis of
customer retention and insurance claim patterns using data mining: A
case study. The Journal of the Operational Research Society, Vol. 51,
No. 5, pp. 532 - 541.

VAN DER PUTTEN, P., & vAN SOMEREN, M. (EDS) (2000) CoIL Chal-
lenge 2000: the insurance company case. Published by Sentient Machine
Research, Amsterdam. Technical Report.

KRrIEGEL, H.-P., KROGER, P., & ZIMEK, A. (2009) Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clus-
tering, and correlation clustering. ACM Transactions on Knowledge
Discovery Data, Vol. 3, No. 1, pp. 1 - 58.

AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., & RAGHAVAN, P.
(2005) Automatic subspace clustering of high-dimensional data. Data
Mining and Knowledge Discovery, Vol. 11, No. 1, pp. 5 - 33.

Go1L, G. S., NAGEsH, H., & CHOUDHARY, A. (1999) Mafia: Efficient
and scalable subspace clustering for very large data sets. Technical Re-
port CPDC-TR-9906-010, Northwestern University.

Moisg, G., & SANDER, J. (2008) Finding non-redundant, statistically
significant regions in high-dimensional data: A novel approach to pro-
jected and subspace clustering. Proceeding of the 14th ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
533 - H41.

Procoriuc, C. M., JONES, M., AGARWAL, P. K., & MURALI, T.
M. (2002) A Monte Carlo algorithm for fast projective clustering. Pro-
ceedings of the 2002 ACM SIGMOD international conference on Man-
agement of data, pp. 418 - 427.

Woo, K.-G., LEg, J.-H., Kim, M.-H., & LEE, Y.-J. (2004) FINDIT:
A fast and intelligent subspace clustering algorithm using dimension
voting. Information and Software Technology, Vol. 46, No. 4, pp. 255 -
271.

o8

[11]

[15]

[16]

AcHTERT, E., BOHMm, C., KRIEGEL, H.-P., KROGER, P., MULLER-
GORMAN, 1., & ZIMEK, A. (2007) Detection and visualization of sub-
space cluster hierarchies. Lecture Notes in Computer Science, Vol. 4443,
pp- 152 - 163. Berlin: Springer.

Lu, Y., WANG, S., L1, S., & ZHou, C. (2009) Particle swarm opti-
mizer for variable weighting in clustering high-dimensional data. Swarm
Intelligence Symposium, 2009, pp. 37 - 44.

DoMENICONI, C., GUNOPULOS, D., MA, S., YAN, B., AL-RAZGAN,
M., & PApADOPOULOS, D. (2007) Locally adaptive metrics for clus-
tering high dimensional data. Data Mining and Knowledge Discovery
Journal, Vol. 14, No. 1, pp. 63 - 97.

Huang, J. Z., Na, M. K., Rong, H., & L1, Z. (2005) Automated
variable weighting in k-means type clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, pp. 657 -
668.

Jing, L., Nag, M. K., & Huang, J. Z. (2007) An entropy weighting
k-means algorithm for subspace clustering of high-dimensional sparse

data. IEEFE Transactions on Knowledge and Data Engineering, Vol. 19,
No. 8, pp. 1026 - 1041.

MACQUEEN, J. B. (1967) Some methods for classification and analysis
of multivariate observations. Proceedings of the Fifth Berkeley Sympo-
stum on Mathematical Statistics and Probability, Vol. 1, pp. 281 - 297.
University of California Press.

EBERHART, R. C., & KENNEDY, J. (1995) A new optimizer using par-
ticle swarm theory. Proceedings of the Sizth International Symposium
on Micro Machine and Human Science, pp. 39 - 43.

CLERC, M. (2006) Stagnation analysis in particle swarm optimisation
or what happens when nothing happens. Technical Report CSM-460,
Department of Computer Science, University of Essex.

ParsopouLos, K. E.,; & VRAHATIS, M. N. (2004) On the compu-
tation of all global minimizers through particle swarm optimization.
IEEFE Transactions on FEvolutionary Computation, Vol. 8, No. 3, pp.
211 - 224.

BLACKWELL, T., & BENTLEY, P. J. (2002) Don’t push me! Collision-
avoiding swarms. Proceedings of the IEEE Congress on Fvolutionary
Computation, pp. 1691 - 1696.

EBERHART, R. C., SimpsoN, P. K., & DoBBiNs, R. W. (1996) Com-
putational Intelligence PC Tools, first ed. Academic Press Professional

99

22]

[28]

SHI, Y., & EBERHART, R. C. (1998) A modified particle swarm opti-
mizer. Proceedings of the IEEE International Conference on Evolution-
ary Computation, pp. 69 - 73.

EBERHART, R. C.; & SHI, Y. (2000) Comparing inertia weights and
constriction factors in particle swarm optimization. Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 84 - 88.

EBERHART, R. C., & SHI, Y. (2001) Tracking and optimizing dynamic
systems with particle swarms. Proceedings of the IEEE Congress on
FEvolutionary Computation, pp. 94 - 100.

ZHENG, Y.-L., MaA, L.-H., ZHANG, L.-Y., & QIan, J.-X. (2003)
On the convergence analysis and parameter selection in particle swarm
optimization. Proceedings of the IEEE International Conference on Ma-
chine Learning and Cybernetics, pp. 1802 - 1807.

KozieL, S., & MICHALEWICZ, Z. (1999) Evolutionary algorithms, ho-
momorphous mappings, and constrained parameter optimization. Evo-
lutionary Computation, Vol. 7, No. 1, pp. 19 - 44.

