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Abstract

A complex bivariate polynomial can be viewed as a continuous family
of complex polynomials. If the parameter is moved along a continuous
curve the roots of the generated polynomial will move along continuous
curves. If the parameter is moved along a closed curve then each root will
end up where it started except in the case when the curve goes around
certain critical points. In this case the roots can swap places and the
curve will generate a permutation of the roots.

The Predict Correct Algorithm can be used to numerically follow roots
of the generated polynomial as the parameter is moved along a curve. A
problem that can occur with the Predict Correct Algorithm is that the
algorithm will jump and start following the wrong root. In this paper
a modified version of the Predict Correct Algorithm is developed that
guarantees that no root jumping occurs. The new algorithm is called
the Predict Correct Verify Algorithm. An algorithm for calculating the
critical points of a bivariate polynomial is presented.

An algorithm for automatically calculating all the permutations of
the roots generated by a bivariate polynomial is developed. A program
implementing the algorithm is written using the Scheme programming
language.
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1 Introduction

1.1 Purpose and Scope
A complex bivariate polynomial f(z,w) can be written as

n

f(z,w) =ch(w)zk, (1.1)

where ¢1 (w), ca(w), ..., cp(w) are complex polynomials in w. Hence a complex
bivariate polynomial f(z,w) can be viewed as a family of complex polynomials
parameterized by w.

Each point w in the complex plane generates a polynomial. The generated
polynomial will have roots. When the parameter w is moved in the complex
plane the roots of the generated polynomial will also move. In fact a simple
root will vary continuously with the parameter w.

If the parameter w is moved along a closed curve then the set of roots at
the start of the path is equal to the set of roots at the end of the path. If while
moving along a closed curve the parameter w goes around so called critical
points then the roots can swap places. Otherwise each root will end up back
where it started. It is possible to use the discriminant to calculate the critical
points generated by a bivariate polynomial.

Given a bivariate polynomial f(z,w) a curve can be thought of as a bijection
between the roots at the start of the curve and the roots at the end of the curve
generated by following the roots of f(z,w) as the parameter w moves along the
curve. The curve can be thought of as performing an action on the roots at the
start of the curve. If the curve is closed then the generated bijection can be
viewed as a permutation of the roots at the start of the curve.

Suppose that ¢1,¢a,..., ¢, are the critical points of f(z,w). To determine
the permutation generated by an arbitrary closed path starting at s it is enough
to know the permutation generated by n paths starting at s where each path
goes around a single distinct critical point of f(z,w).

One approach for tracking the roots of a polynomial as the coefficients of
the polynomial change continuously is to use Homotopy Continuation methods.
Using the Predict and Correct algorithm it is possible to follow a root of f(z,w)
numerically as the parameter w is moved along a path. However there is no
guarantee that the Predict and Correct Algorithm will produce the correct re-
sults. It is possible for the algorithm to jump and start following an incorrect
root. For more information on Homotopy Continuation and the Predict and
Correct algorithm see Sommese and Wampler [8] and Morgan [3].

The purpose of this paper is to create and implement a numerical algorithm
for calculating the permutations of the roots generated by a bivariate polynomial
f(z,w) when the parameter w is moved around critical points of f(z,w). This
will involve developing an algorithm for following a root of f(z,w) when the
parameter w is moved along a closed path that produces a provably correct
result. A restriction is that the path is made up of line segments. An algorithm
for calculating the critical points of a bivariate polynomial will be presented.
Some care is taken to make sure that the computed results are provably correct.



The implementation is written in the Scheme programming language. The
program consists of the following steps.

1. Generate a random bivariate polynomial f(z,w).
2. Calculate the critical points of the bivariate polynomial.

3. Generate linear approximations of circle paths paths that all have a com-
mon starting point and where each circle path goes around one and only
one of the critical points of f(z,w).

4. Calculate the initial roots of f(z,w) at the common starting point of the
paths.

5. For each path calculate the generated permutation of the roots.

1.2 Disposition

This paper is structured in the following manner. Section 2 introduces the
reader to Complex Analysis. Several definitions and theorems are given leading
up to Rouché’s Theorem.

In Section 3 several algorithms for finding the roots of a polynomial numer-
ically are given. An algorithm that can find all the roots of a polynomial is
developed.

In Section 4 the concept of a family of polynomials generated by a bivariate
polynomial is introduced. Several theorems regarding polynomials are stated
and proved. The concept of a critical point of a bivariate polynomial is intro-
duced and a numerical algorithm for calculating the critical points of a bivariate
polynomial is given.

In Section 5 the concept of a path and a homotopy are introduced. Circle
paths, N-gon paths and triangle paths are defined. The fact that an arbitrary
path is homotopic to a path that is the composition of circle paths and inverse
circle paths is stated and proved.

In Section 6 the Complex Implicit Function Theorem is introduced. The
concept of analytic continuation is described. The Monodromy Theorem is
stated and proved.

Section 7 is concerned with numerical algorithms for following the simple
roots of a bivariate polynomial f(z,w) when the parameter w is moved along a
path. The Davidenko Differential Equation is described. The Predict Correct
Algorithm is introduced. Euler Prediction and Newton Correction are described.
The root jumping issue is described.

A new algorithm called the Predict Correct Verify Algorithm is developed.
Euler Disc Prediction and Newton Rouché correction are described. A sufficient
condition for no root jumping to occur is developed. A new algorithm called
Rouché Verification is introduced.

In Section 8 a function that permutes the roots of a bivariate polynomial
f(z,w) when the parameter w is moved along a closed path is defined. Some
basic properties about the permutation function are stated and proved. The
fact that the permutations generated by two homotopic paths are equal to each
other is proved.

An algorithm for automatically generating circle paths such that all circle
paths have a common starting point and each circle path goes around one and



only one critical point of a bivariate polynomial is described. An algorithm for
calculating permutations of the roots generated by circle paths going around
each of the critical points of a bivariate polynomial is described.

In Section 9 a program that implements some of the algorithms from the
previous sections is discussed. The program consists of the following steps. The
program generates a random bivariate polynomial f(z,w). The critical points
of the bivariate polynomial are calculated. The program calculates a list of
paths that all share a common starting point and where each path goes around
a single critical point. The program calculates how the roots at the start of the
paths are permuted when the parameter w is moved along each of the paths.



2 Complex Analysis

The core concepts in real analysis are limits of real functions, continuity of real
functions, the derivative of a real function and the integral of a real function.
It is possible to define limits, continuity, derivatives and integrals of complex
functions in such a manner that a lot of the theorems from real analysis are still
valid for complex functions. In this section results from complex analysis that
will be needed later on are presented. Most of the definitions and theorems in
this section are based on definitions and theorems presented by Ablowitz and
Fokas (see [1]) and Silverman (see [7]).

2.1 Limit, Continuity and Differentiability
The concept of a limit of a complex function is defined as follows.

Definition 1. The limit of the complex function f(z) at the point zy is equal
to ¢ if given € there exists 0 such that if |z — 20| < & then |f(z) — c¢| < e. The
limit of f(z) at the point zo is denoted by

lim f(2).

zZ—20

The concept of continuity for a complex function is defined as follows.

Definition 2. The complex function f(z) is continuous at a point zo if

lim f(z) = f(20)-

z—20
A complex function f(z) is continuous in a region if it is continuous at every
point in the region.

The concept of differentiability of a complex function is defined as follows.
Definition 3. The derivative of a complex function f(z) at the point zo is
defined as

lim f(z0 +h) — f(Zo).
h—0 h
If the limit does not exist the the derivative is undefined. The derivative of

f(2) at the point zy is denoted by f'(z9) or %(Zo). If the function f(z) has a
derivative at the point zo then f(z) is said to be differentiable at z.

The reader should not be fooled by the fact that this definition looks very
similar to the definition of the derivative of a real function. The existence of a
complex derivative of a function is a much stronger statement than the existence
of a real derivative.

2.2 Analytic Function

The next concept to be introduced is that of an analytic function. This is the
core concept of complex analysis.

Definition 4. A complex function f(z) is said to be analytic at the point zq if
f(2) is differentiable in a neighborhood of zg. A complex function is said to be
analytic in a region if the derivative of the function exists at each point in the
TEGION.



Just as for Real Analysis one can show that the sum, product and quotient
of two analytic functions is analytic.

Lemma 1. Let f(z) and g(z) be two complex functions that are differentiable
at zg. Then f(z)+ g(2) is differentiable at zo and the derivative is given by

(f(2) +9(2)) = f'(2) + ¢/ (2). (2.1)
Proof.
S+ - f() . g(z+h) —g(2)
L (23)
= f'(z) +4'(2). (2.4)
O

Lemma 2. Let f(z) and g(z) be two complex functions that are differentiable
at zog. Then f(z)g(z) is differentiable at zo and the derivative is given by

(F(9()) = F(2)gz) + F()g (2) (2.5
Proof.

4 (1)) = i LEEDICED = E)9E) (26)
o LGN )~ f@ae )

h—0 h ’
FNICIEEE CNE s
= F(2)9(2) + 1(2)9'(2) (2.9
O

Lemma 3. Let f(z) and g(z) be two complex functions that are differentiable
at zg where g(z) satisfies the condition that g(z9) # 0. Then f(z)/g(z) is
differentiable at zy and the derivative is given by

f'(2)9(2) — f(2)g'(2)

(gl = T 2.10)
Proof.
Loyt = i L D5 1) = JC)fo(2 o
I (EE V/EESOES (EVIEE I o12)
@)+ )~ F)9(2)
Jim Y (2.13)
= F)al) + 16 fim e SEERZIE )
PN (O
= f'(2)/9(2) 720) (2.15)
_ 1))~ S ()
= 1) (2.16)



2.3 Cauchy-Riemann Equations

A complex function f(z) can be written as

u(z,y) +iv(z,y),

where z = z+4y and the functions u(z,y) and v(z,y) are the real and imaginary
components of the complex function f(z). If the function f(z) is differentiable
at a point then there is a relationship between the partial derivatives of u(x,y)

and v(x,y) at that same point.
Cauchy-Riemann Equations. If the complex function
f(z) = u(z,y) +iv(z,y),

is differentiable at z = x + 1y then

Ou  0Ov
or 9y’
ov  Ou
o oy

Proof. Let h = Az where Az € R. Then
= lim M

/
f (Z) h—0 h
L ferhn) - £
NAz—0 Az
- 1 U($+A$,y)+'LU(.’£+A:C,y)*U(I,y) 7’L"U(.’£,y)
o Az—0 Az
_ i Yt lay) —u@y) (et Aey) —iv(@,y)
Axz—0 Az Az—0 Az
Ju n Ov
= —+i—.
Ox or
Let h = iAy where Ay € R. Then
f(z+h) — f(2)
/ S
fi(z) = lim Y
o S 1)
Ay=0 iAy
. U($,y+Ay)+ZU($,y+Ay) fu(:c,y) 7Z'U<:]C,y)
= lim -
Ay—0 1A\x
= lim ’U(.’L‘,y—f—Ay)—’U((E,y) — 4 lim u(ac,y—i—Ay)—u(%y)
Ay—0 Ay Ay—0 Ay
o
Oy Z(“)y'

(2.17)

(2.18)

(2.19)
(2.20)
(2.21)
(2.22)

(2.23)

(2.24)
(2.25)
(2.26)
(2.27)

(2.28)

The theorem now follows from the fact that the real part of (2.23) is equal to
the real part of (2.28) and the imaginary part of (2.23) is equal to the imaginary

part of (2.28).

O



2.4 Curves

An important concept in complex analysis is that of a curve in the complex
plane.

Definition 5. A curve is a complex valued function z(t) that is defined on a
real interval [a,b]. Let x(t) and y(t) be the real and imaginary components of
z(t). Then z(t) can be written as

z(t) = z(t) +iy(t).

The curve z(t) is said to be continuous if x(t) and y(t) are continuous functions.
The curve z(t) is said to be piecewise continuous if x(t) and y(t) are piecewise
continuous functions. The curve z(t) is said to be differentiable if z(t) and y(t)
are differentiable functions. The derivative of the curve z(t) is defined as

2(t) = 2'(t) + iy (t).
Next let us define some useful properties of curves.
Definition 6. A curve z(t) : [a,b] — C is closed if z(a) = z(b).
Definition 7. A curve z(t) : [a,b] — C is simple if for to,t2 € [a, D]
z(tg) = 2(t1) = to = t1,
with the exception that z(a) = z(b) is allowed.
Note that with this definition a closed curve can be simple.

Definition 8. A curve z(t) : [a,b] — C is smooth if z(t) is continuous and
Z'(t) is piecewise continuous. A curve is piecewise smooth if it can be split into
a finite number of smooth pieces.

VS

a) Simple Curve ) Closed Curve ) Non Simple Curve
(d) Non Smooth Curve (e) Piecewise Smooth Curve

Figure 1: Different kinds of curves.



2.5 Integrals
The next concept to be defined is that of an integral of a complex function.

Definition 9. Let f(t) be a complex valued function that is defined on the real
interval [a,b]. Let u(t) and v(t) be the real and imaginary components of f(t).
Then f(t) can be written as

F(t) = ult) + iv(t). (2.29)

The function f(t) is said to be integrable if the following real integrals exist:
b
/ u(t) dt (2.30)
ab
/ v(t) dt (2.31)

If the function f(t) is integrable then the integral of the function f(t) on the
interval [a,b] is defined as

/a bf (t)dt = / bU(t) dt +1i /a bv(t) du. (2.32)

The above definition handles integrals along line segments on the real axis.
The definition can be extended to handle integrals along smooth curves in the
complex plane. To do this the concept of continuity of a function along a curve
is needed.

Definition 10. Let u(z) and v(z) be the real and imaginary components of
f(2). The function f(z) is said to be continuous on the curve z(t) if u(z(t))
and v(z(t)) are continuous. The function f(z) is said to be piecewise continuous
on the curve z(t) if the curve can be split into a finite number of pieces such
that f(z) is continuous on each piece.

Definition 11. The contour integral of a piecewise continuous function along
a smooth curve Cis defined as

/Cf(z) dz = /abf(z(t))zf(t) di.

The contour integral of a piecewise continuous function along a piecewise smooth
curve C' is defined as

/Cf(z) dz = ’; Ckf(z)dz,

where C' is split at each point where it is not smooth, into the smooth curves
C1,Cso,...,Cp. The integral of the function f(z) along the closed curve C is

denoted by
j{f(z) dz.
c

By convention an integral along a simple closed curve C' is taken in the
direction such that the interior of C lies to the left of the curve.



2.6 Regions

The next concept to be defined is that of a region in the complex plane. First
the concept of a connected set needs to be introduced.

Definition 12. A set S is connected if given two arbitrary points a and b in S
there exists a curve between a and b that lies in S. A connected set is called a
region.

O

(a) Connected Set (b) Non Connected Set

Figure 2: A connected and non connected set.

Another important concept is that of a simply connected region. Informally
this can be thought of as a region that doesn’t contain any holes.

Definition 13. Let S be a set. Let v(t) : [a,b] — U and u(t) : [a,b] — U be
two curves that lie in S. The curve v(t) s continuously deformable in S into
the curve u(t) if there exists a continuous function H(t,s) such that:

1. H(t,c) = v(t) and H(t,d) = u(t).
2. Iftg € [a,b] and sg € [c,d] then H(tg,s0) € S.
3. H(a,s) and H(b,s) are independent of s.

Definition 14. Let S be a set. Let v(t) and u(t) be two arbitrary curves in S
that have a common starting point and a common ending point. Then the set
S is simply connected if S is connected and the curve v(t) can be continuously
deformed in S into the curve u(t).

(a) Simply Connected Set (b) Non Simply Connected Set

Figure 3: A simply connected and non simply connected set.



The next concept that will be defined is that of a regular region. This
requires that the concept of a standard region be defined first.

Definition 15. An interior point of a region R is a point that lies in R but
does not lie on the boundary of R. A region is a standard region if it is closed
and bounded and all horizontal and vertical lines going through an interior point
of the region R intersect the boundary of R at two points.

Q C

(a) Standard Region (b) Non Standard region

Figure 4: A standard region and a non standard region.

Definition 16. A region is a regular region if it is a standard region or it
satisfies both of the following conditions:

1. The region can be split into a finite number of standard regions by splitting
the region along a finite number of horizontal lines.

2. The region can be split into a finite number of standard regions by splitting
the region along a finite number of vertical lines.

/—'\

\_/
N~

Figure 5: A regular region.

In the remainder of this section several theorems from Complex Analysis are
presented. These theorems could perhaps be proved for more general sets than
regular regions. There is however no need in this paper to prove these theorems
for more general sets.

10



2.7 Cauchy’s Theorem

An important theorem in Complex Analysis is Cauchy’s Theorem. To prove
Cauchy’s Theorem it is necessary to first introduce Green’s Theorem.

Green’s Theorem. Let C be a simple piecewise smooth closed curve that goes
along the border of a simply connected regular region R in the counter clockwise
direction. Let u(z,y) and v(z,y) be real functions that are continuous on R. Let
the partial derivatives Ou/0x,0u/dy, dv/Ox,0v/dy be continuous on R. Then

ov Ou
i(udw+vdy)—/ﬁ(£—@)dxdy.

For a proof of Green’s Theorem see [4]. The reason that Green’s Theorem
is relevant for Complex Analysis is due to the fact that the definition of a line
integral in for a function f(z,y) : R> — R? coincides with the definition of a
contour integral of the same function when the = coordinate and y coordinate
are interpreted as the real and imaginary components of a complex number.

Cauchy’s Theorem. Let C be a simple piecewise smooth closed curve that goes
along the border of a simply connected reqular region R. Let f(z) be a complex
function that is analytic on R. Then

?{c F(z)dz =0

Proof. Assume that C goes around R in the counter clockwise direction. Then
according to Green’s Theorem

ov Ju
7{C(udx+vdy)://l%(%—a—y)dxdy.

According to the Cauchy-Riemann Equations the integrand in the double inte-
gral is 0 and therefore the value of the double integral is 0. A similar argument
is used in the case where the curve C' goes in the clockwise direction. O

2.8 Residue Theorem

The next concept to be defined is that of the residue of a complex function.

Definition 17. Let the function f(z) be analytic in a punctured disc D with
center zg. The residue of f(z) at zo is defined as

Res(f, 20) = ﬁj(cf(z) iz, (2.33)

where C' is a curve that lies in D that goes around a circle that is centered on
zo in the counter clockwise direction.

The reader might be concerned that the residue is not well defined since the
radius of the circle that the curve C goes around is not specified. The following
lemma should alleviate that concern.

