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AbstratThe purpose of this projet is to study mathematial properties of the oppor-tunisti replaement problem introdued in [18℄. The goal is to examine anddetermine new tehniques to ompute the solutions for the opportunisti re-plaement problem faster. In this projet the Benders deomposition methodand rank-1 Chvátal-Gomory ut generation are applied to the opportunistireplaement problem.Regarding the Benders Method, for the opportunisti replaement problemwith �xed maintenane oasions the dual of the resulting linear programmingproblem is derived and it is shown that when the maintenane oasions are non-inreasing with time, this problem an be solved through a greedy proedure.The feasibility onstraints for the master problem in the Benders deompositionmethod when implemented on the opportunisti replaement problem are ex-pliitly derived. Then, the algorithm of Benders deomposition method appliedto the opportunisti replaement problem is presented.Furthermore, the rank-1 Chvátal-Gomory separation problem for the oppor-tunisti replaement problem is modeled. A branh and bound approah is thenused to generate valid inequalities for the replaement polytope, by solving theseparation model and �nding the most violated uts for non-integral extremepoints of the onstraint set de�ning the opportunisti replaement problem.Results from omputation tests of the two solution proedures and onlu-sions are �nally reported.
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1 Introdution and bakground1.1 Maintenane planning and problemsIn aviation industry, power plants, and proessing industry, expensive equipmentsneed to be used e�iently with few interruptions to pay bak the huge osts of theinvestments. Due to the huge osts of breakdowns of a system, it is of essential impor-tane to avoid them as muh as possible. In a typial setting every mahine onsistsof di�erent modules, where eah module ontains several omponents. When a om-ponent breaks or reahes its life a replaement of that omponent is unavoidable.The life of eah omponent an be onsidered as deterministi or stohasti.In the literature sometimes it is assumed that the maintenane opportunity isindependent of the failure; sometimes the opportunity is equal to the �rst failure of anindividual part. In this ase failure of one part is used as an advantage of preventivemaintenane for the other parts. The term opportunisti maintenane refers to thesituation that every maintenane oasion is onsidered as an opportunity to preventpossible future failures of the system ([6℄). This is often the ase for airraft engines.The maintenane of airraft engines is ruial in aviation industry. Sine, inpartiular, the major onern is safety. If an essential omponent of an airraftbreaks, it may rash; therefore the interruption of the system funtion should beavoided at any ost. In this ase, the maintenane planning should be sheduledin suh a way that the system works without interruption between the plannedmaintenane oasions. Sine some of the parts are of great safety importane, theyare assigned �xed deterministi lives. Other parts of the engine are onsidered tohave stohasti lives.The opportunisti replaement is motivated mainly by the unavoidable �xed ostsassoiated with eah maintenane oasion rather than eah omponent's ost [6℄.In simple words, when an engine is taken to the maintenane workshop, a spareengine should replae it. Therefore at every maintenane oasion �aompanyingthe ost of eah part to be replaed� there is often also an independent large �xedost. In opportunisti maintenane, the extra ost of a maintenane oasion shouldbe balaned with the osts of individual modules whih have to be replaed, so thereis an optimization problem to be solved.When a deterministi life of a omponent is reahed, the engine must be takento the workshop for maintenane. This is a good opportunity to replae some ofthe non-failed omponents with stohasti or deterministi lives. There are someinformation needed to formulate the optimization problem suh as the remaininglives of the deterministi parts, osts of new spare parts, and the work ost for theworkshop when replaing omponents, et. In ase of not knowing the lives of theomponents, it is possible to estimate their stohasti life time using historial dataand/or ondition measurements.A relevant optimization model for opportunisti replaement is to minimize theexpeted osts in order to have funtioning engine during a predetermined timeperiod. The optimization should reate a maintenane shedule with as low totalost as possible. In the opportunisti replaement problem for an airraft enginethe time horizon is �nite. This problem omputationally is harder to solve than thein�nite time horizon ounterpart ([18℄).A onlusion in [2℄ is that it is extremely hard to �nd an optimal replaement5



shedule when the number of parts is large. Di�erent replaement poliies an helpto simplify the solution proess but they possibly lead to non-optimal solutions. Onthe other hand, if all the parts have stohasti lives it is di�ult to ompute a reliableshedule. In suh ases it is essential that one uses replaement poliies rather thansolving an optimization model.In the airraft engine studied about 75% of the omponents are onsidered to havedeterministi lives. If the lives of all the omponents are deterministi, an optimalmaintenane shedule is found by solving the opportunisti replaement problem.This thesis onstitutes a study of the mathematial struture and properties of theproblem when all the omponent lives are assumed to be deterministi.1.2 The opportunisti replaement problemThis thesis is part of a researh on analyzing and solving the maintenane deisionproblems. A system (e.g., a jet engine or a wind power turbine) to maintain duringa �nite planning time is onsidered. The idea is to use a mathematial model todeide whether or not to perform maintenane at the time when the system needs aorretive maintenane or a sheduled preventive one. A fairly simple maintenaneproblem is presented.The problem statement is as follows. Consider a system that onsists of om-ponents N = {1, . . . , N} with known deterministi lives. We assume that everyomponent must be replaed before its failure. Moreover, every maintenane o-asion generates the ost d and the replaement of a omponent i ∈ N generatesthe replaement ost ci. We wish to minimize the expeted maintenane ost overthe planning time [0, T ]. This problem is denoted the opportunisti replaementproblem.The researh work in this thesis is based on the opportunisti replaement prob-lem. Although, the intention is to generalize the results obtained to more generalmaintenane problems in the future.1.3 OutlineThe aim of this thesis is to study some mathematial aspets of the opportunistireplaement problem and then utilize these when solving the problem. The thesis isorganized as follows.First some essential bakground from integer programming is brie�y reviewed.Chapter 2 is divided into �ve main setions in whih the integer linear programmingis desribed and the omplexity of suh problems is disussed. Then, some of theonepts helping to a better understanding of the geometry behind integer linearprogramming are de�ned. Valid inequalities and faets for an integer linear programis disussed and the Chvátal-Gomory proedure to obtain valid inequalities is pre-sented. Setion 2.4 disusses the Chvátal-Gomory uts and the separation problemfor the integer linear programming problems. Finally, in Setion 2.5, the generalBenders partitioning proedure to solve an integer linear programming problem ispresented.In Chapter 3 a linear programming model is introdued for the opportunistireplaement problem and some of its mathematial properties are disussed. Also astudy of the faial struture of the opportunisti replaement problem is presented.6



Benders deomposition method is applied to the opportunisti replaement prob-lem in Chapter 4. In Setion 4.1 it is shown that the dual linear programming prob-lem when the maintenane oasions are non-inreasing with time and the mainte-nane oasions are �xed is solvable by a greedy rule. An implementation of the Ben-ders deomposition method on the opportunisti replaement problem is disussedin Setion 4.2. The feasibility onstraints for the master problem in the Bendersdeomposition method are expliitly derived. Results from numerial experimentsare reported.In Chapter 5 the e�et of generating rank-1 Chvàtal-Gomory uts for the oppor-tunisti replaement problem is questioned. The rank-1 Chvàtal-Gomory separationproblem is modeled as an mixed integer linear programming problem. Then, themodel is solved in a pure utting plane framework to �nd the most violated uts forthe onvex hull of the polyhedron de�ning the opportunisti replaement problem.Some omputational results are also presented.Finally, in Chapter 6 onlusions and remarks on future work are stated.
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2 Integer linear programmingOptimization in the simplest way means to maximize (or minimize) a real-valuedfuntion of real or integer variables by hoosing the values of these variables within anallowed set, whih is desribed by a set of onstraints on the variables. A tehniquefor optimizing a linear objetive funtion of real valued variables with respet tolinear equality and/or inequality onstraints is alled linear programming. Addingextra restritions to the variables suh as belonging to an integer set or taking binaryvalues gives new types of problems, whih has a wide range of appliations in everydaylife.Integer programming is about how to solve optimization problems with disrete(or integer) variables. A wide variety of pratial problems in management and thee�ient use of resoures an be formulated as integer linear programming problems.Problems suh as distribution of goods, prodution sheduling, transportation net-work design, faility loation, teleommuniations or eletriity generation planningmost often fall into the integer linear programming ategory.This thesis is dealing with an integer linear problem, where the funtion to beminimized and the inequality restritions are all linear. In this hapter, we brie�yaddress some basi and essential onepts of integer linear programming problems.First the integer linear programming problem is de�ned, followed by de�nitions of apolyhedron, a onvex hull, the ideal formulation, and bounds for the integer linearprogramming problem. Then, the omplexity of linear integer programming prob-lems is disussed. Valid inequalities and faets are de�ned. Also Chvátal-Gomoryproedure to derive valid inequalities for the integer linear programming problemsand the septation problem are presented. The hapter loses with the desription ofthe general Benders deomposition proedure.2.1 An integer linear programming modelConsider the linear programming problem in the anonial form:(LP) max
x
{cx : Ax ≤ b, x ∈ Rn

+},where Rn
+ is the set of non-negative real n-dimensional vetors, A an m× n matrix,

c an n-row vetor, b an m-olumn vetor, and x an n-olumn vetor. x is the vetorof deision variables. Letting some of the variables be integer, then the mixed integerlinear programming problem is de�ned as(MILP) max
x,y
{cx + hy : Ax + Gy ≤ b, x ∈ Rn

+, y ∈ Zp
+},where Zp

+ is the set of non-negative integral p-dimensional vetors, G is an m × pmatrix, h is a p-row vetor, y is a p-olumn vetor of integer deision variables. Ifall variables are integer (i.e., if n = 0), we have (pure) integer linear programmingproblem (ILP) max
y
{hy : Gy ≤ b, y ∈ Zp

+}.Note that ILP is the speial ase of MILP in whih there are no ontinuous variablesand LP is another speial ase of MILP in whih there are no integer variables. At8



the end we de�ne a binary linear program:(BLP) max
x
{cx : Ax ≤ b, x ∈ {0, 1}n}.One should note that in understanding and solving integer linear programming prob-lems, the linear programming theory is fundamental. As in linear programming,translating a problem desription into a mathematial formulation should be donesystematially. The data of the problem instane and the variables should be distintin the model. In the next setion we formulate a very famous problem alled, theset overing problem, as n BLP.2.1.1 The set overing problemTwo of the very well known integer linear programming problems are the set overingproblem and the set paking problem. The set overing problem an be desribedas follows. Given a ertain number of regions, the set overing problem is to deidewhere to install a set of emergeny servie enters. For eah possible enter the ostof installing a servie enter, and whih regions it an servie are known. The goal isto hose a minimum ost set of servie enters so that eah region is overed. Now, weformulate it as a BLP. Let M = {1, . . . ,m} be the set of regions, and N = {1, . . . , n}the set of potential enters. Let Sj ⊆ M be the regions that an be servied bya enter at j ∈ N , and cj its installation ost. To failitate the desription, we�rst onstrut a 0 − 1 inidene matrix A suh that aij = 1 if i ∈ Sj, and aij = 0otherwise. Let the deision variables be x = (x1, . . . , xn) where xj = 1 if enter j isseleted, and xj = 0 otherwise. The set overing problem is de�ned asmin

x

n∑

j=1

cjxj, (1a)
n∑

j=1

aijxj ≥ 1, i = 1, . . . ,m, (1b)
xj ∈ {0, 1}, j = 1, . . . , n. (1)The inequalities (1b) state that at least one enter must servie region i. The setpaking problem is the integer linear program of the formmax

x

n∑

j=1

cjxj , (2a)
n∑

j=1

aijxj ≤ 1, i = 1, . . . ,m, (2b)
xj ∈ {0, 1}, j = 1, . . . , n. (2)There are very strong ties between set overing problem and set paking problems.For more details see [12℄. The set overing problem is struturally similar to theopportunisti replaement problem de�ned in Chapter 3.2.1.2 De�nitions of some entral oneptsIn integer programming, for the formulation of problems we are given a set of feasiblepoints, often desribed as the set of integer solutions to a linear inequality system9



S = {x ∈ Zn
+ : Ax ≤ b}. For a better understanding of how to deal with integerlinear programming problems, we give some neessary de�nitions and propositionswithout proof from linear algebra. The books [12℄ and [19℄ are used as referenes forthis setion.De�nition 2.1 (Convex ombination and onvex hull). Given a set S ∈ Rn,a point x ∈ Rn is a onvex ombination of points of S if there exists a �nite setof points {xi}

t
i=1 ∈ S and a λ ∈ Rt

+ suh that ∑t
i=1 λi = 1 and x =

∑t
i=1 λix

i.The onvex hull of S, denoted by conv(S), is the set of all points that are onvexombinations of points in S.De�nition 2.2 (Linear and a�ne independene). A set of points x1, . . . , xk ∈
Rn is linearly independent if the unique solution to the equations ∑k

i=1 λix
i = 0 is

λi = 0, i = 1, . . . , k. A set of points x1, . . . , xk ∈ Rn is a�nely independent ifthe unique solution to the equations ∑k
i=1 αix

i = 0 and ∑k
i=1 αi = 0 is αi = 0 for

i = 1, ..., k.Note that the maximum number of linearly and a�nely independent points in
Rn are n and n + 1 respetively. Linear independene implies a�ne independene,but the onverse is not true.De�nition 2.3 (Polytope and polyhedron). A polyhedron P ⊆ Rn is the set ofpoints that satisfy a �nite number of linear inequalities; that is, P = {x ∈ Rn : Ax ≤
b}, where (A, b) is an m × (n + 1) matrix. A polyhedron is bounded if there existsan α ∈ R1

+ suh that P ⊆ {x ∈ Rn : −α ≤ xj ≤ α for j = 1, . . . , n}. A boundedpolyhedron is alled a polytope.De�nition 2.4 (Ray). Let P 0 = {r ∈ Rn : Ar ≤ 0}. If P = {x ∈ Rn : Ax ≤ b} 6= ∅,then r ∈ P 0 \ {0} is alled a ray of P .De�nition 2.5 (Extreme point and extreme ray). x ∈ P is an extreme pointof P if there do not exist x1, x2 ∈ P , x1 6= x2, suh that x = 1
2x1 + 1

2x2. A ray of Pis an extreme ray if there do not exist r1, r2 ∈ P 0, r1 6= λr2 for any λ ∈ R1
+, suhthat r = 1

2r1 + 1
2r2.De�nition 2.6 (Cone). C ∈ Rn is a one if x ∈ C implies λx ∈ C for all λ ∈ Rn

+.A polyhedron has a �nite number of extreme points and extreme rays. Let
V = (v1, v2, . . . , vk) and E = (e1, e2, . . . , el) be the set of extreme points and extremerays, respetively, of the polyhedron P . Then P = conv(V ) + cone(E) and if P is apolytope then P (A, b) = conv(V ).De�nition 2.7 (Dimension of a polyhedron). A polyhedron P is of dimension
k, denoted by dim(P ) = k, if the number of a�nely independent points in P is k+1.A polyhedron P ⊆ Rn is full-dimensional if dim(P ) = n.Proposition 2.1 (Pro.2.1 hapter I.4. [12℄). A polyhedron is a onvex set.Proposition 2.2 (Pro.1.2 hapter 1 [19℄). The extreme points of conv(S) all liein S.De�nition 2.8. A polyhedron P ⊆ Rn+p is a formulation for a set S ⊆ Rn × Zp ifand only if S = P ∩ (Rn × Zp). 10



Note that in a formulation of an ILP problem the integrality requirements aredisregarded and only the (in)equalities are onsidered, i.e., we onsider the polyhe-dron de�ned by the (in)equality onstraints. Most integer linear problems an bemathematially formulated in several ways, but not every hoie of formulation isa good one. In an ideal formulation eah extreme point is integer, so if the idealformulation is solved �as the integer optimal solution is at an extreme point� thisyields an optimal integer solution. Propositions (2.1) and (2.2) enable us to replaeThe ILP max{cx : x ∈ S} by the equivalent LP max{cx : x ∈ conv(S)}. The redu-tion of the formulation of the polyhedron P to the ideal formulation conv(S) alsoholds for unbounded integer sets, and mixed integer sets. However, this is in generala theoretial onstrution, beause in most ILP problems an enormous number ofinequalities are needed to desribe conv(S). This makes it very hard and almostimpossible to �nd all suh inequalities for realisti�size real world problems. Butsine S ⊆ conv(S) ⊆ P , for all formulations P , we have the following de�nition:De�nition 2.9 (Strong formulation). Given a set S ⊆ Rn and two formulations
P1 and P2 for S, P1 is a stronger formulation than P2 if P1 ⊆ P2.2.1.3 Bounds on integer linear programming problemThis setion explains how upper and lower bounds to an ILP an be found. Considerthe integer linear programming problem:(ILP) zILP = max

x
{cx : x ∈ S}, S = {x ∈ Zn

+ : Ax ≤ b}, (3)where c is an n-vetor with integral oe�ients and (A, b) is an m× (n + 1) matrixwith integral oe�ients. In an algorithm to solve ILP, �nding a tight bound on
zILP would provide a stopping riterion, sine it an be onsidered as a fundamentalway of proving optimality for a feasible solution to the integer linear programmingproblem. Pratially, this means that any algorithm will �nd an inreasing sequeneof lower bounds: z1 < z2 < . . . < zs and a dereasing sequene of upper bounds:
z1 > z2 > . . . > zt, and stop when zt − zs ≤ ǫ, where ǫ ≥ 0 is suitably hosen foreah ILP.Every feasible solution x ∈ S for (3) provides a lower bound z = cx ≤ zILP . Anupper bound on a maximization integer linear problem an be found by onsideringthe linear programming dual of (3). This is alled dual bound in ontrast to theprimal bound. Let P = {x ∈ Rn

