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Abstract

Mathematicians of the 18th century had available methods to ex-
press the roots of polynomial equations of degree up to four in terms
of the coefficients of the equation, but no method that would solve an
arbitary quintic or higher degree equation. Lagrange observed that all
these methods are ruled by a single pattern based on symmetry. Later
on Évariste Galois realized that the appearance of symmetry was a con-
sequence of properties of an asymmetry, namely a function/expression
of the roots of the equation, nowadays called the Galois resolvent,
which is not symmetric at all and is such that the roots can be ratio-
nally expressed in terms of this function. The Galois resolvent when
interpreted as an element of a certain field gives rise to a group, nowa-
days called the Galois group, which will be characterized as the group
consisting of those permutations of the roots of the polynomial that
leave rational expressions in the roots, which lie in the field, unal-
tered. The property of a polynomial being solvable over a field will be
described in terms of its Galois group. Finally, we present the mod-
ern formulation of Galois Theory of finite field extensions due to Emil
Artin.
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1 Introduction

1.1 Field extensions

In this section we recall some basic facts from a first course in abstract
algebra.

◦

Let F be a field. A subfield of F is a subset of F which is itself a field
under the operations of F , an extension E of F is a field which has F
among its subfields. The term field extension refers to a pair of fields (E,F )
where F ⊂ E and is denoted by E/F , also F is called the base field of the
field extension E/F . An intermediate field of a field extension E/F is a
field L that contains F , but is contained in E. A field isomorphism is a ring
isomorphism between two fields.

Definition 1.1.1 Let E be an extension of a field F and Y a subset of
E. The intersection of all intermediate fields of the extension E/F that
contains both F and Y is a field. It is called the extension field of F ob-
tained by adjoining Y and is denoted by F (Y ). When Y = {a1, ..., an} we
simply write F (a1, ..., an) and if Y contains just one element then F (Y ) is
called a simple field extension of F .

Proposition 1.1.1 Let E be a field extension of F and α an element in E.
Then, F (α) = {f(α)/g(α) : f, g ∈ F [x], g(α) 6= 0}.

Proof: An element that can be rationally expressed in terms of a and
elements in F belongs to every intermediate field of the extension E/F that
contains both F and α, hence it belongs to their intersection F (α). Con-
versely, consider the map φ : F [x] → E given by f(x) 7→ f(α). This map
is clearly a ring homorphism. Hence the set {f(α) : f ∈ F [x]} being the
image of the ring homorphism φ is itself a ring. But, {f(α)/g(α) : f, g ∈
F [x], g(α) 6= 0} is the quotient field of the integral domain {f(α) : f ∈ F [x]}
and as it contains both F and α the other inclusion follows.

Definition 1.1.2 Let E be an extension field of F and α an element in
E. If there exists a nontrivial polynomial p over F such that p(α) = 0, then
α is an algebraic element over F . A field extension E/F is called algebraic
if every element in E is algebraic over F .

Let E/F be a field extension, α a an element in E and φ : F [x] → E
the ring homorphism given by f(x) 7→ f(α). The image of φ which is
{f(α) : f ∈ F [x]} is isomorphic to F [x]/ker(φ). The kernel of φ is simply
ker(φ) = {f(α) = 0 : f ∈ F [x]} hence when α is algebraic over F the kernel
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is not the zero-set. Now, as F is a field it follows that F [x] is a principal
ideal domain hence ker(φ) = (q) for some polynomial q ∈ F [x]. Observe
that in (q) there is a family of polynomials of the same degree k such that
there is no polynomial in (q) of degree smaller than k. We give emphasis to
the monic polynomial which lies in the family.

Definition 1.1.3 The minimal polynomial of an algebraic element α over
F is the monic polynomial of least degree over F that has α as a root and
we denote it by mα.

By definition, mα(α) = 0 hence q divides mα. It follows again by defini-
tion that mα divides q . Hence, ker(φ) = (mα).

Proposition 1.1.2 Let E/F be a field extension and α ∈ E an algebraic
element over F

(1) The minimal polynomial of α over F is irreducible. A polynomial p
in F [x] has α as a root iff mα | p.

(2) Let n be the degree of mα, then F (α) = {a0+a1α+...+anα
n−1 : ai ∈ F}.

Proof: (1) If it is not irreducible, then there exists an irreducible factor
q of mα of less degree than mα and with α as a root, contradiction. Next,
by the above arguments it follows that p is a polynomial over F with α as
a root if and only if p lies in the ideal generated by (mα).

(2) Every element that can be polynomially expressed in terms of α and
elements in F is an element in F (a). Conversely, let φ : F [x]→ E be the ring
homorphism given by f(x) 7→ f(α). Clearly, the image of φ consists of ele-
ments a0+a1α+...+akα

k : k ∈ N, ai ∈ F . But as αn = b0+b1α+...+bnα
n−1

for some bi ∈ F it follows by induction that every power of α can be ex-
pressed as a linear combination of the elements 1, α, ..., αn−1 over F and so
that im(φ) = {a0 + a1α+ ...+ anα

n−1 : ai ∈ F}. Now, im(φ) is a field since
it is isomorphic to the ring F [x]/(mα) which is a field as mα is irreducible.
The rest follows from the definition of F (a).

Given a field extension E/F , then E can be considered as a vector space
over F in a natural way by interpreting F as an additive group and by
defining scalar multiplication as multiplication in E. The dimension of E
as a vector space over F is called the degree of the extension E/F , and is
denoted by [E : F ]. If [E : F ] <∞ then E is called a finite extension of F .

4



Corollary 1.1.1 Let α be an algebraic element over a field F . If deg(mα) =
n then a basis of F (a) over F is given by {1, α, ..., αn−1} and therefore
[F (α) : F ] = n

Proof: By Proposition 1.1.2 (2) it follows that the elements 1, α, ..., αn−1

span F (a). Suppose that they are not linearly independent, then there exist
elements b0, b1, ..., bn−1 ∈ F not all zero such that b0 +b1α+ ...+bn−1α

n−1 =
0. But, then mα is not the polynomial of least degree over F with α as a
root, contradiction.

Proposition 1.1.3 If E/F is a finite field extension, say [E : F ] = n,
then E is algebraic over F .

Proof: Let a be an element in E. The elements 1, a, ..., an are linearly
dependent over F , hence there exists b0, b1, ..., bn ∈ F not all zero such that
b0 + b1a+ ...+ bna

n = 0.

Theorem 1.1.1 If F ⊂ L ⊂ E are three fields then [E : F ] = [E : L][L : F ].

Proof: For simplicity assume that E is a finite extension of L and L a
finite extension of F . Let {ai}ni=1 be a basis for E over L and {bj}mj=1 a
basis for L over F , then {aibj} span E. To see this let x be an element in
E then,

x =
m∑
i=1

liai for some li ∈ L and li =
m∑
i=1

fijbj for some fij ∈ L so

x =
m∑
i=1

( m∑
j=1

fijbj
)
ai =

m∑
i=1

m∑
j=1

fijaibj .

Also, {aibj} are linearly independent over F since if fij ∈ F are such that

m∑
i=1

m∑
j=1

fijaibj = 0 then
m∑
i=1

( m∑
j=1

fijbj
)
ai = 0 as the ai’s are linearly

independent over L we get
∑m

j=1 fijbj = 0 and as the bj ’s are linearly

independent over F we finally get fij = 0 for all i, j.

Proposition 1.1.4 Let E be an extension field of F and α1, ..., αn ele-
ments of E that are algebraic over F . Then, [F (α1, ..., αn) : F ] <∞.

Proof: We use induction on the number of elements adjoined to an inter-
mediate field of the extension E/F . Let L be an intermediate field and α an
element algebraic over L, then [L(a) : L] < ∞ by Corollary 1.1.1. Assume
that the proposition holds true whenever less than n algebraic elements are
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adjoined to F . Let, now, α1, ..., αn be algebraic elements over F . By Theo-
rem 1.1.1 it follows that
[F (α1, ..., αn) : F ] = [F (α1, ..., αn) : F (α1, ..., αn−1)][F (α1, ..., αn−1) : F ].
By the induction hypothesis, [F (α1, ..., αn) : F (α1, ..., αn−1)] <∞ and
[F (α1, ..., αn−1) : F ] <∞. Hence, the result follows.

Given a polynomial over a field F , the following very important theorem
allows one to speak about the roots of the polynomial since it follows from
it that they will exist in a finite algebraic extension of F .

Notation: Let i : F → F ′ be a field isomorphism, if p = c0 + ...+cnx
n is a

polynomial over F denote by i(p) the polynomial i(c0)+ ...+i(cn)xn over F ′.

Theorem 1.1.2 A polynomial p over a field F has a root in an exten-
sion field E of F .

Proof: We can assume without loss of generality that p = a0+a1x+...+anx
n

is irreducible, since otherwise pick an irreducible factor of p. As p is an ir-
reducible polynomial over F the principal ideal generated by p in F [x] is
maximal hence F [x]/(p) is a field. The map i : F → F [x]/(p) given by
f 7→ f + (p) is an injective ring homorphism hence F is a field that is iso-
morphic to the subfield i(F ) = {f + (p) : f ∈ F} of E = F [x]/(p). If we
identify F with i(F ) then F can be considered as a subfield of E and so E
as an extension field of F . Then x+ (p) is a root of p in E, since

p
(
x+ (p)

)
= a0 + a1

(
x+ (p)

)
+ ...+ an

(
x+ (p)

)n
=
(
a0 + (p)

)
+
(
a1x+ (p)

)
+ ...+

(
anx

n + (p)
)

= a0 + a1x+ ...+ anx
n + (p) = 0.

1.2 Solvable equations

From now on and until the end of chapter 3 we let the symbol F stand
for an arbitary field of characteristic zero.

◦

With an understanding of the essence of the notion of a field extension
we are able to go further than what seems apparently to be a satisfactory
definition of solvability: ’A polynomial p over a field F is called solvable if
we can arrive at concrete formulas that express the roots of p in terms of
elements in F by making use, a finite number of times, of the operations ad-
dition, substraction, multiplication, division and extraction of roots’. Hence,
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according to this definition we require the roots to lie in a finite field ex-
tension of F . But, instead of trying to find explicit formulas for the roots
in terms of elements in F it turns out be very fruitful to try to describe
in the simplest manner as possible an ’eligible’ field extension of F (where
the roots exist). For this purpose, let us, as a first step, try to solve the
cubic equation over Q according to Cardano and try to interpret our result
in terms of fields. After dividing all the coefficients of the cubic with its
leading coefficient we obtain

x3 + ax2 + bx+ c = 0 where a, b, c belong to Q (2.1)

Making a change of variables y = x+
a

3
in order to eliminate the quadratic

term we get

y3 + py+ q = 0 where p =
3b− a2

3
and q =

27c− 9ab+ 2a3

27
(2.2)

Set y = u+ v, then

u3 +v3 +(3uv+p)uv+q = 0 (2.3)

Imposing the condition 3uv + p = 0 and using it in (2.3) we see that u, v
satify the sextic equation

w6 + qw3− p3

27
= 0 (2.4)

The above equation is a quadratic for w3 and hence it can be solved, there-
fore u3 and v3 are determinable quantities and so are u and v. Hence, a
possible solution for equation (2.2) can be represented in the form

x = u+v =
3

√
−q

2
+

√
p3

27
+
q2

4
+

3

√
−q

2
−
√
p3

27
+
q2

4
(2.5)

A straightforward verification shows that there is a root corresponding to
the formula (2.5) and hence by taking in consideration the restriction im-
posed we can verify that the other two roots of equation (2.2) are given by

x = ω
3

√
−q

2
+

√
p3

27
+
q2

4
+ ω2 3

√
−q

2
−
√
p3

27
+
q2

4
(2.5)

x = ω2 3

√
−q

2
+

√
p3

27
+
q2

4
+ ω

3

√
−q

2
−
√
p3

27
+
q2

4
(2.5).
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Now, we have to trace back the operations that lead us to the final form
of the roots. We single out the operation of extracting roots and this simply
because if we have algebraic relations over some field F and involving un-
knowns then by a root extraction of an element in F , in those relations, we
’transfer’ the relations to the simple field extension obtained by adjoining
the extracted element to F . Taking a sequence of root extractions we create
a sequence of simple field extensions:√

p3

27 + q2

4  Q(
√

p3

27 + q2

4 )/Q, a1 =
√

p3

27 + q2

4 , F1 = Q(a1)

3

√
− q

2 + a1  F1( 3

√
− q

2 + a1)/F1, a2 = 3

√
− q

2 + a1, F2 = F1(a2)

3

√
− q

2 − a1  F2( 3

√
− q

2 − a1)/F2, a3 = 3

√
− q

2 − a1, F3 = F2(a3)

ω(= 3
√

1)  F3(ω)/F3

This illustration partially motivates the following two definitions (they can
be found non-formalized among the pages of Galois’ manuscript: Mémoire
sur les conditiones de résolubilité des équations par radicaux)

Definition 1.2.1 Let F be a field a radical extension E of F is a field
extension E/F for which there exist intermediate fields F1, ..., Fn such that
:
(1) F = F0 ⊆ F1 ⊆ ... ⊆ Fn−1 ⊆ E = Fn,
(2) Fi+1 = Fi(ai) where ai

pi ∈ F for some prime pi (or pi=1).