11



Lemma 4. Let the function f(z) be analytic in a punctured disc D with center
zo. Let C1 be a simple piecewise smooth closed curve in D that goes around
a circle centered on zy in the counter clockwise direction. Let Cy be a simple
piecewise smooth closed curve in D that goes around a circle centered on zy in
the counter clockwise direction. Then

f(z)dz= f(z)d=.
Cq Ca

Proof. If the radius of the circles that the curves C; and Cs go around are the
same then the theorem is obviously true. Assume that the radius of the circle
that the curve C; goes around is greater than the radius of the circle that the
curve Cs goes around. Pick a point a on C; and a point b on Cy such that a
and b lie on a ray from zo. Let P be the path that is the composition of the
following paths:

1. P;: A curve starting at a and going around C; in the counter clockwise
direction.

2. P5: A path that goes along the line segment from a to b.
3. P3: A path that starts at b and goes around Cj in the clockwise direction.
4. Py: A path that goes along the line segment from b to a.

It is obvious that P is a simple piecewise smooth closed path. Let R be the
regular region enclosed by P. The function f(z) is analytic on R. It is obvious
that

f(z)dz+ | f(z)dz=0. (2.34)
Py Py
According to Cauchy’s Theorem
fe)dz+ | f(z)dz+ | f(z)dz+ | f(z)dz=0. (2.35)
Py Py P3 Py
Substituting (2.34) into (2.35) yields
f)dz+ | f(z)dz=0. (2.36)
Py P
The Lemma now follows from the fact that
f(2)dz= | f(z)dz,
Cl Pl
f(z)dz=— | f(2)dz.
C2 P3

O

An important theorem in Complex Analysis is the Residue Theorem. It can
be viewed as an extension of Cauchy’s Theorem that handles the case when the
function that is being integrated is analytic everywhere inside and on the curve
except at a finite number of points.

12



Residue Theorem. Let C be a simple piecewise smooth closed curve that goes
along the border of a simply connected regular region R in the counter clockwise
direction. Let the function f(z) be analytic in R except at the isolated interior
points z1,22,...,2n. Then

j{ f(z)dz = 2mi iRes(f, 2k).
¢ k=1

Proof. For each point z; find a point u; on the curve C such that none of
the line segments intersect. For each of the points zj create a curve Cj that
goes along a circle centered on z; in the counter clockwise direction and that
does not intersect the curve C'. Furthermore the radius of each circle should be
sufficiently small to ensure that the curve C} only intersects the line segment
from zp to ui but not any of the other line segments.

Figure 6: The curve C and the curves Cy.

Showing that the theorem is true is equivalent to showing that

jif(z) dz = kZ::l Ckf(z) dz.

Create a new curve T that goes along the curve C but that at each of the
points ug makes a detour along the line segment from uy, to zx until it reaches the
curve C. The curve T then goes along the curve C} in the clockwise direction
until it reaches the line segment again at which point the curve T' goes back
along the line segment to the point ur. Let Py be the part of the curve T that
goes along the curve Cj.

Figure 7: The curve T'.
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The curve C is a simple piecewise smooth closed curve and it is obvious that
the same is true for the curve T'. Furthermore the curve T lies on the border of
a region R that is regular. It is obvious that the function f(z) is analytic on R.

According to Cauchy’s Theorem

f[; £(=)dz = 0. (2.37)

It is obvious that for each line segment the integrals along the line segment
cancel each other out and therefore the above equation can be transformed into

j'{ flz)dz+) "¢ flz)dz=0. (2.38)
The theorem now follows from the fact that

f(z)dz=— ¢ f[f(z)dz.
Cy Py,

2.9 Neighborhood
The next concept to be defined is that of a neighborhood of a point.

Definition 18. Let N(c,r) = {z € C||z —¢| < r}. The set N(c,r) is known as
a neighborhood of c.

A neighborhood in C is an open disc.

2.10 Roots, Zeroes and Singularities

The next concept to be formalized is that of a root of a polynomial.

Definition 19. Let p(z) be a polynomial. The real or complex number ¢ is said
to be a root of p(z) if
p(c) = 0. (2.39)

A root ¢ of p(z) is said to be a simple root if
p(2) = (z = ¢)a(2), (2.40)

where q(z) is a polynomial and q(c) # 0.
Letn € N and n > 1. A root ¢ of p(z) is said to be a root of order n if

p(z) = (2 = ¢)"q(2), (2.41)

where q(z) is a polynomial and q(c) # 0. A root of order 2 or greater is called
a multiple root.

The concept of a zero of an analytic function can be formalized in a similar
manner to the concept of a root of a polynomial.

14



Definition 20. Let f(z) be an analytic function. The real or complex number
c is said to be a zero of f(z) if

f(e) =0. (2.42)

A zero ¢ of f(2) is said to be a simple zero if there is an analytic function g(z)
defined in a neighborhood of ¢ such that

f(z) = (2 = 9)g(2), (2.43)

where g(c) # 0.
Letn € Nandn > 1. A zero ¢ of f(2) is said to be a zero of order n if there
is an analytic function g(z) defined in a neighborhood of ¢ such that

f(z) = (z=¢)"9(2), (2.44)
where q(c) # 0.

The next concept to be introduced is that of an isolated singular point of a
complex function.

Definition 21. Let f(z) be a function that is analytic in a neighborhood of zo
except at the point zq itself. Then zq is called an isolated singular point of f(z).

A pole is an important type of isolated singular point.

Definition 22. Let f(z) be an analytic function. Let n € N and n > 1. The
complex number ¢ is said to be a pole of order n if there is an analytic function
9(z) defined in a neighborhood of ¢ such that

9(2)
= 9% 2.45
1) = 22 (2.45)
where g(c) # 0. If f(z) has a pole of order n at ¢ then f(z) is said to have a
pole at ¢
The complex number ¢ is said to be a simple pole if there is an analytic
function g(z) defined in a neighborhood of ¢ such that

where g(z) # 0.
A zero ¢ of f(z) is said to be a simple zero if there is an analytic function
g(z) defined in a neighborhood of ¢ such that

f(2) = (2 = c)g(2), (2.46)

where g(c) # 0. A zero ¢ of f(z) is said to be a zero of order n if there is an
analytic function g(z) defined in a neighborhood of ¢ such that

f(z)=(z=0)"g(2), (2.47)
where q(c) # 0.
The next concept to be defined is that of a meromorphic function.

Definition 23. A complex function f(z) is said to be meromorphic in a region
R if it is analytic in R except at a finite number of isolated singular points where
the function has poles.
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2.11 Cauchy’s Integral Formula

An important theorem in Complex Analysis is Cauchy’s Integral Formula. To
prove Cauchy’s Integral Formula it is necessary to first introduce some material
concerning integrals. The proof of the following Lemma is due to Rudin (See [6]).

Lemma 5. Let f(x) be a piecewise continuous function that is defined on the

interval [a,b]. Then
b
/ flx)dzx

Proof. Let I be the magnitude of the integral of f(z)

b
< / ()| da. (2.48)

b
I= / f(z)dx|. (2.49)
Let ¢ be defined as follows
FIs 1
_ +1 %fI >1 (2.50)
-1 ifI<l.
Then
lef(x)| = lel|f(@)] = | f(z)] (2.51)
and

I— - c/abf(x) do = /b of () do (2.52)

a

/abf(x)da:

b b
< [ let@)do= [ |fa)|ds (2.53)

O

The following theorem shows the magnitude of a curve integral of a piece-
wise continuous function along a curve is bounded by the length of the curve
multiplied by an upper bound for the magnitude of the function along the curve.

Theorem 1. Let f(z) be a function that is continuous on a curve C. Let L be
the arc length of the curve. Let M be an upper bound of |f(z)| on C. Then

’ /C £()dz

Proof. Let z(t) : [a,b] — C be the curve C. Let I be the integral

/Cf(z) dz

Applying Lemma 5 to the above inequality results in

< ML. (2.54)

I =

b
/ F(0)#(t) dt]

b b
1< [C1rGeE ol = [ 1ol ol (2:55)
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Since M is an upper bound for |f(z)| the above inequality can be transformed
into

I< /sz’(t)|dt - M/b|z’(t)|dt (2.56)

All that remains now is to show that
b
/ |2/ ()| dt < L. (2.57)
Let z(t) and y(t) be the real and imaginary components of z(t). In other words

z(t) = z(t) +iy(t). (2.58)

The magnitude of the derivative of z(¢) is equal to

|2'(0)] = |2 (t) + iy ()] = V(@' (1)? + (y/ ()2 (2.59)

Then

b b
/ 12/(t)| dt = / VEO? T D)2 dt (2.60)
which is equal to the arc length of z(t). O

Corollary 1. Let f(z) be a function that is piecewise continuous on a curve C.
Let L be the arc length of the curve. Let M be an upper bound of |f(z)| on C.

Then
/ f(z)dz
C

The proof of Cauchy’s Integral Formula also uses the fact that an analytic
function is continuous.

< ML. (2.61)

Lemma 6. If the function f(z) is analytic in a set S then f(z) is continuous
in S.

Proof. Let zg be a point in S. The function f(z) is continuous at zg if
Jim 17(0) = Fz0)| = 0. (2.62)

The expression on the left hand side of the above equation can be rewritten as

f(Q) = f(=0)
¢— 2

The lemma follows from the following statements

lim [f(¢) = f(z0)| = lim

(—z0 (—z0

lim [ — 2| (2.63)

¢—z0

1. The first limit on the left hand side of (2.63) is by definition equal to
f'(20). The limit exists since f(z) is analytic.

2. The second limit on the left hand side of (2.63) is equal to 0.

17



Cauchy’s Integral Formula relates the value of an analytic function at an
interior point of a regular region to a curve integral going around the border
of the region. The fact that the behavior of an analytic function at a point is
determined by the behavior of the function along a curve enclosing the point is
quite surprising.

Cauchy’s Integral Formula. Let C be a simple piecewise smooth closed curve
that goes along the border of a regular region R in the counter clockwise direction.
Then for any interior point z of R

£(z) = % fc Cf (_C)Z dc. (2.64)

Proof. Let Cs be a curve that goes in the counter clockwise direction along a
small circle inscribed in the curve C' centered on z with radius 9.

Figure 8: The curve C' and the curve Cs.

Then according to Cauchy’s Theorem

}'{ 1O ge— f £ 4. (2.65)
C

¢(—z C5C—Z

The right hand side of the above equation can be rewritten as

Cs Cs

(—=z -z Cs (—=z

By performing the variable substitution ¢ = z + 6e'® the first integral on the
right hand side of (2.66) becomes

d( 27 i5€i0 ]

The function f(z) is analytic and therefore according to Lemma 6 continu-
ous. Given € there exists r such that if |¢ — z| < r then |f(¢) — f(2)| <e.

According to Theorem 1 the second integral on the left hand side of (2.66)
satisfies the following inequality

©) = f(z)

cs C—=z2

1£() = f(2)]

dC. .
Cs IC — 2| ¢ (2.68)

"
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Choose 6 such that if | — z| = ¢ then |f(¢) — f(2)| < e. Then the left hand side
of (2.68) satisfies the following inequality

Q) =@ 4o € f ac = ome. (2.69)

o 1¢—2| 0 Jos
The theorem now follow from the fact that the first integral of of the right hand
side of (2.66) is equal to 27i and as € — 0 the second integral on the right hand
side of equation (2.66) vanishes. O

Cauchy’s Integral Formula can be used to show that the derivative of an
analytic function is itself analytic.

Theorem 2. Let C' be a simple piecewise smooth closed curve that goes along
the border of a regular region R in the counter clockwise direction. Let f(z) be
a function that is analytic on R. Let D be the set of interior points of R. Then
f'(2) is analytic on D. Furthermore

1 f(©)

F2) =5 raerks (2.70)
" 1
=50 f 1 Cf@g)g dc. (2.71)

Proof. Let L be the length of the curve C. If { lies on the curve C then let U
be an upper bound of |f(¢)]

IF(OI <U. (2.72)
If ¢ lies on the curve C then let 2 be a lower bound of |¢ — z|

20 < | — 2, (2.73)
where § > 0. If |h| < § and ¢ lies on the curve C then
[C—(z+h)|>|C—2—|h| >26 -6 =0. (2.74)

Let z be an arbitrary interior point of R. According to Cauchy’s Integral
Formula

fet+h)—fz) 11 f(©) 11 f(©)

TR =S Ay rrwn Sl et (S L
i O (i ) ® e
A=t =0
S A e 27
_ % ) (§<j<(<z—+<;§(?)_+2;2 d¢ (2.79)
_ ! 1O ge v, (2.80)

2ri c (¢ —2)?
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where r(h) is equal to

h 1(Q)
2mi Jo (C— (2 + ) (€ —2)?

To show that f/(z) exists and is given by (y) it is sufficient to show that

r(h) = dc. (2.81)
lim [r(h)] = 0. (2.82)

If ¢ lies on the curve C' and |h| < ¢ then according to (2.72), (2.73) and
(2.74) the following inequality holds
/(O] u

f(<)
‘(C —(z+h))(¢—2)? = 1(¢ = (2 + h)|(C — 2)]2 < 5(20)2° (2.83)

If |h| < ¢ then according to Theorem 1 and (2.83) the following inequality holds

_ 1Al 7{ f©) Y
rl = | e e r e =2 %| < 2r 5o’ (2:84)
Therefore according to the above inequality
lim |r(h)| =0, (2.85)

h—0

and therefore (2.70) holds.
Let z be an arbitrary interior point of R. According to (2.70)

fa+h)—f'(z) 11 f(©) 11 f(©)

h " h2mi —(2+h))? a6 - h2mi o (C— 2)2 dc (2:86)

1 1
i 7{ 10 (e <<—z>2> e

11 (€—2)?—((C—2)—h)?
= Tﬁ'{ 1o IR “ 25

—h
7{ & + h s (2.89)
(z+h))+h
T 2mi j{ (z+h))%(¢ —2)? d (2.90)
)47 2.91)
92)
where g(h) is equal to
1 2

o) = 5= § 1O e (299)
(2.94)
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The function g(h) can be split up as follows

1 2
o) = 5= § 1O e (2.95)
272” #.5© « Z(i h)jzc 7 & (2.96)
_ +h)+
- ?{ MO G (297
= (2.98)
where u(h) and v(h) are equal to
u(h) = % > 1 Cf(%g (2.99)
_ 2 f©)
U e PRt (2100

To show that f”(z) exists and is given by (y) it is sufficient to show that

}lbln%) |r(h)| =0, (2.101)
}llli%‘ v(h)| =0. (2.102)

However it has already been show that (2.101) holds. Therefore it is sufficient
to show that (2.102) holds.

If ¢ lies on the curve C and |h| < § then according to (2.72), (2.73) and
(2.74) the following inequality holds

[0 . 1) _U
C=GHMC—2P| = TC=G+mIC—2F ~ 32867

If |h| < 4 then according to Theorem 1 and (2.103) the following inequality
holds

(2.103)

_|2h] f(0) || U
()| = 20 fc e Y < (2.104)
Hence
Tim [u(h)| = 0. (2.105)

O

Corollary 2. Let C' be a simple piecewise smooth closed curve that goes along
the border of a regular region R in the counter clockwise direction. Let f(z) be
a function that is analytic on R. Let D be the set of interior points of R. Then
all the derivatives f(k)(z) for k=1,2,... exist and are analytic on D.

This is quite a surprising result and again shows that a complex function
being analytic is much stronger than a real function being differentiable.
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2.12 Winding Number

The next concept to be introduced is that of the winding number of a curve
around a point. The material in this subsection is based on material presented
n [13].

Definition 24. The winding number of the curve C' around the point zy is
defined as

W(O,zo):ifc dz_ (2.106)

21 )

As the following theorem shows the winding number can be used to figure
out how many times a curve winds or goes around a point.

Theorem 3. Let C' be a piecewise smooth closed curve that does not intersect
zo. Let z(t) : [a,b]— > C be a parametrization of the curve C defined as

2(t) = 2o + r(t)e?®, (2.107)

where r(t) and 6(t) are piecewise smooth functions and r(t) > 0. Then

_ 0(b) = 0(a)
Proof. By definition
dz b2
= dt. 2.109
%Cz—zo /Gz(t)—zo ( )
The derivative of z(t) is equal to
2 () =" (£)e®® (1) Db’ (¢). (2.110)
Substituting (2.107) and (2.110) into (2.109) results in
dz b2t
= -7 11
et A e .
b (1) 0i0(t) i0(t) ;1
:/ ' (t)e\) 4 r(t)e’Mif' (t) i@t (2.112)
a e
7/ T gy ba’ (2.113)
AR |
= [In(r(t))]% +i[6(t)]° (2.114)
=In(r(b)) — In(r(a)) + i(6(b) — 6(a)). (2.115)
The above equation can be transformed into
7{ o) - 0(a), (2.116)
c R~ 20
since z(a) = z(b) and therefore
In(r(a)) = In(|2(a)]) = In(|2(5)]) = n(r(b)). (2.117)
Dividing both sides of (2.116) by 2mi results in
i dz _ 6(b) —H(a). (2.118)
2mi Jo z— 20 2
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which by definition is equal to

6(b) — 0(a)

W(C, Z()) = 271_

(2.119)

O
As the following Lemma show a winding number will always be an integer.

Lemma 7. Let C be a curve that does not intersect the point zo. Then W (C, zp)
is an integer.

Proof. Let z(t) : [a,b]— > C be a parametrization of the curve C defined as
2(t) = 20 + (1), (2.120)

Since C is a closed curve
0(b) = ba + k2m, (2.121)

for some integer k. The above equation can be rewritten as
0(b) — 0(a) = k2, (2.122)
According to Theorem 3

0(t) — 6(a)

W(C, Zo) = o

(2.123)

Substituting (2.122) into (2.123) results in
W (C,z) = k. (2.124)
O

In other words the winding number W (C, z) counts the number of times
the curve C goes around the point zy. There are three cases:

1. A positive non zero winding number means that the curve goes around
the point zp in the counter clockwise direction more times than it goes
around the point zy in the clockwise direction.

2. A negative winding number means that the curve goes around the point
zp in the clockwise direction more times than it goes around the point zg
in the counter clockwise direction.

3. A winding number of 0 means that the curve does not go around the point
zo at all or that the curve goes around the point zy the in the counter
clockwise direction the same number of times it goes around the point zg
in the counter clockwise direction.
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2.13 Argument Principle

An important theorem in Complex Analysis is the Argument Principle. Before
the Argument Principle can be proved it is necessary to first introduce a couple
of Lemmas related to the residues of analytic and meromorphic functions.