+ : Ax ≤ b}, the polyhedron orresponding to theinteger program (3). Consider the linear program
zLP = max

x
{cx : x ∈ P}. (4)The linear program (4) is alled the linear programming relaxation of (3). The dualof (4) is de�ned as (D) wLP = min
u
{ub : u ∈ PD}, (5)where PD = {u ∈ Rm

+ : uA ≥ c}. It an be easily proven that the integer program(3) and the linear program (5) form a weak dual pair1. A relaxation of (3) must1[Prop. 2.2, Chapter I.2 [12℄℄(weak duality) If x∗ is primal feasible and u∗ is dual feasible,then cx∗ ≤ zLP ≤ wLP ≤ u∗b. 11



be solved to optimality to provide an upper bound on zILP . So we need to de�ne adual problem suh that any dual feasible solution yields an upper bound on zILP . Aweak dual of (3) is any minimization problem(DP) wD = min
u
{zD(u) : u ∈ SD},that satis�es zD(u) ≥ cx for all x ∈ S and all u ∈ SD where SD ⊆ PD. We nowpresent a proposition whose proof is given in Chapter 2 of [19℄.Proposition 2.3. Suppose that (ILP) and (DP) form a weak-dual pair.(i) If (DP) has an unbounded objetive value, then (ILP) is infeasible.(ii) (strong dual) If x∗ ∈ S and u∗ ∈ SD satisfy cx∗ = zD(u∗), then x∗ is optimalfor (ILP) and (u∗) is optimal for (DP).2.2 Computational omplexity and well solved problemsThe purpose of the following disussion on omputational omplexity of integer linearoptimization problems is to provide a better insight in how di�ult it is to �nd anoptimal solution, and what are the properties of the so alled well solved problems.The theory in this setion is mainly adopted from the referenes [12℄ and [19℄.2.2.1 NP-hard problemsOne might imagine an algorithm for solving an optimization problem: max{cx : x ∈

S} where the deision problem:Is there an x ∈ S with value cx ≥ k for k ∈ Z?is replaed by the orresponding optimization problem. Let us all this deisionproblem P . For a problem instane X, the length of the input L = L(X) is thelength of the binary representation of a �standard� representation of the instane.An algorithm A is de�ned to be polynomial for a problem P and an instane Xwith L(X) = l if the running time of algorithm A is proportional to O(lp) for somepositive integer p.De�nition 2.10 (The lasses P an NP). NP is the lass of deision problemswith the property that where there exists a primal solution of value as good as orbetter than k, there is a polynomial proof. P is the lass of deision problems in NPfor whih there exists a polynomial algorithm.De�nition 2.11 (The lass NPC and reduibility). If the problems P,Q ∈ NP,and if an instane of P an be onverted in polynomial time to an instane of Q,then P is polynomial reduible to Q. NPC, the lass of NP-omplete problems, isthe subset of problems P ∈ NP suh that for all P,Q ∈ NP, Q is polynomiallyreduible to P .
P is the lass of easy problems i.e., for whih a polynomial algorithm existsfor solving all instanes of suh problems. A large number of famous optimizationproblems, e.g., the 0-1 knapsak problem, the set overing problem, the integer12



programming problem, belong to the lass NPC. Sine no polynomial algorithmfor problems in NPC is known today, this lass is said to be the lass of �the mostdi�ult� problems. An optimization problem for whih the deision problem lies in
NPC is alled NP-hard. Set overing problem and set paking problem are NP-hard problems. There still remains a question to answer whih is how one an provethat a problem lies in P?We ontinue this setion with de�ning the separation problem and introduingspeial ases where a polynomial algorithm exists for the integer linear programmingproblem. The problems belonging to the lass P are alled well solved problems.2.2.2 Separation problemThe separation problem assoiated with max{cx : x ∈ S} is the problem: Given
x̊ ∈ Rn, does x̊ ∈ conv(S)? If not, �nd an inequality πx ≤ π0, where π ∈ Rnand π0 ∈ R satis�ed by all points x ∈ S, but violated by the point x̊. A lassof optimization problems has the e�ient optimization property if and only if apolynomial algorithm exists for the lass. The e�ient separation property refersto the property that there exists an e�ient algorithm for the separation problemassoiated with the problem lass.If a problem has the e�ient separation property then the expliit desription ofthe orresponding onvex hull is at hand. Therefore, the e�ient optimization andthe e�ient separation problems are equivalent. The family of optimization problems
max{cx : x ∈ conv(S)} is polynomially solvable if and only if the orrespondingfamily of separation problems is polynomially solvable.2.2.3 Integer programming with totally unimodular matriesA starting point in solving ILP is that to answer the question whether there existssome problems with the property that conv(S) = {x ∈ Rn

+ : Ax ≤ b}, i.e., speialases for whih an e�ient algorithm an be found, or when the LP relaxationpossesses an optimal solution whih is integer. The following de�nitions and resultsfrom [12℄ and [19℄ are utilized to answer this question.De�nition 2.12 (Totally unimodular matrix). A matrix A is totally unimodular
(TU) if every square sub-matrix of A has determinant +1,−1 or 0.De�nition 2.13 (Interval matrix). An m×n (0, 1)�matrix A is alled an intervalmatrix if in eah olumn the 1's appear onseutively; that is, if aij = akj = 1 and
k > i + 1, then alj = 1 for all l with i < l < k.Corollary 2.10 on page 544 in [12℄ states that interval matries are (TU).Proposition 2.4 (Integral polyhedron). If A is TU , then P (b) = {x ∈ Rn

+ :
Ax ≤ b} is integral for all b ∈ Zm for whih it is not empty. I.e. P (b) = conv(P (b)∩
Zn).Proof. Consider the linear program with onstraint set Ax+Iy = b, x ∈ Rn

+, y ∈ Rm
+ ,where A is TU and b is integral. From linear programming theory, we know thatthe basi feasible solutions are x = (xB , xN ) where xB = B−1b and xN = 0. Also

(A, I) = (B,N), where B is an invertible m×m sub-matrix of (A, I), alled a basis13



matrix for the linear program. Sine A is TU, B and B−1 are also integral [formPro 2.1 page 540 [12℄℄. Thus B−1b is integral, so the orrespondene between basifeasible solutions and extreme points yields the result.Proposition 2.5. The linear program max{cx : Ax ≤ b, x ∈ Rn
+} has an integralsolution for all integer vetors b for whih it has a �nite optimal value if and only ifA is totally unimodular.By propositions 2.4 and 2.5 we have shown that for S = {x ∈ Zn

+ : Ax ≤ b},and P = {x ∈ Rn
+ : Ax ≤ b}, where A is TU and b is integral, It holds that

S = conv(S) = P . Thus, when A is TU the linear programming relaxation solvesIP. The onverse also holds.2.3 Valid inequalities and faetsA primarily and pratially important problem in solving integer linear programmingproblem is to �nd an equivalent representation of the integer program by a linearprogram that have the same optimal solution. In Setions 2.1.2 and 2.2.2 it is notedthat if an ideal desription of conv(S) is at hand then the integer linear programmingproblem is polynomially solvable. Unfortunately this is not the ase for most of theinteger linear programming problems. Therefore one needs to �nd additional validinequalities for the set S in hope to obtain a stronger formulation for conv(S). Inthis setion, by using integrality and valid inequalities for P , we address onstrutingsuitable valid inequalities for the set S.Consider the general integer program (3), and let P = {x ∈ Rn
+ : Ax ≤ b} sothat S = P ∩ Zn. De�ne the onvexi�ed integer program.(CIP ) max{cx : x ∈ conv(S)}. (6)Theorem 2.1. Given the set S = P ∩ Zn 6= ∅, where P = {x ∈ Rn

+ : Ax ≤ b}, andany c ∈ Rn, it follows that:1. The objetive value of (3) is unbounded from above if and only if the objetivevalue of (6) is unbounded from above.2. If (6) has a bounded optimal value, then it has an optimal solution (namely,an extreme point of conv(S)), that is an optimal solution to (3).3. If x̊ is an optimal solution to (3), then x̊ is an optimal solution to (6).For a proof of this theorem see Chapter I.4.6 in [12℄. This theorem states thatreduing an integer linear program to a linear program amounts to �nd the linearinequalities representative of conv(S). For NP-hard problems, �nding a good de-sription of conv(S) in terms of linear inequalities is a very hard problem. Generally,the strategy one ould take when trying to solve an NP-problem is to �nd e�etiveways to approximate conv(S) for some instanes of that problem. That is to deduethe relevant inequalities from the linear inequality representation of the polyhedron
P and the integrality onstraints on the variables.14



2.3.1 Valid inequalities and faetsIn the polyhedral desription of a integer linear programming problem, it is importantto �nd neessary inequalities and to get rid of redundant inequalities.De�nition 2.14 (Valid inequality). The inequality πx ≤ π0 , denoted as (π, π0),is a valid inequality for a set P ⊆ Rn if πx ≤ π0, for all x ∈ P .Proposition 2.6 (Valid inequality for S). If πx ≤ π0 is valid for S = {x ∈ Zn
+ :

Ax ≤ b}, it is also valid for conv(S).Proof. Consider an x ∈ conv(S). Then x =
∑

j∈J λjx
j , where xj ∈ S for j ∈ J ,∑

j∈J λj = 1, and λj ≥ 0 for j ∈ J . Hene,
πx =

∑

j∈J

λj(πxj) ≤
∑

j∈J

λjπ0 = π0, (7)whih yields the result.De�nition 2.15 (Fae and faet). If πx ≤ π0 is a valid inequality for P and
F = {x ∈ P : πx = π0}, F is alled a fae of P , and we say that (π, π0) represents
F . A fae F of P is said to be proper if F 6= ∅ and F 6= P . A fae F of P is a faetof P if dim(F ) = dim(P ) − 1.Proposition 2.7 (Proposition 4.2 Chapter I.4 [12℄). x is an extreme point of
P if and only if x is a zero-dimensional fae of P .Let P be a full-dimensional polyhedron. Then P = {x ∈ Rn : aix ≤ bi i =
1, . . . ,m}, where eah inequality is unique within a positive multiple, is the uniquedesription of P . These inequalities are neessary to de�ne P : without any of them,
P is not ompletely de�ned. If a valid inequality for P is not a positive multipleof these inequalities, it is redundant and an be removed. Note that an inequality
πx ≤ π0 representative of the faet F is neessary in the desription of P . Moreover,the faets are su�ient for the desription of P .Identifying new lasses of faets and inluding them in the problem desription,help to solve the NP�hard ILP problem more e�iently. This is a strong motivationto look for some tehniques to generate all valid inequalities for an ILP or an MILPproblem. However, �nding faets of the polyhedra de�ned by di�erent integer linearprogramming problems is not an easy task. The determination of families of strongvalid inequalities is more of an art than a formal methodology As a well knowninteger linear programming problem �nding lasses of faets for the set overingproblem and set paking problems has been always of interest. Looking bak tothe lassial literature on these problems, two lasses of faets for the set pakingpolyhedron has been identi�ed in [14℄. In Chapter II.2 of [12℄ the problem struture isused to determine faets for onvex hull of the onstraint sets of some NP�hard ILPproblems. By some examples, it is shown in [14℄ and Chapter II.2 [12℄ that generatingfaets is onsiderably e�etive when solving the NP�hard ILP problems. Studyingknown faets for well known integer linear programming problems an always beused as a guide for �nding lasses of faets for the arising new problems in the �eldof integer programming. The following result from Theorem 3.6 of Chapter I.4 in[12℄, is widely used to determine faets of conv(S).15



Theorem 2.2 (haraterization of faets). Let P be a full-dimensional polyhe-dron and let F =
{
x ∈ P | πT x = π0

} be a proper fae of P (i.e., ∅ 6= F ⊂ P ). Thenthe following two statements are equivalent:1. F is a faet of P .2. If λT x = λ0 for all x ∈ F , then (λ, λ0) = α(π, π0) for some α ∈ R.We obtain valid inequalities for a given set P by taking non-negative linear om-binations of rows of Ax ≤ b. This would give an in�nite family of valid inequalities.Moreover under some tehnial assumptions stated in the theorem below (ChapterII.1, Prop. 1.1 in [12℄), all valid inequalities for P an be obtained this way. Thelinear ombinations an be restrited to using, at most, min(m,n) rows of A.Theorem 2.3. Let πx ≤ π0 be any valid inequality for P = {x ∈ Rn
+ : Ax ≤ b}.Then πx ≤ π0 is either equivalent to or dominated by an inequality of the form

uAx ≤ ub, u ∈ Rm
+ , if and only if P 6= ∅, {u ∈ Rm

+ : uA ≥ π} 6= ∅ and A =
(
A′

I

),where I is an n× n identity matrix and A′ is a (m− n)× n sub-matrix of A.A simple proedure for ombining the rows of the matrix A to obtain valid in-equalities for the set P has been developed by Chvátal and Gomory. The Chvátal�Gomory proedure stated in the next setion is from referenes [12℄ and [19℄.2.3.2 The Chvátal�Gomory proedure to onstrut valid inequalitiesConsider the feasible region S of the general ILP problem. How one an obtainvalid inequalities for S is based on the simple priniple that if a is an integer and
a ≤ b, then a ≤ ⌊b⌋, where ⌊b⌋ is the largest integer less than or equal to b. Let
X = {y ∈ Z1 : y ≤ b}; then the inequality y ≤ ⌊b⌋ is valid for X.The Chvátal�Gomory proedure: For the set S = {x ∈ Zn

+ : Ax ≤ b},where A = (a1, a2, . . . , an) and N = {1, . . . , n} it holds thati. The inequality ∑
j∈N uajxj ≤ ub is valid for P for all u ≥ 0 sine ∑

j∈N ajxj ≤ b,ii. The inequality ∑
j∈N⌊uaj⌋xj ≤ ub is valid for P for all u ≥ 0,iii. The inequality ∑

j∈N⌊uaj⌋xj ≤ ⌊ub⌋ is valid for S whenever x is integer, andthus ∑
j∈N⌊uaj⌋xj is integer.The valid inequality in iii an be added to the linear system Ax ≤ b, and thenthe Chvátal�Gomory proedure an be repeated to the original set of inequalities orthe system with new inequalities. Note that it is su�ient to ombine at most ninequalities. This general proedure is alled the Chvátal�Gomory (CG) roundingmethod, and the inequalities it produes are alled CG inequalities. It an be provedthat by applying the Chvátal�Gomory (CG) proedure a �nite number of times allof the valid inequalities for S an be generated (Chapter 8, Theorem 8.4 in [19℄).Note that non-dominated CG-uts only arise for u ∈ [0, 1)m provided that (A, b) isintegral (Chapter II.2 of [12℄).2.3.3 Software for �nding faets by projetionIn Setion 2.2.2 it is stated that if a omplete desription of the polyhedron de�ningthe ILP problem is at hand, then a polynomial algorithm whih solves the ILP16



exists. So, we may ask if is it possible to �nd all the faets of the polyhedronde�ning ILP. Porta and Polymake ([16℄) are two omputer software designed foranalyzing polytopes and polyhedra; both are apable of generating all faets forsmall instanes of ILP. These two software �nd faets based on a projetion methodwhih is desribed very brie�y here.In integer programming it is in priniple possible to �nd all the feasible solutions ifthe polyhedron de�ning the problem is bounded. De�ne P (A, b) = {x ∈ Rn : Ax ≤
b} where A ∈ Rm×n and b ∈ Rm to be a polytope. If F = (f1, f2, . . . , fM) is the setof integral feasible solutions inside the polytope P (A, b) then conv(P (A, b) ∩ Zn) =
conv(F ). The set of all the integer feasible solutions in P (A, b) an be utilized to�nd the faets de�ning the onvex hull of P (A, b) ∩Zn. Every x ∈ P (A, b) ∩Zn anbe de�ned by