Definition 1.2.2 A polynomial p over F is called solvable if its roots lie in
a radical extension of F .

According to Definition 1.2.2 we can directly see that the binomial equa-
tions over any field, i.e xn − a where n is an integer, are solvable. The class
of polynomials for which a = 1 have some very interesting properties. For
example, if we have a root α of a binomial equation p(x) = xm− a = 0 then
we get the other roots of p simply by multiplying α with the roots of the
equation xm − 1 = 0. Shortly, we will see other properties but let us first
give a definition:

Definition 1.2.3 Let F be a field. The roots of the equation xn − 1 = 0
are called the n-th roots of unity of F .
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It is a well-known fact that the n-th roots of unity of Q are given by the
formula (and that these n numbers are distinct)

e
2πik
n = cos(2πik

n )+i sin(2πik
n ), where k = 1, 2, ..., n. (2.6)

For small values of n we can without much effort get simple expressions
for the n-th roots of unity in terms of radicals that are given by binomial
equations of smaller degree than n. For example, the nontrivial third roots
of unity satisfy the equation x3−1

x−1 = x2 + x + 1 = 0. This is a quadratic

with roots 1+
√
−3

2 and 1−
√
−3

2 . The 5-th roots of unity, except 1, satisfy the
quartic equation

x4 + x3 + x2 + x+ 1 = 0.

If we do not want to use the formula of Ferrari(see [9]) for the quartic
we can divide equation (2.7) by x2 and then make a change of variables
y = x+ 1/x to get the following equation for y:

y2 + y − 1 = 0.

Hence, y = −1 ±
√

5
2 and the wanted four values of x can be found by solving

the two equations x2 − −1 ±
√

5
2 x+ 1 = 0. So,

x =

√
5− 1 ±

√
−10 − 2

√
5

4
, x =

√
5− 1 ±

√
−10 + 2

√
5

4
.

In the same manner we can find the 7-th roots of unity. Namely, divide
x6 + ... + x + 1 with x3 then set y = x + x−1 and express the sums
xn + x−n, n = 1, 2, 3 in terms of this new variable to get an equation of
degree three in y. Finally, the relation x2 − xy + 1 = 0 can give us the 7-th
roots of unity(except 1). But, this method will not be successful by itself if
we try to solve the equation which yields the 11-th roots of unity:

x10 +x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+1 = 0. (2.7)

The reason for this is that the equation we will obtain will be a quintic
in y and we do not have a formula which solves an arbitary quintic. A so-
lution for the above quintic, that is, the explicit expression of the roots in
terms of roots of binomial equations of degree equal or less than five was
first given by Vandermonde. A very nice presentation of his solution ac-
companied by comments can be found in [8]. The fact that interest us and
which can be shown by a straightforward generalization of the arguments of
Vandermonde is that an arbitary n-th root of unity of a field F lie in a pure
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radical extension of F :

Definition 1.2.4 Let F be a field. A pure radical extenion, briefly pr-
extension, E of F is a field extension E/F for which it exists a chain of
fields F = F0 ⊆ F1 ⊆ ... ⊆ Fn−1 ⊆ E = Fn with the following properties
(1) Fi+1 = Fi(ai) where ai

pi ∈ F for some prime pi (or pi = 1),
(2) The polynomial xpi − aipi is irreducible over Fi and
(3) Fi contains a primitive pi-th root of unity for i = 1, ..., n− 1.

The set of all n-th roots of unity Q under multiplication form a group,
call this group Pn. Looking back at formula (2.6) we see that the n-th root
of unity given by ρ = cos(2πi

n ) + i sin(2πi
n ) has the property that all the the

other n-th roots of unity are powers of ρ, that is, ρ generate Pn. The other

generators of Pn are, clearly, e
2πik
n where k is relatively prime to n. The

generators of Pn are called the primitive n-th roots of unity and we denote
by P̃n the set of all primitive n-th roots of unity. Primitive n-th roots of
unity are similarly defined for any field F .

Definition 1.2.5 The polynomial Φn, for any n ∈ N, over C defined by

Φn(x) =
∏
ζ

(x− ζ),

where ζ varies over the set of primitive n-th roots of unity is called the
n-th cyclotomic polynomial.

Proposition 1.2.1 The n-th cyclotomic polynomial is a polynomial over Z.

Proof: We argue inductively, for the 1-th cyclotomic the proposition
is true. Assume that all k-th cyclotomic polynomials where k is smaller
than n have integral coefficients. Now, let us call the number d the order
of an n-th root of unity ω if it is the smallest positive integer such that
ωd = 1. Let ω0 be a root of unity of order d then all the d-th roots of
unity are given by ωi0, i = 1, .., d hence ω0 is a primitive d-th root of unity.
Therefore, we can partition the set of all n-th roots of unity as follows

Pn = {ζ : ζn−1 = 0} =
⋃
d|n

{ζ : ζd−1 = 0 and ζ has order d} =
⋃
d|n

P̃d and so

we get the identity xn−1 =
∏
d|n

Φd. Set p =
∏

d|n, d 6=n

Φd then, by induction, p

is a polynomial in Z. Finally, with p as a factor of xn− 1 it follows from the
Euclidean division algorithm for polynomials over Q that Φn is a polynomial
with rational coefficients. But, p is monic and so Φn has integral coefficients.

The following two facts will be used chapter 2.
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Lemma 1.2.1 For prime p, the polynomial xp − a is irreducible over F
if and only if a is not a p-th power of an element in F .

Proof: Assume that a is not a p-th power of an element in F . Then ai

is not either a p-th power of an element in F for i = 2, ... , n − 1. To see
this, suppose that b is an element in F such that bp = ai. Since i and p are
relatively prime there exist integers c, d such that ic + pd = 1. Hence, a is
the p-th power of the element bcad, contradiction. Now, let α be an element
in an extension field of F such that αp = a. It suffices to show that the
polynomial

∏
ζ∈Y

(x− ζα), where Y is a proper subset of the set containing all

the p-th roots of unity, is not a polynomial over F . If it were, then
∏
ζ∈Y

ζα

should be an element in F which in turns implies,( ∏
ζ∈Y

ζα
)p

=
( ∏
ζ∈Y

ζ × α|Y |
)p

=
(
α|Y |

)p
=
(
αp
)|Y |

= a|Y |,

that a|Y | is a p-th power of an element in F , contradiction. The converse is
clear.

Proposition 1.2.2 Let E be an extension field of F for which there ex-
ist elements a1, ..., an ∈ E such that E = F (a1, ..., an) and ani ∈ F for some
integer n. If F contains a primitive n-th root of unity then E is a pure
radical extension of F .

Proof: Firslty, make the additional assumption that E is a simple field
extension of F , that is E = F (a) for some a ∈ E. If a ∈ F , then E is a pure
radical extension of F . Assume that the proposition is true for all simple
field extensions for which the exponent of a is smaller that n. Now, let E
be a field extension of F such that E = F (a) and an ∈ F . Suppose that n
is prime, then either an is an n-th power of an element in F or it is not. If
it is then αn = an for some α ∈ F and so α = aζm where ζ is a primitive
n-th root of unity and m some integer, hence α ∈ F . If it isn’t, then xn−an
is irreducible over F by Lemma 1.2.1. Suppose that n is composite, then
n = n1n2 for some nonunit integers. As (an1)n2 ∈ F it follows by induction
that F (an1) is a pure radical extension of F and as an1 ∈ F (an1) it follows,
by induction, that F (a) is a pure radical extension F (an1), hence F (a) is a
pure radical extension of F . The ”general” case follows by considering the
chain F ⊂ F (a1) ⊂ F (a1, a2) ⊂ ... ⊂ F (a1, ...., an).
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2 Historical recursion

2.1 Réflexions sur la résolution algébrique des équations

The group of all permutations of n arbitary letters will be identified with
the symmetric group Sn. Additionaly, in this section we have to think of
the roots x1, ..., xn of a polynomial p as indeterminates instead of them hav-
ing fixed values and so a field on which p can be defined must contain the
elementary symmetric polynomials σ1, ..., σn in the variables x1, ..., xn (see
Apppendix).

◦

The importance of permutations in the study of equations became clear
after Lagranges’ publication. By introducing symbols for the permutations
of n elements and by studying the effect that permutations of the roots had
on rational functions of the roots he was able to make fruitful observations
and to prove important theorems. Lagrange’s theorem is known to all math-
ematicians and states that the order of a group is divisible by the order of
any of its subgroups is among them.

Concerning the solvability of the general equation which was the core
of his investigations, he put the known techniques for solving polynomials
of degree up to four in a common frame. More precisely, indepedentely of
the chosen method the solution of an equation depended on other auxiliary
equations called réduites. The roots of the auxiliary equations were rational
functions of the roots to be found x1, ..., xn and conversely the roots to be
found could be rationally expressed in terms of the roots of the auxiliary
equations. Since the former could be given expressions by radicals so could
the latter. This is Lagranges’ own words :

”On a dû voir par l’analyse que nous venons de donner des principales
méthodes connues pour la résolution des équations, que ces méthodes se
réduisent toutes à un même principle général, savoir à trouver des fonctions
des racines de l’équation proposée, lesquelles soient telles: (1) que l’équation
ou les équations par lesquelles elles seront données, c’est-á-dire dont elles
seront les racines(équations qu’on nomme communément les réduites), se
trouvent d’un degré moindre que celui de la proposée, ou soient au moins
décomposables en d’autres équations d’un degré moindre que celui-lá; (2)
que l’on puisse en déduire aisément les valeurs des racines cherchées.1

Example 2.1.1 Let us see how this pattern explains the solution of the
general cubic, whose coefficients are considered as intermediates. After di-
viding all the coefficients of the cubic with its leading coefficient we obtain

1An english translation can be found in [5].
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x3 + ax2 + bx + c = 0. By setting y = x + a/3 the equation reduces to

y3 + py + q = 0,where p = 3b−a2
3 and q = 27c−9ab+2a3

27 , since the roots
x1, x2, x3 of the initial equation can be found from those of the reduced by
substracting a/3. The roots of the reduced equation are

y1 = 3

√
q
2 +
√
r + 3

√
q
2 −
√
r

y2 = ζ2 3

√
q
2 +
√
r + ζ 3

√
q
2 −
√
r

y3 = ζ 3

√
q
2 +
√
r + ζ2 3

√
q
2 −
√
r,

where r = q2/4 + p3/27 and ζ is a primitive third root of unity, say
ζ = (−1 +

√
−3)/2.

The auxiliary equations used to construct the above expressions are

(1) x2 + qx− p3/27 = 0 with roots x = q/2±
√
r,

(2) x3 = q/2 +
√
r with roots z1 = 3

√
q
2 +
√
r , z2 = ζz1, z3 = ζ2z1

(3) x3 = q/2−
√
r with roots z4 = 3

√
q
2 −
√
r, z5 = ζz4, z6 = ζz4.

The roots x1, x2, x3 can be rationally expressed in terms of z1, ..., z6.
But, the later roots can also be rationally expressed in terms of former as
the following identities holds:

3

√
q
2 +
√
r = 1/3(x1 + ζx2 + ζ2x3)

3

√
q
2 −
√
r = 1/3(x1 + ζ2x2 + ζx3).