Lemma 8. If f(z) is analytic in a neighborhood N of zy then
Res(f, z) = 0. (2.125)

Proof. Let C be a curve that goes in the counter clockwise direction around a
circle that lies in N and that has center z5. Then by definition

Res(f,z0) = %myif(z) dz. (2.126)

According to Cauchy’s Theorem

]{ f(z)dz =0, (2.127)
c

since f(z) is analytic. O

Lemma 9. Let f(z) and g(z) be two complex functions that are analytic in a

neighborhood of c¢. Furthermore let g(c) # 0. Let h(z) be the complex function
h(z) = ——=. (2.128)

Then h(z) is analytic in a neighborhood of c.

Proof. The function ¢(z) is analytic in a neighborhood N of ¢ and therefore
f(2) is continuous in N. Since g(z) is continuous in N and g(c) # 0 there is a
neighborhood M of ¢ such that ¢g(z) # 0 in M. Hence there is a neighborhood
of ¢ where g(z) is both analytic and non zero. O

Lemma 10. Let f(z) and g(z) be two complex functions that are meromorphic
on D. Then for any point zg € D

Res(af + bg, z0) = aRes(f, z0) + bRes(g, 2o)- (2.129)

Proof. Let C be a curve that goes in the counter clockwise direction around a
small circle centered on zp. Choose the radius r of the circle such that f(z) is
analytic in the punctured disc centered on zy with radius 7.

Res(af +bg, z0) = %j{ af(z) +bg(z)dz (2.130)
T Jc

= a% %c f(z)dz + b% y{jg(z) dz (2.131)

= aRes(f, z0) + bRes(g, 20). (2.132)

O
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Lemma 11. Let f(z) be the complex function

a
f(z) = Ep—— (2.133)
Then the residue of f(z) at zq is
Res(f, zp) = a. (2.134)

Proof. Let C be a curve that goes in the counter clockwise direction along a
circle centered on zg. Then

Res(f,zO):if © g ! dz =aW(C,z). (2.135)
C

; a—:
211 zZ— 29 21 Jo 2z — 2o

The winding number W (C, zo) = 1 since the curve C goes once around the point
zp in the counter clockwise direction. Therefore

Res(f, zp) = a. (2.136)
O

The following Lemma gives an explicit formula for calculating the order of
a root and the order of a pole.

Lemma 12. If the meromorphic function f(z) has a root of order k at ¢ then
the order of the root ¢ can be calculated using

Res <J;((j)),c> — k. (2.137)

If the meromorphic function f(z) has a pole of order k at ¢ then the order of
the pole ¢ can be calculated using

Res <f/(z),c> = —k. (2.138)

Proof. Assume that the function f(z) has a root of order k at ¢ or a pole of
order k at ¢. Then there exists a complex function g(z) that is analytic in a
neighborhood of ¢ that satisfies g(z) # 0 such that the function f(z) can then
be written as

f(2) = (z = e)FFg(2), (2.139)
where the sign of k # 0 is positive if ¢ is a root and negative if ¢ is a pole. The
derivative of f(z) becomes

f'(z) = £k(z = ) 1g(2) + (2 — ) (2). (2.140)
The function f’(z)/f(z) can then be written as

f'(z) _ Ek(z =) lg(2) + (2 —0)**g'(2) £k L 9)
f(2) (z = c)Fg(2) z—c  g(z)

Taking the residue of both sides of the above equation and applying Lemma 10
results in

Res <J;((ZZ)),C> = Res (Zi_kc,c> + Res @l((j)),c) . (2.142)
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According to Lemma 8 the above equation is equal to

Res (J;/((ZZ)),C) — Res (j_kcc> 7 (2.143)

since ¢'(z)/g(z) is an analytic function. Applying Lemma 11 to the the above

equation results in
f'(2) )
Res ,c| = *k. 2.144

(75 214

O

The next concept to be defined is that of the image of a function along a
curve.

Definition 25. Let C be a curve with the parametrization z(t) : [a,b] — C. Let
f(2) be a function that is continuous on C. Let u(t) be a curve. Then u(t) is
the image of f(z) on the curve C if

u(t) = F(=(2)). (2.145)

The argument principle relates the number of zeroes and poles of a function
f(2) in a region R bounded by a curve C to the winding number around the
origin of the image of f(z) on the curve C.

Argument Principle. Let C be a simple piecewise smooth closed curve that
goes in the counter clockwise direction along the border of a regular region R.
Let f(z) be a function that is meromorphic on R and that does not have any
zeroes or poles on C'.

Let N be the number of zeroes of f(z) in R and let P be the number of poles
in of f(z) in R where a multiple zero or pole is counted according to its order.
Let C* be the image of the function f(z) on the curve C. Then

1
2mi Jo f(2)

Proof. If f(z) has a zero or pole at ¢ then there is a complex function g(z) that
is analytic in a neighborhood of ¢ with g(¢) # 0 such that f(z) is equal to

dz=N—P=W(C*0). (2.146)

f(z) = (== 0)g(2), (2.147)
where k € N and k # 0. The derivative of f(z) is equal to
F'(2) =k(z = )" g(2) + (2 = )¢/ (2). (2.148)
Let h(z) be the complex function
_I'®)
h(z) = o (2.149)
Substituting (2.147) and (2.148) into (2.149) results in
_ k=0 lg(z) + (- 0)*g'(2)
h(z) = =) (2.150)
_ kg(z) + (2= )g'(2)
= (2.151)
_ =) (2.152)
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where u(z) is equal to

u(z) = . (2.153)

According to Lemma 9 the complex function h(z) will be analytic in a neigh-
borhood of ¢ since both the numerator and denominator of u(z) are analytic in
a neighborhood of ¢ and the denominator of u(z) is non zero at c.

Hence h(z) is a meromorphic function that has a simple poles at the points
where f(z) has a zero or a pole.

Therefore according to the Residue Theorem

a b
27rz f dz = kZ:l Res(h, z) + ; Res(h,p;), (2.154)
where z1, 29, . .., 24 are the zeroes of f(z) and p1, pa, ..., py are the poles of f(z).

Let ¢x be the order of the zero z,. Let dj be the order of the pole py.
According to Lemma 12

ZRes(h, 2k) = Z ¢y = N. (2.155)
k=1 k=1

According to Lemma 12

b b
> Res(h,p;) =Y _ —d; =—P. (2.156)
j=1 j=1

Substituting (2.155) and (2.156) into (2.154) results in

f'(z)
o f ~P. (2.157)

Z

Performing the variable substitution w = f(z) on the integral in the above
equation results in

Nopo L LG Lj([ W e, o). (2.158)
-

2rt Jo f(2) 2mi w

O

2.14 Rouché’s Theorem
An important theorem in Complex analysis is Rouché’s Theorem.

Rouché’s Theorem. Let C' be a simple piecewise smooth closed curve that goes
in the counter clockwise direction along the border of a regular region R. Let
f(2) and g(2) be analytic on R. If|f(z)| > |g(2)| on C then f(z) and f(z)+g(z)
will have the same number of zeroes in R where the zeroes are counted according
to their order.
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Proof. Let the complex function w(z) be

f(z) +9(2)
fz)

If z lies on the curve C then f(z) # 0 since |f(2)| > |g(#)| > 0 on R. Therefore
w(z) is well defined on C' and the curve integral

w(z) =

(2.159)

1 w)
27t Jo w(2)

dz (2.160)

is well defined. Let N be the number of zeroes of w(z) in R where each zero
is counted according to its order. Let P be the number of poles of w(z) in R
where each pole is counted according to its order. Let C* be the image of w(z)
on the curve C. If z lies on the curve C then

w(z) — 1] = AL (2.161)

£ (=)
Therefore C* lies in the open disc centered on the point 1 with radius 1. The
curve C* can thus never wind around the origin and therefore W(C*,0) = 0.
Then according to the Argument Principle N = P. The theorem now follows
from the fact that the number of zeroes of f(z) + g(z) in R is equal to the
number of zeroes of w(z) in R and the number of zeroes of f(z) in R is equal
to the number of poles of w(z) in R. O
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3 Numerical Root Finding

There are several well known methods for finding the roots of a real polynomial.
Some of these methods can be used to find the roots of a complex polynomial.
In this section a method for finding all the roots of a complex polynomial and
all unique roots of a complex polynomial ignoring multiplicities are developed.
This section is based on material presented by Press et al. (see [14]) and Ralston
and Rabinowitz (see [5]).

3.1 Newton’s Method

The most well known numerical method for finding the zeros of a function is
Newton’s method. Any method that can be used to find the zeros of a general
function can obviously be used to find the roots of a polynomial. Newton’s
method is such a method that can be used to find the zeroes of a general
function. The function needs to be differentiable near the zero and also have an
invertible differential.

Newton’s method works as follows. Given an initial guess zy of the value of
the root create the number sequence {z} for k = 0,1,2... where z is defined

by
Zk+1 = Rk — S ()
f'(2k)

If the starting value z;, was chosen to be close enough to a root then the sequence
{21} will converge to the root.

A more formal argument for why Newton’s method works follows. Begin by
Taylor expanding the function f(z) around the point zj.

(3.1)

n

)= fD () (2 — 2) (3.2)

Jj=0

The best linear approximation of f(z) at zj is given by the first two terms of
the Taylor series.

t(z) = f(zx) + f'(20) (2 — z1) (3.3)

Now make the assumption that is at the core of Newton’s method, namely that
the root of t(z) will be a better approximation of the root than z;. Let 241 be
the root of ¢(z). In other words 211 should satisfy the following equation.

t(zk41) =0 (3.4)
Expanding (4) using the definition of ¢(z) we get the following equation.
fze) + f'(2) (241 — 2) = 0 (3.5)

Subtracting f(zx) from both sides of the equation, then dividing both sides of
the equation with f/(z;) and finally adding z; to both sides of the equation

gives us
f(zk)

Zk+1 = Rk — f/(zk)

To find a zero of the function f(z) start with an initial guess zo and iterate
until f(2)/f’(z) becomes sufficiently small. It can be proved that for complex

(3.6)
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functions that are differentiable with f(z;) # 0 near the root, z will converge
to a zero if the initial guess zq is sufficiently close to a zero of the function. If
20 is not close to a zero of f(z) then Newton’s method is not guaranteed to
converge.

Newton’s method is not suitable for use as a general purpose root finding
algorithm since convergence is not guaranteed. For Newton’s method to be
guaranteed to converge converge some other method for obtaining information
about the location of the root is needed. Once the root is located Newton’s
method can be used to refine the root to any desired accuracy.

3.2 Laguerre’s Method

Laguerre’s method is a commonly used numerical method for finding the roots
of a polynomial. It can be applied to both real and complex polynomials and
it will find both real and complex roots. The method works by constructing a
number sequence {z;} that in practice always converges to the root.

The elements of the sequence are defined using the following recursive for-
mula where z( is the initial guess at the value of the root.

n

G(zk) £ v/(n — 1) (nH () — G?(z1))

The sign is chosen to maximize the magnitude of the denominator. The helper
functions G(z) and H(z) are defined as follows

Zk+1 = Rk — (3.7)

G(z) = 1;/ ((j)) (3.8)
H(z) = G?(z)—’;:((;)) (3.9)

What follows is a motivation for why the method works that is based on ma-
terial presented by Weisstein (see [10]). According to the fundamental theorem
of algebra a polynomial of degree n can be written as

p(z)=(z—o)(z—az)...(z — an) (3.10)

where «aq,qs,...,q, are the roots of the polynomial. Taking the derivative of
both sides of (3.10) yields

P(z) = (z—)...z—an)+-+(z—a1)...(z—ay)+... (3.11)
= p(z)( S — ) (3.12)

zZ—Qp  Z— Qg z—ap

which after dividing both sides by p(z) becomes

(2 1 1 1
P _ + T (3.13)
p(2) z—Q1 Z— Qg Z— Qp,

and is equal to G(z) by definition. Multiplying both sides of the above equation
by —1 results in
1 1 1 '(z
+..+ :—p< ). (3.14)

+ .
al—2z2 Qg —z ay — 2 p(2)




Taking the derivative of both sides of the above equation yields

R S 1 _ PR () - (2)p(2)
(2 —aq)? e (z — ap)? p(z)? (3.15)
_ (P@) ()
a (p(Z) ) p(2) (3.16)
G*(z2) — ];((ZZ)) (3.17)

which is equal to H(z) by definition. Take note of the fact that the functions
G(z) andH(2) can both be expressed in terms of differences between z and the
roots ay, g, ..., Q.
1 1 1
G(z) = + +..+ (3.18)

z—Qa1  Z— Qg zZ— Qp

1 1 1
H(z) = TR eE R

CErw (3.19)

Assume that the difference between z and aq is equal to a and that the differ-
ence between z and all other roots is b. Rewriting H(z) and G(z) using these
assumptions yields the following.

n—1

_ % . (3.20)
H — % ”T_zl (3.21)

Solving for a we get
a= n (3.22)

G(zr) £/ (n — 1) (nH (2) — G2(21))

According to the assumption a = z — o7 which in turn means that a; = z — a.
Hoping that z — a will be a better approximation to the root than z is we arrive
at the following recursive formula for zj

n

G(zi) £ +/(n — 1)(nH (2) — G2(21))

The sign is chosen to minimize the denominator. This is to avoid loss of signif-
icance. To find a root start with an initial guess zo and iterate until a becomes
sufficiently small.

Zk+1 — Rk — (323)

3.3 Polynomial Deflation

If « is a root of the polynomial p(z) then the polynomial p(z) can be written as

p(z) = (= — a)q(2) (3.24)

where the degree of ¢(z) will be 1 lower than the degree of p(z). The process of
calculating ¢(z) is known as polynomial deflation. The division algorithm can
be used to calculate

a(z) = (3.25)



but in this case since the divisor is a linear polynomial there is a better way
to perform the above calculation: Horner’s method can be used to deflate the
polynomial using fewer operations than the division algorithm would require.

Horner’s method is an algorithm for evaluating a polynomial. It can also
be used to calculate the quotient and remainder of dividing a polynomial by a
linear polynomial.

Horner’s Method. Assume that p(z) = an2" + ap_12""1 + -+ + a1z + ag.
Create a new set of numbers by, defined by

b, = a, (3.26)

b = ap+brri12o fork=n—1,n-2,...,1,0 (3.27)
Then p(20) = by and p(z) = (2 — 20) (bpz" "L + by_12""2 + - -+ + bz + by) + bo.
Proof. Assume that

z) =a,z" + Z apz” (3.28)

and
by, = ap (3.29)
b = ag + br+120 fork=n—-1,n-2,...,1,0 (3.30)

Solving the above equations for a,, and ay results in

an = by (3.31)
ar = by — br1120 fork=n—-1,n-2,...,1,0 (3.32)
Substituting the above equations into (3.28) results in

n—1
p(z) = bp2"+ > (bk — bry120)2" (3.33)

k=0

n

= bp2" 4> (br-1 — brzo)2F (3.34)

k=1
"3 (bre1 — brzo)2" T+ by — b1z (3.35)

k=2
Splitting the summation into two parts yields
p(z) = bu2"+ Y b1z Y —z0bezt Tt = zby + b0 (3.36)
n—1 n
= byz" + Z bz + Z —20bpz" T + by (3.37)
= 2) b=z ) bt by (3.38)
k=1 k=1
= (z—20) ) bp2" ! 4o (3.39)
k=1

From the above equation it is obvious that p(zo) = bp. O
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When the above algorithm is used to calculate the quotient and remainder of
dividing a polynomial by a linear polynomial then it is also known as synthetic
division.

3.4 Finding All Roots

The methods discussed so far only find single roots of a polynomial. To find all
the roots of the polynomial p(z) the following approach can be used. Apply the
following process recursively until all the roots have been found.

1. Use Laguerre’s method to find a root « of the polynomial.
2. Factor out the root «a using synthetic division.

The calculated roots are not exact and will contain errors. This in turn means
that the coefficients of the deflated polynomials will also contain errors. The
error will grow each time the polynomial is deflated. After all the roots have
been found they are polished using Newton’s method to remove these errors.

3.5 Multiple Roots

To find all the unique roots of a polynomial ignoring their multiplicities the
following method can be used. Assume that p(z) can be written as

p(z) = (z —a)P(z—ax)* .. (2 — ay)kn (3.40)

where aq, ..., a,, are unique roots and k1, ..., k,, their multiplicities. Finding
the unique roots of the above equation is equivalent to finding all the roots of
the following polynomial.

gz)=(z—a)(z—a2)...(z —am) (3.41)
The polynomial ¢(z) is equal to p(z) divided by the following polynomial
dz)=(z—a)" Nz —a) L. (z—ay)n! (3.42)

Finding the unique roots of p(z) is equivalent to finding all the roots of p(z)
divided by d(z). Since a method for finding all the roots of a polynomial already
exists all that remains is the calculation of d(z).

Lemma 13.
gcd(p(2),p'(2)) = (2 — al)kl_l(z — 042)]"2_1 oo (z— 04m)km_1 (3.43)

Proof. Assume that the polynomial p(z) can be written as

o) =L - )" (3.41)
Let ¢(z) be defined as
gz)=(z—a)(z—az)...(z — am) (3.45)



Let d(z) be defined as
d(z) = (z — o)™ Nz —a)™ 1. (2 — ay,) ! (3.46)
It is obvious that p(z) = ¢q(z)d(z). Taking the derivative of p(z) results in
P(z) = k(z—a)" M z—a) .  (z—an) +

(z— o) ka(z — )27 L (2 — am) P +

(Z — al)kl (z _ a2>kz o k‘m(z _ a)km—l

. kip(z)
N Z (z —ay)

The polynomial d(z) is a divisor of both p(z) and p’(z). Let r(z) be defined as

r(z) =Y Fiqe) (3.47)

o ()

Then p'(z) = d(z)r(z). Showing that d(z) is the greatest common divisor of p(z)
and p'(z) is equivalent to showing that ¢(z) and r(z) do not have any common
factors.

Assume that (z — ;) divides ¢(z). From the definition of r(z) it is trivial
to see that (z — a;) will divide all but one of the terms of r(z). The remaining
non zero term is not divisible by (2 — ¢;). Therefore (z — ;) will not divide
r(z). But this means that ¢(z) and r(z) do not have any common factors.

O
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4 Families of Polynomials

First it is necessary to introduce the concept of a family of polynomials.

Definition 26. A family of polynomials is a function p(w) : C — C[z]. By
convention a family of polynomials will be parameterized by the variable w and
the generated polynomials will be polynomials in z. The domain of p(w) is called
the parameter plane.