M∑

i=1

λifi = x, ∀x ∈ P (A, b) ∩ Zn, (8a)where M∑

i=1

λi, = 1, λi ≥ 0, i = 1, . . . ,M, (8b)for some λi ∈ R1
+, i = 1, . . . ,M . The idea is to eliminate the variables λi, toyield a system of equations ontaining only x. At the start we projet the setde�ned by inequalities (8) on the plane de�ned by λ1 = 0 and obtain a system ofinequalities whih does not ontain λ1. The projetion is done by the Fourier-Motzkinelimination proedure ([8℄). By iteratively projeting out the variables λ1, . . . , λM ,we obtain a system of inequalities ontaining the variable x and whih are faetsto the onvex hull of P (A, b) ∩ Zn. A big disadvantage with the Fourier�Motzkinmethod is that its omputational omplexity is exponential. (For more details, see[16℄.) Hene, even for small size instanes this approah to �nd faets an be verytime onsuming. However, studying the faets of small instanes of an ILP may helpto an understanding of the faial struture for that lass of problems.2.4 Chvátal�Gomory uts and the separation problemIn Setion 2.3.2 we have presented the Chvátal�Gomory proedure to obtain validinequalities (CG-uts) for the feasible set of the ILP problem. Also, the separationproblem is de�ned in Setion 2.2.2. In this setion we disuss some further de�nitionsand notions of the Chvátal�Gomory separation problem. This setion is divided intotwo major parts. In the beginning we give the de�nition of the �rst Chvátal losureand then present the rank-1 separation problem. The remainder of this setiondisusses the projeted uts for the mixed integer linear programming problems.The refrenes [7℄ and [4℄ are mainly used for this setion.Assume P = {x ∈ Rn

+ : Ax ≤ b} where A is an m × n integer matrix, and ban m-dimensional integer vetor. Let PI = conv(S) with S = P ∩ Zn and assume
PI 6= P . As de�ned in Setion 2.3.2, a CG ut is a valid inequality for PI of the form
⌊u′A⌋x ≤ ⌊u′b⌋, where u ∈ Rm

+ . The vetor u is alled the CG multiplier vetor.Note that CG-uts depend on P and not diretly on PI , i.e. di�erent formulationsof the same problem an produe di�erent CG-uts. The rank-1 losure or the �rstChvátal Closure of P is de�ned as:
P1 = {x ∈ P : ⌊u′A⌋x ≤ ⌊u′b⌋, for all u ∈ [0, 1)m}. (9)17



We de�ne a {0, 1/2}�CG-ut as a CG-ut with multipliers u′ ∈ {0, 1/2}m and de�ne
P1/2 the polyhedron obtained by interseting P with the half-spaes indued by all
{0, 1/2}�CG-uts, i.e:

P1/2 =
{
x ∈ P : ⌊u′A⌋x ≤ ⌊u′b⌋, for all u ∈ {0,

1

2
}m

}
. (10)Notie that P1/2 is a funtion of A and b. Clearly, PI ⊆ P1 ⊆ P1/2 ⊆ P . Although

P1 = P holds if and only if P = PI , one an have P1/2 = P even if P 6= PI . Thisase ours, e.g., when 1
2b ∈ Zm. Therefore, P1 ⊂ P in ase P 6= PI , i.e., P1 gives abetter approximation of PI than P . In some ases, P1 = P1/2 = P as, e.g, when Pis the solution set for the mathing problem ([5℄).2.4.1 Chvátal-Gomory separation problemBeause of the well-known equivalene between optimization and separation, wewill address the CG separation problem in whih we are given any point x∗ ∈ Rnand searh for a hyperplane separating x∗ from P1, if any exists. Without loss ofgenerality assume that this x∗ lies in P . Therefore the separation problem is thefollowing.De�nition 2.16 (CG-SEP). Given any point x∗ ∈ P �nd a CG ut that is violatedby x∗, i.e., �nd u ∈ Rm

+ suh that ⌊u′A⌋x∗ > ⌊u′b⌋, or prove that no suh u exists.If, in addition to the assumption in the de�nition of CG-SEP, u ∈ {0, 1
2}, thenthe separation problem is alled {0, 1

2}-SEP. It seems neessary to remind that theavailability of a polynomial-time algorithm for CG-SEP would allow to optimize inpolynomial time, a linear objetive funtion over P1 or P1/2. {0, 1
2}-SEP is equivalentto �nding the minimum-weight member of a binary lutter (see [5℄), whih is an NP-hard problem, implying that {0, 1

2}-SEP is NP-omplete [5℄. There exist, however,speial ases where {0, 1
2}-SEP is polynomially solvable. {0, 1

2}-SEP an be solvedin polynomial time if ĀT is an edge-path inidene matrix of a tree(EPT matrix)2or if Ā =
(

M
I

), and M is an EPT matrix ([5℄).In general CG-SEP is NP-hard, so optimizing over P1 is also NP-hard. Herewe are interested in optimizing the objetive vetor c′x over the polyhedron P1 inorder to get a hopefully tight lower bound on the optimal value of the original integerlinear programming problem.2.4.2 Projeted Chvátal-Gomory uts for mixed integer linear programsSuppose we are given a mixed-integer problem with the feasible region:
T = {x ∈ Rp

+, y ∈ Zn
+ : Ax + Gy ≤ b},where A and G are m × n and m × p rational matries, respetively and, b is an

m-vetor. One should onsider that the CG-proedure does not work when thereare ontinuous variables, in partiular, we an not round down the right-hand sideof an inequality to its integer part even when all of the oe�ients on the left-hand2A p × q {0, 1}-matrix A is an EPT-matrix if there is a tree T with p + 1 nodes suh that eaholumn of A is the harateristi vetor of the edges of a path in T .18



side are integers. However, we an obtain a proedure, related to the disjuntiveproedure, that generalizes the CG-proedure and generates valid inequalities for
T ([12℄). These uts are alled Gomory Mixed Integer (GMI) uts (also known asMIR uts and split uts). Although it is easy to �nd a GMI ut that separatesan integer infeasible basi solution of the linear programming relaxation, separatingother points by GMI uts is NP-hard ([4℄).Consider the Mixed Integer Linear Program MILP de�ned in the region T as

min{c′x + h′y : Ax + Gy ≤ b, x ∈ Rp
+, y ∈ Zn

+},where c ∈ Rp and h ∈ Rn. Also onsider the following two polyhedra in the (x, y)-spae
PXY = {(x, y) ∈ Rn

+ ×Rp
+ : Ax + Gy ≤ b}; (11)

PXY
I = conv({(x, y) ∈ P (x, y) : y integral}). (12)Our aim here is to projet �rst the linear programming relaxation of the MILP athand onto the spae of the integer variables y, and then to derive CG-uts for theprojeted polyhedron. For this purpose, we de�ne the projetion of PXY onto thespae of the y variables as

P Y = {y ∈ Rp
+ : ∃ x ∈ Rn

+ s.t. Ax + Gy ≤ b}

= {y ∈ Rp
+ : ukGy ≤ ukb, k = 1, . . . ,K}

= {y ∈ Rp
+ : Ḡy ≤ b̄},where u1, . . . , uK are the extreme rays of the projetion one {u ∈ Rm

+ : u′A ≥ 0′},
Ḡ = ukG and b̄ = ukb.The projeted Chvtátal-Gomory (pro-CG) an be obtained from the system Ḡy ≤
b̄, y ≥ 0, i.e., ⌊w′Ḡ⌋y ≤ ⌊w′b̄⌋ for some w ≥ 0. Note that any row of Ḡy ≤ b̄ is alinear ombination of the rows of Gy ≤ b with multipliers ū ≥ 0 where ūA ≥ 0.Therefore a pro-CG ut an equivalently and diretly be de�ned as an inequality ofthe form

⌊u′G⌋y ≤ ⌊u′b⌋ for any u ≥ 0 suh that u′A ≥ 0′. (13)Denote the rank-1 Chvátal losure of P Y by P Y
1 and the onvex hull of P Y ∩ Zn by

P Y
I .In Chapter 5 we model and solve the rank-1 separation problem for the oppor-tunisti replaement problem. We also generate pro-CG uts for the opportunistireplaement problem de�ned in Chapter 3.2.5 Benders deomposition proedure for mixed-variable program-ming problemsThe deomposition method refers to an algorithm whih partitions the variables ofan optimization problem into two subsets. The �rst step of the Benders algorithmonsist of �xing a ertain amount of variables in our original ILP problem, herebymaking the resulting sub-problem easy to solve. The essene of Benders deompo-sition lies in determining whih variables to �x, suh as to simplify the resulting19



sub-problem. This deision will often require spei� knowledge of the problem athand as well as known ways to solve similar problems quikly.This setion is divided into two parts, �rst we present the theoretial develop-ments that leads to the deomposition. It is followed by the Benders algorithm.2.5.1 An equivalent representation of mixed integer programing prob-lemsConsider the general mixed integer programming problem de�ned byminimize c′x + d′y, (14a)s.t. Ax + Fy ≥ b, (14b)
x ≥ 0, y ∈ S, (14)where A and F are m× n- and m× p- matries, respetively, x and c are n-vetors,

d and y are p-vetors. S is a nonempty and bounded subset of Zn. Here, the xvariables are ontinuous and y disrete. Exept for the integrality requirements on
y, the model (14) has a linear programming format. Benders method deomposesthis model in suh a way that it an be solved as an alternating sequene of linearprograms and pure integer programs.Assume that the vetor y is �xed to some spei� value. For this vetor to befeasible, it must lie in the set

R = {y ∈ S | ∃x ≥ 0 suh that Ax ≥ b− Fy}. (15)We assume that the set R is nonempty, otherwise the original problem (14) is infea-sible. We an rewrite the problem (14) as that tominimize
y∈R

{
d′y + min{c′x | Ax ≥ b− Fy, x ≥ 0}

}
. (16)When the value of y is �xed, the minimization subproblem of (16) is a linear pro-gramming problem in the variables x and we formulate the linear programming dualof this subproblem. By the fundamental theorem of duality in linear programming(Theorem 6.1, page 267, [3℄) it holds thatmin

x
{c′x | Ax ≥ b− Fy, x ≥ 0} = max

u
{(b− Fy)u′ | A′u ≤ c, u ≥ 0}, (17)whih states that if the primal and dual problems are feasible they possess �niteoptimal solutions with equal objetive values. This lets us formulate a new equivalentproblem to (14) as that tominimize

y∈R

{
d′y + max{(b− Fy)′u | A′u ≤ c, u ≥ 0

}
. (18)Followed from the fat that an optimum solution to the maximization subproblemof (18), (i.e., the right problem in (17)) must be at one of the extreme points of itsfeasible region, a di�erent approah an be taken to solve it. Consider the polyhedron

P de�ned by the onstraint set of the dual problem; P = {u ∈ Rm | A′u ≤ c, u ≥ 0}.Assume that P is nonempty; otherwise, the dual problem is infeasible whih impliesthat (14) is unbounded. The optimum of the maximization subproblem is at an20



extreme point of P or approahes +∞ along an extreme ray. If the dual is unboundedthen, by the duality theorem (see [3℄), the orresponding primal problem and �asa result� the original problem (14) is infeasible. But we assume that R 6= ∅, so thepolyhedron P is bounded and the number of extreme points is �nite, so we only needto hek the extreme points to �nd the maximum (P unbounded ⇐⇒ (14) infeasible
⇐⇒ R 6= ∅). Let up

i , i = 1, . . . , np be the extreme points of P . Then the problem(18) an be rewritten asminimize
y∈R

{
d′y + max

1≤i≤np

(b− Fy)′up
i

}
, (19)whih is equivalent tominimize z (20a)subjet to z ≥ d′y + (b− Fy)′up

i , i = 1, . . . , np, (20b)
y ∈ R. (20)In the model (20), there is one onstraint for eah extreme point of P .Applying the Farkas lemma (Lemma 5.1, Se.5.3, [3℄) to the linear equality system

Ax− s = b−Fy with x ≥ 0, s ≥ 0, where y ∈ R is �xed, yields that y is feasible for(14) if and only if
(b− Fy)′u ≤ 0 (21)for all u ∈ P0 = {u ∈ Rm | A′u ≤ 0, u ≥ 0}. The one P0 is a polyhedron; thereforeeah vetor u ∈ P0 an be written as a onvex ombination of the generators ur

i ,
i = 1, . . . , n (i.e., extreme rays of P0). Eah u ∈ P0 an then be expressed as

u =
nr∑

i=1

λiu
r
i , where λi ≥ 0, i = 1, . . . , nr. (22)By substituting (22) in (21) we have that ∑nr

i=1 λi(b − Fy)′ur
i ≤ 0 whih holds forall λi ≥ 0 if and only if

(b− Fy)′ur
i ≤ 0, i = 1, . . . , nr. (23)Therefore, the vetor y ∈ S is feasible for (14) if and only if (22) holds. Hene theset R an be written as

R = {y ∈ S | (b− Fy)′ur
i ≤ 0, i = 1, . . . , nr, }. (24)Using this expliit de�nition of R we obtain a new formulation of (14) given byminimize z (25a)subjet to z ≥ d′y + (b− Fy)′up

i , i = 1, . . . , np, (25b)
0 ≥ (b− Fy)′ur

i , i = 1, . . . , nr, (25)
y ∈ S. (25d)The problem (25) is often referred to as the �omplete master problem� of Bendersdeomposition algorithm. In the model (25) there are integer variables y and onereal variable z. Theorem 1 on page 374 in [11℄ summarizes the previous statements.21



Theorem 2.4 (Equivalene of (25) and (14)).a. (25) has a feasible solution ⇐⇒ (14) has a feasible solution.b. (25) is feasible without having an optimal solution ⇐⇒ (14) is feasible withouthaving an optimal solution.. If (̊z, ẙ) solves (25) and x̊ solves the linear program tominimize c′x (26a)subjet to Ax ≥ b− F ẙ, x ≥ 0. (26b)then (̊x, ẙ) solves (14) and z̊ = c′x̊ + d′ẙd. If (̊x, ẙ) solves (14) and z̊ = c′x̊ + d′ẙ, then (̊z, ẙ) solves (25).2.5.2 Benders algorithmTheorem 2.4 states that for obtaining the optimal solution to the original model(14), one needs to solve (25) to �nd the solution (̊z, ẙ) and then obtain the optimalvalue x̊ by solving the primal problem in (17) with y = ẙ. The new model (25) annot be pratially solved beause its formulation requires that all extreme points andextreme rays of (25) are identi�ed. The number of extreme points and extreme raysan be onsiderably large even for small dimension problems. Sine only a smallnumber of onstraints will be binding at the optimal solution, (25) an be relaxedto a problem with no or few onstraints. De�ne the new modi�ed problem (therestrited master problem)minimize z (27a)subjet to z ≥ d′y + (b− Fy)′up
i , i ∈ I1, (27b)

0 ≥ (b− Fy)′ur
i , i ∈ I2, (27)

y ∈ S. (27d)where I1 and I2 are proper subsets of the sets {1, . . . , np} and {1, . . . , nr}, respe-tively. Let G, G′ be the set of all (z, y) satis�ed by the onstraints (25a)�(25d) and(27b)�(27d) respetively. Then G ⊆ G′. Benders algorithm begin with solving theproblem (27). If the solution satis�es the remaining onstraints in (25a) and (25d),the solution is also optimal to (25), i.e., it lies in G. If not, at least one onstraintin (25) is not satis�ed. The linear programming problem or its dual in (17) is thensolved to �nd a new extreme point up
i or an extreme ray ur

i . This solution is used tode�ne a new onstraint whih will be added to (27b) or (27).The maximization dual problem is solved in eah step of Benders method, soit is of importane to note the onditions where it is unbounded or has no feasiblesolution. The feasible region P of the dual problem is independent of the variable y.If the dual problem has no feasible solution, the primal problem is either infeasibleor unbounded for all y ∈ R whih yields that (14) is unbounded or infeasible. Thisase is not interesting for pratial problems so we assume that the dual problem in(17) possesses feasible solutions. If the dual problem has an unbounded solution forsome y ∈ S, the primal is then infeasible for that y and the simplex method loatesan extreme ray. This ase may frequently happen and should be onsidered in the22



algorithm by adding a new onstraint to (27) with the new obtained extreme ray.Now we state the general Benders method in details.Let (27) have a �nite optimal solution (̊z, ẙ). The solution is optimal to (25) ifand only if it holds that
(b− F ẙ)′up

i ≤ z̊ − d′ẙ, i = 1, . . . , np, (28a)
(b− F ẙ)′ur

i ≤ 0, i = 1, . . . , nr. (28b)We intend to �nd the most unsatis�ed onstraint in (28a) or (28b). The mostunsatis�ed onstraint of (28a) is given byarg max
1≤i≤np