And so,

z1 = 1/3(x1 + ζx2 + ζ2x3) z4 = 1/3(x1 + ζ2x2 + ζx3)

z2 = 1/3(ζx1 + ζ2x2 + x3) z5 = 1/3(ζx1 + x2 + ζ2x3)

z3 = 1/3(ζ2x1 + x2 + ζx3) z6 = 1/3(ζ2x1 + ζx2 + x3)

We observe that the roots z1, ...., z6 of the auxiliary equations which are
rational expressions in the roots x1, x2, x3 can be obtained by taking one
of these expressions, say z1, and then by permuting the roots x1, x2, x3 in
the expression in all possible ways we get the other, that is, z1 assumes 6
distinct values under the action of the symmetric group. Additionaly, z3

1

13



assumes only two distinct values, under the action of the symmetric group,
as z3

1 = z3
2 = z3

3 and z3
4 = z3

5 = z3
6 . On the other hand, z1 satisfies a sextic

and z3
1 satisfies a quadratic equation.

Proposition 2.1.1 Let f be a rational function in the variables x1, ..., xn
over the field C. If f assumes m distinct values under the action of the
symmetric group then f is a root of an irreducible polynomial Θ over
C(σ1, ..., σn) of degree m where σ1, ..., σn are the elementary symmetric poly-
nomials in x1, ..., xn.

Scholium: This is relatively easy to prove. But it is more interesting
to see this proposition in a broader context, the easiest way is to visit the
website http://gallica.bnf.fr and search for volume 3 of Oeuvres de Lagrange
pp. 205-421.

One can also find the following fact among the pages of Réflexions which
in some sense generalizes the previous proposition.

Proposition 2.1.2 Let f and g be two rational functions in the variables
x1, ..., xn over C. If f asummes m distinct values under the permutations
that leave g invariant then f is a root of a polynomial of degree m with
coefficients in C(g, σ1, ..., σn).

Sholium: See volume 3 of Oeuvres de Lagrange pp. 205-421. Due to its
importance this theorem is discussed in detail in the article of Kiernan ([5])
and with proof in the book of Tignol ([8]).

Let us write down the following functions of the roots,

φ1 = x1 + x2 + x3

φ2 = (1/3(x1 + ζx2 + ζ2x3))3

φ3 = 1/3(x1 + ζx2 + ζ2x3))

φ4 = x1

If we think of the functions as elements in the rational function field
of x1, x2, x3 over C and as we consider every element in C(p, q) as known
then Proposition 2.1.1 tells us that φ2 can be found by solving a quadratic
since it assumes only two distinct values under the permutations of the roots
x1, x2, x3. Also, φ3 can be found from φ2 by taking a cube root. Finally, the
root x1 can be found rationally from φ3 by Proposition 2.1.2 since the only
permutation of the roots x1, x2, x3 that leave φ3 invariant is the identity.

14



So, the solvability of the cubic which depended on the reduites can now be
descibred in terms of the roots of the reduites which are of functions of the
roots.

Preceeding to the solvability of the general equation of any degree the
frame should be based on the same principles. Namely, the auxiliary equa-
tions must be either binomials of the same degree or equations of smaller
degree where in both cases the coefficients of the equations can be alge-
braically determined. And hence on rational functions of the roots that are
either n-th powers of other rational functions that can be expressed by rad-
icals or assumes less than n distinct values under the permutations which
leave other rational functions,which are expressible by radicals, invariant.
All these statements can be given the following order:

Lagrange’s criterion of solvability

The general polynomial f over C(σ1, ..., σn) of degree n is solvable if one
can find rational functions φ1, ..., φm over C in the roots x1, ..., xn such that

φ1 is a rational function symmetric in the roots x1, ..., xn so by the fun-
damental theorem of symmetric polynomials it is expressible in terms of the
coefficients of f , hence φ1 is a known quantity.

φ2 is either an n-th power of of φ1 or assumes less than n distinct values
under the action of the symmetric group,

φ3 is either an n-th power of of φ2 or assumes less than n distinct values
under the permutations that leaves φ2 invariant,

...

φk is either an n-th power of of φk−1 or assumes less than n distinct
values under the permutations that leaves φk−1 invariant,

...

φm−1 is either an n-th power of of φm−2 or assumes less than n distinct
values under the permutations that leaves φm−2 invariant,

φm is one of the roots and is either ...

For equations that do not exceed the fourth degree, Lagrange stressed
that, the simplest function, nowdays called Lagrange resolvent, that yield
their solution can be represented by the general formula:

15



tω = x1 + ωx2 + ωx3 + ...+ ωn−1xn, (2.1.1)

where x1, ..., xn are the roots of the proposed equation of degree n and
where ω is an n-th root of unity other than 1. This means two things, (1)
the roots x1, ..., xn can be rationally expressed in terms of the tω, (2) that tω
is a root of a solvable equation. (1) which will be important in the following
sections and which actually holds for any value of n follows by the formula 2,

xi+1 =
1

n

(
(x1 + ...+ xn) +

∑
ω

ω−itω

)
, for i = 0, ..., n− 1. (2.1.2)

and by the fact that any tω can be rationally expressed in terms of any
other tω′ (follows by proposition 2.1.3). Both Vandermonde and Lagrange
succeded in showing (2); we have demonstrated it for the cubic. For the
quintic (2) does not hold since Lagrange (if I’m not mistaken and Vander-
monde) showed that t5ω is not a root of a polynomial of degree less than
five whose coefficients can be algebraically determined. Hence, if a general
formula for the quintic exists then it should depend on some functions of
the roots other than (2.1.1). But, do such functions exist? No!, the first
to study this question with succesion was Ruffini and the complete answer
came from the mathematician Niels Henrik Abel.

2.2 The cyclotomic equation

If one studies the work of Vandermonde concerning the 11-th cyclotomic
polynomial one will observe that:

”Not all permutations of the roots of the cyclotomic equation preserve
the relations among the roots and it should be of importance to study those
that the preseve them.”

Unfortunately, we will not discuss the work of Vandermonde nor shall
we discuss the decomposition, due to Gauss, of the cyclotomic equation to
smaller degree equations since their work is of historical importance but out
of the scope of this ’examensarbete’. The interested reader is refered to the
article Mémoire sur la résolution des équations of Vandermonde, to Disqui-
sitiones Arithmeticae of Gauss and to the book [8]. Now, our main aim in
this section is to prove Theorem 2.2.3 which is obtained as a consequence of
a generalization of the arguments of Vandermonde.

◦

2For a derivation of this formula look at pp. 135-136 of [8]
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A polynomial f(x) ∈ Z[x] is said to be primitive if the greatest common
divisor of its coefficients is 1.

Lemma 2.2.1(Gauss’ Lemma) The product of two primitive polynomials
in Z[x] is a primitive polynomial.

Proof: Assume that f, g are two primitive polynomials then,

f = anx
n + an−1x

n−1 + ...+ a0, where ai ∈ Z and (a0, ..., an) = 1

g = bmx
m + bm−1x

m−1 + ...+ b0, where bi ∈ Z and (b0, ..., bm) = 1.

Let p ∈ N be a prime, and let i, j be the two indices that satisfy:
p - ai and p | ak for 0 ≤ k ≤ i− 1, p - bj and p | bk for 0 ≤ k ≤ j − 1.
Then, fg = cn+mx

n+m + ... + ci+jx
i+j + ... + c0 and the coefficient ci+j is

not divisible by p. Since,

ci+j =
∑i−1

n=0 anbi+j−n + aibj +
∑j−1

n=0 ai+j−nbn.

Clearly, the first and the third summand are divisible by p and the mid-
dle term is not.

Corrollary 2.2.1 Assume that a monic polynomial f in Z[x] is divisible
by a monic polynomial g in Q[x]. Then, g ∈ Z[x].

Proof: By assumption, f = gh where h ∈ Q[x] and h monic. Hence,

g = xn +

n−1∑
i=0

si
ti
xi, si, ti are integers such that (si, ti) = 1

h = xm +

m−1∑
i=0

s′i
t′i
xi, s′i, t

′
i are integers such that (s′i, t

′
i) = 1.

Let, ε = lcm(t0, ..., tn) and ε′ = lcm(t′0, ..., t
′
m) and assume that the

epsilons are not units. The polynomials εg and ε′h have integral coefficients.
They are also primitive, since, let p be a common prime divisor of the co-
efficients of εg. Choose a denominator ta such that every prime power of
p which divides a denominator tb divides ta. Then,

(
εsa
ta
, p
)

= (sa, p) = 1,
contradiction. Hence, εg is primitive and by symmetry so is ε′h. But,
(εg)(ε′h) = (εε′)gh = (εε′)f implies that (εg)(ε′h) is not primitive. This
contradicts with Gauss’ Lemma for the pair εg and ε′h.

Theorem 2.2.1 The cyclotomic polynomial Φn, n ≥ 1, is irreducible in
the field of rational numbers.
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Proof : Equivalently, if f is a non-trivial irreducible factor of Φn in Q[x]
then the roots of Φn are roots of f . Assume, without loss of generality, that
f is monic. Let ζ be root of f . It suffices to show that ζm is a root of f
whenever m is a positive integer relatively prime to n. We use induction on
the total number ν(m) of prime factors of m.

We begin with the case ν(m) = 1 i.e m = p, where p is a prime number
relatively prime to n. As, f | Φn and Φn | xn − 1 it follows that there exists
a polynomial g ∈ Q[x] such that

xn−1 = fg (1)

Assume, contrary to the claim, that ζp is not a zero of f . Then ζp

is a zero of g and so ζ is a zero of g(xp). As, f(x), g(xp) have a common
zero and f is irreducible it follows by Lemma 3.1.3 that f divides g(xp) hence

g(xp) = f(x)h(x) (2)

By the corollary 2.2.1 of Gauss Lemma applied to f, g and (1) and to
g, h and (2) it follows that f, g and h are polynomials in Z[x]. Therefore,
f, g, h and relations (1) and (2) can be passed to Z/(p)[x]. So, in Z/(p)[x],

f̃ h̃ = g̃(xp) = a0 + ...+ aix
pi + ...+ anx

pn, a0, ..., an ∈ Z/(p)
= a0

p+...+ai
pxpi+...+an

pxpn, by Fermat’s Little Theorem
= (a0+...+aix

i+...+anx
n)p, by (a1+...+an)p = a1

p+...+an
p

= g̃(x)p.

The last equality shows that f̃ and g̃ have a common non-trivial divisor
δ. On the other side, xn − 1 and nxn−1 are relatively prime in Z/(p)[x].
But, nxn−1 = f̃ ′g̃ + f̃ g̃′ so it follows that δ divides both xn − 1 and nxn−1,
which is a contradiction. Hence, the case ν = 1 is shown. Assume that
ζm is a root of f for all m such that (m,n) = 1 and ν(m) = k. Let l be
an integer relatively prime to n and with k + 1 prime factors p1, ..., pk+1.
Then, p1p2 · · · pk is relatively prime to n and so ω = ζp1p2···pk is a root
of f by the induction hypothesis. Therefore, as ω is a primitive p-th root
of unity and a root of f it follows from the case ν = 1 that ωpk+1 is a root of f .

Theorem 2.2.2 Let ω be a primitive m-th root of unity. If gcd(m,n) = 1
then Φn is irreducible in Q(ω)[x]

Proof : Let ζ be a primitive n-th root of unity and assume that
f = a0 + ... + anx

n is a polynomial over Q(ω) with ζ as a root. The
coefficients of f are polynomial expressions in ω and so there exists polyno-
mials a0(y), ..., an(y) over Q whose evaluation at ω give the coefficients of
f . Let, F (x, y) = a0(x) + ... + an(x)yn ∈ Q[x, y] then f(x) = F (x, ω) and

18



f(ζ) = F (ζ, ω) = 0. The theorem would follow if f(ζk) = F (ζk, ω) is zero
for every integer k relatively prime to n.

Let ξ0 be a primitive mn-th root of unity. As ω and ζ are mn-th roots
of unity it follows that for some positive integers ν and ν ′, ξ0

ν = ζ and
ξ0
ν′ = ω. Hence, ξ0 is a common root of the polynomials F (xν , xν

′
) and

Φmn and as the latter is irreducible by the previous theorem it follows by
Lemma 3.1.3 that Φmn | F (xν , xν

′
). The divisibility relation implies that

every primitive mn-root of unity is a root of F (xν , xν
′
).