A polynomial in two variables with complex coefficients

fz,w) = chjwkzj (4.1)

can be viewed as a polynomial in z
flzow) = ep(w)2, (4.2)

where the coefficients c;(w) are complex polynomials in w. In other words a
bivariate polynomial f(z,w) can be viewed as a family of polynomials. In this
section several theorems regarding complex univariate and bivariate polynomials
are presented.

4.1 Multiple Roots

There is an interesting relationship between the derivatives of a polynomial and
the roots of the same polynomial.

Lemma 14. p(2) = (z — a)"q(z) = pYW(2) = (z — )™ Ir(2) if 0 < j < m.

Proof. The proof is by induction on j. It is obvious that the lemma is true for
7 =0. Assume that the lemma is true for j = k < m. Then for &k < m

d
(k+1) B )
PG = = (pP()

= L (ay )
= (m—k)(z—a)" "  r(z) + (z —a)" M (2)
= (z—a)" " D (m —E)r(2) + (2 — )™~ * D (z — a)r'(2)
= (z—a)" " g(z)

which means that the lemma is true for j = k+1 < m. ]

Theorem 4. Let p(z) be a compler polynomial. Then p(z) = (z — a)¥q(2) if
and only if p(a) = 0,p'(a) = 0,...,p*V(a) = 0.

Proof. Assume that p(z) = (2 — a)¥q(z). From Lemma 14 is can be seen that
the first k — 1 derivatives of p(z) will have a root at .

Assume that p(z) = 0,p'(2) = 0,...,p*~D(z) = 0. Taylor expanding p(z)
around the point « results in

") (o ,
p(x) =3 L@y (43)

A
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Since the first k — 1 derivatives of p(z) are zero p(z) can be rewritten as

") (g ,
o) = S ey 44

j=k J
") (g |
= (z—a) ! '( )(z—oz)J_k (4.5)
=%
— (- o)l (46)

Corollary 3. A polynomial p(z) has a multiple root at « if and only if p(a) =0
and p'(a) = 0.
4.2 Continuity

A simple root of a polynomial will vary continuously with the coefficients of the
polynomial. In some sense the same is true for a root of order 2 or greater.

Theorem 5. Let co+ciz+...+Cr12" 1 4+cp2™ be a polynomial with the roots
a1,Q9,...,0,. Given € there exists § such that if |wi| < & then co+ ...+ cp2™
and [co+wo] + . ..+ [cn +wy 2™ will have the same number of roots in N(ay,€).

Proof. Assume that
p(z)=co+c1z+ ...+ cn12"" + cn2", (4.7)
has the roots ay, s, ..., a,. Let
q(2) = [co + wo] + [er + wilz + ... + [eno1 + wy—1]2" 1+ [en +wp]2™. (4.8)

Let
h(z) =wo+wiz+ ...+ wp_12"" " +w,2"™ (4.9)

Then ¢(z) = p(2) + h(z). Pick r such that:
l.r<e
2. The only distinct root of p(z) in N(ay,r) is ak.
3. No other root «; of p(z) lies on the border of N(ay, 7).

According to Rouché’s Theorem the polynomials p(z) and ¢(z) will have the
same number of roots in N(ayg,r) if |h(2)| < |p(z)| on the border of N(ag,r).

Let L be a lower bound of |p(z)| on the border of N(ay,r). Then L > 0
since p(z) is a continuous function that is non-zero on the border of N (ay,r).

All that is left to do now is to show that there is a ¢ such that |w| < § =
|h(z)] < L when z lies on the border of N(ay,r). Let s = |ag| 4+ r. Then s is
an upper bound for |z| when z lies on the border of N(a,r). Let

1— 5n+1

U=2o 1—s
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U is an upper bound for |h(z)| on the border of N(ay,r) since

1— st kLN k - k
o5 = D05k = w2t = Y wez®| = [h(2)].
k=0 k=0 k=0
The upper bound U is less than L if
1—s
O

Corollary 4. Let « be a simple root of the polynomial co + c1z + ... + c,2™.
Given € there exists & such that if |wi| < & then [co + wo] + ... + [cn + wy]2"
will have a simple root in N(a,€).

4.3 Critical Points
According to the fundamental theorem of algebra the polynomial
p(z)=co+criz+...+c2" (4.11)

will have n roots assuming that ¢,, # 0. The roots need not be distinct.
The bivariate polynomial f(z,w) can be viewed as a family of polynomials
parameterized by w

fz,w) = chzk. (4.12)
k=0

If f(z,w) has degree n when viewed as a polynomial in z then the generated
polynomials will have degree n except in the cases where the leading coefficient
en(w) of f(z,w) is zero. Since ¢, (w) is a polynomial this will happen at a finite
number of isolated points. The generated polynomial will therefore have n roots
at points where ¢, (w) # 0. The roots need not be distinct.

Definition 27. A point wg is a critical point of f(z,w) if the polynomial
f(z,wo) has a root of order 2 or greater or if the leading coefficient of f(z,wp)
vanishes. Let the critical points of f(z,w) be denoted by Critical(f).

In other words given a bivariate polynomial f(z,w) of degree n when viewed
as a polynomial in z a point in the parameter plane is a critical point if the
generated polynomial does not have n distinct roots.

Consider a bivariate polynomial f(z,w). The behavior of the roots of f(z, w)
when the parameter wapproaches a point where the leading coefficient of f(z, w)
is zero is quite interesting. To see what happens it is necessary to introduce the
following Lemmas.

Lemma 15. If z9 # 0 is a root of ag + a1z + ...+ ap_12"" 1+ a,2" then 1/z
will be a 100t of Ay, + Ap_12+ ... +a12" "1 + agz".

Proof. Assume that p(z) = ag+aiz+...+a,_12" 1 +a,2". Let q(y) = y"p(1/y)
be a function defined on C\ {0}. Expanding ¢(y) results in

q(y) = aoy" +ary" 4 a1y F agi. (4.13)

If 1/yo # 0 is a root of p(z) then yo is a root of g(z) since q(yo) = y§p(1/yo) =
yy -0 = 0. In other words after performing the variable substitution zp = 1/yo,
if zg # 0 is a root of p(z) then 1/z; is a root of ¢(z). O
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Lemma 16. Given € there exists 0 such that if |w;| < ¢ then
wo+ w1z 4 ...+ wp—1 25 2t g . "
will have at least k roots in N(0,€).
Proof. Let p(z) and ¢(z) be the polynomials
p(z) =wo +wiz+ ... Fwp_ 125 e F e + .. 4 2, (4.14)
q(2) = cp2F 4 cpp1 .+ a2 (4.15)

According to Theorem 5 given € there exists § such that p(z) and ¢(z) will have
the same number of roots in N(0,€). But ¢(z) will have at least k roots in
N(0,¢€) since q(z) = 2% (cp + cpr12+ ... + a2 k). O

Definition 28. Let A(c,r) ={z € C||z —¢| > r}.
Lemma 17. Given r there exists § such that if |w;| < 6 and wo # 0 then

CnF oot 2w 2R L wge”
will have at least k roots in A(0,r).
Proof. Let the p(z) and ¢(z) be the polynomials
p(z) =cn4 ...+ 2" Pt wp_ 12" 4wz (4.16)
q(z) =wo + ... Fwp_125 e+ a2 (4.17)

According to Lemma 17 there exists ¢ such that if |w;| < § then ¢(z) will have
at least k roots in N(0,1/r). Furthermore since wg # 0 none of these roots will
be 0. Let ag,as,...,ax be k roots of g(z) such that 0 < |ag| < 1/r. This in
turn means that 1/|ag| > r. According to Lemma 15 §; = 1/ay, will be a root
of p(z) and |Bk| = 1/|ag| > 7.

O

In other words if w approaches a point where the top k coefficients of f(z,w)
approach zero then k of the roots of f(z,w) will approach infinity.

4.4 Discriminant

The next concept to be introduced is that of the discriminant of a polynomial.
The discriminant can be used to see if a polynomial has a multiple root. The
approach used here follows the one presented by Sommese and Wampler (see [8]).

Definition 29. A polynomial ¢, 2™ + cp_12"" 1 + ... + c12 + ¢g s represented
by the row vector [cp,Cpn—1,...,¢0). The row vector [¢y, cpn—1,...,co] represents
the polynomial cp,2™ + Cr_12" '+ ...+ c12 4+ cp.

Definition 30. Let p(z) be a polynomial of degree n
p(z)=cotcrz+ ...+ 2"
Then S(p, k) is defined as the following k x (n + k) matriz

Cn Cp—1 .- Co 0 0
0 ¢, Cpot Co 0

. (4.18)
0 0 Cn Cp-—1 Co



Lemma 18. Multiplication of the polynomials a,2™ +an_12"" 4. .. +a12+ag
and by 2™ 4 bp_12™ 4 4 bz + by is equal to the polynomial represented by

[y @1, a0)S (D 2™ 4 by 12™ 1 4+ b1z + by, n + 1).
Proof. (anz™+ an_12""1 4+ ... 4+ ag)(bpz™ +bpm_12m "+ .+ bo) =
Anbm 2™ T 4 apbm_1 2" T L+ anbo2™
Fan1bmz™ T L4y b1 2" T 4+ ap_1bo2™ !
+ ...+
+ agbm 2™ 4 agbm_12""1 4+ ... + agbo,

which can be represented in row vector form by

anbm  anbm—1 o anby 0 ... 0
0 an,lbm anflbmfl N an,1b0 0
[1,1,...,1] . ;
0 e 0 aobm aobm_1 ‘e aobo

which is equal to

bm bm—l .. b() 0 0
0 b bm—1 ... bp 0o ...
[ana Ap—1y .-, aO] . . (419)
0 e 0 b bm—1 ... b
But the above expression is by definition equal to
[an, A1y, a()]S(mem + bm,lzm_l +...+ blz + b(), n + ].) (420)
O

In other words vectors and matrices can be used to represent polynomi-
als. Polynomial addition becomes vector addition. Polynomial multiplication
becomes multiplication of a vector by a matrix.

The next concept to be introduced is that of the Sylvester Matrix.

Definition 31. Assume that

p(z)=ag+arz+...+apz" (4.21)
and
q(z) =byp+biz+ ...+ byz™. (4.22)
Then Syl(p,q) is an (n+ m) x (n 4+ m) matriz that is defined as follows
(a, Gn_1 ... ap 0 ... 07
0 an Ap—1 .- ag 0
10 e 0 an Qp—1 ... GQ
P = 1 by o b 0 .0
0 bm b1 ... bo 0
L0 ... 0 bm bm-1 ... bo]

The matriz Syl(p, q) is called a Sylvester matrix.
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The Sylvester Matrix can be written as a sum of the product of simpler
matrices.

Definition 32. Let I, (n, k) be the matriz that consists of the left k columns of
an n X n identity matrix.

Definition 33. Let Ir(n,k) be the matriz that consists of the right k columns
of an n x n identity matrizx.

Lemma 19. Let p(z) be a polynomial of degree n. Let q(z) be a polynomial of
degree m. Then

Syl(p,q) = I.(n +m,m)S(p,m) + Ir(n +m,n)S(q,n).

Proof. The proof is by direct calculation. O
Lemma 20. Let v = [am—1,0m—2,.--,00,0n—1,bn—2,...,b0]. Then
vIp(n4+m,m) = [am-1,@m—2, - - -, ao) (4.23)
and
vIp(n+m,n) = [bp—1,bp—2,...,bg). (4.24)
Proof. The proof is by direct calculation. O

Corollary 5. Let a and b be two vectors of length n + m defined as follows
a = [am717am727 ey 00,0, 70}7
b=10,...,0,bp—1,bp—2,...,bg].
Then
alp(n+m,n) =0, (4.25)
bl (n+ m,m) =0. (4.26)

If p(z) and ¢(z) are two polynomials and there exists polynomials f(z) and
g(z) where the degrees of f(z) and g(z) depend on p(z) and g(z) such that

p(2)g(2) + q(2)f(2) = 0. (4.27)

Lemma 21. If the polynomials p(z) and q(z) have a common root then there
exists non zero polynomials f(z) and g(z) such that

q9(2)f(2) = p(2)g(2),
where deg(f) < deg(p) and deg(g) < deg(q).

Proof. Assume that zg is a root of both p(z) and ¢(z). Then (z — z) can be
factored out of p(z) and ¢(z) yielding

p(z) = (2 — 20) f(2)
and

q(2) = (z — 20)9(2).
But then
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The converse is also true.

Lemma 22. Let p(z) and q(z) be two non zero polynomials. If there exists
polynomials f(z) and g(z) such that

where deg(f) < deg(p) and deg(g) < deg(q) then the polynomials p(z) and q(z)
have a common root.

Proof. Assume that
9(2)f(2) = p(2)g(2), (4.28)
deg(f) < deg(p) and deg(g) < deg(q). Then there exists polynomials u(z) and
v(z) such that
q(z)u(z) = p(z)v(2), (4.29)
where deg(u) < deg(p), deg(v) < deg(q) and u(z) and v(z) are coprime.
Then ulp since ulpv, u and v are relatively prime and C[z] is a unique

factorization domain. The same argument can be used to show that v|q.
Since ulp and deg(u) < deg(p) there exists a polynomial r(z) such that

p(z) = u(z)r(2), (4.30)

and deg(r) > 0. The same argument can be used to show that there exists a
polynomial s(z) such that

q(z) = v(z)s(z), (4.31)

v(z)s(z)u(z) = u(z)r(z)v(z), (4.32)
which implies that
r(z) = s(2). (4.33)

The polynomial (z) has at least one root « since deg(r) > 0. Furthermore « is
a root of both p(z) and ¢(z) since r(z) is a factor of both p(z) and ¢(z). O

Lemma 21 and Lemma 22 can be combined into a Theorem.

Theorem 6. Let p(z) and q(z) be two non zero polynomials. The polynomials
p(2) and q(z) will have a common root if and only if there exists polynomials
f(2) and g(2) such that

q9(2)f(z) = p(2)g(2),
where deg(f) < deg(p) and deg(g) < deg(q).
Proof. This follows from Lemma 21 and Lemma 22. O

The linear combination g(z)p(z)+ f(2)q(z) can be represented using a vector
constructed using the coefficients of the polynomials f(z) and g(z) and the the
Sylvester Matrix of the polynomials p(z) and ¢(z).
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Lemma 23. Let p(z) be a polynomial of degree n. Let q(z) be a polynomial of
degree m. Let f(z) and g(z) be polynomials defined as

f)=fo+ fiz+. o4 faaz" (4.34)
9(Z) =g+ gzt ..+ gm1z" (4.35)

Then the polynomial represented by
[gm—lagm—27 -+, 90, fn—17 fn—27 ey fO} Syl(pv Q)v

is equal to g(2)p(z) + f(2)q(2).

Proof. Let F and G be row vectors of length n 4+ m defined as follows

F=]0,...,0, fo—1, fn—2,---, fol, (4.36)
G: [gm_l,gm_g,...,gO,O,...,O]. (437)
Then the expression
[gmfh 9m—25---,90, fn717 fn727 HEER} fo} Syl(pv Q)7 (438)
is equal to
(F'+ G)Syl(p, q). (4.39)

According to Lemma 19 the above expression is equal to
(F + G)[I(n+m,m)S(p,m) + Ir(n+ m,n)S(q,n)]. (4.40)
According to Corollary 5 the above expression is equal to
GIp(n+m,m)S(p,m)+ FIr(n+ m,n)S(g,n). (4.41)
According to Lemma 20 the above expression is equal to
[9m—1sGm—2s---,90]S(P, M) + [frn-1, fn—2s-- -, fo] S(p, ). (4.42)
The previous expression represents the polynomial
9(2)p(2) + f(2)q(z) (4.43)
since according to Lemma 18 the polynomial g(z)p(z) is represented by
[Gm—15Gm—2, - - -+ 9ol S(p,m)
and the polynomial f(z)q(z) is represented by

[fnflvfnf% sy fO]S(p7 m)

The next concept to be introduced is that of the resultant.

Definition 34. The resultant of the polynomials p(z) and q(z) is defined as

Res(p, q) = det(Syl(p, q)).
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The resultant of two polynomials is zero if and only if the polynomials have
a common root.

Theorem 7. The polynomials p(z) and q(z) will have a common root if and
only if Res(p,q) = 0.

Proof. According to Theorem 6 the polynomials p(z) and ¢(z) will have a com-
mon root if and only if there exists polynomials

f(2) = far2" 4 fa2Z" P4+ o (4.44)
and
9(2) = gm-12""" + gm-22""2 4 ... + g0, (4.45)
such that
9(2)p(2) — f(2)q(2) = 0. (4.46)
According to Theorem 23 the last equation can be written in matrix form as
[gmflv Im—2,---,90, _fnflv _fn*Qa R _fO]Syl(pv Q) = 0. (447)

The above equation will have a non zero solution if and only if
det(Syl(p,q)) = 0. (4.48)
O
The next concept to be introduced is that of the discriminant.

Definition 35. The discriminant of the polynomial p(z) is defined as
Dis(p) = R d
is(p) = Res —p].
p b, dzp
The discriminant of a polynomial is zero if and only if it has a multiple root.

Theorem 8. The polynomial p(z) has a multiple root if and only if Dis(p) = 0.

Proof. According to Corollary 3 the polynomial p(z) will have a multiple root
at if and only if p(z) = 0 and p’(2) = 0. According to Theorem 7 p(z) and p'(2)
will have a common root if and only if Res(p,p’) = 0 which by definition will
happen if and only if Dis(p) = 0. O

4.5 Problem Polynomials

In the later section of this paper we will be interested in the distinct roots of
f(z,w) when f(z,w) is viewed as a polynomial in z.

If the polynomial f(z,w) has a multiple factor f(z,w) = g(z,w)*h(z, w)
then any root of g(z, w) will be a multiple root of f(z,w). This means that the
polynomial f(z,w) will never have distinct roots for any w. From this point
forward no polynomial f(z,w) will have a multiple factor.

If the leading coefficient of a polynomial goes to 0 then one of it’s roots will
go to infinity. This means that we will run into numerical issues at and near a
point where the top coefficient is 0. From now on all polynomials f(z,w) will
have a constant leading coefficient.
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4.6 Numerical Calculation of Critical Points

Consider the following bivariate polynomial
f(sz) = Z Ck(w)zkﬂ (449)

where ¢ (w), ca(w), . .., ¢y, (w) are polynomials in w.

By definition a point ¢ is a critical point if the leading coefficient of the
polynomial f(z,c) vanishes or if the polynomial f(z,c¢) has a root of order 2 or
greater.