(b− F ẙ)′up
i ≤ z̊ − d′ẙ. (29)Sine the linear funtion (b − F ẙ)′u attains a �nite maximum over P at an ex-treme point of P , the onstraint (29) an be obtained by solving the linear program

max
{
(b−F ẙ)′u | u ∈ P

}, whih is the dual problem in (17) with y = ẙ. This problemhas either a �nite optimal solution or an unbounded solution. In the unboundnessase the objetive value approahes +∞ along the half line, up
i + λur

i , λ ≥ 0 and
(b − F ẙ)′ur

i > 0 for some i ∈ {1, . . . , nr}. This implies that one of the onstraints(28b) is violated. Thus both sets of onstraints (28a) and (28b) are satis�ed if andonly if it holds thatmax
u
{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} ≤ z̊ − d′ẙ. (30)If some of the onstraints (28a) and (28b) are not satis�ed, then it holds thatmax

u
{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} > z̊ − d′ẙ. (31)Consider the problem (27) with few or no onstraints. If (27) is infeasible so are(25) and (14). Let (̊z, ẙ) be �nite optimal solution of the problem (27). If (27)has an unbounded solution let z̊ = −∞ and ẙ be any vetor in S. If the solutionto the maximization linear dual problem in (17) is bounded it is obtained at anextreme point of P , say ů, then (b−F ẙ)′ů > z̊− d′ẙ. This onstraint is not satis�edby the solution to the urrent problem (27), therefore we add the onstraint z ≥

(b− F ẙ)′ů + d′y to the urrent problem whih yields a new (27). In the ase wherethe solution of the linear dual program (17) leads to unboundness, an extreme ray of
P , v̊ is found, where v̊ satisfy (b − F ẙ)′̊v > 0, but ẙ does not satisfy the onstraint
0 ≥ (b − Fy)′̊v. Thus, this onstraint is added to (27). The problem (27) is solvedagain with the new onstraint, a new solution x̊ is obtained by solving the primalproblem in (17) with y = ẙ. Now the optimality of the solution to (27) should beheked. An optimality test an be obtained diretly from (30), aording to thefollowing theorem.Theorem 2.5 (Optimality test(Theorem 2 Se.7.3 [11℄)). (̊z, ẙ) is optimal for (25)if and only if

max{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} = z̊ − d′ẙ. (32)Theorem 2.6 (Finite onvergene(Theorem 3 Se.7.3 [11℄)). Benders iterativeproedure will terminate in a �nite number of iterations, either with the informationthat (14) is infeasible or unbounded, or with an optimal solution to (14).23



Proof. The program (25) has a �nite number of onstraints. If the optimality testis not passed, then one or more new onstraints are added to the program (27).Thus, in a �nite number of iterations either the optimality test is passed or a fullset of onstraints will be obtained. The program (14) is infeasible if and only if theprogram (27) is infeasible. The program (14) is unbounded if and only if the duallinear program is infeasible, whih will be deteted in the �rst step.In Chapter 4 some speial properties of the opportunisti replaement problemwill be deteted whih will be essential in solving it using Benders deompositionmethod. Then Benders algorithm adopted to our problem will be presented.In the following hapter we introdue the opportunisti replaement problem.
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3 The opportunisti replaement problemThis hapter is dediated to de�ning the opportunisti replaement model and thestudy of some of its mathematial properties. In Setion 3.1 a mathematial modelfor determining an optimal opportunisti replaement shedule when omponent livesare deterministi is introdued. The opportunisti replaement problem is modeledas an integer linear programming problem. This basi opportunisti replaementproblem is NP-hard. In Setion 3.2 it is stated that the onvex hull of the set offeasible replaement shedules is full�dimensional. When the maintenane oasionsare �xed, the remaining problem an be stated as a linear program for the ase whenthe maintenane osts are monotone with time, this linear program an be solvedby a greedy proedure. Furthermore, all the inequalities that are neessary in thede�nition of the problem are faet-induing (Setion 3.3). At the end of this haptersome faets of the polyhedron de�ning the opportunisti replaement problem whihhas been developed in [13℄ is brie�y presented. The referenes used in this hapterare [18℄, [17℄ and [13℄.3.1 The opportunisti replaement modelIn this setion we introdue an optimization model for determining an optimal main-tenane shedule when the problem data is deterministi. Consider a set N of om-ponents; with |N | = N . Consider also a set T = {1, . . . , T} of times, with T ≥ 2.
T is onsidered as the time horizon for the maintenane planning. Eah omponent
i ∈ N has a �xed life of Ti. Without loss of generality we an assume that for all
i ∈ N , Ti ≥ 2 holds, otherwise replaement of omponent i is neessary at eah timestep. Also Ti ≤ T , i ∈ N , i.e., eah omponent needs at least one replaement duringthe time horizon. The purhase ost at time t ∈ T for omponent i is cit > 0. Thereis a �xed ost of dt > 0 assoiated with performing maintenane for any omponent
i at time t, independent of the number of parts replaed. For any given omponent
i ∈ N in the system, {l + 1, . . . , l + Ti} orresponds to a window of Ti time steps,starting at time step l + 1, in whih omponent i must be replaed.The objetive is to minimize the total ost for having a funtional system withoutfailure between times 1 and T , i.e., for eah omponent i ∈ N , no period withoutreplaement longer than the omponent's life Ti may exist. The model onsiders theost of maintenane oasions and minimizes the maintenane osts. We de�ne thedeision variables

zt =

{
1, if maintenane shall our at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if omponent i shall be replaed at time t,

0, otherwise, i ∈ N , t ∈ T ,The opportunisti replaement problem is de�ned as to
minimize

(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtzt

)
, (33a)

subject to

l+Ti∑

t=l+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (33b)25



xit ≤ zt, t ∈ T , i ∈ N , (33)
xit ≥ 0, t ∈ T , i ∈ N , (33d)
zt ≤ 1, t ∈ T , (33e)

xit ∈ {0, 1}, t ∈ T , i ∈ N , (33f)
zt ∈ {0, 1}, t ∈ T . (33g)The onstraints (33b) state that for all i ∈ N and in any time window of length Ti,the omponent i must be replaed at least one. The onstraints (33) ensure thatif omponent i is replaed at time t a maintenane oasion ours, whih enforesthe payment of the �xed maintenane ost dt. When this ost is paid it leads to noextra maintenane osts. The onstraints (33d)�(33g) de�ne the restritions on thevariables xit and zt for all i ∈ N and t ∈ T . If the onstraints (33f) and (33g) areremoved, a so alled LP relaxation of the problem is obtained.3.2 Complexity analysis and speial propertiesAording to integer programming literature the set overing problem is onsideredto be an NP-hard problem. In [18℄, Theorem 1, it is proved that the set overingproblem is polynomially reduible to the opportunisti replaement problem. Thisleads to the onlusion that the opportunisti replaement problem is NP-hard.However when �xing the values of some of the variables (e.g., z variables) in themodel (33), the resulting subproblem turns out to possesses �nier� properties. Inthis setion some speial properties of the opportunisti replaement problem (33) ispresented.Consider the polyhedron in RN×T de�ned by (33b)�(33d) when zt, t ∈ T are�xed to binary values . Let z̃t ∈ {0, 1}, t ∈ T and de�ne T̃ = {t ∈ T |z̃t = 1}. Thefollowing proposition is stablished in [18℄.Proposition 3.1 (integrally polyhedron). The polyhedron de�ned by (33b), (33d),and
xit ≤ 1, t ∈ T̃ , (34a)
xit ≤ 0, t ∈ T \ T̃ , (34b)for i ∈ N , is integral.Proof. The onstraint matrix A orresponding to the system of inequalities given by(33b) and (34) is an interval matrix (see De�nition 2.13). Hene AT is an intervalmatrix and hene TU (see Setion 2.2.3). Proposition 2.1. on page 540 in [12℄ statesthat the transpose matrix of a TU matrix is TU . Thus the onstraint matrix Ais TU . Sine the right-hand sides of (33b) and (34) are all integral it follows fromProposition 2.4 that the orresponding polyhedral is integral.A diret result of Proposition 3.1 is that the binary requirements (33f) on thevariables xit an be relaxed, provided that the opportunisti replaement model isto be solved using an algorithm that detets extreme optimal solutions to the linearprogramming subproblems.A speial instane of the model (33) ours when the osts are monotonous withtime, i.e., osts are non-inreasing (ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t) or26



non-dereasing (ci,t+1 ≥ cit and dt+1 ≥ dt for all i and t) with time. For these asesinteresting speial properties of the optimal solutions an be proven.Letting the variables zt, t ∈ T , be assigned binary values, z̃t ∈ {0, 1}, the remain-ing optimization model separates over the omponents i ∈ N and the orrespondingonstraint matrix is TU. Thus for every omponent i ∈ N the linear programmingsubproblem is given byminimize
xi

∑

t∈T

citxit, (35a)
l+Ti∑

t=l+1

xit ≥ 1, l = 0, . . . , T − Ti, (35b)
0 ≤ xit ≤ z̃t, t ∈ T . (35)Assume without loss of generality that for eah i ∈ N , the osts cit and dt for all

t ∈ T are non-inreasing with time. We laim that Algorithm 1, based on a greedyrule, yields an optimal solution to the linear program (35). In Algorithm 1, from[17℄, omponent i is replaed as late as possible within its life and among the times
t ∈ T̃ . Algorithm 1 is followed by a proposition, stated in [17℄, whih proves thatthe non-inreasing greedy rule yields the optimum to the subproblem (35).Algorithm 1 (Non-inreasing ost greedy rule for omponent i ∈ N )
T̃ ← {t ∈ T | z̃t = 1} ∪ {T + 1};
x̃it ← 0 ∀t ∈ T ; t̃← min{t | t ∈ T̃ }; s← 0; T̃ ← T̃ \ {t̃};while T̃ 6= ∅ do

t̂← min{t | t ∈ T̃ };if Ti < t̂− s then
x̃it̃ ← 1; s← t̃;end if

t̃← t̂; T̃ ← T̃ \ {t̃};end whileReturn x̃it, t ∈ T .Proposition 3.2 (Non-inreasing greedy rule yields optimum). Assume that
ci,t+1 ≤ cit holds, i ∈ N , t ∈ T \{T}. Let z̃t ∈ {0, 1}, t ∈ T , and assume that the set
T̃ = {t ∈ T | z̃t = 1} is suh that for eah t ∈ T̃ ∪ {0} there is an s ∈ T̃ ∪ {T + 1}with 1 ≤ s− t ≤ mini∈N Ti. Then, Algorithm 1 produes an optimal solution to themodel (35).Proof. By assumption, x̃i is feasible in (35). Let x̄i 6= x̃i be feasible in (35). Postpone,where possible, replaements orresponding to x̄i to the next time point in T̃ ∪{T+1}.This will transform x̄i to x̃i without introduing any additional replaements and ata non-inreasing ost. Hene, ∑

t∈T cit(x̃it − x̄it) ≤ 0 holds; the result follows.For the non-dereasing osts an analogous algorithm and result an be obtained.The algorithm and more details is found in [17℄ and [18℄.27



3.3 The replaement polytopeIn this setion properties of the polyhedron de�ned by the opportunisti replaementis stated. A omplete desription of the polytope de�ned the opportunisti replae-ment problem an be ahieved by a �nite set of linear inequalities. From Setions2.1.2 and 2.2.2 it follows that by knowing all the inequalities desribing the onvexhull of the set de�ning the problem, the ILP an be solved as a linear programmingproblem. Unfortunately, for NP-hard problems, there is almost no hope of �ndinga good desription. Still, for given instanes of the opportunisti replaement prob-lem our goal here is to �nd e�etive ways to approximate the onvex hull and toontribute to this desription by studying polyhedral properties and searhing forlasses of faets.Let the set S ⊂ RN×T ×{0, 1}T be de�ned by the values of (x, z) that satisfy theinequalities (33b)�(33e). De�ne the replaement polytope as conv(S). The followingproposition is stated and proven in [18℄.Proposition 3.3 (Dimension of the replaement polytope). If Ti ≥ 2 forall i ∈ N , then the dimension of conv(S) is (N + 1)T , that is, conv(S) is full-dimensional.Proposition 3.4 ( The inequalities (33b)�(33e) de�ne faets of the replae-ment polytope). If Ti ≥ 2 for all i ∈ N , then eah of the inequalities: ∑l+Ti

t=l+1 xit ≥
1, l = 0, . . . , T − Ti, i ∈ N ; xit ≤ zt, i ∈ N , t ∈ T ; xkt ≥ 0, k ∈ N : Tk ≥ 3, t ∈ T ;and zt ≤ 1, t ∈ T , de�ne a faet of conv(S).For proving Proposition 3.4 the Theorem 2.2 an be utilized (see [18℄ or [17℄).The inequalities (33b)�(33e) de�ne faets for conv(S) and they are thus neessaryin the desription of the polyhedron conv(S) but they are not ompletely desribingthe onvex hull of S, i.e., they are not su�ient to de�ne conv(S) ([18℄).3.4 Previous work on faet generation for the opportunisti re-plaement problemThe polyhedron de�ned by the onstraints of the opportunisti replaement problemhas non-integer extreme points; therefore, �nding the hyperplanes whih, in additionto the onstraints of the assoiated linear programming problem, de�ne the onvexhull of integer solutions to the problem is neessary. New lasses of faets has beenfound for the opportunisti replaement problem in [13℄ derived by ombinatorialimpliations and {0, 1/2}-Chvátal-Gomory uts. In this setion we brie�y disussthese lasses of faets.Assume an instane of the opportunisti replaement problem (33) is in hand.Let p, q ∈ N be suh that Tq < Tp. It is shown in [13℄ for s ∈ {1, . . . , l + Tp − Tq}and l ∈ {0, . . . , T − Tp} that the inequality

l+s−1∑

t=l+1

xpt +
∑

t∈{l+s,l+s+Tq}

zt +

l+s+Tq−1∑

t=l+s+1

(xpt + xqt) +

l+Tp∑

t=l+s+Tq+1

xpt ≥ 2, (36)de�nes a faet for conv(S). Some extensions an be done on this inequality. As-sume that p and l are �xed and let m inequalities of the form (36) be given as28



∑
i∈N

∑
t∈T λ

(k)
it xit +

∑
t∈T µ

(k)
t zt ≥ ρ(k) for k = 1, . . . ,m, where λ

(k)
it and µ

(k)
t arethe oe�ients of xit and zt in eah inequality k, and ρ(k) is the right hand sideonstant in inequality k. De�ne a new inequality by

∑

i∈N

∑

t∈T

λitxit +
∑

t∈T

µtzt ≥ ρ, (37)where λit =

m∑

k=1

λ
(k)
it , i ∈ N \ {p}, t ∈ T ,

λpt = min
k
{λ

(k)
it }, t ∈ T ,

µt = max
k
{µ

(k)
t }, t ∈ T ,and ρ = 1 +

m∑

k=1

(
ρ(k) − 1

)
.We now seek to �nd some onditions under whih the inequality (37) is valid, andsome onditions under whih it de�nes a faet. Let τ

(k)
1 = min{t | µ

(k)
t = 1} and

τ
(k)
2 = max{t | µ

(k)
t = 1}. We will assume that these parameters are ordered suhthat: τ

(1)
1 ≤ τ

(2)
1 ≤ . . . ≤ τ

(m)
1 and τ

(1)
2 ≤ τ

(2)
2 ≤ . . . ≤ τ

(m)
2 . The followingproposition from [13℄ states the onditions under whih (37) is faet.Proposition 3.5. An inequality of the form (37), suh that if τ
(k)
1 = τ

(k′)
1 for some

k 6= k′, then τ
(k)
2 6= τ

(k′′)
2 for any k′′ = 1, . . . ,m, k′′ 6= k, is valid. Furthermore, if

τ
(k)
2 = τ

(k+1)
1 , k = 1, . . . ,m− 1, then (37) de�nes a faet for conv(S).Another valid inequality an be obtained from the inequality (37) with onditionsin Proposition 3.5. Assume that we are given the inequality (37) of the form (λ, µ, ρ)with the same omponent p at the window of time {l + 1, . . . , l + Tp}. Also assume

µl+1 = 0, pik a new omponent p′ suh that T ′
p ≥ Tp+1 and l′ ∈ {l+Tp+1−Tp′ , . . . l}.De�ne a new inequality (λ′, µ′, ρ′) by:

∑

it

λ′
itxit +

∑

t

µ′
tzt ≥ ρ′, (38)where λ′

it = λit, i ∈ N \ {p, p′}, t ∈ T , λ′
pt = λpt −X{l+1},

λ′
p′t = X{l′+1,...,l′+T ′

p}\{l+1,l+Tp+1}, µ′
t = µt + X{l+1,l+Tp+1}, ρ′ = ρ + 1 and X is theindiator funtion. If (λ, µ, ρ) de�ned in (37) is a faet of conv(S) then the inequality

(λ′, µ′, ρ′) in (38) de�nes a faet for conv(S).From Setion 2.3.2 we know that by applying the Chvátal-Gomory proedure a�nite number of times all of the valid inequalities for S an be generated. It isknown that iteratively generating mod 2-uts3 gives the onvex hull of bounded inte-ger feasible sets ([9℄). In [13℄ the generation of valid inequalities for the opportunistireplaement problem with Chvátal-Gomory inequalities using only {1/2} as multi-pliers has also been studied. The proedure is to pik an odd number of inequalities3If P = {x ∈ Rn|Ax ≤ b} with A ∈ Zm×n, then a mod-2 is an inequality of the form 1