As n and m are relatively prime and as ω is a primitive m-th root of unity
and ζ is a primitive n-th root of unity it follows that ωζ is a primitive mn-th
root of unity. Additionally, there exists a, b ∈ Z such that am + bn = 1.
Therefore, in the above paragraph we can take ξ0 = ωζ , ν = am and
ν ′ = bn and we want for every integer k relatively prime to n to find a
primitive mn-root of unity ξ such that the relations ξam = ζk, ξbn = ω
are satisfied. Set ξ = ξtk0 , where tk is an integer that depends on k, then,
ξam = (ωζ)tkam = ζtkam = ζtk and ξbn = (ωζ)tkbn = ωtkbn = ωtk . By taking,
tk = amk + bn we see that ζtk = ζk and ωtk = ω and hence we have only
to check that ξtk0 is a primitive mn-th root i.e that tk is relatively prime
to mn. But, tk = k + nb(1 − k) so if δ is a non-trivial divisor of both tk
and n then δ would divide k, contradiction, therefore (m, tk) = 1. Also,
tk = am(k − 1) + 1 and so tk is relatively prime to m too.

It follows from Theorem 2.2.2 that for a prime number p the p-th cyclo-
tomic polynomial Φp(x) over Q(ω), where ω is a primitive (p − 1)-th root
of unity, is irreducible. Therefore, letting ζ be a root of Φp(x) it follows
naturally that (see Corollary 1.1.1) a basis for Q(ζ, ω) as a vector space over
Q(ω) is given by ζ, ζ2, ..., ζp−1.

Now, let a be a primitive root mod p (see Appendix) and set ζi = ζa
i

for 0 ≤ i ≤ p− 2. The theorem that follows extends the cyclic permutation
ζ0 7→ ζ1 7→ ... 7→ ζp−2 of the roots of Φp to a map defined on Q(ζ, ω). This
map is a field automorphism.

Definition 2.2.1 A field isomorphism from a field to itself is called a field
automorphism.

Proposition 2.2.1 The map α : Q(ζ, ω)→ Q(ζ, ω) given by

λ0ζ0 +λ1ζ1 + ...+λp−3ζp−3 +λp−2ζp−2 7→ λ0ζ1 +λ1ζ2 + ...+λp−3ζp−3 +λp−2ζ0

is a field automomorphism. Moreover, its restriction to the subfield Q(ω) is
the identity, i.e α(x) = x for x ∈ Q(ω).

Proof : To begin with observe that ζ0, ..., ζp−2 is a basis for the Q(ω)-vector
space Q(ζ, ω) and that the map α is well-defined. It is also injective, since if
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the images of two elements under α are equal then their coeffiecients in terms
of the basis elements are equal. It is the identity on Q(ω): let x ∈ Q(ω) then,

α(x) = α
(
(−x)ζ0 + ...+ (−x)ζp−2

)
= (−x)ζ1 + ...+ (−x)ζ0 = x

It is straightforward to check that α(x+y) = α(x)+α(y) for all x, y ∈ Q(ζ, ω)
and also that α(y0x) = y0α(x) for all x ∈ Q(ζ, ω) and y0 ∈ Q(ω).

Finally, we want α(xy) = α(x)α(y) for all x, y ∈ Q(ζ, ω). Therefore,
let x =

∑p−2
i=0 λiζi and y =

∑p−2
i=0 λi

′ζi and assume for the moment that
α(ζiζj) = α(ζi)α(ζj).

α(xy) = α

( p−2∑
i=0

p−2∑
j=0

λiλj
′ζiζj

)
=

p−2∑
i=0

p−2∑
j=0

λiλj
′α(ζiζj) =

p−2∑
i=0

p−2∑
j=0

λiλj
′α(ζi)α(ζj)

= α(x)α(y)

By definition ∀ i, 0 ≤ i ≤ p − 2 : α(ζi) = ζi+1 = ζa. Let ζp−1 = 1
then for i, j between 0 and p − 2 we have that ζiζj = ζk for some integer
k : 1 ≤ k ≤ p− 1. But, α(ζiζj) =

(
ζiζj

)a
= ζi

aζj
a = α(ζi)α(ζj).

Now, let ω be a primitive (p-1)-th root of unity and consider the La-
grange resolvent (which can also be defined for roots having fixed values)

tω = ζ0 + ωζ1 + ...+ ωp−2ζp−2

Proposition 2.2.2 The (p-1)-th power of tω is an element in Q(ω), i.e
tω
p−1 ∈ Q(ω).

Proof : Since ζ0, ..., ζp−2 is a basis for the Q(ω)-vector space Q(ζ, ω) there
exist elements λ0, ..., λp−2 in Q(ω) such that tω

p−1 = λ0ζ0 + ... + λp−2ζp−2.
Now, let α be the automorphism of Q(ζ, ω) of the previous theorem then

α(tω) = ζ1 + ωζ2 + ...+ ωp−3ζp−2 + ωp−2ζ0 = ω−1tω.

Therefore, α(tω
p−1) = α(tω)p−1 = (ω−1tω)p−1 = tω

p−1. Hence,

ptω
p−1 =

p−1∑
k=1

αk(tω
p−1) = (λ0 + ...+λp−2)(ζ0 + ...+ ζp−2) = −λ0− ...−λp−2

But, −λ0 − ...− λp−2 is an element in Q(ω) and so is tω
p−1.

20



Remark : The above proposition holds for any field F of characteris-
tic zero. More specifically, let F ′ be a subfield of F isomorphic to Q, ζ ′

a primitive p-th root of unity and ω′ a primitive (p-1)-th root of unity of
F ′. Then the isomophism between F ′ and Q extends to an isomorphism
between F ′(ω′, ζ ′) and Q(ω, ζ) where ω′ is mapped to ω and ζ ′ is mapped
to ζ. Hence, if we arrange the p-th roots of unity as before and treat the
Lagrange resolvent tω′ = ζ ′0 + ω′ζ ′1 + ...+ ω′p−2ζ ′p−2 over F ′(ω′, ζ ′) it should
be an element in F ′(ω′) due to the previous proposition and to the above
isomorphism.

Theorem 2.2.3 The n-th roots of unity, n ≥ 1, of a field F lie in a pure
radical extension of F .

Proof : For a 1-th root of unity the proposition is true. Suppose that for
an arbitary field and for any k smaller than n the k-th roots of unity of F lie
in a pure radical extension of F . Now, let ξ be a primitive n-th root of unity.
If n is composite write n = n1n2 for some n1, n2 ∈ N \ {1}. Application of
the induction hypothesis (twice) allows one to argue as follows: as ξn1 is a
n2-th root of unity there is a pr-extension E1 of F containing ξn1 and there
is a pr-extension E2 of E1 containing a primitive n2-th root of unity. Since
ξn2 ∈ E2 Proposition 1.2.2 implies that there is a pr-extension E3 of E2 con-
taining ξ. But, then E3 is a pr-extension of F containing ξ. If n = p is prime
let ζ be a primitive p-th root of unity and ω a primitive (p-1)-th root of unity.
By the induction hypothesis there is a pr-extension K1 of F containing ω we
get then tp−1

ω ∈ K1 by the above proposition and remark. Hence it follows
by proposition 1.2.2 that K2 = K1({tω : ω is a (p-1)-th root of unity}) is a
pr-extension of F . And as ζ can be rationally expressed in terms of the tω’s
(see formula 2.1.2) the result follows.

Corollary 2.2.2 A polynomial f is solvable over a field F iff its roots
lie in a pure radical extension of F .

Proof : By definition f is solvable over F if the roots a, b, c, ... lie in a
radical extension E of F . That is there exist intermediate fields L1, ..., Ln
such that F = L0 ⊆ L1 ⊆ ... ⊆ Ln−1 = Ln = E and Li+1 = Li(ai) where
ai
p′i ∈ Li and p′i is prime or 1 for all i = 0, ..., n−1. Let m = lcm(p′1, ..., p

′
n−1)

and let ζ be a primitive m-th root of unity. By Theorem 2.2.3 there is an
extension field F ′ of F containing ζ and intermediate fields F1, ..., Fm−1 such
that (i) F = F0 ⊆ F1 ⊆ ... ⊆ Fm−1 ⊆ Fm = F ′,
(ii) Fi+1 = Fi(αi) where αi

pi ∈ Fi and pi is prime,
(iii) xpi − αipi is irreducible over Fi and
(iv) Fi contains a primitive pi-th root of unity for all i = 0, ...,m− 1.

Define now Fm+i = Li(α1, ..., αm−1) for i = 1, ..., n and αm+i = ai and
pm+i = p′i for i = 0, ..., n− 1 to get a chain of fields
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F = F0 ⊆ F1 ⊆ ... ⊆ Fm−1 ⊆ Fm ⊆ Fm+1 ⊆ ... ⊆ Fm+n−1 ⊆ Fm+n.

Clearly Fi+1 = Fi(αi
pi) where αi

pi ∈ Fi and pi is prime holds for all
i = 0, ...,m + n − 1. Since each Fi contains a primitive pi-th root of unity
it follows by Lemma 1.2.1 that either xpi − αi

pi is irreducible over Fi or
Fi = Fi+1. Therefore by removing fields in the above chain that possibly co-
incide with its predecessors we obtain that Fm+n is a pure radical extension
of F .
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3 Galois’ Theory

In this chapter we try to follow the road created by Évariste Galois.

◦

3.1 The Galois resolvent

Let f be a polynomial in F [X] with n distinct roots a, b, c, ... :

Lemma 3.1.1. There is an element V in F (a, b, c, ...) that assumes n!
distinct values when the roots are permuted. Moreover, the element can be
chosen as V = Aa+Bb+ Cc... where A,B,C, ... are integers.

Proof: The nonzero polynomial in x over the field F (a, b, c, ...)

P =
∏

µ,µ′∈Sn µ6=µ′
(µ(a)− µ′(a) + (µ(b)− µ′(b))x+ (µ(c)− µ′(c))x2 + ...)

has at most as many roots as its degree. Let n0 be an integer which is
not a root of P then V = 1 · a+ n0 · b+ n2

0 · c+ ... is the required element.

Lemma 3.1.2 If an elment V is chosen according to the previous lemma,
that is, let φ(a, b, c, ...) = V for some polynomial φ over F in n variables.
Then the roots a, b, c, ... lie in the extension field F (V ).

Claim 3.1.1 Let z ∈ F [x1, x2, ..., xn] i.e z is a polynomial over F in n
variables. If it is symmetric in x2, ..., xn then it is also a polynomial in
F [x1, σ1, ..., σn] where σ1, ..., σn are the elementary symmetric polynomials
in x1, ..., xn.

Proof: Firstly, let us express the elementary symmetric polynomials
τ1, τ2, ..., τn−1 in x2, ..., xn in terms of x1 and the elementary symmetric
polynomials σ1, σ2, ..., σn in x1, x2, ..., xn. The relations follow by observing
that

(x− x1)(x− x2) · · · (x− xn)

x− x1
= xn−1−τ1x

n−2+...+(−1)n−2τn−2x+(−1)n−1τn−1.

Multiplying x − x1 to both sides of the above equation and equating
coefficients we obtain the following realtions τ1 = σ1 − x1, τ2 = σ2 − σ1x1 +
x2

1, ... , τn−1 = σn−1 − σn−2x1 + ... + (−1)n−1xn−1
1 . Now, view z as a

polynomial in F [x1][x2, ..., xn] i.e as a polynomial over the ring F [x1] and
in the variables x2, ..., xn Since it is symmetric in x2, ..., xn by the funda-
mental theorem of symmetric polynomials it lies in F [x1][τ1, ..., τn−1]. But,
τ1, ..., τn−1 are polynomials in x1, σ1, ..., σn−1 hence it becomes clear that
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z ∈ F [x1][σ1, ..., σn] and thus the result follows.