HE, Q., & WANG, L. (2007) An effective co-evolutionary particle
swarm optimization for constrained engineering design problems. FEngi-
neering Applications of Artificial Intelligence, Vol. 20, No. 1, pp. 89 -
99.

Ray, T., & Liew, K.M. (2001) A swarm with an effective information
sharing mechanism for unconstrained and constrained single objective
optimisation problems. Proceedings of the 2001 Congress on Evolution-
ary Computation, Vol. 1, pp. 75 - 80.

LiaNng, J. J., QIN, A. K., SUGANTHAN, P. N., & BASKAR, S. (2006)
Comprehensive learning particle swarm optimizer for global optimiza-
tion of multimodal functions. IEEE Transactions on Evolutionary Com-
putation, Vol. 10, No. 3, pp. 281 - 295.

ParsopouLos, K. E., & VraHATIS, M. N. (2004) UPSO - A unified
particle swarm optimization scheme. Lecture Series on Computational
Sciences, pp. 868 - 873.

Ozcan, E., & Monan, C. K. (1998) Analysis of a simple particle
swarm optimization system. Intelligent Engineering Systems Through
Artificial Neural Networks, Vol. 8, pp. 253 - 258.

OzcaN, E., & MoHAN, C. K. (1999) Particle swarm optimization:
surfing the waves. Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 1939 - 1944.

60

33]

[39]

[41]

[42]

CLERC, M., & KENNEDY, J. (2002) The particle swarm - explosion,
stability, and convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. b8 - 73.

CaMPANA, E. F., Fasano, G., Peri, D., & PiNnTO, A. (2006) Par-
ticle swarm optimization: Efficient globally convergent modifications.
1IT European Conference on Computational Mechanics, p. 12.

RupoLPH, G. (1996) Convergence of Evolutionary Algorithms in Gen-
eral Search Spaces. Proceedings of the Third IEEE Conference on Fvo-
lutionary Computation, pp. 50 - 54.

Pour, R., LanegDON, W. B., CLERC, M., & STEPHENS, C. R. (2007)
Continuous optimization theory made easy? Finite-element models of
evolutionary strategies, genetic algorithms and particle swarm optimiz-
ers. Lecture Notes in Computer Science. Vol. 4436, pp. 165 - 193. Berlin:
Springer.

Poir1, R. (2009) Mean and variance of the sampling distribution of
particle swarm optimizers during stagnation. IEFEE Transactions on
FEvolutionary Computation, Vol. 13, No. 4, pp. 712 - 721.

JianG, M., Luoa, Y. P., & YaNca, S. Y. (2007) Stochastic conver-
gence analysis and parameter selection of the standard particle swarm
optimization algorithm. Information Processing Letters, Vol. 102, No.
1, pp. 8 - 16.

KADIRKAMANATHAN, V., SELVARAJAH, K., & FLEMING, P. J. (2006)
Stability analysis of the particle dynamics in particle swarm optimizer.
IEEFE Transactions on Evolutionary Computation, Vol. 10, No. 3, pp.
245 - 255.

WAKASA, Y., TaNakA, K., & Axasui, T. (2009) Stability and 12
gain analysis for the particle swarm optimization algorithm. American
Control Conference, pp. 1748 - 1753.

KusHNER, H. J. (1967) Stochastic stability and control. Academic
Press.

WILLEMS, J. L. (1973) The circle criterion and quadratic Lyapunov
functions for stability analysis. IEEE Transactions on Automatic Con-
trol, Vol. 18, No. 2, p. 184.

GAHINET, P., NEMIROVSKI, A., LAUB, A. J., & CHILALI, M. (1994)
The LMI control toolbox. Proceedings of the 33rd IEEE Conference on
Decision and Control, Vol. 3, pp. 2038 - 2041.

61

[44]

ArTNOURI, E., WANG, S., & Ziou, D. (2000) On comparison of clus-
tering techniques for histogram pdf estimation. Pattern Recognition and
Image Analysis, Vol. 10, No. 2, pp. 206 - 217.

BoucGugssa, M., WANG, S., & SuN, H. (2006) An objective function
approach to cluster validation. Pattern Recognition Letters, Vol. 27,
No. 13, pp. 1419 - 1430.

KANTARCIOGLU, M., JIN, J., & CrLIFTON, C. (2004) When do data
mining results violate privacy? Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pp.
599 - 604.

Wang, T., Liu, D.-X., LiN, X.-Z., SuN, W., & AHMAD, G. (2006)
Clustering large scale of XML documents. Lecture Notes in Computer
Science, Vol. 83947, pp. 447 - 455. Berlin: Springer.

HanpL, J., & KNOWwWLES, J. (2004) Multiobjective clustering with
automatic determination of the number of clusters. Technical Report,
UMIST, Department of Chemistry.

TI1BSHIRANI, R., WALTHER, G., & HASTIE, T. (2001) Estimating the
number of clusters in a data set via the gap statistic. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), Vol. 63,
No. 2, pp. 411 - 423.

SHOR, N. Z., KiwitL, K. C., & RUSzZCAYNSKI, A. (1985) Minimiza-
tion methods for non-differentiable functions. New York: Springer.

L1EU, B.-T., & HUARD, P. (1966) La methode des centres dans un
espace topologique. Numerische Mathematik, Vol. 8, No. 1, pp. 56 - 67.

62