2
u′Ax ≤

⌊ 1

2
u′b⌋, where ui ∈ {0, 1} for all i = 1, . . . , m and 1

2
u′A ∈ Zn; i.e., u′A ≡ mod 2.29



of the form (33b) that overlap in time, and mix them together with the inequalitiesof the form (33) in the Chvátal-Gomory proedure de�ned in Setion 2.3.2, using 1
2as multipliers to obtain CG-valid inequalities for the replaement polyhedron. Theauthor's onlusion is that the harateristis of when {0, 1

2}-uts beome faets oreven valid inequalities seems very bad to inlude in a omputer program. For produ-ing faets and valid inequalities for our problem stated above a onstraint generationapproah has been implemented, in whih the separation problem is formulated asa shortest path-problem in a spei� graph. Several graphs of reasonable sizes hasbeen onstruted. The faet generation seem to behave niely when the assoiatedgraphs are simple. Graphs orresponding to useful inequalities, however, are notsimple and hene omputationally very hard to generate.
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4 Benders deomposition method applied to the oppor-tunisti replaement problemThis hapter is dediated to the implementation of the Benders deomposition methodadopted to the opportunisti replaement problem.Consider the opportunisti replaement model (33). The variables zt refer to themaintenane oasions at time t ∈ T and xit to the replaement of omponent i ∈ Nat time t. From Proposition 3.1 it is known that the binary requirements on thevariables xit an be relaxed, and if the maintenane oasions are �xed�when theost are monotonous with time� the linear subproblems an be solved by a greedyrule. Therefore it seems natural to �x variables zt, t ∈ T and (to attempt) tosolve the mixed-integer model using an algorithm that detets optimal solutions tolinear programming subproblems and searh among these solutions to obtain �thebest� one, whih is the optimal solution to the opportunisti replaement problem.By this knowledge, we expet Benders deomposition method to be e�ient for theopportunisti replaement problem.In this hapter Benders partitioning method adopted to our problem is disussedand the summary of the algorithm is presented. Some omputational tests and resultsare also presented.4.1 Speial properties of the opportunisti replaement linear dualprogramming problemBefore we desribe the Benders deomposition of the opportunisti replaement prob-lem, we present some of the properties of the dual problem of the linear programmingsubproblems of the opportunisti replaement problem where the maintenane oa-sions are �xed.Consider the opportunisti replaement problem in (33). Let the variables zt,
t ∈ T , in the problem be assigned binary values, z̃t ∈ {0, 1}. Then the remainingoptimization problem separates over eah omponent i ∈ N . Let i ∈ N be �xed.In order to simplify the presentation, we de�ne the sets T̃ = {t ∈ T | z̃t = 1},
Li = {0, . . . , T − Ti}, T il = {l + 1, . . . , l + Ti} for l ∈ Li and for t ∈ T , Lit ={

max{0, t− Ti}, . . . ,min{t− 1, T − Ti}
}, i.e., Lit = {l ∈ Li | t ∈ T il}.The linear programming subproblem for omponent i ∈ N is then to

(P ) minimize
xi

∑

t∈T

citxit, (39a)subjet to ∑

t∈T il

xit ≥ 1, l ∈ Li, (39b)
0 ≤ xit ≤ z̃t, t ∈ T . (39)The linear programming dual problem to the problem (P ) is to

(D) maximize
(vi,ui)

∑

l∈Li

vil −
∑

t∈T

z̃tuit, (40a)subjet to ∑

l∈Lit

vil − uit ≤ cit, t ∈ T , (40b)
vil ≥ 0, ∀i ∈ N , l ∈ Li, (40)31
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Figure 1: The xit oe�ients in the onstraints (39b) in problem (P ) for omponent i withlife Ti = 4 and time horizon T = 10.
uit ≥ 0, ∀i ∈ N , t ∈ T . (40d)Using the de�nitions of T̃ and T il we may rewrite the problem (P ) as that to

(P ′) minimize
xi

∑

t∈eT

citxit, (41a)subjet to ∑

t∈eT ∩T il

xit ≥ 1, l ∈ Li, (41b)
xit ≥ 0, t ∈ T̃ . (41)The problems (P ) and (P ′) are equivalent, sine in (P ) must hold that xit = 0 for

t ∈ T \ T̃ . The linear programming dual of the problem (P ′) is given by
(D′) maximize

vi

∑

l∈Li

vil, (42a)subjet to ∑

l∈Lit

vil ≤ cit, t ∈ T̃ , (42b)
vil ≥ 0, l ∈ Li. (42)Let v′i be feasible in (D′), Let vi = v′i and

uit = max

{
0,

∑

l∈Lit

vil − cit

}
, t ∈ T . (43)Proposition 4.1. If (v′∗i ) is optimal in (D′) then (v̊i, ůi) is optimal in (D) where

v̊i = v′∗i and ůit are given by (43).Proof. Let xi, x′
i, (vi, ui) and v′i be any feasible solution to problems (P ), (P ′), (D)and (D′) respetively. De�ne:

fP (xi) =
∑

t∈T

citxit,32
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fP ′

(x′
i) =

∑

t∈eT

citx
′
it,

fD(vi, ui) =
∑

l∈Li

vil −
∑

t∈T

z̃tuit,

fD′

(v′i) =
∑

l∈Li

v′il.If v′i is feasible in (D′) then (vi, ui) given by (43) is feasible to (D), beause (43)implies that: ∑

l∈Lit

vil − cit ≤ uit, t ∈ T , (45)and uit ≥ 0. Note that from (43) and (42b)
uit = 0, t ∈ T̃ . (46)Assume that x∗

i and x′∗
i are the optimal solutions to the problem (P ) and (P ′),respetively. The equivalene of (P ) and (P ′) yields that fP (x∗

i ) = fP ′

(x′∗
i ). By thestrong duality theorem (Theorem 6.1 Chapter 6 [3℄) the following statement's aretrue:

fP (x∗
i ) = fD(v∗i , u

∗
i ), (47a)

fP ′

(x′∗
i ) = fD′

(v′∗i ), (47b)where (v′∗i ) and (v∗i , u
∗
i ) are optimal solutions to problems (D′) and (D) respetively.The equations (47a) and (47b) then yield that

fD(v∗i , u
∗
i ) = fD′

(v′∗i ). (48)Let (v′∗i ) be the optimal solution obtained by solving (D′) and let (v̊i, ůit) bede�ned by (43). It then holds that:
fD(v̊i, ůi) =

∑

l∈Li

v̊il −
∑

t∈T

z̃tůit =
∑

l∈Li

v̊il −
∑

t∈eT

ůit,33



and by (46),
fD(v̊i, ůi) =

T−Ti∑

l=0

v̊il =

T−Ti∑

l=0

v′
∗
il = fD′

(v′
∗
i ).Hene (v̊i, ůi) is an optimal solution to D.This proposition shows that we an solve the problem (D′) instead of (D). Theproblem (D′) has fewer variables than (D). Now we laim that for ases for whihthe osts are non-inreasing in time (i.e., ci,t+1 ≤ cit and dt+1 ≤ dt for all i ∈ N and

t ∈ T ) (D′) an be solved by a greedy rule.Algorithm 2 solves the problem (D′). For eah �xed omponent i, it startsfrom the last onstraint row in (D′) and the last indexed dual variable (vi,T−Ti
). Itassigns to eah dual variable vil, the most positive (largest) feasible value suh thatthe solution remains feasible. Eah onstraint in (D′) orresponds to a t in T̃ andthe algorithm terminates when all indies's t ∈ T̃ have been investigated.Algorithm 2 (Non-inreasing ost greedy rule for problem (D′), ∀i ∈ N )

A← ∅while
T̃ 6= ∅ do

t̃← max{t | t ∈ T̃ }
B ← Lit̃if B \A 6= ∅ then

l̃← max{l | l ∈ B \ A}
v̊il̃ ← cit̃ −

∑
l∈A∩B v̊il

v̊il ← 0, l ∈ B \
{
A ∪ {l̃}

}end if
T̃ ← T̃ \ {t̃}
A← Bend whileThe next proposition shows that for ci,t+1 ≤ cit, i ∈ N , and zt ∈ {0, 1}, t ∈ T ,Algorithm 2 yields an optimal solution to (D′).Proposition 4.2 (non-inreasing ost greedy algorithm for problem (D′)yields optimum). Assume that cit+1 ≤ cit, for all i ∈ N and for all t ∈ T \ {T}.Assume that z̃t ∈ {0, 1}, t ∈ T , and de�ne the set T̃ = {t ∈ T | z̃t = 1} suh that foreah t ∈ T̃ ∪ {0} and �xed i ∈ N there is an s ∈ T̃ ∪ {T + 1} with 1 ≤ s − t ≤ Ti.Then Algorithm 2 produes an optimal solution to (D′).Proof. Let i be �xed. Consider the primal problem (P ′), the ondition on T̃ impliesthat (P ) has a feasible solution. Aording to Setion 3.2, the solution of (P ′) isobtained by replaing omponent i as late as possible within its life and among thetime points t ∈ T̃ . Assume that x∗

i is an optimal solution to problem (P ′) given byAlgorithm 1. Let T̂i be the set of time points at whih maintenane for omponent
i is performed, that is,

T̂i = {tk ∈ T̃ | x
∗
itk

= 1} for eah omponent i ∈ N . (49)34



Let T̂i be an ordered set, i.e., t1 ≤ t2 ≤ . . . ≤ tk. De�ne:
lk = min{l | l ∈ Litk},

lk = max{l | l ∈ Litk}.Let v̊i be the solution to problem D′ obtained by Algorithm 2. If we an provethat ∑
l∈Li

v̊il =
∑

t∈T citx
∗
it then weak duality implies that v̊i is an optimal solutionto (D′). We build our proof by iteration over the set T̂iInitial Step Take t1 ∈ T̂i. If 0 /∈ Lit1 , then t1 /∈ T i0 = {1, 2, . . . , Ti}, therefore

t1 > Ti; whih violates the primal feasibility. Hene 0 ∈ Lit1 . On the otherhand if 0 ∈ Lit for t > t1 and t ∈ T , then t ∈ T i0. This ontradits the primalgreedy rule; Therefore 0 /∈ Lit for t > t1 and t ∈ T . t1 orresponds to the timewhere the �rst maintenane ours as late as possible in T̃ . Sine 0 ∈ Lit1 and
0 /∈ Lit for t > t1 dual greedy (Algorithm (2)) yields

l1∑

l=0

v̊il = cit1 , by greedy.Sine x∗
it1

= 1 and x∗
it = 0 for t < t1 it holds that

cit1 = cit1x
∗
it1 =

t1∑

t=1

citx
∗
it.Thus for t1 : ∑l1

l=0 v∗il =
∑t1

t=1 citx
∗
it.Iterative Step Assume that the following holds for tk−1

lk−1∑

l=0

v̊il =

tk−1∑

t=1

citx
∗
it.It is obvious that lk−1 + 1 /∈ Litk−1

. If lk−1 + 1 /∈ Litk , then tk /∈ T i,lk−1+1 =

{lk−1 + 1 + 1, . . . , lk−1 + 1 + Ti}. Hene tk > lk−1 + 1 + Ti. It ontraditsthe feasibility of the primal problem. Also if for t ∈ T̃ and t > tk then
lk−1 + 1 ∈ Lit. This implies t ∈ T i,lk−1+1, whih ontradits the primal greedyrule. Sine lk−1 + 1 ∈ Litk and lk−1 + 1 /∈ Lit for t ∈ T̃ and t > tk, dual greedyyields: ∑lk

l=lk
v̊il = citk and v̊il = 0 for l ∈ Litk and l < lk−1 + 1, this impliesthat:

lk∑

lk−1+1

v̊il = citk .Thus:
lk∑

lk−1+1

v̊il +

lk−1∑

l=0

v̊il =

tk−1∑

t=1

citx
∗
it + citk .35



Sine x∗
itk

= 1 and x∗
it = 0 for tk−1 < t < tk we have:

lk∑

l=0

v̊il =

tk∑

t=1

citx
∗
it.Note that ∃k suh that lk = T − Ti, otherwise if for tk ∈ T̂i, T − Ti /∈ Litk then

tk /∈ T i,T−Ti
= {T − Ti + 1, . . . , T}. Therefore tk < T − Ti + 1, whih leads to aninfeasible primal problem. As T̂i is a �nite set, and xit = 0 for t > tk we will �nallyobtain: ∑

l∈Li
v̊il =

∑
t∈T citx

∗
itNote that this proposition on�rms that if omponent i ∈ N is replaed as lateas possible within its life and among the times in T̃ then the solution is optimal.One would ask about the fat that by knowing that problem (P ) with non-inreasing osts an be solved using a greedy rule, whether is it possible to solvethe primal and �nd the optimal dual variables by omplementary slakness theorem(Theorem 6.2 [3℄). The solution to this question is that omplementary slaknesstheorem will not give us more information than we already have. This beome learif we take a better look at the dual problem (D). Let us assume that x∗

it is optimalin (P ). Consider the sets T̃ and T̂i in (49). Note that T̂i ⊆ T̃ for eah i ∈ N .To obtain the orresponding dual solution (v∗i , u
∗
i ) to x∗

i , omplementary slaknessapplied to the problems (P ) and (D) implies
∑

l∈Litk

v∗il = u∗
itk

+ citk , tk ∈ T̂i.The remaining onstraints of the dual problem (D) are:
uit ≥ 0, t ∈ T , (50a)
uit ≥

∑

l∈Lit

vil − cit, t ∈ T \ T̂i. (50b)Equality of the optimal objetive values of problems (D) and (D′) known from (48)implies that u∗
it = 0 for all t ∈ T̃ . To maximize the objetive value in (D), u∗

it shouldbe hosen as small as possible subjet to (50a)�(50b), i.e., should be set equal to themaximum of the right-hand-side values in (50a) or (50b) . This yields the optimaldual solution as follows:
∑

l∈Lit

v∗il = citk , tk ∈ T̂i, (51a)
u∗

it = 0, ∀t ∈ T̃ ,

u∗
it = max

{
0,

∑

l∈Lit

v∗il − cit

}
, ∀t ∈ T \ T̃ , (51b)where v∗il's are yet to be found by solving the problem (D′). In general the proofof Proposition 4.2 an be seen as heking omplementary slakness theorem for x∗

iand v̊i. 36



4.2 An implementation of Benders deomposition method appliedto the opportunisti replaement problemThe opportunisti replaement program in (33) with ontinuous variables xit is tominimize
(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtzt

) (52a)subjet to ∑

t∈T il

xit ≥ 1 , l ∈ Li, i ∈ N , (52b)
0 ≤ xit ≤ zt, i ∈ N , t ∈ T , (52)
zt = {0, 1}, t ∈ T , (52d)where T il = {l+1, . . . , l+Ti} for eah i ∈ N and l ∈ Li. We an rewrite the problem(52) as to minimize c′x + d′z, (53a)s.t. Ax + Bz ≥ b, (53b)

x ≥ 0, z ∈ {0, 1}T, (53)where A and B are m × n and m × p matries with m = N(2T + 1) −
∑N

i=1 Ti,
n = NT and p = T , respetively, x and c are n-vetors, d and z are p-vetors and bis an m-vetor. This representation helps us to ompare problems (52) and (14).Letting z = (z1, z2, . . . , zT ) be �xed to z̃, makes (52) a linear programming prob-lem as to minimize

(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtz̃t

) (54a)subjet to ∑

t∈T il

xit ≥ 1 , l ∈ Li, i ∈ N , (54b)
0 ≤ xit ≤ z̃t, i ∈ N , t ∈ T . (54)The linear dual programming of the problem (54) is tomaximize

(v,u)

∑

i∈N

( ∑

l∈Li

vil −
∑

t∈T

z̃tuit

) (55a)subjet to ∑

l∈Lit

vil − uit ≤ cit, t ∈ T , i ∈ N , (55b)
vil ≥ 0, i ∈ N , l ∈ Li, (55)
uit ≥ 0, i ∈ N , t ∈ T , (55d)where, for all i ∈ N and t ∈ T , Lit = {l ∈ Li | t ∈ T il}.Knowing from Setion 3.2, when the variables zt, t ∈ T , are assigned binaryvalues, the remaining optimization model separates over the omponents i ∈ N .The primal of the subproblem, for zt = z̃t, t ∈ T , is then given by