Finding points w where the equation

cn(w) =0 (4.50)

is satisfied can be done using the algorithm described in Subsection 3.4.

The Discriminant can be used to find points where ¢ where the polynomial
f(z,¢) has a root of order 2 or greater. Let p.(z) be the polynomial f(z,c).
According to Theorem X the polynomial p.(z) will have a root of order 2 or
greater if and only if Dis(p.) = 0. By definition

. d d
Dis(p.) = Res <pc, dec) = det (Syl ( s dzpc>) . (4.51)

Hence the polynomial p.(z) will have a root of order 2 or greater if and only if

(501 o ) 0. 52

The above equation is a polynomial equation in w and can be solved numerically
using the algorithm described in Subsection 3.4.
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5 Homotopies

In this section the concept of a homotopy is introduced. A homotopy is closely
related to the concept of a curve being continuous deformable into another
curve. If a curve z(t) is defined on an interval [a, b] a variable substitution can
be performed to define the curve on the interval [0, 1] instead. The composition
of two curves can also be scaled to be defined on the interval [0,1]. The term
path will be used interchangeably with the term curve with the exception that
all paths are defined on the interval [0, 1].

5.1 Definition and Basic Properties
First the concept of a homotopy is defined.

Definition 36. A function H(t,s) :[0,1] x [0,1] — C is said to be a homotopy
if it has the following properties:

1. H(t,s) is continuous.
2. H(0,s) is independent of s.
3. H(1,s) is independent of s.

A curve is homotopic to another curve in U if the first curve can be contin-
uously deformed into the other curve without leaving U'.

Definition 37. Two paths x(t) and y(t) are said to be homotopic in U if there
exists a homotopy H(t,s) with the following properties:

1. H(t,0) = (t).
2. H(t,1) = y(¢).
3. If (to, s0) € [0,1] x [0,1] then H(to,s0) € U.
H(t,s) is said to be a homotopy in U between the path x(t) and the path y(t).
Homotopies can be composed.
Definition 38. If two homotopies H1(t,s) and Hy(t,s) satisfy the condition
H,(t,1) = Ha(t,0)
then the composition H(t,s) of Hi(t,s) and Hy(t,s) is defined as
R A
The composition of the homotopies Hy(z,t) and Ha(z,t) is denoted by Hy o Hs.
Lemma 24. H; o Hy is a homotopy.

Proof. Let H = Hy o Ho. It is obvious that H is a continuous function.
Hy(0,s) = ¢ since Hy is a homotopy. H(0,s) = d since Hs is a homotopy.
But then ¢ = d since H1(0,1) = H»(0,0). It is now obvious that H(0,s) = c.
The same type of argument can be used to show that H(1,0) is constant. But
then H (¢, s) is a homotopy. O
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Finally homotopies have inverses. If v(t) is homotopic to u(t) then w(t) will
be homotopic to v(t).

Definition 39. Let the inverse of the path w(t) be the path w(1 —t). Denote

the inverse of the path w by w™?'.

Definition 40. Let H(t,s) be a homotopy between the paths w(t) and u(t). The
inverse of the homotopy H(t,s) is denoted by H=1(t,s) and is defined as

H(t,s) = H(t,1—s).

Lemma 25. If H(t,s) is a homotopy in U between w(t) and u(t) then H1(t, s)
is a homotopy in U between u(t) and w(t).

Proof. H™1(t,s) is a continuous function since H(t,s) is a continuous function.

H=(t,0) = H(t,1) = u(t). H1(t,1) = H(t,0) = w(t). O

5.2 Special Paths

Definition 41. Let L(a,b) be the line segment from a to b.

Definition 42. Let C(c,r) be the circle with center ¢ and radius .

Definition 43. Let D(c,r) be the disc with center ¢ and radius r.

Definition 44. Let I(s,c,r) be the intersection point of C(c,r) and L(s,c).

Definition 45. Let B(s,c,r) be the path composed of the following three paths.
1. The line segment from s to I(s,c,r).

2. The path around the circle C(c,r) starting at I(s,c,r) and going in the
counter clockwise direction.

3. The line segment from 1(s,c,r) to s.

This type of path is known as a circle path.

S I(s,c,r) C

Figure 9: Circle path

Definition 46. Let A(s,c,r,n) be the path composed of the following three paths.

1. The line segment from s to I(s,c,r).

2. The path around a regular n-gon inscribed inside the circle C(c,r) starting
at a vertez located at I(s,c,r) and going in the counter clockwise direction.
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3. The line segment from 1(s,c,r) to s.

This type of path is known as a n-gon path.

s I(s,c.r)

Figure 10: N-gon path

Definition 47. Let T(s,c,r) be the path A(s,c,r,3). This type of path is known
as a triangle path.

s I(s,c.r)

Figure 11: Triangle path

Definition 48. Consider the triangle path T'(s,c,r). Number the vertezes of
the triangle starting at I(s,c,r) and going counter clockwise around the triangle.
The names of the vertices of the triangle are defined as follows:

1. The first vertex is called the inner vertex of the triangle path.
2. The second vertez is called the right vertex of the triangle path.

8. The third vertex is called the left vertex of the triangle path.

Lemma 26. Let U = C\{c1,c¢a,...,cn}. Let c be one of the points ¢1,¢a, ..., Cp.
If ¢ is the only one of the points c1,ca,...,cn, in D(c,7) then the n-gon path
A(s,e,r,n) is homotopic to the circle path B(s,c,r).

Proof. Create a homotopy H(s,t) defined as follows:

1. Each point on the n-gon is linearly interpolated radially from c¢ until it
hits the circle.

2. The points on the line segment part of the path do not move.

This is a homotopy in U since none of the points ¢y, co, ..., ¢, lie between the
n-gon and the circle. O
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5.3 Homotopies of Closed Paths

It can be shown that an arbitrary closed path is homotopic in C\ {¢1, ca, ..., cn}
to a path that is either a point or a composition of circle paths and inverse circle
paths that all have a common starting point.

The approach that will be used is to construct several homotopies that when
composed turns an arbitrary closed path into a path that is either a point or
the composition of triangle paths and inverse triangle paths. Finally it is shown
that a path that is the composition of triangle paths and inverse triangle paths
is homotopic to a path that is the composition of circle paths and inverse circle
paths.

5.3.1 Convex Hull Homotopy

The first homotopy to be introduced is the convex hull homotopy. Before the
convex hull homotopy can be defined it is necessary to introduce the concept of
the convex hull of a collection of triangle paths.

Definition 49. Let CH(s,7,¢1,¢a,...,¢pn) be the conver hull of s and the right
and left vertices of the triangle paths T(s,c1,7),T(s,c2,7),...,T(s,Cn,T).

Definition 50. Let Cent(P) be the centroid of the polygon P.

Definition 51. Let Hopls,r,¢1,¢o,. .., cp] be the homotopy defined as follows:
Let P=CH(s,r,c1,C2y...,¢p).

1. All points that lie on P remain fized.

2. All points outside P are interpolated radially towards Cent(P) until they
hit P.

This type of homotopy is called a convex hull homotopy.
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(a) HCH(t,O) (b) HCH(t,l)

Figure 12: An arbitrary path is homotopic to a path that lies in the complex
hull of the triangle paths.
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5.3.2 Radial Triangle Homotopy

The next homotopy to be introduced is the radial triangle homotopy. It moves
all paths that lie in a triangle radially outwards from the center of the triangle.

Definition 52. Consider the triangle path T'(s,c,r). Let the homotopy HRrls, ¢, ]
be defined as follows:

1. Points outside and on the triangle part of T(s,c,r) remain fized.

2. Points inside the triangle part of T(s,c,r) are interpolated radially from c
until they hit the triangle.

This type of homotopy is called a radial triangle homotopy.

5.3.3 Triangle Homotopy

The next homotopy to be introduced is the triangle homotopy. It moves all
paths that lie in a triangle to a polyline consisting of two of the edges of the
triangle.

Definition 53. Let T be the triangle with vertexes a,b,0. Let Lqp(t) be the path

Lap(t) = (1 —t)a + tb.
Let the u(t) and v(t) be the following paths:

u(t) = Lab(t),

v(t) = Lao(t) © Lop(t).
Let Hr(t,s) be a homotopy defined as follows:

—~
U'.Cﬂ
N =
~— ~—

1. Points outside the triangle T remain fized.

2. For each t € [0,1] the points on the line segment L(u(t),v(t)) are linearly
interpolated along the line segment until they hit v(t).

This type of homotopy is known as a triangle homotopy.

Lemma 27. Let U = C {c1,¢2,...,¢n}. Let T be a triangle with vertices a, b, o
that does mot contain any of the points ci,ca,...,cn. A path in T is homotopic
in U to a path that lies on the poly line a,o0,b.

Proof. Let Hrp(t,s) be the triangle triangle homotopy that moves the line seg-
ment L(a,b) to the poly line a,0,b. A path w(t) is homotopic in U to the poly
line a, 0, b since none of the points ¢y, co, ..., ¢, lie in the triangle. O

o

o

(a) HT(t7 0) (b) HT(tv 05) (C) HT(t7 1)

Figure 13: A path in the triangle with vertexes a,b, 0 is homotopic to a path
that lies in the polyline a, o, b.
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5.3.4 Convex Hull to C; Homotopy

Before the next homotopy can be introduced it is necessary to define the set Cj.

Definition 54. Let w(t) = T(s,c,r). Let Ts(s,c,r) be the set defined as follows
Ts(s,c,r) ={z € Clz # ¢ and z € L(w(t), c) for t € [0,1]}.

Let Cs(s,r,c1,C2,...,¢pn) be the set defined as follows
Cs(s,ryc1,¢2,...,0n) = U Ts(s, CyT).
k=1

Informally the set Ts(s,c,t) can be thought of as the image of a triangle
path where the interior points of the triangle also belong to the set with the
exception that the center point c of the triangle does not belong to the set. The
set Cy is just the union of several T sets.

The next homotopy to be introduced is the convex hull to Cy homotopy. It
takes a path that lies in the convex hull of a given set of triangle paths and
moves it to a path that lies in C,.

Definition 55. Consider a triangle with vertezes a,b, c.

1. A set that contains all the points inside and on the triangle is called a
closed triangle.

2. A set that contains all the points inside the triangle but none of the points
on the edges of the triangle is called an open triangle.

3. A closed triangle where two of the edges have been removed is called a
semi-open triangle.

a a a
Qe b Y b
‘\ :'o ‘\ »’
A » . ’
\‘ "' \‘ "'
A e AN L
‘\‘ e ‘\‘ el
el el
Uc c e
(a) Open Triangle (b) Closed Triangle (¢) Semi-Open Triangle

Figure 14: Different types of triangles.

Lemma 28. Let U = C\ {c1,¢a,...,¢cn}. Let w(t) be a closed path that lies in
CH(s,r,c1,¢2,...,cq) and that does not intersect any of the points ¢1,ca, ..., Cp.
Then w(t) is homotopic in U to a path that lies in Cy(s,r,c1,¢2, ..., Cn).

Proof. By removing a finite number of open triangles the set CH(s,r,c1,...,¢p)
can be transformed into the set Cs(s,r, 1, ¢, ..., ¢,) in such a manner that each
intermediate set is closed.
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Let Ty, T5, . .., T, be such a sequence of semi-open triangles. Let Sp, S1,...,5m
be a sequence of m + 1 sets defined by

So=CH(s,r,c1,¢,...,Cn), (5.3)
Sk = Sk \ Tk- (5.4)
Then S,, = Cs(s,r,c1,...,¢n) since
Sy = S0\ U Ty (5.5)
k=1
:C’l‘](s,r,cl,...,cn)\LJT;C (5.6)
k=1
=Cs(s,ryc1y.. . 0n). (5.7)

According to Lemma 27 a path that lies in S will be homotopic in U to a
path that lies in Sg41. This in turn implies that a path that lies in Sy will be
homotopic in U to a path that lies in .S,,. O

(c) H(t,2/3) (d) H(t,1)

Figure 15: H(t,s0) as sg moves from 0 to 1.
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5.3.5 (s to C, Homotopy

Before the next homotopy can be introduced it is necessary to define the set C,,.

Definition 56. Let w(t) = T'(s,c,r). Let Ty(s,c, ) be the set defined as follows
Tw(s,e,r) ={z € Clz = w(t) for t € [0,1]}.

Let Cy(s,r,c1,C2,...,¢n) be the set defined as follows
Cu(s,r,c1,¢2,...,¢) = U Tw(s, ¢k, ).
k=1

In other words the set C,, is the composition of images of triangle paths.
The next homotopy to be introduced is the C to C,, homotopy. It takes a path
that lies in C; and moves it to a path that lies in C,,.

Lemma 29. Let U = C\ {c1,¢2,...,¢cn}. Let w(t) be a closed path that lies in
Cs(s,r,c1,C2,...,cpn) and that does not intersect any of the points c1,ca,. .., Cp.
Then w(t) is homotopic in U to a path that lies in Cy(s,7,¢1,C2,y ..., Cn).

Proof. Use a radial triangle homotopy on each of the triangle parts of Cs. [

5.3.6 Composite Homotopy
Finally all the pieces are put together to give the following Theorem.

Theorem 9. A closed path w(t) is homotopic in C\ {c1,ca,...,cn} to a path
that is either a point or the composition of circle paths and inverse circle paths
that all share a common starting point and where each circle path or inverse
circle path encloses one and only one of the points c1,¢a, ..., Cpn.

A formal proof of the above theorem will not be provided. Instead a sketch
of the proof will be given. Using a convex hull homotopy it can be shown that
an arbitrary path in U = C\ {c1,¢2,...,¢,} is homotopic to a path that lies
in the convex hull of triangle paths starting at s and centered on the points ¢
for K = 1,2,...,n. The radius of the circle that the triangles are inscribed in
can be chosen such that each triangle path starting at s and centered on ¢y, is
homotopic to a circle path starting at s and centered on ¢ where the circles do
not intersect.

Next it can be shown that a path that lies in the convex hull of the triangle
paths is homotopic to a path that lies in Cs. Furthermore it can be shown that
a path that lies in Cy that does not intersect any of the points ¢ is homotopic
to a path that lies in C,,.

Since C, is just the composition of the images of triangle paths it is obvious
that a path that lies in Cy is homotopic to a path that is either a point or a
composition of triangle paths and inverse triangle paths. Finally each triangle
path is homotopic to a circle path since the radius of the circle that the triangles
are inscribed in were chosen such that the circles do not intersect.
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C c

(a) Arbitrary Closed Path (b) Composition of Circle Paths

Figure 16: An arbitrary path is homotopic to a composition of circle paths and
inverse circle paths.
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6 Following Roots

This section deals with how the roots of f(z,w) move when the parameter w is
moved in the parameter plane. A version of the Implicit Function Theorem that
works for complex functions is introduced. Continuation of an analytic function
along a path is defined. The Monodromy Theorem is stated and proved. Finally
the behavior of the roots when the parameter w is moved along circle paths
around critical points of f(z,w) is discussed.

6.1 Implicit Function Theorem

An important theorem in Complex Analysis is the Implicit Function Theorem.

Implicit Function Theorem. Let f(z,w) be a function that is analytic in
D(zo,7m1) x D(wg,r2). If the function f(z,w) satisfies the conditions

9f (20, wo)

f(zo,wo) =0 and 2%

£0, (6.1)
then there exists a disc D(wo,r3) and an analytic function F(w) defined on
D(wq,r3) such that

f(F(wo), wo) =0. (62)

For a proof of the above theorem see [2]. The following theorem shows that
in the case that f(z,w) is a bivariate polynomial a simple root of f(z,w) will
vary continuously with w and that a root of order 2 or greater will in some sense
vary continuously with w as well.

Theorem 10. Let f(z,w) be a bivariate polynomial. Given e there exists §
such that if |lw —wo| < § then f(z,w) and f(z,wo) will have the same number
of roots in N (g, €) where ay, s a root of f(z,wy).

Proof. According to Theorem 5 there exists d. such that if |ex(w) — cp(wo)| < 0
then f(z,w) and f(z,wq) will have the same number of roots in N (ay, €).
Each ¢ (w) is a continuous function and therefore there exists § such that if
|w — wp| < & then |cx(w) — ex(wp)| < dc. This in turn means that f(z,w) and
f(z,wp) will have the same number of roots in N (ay,€) if |w — wg| < 6. O

Corollary 6. A simple root of f(z,w) will vary continuously with w.

6.2 Analytic Continuation

The next concept to be defined is that of an analytic continuation of an analytic
function. Before analytic continuation can be defined it is necessary to introduce
the Identity Theorem.

Identity Theorem. Let f(z) and g(z) be two analytic functions defined on a
connected region Ry. Let Ry be a subregion of Ry. If f(z) = g(z) on Ry then

f(z) =g(2) on R;.

For a proof of the identity theorem see [1].
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The following definition of analytic continuation is from Wikipedia (see [11]).

Definition 57. Let f(z) an analytic function defined on an open subset U of
the complex plane C. If V is a larger open subset of C, containing U, and F(z)
is an analytic function defined on V such that

F(z) = f(z) for z€ U, (6.3)
then F(2) is called an analytic continuation of f(z).

The next concept to be introduced is that of an analytic continuation of a
function along a curve. From now on curves will be scaled so that they are
defined on the interval [0,1]. Before analytic continuation can be defined it is
first necessary to define the concept of an analytic function element.

Definition 58. If f(z) is an analytic function defined in a neighborhood D then
the ordered pair (f, D) is called an analytic function element. If w € D then
(f, D) is an analytic function element at w. Two analytic function elements
(f1,D1) and (fa, D2) at w are said to be equivalent at w if f1 = fo on D1 N Ds.
The remaining definitions and theorems in this section are based on theorems
and definitions presented by Taylor (see [9]).

Definition 59. Let w(t) be a curve. Let (fo, Do) be an analytic function element
at w(0). Suppose there exists a sequence of analytic function elements

(f1,D1), (f2,D2), ..., (fn, Dn), (6.4)
and a partition of the interval [0,1]
0=ty <t1 <...<tpy1 =1, (6.5)
that satisfy the following conditions:
1. Ift € [tg, tg+1] then w(t) € Dy.
2. Dy N Dyyq # 0.
3. frx = frt1 on DN Dy
Then (fn, Dy) is called an analytic continuation of (fy, Dg) along w(t).

The reader might be concerned that the above definition depends on the
choice of partition and sequence of analytic function elements. The following
Theorem should put those concerns to rest.

Theorem 11. Let w(t) be a curve. Let (fo, Do) be an analytic function element
at w(0). Then any two analytic continuations along w are equivalent as analytic
function elements at w(1).