Proof of Lemma 3.1.2: Let α, β, γ, ... be n variables and consider the
polynomial

P =
∏

µ∈Sn,µ(α)=α

(V − φ(α, µ(β), µ(γ), ...)) (3.1)

in n variables over F (V ). It is symmetric in the variables β, γ, ... and
so by Claim 3.1.1 it can by expressed as a polynomial in α and in the el-
ementary symmetric polynomials σ1, σ2, ... in the variables α, β, γ, .., hence
P = P (α, σ1, σ2, ...). Now, if the σ1, σ2, ... are given the values of the co-
efficients of f - σ1 is equaled to the coefficient of the nth power of x, σ2

is equaled to the coefficient of the (n − 1)-th power of x, e.tc ... - and α
is still considered as an indeterminate in the above expression for P then
a polynomial in one variable, namely in α, over F (V ) is obtained and we
denote it by P ′(α). The evaluation of the σ1, σ2, ... in the manner described
and α at a distributes to β, γ, ... the values of the roots b, c, ... . Hence, by
choosing for example β = b, γ = c, ... it is seen by (3.1) that a is a root of
P ′. To see that P ′ does not have any other common root with f , suppose
without loss of generality that b is a root. Then P ′(b) = 0 and hence we
have evaluated α at b and again β, γ, δ... are found among the roots a, c, d, ...
and without loss of generality one can put β = a, γ = c, δ = d ... . So by
(3.1) one must have V = φ(b, µ(a), µ(c), ...) for some permutation µ fixing
b, but this contradicts the way that V was chosen. So P ′ and f are two
polynomials in F (V )[x] that have only the root a in common. This im-
plies that their greatest common divisor is x − a over F (V )[x] and hence
a ∈ F (V ). The choice of the root was arbitary hence all the roots lie in F (V ).

Corollary 3.1.1 There exists an element V which is a solution of some
polynomial Ω over F and is such that F (a, b, c, ...) = F (V ).

Proof: The existence of an element such that F (a, b, c, ...) = F (V )
follows immediately from Lemma 3.1.1 and Lemma 3.1.2. Let V be chosen
as V = Aa+Bb+ Cc+ ... for some integers A,B,C, ... . The polynomial

Ω =
∏
µ∈Sn

(x−Aµ(a)−Bµ(b)− Cµ(c)− ...)

has coefficients which are symmetric in the roots a, b, c, ... hence by the
fundamental theorem of symmetric polynomials they can be expressed in
the coefficients of f , so Ω is a polynomial in F [x].

An element V which has the properties of Corollary 3.1.1 will be called
a Galois resolvent for the polynomial f over F .
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Corollary 3.1.2 If V and V ′ are Galois resolvents for f over F then
F (V ) = F (V ′).

Proof: The use of Corollary 3.1.1 twice yields the statement in question.

Naturally, F [V ] = {f(V )/g(V ); f, g ∈ F [x], g(V ) 6= 0} i.e every element
in F [V ] can be rationally expressed in terms of V and elements in F . By
Lemma 3.1.2 for a and any other root of f there exists a rational function
θo over F such that a = θo(V ). But, as the next corollary will show the role
of θ0 can be played by a polynomial in F [x](see also Proposition 1.1.2).

Corollary 3.1.3 Let Π be the minimal polyomial of V say of degree d.
Then every element in F (V ) can be written as a0 + a1V + ... + ad−1V

d−1,
where ao, ..., ad−1 ∈ F .

Proof: If an element can be polynomially expressed in terms of V and
elements in F then it can be put in the desired form. To see this, let
z = a0 + a1V + ...+ anV

n where ai ∈ F . If n < d there is nothing to prove
otherwise take V d and and use the fact that V is a root of Π in order to
see that it can be put in the desired form. Proceeding inductively we can
see that any power of V can be so expressed and so in turn the element z.
To finish 1/g(V ) must be given a polynomial expression. Let V2, ..., Vd be

the other roots of of Π then 1/g(V ) =

∏d
i=2 g(Vi)

g(V )
∏d
i=2 g(Vi)

. The denominator

of the right side is symmetric in the roots of Π hence it can be polynomi-
ally expressed in the coefficients of Π and elements in F . The numerator is
symmetric in the roots V2, ..., Vd and so by Claim 3.1.1 can be polynomially
expressed in terms of V , the coefficients of Π and elements in F . But the
coefficients of Π are elements in F and for this reason the denominator is
an element in F and the numerator is a polynomial expression in V and
elements in F .

So for a there exists a polynomial θ ∈ F [x] such that a = θ(V ). Fur-
themore, let Π be the minimal polynomial of V and V ′ a root of Π distinct
from V . Before proving that θ(V ′) is a root of Π let us recall an important
lemma which will be used very frequently.

Lemma 3.1.3 Let z(x), w(x) be polynomials over a field with a common
zero ρ. If z(x) is irreducible then it divides w(x).

Proof: As z is irreducible their greatest common divisor d is 1 or z(up
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to constant multiples) and d can be written as d = z1z + w1w for some
polynomials w1, w2. It follows by plugging in ρ in the above expression for
d that 1 cannot be their greatest common divisor hence z is.

Lemma 3.1.4 Let V ′ be a root of Π distinct from V . Let r be a root of f
polynomially expressed in terms of V that is r = θ(V ) for some θ ∈ F [x].
Then θ(V ′) is also a root of f .

Proof: The two polynomials Π(x) and f(θ(x)) over F have V as a com-
mon root. Since Π(x) is irreducible it follows by Lemma 3.2.3 that it divides
f(θ(x)) which implies that all the roots of Π(x) are roots of f(θ(x)).

Let θ and θ′ be two polynomials over F and let θ(V ), θ′(V ), θ(V ′) and
θ′(V ′) be roots of f . If θ(V ) is not equal to θ′(V ) then θ(V ′) is not equal to
θ′(V ′). Since otherwise if V ′ is a root of θ(x) − θ′(x) then it is divisible by
Π(x) and so by Lemma 3.1.3 it follows that V is a root of θ−θ′, contradiction.
It will now be possible to associate to each root of Π an arrangement of the
roots a, b, c, ... ... .

3.2 The Galois group

Definitions Let a, b, c, ... be n elements. There are n! bijective maps from
{1, 2, 3, ..., n} to {a, b, c, ...} and they are called arrangements. Each map α
can be represented as an ordered list, that is if α is given by 1 7→ b, 2 7→ a,
3 7→ c then the associated list is bac. Given two arrangements α and α′

there is a rule which when applied on α gives α′. This rule which is a map
from and to {a, b, c, ..., }, namely α′ ◦α−1, is called the permutation induced
from α and α′. Given now a subset A from the set of n! arrangements
of n letters a, b, c, ...., one can pick a reference arrangement α ∈ A and for
each arrangement α′ ∈ A single out the permutation that transforms α to α′.

◦

Let f be a monic polynomial in F [X] with n distinct roots a, b, c, ... and
let V be a Galois resolvent for f over F with minimal polynomial Π over F .
Denote by V2, V3, ..., Vd the rest of the roots of Π and set V = V1:

As shown in the previous section there exists polynomials θ1, θ2, ... θn
over F such that θ1(V ) = a, θ2(V ) = b, ... . It follows from Lemma
3.1.4 in the same section that θi(V j) is one of the roots a, b, c, ... and
θi(V j) 6= θi′(V j) for all i, i′, j such that 1 ≤ j ≤ d, 1 ≤ i, i′ ≤ n where
i 6= i′. Hence, by writing the n distinct elements θ1(Vj), θ2(Vj), ..., θn(Vj)
in the form of an ordered list
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(V j) θ1(Vj)θ2(Vj) ... θn(Vj)

an arrangement of the roots a, b, c, ... is obtained. The set of all arrange-
ments Σ = {θ1(Vj)θ2(Vj) ... θn(Vj)}dj=1 can be represented in the table form

(V1) θ1(V1)θ2(V1) ... θn(V1)
(V2) θ1(V2)θ2(V2) ... θn(V2)

.

.

.
(Vd) θ1(Vd)θ2(Vd) ... θn(Vd).

Consider (V1) as a reference arrangement then there are d distinct permu-
tations of the roots a, b, c, ... that transform (V1) to any other arrangement
in Σ. Namely, for j = 1, 2, ..., d they are given by

µj : θ1(V1) 7→ θ1(V j), θ2(V1) 7→ θ2(V j), ... , θn(V1) 7→ θn(V j).

The set of permutations so obtained will be called the Galois group of
(of permutations) f over F and we denote by GF . The permutations in GF

have the following double property:

Theorem 3.2.1

(1) Every polynomial expression in the roots unaltered by the permuta-
tions of GF belongs to F . That is, if M is a polynomial over F in n variables
such that M(µ(a), µ(b), ... ) = M(a, b, ... ) for all permutations µ ∈ GF
then M(a, b, ... ) is an element in F .

(2) Every polynomial expression in the roots lying in F remains unal-
tered by the permutations of GF . That is, if M(a, b, c, ... ) is an element in
F then M(µ(a), µ(b), ... ) = M(a, b, ... ) for for all permutations µ ∈ GF .

Proof : (1) Consider the polynomial M(θ1(x), θ2(x), ... ) = M ′(x) over
F . By, assumption

M(θ1(Vj), θ2(Vj), ... ) = M(a, b, ... ) for j = 1, 2, ... , d.

So, M(a, b, ... ) = 1
d

d∑
j=1

M ′(Vj).
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The polynomial p =

d∑
j=1

M ′(xj) over F in n indeterminates x1, x2, ..., xn is

symmetric. Thus p is a polynomial in F [σ1, ..., σn] where σ1, σ2, ..., σn are
the elementary symmetric polynomials in the variables x1, x2, ..., xn. But
when x1 = V1, x2 = V2, ..., xd = Vd then σ1, σ2, ..., σn are equal to the

coefficients of Π. So,
m∑
j=1

M ′(Vj) can be polynomially expressed in terms of

the coefficients of Π, but these lie in F hence M(a, b, ... ) lies in F too.

(2) The polynomial M ′′(x) = M(θ1(x), θ2(x), ... ) −M(a, b, ... ) over
F has V1 among its roots. But, V1 is a root of Π which is an irreducible
polynonial and so by Lemma 3.1.3 Π divides M ′′. This implies that the
roots of Π are roots of M ′′ and so M(θ1(Vj), θ2(Vj), ... ) = M(a, b, ... ).

Remark: Every rational expression of the roots a, b, ... over F can be
transformed to a polynomial expression in a, b, ... over F , since if g is a poly-

nomial in n variables over F then 1/g(a, b, ...) = A/
∏
µ∈Sn

g(µ(a), µ(b), ...)

and so A is a polynomial expression in a, b, c, ... over F and the denominator
is an element in F by the fundamental theorem of symmetric polynomials.
Hence, Theorem 3.2.1 implies that every rational expression in the roots is
unaltered by the permutations of GF if and only if it lies in F .

Suppose now that an arbitatry permutation µ of the roots a, b, c, ... is
given and which is such that every rational expression in the roots is unal-
tered by it if and only if it is an element in F. It will be shown that µ is
a permutaion of the Galois group of f over F . It will also be proved that
GF has a group structure and in order to to reveal it one needs a fact that
is of technical value for the moment, but actually the starting point in the
modern formulation of Galois Theory. It will be shown that the permuta-
tions of GF can be extended to the field F (a, b, ... ) where they become
automorphisms keeping the base field F fixed.

Corollary 3.2.1 For every permutation µ of the roots a, b, c, ... such
that M(a, b, ...) = M(µ(a), µ(b), ...) if and only if M(a, b, ...) ∈ F the map
µ̃(M(a, b, ... )) = M(µ(a), µ(b), ... ) defined on the field F (a, b, ... ) is an
automorphism and µ̃(x) = x for x ∈ F .

Proof: First of all it has to be shown that µ̃ is a map. Therefore,
suppose that M(a, b, c, ...) = M ′(a, b, c, ...) for some polynomials M,M ′ in
F [x1, ..., xn]. As M(a, b, c...) −M ′(a, b, c...) = 0 ∈ F and µ fixes the ele-
ments of F it follows that µ̃ is well-defined. It is not difficult to see that it
preserves
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products and sums, that it is one-to-one and bijective and that it is the
identity on F .

Remark: In the next sections of this chapter we will not distiguish be-
tween µ and µ̃. This is possible for the next propositions too, but we ought
to be more careful in the beginning.

Lemma 3.2.1 Let µ be a permutation of the roots a, b, c... . If µ̃(V1) is
one of the roots of Π then µ ∈ GF .

Proof: It follows directly from the definition of the Galois group and from
corrolary 3.2.1 that µ is the permutation that changes the arrangement (V1)
to (Vj) for some j between 1 and d such that Vj = µ̃(V1).