∑

t∈T

dtz̃t +
∑

i∈N




min
∑

t∈T

citxit,s.t. ∑

t∈T il

xit ≥ 1, l ∈ Li,

0 ≤ xit ≤ z̃t, t ∈ T




. (56)37



We denote the optimal solution to this program by x̃it, i ∈ N , t ∈ T .If zt = 1, maintenane ours at time t and the ost dt is inurred. If zt = 0,then xit = 0 for all i ∈ N and the ost of maintenane is zero. Hene, sine z̃t = 0,
t ∈ T \ T̃ , it follows that x̃it = 0, i ∈ N , t ∈ T \ T̃ , whih yields the simpli�edsubproblem formulation:

∑

t∈eT

dt +
∑

i∈N




min
∑

t∈eT

citxit,s.t. ∑

t∈T il∩eT

xit ≥ 1, l ∈ Li,

0 ≤ xit ≤ 1, t ∈ T̃




. (57)Assuming that cit ≥ 0, i ∈ N , t ∈ T , the onstraints �xit ≤ 1� are unneessary(redundant), aording to the following argument:If x̃it > 1 for some i ∈ N and t ∈ T̃ , the optimal value of the subproblem isalways reduing (or onstant, if cit = 0) with the value of xit. Sine the onstraints�xit ≥ 0� must hold for i ∈ N and t ∈ T , the onstraints �∑t∈T il
xit ≥ 1� will notbe violated (until xit < 1).This leads to the following further simpli�ation of the subproblem formulationas

∑

t∈eT

dt +
∑

i∈N




min
∑

t∈eT

citxit,s.t. ∑

t∈T il∩eT

xit ≥ 1, l ∈ Li,

xit ≥ 0, t ∈ T̃




(58)with the orresponding linear programming dual
∑

t∈eT

dt +
∑

i∈N




max
∑

l∈Li

vil,s.t. ∑

l∈Lit

vil ≤ cit, t ∈ T̃ ,

vil ≥ 0, l ∈ Li




. (59)Note that the subproblems in (58) and (59) are the problems (P ′) and (D′), fromSetion 4.1, respetively. The optimal dual solution (ṽil, ũit) for z̃t = {0, 1} an beobtained by solving problem (55) diretly, or by solving the subproblems in (59) withAlgorithm 2 where ũit is given by (43).The polyhedron P is the set of all (v, u) satisfying (55b)�(55d). The ompletemaster problem an be expressed as that tominimize y (60a)s.t. y ≥
∑

i∈N

∑

l∈Li

vpk

il −
∑

i∈N

∑

t∈T

upk

it zt +
∑

t∈T

dtzt, k ∈ {1, . . . ,K}, (60b)
0 ≥

∑

i∈N

∑

l∈Li

vrm

il −
∑

i∈N

∑

t∈T

urm

it zt, m ∈ {1, . . . ,M}, (60)
zt ∈ {0, 1}, t ∈ T , (60d)
y ∈ R, (60e)38



where (vpk

i , upk

i ) denotes the extreme points of the polyhedron P and (vrm

i , urm

i )denotes the extreme rays of the polyhedron P (see Setion 2.5). K is the numberof extreme points of the polyhedron de�ned by (55b)�(55d). This polyhedron isatually omposed by |N | polyhedra, one for eah i ∈ N , and k and m, respetively,denote one Benders iteration.The inequalities (60b)�(60) are neessary and su�ient for the values z to befeasible, i.e., to admit feasible values of xit in (52b)�(52). In [10℄ there is a sug-gestion that by adding an arti�ial onstraint, bounding the sum of all variables bya large positive number, the polyhedron an be made bounded, so the onstraintsorresponding to the extreme rays an be dropped. However there is an smarter wayto avoid inequalities for extreme rays in our problem. The program (58) is feasibleif and only if




⋃

i∈N





⋃

l∈Li

T il









⋂
T̃ 6= ∅ ⇐⇒ T il ∩ T̃ 6= ∅, l ∈ Li, i ∈ N , (61)whih is in turn equivalent to the onstraints

∑

t∈T il

z̃t ≥ 1, l ∈ Li, i ∈ N (62)to hold. The onstraints (62) an be equivalently expressed as
l+Ti∑

t=l+1

z̃t ≥ 1, l ∈ {0, . . . , T − Ti}, i ∈ N . (63)De�ning T = mini∈N{Ti} the (neessary and) su�ient feasibility uts for the masterproblem (orresponding to the extreme rays of the feasible set of the dual subproblem(59)) are then given by
l+T∑

t=l+1

z̃t ≥ 1, l ∈ {0, . . . , T − T}. (64)Hene, (60) an be dropped as long as the ondition (64) is enfored. Notethat inluding all the onstraints in (64) in (60) ensures the problem (60) to havea bounded feasible set. The feasibility assumption on the opportunisti replaementproblem (33) yields that the problem (60) is also feasible.The Benders partitioning algorithm an be initiated with no onstraints of theform (60b) and the inequalities of the form (64) in the problem (60). i.e., in eahBenders step the problem tominimize y (65a)s.t. y ≥
∑

i∈N

∑

l∈Li

vpk

il −
∑

i∈N

∑

t∈T

upk

it zt +
∑

t∈T

dtzt, k ∈ {1, . . . ,K}, (65b)
l+T∑

t=l+1

z̃t ≥ 1, l ∈ Li, (65)
zt ∈ {0, 1}, t ∈ T , (65d)39



y ∈ R, (65e)is solved, where, the number of onstraints in (65b) is equal to the Benders iterationnumber.Initiate the problem (65) with no onstraints of the form (65b). Let the solutionto the problem (65), be (ỹ, z̃). Now with z being �xed at z̃, the dual problem(55) should be solved to obtain (ṽil, ũit). Sine the primal problem is bounded, theproblem (55) is feasible. Let w̃ be the optimal objetive value of the problem (55)and ỹ the optimal value obtained by solving the problem (65). If w̃ = ỹ−
∑

t∈T dtz̃t,then by the optimality test, the urrent solution is optimal. Otherwise, we form anew onstraint from (ṽil, ũit) of the type (65b) and add it to the problem (65).The summary of the Benders algorithm based on an iterative proedure is givenin Algorithm 3.Algorithm 3 (Benders Algorithm)Step 0 (Initialization): Set ỹ = −∞ and r = 0. Initiate the problem (65) withthe onstraints (65) and (65d).Step 1: Let r = r + 1. Solve the problem (65) to obtain a �nite optimal solution
(z̃r, ỹr).Step 2: Solve the dual linear program (55) with T̃ = {t ∈ T | z̃r

t = 1} to �nd
(ṽr

il, ũ
r
it).Step 3: If the optimal objetive value in step 2 is equal to ỹr −

∑
t∈T dtz̃

r
t , thesolution (ỹr, z̃r) solves (60). If x̃r solves the linear primal problem, then (x̃r, z̃r)solves the orresponding opportunisti replaement problem (33). Stop!Step 4: If the optimality test in step 3 is not passed, then

ỹr <
∑

i∈N

∑

l∈Li

ṽr
il −

∑

i∈N

∑

t∈T

ũr
itz̃

r
t +

∑

t∈T

dtz̃
r
t , (66)holds, so the urrent solution to (65) does not satisfy the onstraint

y ≥
∑

i∈N

∑

l∈Li

ṽr
il −

∑

i∈N

∑

t∈T

ũr
itzt +

∑

tT

dtzt. (67)Add the onstraint (67) to the problem (65) and return to Step 1.Upper and lower bounds: As shown before, in the iterative proedure we willsolve (65), whih is a relaxation of (60) inluding only a subset of its onstraints.Let ỹr be the optimal objetive value to (65) at step r of the Bender's algorithm, i.e.,the number of onstraints (65b) is r in the urrent problem (65). Assume that y∗ isthe optimal objetive value to problem (60), so ỹr is a lower bound on the optimalvalue y∗ of the full master problem and it holds that
ỹr ≤ ỹr+1 ≤ y∗. (68)The upper bound is generated by a sequene of feasible solutions to the originalproblem. To obtain the upper bound, let (ỹr, z̃r) be the solution to (65) at step r. If

x̃r solves the primal problem (54), then (x̃r, z̃r) is feasible to (52), therefore it holds40



that ∑

i∈N

∑

t∈T

citx̃
r
it +

∑

t∈T

dtz̃
r
t ≥ y∗. (69)At eah iteration, lower and upper bounds are omputed. From (68) and (69),at step r it holds that̃

yr ≤ y∗ ≤ min
1≤s≤r

( ∑

i∈N

∑

t∈T

citx̃
s
it +

∑

t∈T

dtz̃
s
t

)
. (70)Hene, we an de�ne the optimality gap at step r.De�nition 4.1. : The optimality gap at step r is de�ned as

min1≤s≤r
∑

t∈T

( ∑
i∈N citx̃

s
it + dtz̃

s
t

)

y∗
− 1.The estimated optimality gap at step r is de�ned as

min1≤s≤r
∑

t∈T

( ∑
i∈N citx̃

s
it + dtz̃

s
t

)

ỹr
− 1.When the upper and lower bounds beome equal, the algorithm terminates withan optimal solution. The hope is that termination will our when r is onsiderablyless than the number of extreme points of the polyhedron de�ning the problem (55).Benders algorithm may also be terminated when the omputation time exeeds aspei� time limit.4.3 Computational experiment and resultsIn this setion we present some numerial tests and their results for an implementa-tion of Benders algorithm applied to some instanes of the opportunisti replaementproblem. The referene MILP solver used is IBM ILOG CPLEX 12.1. Algorithms arewritten in MATLAB R2009b. All numerial experiments are performed on a Linux desk-top operating system with the proessor Pentium(R), Dual-Core E5200 � 2.50GHz.The CPU MHz is 1200.000 and it has a ahe size of 2048 KB.The solvers used for the numerial tests, are introdued as follows. CPLEXMEX isa MEX interfae for the plex allable library whih enables us to use plex fromwithin MATLAB. The CPLEXMEX interfae gives aess to most of the plex interativemode funtionality from within MATLAB. It is intended for solving linear program-ming (LP), mixed integer linear programming (MILP), and other related problems.Cplexlp is a funtion of IBM ILOG CPLEX toolbox in MATLAB whih solves linear pro-gramming problems. Besides, plexmilp is a funtion of IBM ILOG CPLEX toolboxin MATLAB whih is intended to solve mixed integer linear programming problems.For the omputations, di�erent instanes of the opportunisti replaement prob-lem are onsidered. Data desribing these instanes �alled testbed problems� areshown in Table 1. For all testbed problems it is assumed that cit = ci, i ∈ N , t ∈ T ,and dt = d, t ∈ T . Instane 1 in the testbed is a simple small size problem. Instane

2 is a middle sized problem intended to resemble a realisti problem. Instane 3 isa sparse problem in the sense that the omponents lives are short, it is designed toinvestigate the e�ets of a long planning horizon. Instane 4 is a dense problem in41



Table 1: The problems in the testbed. In problem 4, the osts, ci, are randomly hosen from
(0, 1]. instane T N min Ti maxTi d min ci max ci1 10 3 3 5 10 5 72 40 3 3 5 10 5 73 100 4 3 7 10 5 94 60 50 6 55 1 0.0089 1.00005 (HPT) 100 9 15 80 1 0.3613 4.02556 (LPT) 150 10 29 60 1 0.3171 1.54827 500 2 25 40 1 0.1324 0.74518 1000 2 25 40 1 0.1324 0.7451Table 2: Parameter setting when solving testbed problems with plex. Solutions reportedin Table (3). Diretive Value Desriptiontime limit 86400 plex stops after 24 hours and re-turn the urrent solutionnode�le 2 reates a ompressed version ofthe node �le in memorya sense that the feasible solutions ontain many maintenane oasions. The datain instanes 5 and 6 are from real-world problems obtained from Volvo Aero andorresponding to two modules of an airraft engine. Instane 5 orresponds to thedata from a high pressure turbine (HPT) and instane 6 from a low pressure turbine(LPT). Note that the data from real world instanes are saled so that d = 1. In-stanes 7 and 8 are very big sparse problems. All the omputation times are givenin CPU seonds. The testbed problems solved with plex are reported in Table 3.For solving the testbed problems using plex [1℄, the parameter settings reported inTable 2 was used.As the �rst experiment we solve instanes hosen from the testbed, where plexlpis used to solve the LP subproblems. CPLEXMEX is hosen as the solver for the MILPmasterproblem. Then for the same instanes, instead of solving the LP subproblemsby plexlp, the greedy rule, developed in Setion 4.1, is implemented. The resultsare presented in Table 4.Table 4 shows that the time needed to solve a medium size problem (e.g., HPTand LPT instanes) is onsiderably huge, so it seems natural to investigate howmuh of the gap an be losed in 1 minute, 30 minutes and 24 hours for the di�erentinstanes of the problem. Hene, the next experiments are to solve testbed problemsin a time limit of 1 minute (60 CPU seonds), 30 minutes (1800 CPU seonds ) and 24hours (86, 400 CPU seonds). In all these experiments, the estimated optimality gapis de�ned in De�nition 4.1 and eah Benders iteration is onsidered as one iterationand also LP subproblems solved using the greedy algorithm from Setion 4.1. At �rst,42



Table 3: Testbed problems solved with plex. A † denotes that the omputer memory was�lled before the instane of the opportunisti replaement problem was solved to optimality.A * denotes that the problem was not solved to optimality when the time limit is reahed.instane N nodes plex iterations time(s) gap%1 3 0 60 0.0222 02 3 210 5,476 0.4183 03 4 3,272,759 125,312,690 8941.7 04 50 1,943 461,183 125.6857 05 (HPT) 9 115 7,631 1.2449 06 (LPT) 10 1,132 80,185 13.8381 07 2 9,233,344 †122068477 17,505.01 5.648 2 3,508,639 *156343889 86,400.02 10.99
Table 4: Solving the testbed problems by Benders algorithm. The estimated optimality gapis de�ned in De�nition 4.1 and eah Benders iteration is onsidered as one iteration. TheMILP master problems are solved using CPLEXMEX in all the omputations reported in thisTable. If Benders MILP master problems an not be solved beause out of memory statusit is marked in the table by a †. A time limit of 3 weeks (21 days) is put on test problem 3.Out of time statues is marked by a ∗. Computation times are given in CPU seondsinstane subproblems solved usingthe simplex method subproblems solved usingAlgorithm 2time(s) iter. est.opt. gap% time(s) iter. est.opt. gap%1 3.9000 6 0 0.3400 5 02 540330 1897 0 12452 433 03 *(≥ 1814400) 161 33.52 †(1291200) 107 32.775 (HPT) 1955600 1430 0 129110 789 06 (LPT) 45031 279 0 1437900 580 0
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testbed problems are solved for a time limit of 60 seonds by Benders algorithm. TheMILP master problems are solved with CPLEXMEX and plexmilp. For these solvers,omparing the results in Table 5 shows that CPLEXMEX is faster than plexmilp. InTable 5 the initial integral gap for eah instane is also reported. Tables 6 and 7shows the results for the testbed problems in a 30 minutes and a 24 hours CPU-timelimit respetively.Problem 5 (HPT) is then solved by Benders method to observe how the propertiesof the solution proess hange when the time horizon varies. A CPU-time limit of
24 hours has been also onsidered. The results are written in Table 8. In all theproblems in Table 8, the LP subproblems are solved by the greedy rule desribed inAlgorithm 2. For having a better piture, the data presented in Table 8 are illustratedin the graphs in Figure 3.It is known from Setion 4.2 that in every Benders iteration a new onstraintis added to the MILP master problem, so another question to answer is how thisaddition of onstraints e�et the solution speed. For answering this question we havehosen the middle size problem 2 and save the time spent for �nding the solution ofeah MILP master problem. A omputational di�ulty is that, although plexmex isslightly faster than the plex toolbox funtion plexmilp in MATLAB, but plexmexlike plexmilp do not report the exat time spent by plex to MATLAB terminalwindow. Computing time spend for �nding eah MILP solution in MATLAB is notreliable as the time of the data transferring between plex and MATLAB will be addedto this time. Sine parallel solutions to the MILP master problems exist, plexmexand plexmilp might �nd di�erent ones. Choosing plexmilp instead of plexmexleads to a di�erent approah by the Benders method with 990 iterations and a gaplosed of 94.84 in 24 hours; ompare to what is reported in Table 7. Still it is a goodexample to observe how the solution time for eah MILP master problem inreases.The average time for solving LP subproblems for this partiular example is 0.0200seonds. Figure 4 shows the time reported from plex for solving eah MILP masterproblem.Conlusions: When osts are non-inreasing with time the greedy rule in Algo-rithm 2 an be used to solve the LP subproblems. The greedy rule solves the LPsubproblems in a fration of a seond for middle sized problems while the solutiontime with the simplex algorithm an be onsiderably larger. As alternative solutionsto LP subproblems exist, the greedy rule and the simplex algorithm may end upwith di�erent solutions that e�ets the behavior of Benders method, this an be seenin Table 4. In onlusion, for most ases in Table 4, solving Benders when the LPsubproblems are solved using the greedy rule is faster with less number of iterations.From omparing Tables 5, 6 and 7 one an onlude that most of the gap islosed in the �rst seonds (hours) of the omputation time. Figure 4 indiates thatthe time needed by plex to solve the MILP master problems inreases linearly withthe iteration number. Aording to Setion 4.2, a lower bound of the problem athand is the optimal objetive value of the MILP master problem. Within the �rstiterations lower bound inreases rapidly, making the bounds on the optimal valueof the opportunisti replaement problem tighter. However, when the number ofonstraints of the MILP master problem with the Benders iteration number inreases,the optimal value of the MILP master problem is barely di�erent from that of the last44