Proof. Let (fn, Dy,) be an analytic continuation of (fy, Do) along the curve w(t)
where 0 = ¢y < t; < ... < tp41 is the associated partition of the interval
[0,1] and (f1,D1), (f2, D2),. .., (fn, Dys) is the associated sequence of analytic
function elements.

Given an arbitrary refinement of the partition of [0,1] a new sequence of
analytic function elements can be constructed in such a manner that the new
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partition of [0, 1] and the new sequence of analytic function elements determines
the same analytic continuation of (fy, Dy) along the curve w(t) as the original
partition and sequence of analytic function elements does.

If the interval [tg,txy1] is refined into ji subintervals then a new sequence
of analytic function elements is created by adding the analytic function element
(fx, Dk) to the sequence jj times for k =0,1,...,n. It is obvious that the new
partition of [0, 1] and the new sequence of analytic function elements determines
the same analytic continuation along the curve w(t) as the original partition and
sequence of analytic function elements does.

It is now obvious that the new partition of [0,1] and the new sequence of
analytic function elements determines the same analytic continuation along w(t)
as the original partition of [0, 1] and the original sequence of analytic function
elements.

Given two different analytic continuations of (fo, Dg) along w(t) it is possible
to refine both of the associated partitions so that both analytic continuations
use the same partition

OZSO<S1<...<Sm+1=1. (66)

Suppose that one of the analytic continuations is determined by the following
sequence of analytic function elements

(flaD1)7(f27D2)7-~-a(fm7Dm)- (67)

Furthermore suppose that the other analytic continuation is determined by the
following sequence of analytic function elements

(glvBl),(92,B2)a"'7(gm73m) (68)
and let (go, Bo) = (fo, Do). Let V; be the set
Vi = B; N Dy, (6.9)

for j = 0,1,...,m. Then Vj is an open connected set containing w(t;) and
w(tj+1). To prove the theorem it is sufficient to show that f,, = g,, on Vj,.

By definition fy = go on V. Suppose for j < m that f; = g; on V;. Then
there is a neighborhood N1 C V; of w(t;41) where f; = g;.

The open sets D; and Dj41 both contain w(¢;+1) and therefore so does D; N
Dji1. Furthermore f; = fj11 on D;jN Dj4q. Therefore there is a neighborhood
Ny C Dj N Djyy of w(tj1) where fj = fjy1.

The open sets B; and Bj41 both contain w(t;41) and therefore so does B; N
Bj 1. Furthermore g; = gj4+1 on D; N D; ;. Therefore there is a neighborhood
N3 C Bj N Bj+1 of w(th) where g = gj+1-

Let N = N1 N Ny N N3. The following equations hold on N

fj =3y, (6~10)
Ii = fi+1, (6.11)
g = gji1- (6.12)

Substituting (6.11) and (6.12) into (6.10) results in that the following equation
holds on the set NV

fit1 = Ggj+1- (6.13)
According to the Identity Theorem this means that f;+1 = g;4+10n Vj. O

56



6.3 Function Definition

Let f(z,w) be a bivariate polynomial. Let « be a simple root of the polynomial
f(z,wp). According to the Implicit Function Theorem there exists a function
F(w) defined in a neighborhood U of wq such that for w € U

fF(w),w) = 0. (6.14)

Suppose that w(t) is a path that starts at wg and avoids the critical points of
f(z,w). Then the analytic function element (F,U) can be analytically continued
along the path w(t).

Definition 60. If f(z,w) is a bivariate polynomial and w(t) is a path that
avoids the critical points of [ then R[f,w] is the bijection between the roots
of f(z,w(0)) and f(z,w(1)) generated by performing an analytic continuation
along the curve w(t) of the function F(w) that is implicitly defined by

f(F(w), w) = 0. (6.15)

Definition 61. Let Root(f,w,a) := R[f,w]|(a) be a complex valued function
where:

f(z,w) is a bivariate polynomial.
w(t) is a path that avoids the critical points of f.
a s a root of f(z,w(0)).

By convention the complex plane that the parameter w lies in will be called
the parameter plane. The complex plane that the roots of f(z,w) lie in will be
called the root plane.

6.4 Monodromy Theorem

An important theorem in complex analysis is the Mondoromy Theorem. Before
the Monodromy Theorem can be proved it is necessary to introduce a couple
of Lemmas. The Lemmas and Theorems in this section are based on material
presented by Taylor (see [9]).

Given € for any path H(t,s) in a homotopy there is a § such that if r is
within ¢ from s then the distance between the curves H(t,s) and H(t,r) will
be less than e.

Lemma 30. If H(t,s) is a homotopy then give € there exists § such that if
|s — so| < 0 then |H(t,s) — H(t,s0)| < e.

Proof. The homotopy H (¢, s) is a continuous function defined on [0, 1] x [0, 1].
The set [0,1] x [0,1] is compact. The homotopy H (¢, s) is therefore uniformly
continuous. Since H (t,s) is uniformly continuous given e there exists J such
that

|(tz, 52) — (ty, sy)| <0 = |H(ts, s2) — H(ty,sy)| <e. (6.16)

If ¢ remains fixed given e there exists ¢ such that
|sz — syl <0 = |H(t,s8,) — H(t,sy)] <e. (6.17)
O

57



Given an analytic function element (fo, Do) and €for any path H(¢,s)in a
homotopy there is a ¢ such that if 7 is within § of s then the analytic continuation
along H(t,s) and H(¢t,r) of (fo, Do) will be equivalent.

Lemma 31. Let H(t,s) be a homotopy. Let (fo, Do) be an analytic function
element. Furthermore suppose that it is possible to perform an analytic continu-
ation of (fo, Do) along all curves in H(t,s). Then for every r € [0,1] there is a
d such that if |s —r| < & then the analytic continuation of (fo, Do) along H(t,s)
is equivalent at H(1,s) = H(1,r) to the analytic continuation of (fo, Do) along
H(t,r).

Proof. Let (fn, Dy) be the analytic continuation of (fo, Do) along H(t,r) that
is determined by the partition 0 = ¢ty < t; < ... < t,41 and the sequence of
analytic function elements (f1, D1), (f2, D2), ..., (fn, Dn).

If t € [tj,tj41] then H(t,r) € D; for j =0,1,...,n. For j =0,1,...,n let
€; be the minimum distance from the compact set {H (t,r)[t € [t;,t;41]} to the
boundary of the disc D;.

For t € [tj,tj41] if |H(t,s) — H(t,r)| < €; then H(t,s) € D;. Let e =
min{eg, €1, ..., €y }. According to Lemma X there is a § such that if |s —r| < §
then |H(t,s) — H(t,r)| <e. Butif |[H(t,s) — H(t,r)| < e then H(t,s) € D,for
t € [ty tj41].

In other words given an analytic continuation of (fy, Do) along H(t,r) de-
fined by the partition 0 = ¢y < t; < ... < tp41 = 1 and the sequence
(f1,D1),(f2,D2),...,(fn, Dyn) of analytic function elements there is a § such
that if |[s — r| < § then (f,,D,) is an analytic continuation of (fy, Dy) along
the curve H(t,s). According to Theorem 11 any other analytic continuation of
(fo, Do) along H(t,s) will be equivalent to (f,, D,) at H(1,s). O

The analytic continuation of an analytic function element along two paths
that are homotopic will be equivalent if it is possible to perform an analytic
continuation of the analytic function element for all paths in the homotopy.

Monodromy Theorem. Let H(t,s) be a homotopy. Suppose that it is possible
to preform an analytic continuation of (fo, Do) along every path in H(t,s). Then
the analytic continuation of (fo, Do) along H(t,0) is equivalent to the analytic
continuation of (fo, Do) along H(t,1).

Proof. Let h(s) be a function defined on the interval [0, 1] where h(s) = 0 if the
analytic continuation of (fy, Do) along H(t, s) is equivalent to the analytic con-
tinuation of (fo, Do) along H(t,0), otherwise h(s) = 1. According to Lemma 31
the function h(s) is continuous on [0, 1].

Hence h(s) is equal to the constant function 1 or the constant function 0.
But then h(s) = 0 since h(0) = 0. O
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7 Numerical Root Following

In this section a numerical algorithm for following the roots of f(z,w) as w is
moved along a piecewise linear path is described. Euler Prediction is introduced.
Newton Correction is described. A modified version of Newtons Method that
has much stricter constraints on the error of the calculated root is developed. A
modified algorithm that includes validation of the results is developed. Rouché
Verification is described. The material in this section is based on material due
to Sommese and Wampler (see [8]) and Morgan (see [3]).

7.1 Paths

To simplify the development of the algorithms the paths that will be consid-
ered are paths that are constructed using a finite number of line segments. It
is enough to develop an algorithm for following the roots when the parameter
w is moved along a line segment. The algorithm can then be applied to each
line segment in the path with the initial roots being the roots that were calcu-
lated while traversing the previous line segment. Specifically this means that
the algorithm will be able to handle N-gon paths since an N-gon path is the
composition of a finite number of line segments.

7.2 Initial Roots

To be able to follow the roots as w moves along the path it is necessary to know
the roots when w is at the start of the path. If s is the starting point of the
path then the initial roots can be found by solving the following equation

f(z,s) =0. (7.1)

The above equation can be solved numerically using the algorithm described in
the section on Numerical Root Finding.

7.3 Davidenko Differential Equation

According to the Implicit Function Theorem the function f(z,w) will implicitly
define a function a(w) in a neighborhood of wy assuming that

Of (z,wo)
= o (7.2)

Definition 62. Let the partial derivatives of the function f(z,w) be denoted as
follows

fa(z,w) = %, (7.3)
fulzw) = L0, (7.4)

The implicit function a(w) will satisfy the equation

fla(w),w) = 0. (7.5)
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Taking the derivative of the above equation with respect to w results in

df (e(w), w) _
T =0. (7.6)
Expanding the above equation results in
do(w
Iz (a(w), w) dgu ) + fwla(w),w) =0. (7.7)

Solving for the derivative of a(w) with respect to w results in

do(w) _ _fw(a(w),w). (78)
dw f(a(w),w)
The above first order differential equation is known as the Davidenko differential
equation.

7.4 FEuler’s Method

Consider the initial value problem

2= f(z,w), (7.9)
2o = z(wo). (7.10)

Using the above equations it is possible to calculate 2’ (wyg).

Z'(wo) = f(2(wo),wo) = f(20,wo). (7.11)

The function z(w) can be written as a Taylor series about the point wq

oo Z(k
Z (w — wo)* (7.12)
=0
() (1
— 2(wo) + 2/ (wo) (w — wo) + %(w — wp). (7.13)
k=2 ’

The function z(z) can be approximated by the first two terms of the Taylor
series

t(w) = z(wo) + 2’ (wo) (w — wo). (7.14)
Substituting (7.10) and (7.11) into (7.14) results in

t(w) = zo + f(z0,wo)(w — wo). (7.15)
Setting z; = t(wy) results in

21 = 20+ f (20, wo) (w1 — w). (7.16)

Suppose that w(t) is a path that starts at wg. Then it is possible to evaluate
the solution of the initial value problem

2= f(z,w), (7.17)
20 = z(wo), (7.18)
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along the path w(t). Let 0 =ty < t; < ... < tp41 = 1 be a partition of the
interval [0,1]. Let wy, for k = 0,1,...,n+ 1 be defined as follows

wg, = w(ty). (7.19)

Note that the above definition does not conflict with the previous definition of
wy since wy = w(0). The variables in (7.16) can be relabeled resulting in

Zp+1 = 2k + f(Zk, wi) (Wr41 — wy). (7.20)
Equation (7.20) can be used to give an approximation of
z(w(ty)) = z(wg) =~ 2k, (7.21)
for each t; in the partition of [0, 1]. At each step of Euler’s Method the error

(k)
Ek;_;,_l Z 7 w — ’LUO k, (722)
k=2

is introduced. The errors are cumulative. Hence Euler’s Method is numerically
unstable.

7.5 Predict Correct Algorithm

Let f(z,w) be a bivariate polynomial and L be a line segment from a to b. Let
a be a simple root of f(z,a). Let

w(t) = (1 —t)a + tb, (7.23)

be a parametrization of the path going along the line segment from a to b. To
see what happens to a simple root of f(z,w(t)) as t traverses the interval [0, 1]
the following algorithm can be used.

1. Initialization. Set h = 1/10, ap = o, k =0, s =0, and tg = 0.
2. Loop.

(a) Predict. Set tr41 = max(ty + h,1.0). Calculate a prediction o,
of a root of f(z,w(tg+1)) based on the fact that ay is a root of

f(z,w(te)).
(b) Correct. Calculate a root agy1 of f(z,w(tgr1)) using o, as an
initial guess.
(c) Adjust Step Length If the correction step failed do the following:
i. Set h =h/2.
ii. Set s =0.
If the correction step succeeded do the following:
i. If tg41 = 1.0 then terminate the algorithm.
ii. Increment s and k.
ili. If s > M set h = 2h and s = 0.

According to Sommese and Wampler a value of M between 3 and 5 works
well. The next two subsections will contain descriptions of a prediction step and
a correction step.
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7.6 FEuler Predictor

A single step of Euler’s Method can be used to calculate a prediction o,
of a root of f(z,w(tg+1)) based on the fact that ay is a root of f(z,w(ty)).
According to the Davidenko differential equation

dow)  fula(w),w)
dw f2(a(w),w)’

(7.24)

Using a single step of Euler’s method to predict the value of a1 results in
the following equation

s — oy Jwlow w(te)
* f

(e, w(ty)) (w(t41) = w(ty))- (7.25)

This type of predictor is known as an Euler Predictor.

7.7 Newton Corrector

Newton’s Method can be used to calculate a root 41 of f(z,w(tr41)) given
an initial guess oy, ; of where the root is located. If o, is close enough to an
actual root ag410f f(z, w(tk+1)) Newton’s Method will converge to ag1. This
type of corrector is known as a Newton Corrector.

Newton’s Method can fail to converge. Hence the need for the part of the
Predict and Correct Algorithm where the step length h is halved if the correct
step fails. With a sufficiently small step size Euler’s Method will generate a
prediction aj_ ; for a root that is sufficiently close to the actual root a1 such
that Newton’s Method will converge to a1 using o, 41 s an initial guess.

7.8 Root Jumping

There is one problem with using a Predict and Correct Algorithm that uses
Euler Prediction and Newton Correction. The algorithm can start following
the wrong root. A description of how this situation can occur will be described
next.

Let f(z,w) be a bivariate polynomial. Let w(t) be a piecewise smooth path
path that does not intersect any of the critical points of f(z,w). Let a and
3 are two simple roots of f(z,w(0)). Then according to the Implicit Function
Theorem

f(z,w) =0, (7.26)

will implicitly define two functions a(w) and 3(w) defined in a neighborhood of
w(0) such that a(w(0)) = « and S(w(0)) = B. The functions a(w) and B(w)
can be analytically continued along the path w(¢). While using the Predict and
Correct algorithm to follow the functions a(w) and B(w) the following problem
can occur.

Suppose that ay is a root of f(z,w(tx). Then the Predict step can be
used to find an approximate root aj_ ; of f(z,w(tx41)). The Correct step can
be used to find a root agi1 of f(z,w(try1)) using aj; as an initial guess.
Usually a(w(tg+1)) = agy1. However it can happen that S(w(tgy1)) = k.
This situation occurs if the predicted root converges to a point on the curve
B(w(t)) when the root is corrected. This situation is known as root jumping.
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Usually this situation can be detected since the number of distinct roots of
f(z,w) at step k + 1 of the algorithm is one less than the number of distinct
roots of f(z,w) at step k of the algorithm. A situation can occur where two
or more roots jump at the same time in such a manner that the number of
distinct roots does not decrease. To avoid this situation an improved Predict
and Correct Algorithm is needed.

7.9 Minimum Distance Between Roots

The following Theorem gives some insight into the minimum distance between
roots of f(z,w(t)) for t € [0, 1].

Theorem 12. Let f(z,w) be a bivariate polynomial that has degree n > 1 when
viewed as a polynomial in z. Let w(t) be a path that avoids the critical points
of f(z,w). Let oy and By be two roots of f(z,w(0)). Let a(t) be the implicit
function defined by a(0) = ag and f(a(t),w(t)) = 0. Let 5(t) be the implicit
function defined by 5(0) = By and f(B(t),w(t)) = 0. Then there is an € > 0
such that |B(t) — a(t)] > e for all t € [0,1].

Proof. Let d(t) be a real function defined as
d(t) = |8(t) — a(t)]. (7.27)

It is obvious that d(t) is a continuous function and that d(¢) > 0. Since w(t)
avoids the critical points of f(z,w) there is no ¢y € [0, 1] such that a(to) = B(to).
Therefore there is no tg € [0, 1] such that d(¢o) = 0. Hence

d(t) > 0. (7.28)

According to the Extreme Value Theorem since [0, 1] is closed and bounded
there exists ¢ € [0,1] such that

d(t) > d(c). (7.29)
Applying (7.28) to (7.29) results in
d(t) > d(c) > 0. (7.30)

O

7.10 Newton Rouché’s Method

A modified version of Newton’s Method will now be introduced. For lack
of a better name the new algorithm will be called Newton-Rouché’s Method.
Newton-Rouché’s Method is used to find simple roots of a polynomial.

Given an initial guess zp at a root of the polynomial f(z) Newton’s Method
works by creating a number sequence

_ flz)
f(z)’

that will converge to a root of f(z) if zy is sufficiently close to a root of f(z).
Obviously only a finite number of elements in the sequence are calculated. It

Zk4+1 = 2k (7.31)
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becomes necessary to have a criteria for when the algorithm should be halted.
The algorithm is halted if the maximum number of iterations has been reached
or the expression | — f(zx)/f'(2x)| becomes smaller than a predetermined error
€. If the maximum number of iterations has been reached then the algorithm
is considered to have failed to find a root of f(z). If | — f(2x)/f'(2x)| < € then
the algorithm is considered to have found a root of f(z).

The term — f(z)/f'(2r) can be viewed as the error between z; and the root
of

t(2) = flzr) + f'(20) (2 — 21), (7.32)

the best linear approximation of f(z) at x5. The fact that | — f(zx)/f'(z)| < &
does not guarantee that the disc D(zy,e) contains a root of f(z). To make
such a guarantee it is necessary to consider the higher order terms of the Taylor
expansion of f(z) around the point zy.

A fast way of calculating the Taylor expansion of a polynomial is given by
the following Lemma.

Lemma 32. The Taylor expansion of the polynomial p(z) around the point zo
is equal to p(z + zp).