Corollary 3.2.2 GF contains all permutations µ of the roots a, b, c, ...
having the property M(a, b, ...) = M(µ(a), µ(b), ...) iff M(a, b, c, ...) ∈ F .

Proof: Let µ be a permutation that has this property. Then µ̃(V1) is a
root of Π, hence by Lemma 3.2.1 µ is a permutation in GF .

Corollary 3.2.3 The Galois group GF is a group under the operation of
map composition.

Proof: One can check that all the axioms for a group are satisfied. But,
since GF is a subset of the symmetric group it suffices to verify that it is
closed under map composition. Let µ, ν ∈ GF then (µ̃ν)(V1) is a root of Π
hence by Lemma 3.2.1 µν is in GF .

Now, it has been shown how from a polynomial f with n distinct roots a
subgroup of the symmetric group can be associated. The choice of a Galois
resolvent played the initial role and by Corollary 3.2.2 the Galois group GF
is independent of the choice.

Two examples of Galois groups

(α) We claim that the Galois group of the polynomial xn − 1 over Q
is (isomorphic to) the group U(Z/(n)) of invertible elements in Z/(n). In
this case, it seems that a natural choice of a Galois resolvent is a primitive
n-th root of unity ρ, but we do not need to view ρ as a Galois resolvent in
order to determine GF (compare wth [4]). The minimal polynomial of ρ is
the n-th cyclotomic polynomial whose roots are of the form ρm where m is
an integer relatively prime to n. Each permutation µ ∈ GF maps ρ to a
primitive n-th root of unity and it is determined by the image of ρ, since
µ̃(Φn(ρ)) = Φn(µ(ρ)) = 0 hence µ(ρ) = ρm for some m such that (m,n) = 1.
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Therefore, we get a map φ from GF to U(Z/(n)) by letting φ(µ) = [m]. It
is clear that φ is an injective group homomorphism and the from the next
lemma it follows that φ is a group isomorphism.

Lemma 3.2.2 If a polynomial f over a field F of degree one and higher is
irreducible then for all roots α, β of f there is a permutation µ ∈ GF such
that µ(α) = β.

Proof: Assume that f is irreducible and that there is no permutation in
the Galois group of f that maps α to β. Let β1, ..., βn be distinct roots of
f and such that if µ ∈ GF then µ(a) is one of the βi’s. The coefficients of

the polynomial g(x) =
n∏
i=1

(x− βi) are left fixed by the permutations of GF

hence g is a polynomial over F with α as a root and of degree less than f ,
contradiction.

In the case p is prime the group U(Z/(p)) is generated by a single ele-
ment so the Galois group of xp − 1 is cyclic of order p− 1.

(β) The Galois group of the general polynomial f(x) =
n∏
i=1

(x− xi) over

F = Q(σ1, ..., σn) where σ1, ..., σn are the elementary symmetric polynomials
in the variables x1, ..., xn consists of all n! permutations of the roots. To
see this suppose contrary that GF is not the symmetric group Sn. Let,

g(x1, ..., xn) =
∑
µ∈GF

µ(x1)µ(x2)2...µ(xn)n, clearly, g is left invariant by the

permutations of GF . Let, ν be a permutation of the x1, ..., xn that is not
in GF then as ν(x1)ν(x2)2...ν(xn)n is not a term of the sum g and as the
elements of the set

{
xn1

1 xn2
2 ... xknn ; ni ∈ N ∪ {0}

}
are linearly independent

over the Q-vector space Q(x1, ..., xn) it follows that ν(g) 6= g. Hence, g is
not symmetric in the variables x1, ..., xn and so not an element in F . But,
this contradicts theorem 3.2.1 from which it follows that g is an element in
F since it is left invariant by the permutations of GF .

3.3 Field extensions and Galois groups

Let f be a polynomial in F [x] with n distinct roots a, b, c, ... . Let V be a
Galois resolvent for F and GF its Galois group. Let F ′ be the field obtained
from F by adjunction of a root ρ of an irreducible polynomial A over F say
of degree d :

The Galois resolvent V for f over F is also a Galois resolvent for f over
F ′. Denote by Π′ the minimal polynomial of V over F ′. Since V is a root
of both Π and Π′ and as Π′ is irreducible over F ′ it follows that Π′ divides
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Π over F ′.

Proposition 3.3.1 GF ′ is a subgroup of GF .

Proof: Let µ ∈ GF ′ the proposition would follow from Lemma 3.2.1 if
µ(V ) are among the roots of Π. But, µ(V ) is a root of Π′ hence a root of Π
too.

Let k = |GF | =degΠ and k′ = |GF ′ | =degΠ′. As Π′(x) | Π(x) there is a
polynomial P in F (ρ)[x] such that Π(x) = Π′(x)P (x) . Hence,

Π′(x) = Π′(x, ρ) = xk
′
+ σ1(ρ)xk

′−1 + ...+ σk′(ρ)

P (x) = P (x, ρ) = xk−k
′
+ σ′1(ρ)xk−k

′−1 + ...+ σ′k−k′(ρ).

Let Π′(x, y), P (x, y) be the polynomials in F [x, y] given by

Π′(x, y) = xk
′
+ σ1(y)xk

′−1 + ...+ σk′(y)

P (x, y) = xk−k
′
+ σ′1(y)xk−k

′−1 + ...+ σ′k−k′(y),

where σi, σ
′
i are polynomials in F [y].

Proposition 3.3.2 Π(x) = Π′(x, ρ′)P (x, ρ′) for any root ρ′ of A(x).

Proof: Let Π(x) = xk + c1x
k−1 + ...+ ck where ci ∈ F and take the prod-

uct Π′(x, y)P (x, y) = xk + σ′′1(y)xk−1 + ...+ σ′′k(y), where σ′′i (y) ∈ F [y]. The
claim would follow if σ′′i (ρ′)−ci = 0 for any i. The polynomials σ′′i (y)−ci = 0
and A(y) have a root in common ρ, but A(y) is irreducible over F hence by
Lemma 3.2.3 the roots of A(y) are roots of σ′′i (y)− ci.

Theorem 3.3.2 |GF |/|GF ′ | | d

Proof: Let now ρ = ρ1, ρ2, ..., ρd be the roots of A. By Proposition 3.3.2
it follows that

Π(x)d =

d∏
j=1

Π′(x, ρj)

d∏
j=1

P (x, ρj).

P ′(x) =

d∏
j=1

Π′(x, ρj) is symmetric in ρ1, ρ2, ..., ρd. Hence by

the fundamental theorem of symmetric polynomials it is an element in
F (σ1, σ2, ..., σd)[x] where σ1, σ2, ..., σd are the elementary symmetric poly-
nomials in ρ1, ρ2, ..., ρd. But σ1, σ2, ..., σd are the coefficients of A hence P ′
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is a polynomial in F [x]. Since P ′ | Πd over F and Π is irreducible it follows
that P ′ = Πl for some integer l between 1 and d. Finally, degΠ · l = degP ′ =
d · degΠ′.

Notation : When we write N E G we will mean that N is a normal
subgroup of G.

Theorem 3.3.3 Suppose now that all roots of A are adjoined to F ,
F (ρ1, ρ2, ..., ρd) = F ′′. Then the Galois group of f over F ′′ is a normal sub-
group of the Galois group of f over F , i.e GF ′′ E GF .

Proof: V the Galois resolvent for f over F is also a Galois resolvent
for f over F ′′. Let Π′′ be the minimal polynomial for V over F ′′. For any
permutation µ ∈ GF ′′ choose θ1(V )θ2(V )...θn(V ) as reference arrangement.
Then µ : θi(V ) 7→ θi(V

′) for some root V ′ of Π′′ and i = 1, ..., n. Also, if
ν ∈ GF then ν : θi(V ) 7→ θi(V

′′) for some root V ′′ of Π. It has to be shown
that ν ◦µ ◦ ν−1 ∈ GF ′′ . Evidently, there exists a permutation µ′ in GF such
that ν ◦ µ = µ′ ◦ ν and normality would follow if µ′ belongs to GF ′′ . But,
V ′′ = ν(V ) is a Galois resolvent for f over F ′′ so if ν(V ′) = µ′(ν(V )) is one
of the roots of the minimal polynomial of ν(V ) over F ′′ then Lemma 3.2.1
gives that µ′ ∈ GF ′′ .

By Corollary 3.1.1 there is an algebraic element λ over F such that
F (ρ1, ρ2, ..., ρd) = F (λ). Let Φ be the minimal polynomial for λ over F . As
Π′′ divides Π it follows that there is a polynomial P ′′ over F (λ) such that
Π(x) = Π′′(x, λ)P ′′(x, λ), where Π′′(x, λ) = Π′′(x). Assume now that Φ has
degree d′ and λ = λ1, λ2..., λd′ are its roots and apply Proposition 3.3.2 d′

times to obtain

Π(x)d
′

=

d′∏
i=1

Π′′(x, λi)

d′∏
i=1

P (x, λi).

Then since
d′∏
i=1

Π′′(x, λi) is symmetric in λ1, ..., λd′ it is a polynomial in

F [x] and since Π(x) is irreducible over F it follows that

d′∏
i=1

Π′′(x, λi) = Π(x)l
′

for some integer l′ between 1 and d′. Now, V and V ′ are roots of Π′′(x, λ)
and ν(V ) is a root of Π′′(x, λj) for some j. By Corollary 3.1.2 it follows that
F (λ) = F (λj) hence the polynomial Π′′(x, λj) is in F (λ)[x] where it is also
irreducible. Because if it were reducible then

Π′′(x, λj) = Ψ(x, λj)Ψ
′(x, λj)

for some polynomials Ψ and Ψ′ in F [x, y], where the degree of both
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Ψ(x, λj) and Ψ′(x, λj) is greater than one. Now,

Π′′(x, y)−Ψ(x, y)Ψ′(x, y) = σ0(y)xm + σ1(y)xm−1 + ...+ σm(y)

for some positive integer m and some polynomials σi over F . As λj is a
common root of A and σi and as A is irreducible it follows that σi(λ) = 0 and
hence that Π′′(x, λ) = Ψ(x, λ)Ψ′(x, λ) and so Π′′ is reducible, contradiction.

Hence Π′′(x, λj) is the minimal polynomial of ν(V ) and it has to be shown
that it is of ν(V ′) too. Accordingly, V ′ ∈ F (V ) hence there is a polynomial
η in F [x] such that V ′ = η(V ). Since V is a common root of Π′′(η(x), λ)
and Π′′(x, λ) and as the latter is irreducible it follows by Lemma 3.2.3 that
for some polynomial of two variables Q over F the relation Π′′(η(x), λ) =
Π′′(x, λ)Q(x, λ) holds. Now, interchanging λ with an indeterminate y in the
relation gives Π′′(η(x), y) = Π′′(x, y)Q(x, y) + Q′(x, y) where all concerned
polynomials have coefficients in F . To see that Q′(x, λj) = 0 observe that
Q′(x, λ) = 0 and that the coefficients of Q as a polynomial over F [y] are
polynomials in y over F , say ci(y). But ci(λ) = 0 and as λ is a root of the
irreducible polynomial Φ over F it follows that ci(λj) = 0.

Finally, it follows that Π′′(η(x), λj) = Π′′(x, λj)Q(x, λj) so ν(V ) is a root
of Π′′(η(x), λj) and so Π′′(η(ν(V )), λj) = Π′′(ν(V ′)), λj) = 0.

Theorem 3.3.4 If an element v ∈ F (a, b, c...) is adjoined to F the Galois
group of f over F (v) will consist of the permutations of GF that leave the
element invariant.

Proof: By Corollary 3.3.4 the Galois group of f over F (v) contains all
the permutations that leaves v invariant and as GF (v) is subgroup of GF the
result follows.

3.4 Galois groups and field extensions

Lemma 3.4.1 Let p be a prime and N a normal subgroup of a group G of
index p. For any g ∈ G but not in N , gp ∈ N and gk /∈ N for 1 ≤ k < p.

Proof: The factor group G/N has prime order p. Consider the subgroup
generated by an element gN that is not the identity, by Lagrange’s theorem
the order of this subgroup must divide the order of G therefore it follows
that (gN)p = gpN = N and (gN)k 6= N for 1 ≤ k < p.

