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Abstra
tThe purpose of this proje
t is to study mathemati
al properties of the oppor-tunisti
 repla
ement problem introdu
ed in [18℄. The goal is to examine anddetermine new te
hniques to 
ompute the solutions for the opportunisti
 re-pla
ement problem faster. In this proje
t the Benders de
omposition methodand rank-1 Chvátal-Gomory 
ut generation are applied to the opportunisti
repla
ement problem.Regarding the Benders Method, for the opportunisti
 repla
ement problemwith �xed maintenan
e o

asions the dual of the resulting linear programmingproblem is derived and it is shown that when the maintenan
e o

asions are non-in
reasing with time, this problem 
an be solved through a greedy pro
edure.The feasibility 
onstraints for the master problem in the Benders de
ompositionmethod when implemented on the opportunisti
 repla
ement problem are ex-pli
itly derived. Then, the algorithm of Benders de
omposition method appliedto the opportunisti
 repla
ement problem is presented.Furthermore, the rank-1 Chvátal-Gomory separation problem for the oppor-tunisti
 repla
ement problem is modeled. A bran
h and bound approa
h is thenused to generate valid inequalities for the repla
ement polytope, by solving theseparation model and �nding the most violated 
uts for non-integral extremepoints of the 
onstraint set de�ning the opportunisti
 repla
ement problem.Results from 
omputation tests of the two solution pro
edures and 
on
lu-sions are �nally reported.
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1 Introdu
tion and ba
kground1.1 Maintenan
e planning and problemsIn aviation industry, power plants, and pro
essing industry, expensive equipmentsneed to be used e�
iently with few interruptions to pay ba
k the huge 
osts of theinvestments. Due to the huge 
osts of breakdowns of a system, it is of essential impor-tan
e to avoid them as mu
h as possible. In a typi
al setting every ma
hine 
onsistsof di�erent modules, where ea
h module 
ontains several 
omponents. When a 
om-ponent breaks or rea
hes its life a repla
ement of that 
omponent is unavoidable.The life of ea
h 
omponent 
an be 
onsidered as deterministi
 or sto
hasti
.In the literature sometimes it is assumed that the maintenan
e opportunity isindependent of the failure; sometimes the opportunity is equal to the �rst failure of anindividual part. In this 
ase failure of one part is used as an advantage of preventivemaintenan
e for the other parts. The term opportunisti
 maintenan
e refers to thesituation that every maintenan
e o

asion is 
onsidered as an opportunity to preventpossible future failures of the system ([6℄). This is often the 
ase for air
raft engines.The maintenan
e of air
raft engines is 
ru
ial in aviation industry. Sin
e, inparti
ular, the major 
on
ern is safety. If an essential 
omponent of an air
raftbreaks, it may 
rash; therefore the interruption of the system fun
tion should beavoided at any 
ost. In this 
ase, the maintenan
e planning should be s
heduledin su
h a way that the system works without interruption between the plannedmaintenan
e o

asions. Sin
e some of the parts are of great safety importan
e, theyare assigned �xed deterministi
 lives. Other parts of the engine are 
onsidered tohave sto
hasti
 lives.The opportunisti
 repla
ement is motivated mainly by the unavoidable �xed 
ostsasso
iated with ea
h maintenan
e o

asion rather than ea
h 
omponent's 
ost [6℄.In simple words, when an engine is taken to the maintenan
e workshop, a spareengine should repla
e it. Therefore at every maintenan
e o

asion �a

ompanyingthe 
ost of ea
h part to be repla
ed� there is often also an independent large �xed
ost. In opportunisti
 maintenan
e, the extra 
ost of a maintenan
e o