Proof. Taylor expanding the polynomial p(z) around the point zp results in

" o) (2
q(z) = Z P )(z - zo)k7 (7.33)

k!
k=0

where p(z) = q(z — z0). Substituting x = z — 2o results in p(z + 29) = ¢(z). O

Newton-Rouché’s Method works as follows. Given an initial guess zg at a
root of f(z) create the number sequence

_ flz)
f'(z)

The algorithm is halted when the number of iterations reaches a predetermined
maximum or it is determined that the disc D(zx,e) contains a simple root of
£(2).

The following method is used to determine if the disc D(zk,e) contains a
simple root of f(z). The function f(z) is Taylor expanded around the point zj
using the method in Lemma 32

Zh+1 = Rk . (7.34)

1) = 1)+ e+ By
— 1) + 5(2), ” (7.36)
where £(2) and s(2) are defined as
1) = 1) + 70~ ), (7.7
s(2) = Z () (2 — 24). (7.38)

=2
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It is obvious that the linear polynomial #(z) has a simple root « at
o (2k)

f'(z)’
and that ¢(z) has no other roots. The distance d between « and the center of
the disc D(z, €) is equal to

a =2z

(7.39)

ACD, _ Gl
f'(z) ' ()|
Therefore if | f(zx)|/|f'(2x)| < € then the disc D(z, ) will contain the only root
of t(z).
The following Lemmas can be used to calculate a lower bound of ¢(z) and
an upper bound of s(z).

d=la—zL| = |2k

(7.40)

] G
’“‘ ‘f(zk)

Lemma 33. Suppose that t(z) = ag + a1(z — z0). Then ||ai|r — |agl|is a lower
bound of |t(z)| on C(zo,7).

Proof. Apply the reverse triangle inequality to ¢(z). O

Lemma 34. Suppose that s(z) is the polynomial

s(z) = ch(z — z)*. (7.41)
k=0

Then .
Z |ex |7, (7.42)
k=0

is an upper bound of |s(z)| on C(zg,7).

Proof. Since z € C(zg,r) it follows that |z — 29| = r. But then
[5G =1 erlz = 20" < Y lewlz = 20)"| (7.43)

= lerllz = zol* =D lexlr” (7.44)

O

To determine if the disc D(z,€) contains a simple root « of f(z) do the
following:

1. Verify that D(zg,e) contains the root « of t(z). If a is not in D(zg,¢)
then it is not possible to determine if D(z,e) contains a simple root of
f(2). In this case the verification step is terminated.

2. Use Lemma 33 to calculate a lower bound L of |t(z)| for z € C(zg,¢). Use
Lemma 34 to calculate an upper bound U of |s(z)| for z € C(z,e). If
U < L then according to Rouché’s Theorem the disc D(zy, ) contains a
simple root of f(z) since D(z,e) will contain one and only one root of
t(z). If U > L then it can not be determined if the disc D(zy,¢) contains
a root of f(z2).
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7.11 Predict Correct Verify Algorithm

Let f(z,w) be a bivariate polynomial that when viewed as a polynomial in z
has degree n. Let L be a line segment from a to b that does not intersect any
of the critical points of f(z,w). Let w(t) be a path that parameterizes the line
segment L defined as follows

w(t) = (1 —t)a + tb. (7.45)

For each ¢ € [0, 1] the polynomial f(z,w(t)) will have n simple roots since there
is no to such that w(tg) is a critical point of f(z,w). Let z1,2a,..., 2, be the
simple roots of f(z,a).

According to the Implicit Function Theorem there exists analytic functions

ay(w), ag(w), ..., a,(w) defined in a neighborhood of a such that
flag(a),a) =0for k=1,2,...,n. (7.46)
The functions ay(w) for k = 1,2,...,n can be analytically continued along w(t)

since w(t) avoids the critical points of f(z,w).

The Predict and Correct Algorithm can be used to track the path of each
of the functions ag(w) for k = 1,2,...,n. The problem with this approach is
that root jumping can occur. Instead a new algorithm that will be developed
that avoids the problem of root jumping. For lack of a better name the new
algorithm will be called the Predict, Correct and Verify Algorithm.

The Predict Correct and Verify algorithm tracks all the simple roots of the
polynomial f(z,w(t)) as t traverses the interval [0, 1]. If there is a point ¢ such
that any of the roots of f(z,w(ty)) is not simple then the algorithm will fail.
Therefore it is a requirement that the path w(¢) does not intersect any of the
critical points of f(z,w).

The following is a detailed description of the Predict, Correct and Verify
Algorithm.

Input. The following inputs are needed for the algorithm:

1. A bivariate polynomial f(z,w) that when viewed as a polynomial in z has
degree n.

2. A path w(t) = (1 — t)a + tb that is a parametrization of the line segment
from a to b.

3. A mazimum error €.
4. A minimum step size d.

5. A collection of non overlapping discs D(zo,€), D(21,€),...,D(zn,€) where
each disc contains a simple root of f(z,a).

6. A maximum number of iterations N that should be preformed before Newton-
Rouché’s Method is considered to have failed.

7. The number of successful steps M that should be preformed before doubling
the step size.
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Algorithm. The Predict, Correct and Verify Algorithm consists of the following
steps:

1. Initialization. For j = 1,2,...,n set D} = D(zj,¢). Set h = 1/10,
k=0,s=0, and tg = 0.

2. Loop.

(a) Predict. Set tjy,1 = max(ty, +h,1.0). For j =1,2,...,n calculate a
prediction o, of a root of f(z,w(try1)) based on the fact that Dj,
contains a root of f(z,w(ty)).

(b) Correct. For j = 1,2,... ,n calculate a disc Di_i_l that contains a
root of f(z,w(tyy1)) using o, as an initial guess. If the resulting
discs overlap then the Correct step is considered to have failed.

(¢) Verify. If the correct step succeeded Verify that no root jumping has
occurred between D;, and Di_ﬂ when going along the path from w(ty)
to w(tgy1)-

(d) Adjust Step Length If the correction step failed do the following:

i. Set h=h/2.
1. If h < d then the algorithm has failed.

115 Set s = 0.

If the correction step succeeded do the following:
i. If ty41 = 1.0 then terminate the algorithm.
1. Increment s and k.

15 If s > M set h =2h and s = 0.

Output. The output of the algorithm is a collection of non overlapping discs
D},Dz,...,Dy. Fach disc Dj, contains the root of f(z,w(t)) that is the result
of following the root of f(z,w(0)) that is located in D} ast traverses the interval
[0, 1].

Just as in the case for the Predict and Correct Algorithm a value of M
between 3 and 5 works well.

7.12 Verified Initial Roots

Suppose that s is a non critical point of the bivariate polynomial f(z,w). Fur-
thermore suppose that the degree of the polynomial f(z,w) when viewed as a
polynomial in z has degree n. Then the polynomial f(z, s) will have only simple
roots.

The following algorithm can be used to calculate a collection of n discs with
radius e such that each disc contains a simple root of f(z, s).

1. Use the following process to calculate approximations of all the simple
roots of f(z,s):

(a) Use Laguerre’s Method to calculate a root.
(b) Use Horner’s Method to synthetically divide out the root.

(¢) If n roots have been found then stop. Otherwise repeat the process.
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2. Make sure that the error ¢ is smaller than one third of the minimum
distance between the roots of f(z,s). If this is not the case then the
algorithm fails with an indication that the error ¢ is too large.

3. Use Newton-Rouché’s Method to polish the approximate roots of f(z,s).
If Newton-Rouché’s Method fails to converge then the algorithm fails with
an indication of what has happened. If any of the discs overlap then the
algorithm fails with an indication of what has happened.

The result of a successful run of the algorithm is a collection of n discs with
radius ¢ that do not overlap. Each disc contains a simple root of f(z,s). In the
rare cases where the algorithm fails manual intervention is required to find non
overlapping discs that each contain a simple root of f(z,w).

7.13 Euler Disc Predictor

The roots of the polynomial f(z,w(t)) are located in the discs D}, D?,..., D2.
Even though the exact location of the roots of f(z,w(t;)) are not known a
single step of Euler’s Method can still be used to predict where the roots of
f(z,w(tgs1)) are located. This is done by making the assumption that the
roots of f(z,w(tx)) are located at the centers of the discs Di, D3,..., D} and
using an Euler predictor to predict where the roots of f(z,w(tx+1)) are located.

7.14 Newton Rouché Correction

Let f(z,w) be a bivariate polynomial. Let w(t) be a path that avoids the critical
points of f(z,w). Suppose that ai,as,...,a, are initial guesses for where the
roots of f(z,w(txy1)) are located. Then Newton-Rouché’s Method can be used
to calculate discs with radius e that contain the roots of f(z,w(tx+1)). However
Newton-Rouché’s can fail to converge. In this case the step size is halved and
the step is repeated.

7.15 Sufficient Condition for No Root Jumping

A sufficient condition for determining that no root jumping has occurred will
now be developed. Before the sufficient condition can be stated and proved it
is necessary to introduce a couple of Lemmas. The following Lemma gives a
sufficient condition for a simple root of the bivariate polynomial ( f,w(t)) to stay
in a disc D as the parameter ¢ traverses the interval [0,1].

Lemma 35. Let f(z,w) be a bivariate polynomial. Let w(t) be a path that goes
along a line segment from a to b

w(t) = (1 - t)a + tb. (7.47)

If f(z,w) has one and only one root in D(c,r) when w € D(a,|b — al|) then
f(z,w(t)) has one and only one root in D(c,r) for every t € [0,1].

Proof. The Lemma follows from the fact that w(t) € D(a,|b — a|) for ¢t € [0,1].
0

Next is a Theorem that gives a sufficient condition for no root jumping to
oceur.
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Theorem 13. Let f(z,w) be a bivariate polynomial that has degree n when
viewed as polynomial in z. Let w(t) be a path that goes along a line segment
from a to b and that avoids the critical points of f(z,w).

Let aq, g, ..., ap be the roots of f(z,a). Let B1,02,...,08n be the roots of
f(z,b). Suppose that the discs D(c1,11), D(ca,7r2), ..., D(cpn, ) do not intersect
and that for k =1,2,...,n each disc D(ck,rE) contains the roots oy and fy.

If for k = 1,2,...,n the disc D(c,r1) contains one and only one root of
f(z,w) when w € D(a,|b— a|) then By is the analytic continuation of «y.

Proof. Suppose that §j is the analytic continuation of ay but that oy and S
do not lie in the same disc D(cg, 7). Then according to the Implicit Function
Theorem f(z,w) implicitly defines a continuous function ~y(¢) such that

fOr(@),w(t)) = 0,7(0) = ok, (1) = Br, (7.48)

where k # 7.

The function ~(t) has a starting point that lies in a disc D(cy, r) and an end
point that lies in different disc D(c;,7;). Since the discs D(cy, ri) and D(c;, ;)
do not intersect and ~(¢) is a continuous function there has to be a tg such that
v(to) does not lie in D(cg, %) or D(cj,7;5).

But this is a contradiction since for every w € D(a,|b — s|) each of the n
discs D(cg, 7)) contains a simple root of f(z,w). O

If Dy and D5 are two non overlapping discs then the following Lemma gives
a way of constructing a larger disc D3 that contains both of the smaller discs.

Lemma 36. Let D1 = D(z1,7) and Dy = D(za,7) be two discs that do not
intersect. Let d = |z — z1|. Let k = 3/2. Then the disc D3 = D(z1,kd)
contains both D1 and Ds.

Proof. Since Dy and Dy do not intersect and the radius of both discs is r it is
obvious that d satisfies the following inequality

d>2r. (7.49)

The above inequality can be transformed into the following inequality

% > 3r. (7.50)

From the above inequality it is obvious that
Dy C Ds. (751)

Dividing both sides of (7.50) by 3 results in

d
Let s be the distance between 29 and the border of Ds. It is obvious that
d
= —. 7.53
s=3 (7.59)
Hence s > r and therefore D5 is contained in Ds. O
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The following Theorem gives a sufficient condition for detecting that no root
jumping has occurred during the Predict and Correct step.

Theorem 14. Let f(z,w) be a bivariate polynomial that has degree n when
viewed as polynomial in z. Let D(a1,€),...,D(an,€) be non intersecting discs
that each contains a simple root of f(z,a). Let D(by,¢€),...,D(b,,e) be non
intersecting discs that each contains a simple root of f(z,b). Let w(t) be a path
that goes along a line segment from a to b and that avoids the critical points of
F(zw),

For k = 1,2,...,n let Dy be the disc D(ay,3|br — ar|/2). If the discs
Dy, Do, ..., D, do not intersect and each of the discs D1, Do, ..., D, contains
one and only one root of f(z,w) when w € D(a, |b—al) then the root in D(by,¢)
is the analytic continuation along w(t) of the root in D(ay,€).

Proof. According to Lemma 36 for k = 1,2,...,n the disc Dy contains the discs
D(ay,e) and D(by,e). This in turn means that for k = 1,2,...,n the disc Dy
contains «ay and i such that f(ag,a) = 0 and f(Bg,b) = 0. According to

Theorem 13 [y, is the analytic continuation of «y since the discs Dy, Ds, ..., D,
do not intersect and each of the discs D1, Ds, ..., D, contains one and only one
root of f(z,w) when w € D(a, |b— al). O

7.16 Roots and Variable Substitution

Suppose that the bivariate polynomial f(z,w) has one and only one root in
the disc D when w lies in the disc S. Furthermore suppose that g(z,w) is the
following bivariate polynomial

g(z,w) = f(z+c,w+a). (7.54)

Then there are discs D’ and S’ such that g(z,w) has one and only one root in
the disc D’ when w lies in the disc S’.

Lemma 37. Let f(z,w) be a bivariate polynomial. Let g(z,w) be the bivariate
polynomial
g(z,w) = f(z,w + a). (7.55)

The polynomial f(z,w) has one and only one root in D(c,r) when w € D(a,s)
if and only if the polynomial g(z,w) has one and only one root in D(c,r) when
w € D(0,s).

Proof. The lemma follows from the variable substitution w = u + a. O

Lemma 38. Let f(z,w) be a bivariate polynomial. Let g(z,w) be the bivariate
polynomial
g(z,w) = f(z+ c,w). (7.56)

The polynomial f(z,w) has one and only one root in D(c,r) when w € D(a,s)
if and only if the polynomial g(z,w) has one and only one root in D(0,r) when
w € D(a,s).

Proof. The proof of this Lemma is similar to that of Lemma 37. O
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Theorem 15. Let f(z,w) be a bivariate polynomial. Let g(z,w) be the bivariate
polynomial
g(z,w) = f(z 4+ c,w+a). (7.57)

The polynomial f(z,w) has one and only one root in D(c,r) when w € D(a,s)
if and only if the polynomial g(z,w) has one and only one root in D(0,r) when
w € D(0,s).

Proof. The Theorem follows from Lemma 38 and Lemma 37. O

7.17 Bounds of Polynomials

The following Lemma gives a lower bound of the magnitude of a linear polyno-
mial on a circle centered on the origin.

Lemma 39. Suppose that h(z) is the polynomial
h(z) = ho + hyz. (7.58)
Then ||h1|r — |ho|| is a lower bound of |h(2)| when z lies on the circle C(0,r).

Proof. According to the reverse triangle inequality
[h(2)| = [h1z + hol = ||hal|2] — [holl (7.59)
The Lemma now follows from the fact that |z| = r when z € C(0,r). O

The following Lemma gives an upper bound of the magnitude of a polynomial
on a circle centered on the origin.

Lemma 40. Suppose that c(w) is the polynomial

c(w) = chwk. (7.60)

k=0

An upper bound of |c(w)| when w lies on the circle C(0, s) is given by

> fex]s”. (7.61)
k=0
Proof. According to the triangle inequality
le(w)| = Y exw®] <Y fexljw]*. (7.62)
k=0 k=0

The Lemma now follows from the fact that |w| = s when w € C(0, s). O

The following Lemma gives an upper bound of the magnitude of a bivariate
polynomial k(z,w) when (z,w) in C(0,r) x C(0,s).
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Lemma 41. Suppose that k(z,w) is the bivariate polynomial
k(z,w) = Z cr(w)zF, (7.63)
k=

0

where c1(w), ca(w), ..., cp(w) are polynomials in w. Let My be an upper bound
of cx(w) when w lies on the circle C(0,s). An upper bound of |k(z,w)| when
(z,w) € C(0,r) x C(0,s) is given by

Z M. (7.64)
k=0

Proof. According to the triangle inequality

n n

k(2 w) =1 ex(w)2"| <Y lew(w)] |2 (7.65)
k=0

k=0

Since M, is an upper bound for |ci(w)| when w € C(0, s) the above inequality
can be transformed into

|k(z,w)| < ZMk Elk (7.66)
k=0
The Lemma now follows from the fact that |z| = r when z € C(0,r). O

7.18 Sufficient Condition for Disc to Contain a Root

The following theorem gives a sufficient condition for the bivariate polynomial
g(z,w) to contains one and only one root in D(0,7) when w € D(0, s).

Theorem 16. Suppose that g(z,w) is the bivariate polynomial
g(z,w) = go(w) + g1 (w)z + ga(w)z® + ... + gn(w)2". (7.67)
Let h(z) be the polynomial
h(z) = go(0) + g1(0)=. (7.68)
Let k(z,w) be the bivariate polynomial
k(z,w) = g(z,w) — h(z). (7.69)

Suppose that r > |go(0)/g1(0)|. If there exists a lower bound L of h(z) for
z € C(0,7) andan upper bound U of |k(z,w)| for (z,w) € D(0,7) x D(0,s)
such that U < L then g(z,w) will have one and only one root in D(0,r) when
w € D(0,s).

Proof. Tt is obvious that h(z) has a root at z = —gg(0)/g1(0). Furthermore
since 7 > |go(0)/g1(0)| the disc D(0,r) contains one and only one root of h(z).
According to Rouché’s Theorem the polynomials g(z,w) and h(z) will have the
same number of roots in D(0,r) when w € D(0, s) since |k(z, w)| < |h(z)| when
z € D(0,r) and w € D(0,s). O
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7.19 Rouché Verification

Let f(z,w) be a bivariate polynomial that has degree n when viewed as a poly-
nomial in z. Let w(t) be a path alone a line segment from a to b that avoids
the critical points of f(z,w). Let D(ay,¢), D(az,€),...,D(ay,€) be a collection
of non intersecting discs where each disc contains a simple root of f(z,a). Let
D(b1,¢€), D(ba,€),...,D(by,€) be a collection of non intersecting discs where
each disc contains a simple root of f(z,b).