Table 5: Testbed problems are solved for a time limit of 1 minute (60s) by Benders algo-rithm where MILP master problems are solved with CPLEXMEX and plexmilp. The LPsubproblems solved using the Algorithm 2. In this table the initial optimality gap for eahinstane is also reported. The estimated optimality gap is de�ned in De�nition 4.1 and eahBenders iteration is onsidered as one iteration.instane init.opt. gap % MILP master problemssolved using CPLEXMEX MILP master problemssolved using plexmilpiterations est.opt. gap% iterations est.opt gap%1 60 5 0 5 02 154.65 69 20.11 35 24.293 254 15 41.83 12 47.014 27.42 19 22.22 14 22.545 (HPT) 45.45 35 14.75 33 11.076 (LPT) 57.04 29 35.86 24 50.227 93.41 15 55.73 11 57.618 87.79 4 63.95 4 63.95
Table 6: Testbed problems solved for at most 30 minutes (1800 se) by Benders algorithm toobserve the remaining optimality gap. The MILP master problems are solved with CPLEXMEXand the LP subproblems solved with the Algorithm 2. The estimated optimality gap isde�ned in De�nition 4.1 and eah Benders iteration is onsidered as one iteration.instane iterations est.opt. gap%1 5 02 202 17.613 32 41.584 63 21.255 (HPT) 185 14.316 (LPT) 89 237 45 56.908 9 60.97
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Table 7: Testbed problems solved for at most 24 hours by Benders algorithm to observe theremaining optimality gap. The MILP master problems are solved with CPLEXMEX and theLP subproblems are solved using the Algorithm 2. The estimated optimality gap is de�nedin De�nition 4.1 and eah Benders iteration is onsidered as one iteration. If Benders MILPmaster problems an not be solved beause of out of memory status it is marked in the tableby a †. instane iterations optimality gap %1 5 02 433 03 61 39.564 174 15.055 (HPT) 690 4.9776 (LPT) 274 18.737 88 55.678 † 10 60.97
Table 8: The opportunisti replaement problem solved by Benders algorithm with datafrom HPT in a 24 hour limit. The MILP master problems are solved with CPLEXMEX andthe LP subproblems are solved using the Algorithm 2. The estimated optimality gap isde�ned in De�nition 4.1 and eah Benders iteration is onsidered as one iteration. In thistable, n = (N + 1)T denotes the number of variables in the orresponding opportunistireplaement problem. plex Bendersproblem T n time(s) iterations time(s) iterations est.opt gap%1 50 300 0.02 206 0.8700 12 02 60 420 0.07 415 4.5500 41 03 68 476 0.07 536 10.7200 42 04 75 525 0.14 624 155.6200 117 05 85 850 0.21 1347 602.5100 119 06 95 950 2.32 21237 7799.4 308 07 100 1000 1.19 7631 86400 690 4.978 110 1100 9.74 49324 86400 373 3.019 120 1200 28.47 172920 86400 386 17.6910 130 1300 37.30 207838 86400 265 17.3211 140 1400 86.61 401851 86400 170 19.5312 150 1500 58.38 259860 86400 170 31.04

46



50 100 150
0

5

10

15

20

25

60 70 80 90 100
0

2

4

6

8

x 10
4

50 100 150
0

100

200

300

400

500

600

700

800

PSfrag replaements

Optimality gap
Gap%

Total solution time
Solutiontime(
CPU)

Benders iterations

T

TT

Numberofitera
tions

Figure 3: Optimality gap perentage, number of iterations, and solution time versus timehorizon for the HPT problem solved by Benders method
47



0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

PSfrag replaements solutiontimefo
rtheMILPma
sterproblemss
olvedbyplex
(CPU)

Benders iterationsFigure 4: Solution times for the MILP master problems in Benders method for testbedproblem 2 in a 24 hour limit.

48



Benders iteration. This is beause a onsiderable addition of onstraints is requiredto inrease the MILP optimal objetive value.The report of the solutions for the HPT problem, when the time horizon (T )hanges, in Table 8 and Figure 3 shows that when the problem size inreases thetime needed for Benders to solve it behave exponentially. The reason is that whenthe number of variables inreases, the size of the LP subproblems and the MILPmaster problem inreases. Moreover, the number of extreme points of the polyhedron
P = {u | A′u ≤ c, u ≥ 0} -de�ned by the onstraint set of the dual problem- inreaseswhen the polyhedron dimension inrease. Sine Benders method searhes among theextreme points of the polyhedron P , an inrease in the number of extreme pointsresults in an inrease in the number of onstraints de�ning the omplete masterproblem. In Figure 3 it an be seen that the number of iterations inreases rapidly,so a onsiderable gap loses in the �rst 24 hours. On the other hand, when T is largethe number of iterations dereases. This is beause, as the size of the MILP masterproblems inreases, solving them requires more omputation time.In general one an say, sine in eah step a MILP minimization problem shouldbe solved, Bender's deomposition algorithm is very slow for our opportunisti re-plaement problem. The solution time may inrease exponentially when the problemsize inreases.
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5 A rank-1 separation problem applied to the oppor-tunisti replaement problemKnown from Setion 2.3.1, given the polyhedron P = {x : x ∈ Rn
+, Ax ≤ b}and the set S = P ∩ Zn, faets of conv(S) an be onstruted iteratively utilizingintegrality and the linear inequality desription of P . This means that we start withthe valid inequalities Ax ≤ b and if they are not enough to de�ne conv(S), i.e., thepolyhedron P has non-integral extreme points, we progressively onstrut strongervalid inequalities as follows. We obtain valid inequalities for P by taking non-negativelinear ombinations of the inequalities de�ning P . For tightening the formulation of

S, a strategy whih an be taken is to examine the initial formulation, �nd a set ofvalid inequalities πx ≤ π0 for S, and add these to the original system, whih gives anew formulation P ′ = {x ∈ Rn
+ : Ax ≤ b, πx ≤ π0} ⊆ P with S = P ′ ∩ Zn. If thevalid inequalities are well hosen so that the set P ′ is signi�antly smaller than P , thebounds (see Setion 2.1.3) should be improved and hene the integer programmingtehniques should be more e�etive. On the other hand, often the number of validinequalities one would like to add is enormous. Inreasing the number of onstraintsmakes the time required to solve the linear programs inrease. One should also notethat �nding the omplete desription of the onvex hull is not of interest, but a goodapproximation of conv(S) in the neighborhood of an optimal solution is desired.In this hapter we address these general issues for the opportunisti replaementproblem (33) by studying its NP-hard separation problem. By modeling and solvingthe rank-1 Chvátal�Gomory separation problem we study how e�etive it is to op-timize over the �rst Chvátal losure of the opportunisti replaement problem, i.e.,whih fration of the integrability gap that an be losed by a branh and boundapproah based on �nding the most violated uts for the replaement polytope. Wealso try to answer the question whether it is a bene�t to generate rank-1 CG utsuntil no more suh inequality exists or one should better follow the strategy of gener-ating Chvátal-Gomory inequalities of any rank. Sine the opportunisti replaementproblem is an MILP problem, here we introdue a projeted version of the CG utsand its assoiated separation problem and study its pratial strength for the oppor-tunisti replaement problem. Finally, we want to investigate how the addition ofthe generated CG uts to the original formulation a�et the general ILP branh andbound proedure to solve the opportunisti replaement problem.5.1 The separation problem for the opportunisti replaement prob-lemIn this setion �rst a modi�ed MILP model for the rank-1 Chvátal-Gomory separa-tion problem is desribed, whih an be solved by a general-purpose MILP solver.Then the projeted Chvátal-Gomory separation problem is presented. This modelis implemented in a pure utting plane framework to generate several rank-1 CG-uts in order to obtain a tighter bound on the value of the optimal solution of theopportunisti replaement problem. In the next setion the omputational assump-tions needed are desribed. In setion 5.2 the results of the numerial tests on someinstanes of the opportunisti replaement problem is reported.50



5.1.1 The MILP model for solving the Chvátal-Gomory separation prob-lemLet y = (x, z) to be the set of variables in the opportunisti replaement problem(33) and de�ne A and b the matrix of the oe�ients and the right-hand side vetorin the onstraints (33b)�(33) respetively. Let h′ = (c′, d′). Then the opportunistireplaement problem an be simply written in the general form of a BLP, asmin{h′y : Ay ≤ b, y ≥ 0, y ∈ {0, 1}(N+1)T
}
. (71)First let us desribe our MILP model for CG separation of the integer linear pro-gramming problem (71). Consider the point y∗ ≥ 0 given, CG-SEP (De�nition 2.16)�nds a CG ut α′y ≤ α0 whih is maximally violated by y∗, where α′ = ⌊u′A⌋ and

α0 = ⌊u′b⌋ for a ertain u ∈ Rm
+ . The �rst CG-SEP model then is tomaximize

(α,α0,u)
α′y∗ − α0, (72a)s.t. αj ≤ u′Aj, j = 1, . . . , n, (72b)
α0 − ǫ ≥ u′b− 1, (72)
ui ≥ 0, i = 1, . . . ,m, (72d)
α ∈ Zn

+, α0 ∈ Z+, (72e)where α = (α1, . . . , αn), u = (u1, . . . , um), n = (N + 1)T , m = 2NT + N −
∑N

i=1 Ti,and ǫ ∈ (0, 1). Note that n and m are determined by the information given by theinstane of (33). In this model the ui's are ontinuous variables while αj and α0 areinteger valued variables. Here, the integer variables αj and α0 represent ⌊u′Aj⌋ and
⌊u′b⌋ in the CG-ut, respetively. The rounding onditions on αj an be imposedthrough upper bound onditions on the variables αj, j = 1, . . . , n, as in (72b), andwith a lower bound ondition on α0, as in (72). Sine α0 = ⌊u′b⌋ implies that
u′b − 1 ≤ α0 ≤ u′b, the small onstant ǫ > 0 is introdued to ensure that when u′bis integral then α0 = u′b and not u′b− 1. Finally we should state that the objetivefuntion gives the amount of violation of the CG-ut evaluated.As mentioned in Setion 2.3.2 the CG-ut assoiated with any ui ≥ 1 is a dom-inated one, so we only onsider ui < 1. Also note that any variable yj with y∗j = 0gives no ontribution to the ut violation, so we use this property to redue the size ofthe separation problem by not onsidering it expliitly in the separation model. De-�ne the set J(y∗) :=

{
j ∈ {1, . . . , n} : y∗j > 0

} and slak variables fj = u′Aj−⌊u
′Aj⌋for j ∈ J(y∗) and f0 = u′b − ⌊u′b⌋. The slak variables fj for j ∈ J(y∗) ∪ {0} arefrational and we require their values to be in the range [0, 1 − δ] for a small �xedvalue δ > 0. Then the model (72) an be rewritten as tomaximize

(α,α0,u,f,f0)

∑

j∈J(y∗)

α′
jy

∗
j − α0, (73a)s.t. fj = u′Aj − αj, j ∈ J(y∗), (73b)

f0 = u′b− α0, (73)
0 ≤ fj ≤ 1− δ, j ∈ J(y∗) ∪ {0}, (73d)
0 ≤ ui ≤ 1− δ, i = 1, . . . ,m, (73e)
αj ∈ Z, j ∈ J(y∗) ∪ {0}. (73f)51



5.1.2 Projeted Chvàtal-Gomory separation problemSine by Proposition 3.1 in Setion 3.2, the binary requirements on the variables xitin the opportunisti replaement problem (33) an be relaxed, we an rewrite theproblem (71) as the problem below:min{
c′x + d′z : A1x + A2z ≤ b, x ≥ 0, z ≥ 0, x ∈ RNT , z ∈ {0, 1}T

} (74)In other words the opportunisti replaement problem an be treated both as anILP and a MILP. This fat will give us the permission to projet the problem ontothe spae of the integer variables zt. Then we an derive CG-uts for the projetedpolyhedron. The separation problem assoiated with the polyhedron projeted intothe z-dimension an be de�ned similarly to the problem (72)maximize
(α,α0,u)

α′z∗ − α0, (75a)s.t. αj ≤ u′A2
j , j = 1, . . . , p, (75b)

0 ≤ u′A1
j , j = 1, . . . , r, (75)

α0 − ǫ ≥ u′b− 1, (75d)
ui ≥ 0, i = 1, . . . ,m, (75e)
α ∈ Zp

+, α0 ∈ Z+,where r = NT , p = T and m = 2NT + N −
∑N

i=1 Ti.In [7℄ it is shown that for the mathing problem, for whih the onvex hull and the�rst Chvátal losure of the problems oinide, solving the rank-1 separation problemis very e�etive. Our aim here is to investigate how tight is the �rst Chvátal-Gomorylosure, i.e., P1, de�ned in (9), for the opportunisti replaement problem (33) andhow generating rank-1 CG inequalities an improve the bounds on the problem.We therefore in the next setion, implement these models into a branh and boundproedure in whih the separation model is solved and the most violated uts for non-integral LP relaxation solutions of the opportunisti replaement problem is found.By a similar proedure we investigate how e�etive is the projeted CG uts on someinstanes of the opportunisti replaement problem. Also we try to �nd CG uts forthe opportunisti replaement problems of higher ranks. In the next setion, �rst theomputational proedures made to answer these questions are desribed in details,and then the omputational results and onlusions are presented.5.2 Computational testsIn this setion we address the details of generating valid inequalities for the replae-ment polytope by iteratively solving the MILP models (73) and (75) in a pure uttingplane framework.Implementation in a pure utting framework: We have implemented ourCG separating problems into a pure utting plane framework. As a �rst test, we gen-erate CG-uts of rank-1 with respet to the original formulation of the opportunistireplaement problem at hand. The simple proedure for the �rst test is as follows.We solve the ontinuous relaxation of an instane of the opportunisti replaementproblem using a general LP solver, then we try to �nd the most violated CG-ut forthe LP optimal solution y∗ by solving the separation problem (73) through a generalMILP solver. We store the orresponding CG-ut in a pool. Then, these CG-uts52



is added to the urrent opportunisti replaement problem formulation. The ontin-uous relaxation of the updated opportunisti replaement problem is solved againwith the LP solver. In eah step a new LP optimal solution y∗ is obtained, and aCG-ut of rank-1 is obtained for that partiular solution. Note that at eah step,to ensure that all generated uts are of rank 1, we stik to the original formulationof the opportunisti replaement problem when solving the separation problem (73),i.e., at eah step the pair (A, b) is given by (71) and only y∗ hanges. We ontinue thegeneration of CG-uts of rank-1 until either an integer solution is found by the LPsolver or no suh violated ut exists. In the latter ase, if still there is a gap betweenthe LP optimal value and the known integer optimal value, this means that we haveoptimized over the �rst Chávtal losure and for improving the solution higher rankCG-uts are required. After the end of the separation phase, all the CG-uts gen-erated by this method an be added to the original ILP model of the opportunistireplaement problem to study how it an a�et solving the opportunisti replaementproblem through a general ILP solver.The seond test is designed to study the strength of the projeted uts. Theproedure taken in the seond test follows the same sheme as test one, exept thatin our utting plane algorithm pro-CG-uts of rank-1 are generated and saved. Thismeans that at eah step the MILP model (75) is solved to �nd pro-CG-uts for theprojeted replaement polytope into the zt variables spae. We generate pro-CG-uts iteratively to observe how a pro-ut an improve the optimal solution to theontinuous relaxation of the opportunisti replaement problem.The experiments above onern the optimization over the �rst Chvátal losure.For the next test we want to investigate whether produing CG-uts of higher rankould lose the integrality gap and ompare it with the ase when only rank-1 CG-utsare generated. The new CG-uts are found by ombining the generated inequalitiesand original ones. The generated uts are saved in a pool in order to add theseinequalities to the original formulation when solving the opportunisti replaementproblem with a general ILP solver.Making the ut sparser and stronger by the penalty term: A majoromputational issue when solving the Chvtátal-Gomory separation problem is thatseveral equivalent solutions of the separation problem typially exists. Some of thesesolutions produe very weak uts for the opportunisti replaement problem whihmakes the strength of the uts an issue. One need to produe a violated ut as strongas possible with respet to the �rst Chvátal losure. Therefore we look for a solutionwith as few nonzero elements as possible. To obtain suh an answer we introduethe penalty term −∑m
i=1 µiui in the objetive funtion (73a) where µi = 10−4 forall i = 1, . . . ,m. The objetive funtion is then tomaximize