Theorem 3.4.1 Let f be a polynomial over a field with n distinct roots
a, b, c, ... and GF its Galois group. Assume that a primitive pth root of unity
lies in F and that GF has a normal subgroup N of prime index p. Then it
is possible to adjoin to F a pth root of an element in F in such a way that
the Galois group over the extended field coincide with N .
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Proof: The existence of an element ω ∈ F (a, b, c, ...) with the following
properties will be demonstrated:

(1) ω is not invariant under all permutations in GF but invariant under
those in N ,

(2) its pth power is an element in F .

Consider the Galois group of f over F (ω). By (1) and Theorem 3.3.4
the permutations of N are elements in GF (ω) and by (1), (2) and Theorem
3.3.2 the groups GF (ω) and N have the same cardinality. Therefore the two
groups coincide.

Let V be a Galois resolvent for f over F and Π the minimal polynomial
of V over F . The polynomial

∏
ν∈N (x − ν(V )) cannot have all its coef-

ficients in F because it has degree smaller than Π and Π is the minimal
polynomial of V over F . Hence there is at least one coefficient θ that is
altered by a permutation µ in GF , that is, µ(θ) = θ1 6= θ. Define θk = µk(θ)
for k = 1, ..., p− 1 and observe that µp(θ) = θ by Lemma 3.4.1. Let ζ be a
primitive pth root of unity and consider the element

ωi = θ + ζiθ1 + (ζi)2θ2 + ...+ (ζi)p−1θp−1, for i = 1, ..., p− 1.

We can assume without loss of generality that ω = ω1 is non-zero. And
this because if all the ωi where zero then

0 =

p−1∑
i=1

ωi = (p− 1)θ +

p−1∑
k=1

p−1∑
i=1

(ζi)kθk =

p−1∑
k=1

θk

p−1∑
i=1

(ζk)i = (p− 1)θ.

Let ν ∈ N by normality of N we get that for some νi in N the relation
holds ν(θi) = ν(µi(θ)) = µi(νi(θ)) for i = 1, ..., p − 1, and by the fact that
the pemutations of N fixes θ we get ν(θi) = µi(θ) and so

ν(ω) = ν(θ) + ζν(θ1) + ...+ ζp−1ν(θp−1) = θ + ζθ1 + ...+ ζp−1θp−1 = ω

Property (1) has already been shown. Additionaly,

µ(ω) = θ1 + ζθ2 + ...+ ζp−1θ = ζ−1ω and so µ(ωp) = µ(ω)p = (ζ−1ω)p = ωp

Now, because every element in GF can be written as µkν for some per-
mutation ν ∈ N and for some integer k between one and p it follows that
ωp is fixed by the permutations in GF . Therefore ωp is an element in F and
so property (2) holds.
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3.5 Conditions for solvability

Definition 3.5.1 A group G is called solvable if there exists a chain of
subgroups {e} = N0 E N1 E ... E Nk−1 E Nk = G such that the index of
Ni in Ni+1 is a prime number pi for each i = 0, ..., k − 1. We say that the
subgroups N0, N1, ..., Nk−1, Nk of G form a normal series of G.

Lemma 3.5.1 A subgroup H of a solvable group G is a solvable group.

Proof: Since the group G is solvable there exists a chain of subgroups
{e} E N0 E N1 E ... E Nk−1 E Nk = G such that Ni+1/Ni has prime order
pi. Let h ∈ H ∩ Ni and g ∈ H ∩ Ni+1 and note that since Ni is a normal
subgroup of Ni+1 it follows that ghg−1 ∈ Ni. Clearly, ghg−1 ∈ H and hence
H ∩Ni is a normal subgroup of H ∩Ni+1. Now, if H ∩Ni 6= H ∩Ni+1 then
there is an element a ∈ Ni+1 such that aNi generates Ni+1/Ni. But, then
aH ∩ Ni generates H ∩ Ni+1/H ∩ Ni and it follows that the factor group
H ∩Ni+1/H ∩Ni has order pi. Now, consider the chain of subgroups of H;
{e} = H∩N0 ⊆ H∩N1 ⊆ ... ⊆ H∩Nk−1 ⊆ H∩Nk = H and we are finished
after removing subgroups in the chain that are equal to its predecessors.

Proposition 3.5.1 Suppose that a polynomial f over a field F having
n distinct roots a, b, c, ... is solvable. Then the Galois group of f over F is a
solvable group.

Proof: By Corollary 2.2.1 the roots of f lie in pure radical extension.
The rest follows by Theorems 3.3.2 and 3.3.3 and by the fact that the only
element of the Galois group of f over an extension field of F that contains
the roots a, b, c, ... is the identity permutation.

Conversely,

Proposition 3.5.2 Suppose that the Galois group of a polynomial f with
n distinct roots a, b, c, ... over a field F is solvable. Then f is a solvable
polynomial over F .

Proof: By definition, since GF is solvable, there is a chain of subgroups
of GF such that GF = Nk ⊃ Nk−1 ⊃ ... ⊃ N1 ⊃ N0 = {e}, Ni+1 is a
normal subgroup of Ni and the index of Ni in Ni+1 is equal to a prime
pi, for i = 0, 1, ..., k − 1. Let m the least common multiple of the primes
pi, i = 0, 1, ..., k − 1 and let ζ be a primitive m-th root of unity of F . By
Theorem 2.2.3 there is a pure radical extension E of F containing ζ. By
Proposition 3.3.1 GE is a subgroup of GF hence solvable by Lemma 3.5.1.
Inspection of the proof of of Lemma 3.5.1 shows that there is a normal series
{e} = N ′0, N

′
1, ..., N

′
k−1, N

′
k = GE such that N ′i+1/N

′
i has order pi. Now, by
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Theorem 3.4.1 we can proceed as follows. Adjoin to E an element a0 whose
p0-th power lies in E and is such that the index of GE(a0) in GE is equal to
p0. Set E = E0 and E0(a0) = E1, and continue inductively for n = 2, ..., k−1
by adjoining an element an to the field En−1(an−1) = En whose pn-th power
is an element in En and is such that the index of GEn(an) in GEn is equal to
pn. Finally, observe that an cannot be a pn-th power of an element in En
and so xpn − an is irreducible over En by Lemma 1.2.1. Hence Ek−1(ak−1)
is a pure radical extension of E which contains the roots a, b, c, ... .
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4 Modern Galois theory

The Galois group of permutations of a polynomial f over a field F consists
of those permutations of the roots of f that leave F invariant. A permu-
tation of GF gives rise to an automorphism of the the splitting field of f
that keeps F invariant and, clearly, each automorphism of the splitting field
that leaves F invariant induces a permutation in GF . So, for each extension
field E of F that is the splitting field of a polynomial it is natural to define
the group of automorphisms of E that acts on the roots of the polynomial
as the elements of GF . This leads to the definition of the Galois group of
automorphisms of a field extension. In this chapter, we aim to see how the
structure of the Galois group of the field extension E/F relates to the struc-
ture of the extension. Additionaly, the arguments in this section do work
for fields of any characteristic.

◦

4.1 Splitting fields

Definition 4.1.1 A polynomial f over a field F splits over F if it has all its
roots in F . An extension E of a field F is the splitting field for a polynomial
f if f splits over E but does not split over any intermediate field of the field
extension E/F .

Theorem 4.1.1 A polynomial f over a field F has a splitting field. More-
over, the splitting field of f over F has finite degree over F .

Proof: For a polynomial of degree one the proposition holds true. Assume
that in an arbitary field F a polynomial of degree n has a splitting field
which is of finite degree over F . Let f be a polynomial of degree n+1 which
does not split over F . By Theorem 1.1.1 there is an extension E of finite
degree over F in which f has a root. So, f factors as f = (x− e)g where e
is some element in E and g is a polynomial of degree n in E. By induction
g has a splitting field E′ over F (e) which is also a splitting field for f and
[E′ : F (e)] < ∞. Then E′ is a splitting field of f over F and by the tower
law E′ is of finite degree over F .

Proposition 4.1.1 Let i : F → F ′ be a field isomorphism. Let also, r
be a root of an irreducible polynomial f over F and r′ a root of i(f). Then
i can be extended to an isomorphism between F (r) and F ′(r′).

Proof: The map φ : F (r) → F [x]/(f) given by g(a) 7→ g(x) + (f) is
a field isomorphism, so are the maps ξ : F [x]/(f) → F ′[x]/(i(f)) given
by g(x) + (f) 7→ φ(g(x)) + (i(f)) and ψ : F ′[x]/(i(f)) → F (r′) given by
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g(x) + (i(f)) 7→ g(b). Then, ψξφ : F (r)→ F ′(r′) is the desired field isomor-
phism that extensds i.

The fact that follows proves the uniqueness, up to isomorphisms, of the
splitting field of a given polynomial.

Theorem 4.1.2 Let φ : F → F ′ be a field isomorphism. Let p(x) be a
polynomial in F with splitting field E and let E′ be the splitting field of the
polynomial φ(p(x)). Let also, r ∈ E be a root of an irreducible polynomial
g over F and r′ a root φ(g(x)). Then there is an isomorphism φ between E
and E′ that extends φ and such that φ(r) = r′.

Proof: For a field extension E/F of degree one the theorem is true and
assume that it is true for every pair of fields (E,F ) such that [E : F ] is
smaller than n and satisfying the conditions of the theorem.

Let now E/F be an extension of degreee n and assume that p does
not have all its roots in F , otherwise the theorem is clear, and choose an
irreducible factor q of degree larger than one. Let r denote a root of q and r′

a root of φ(q). Then by the previous proposition there is an isomorphism of
fields φ′ : F (r)→ F ′(r′) such that φ′(r) = r′. By the tower law [E : F (r)] <
n and as E and E′ are the splitting fields for f over F (r) and for f ′ over
F ′(r′) respectively, the inductive hypothesis to the pair (E,F (r)) together
with the field isomorphism φ′ can be applied to show the existense of φ.

4.2 Automorpisms as group characters

Definition 4.1.1 A group character χ from a group G to the multiplicative
group of a field F is a homomorphism χ : G→ F ∗, where F ∗ = F \ {0}.

The characters χ1, ..., χn from G to F ∗ are linearly independent over F
if for all elements λ1, ..., λn in F such that λ1χ1(g) + ... + λnχn(g) = 0 for
all g ∈ G implies λ1 = ... = λn = 0. χ1, ..., χn are called linearly dependent
if they are not linearly independent.

Proposition 4.2.1 If χ1, ..., χn are distinct characters from G to F ∗ then
χ1, ..., χn are linearly independent over F .

Proof: Suppose otherwise, then there exist λ1, ..., λn in F not all zero s.t
λ1χ1(g) + ... + λnχn(g) = 0 for all g ∈ G. Among all n-tuples of elements
in F which correspond to a relation of linear dependence of χ1, ..., χn there
is one with the smallest number m of non-zero coordinates. Clearly, m 6= 1
and reindexing if needed one can write (l1, ..., lm, 0, ..., 0). And so

(1) l1χ1(g) + ...+ lmχm(g) = 0 for all g ∈ G
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As χ1 and χm are distinct there exists g0 ∈ G such that χ1(g0) 6= χm(g0).
Now, plug in g0g in (1) to get the equation

(2) l1χ1(g0)χ1(g) + ...+ lmχm(g0)χm(g) = 0 for all g ∈ G

and multiply (1) with χm(g0) to get

(3) l1χm(g0)χ1(g) + ...+ lmχm(g0)χm(g) = 0 for all g ∈ G

Substracting (3) from (2) we see that the n-tuple(
l1(χ1(g0) − χm(g0), ..., lm−1(χm−1(g0) − χm−1(g0), 0, ..., 0

)
represents a re-

lation of linear dependence of χ1, ..., χn, contradiction.

Any automorphism of a field can be seen as a character from the multi-
plicative group of the field to itself.

Definition 4.2.2 Let α1, ..., αn be automorphims of a field F . The fixed field
of the αi’s is defined as the field I(α1, ..., αn) = {x : α1(x) = ... = αn(x)}.
If G = {α1, ..., αn} forms a group, then since the identity map is in G the
fixed field of G is I(G) = {x : x = αi(x) ∀ i}.

In the propositions and theorems that follow assume always that the
degree of the extension E/F is not ∞.

Proposition 4.2.2 Let α1, ..., αn be distinct automorphisms of a field E
with fixed field F . Then, n ≤ [E : F ].