The following method can be used to check if for £ = 1,2,...,n the root
of f(z,b) located in D(bg,¢) is the analytic continuation of the root of f(z,a)
located in D(ag,e) when w traverses the line segment from a to b.

Create the discs D1 = D(a1,3|b1 — a1]/2),..., Dy = D(an, 3|b, — a,|/2). If
any of the discs overlap then the verification step is considered to have failed.
Otherwise according to Theorem 14 if the discs D1, Do, ..., D, do not overlap
and f(z,w) has one and only one root in each of the discs Dy, Do, ..., D, when
w € D(a,|b— al) then for k = 1,2,...,n the root of f(z,b) located in D(bg,¢)
is the analytic continuation along w(t) of the root of f(z,a) located in D(ag, €).

The following method can be used to check if for k = 1,2,...,n the polyno-
mial f(z,b) has one and only one root in Dy, when w € D(a,|b — al).

Let g(z,w) be the bivariate polynomial

g(z,w) = f(z + ag,w + a). (7.70)

Let r be the radius of the disc Dy. According to Theorem 15 the polynomial
f(z,w) will have one and only one root in D(ay,r) when w € D(a,|b — al) if
and only if the polynomial g(z,w) has one and only one root in D(0,r) when
w € D(0, b —al).

The following method can be used to check if the polynomial ¢g(z,w) has one
and only one root in D(0,r) when w € D(0, |b — al).

The bivariate polynomial ¢g(z,w) can be written as

9(z,w) = go(w) + g1(w)z + g2(w)2* + ... + gn(w)z", (7.71)
where go(w), g1(w), ..., gn(w) are polynomials in w. Let h(z) be the polynomial
h(z) = go(0) + 2(0). (7.72)

Let k(z,w) be the bivariate polynomial
k(z,w) = g(z,w) — h(z). (7.73)

Let L be the lower bound of h(z) when z € C(0, r) calculated using Lemma 39.
Let U be the upper bound of k(z,w) when z € C(0,7) and w € D(0,]b — a|)
calculated using Lemma 40 and Lemma 41. According to Theorem 16 if U < L
and r < |go(0)/g1(0)| then g(z,w) has one and only one root in D(0,r) when
w € D(0,]b—al). If r < |go(0)/g1(0)] or U > L then the verification step is
considered to have failed.
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8 Permutations of Roots

In this section a function that takes a bivariate polynomial and a closed path
and generates a permutation is defined. Several properties of the permutation
function are stated and proved. The permutations generated by homotopic
paths are discussed. It will be shown that the permutation generated by an
arbitrary closed path is equal to the permutation generated by a path that is
the composition of circle paths and inverse circle paths.

Given a bivariate polynomial a method is developed for creating a collection
of circle paths that all have a common starting point and where each circle
path goes around a critical point of the bivariate polynomial. A method for
numerically calculating the permutation generated by a bivariate polynomial is
described.

8.1 Permutation Function Definition

For an arbitrary closed path w(t) and a bivariate polynomial f(z, w) the function
R[f,w] will permute the roots of f(z,w(0)).

Theorem 17. If w(t) is a closed path that avoids the critical points of f(z,w)
then R[f,w] will act as a permutation of the roots of f(z,w(0)).

Proof. R[f,w] will be a bijection between the roots of f(z,w(0)) and f(z,w(1)).
Since w(t) is a closed path we have that w(0) = w(1). This in turn means that
the roots of f(z,w(0)) are equal to the roots of f(z,w(1)). O

Corollary 7. Let f(z,w) be a bivariate polynomial and let w(t) be a closed path.
Furthermore let a1, as, . . ., ayp be the roots of f(z,w(0)). Then Root(f,w,ay) =
o for some j.

Given a bivariate polynomial and a closed path a new function can be defined
that permutes the roots of the bivariate polynomial at the start of the path.

Definition 63. Let f(z,w) be a bivariate polynomial. Let w(t) be a closed path
that avoids the critical points of f(z,w). Let ay,aa,...,a, be the simple roots
of f(z,w(0)). Let P(f,w) be the permutation of the roots of f(z,w) generated
by Root(f,w,ay) for k=1,2,...,n.

(a) Parameter Plane (b) Root Plane

Figure 17: A closed loop in the parameter plane causes the roots to swap places.
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8.2 Properties of the Permutation Function

The permutation generated by a bivariate polynomial along the composition
of two paths is equal to the composition of the permutations generated by the
individual paths.

Lemma 42. If the end point of the closed path u(t) coincides with the start
point of the closed path v(t) then P(f,uov) = P(f,u)o P(f,v).

Proof. This is obvious if we consider what happens to the roots at the intersec-
tion of the closed paths v and v when moving along the closed path uowv. [

The permutations generated by a bivariate polynomial along the inverse of
a path is equal to the inverse of the permutation generated by the path.

Lemma 43. If w(t) is a closed path then P(f,(w)™!') = P(f,w)™!.

Proof. Let I be the identity permutation. According to Lemma 8 P(f,w o
w™t) = I and P(f,w™! ow) = I since the paths w o w™! and w™! o w are
both homotopic to a point. According to Lemma 42 P(f,wow™!) = P(f,w)o

P(f,w™") and P(f,w™" ow) = P(f,w) o P(f,w). O

8.3 Permutations and Homotopic Paths

Consider a bivariate polynomial f(z,w). Suppose that w(t) and u(t) are two
paths that are homotopic in C\ Critical(f). Then w(t) and u(t) will generate
the same permutation of the roots.

Theorem 18. Let f(z,w) be a bivariate polynomial. Let w(t) and u(t) be two
closed paths that avoid the critical points of f(z,w). If the paths w(t) and u(t)
are homotopic in C\ Critical(f) then P(f,w) = P(f,u).

Proof. According to the Monodromy Theorem R|[f,w] = R[f, ] since the paths
w(t) and u(t) are homotopic in C\ Critical(f). O

Corollary 8. Let f(z,w) be a bivariate polynomial. Let w(t) be a closed path
that avoids the critical points of f(z,w). If w(t) is homotopic to a point in
C\ Critical(f) then P(f,w) is equal to the identity permutation.

If a path is the composition of circle paths and inverse circle paths then
to determine the permutation generated by the path it is enough to know the
permutation generated by the circle paths.

Lemma 44. Let w(t) be a composition of the paths ug(t) for k = 1,....n
where each uy is a circle path or an inverse circle path path. Then to determine
P(f,w) it is enough to know P(f,vy) where v (t) = uk(t) if ug is a circle path
or v (t) = u;, *(t) if uy, is an inverse circle path.

Proof. This follows from Lemma 42 and Lemma 43. O

As the following Theorem shows the permutation generated by an arbitrary
closed path is equal to the permutation generated by a closed path that is the
composition of circle paths and inverse circle paths.
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Theorem 19. Let f(z,w) be a bivariate polynomial. Let w(t) be a path that
avoids the critical points of f(z,w). Let c1,ca,...,c, be the critical points of
f(z,w). Let s be the starting point of the path w(t). Suppose that there is
no k # j such that the points s, ci,c; are not colinear. Then there is a path
u(t) that is the composition of circle paths and inverse circle paths such that

P(f,w) = P(f,u).

Proof. Let r be 1/4 times the minimum distance between the critical points of
f(z,w). According to Theorem 18 the path w(¢) is homotopic in C\ Critical(f)
to a path u(t) that is a composition of the circle paths B(s,c1,7), ..., B(s,cpn,r)
and their inverses. According to Theorem 18 P(f,w) = P(f,u) since the paths
w(t) and u(t) are homotopic in C \ Critical(f). O
8.4 Automatic Path Generation

Consider a bivariate polynomial f(z,w) that has the critical points ¢1, ca, .. ., ¢p.
The following method can be used to calculate a starting point s and a radius r
such that the circle paths B(s, c1,7), B(s,ca,7),...,B(s,cpn,r) do not intersect.
Furthermore the starting point of the paths will not lie in any of the discs
D(cy1,7), D(ca,r),...,D(cn,r).

8.4.1 Calculating Circle Path Radius

The radius of the circle paths is calculated as follows. Let d be the minimum
distance between the points ¢i,¢a, ..., ¢,. Let the radius r = d/4.

8.4.2 Valid and Nice Starting Points
A starting point has to satisfy certain constraints.

Definition 64. A point s is a valid starting point for the points ¢y, ca, ..., cpand
the radius v if it satisfies the following conditions:

1. The circle paths B(s,c1,7),...,B(s,cpn, 1) do not intersect except at s.

2. Each of the circle paths B(s,c1,7),...,B(s,cn,r) goes around one and
only one of the points c1,¢a, ..., Cp.

The concept of a nice starting point is introduced to give a more visually
appealing starting point.

Definition 65. A point s is a nice starting point for the points ci,ca,...,cCn
and the radius v if it satisfies the following conditions:

1. The point s is a valid starting point.

2. Let d be the minimum distance between the points c1,ca,...,cn. Let r =
d/4. The point s does not lie in any of the discs D(c1,1), D(ca,7), ..., D(cpn,T).

3. Let Ry be the ray starting at s and intersecting cy. There is no Ry and
R; with k # j such that the angle between Ry and R; is less than 2°.
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8.4.3 Candidate Starting Points

The next concept to be defined is that of a candidate starting point.

Definition 66. Let C be the centroid of the points c1,c2,...,n. Let M be the
mazimum distance between the point C' and the points c1,c¢a,...,¢,. A point s
is a candidate starting point for the points c1,ca, ..., c, and the radius r if the
following conditions are satisfied:

1. The point s lies in the disc D(C,5M).

2. The point s is a nice starting point.

8.4.4 Calculating a Starting Point

The following method is used to calculate a starting point for the radius r and
the points ¢y, ca, ..., ¢,. A collection of candidate starting points s created and
then the best candidate starting point is selected as the starting point.

To create a collection of N candidate starting points the following method is
used. Let C be the centroid of the points ¢y, cs, ..., c,. Let M be the maximum
distance form C to the points ¢, ca, ..., ¢,. Let D be the disc D(C,5M). Select
random points in D keeping the points that are nice starting points until IV nice
candidate starting points have been found.

Before the best candidate starting point can be selected it is necessary to
introduce the concept of minimum angle between a point s and a collection of
points ¢y, co,. .., Cp.

Definition 67. Let cq,co,...,c, be a sequence of distinct complex numbers. Let
s be a complexr number such that there is k such that s = c. Fork=1,2,...,n
let Ry, be the ray starting at s and going through the point cp. The minimum
angle between the point s and the points c1,ca, ..., cn 1S equal to the minimum
angle between the rays Ry, Ra, ..., R,.

Let s1, s9,...,s8n be the candidate starting points. For £ =1,2,...,n let ax
be the minimum angle between the candidate starting point s; and the points
C1,C2y...,Cp. .

Select the starting point ¢, with the largest minimum angle ay,. If there are
several candidate starting points that all have the largest minimum angle then
pick one of these points at random.

8.5 Automatic Permutation Calculation

Consider a bivariate polynomial f(z,w) that has degree n when viewed as a
polynomial in z. A method for automatically calculating the permutations of
the roots associated with each critical point of f(z,w) will now be described.

1. Calculate the critical points ¢1,ca,..., ¢y of f(z,w) using the method
described in Subsection 4.6.

2. Create a collection of N-gon paths wq(t), wa(t),. .., wy,(t) that all share
a common starting point s and where each N-gon path goes around one
of the critical points c1, ca,. .., ¢y, using the method described in Subsec-
tion 8.4.
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3. Calculate discs with radius € containing the initial roots a1, as, ..., a;, of
the polynomial f(z,s) using the method described in Subsection 7.12.

4. Calculate the permutation of the roots aq,as,...,a, that occurs when
the parameter w is moved along each of the paths wi (t), wa(t), ..., wn(t)
using the Predict, Correct and Verify algorithm.
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9 Implementation

In this section an implementation of the Automatic Permutation Calculation
Algorithm will be discussed. The implementation is written in the Scheme
programming language. Output from the program will be shown. Several issues
with the implementation will be discussed. The implementation differs in several
places from the algorithms described in the earlier sections.

9.1 Rounding Errors

The results produced by the Predict Correct Verify Algorithm is guaranteed to
be correct. However the current implementation of said algorithm uses floating
point numbers. Because of this rounding errors are introduced each time an
arithmetic operation is performed and therefore the results generated by the
implementation are not guaranteed to be correct. If the implementation was
modified to use rational arithmetic or interval arithmetic then the results would
be provably correct.

A problem with rational arithmetic is that the size of the integers in the
numerator and the denominator increase each time an arithmetic operation is
performed. Performing arithmetic operations on arbitrarily large integers takes
longer time than performing arithmetic operations on small integers. The size
of the integers can be reduced by dividing out the greatest common divisor of
the numerator and the denominator. Calculating the greatest common divisor
of the numerator and denominator after each arithmetic operation becomes
computationally expensive.

A problem with interval arithmetic is that the size of the intervals can grow so
large that it is not possible to extract any useful information from a calculation.
It becomes necessary to modify the algorithms to introduce a step where the size
of the intervals are decreased. For more information about interval arithmetic
see [12].

9.2 Scheme

The main selection criterion for the programming language used to implement
the algorithms in this thesis was that it had to be licensed under a Free Software
license. Being forced to stop working on the implementation due to licensing fees
was not acceptable. Another selection criterion was that the language should
support automatic memory management since this lowers the development time.
Hence C and C++ were rejected.

An implementation using the Ruby programming language was started.
However the performance was poor and the implementation was abandoned.
The Python programming language was rejected due to Pythons similarity to
Ruby.

The next programming language to be tried was Scheme. There are several
Open Source implementations of Scheme. PLT Scheme was selected since it
has a nice development environment and the performance of numerical code
is adequate. Unfortunately the members of the Scheme community do not
believe in code libraries. The implementation time was thus increased since all
numerical code had to be developed from scratch. Choosing Common Lisp as
the implementation language would have been a better choice.
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9.3 The Program

Since the author could find no numerical libraries for Scheme all numerical code
had to be written from scratch. The amount of time required to develop and
test a numerical library should not be underestimated. The author estimates
that about three quarters of the time spent developing the program was spent
on writing and debugging generic numerical code. More effort should have
been spent to find an environment with an existing numerical library suited for
developing the algorithms in this paper.

A numerical library that is to be used in this problem space should satisfy
the following requirements:

1. The library should have functions for working with Complex Polynomials
and Complex Bivariate Polynomials.

2. The library should have functions for calculating the Discriminant of a
Complex Polynomial or calculating the Determinant of a Complex Matrix.

3. The library should have an implementation of a Root Finding Algorithm
for Complex Polynomials.

The implementation does not calculate the discriminant of a polynomial by
using the method of taking the determinant of a Sylvester Matrix. This is due
to the fact that no existing code was available to calculate the determinant
of a complex matrix. Instead the implementation is hard coded to calculate
the discriminant of a fourth degree polynomial which has coefficients that are
themselves arbitrary complex polynomials.

At one point the program needed to be modified in some places to use discs
in the complex plane instead of just complex numbers. This was due to the fact
that the different components of the Predict Correct Verify Algorithm operate
on discs in the complex plane and not complex numbers.

9.4 Program Disposition

The program consists of the following steps:

1. Generate a random bivariate polynomial where the coefficient polynomials
are parameterized by w.

2. Calculate the critical points for the bivariate polynomial.

3. Calculate a set of n-gon paths that all have the same starting point and
where each path goes around one and only one of the critical points.

4. Calculates the roots of the polynomial generated at the start of the path.

5. Calculates the permutation of the initial roots generated by the Predict
Correct Validate Algorithm generated when the parameter w is moved
along each of the generated paths.
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9.5 Program Output

In this subsection the output of a single run of the program will be displayed.
The following polynomial was generated by the program.

(—411/10 — 11/2i) + (—287/5 + 51/10i)w+
(387/5 + 474/5i)z + (811/10 — 861 /104 )wz+
(151/5 +9/5i)2* + (107/2 — 184/5i)wz*+
(171/2 + 179/5i)2* + (33 + 55/2i)wz> + 2*

The following is the output of a single run of the program. The output has
been modified to fit inside the page margins.

Generating Bivariate Polynomial:
([-411/10—-11/21i] + [—287/5+51/10i]w) +
([387/5+474/51] + [—-811/10—861/10i]w)z +
([151/549/51] + [107/2—-184/51]w)z"2 +
([171/24179/51] + [33+55/2i]w)z"3 + ([1])z"4
Number of critical points: 6

Paths starting point: —1.927626657061293—-0.058552364424453884 1
Radius of Paths: 0.04235898245399947

Initial Root Discs:

(—0.11638063013351323+0.180108759638760441 1le—10)
(—0.8891436944496411+2.02710962964052271 1le—10)
(3.944836091446111—2.29968726732074821 1e—10)
(—26.437822105512765+19.2344299732340081 le—10)

Path 1
Critical Point: 0.045060695757472444—-0.213669973547604171
Permutation: (3 2 1 4)

Path 2
Critical Point: —0.318633264769134454+2.0851015811800266 i
Permutation: (2 1 3 4)

Path 3
Critical Point: —1.566260219959744+0.7854460438570761 1
Permutation: (1 2 4 3)

Path 4
Critical Point: —2.428520516032755440.59285673782357481
Permutation: (1 4 3 2)

Path 5

Critical Point: —2.5555546613898352+40.48073689022285751
Permutation: (1 2 4 3)
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Path 6
Critical Point: 6.814778920027891—2.37417332704734861
Permutation: (2 1 3 4)

The program finds the following 6 critical points.

c1 = 0.045060695757472444 — 0.213669973547604173
¢ = —0.31863326476913445 + 2.0851015811800266¢
c3 = —1.56626021995974 + 0.7854460438570761¢

¢y = —2.4285205160327554 4 0.59285673782357484
cs = —2.5555546613898352 4 0.48073689022285751%
ce = 6.814778920027891 — 2.37417332704734861

The calculated starting point for the paths is equal to
—1.927626657061293 — 0.0585523644244538841.

The program calculates that the initial roots of the polynomial at the start of
the path are located in discs with radius 107! centered on the points

r1 = —0.11638063013351323 + 0.18010875963876044+,
ro = —0.8891436944496411 + 2.0271096296405227¢,
r3 = 3.944836091446111 — 2.29968726732074821,

T4 = —26.437822105512765 + 19.234429973234008:.

Let p(cx) denote the permutation of the roots generated by the program when
going around the critical point c¢;. The following permutations are generated
by the program

plcr) = (3214), plez) = (2134), p(es) = (1243),

plea) = (1432), ples) =(1243), p(cg) =(2134).
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