(α,α0,u,f,f0)

( ∑

j∈J(y∗)

αT
j y∗j − α0 −

m∑

i=1

µiui

)
.We have de�ned the gap losed perentage as followsDe�nition 5.1 (gap losed). The proportion of the integrality gap losed is de�nedas optimal value(P1) − optimal value(P )optimal value(PI) − optimal value(P )

,53



where P1 is de�ned in (9), and PI = conv(P ∩ Zn), as de�ned in Setion 2.4.Furthermore, we hoose δ = 0.01 in the model (73) in our omputations.5.2.1 Numerial resultsIn this setion we report the outome of our experiments on a test-bed made ofeight opportunisti replaement instanes. The approah follows the sheme usedin Setion 5.2, i.e., we implemented a pure utting plane algorithm where, at eahiteration, CG-uts are generated by solving the separation problems (73) and (75)using a standard MILP solver. In order to speed up the overall omputation, theMILP solver is aborted when a ertain time limit is reahed. This time limit ishosen by onsidering the size of the problem instane at hand. Our implementationof the utting-plane methods uses the ommerial software ILOG-Cplex 12.0 as LPsolver, whereas the separation problems are solved by ILOG-Cplex 12.0 with theparameter settings in Table 9. For a referene to the parameter settings see [1℄.Algorithms are written in MATLAB R2009b. All numerial experiments are performedon a Linux desktop operating system with the proessor Pentium(R), Dual-CoreE5200 � 2.50GHz. The CPU MHz is 1200.000 and it has a ahe size of 2048 KB.All times are reported in CPU seonds.Eah testbed problem orrespond to di�erent instanes of the opportunisti re-plaement problem. The data for these instanes is reported in Table 10. Problems
1 and 2 in the testbed are very simple problems. The vetors d, c for problems 1and 2 are reported in Table 10. For problems 3�8 in our testbed, it is assumed that
cit = ci, for all i ∈ N and t ∈ T , also dt = d for all t ∈ T . Problem 3 is a middlesized problem intended to resemble a realisti problem. Problem 4 is a rather denseproblem in the sense that it makes the optimal solution to ontain many maintenaneoasions. The data in problems 5 and 6 are from real-world instanes obtained fromVolvo Aero airraft engine. Problem 6 is a sparse problem. Problem 5 and 6 areorresponding to the data from High Pressure Turbine (HPT) and Low PressureTurbine (LPT) respetively. Note that the data from real world instanes are saledso that d = 1. Problems 7 and 8 are also rather dense with the same data in theirobjetive funtion while problem 7 has a longer planning horizon.Table 9: Parameter settings for solving the MILP separation problems with plexDiretive Value Desriptionmipemphasis 4 indiates emphasis on �ndingvery good feasible solutions.node�le 2 reates a ompressed versionof the node �le in memory.The testbed problems, while the integrality requirements on the variables xit and
zt are relaxed, is solved with plex and the results are presented in Table 11. Theinteger linear programming solutions, solution time in CPU seonds, and the numberof plex iterations are also reported in Table 11.As stated in Setion 5.2, the CG separating problem (73) is solved at eah stepof a pure utting plane framework. CG-uts of rank-1 with respet to the original54



Table 10: Basi data for the testbed problemsinstane T N minTi maxTi polyhedrondimension d c1 c21 4 2 3 4 12 (3, 3, 1, 3) (1, 1, 2, 1)(1, 5, 5, 1)2 4 2 2 3 12 (3, 3, 1, 3) (1, 1, 2, 1)(1, 5, 5, 1)

min ci max ci3 10 9 2 8 100 1 0.3613 4.02554 18 2 3 4 54 9 5 65(HPT)100 9 15 80 1000 1 0.3613 4.02556(LPT) 110 10 29 60 1210 1 0.3171 1.54827 40 3 3 5 80 10 5 78 15 3 3 5 60 10 5 7

Table 11: Solution of the testbed problems. The ontinuous relaxations and the ILP's aresolved by the general ILP solver plex with default parameter settings.instane ontinuous relaxation ILP solutiontime (s) opt. value time (s)# iterations opt. value1 0.0137 6.5 0.0160 10 72 0.0149 11 0.0360 12 123 0.0155 47.8397 0.0465 109 48.83974 0.0146 110 0.0271 96 1145(HPT) 0.1116 57.5946 2.4483 28018 58.74636(LPT) 0.1332 23.7225 0.2659 1322 23.72257 0.0205 314.75 0.5799 7276 3528 0.0171 118 0.0303 113 120
55



formulation of the testbed problems are generated. The omputations are stop wheneither an integer solution is obtained or when no suh uts exists. The results arereported in Table 12, whih shows that for some instanes of the opportunisti re-plaement problem, by only generating rank-1 CG-uts, the integrality gap an besigni�antly losed, while for testbed problem 5 with data from HPT it fails to in-rease the lower bound. Table 13 reports the results for the utting plane algorithmusing pro-CG-uts for the testbed problems.Table 12: Results when the rank-1 separation problem is implemented in a pure branh andut framework and applied to the test bed problems.instane # uts time(s) optimal value % gap losed1 1 2.27 7 1002 3 10.61 12 1003 4 2661.8 48.8397 1004 8 2613.5 114 1005(HPT) 28 71823.0 57.5946 06(LPT) 10 16710.0 23.7225 1007 68 105800.60 335.9700 56.978 7 901.28 120 100Table 13: Results when the projeted separation problem is implemented in a pure branhand ut framework and applied to the testbed problems. The number of projeted uts islimited to 100.instane # uts time(s) optimal % gap losed1 1 2.1700 7 1002 2 3.7000 11 03 4 35.9900 48.8397 1004 4 341.7400 111 255(HPT) 100 72452.0 57.5946 06(LPT) 7 674.8300 23.7225 1007 19 51329.0 319.5000 12.758 13 813.6500 119 50To observe how hanging the time horizon T an a�et the behavior of the solutionproedure, we have onsidered the testbed problem 5 with data from HPT and varied
T between 55 and 100. The LP relaxation and ILP solutions for instanes of theHPT problem with various time horizons are reported in Table 14. The results forour implementations of the utting plane method where the separation problems aresolved with the MILP models (73) and (75) are reported in Table 15. For the HPTproblem with various time horizons, it is obvious from Table 15 that the uttingplane method generally fails to lose any integrality gap, exept for the instanewhere T = 60. 56



Table 14: The ontinuous relaxation and the ILP solution of the opportunisti replaementproblems with data from HPT and various values of the time horizons T reported fromplexHPT ontinuous relaxation solution ILP solution
T time(s) opt. value time (s) # iterations opt. value55 0.0277 24.6670 0.0842 440 24.794660 0.0318 31.6229 0.0934 466 31.622970 0.0480 35.1382 0.4303 4937 35.319580 0.0562 46.1809 1.2196 21748 47.180990 0.0755 53.4250 1.7091 14456 54.2643100 0.1116 57.5946 2.4483 28018 58.7463

Table 15: Rank-1 and projeted separation problem applied to the HPT instane withvarious values of T in a pure branh and ut framework.HPT Rank-1 separation problem Projeted CG-uts
T #utstime(s)opt. value%gap lo. #uts time(s) opt. value%gap lo.55 46 13458.0 24.6926 20.06 2 409.7000 24.6670 060 13 8365.0 31.6229 100 23 1936.6 31.6229 10070 19 20596.0 35.1382 0 100 8859.3 35.1382 080 10 6194.0 46.1809 0 100 35023.0 46.1809 090 15 23474.0 53.4250 0 100 67851.0 53.4250 0100 28 71823.0 57.5946 0 100 72452.0 57.5946 0
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Our previous experiments show that optimization over the �rst rank losure insome ases gives a very good approximation of the integer optimal value while insome other ases it fails to lose any integrality gap. In our experiments we onsidera ase in whih, in our utting plane method, CG-uts of higher ranks are generated.In this test beside, the original onstraints of the opportunisti replaement problem(33), we onsider the new generated CG-uts from the separation problem (73). Theresults are reported in Table 16.Table 16: Beyond the �rst Chvátal losure, CG-uts of higher ranks has been generated.The separation problem to �nd the most violated uts is limited to be solved 100 times forproblem 7 and 150 times for problem 5.instane # uts time (s) opt. value % gap losed2 2 13.7300 12 1003 7 9533.1 48.8397 1004 10 2664.5 114 1005(HPT) 148 166460.0 57.8292 20.376(LPT) 8 1984.0 23.7225 1007 100 109110.0 331.1521 44.038 9 2662.6 120 100The CG-uts whih have been generated in the separation phase have been saved.We add the generated rank-1 uts to the original formulations of the problem withintegrality gap as reported in Tables 12 and 15. Then these new formulated problemsare solved with plex. The results are illustrated in Tables 17 and 18. We anompare the results with the ones in the Table 11 and 14.Table 17: Rank-1 CG uts are added to the original formulation and solved with plex toobtain an integer solution for the instanes for whih the integrality gap is not ompletelylosed (Table 12). We ompare the results with those from Table 11.instane time (s) # iterations5(HPT) 1.5854 128697 0.7852 17311
5.2.2 ConlusionsThe separation problem is NP-hard in general, so as expeted the omputation timefor solving the MILP models (73) and (75) is onsiderable. For many instanes theutting plane algorithm based on �nding the most violated rank-1 CG-uts for theLP solutions is e�etive to improve the lower bounds of the objetive value. Inother words this pure branh and bound proedure for rank-1 CG-uts is apableof �nding faets of the replaement polyhedron in the neighborhood of an optimalsolution. By the results obtained in Table 12 one an onlude that the e�etiveness58



Table 18: Rank-1 CG-uts are added to the original formulation and solved with plex toobtain an integer solution for the problem HPT with various time horizons. We ompare itwith Table 14.
T time (s) # iterations55 0.0541 24370 0.1587 93680 0.5849 707890 0.6739 4026100 1.5854 12869of generating the most violated CG-uts is dependent on the sparseness of the on-straint oe�ients and the objetive funtion rather than the size of the replaementpolyhedron.Finding the projeted CG-uts requires less omputation time. This is beausethe MILP problem (75) is smaller than (73). For the strength of the projetedCG-uts it is of importane whether, in the general MILP problem at hand, theoptimization of the integer variables, or optimizing over the ontinuous variables isthe key. More preisely for our opportunisti replaement problem where there is atie between the integer variables zt and ontinuous variables xit, a situation that mayour is that the projetion z∗ of the optimal solution (x∗, z∗) of the opportunistireplaement relaxation problem belongs to the �rst Chvátal losure P1(z). In thisase, no pro-CG-ut an ut o� that point, although there might be a huge gapbetween the optimal integer solution and its relaxation. This an be observed inTables 13 and 15, in whih for most instanes in omparison with rank-1 CG-uts, asmaller gap perentage is losed. Note that the perentage of gap losed is dependenton the objetive funtion.Produing CG-uts of higher rank needs more omputation time than only gener-ating rank-1 CG-uts. The reason is that in eah step a new CG inequality is addedto the matrix A in the model (73) whih inreases the size of the instane. Table 16shows that it is bene�ial to generate higher rank CG-uts espeially for dense andhigh dimensional problems. By generating higher rank CG-uts more dominate validinequalities an be generated and a tighter bound on the optimal solution with lessnumber of valid inequalities an be obtained. Table 16 shows that produing higherrank uts has the bene�t of losing some of the integrality gap for the problem HPTwhile generating only rank-1 CG-uts fails to do so.Finally we have added the generated rank-1 CG-uts to the original formulationof the opportunisti replaement instanes where our utting plane algorithm failsto report an integer solution. Comparing Tables 17 and 11 shows that althoughthe generation of CG-uts fails to inrease the lower bound on the objetive valuefor the HPT problem with T = 100, adding these new onstraints to the originalformulation simpli�es the problem and dereases the omputation time. However,for the smaller problem 7, although by generation the rank-1 CG-uts 56.97 % ofthe integrality gap is losed, but adding the generated uts to the original formula-tion makes the problem more omplex and inreases the omputation time and the59



number of simplex iterations. This is beause adding the new inequalities makes thelinear programs big whih takes more time to solve, and so this is not so muh ofbene�t for small size problems. Table 18 shows that the generated rank-1 CG-utsfor the HPT problem with various time horizons inreases the omputation time andthe number of simplex iterations signi�antly.In general, solving the separation problems (73) and (75) onsumes huge amountsof omputer memory.
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6 Conlusions and future work6.1 ConlusionsThe fous of this thesis is to study the mathematial property and faial strutureof the opportunisti replaement problem with deterministi omponent lives. TheBenders deomposition method is implemented and a separation problem is modeledand solved in a branh and bound algorithm. The main results are as follows.If the maintenane oasions are �xed, the remaining optimization model is alinear programming problem. The dual problem of this linear programming problemis presented. It is shown that an equivalent representation of the dual problems ex-ists. Moreover, if the maintenane osts are non-inreasing with time, the dual linearprogramming problem an be solved through a greedy algorithm. An implementa-tion of the Benders deomposition method applied to the opportunisti replaementproblem is disussed. Feasibility onstraints for the master problem in the Bendersalgorithm are derived.The omputational experiments show that for the instanes with non-inreasingmaintenane osts, using the greedy algorithm to solve the dual linear programmingsubproblems in the Benders algorithm often dereases the omputational times. Be-sides, the omputation time for solving the master problems in the Benders algorithminreases by eah iteration. As an overall onlusion, when the size of the oppor-tunisti replaement problem inreases the omputation time for solving the masterproblems in Benders algorithm behave exponentially, whih makes this method in-e�ient for the opportunisti replaement problem. However, it is suggested thatBenders deomposition method an be utilized to �nd a good feasible solution andan initial point for solving the opportunisti replaement problem.This thesis also inludes a branh and ut approah for solving the opportunis-ti replaement problem. A modi�ed mixed integer linear programming model forthe rank-1 Chvátal-Gomory separation problem is desribed. Then the projetedChvátal-Gomory separation problem is presented. The models are implemented ina pure utting plane framework to generate the most violated �rst rank CG-uts inorder to obtain a tighter bound on the optimal solution. Then, Chvátal-Gomory utsof higher ranks have been generated for middle sized instanes of the opportunistireplaement problem. Sine the separation problem is NP-hard, the omputationtimes and the memory usage are onsiderable. The e�etiveness of generating mostviolated CG-uts seems to be dependent on the sparseness of the onstraint oe�-ients and the objetive funtion rather than the size of the replaement polyhedron.However, generating the rank-1 Chvátal-Gomory uts often yields a very tight ap-proximation of the (integer) optimal value for the opportunisti replaement problem.6.2 Future workThe work in this thesis shows that the Benders deomposition method is ine�ientfor the opportunisti replaement problem in general. However, the author's opin-ion is that Benders deomposition method an be utilized to �nd a good feasiblesolution and an initial point when solving the opportunisti replaement problem.Also generating the rank-1 Chvátal-Gomory uts often gives a tight bound on theoptimal solution of the opportunisti replaement problem. Obviously, one should61



generate CG-uts of any rank and searh for new tehniques to generate valid in-equalities and �nd new lasses of faets for the opportunisti replaement problemin order to obtain satisfatory results. Solving the separation problem and �ndingmost violated valid inequalities for the replaement polytope ould be useful as atool to guess strutures of some new lasses of faets.In this thesis work, a basi opportunisti replaement problem is onsidered inwhih the lives of all the omponents are deterministi. One may ask whether thework done generalizes to more realisti models for opportunisti maintenane or not.In realisti situations, maintenane problems often inlude omponents withstohasti lives and it is important to apply the opportunisti replaement modelto these problems as well. In [15℄, a two-stage stohasti programming approah forthe opportunisti replaement problem with stohasti omponent lives, is developedand studied.As an extension of the opportunisti replaement problem, one an onsider amaintenane problem with di�erent lives for di�erent individuals of the same ompo-nent. This problem is alled the opportunisti replaement problem with individuallives. Solving a stohasti opportunisti replaement problem with perfet informa-tion about individual omponent lives leads to solving an opportunisti replaementproblem with individual lives ([17℄). Furthermore, a model of the opportunisti re-plaement problem with individual lives is the basis of a model of the urrent problemfor the stohasti opportunisti replaement problem ([15℄).The sope of the future researh work an be divided into three ategories. Onean work on realisti problems diretly from the industry, study more omplex realproblems, and extend the urrent results to these kinds of problems. More exten-sions an be obtained by onsidering other de�ning fators (suh as human workresoure, et). A seond approah is to ontribute to �nd e�etive methods in solv-ing the multistage stohasti opportunisti replaement problem. A third possibilityis to utilize the results of the faial struture of the opportunisti replaement prob-lem, to the generalized ases suh as stohasti opportunisti replaement problemand the opportunisti replaement problem with individual lives, in order to solvethese generalized problems more e�iently. The goal of these researh areas is theontribution of �nding e�ient solutions for larger and more omplex maintenaneproblems.
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