Proof: Assume that the degree m of the extension E/F is strictly smaller
than n and let e1, ..., em be a basis for E as a vector space over F . For
each nonzero element e in E there exist elements f1, ..., fm in F such that
e = f1e1 + ... + fmem. Let x1, ..., xn be variables and using that F is the
fixed field of α1, ..., αn we get,

x1α1(e) + ...+ xnαn(e) =
n∑
i=1

xiαi(
m∑
j=1

fjej) =
n∑
i=1

xi

m∑
j=1

αi(fj)αi(ej) =

n∑
i=1

xi

m∑
j=1

fjαi(ej) =
m∑
j=1

fj

n∑
i=1

xiαi(ej).

The m equations

n∑
i=1

xiαi(ej) = 0, where j takes values from 1 to n, de-

termine a linear system over E which has a non-trivial solution (λ1, ..., λn)
since it has more unknowns than equations. But, then (λ1, ..., λn) repre-
sents a relation of linear dependence among the distinct characters induced
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by α1, ..., αn, a contradiction to Propostion 4.2.1.

Definition 4.2.3 Let E be an extension field of F . The Galois group
of automorphisms of E/F is defined as the set of all automorphisms of E
that fixes the base field F , that is, if we denote by Aυτ(E) the set of field
automorphisms of E then Gal(E/F ) = {α ∈ Aυτ(E) : α(x) = x ∀ x ∈ F}.

The fixed field of the Galois group of an extension E/F contains F , i.e
I(Gal(E/F )) ⊇ F , hence by the tower law and by Propostion 4.2.2 it follows
that |Gal(E/F )| is equal or smaller than the degree of the extension E/F .

Definition 4.2.4 A finite field extension E/F is called Galois if the condi-
tion I(Gal(E/F )) = F is satisfied.

Theorem 4.2.1 If G = {α1, ..., αn} is a group of automorphisms of a field
E with fixed field F then [E : F ] = |G|.

Proof: Assume that the order of G is strictly smaller than [E : F ] and
choose linearly independent elements e1, ..., en+1 of E over F . The linear
system over E defined by the n equations,

(1)
n+1∑
i=1

αj(ei)xi = 0, where j takes values from 1 to n

has more unknowns than equations, therefore it has a non-trivial solution.
Among all n-tuples that correspond to a non-trivial solution choose one with
the smallest number m of non-zero coordinates and represent, possisble af-
ter reindexings, it as (λ1, ..., λm, 0, ..., 0). λi 6= 0 for each i by minimality
of m, clearly m > 1 and assume without loss of generality that λm = 1.
Also, not all λi belong to F since otherwise a relation of linear dependence
is obtained among e1, ..., en+1 and therefore it is possible to assume that
λ1 /∈ F . Choose a permutation π in G that does not fix λ1 and plug in
x1 = λ1, ..., xm = λm in (1) and use that G is a group to obtain,

(2)
n+1∑
i=1

αj(ei)π(λi) = 0, where j takes values from 1 to n.

Now, again, plug in λ1, ..., λn in (1) to get (1′) and substract (1′) from (2)
to see that (π(λ1)− λ1, ..., π(λm−1)− λm−1, 0, ..., 0) is a solution to the lin-
ear system in consideration, contradiction. For the converse see Proposition
4.2.2.

Corollary 4.2.1 A field extension E/F is Galois iff |Gal(E/F )| = [E : F ].

Proof: By definition if E/F is Galois then I(Gal(E/F )) = F , hence the-
orem 4.2.1 implies that |Gal(E/F )| = [E : F ]. Conversely, if the condition
is not satisfied I(Gal(E/F )) = F then by the tower law we get (theorem
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1.1.1) [E : F ] > [E : I(Gal(E/F ))]. On the contrary by Proposition 4.2.3
we get [E : I(Gal(E/F ))] = Gal(E/F ), contradiction.

4.3 Normal and separable extensions

Definition 4.3.1 A finite field extension E/F is normal if every irreducible
polynomial with coefficients in L which has a root in E splits in L.

Definition 4.3.2 A polynomial over a field F is called seperable if its irre-
ducible factors do not have repeated roots. An algebraic extension field E of
F is called separable if each element in E is a root of a separable polynomial
over F .

Theorem 4.3.1 Let E/F be a field extension. Then the following are
equivalent,

(α) E/F is a Galois extension,

(β) The extension E/F is normal and separable,

(γ) E is the splitting field of a separable polynomial p(x) over F .

Proof: (α) ⇒ (β) Let ρ ∈ E be a root of an irreducible polynomial p
over F and set A =

∏
ρ∈P (x− ρ), where P = {α(ρ) : α ∈ Gal(E/F )}. The

coefficients of A are left fixed by the automorphisms of Gal(E/F ), therefore
they are elements in F = I(Gal(E/F )). As p is irreducible and ρ a common
root of p and A it follows that p|A and so p splits over E and is separable
over F .

(β) ⇒ (γ) Let e1, ..., en be a basis for E as a vector space over F and
so E = F (e1, ..., en). Let pi be the minimal polynomial of ei over F . Each pi
splits over E as E/F is a normal extension and does not have multiple roots
as E/F is separable. Therefore the polynomial p = p1 · · · pn is separable
over F and as it splits over E its splitting field over F is E.

(γ) ⇒ (α) For field extensions (E,F ) satisfying (γ) and of degree one the
extension E/F is Galois. Assume that for all field extensions of degree less
than n the statement (γ) implies (α).

Let E/F be a field extension of degree n and E the splitting field of the
separable polynomial p over F . If p splits over F then E/F is Galois, so
assume that p has an irreducible factor q over F of degree m > 1. As q
is separable it has m distinct roots r1, ..., rm. By Theorem 4.1.2 there are
automorphisms α1, ..., αm of G = Gal(E/F ) such that αi(r1) = ri. Let k
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be the number of distinct cosets of H = Gal(E/F (r1)) in G then m ≤ k,
since otherwise αiH = αjH holds for distinct i and j and so αi

−1αj ∈ H
which in turns implies that αi(r1) = αj(r1), contradiction. Now, Lagrange’s
Theorem gives, |G| = k|H| ≥ m|H|.

On the other hand, the tower law implies that [E : F (r1)] < n and as p
is separable over F (r1) it follows by induction that E/F (r1) is Galois and so
Corollary 4.2.1 implies that |Gal(E/F (r1)| = [E : F (r1)]. As, m = [F (r1) :
F ] finally we get that |Gal(E/F )| ≥ [E : F (r1)][F (r1) : F ] = [E : F ] and as
|Gal(E/F )| ≤ [E : F ] holds by Proposition 4.2.2 we get by Corollary 4.2.1
that E/F is Galois.

4.4 The fundamental theorem of Galois Theory

For a finite field extension E/F define two families of sets,

F .
= F(E,F ) = {L : F ⊆ L ⊆ E and L is a field}

G .
= G(E,F ) = {H : H is a subgroup of Gal(E/F )}

and two maps,

Φ : F → G Ψ : G → F

L 7→ Gal(E/L) H 7→ I(H)

It follows, directly, from the definitions of the Galois group Gal(·/·) and
of the fixed field I(·) that the maps Φ and Ψ are inclusion-reversing.

Proposition 4.4.1 Define the following subsets of F(E,F ) and G(E,F ),

F ′ = {L : L = I(H) where H ∈ G(E,F )}

G′ = {H : H = Gal(E/L) and L ∈ F(E,F )}.

Let Φ′ : F ′ → G′ be given by L 7→ Gal(E/L) and Ψ′ : G′ → F ′ byH 7→ I(H).

Then, Φ′ and Ψ′ are inclusion-reversing maps and mutual inverses.

Proof: That Φ and Ψ are inclusion reserving maps is clear. Suppose that
L ∈ F ′ then L = I(H) for some H ∈ G and consider

I(H) = L
Φ′
−→ Gal(E/L)

Ψ′
−→ I(Gal(E/L)
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If the identity L = I(Gal(E/L) holds then Φ′ is clearly injective, surjec-
tive and Ψ′ ◦ Φ′ = IdF ′ . Hence, it would follow that Φ′ and Ψ′ are mutual
inverses.

(⊆) ∀ l ∈ L : α(l) = l holds for all α ∈ Gal(E/L).

(⊇) Every automorphism α in H leaves L invariant hence α ∈ Gal(E/L),
so H ⊆ Gal(E/L) and as Ψ is inclusion-reversing the inclusion follows.

Theorem 4.4.1 If the field extension E/F is Galois, then F = F ′, G = G′
and the maps Φ and Ψ are mutual inverses.

Proof: If H is an element of G then it is a subgroup of Gal(E/L) hence
H = Gal(E/I(H)) by Theorem 4.2.1, so G = G′. Let L ∈ F then by
Theorem 4.3.1 E is the splitting field of a separable polynomial p over F .
Clearly, then E is the splitting field of (the separable) p over L and so, again
by Theorem 4.3.1, E/L is Galois and hence L = I(Gal(E/L)). That the
maps Φ and Ψ are mutual inverses follows by Proposition 4.4.1.

Theorem 4.4.2, The fundamental theorem of Galois theory

Suppose that E is the splitting field of a separable polynomial p over F .

(α) There is a one-to-one inclusion-reversing correspondence between the
set of intermediate fields of the field extension E/F and subgroups of the
Galois group Gal(E/F ).

(β) N = I(H) is a normal extension of F if and only if H = Gal(E/N)
is a normal subgroup of Gal(E/F ). In this case there is an isomorphism
Gal(N/F ) ∼= Gal(E/F )/Gal(E/N)

(γ) For any L ∈ F(E,F ) the degree of the E/L is equal to the order of
Gal(E/L) and the degree of the extension L/F is equal to the index of
Gal(E/L) in Gal(E/F ).

Proof : (α) This is a consequence of Proposition 4.4.1 and Theorem 4.4.1.

(β) As N is normal and separable extension of F by Theorem 4.3.1 it is
the splitting field of a polynomial f over F and so N = F (r1, ..., rm), where
r1, ..., rm are the roots of f . Let α be an automorphism in Gal(E/F ), then
a root ri is mapped under α to another root of f and as no root is the image
under α of two distinct roots it follows that α(N) = N . Hence, it is possible
to define a map φ : Gal(E/F ) → Gal(N/F ) by sending α ∈ Gal(E/F ) to

43



α̃ : N → N where α̃ satisfies α̃(x) = α(x) for x ∈ N . It is straightforward to
check that φ is a group homomorphism whose kernel is Gal(E/N). Hence,
Gal(E/N) is a normal subgroup of Gal(E/F ). The surjectivity of φ, which
follows by Theorem 4.1.2, shows that Gal(N/F ) ∼= Gal(E/F )/Gal(E/N).

Now, let H be a normal subgroup of G. Let r ∈ I(H) and let g be an
irreducible polynomial over F of which r is a root and r′ another root of
g. Since, E/F is normal g splits over E and so Theorem 4.1.2 implies that
there exists α ∈ Gal(E/F ) such that α(r) = r′. Now, for any ν ∈ H the
normality of H gives, ν(r′) = ν(α(r)) = αα−1(ν(α(r))) = α(r) = r′. So,
r′ ∈ I(H) and hence g splits over N .

(γ) We have already seen, in the proof of Theorem 4.4.1, that the field
extension E/L is Galois for every L ∈ F(E,F ). Hence, |Gal(E/L)| = [E : L]
by Corollary 4.2.1. The second statement follows by the tower law.
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A Appendix

A.1 The fundamental theorem of symmetric polynomials

The elementary symmetric polynomials σ1, ..., σn in the variables x1, ..., xn
are defined as follows:

σ1 = x1 + ...+ xn

σ2 =
∑
i<j

xixj

σ3 =
∑
i<j<k

xixjxk

...

σn = x1 · · ·xn

Fact 5.1 Let R be a ring(commutative, with identity). If p(x1, ..., xn) is
a polynomial in the ring R[x1, ..., xn] which reamains unaltered under any
permutation of the roots then p is a polynomial in F [σ1, ..., σn].

A.2 The group structure of U(Z/(p))

Fact 5.2 The multiplicative group of the field Z/(p) that is the the group
(Z/(p) \ {0}, ·) it is generated by a single element. In fact there are φ(p− 1)
such generators, where φ is the Euler φ function.
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