asion shouldbe balan
ed with the 
osts of individual modules whi
h have to be repla
ed, so thereis an optimization problem to be solved.When a deterministi
 life of a 
omponent is rea
hed, the engine must be takento the workshop for maintenan
e. This is a good opportunity to repla
e some ofthe non-failed 
omponents with sto
hasti
 or deterministi
 lives. There are someinformation needed to formulate the optimization problem su
h as the remaininglives of the deterministi
 parts, 
osts of new spare parts, and the work 
ost for theworkshop when repla
ing 
omponents, et
. In 
ase of not knowing the lives of the
omponents, it is possible to estimate their sto
hasti
 life time using histori
al dataand/or 
ondition measurements.A relevant optimization model for opportunisti
 repla
ement is to minimize theexpe
ted 
osts in order to have fun
tioning engine during a predetermined timeperiod. The optimization should 
reate a maintenan
e s
hedule with as low total
ost as possible. In the opportunisti
 repla
ement problem for an air
raft enginethe time horizon is �nite. This problem 
omputationally is harder to solve than thein�nite time horizon 
ounterpart ([18℄).A 
on
lusion in [2℄ is that it is extremely hard to �nd an optimal repla
ement5



s
hedule when the number of parts is large. Di�erent repla
ement poli
ies 
an helpto simplify the solution pro
ess but they possibly lead to non-optimal solutions. Onthe other hand, if all the parts have sto
hasti
 lives it is di�
ult to 
ompute a reliables
hedule. In su
h 
ases it is essential that one uses repla
ement poli
ies rather thansolving an optimization model.In the air
raft engine studied about 75% of the 
omponents are 
onsidered to havedeterministi
 lives. If the lives of all the 
omponents are deterministi
, an optimalmaintenan
e s
hedule is found by solving the opportunisti
 repla
ement problem.This thesis 
onstitutes a study of the mathemati
al stru
ture and properties of theproblem when all the 
omponent lives are assumed to be deterministi
.1.2 The opportunisti
 repla
ement problemThis thesis is part of a resear
h on analyzing and solving the maintenan
e de
isionproblems. A system (e.g., a jet engine or a wind power turbine) to maintain duringa �nite planning time is 
onsidered. The idea is to use a mathemati
al model tode
ide whether or not to perform maintenan
e at the time when the system needs a
orre
tive maintenan
e or a s
heduled preventive one. A fairly simple maintenan
eproblem is presented.The problem statement is as follows. Consider a system that 
onsists of 
om-ponents N = {1, . . . , N} with known deterministi
 lives. We assume that every
omponent must be repla
ed before its failure. Moreover, every maintenan
e o
-
asion generates the 
ost d and the repla
ement of a 
omponent i ∈ N generatesthe repla
ement 
ost ci. We wish to minimize the expe
ted maintenan
e 
ost overthe planning time [0, T ]. This problem is denoted the opportunisti
 repla
ementproblem.The resear
h work in this thesis is based on the opportunisti
 repla
ement prob-lem. Although, the intention is to generalize the results obtained to more generalmaintenan
e problems in the future.1.3 OutlineThe aim of this thesis is to study some mathemati
al aspe
ts of the opportunisti
repla
ement problem and then utilize these when solving the problem. The thesis isorganized as follows.First some essential ba
kground from integer programming is brie�y reviewed.Chapter 2 is divided into �ve main se
tions in whi
h the integer linear programmingis des
ribed and the 
omplexity of su
h problems is dis
ussed. Then, some of the
on
epts helping to a better understanding of the geometry behind integer linearprogramming are de�ned. Valid inequalities and fa
ets for an integer linear programis dis
ussed and the Chvátal-Gomory pro
edure to obtain valid inequalities is pre-sented. Se
tion 2.4 dis
usses the Chvátal-Gomory 
uts and the separation problemfor the integer linear programming problems. Finally, in Se
tion 2.5, the generalBenders partitioning pro
edure to solve an integer linear programming problem ispresented.In Chapter 3 a linear programming model is introdu
ed for the opportunisti
repla
ement problem and some of its mathemati
al properties are dis
ussed. Also astudy of the fa
ial stru
ture of the opportunisti
 repla
ement problem is presented.6



Benders de
omposition method is applied to the opportunisti
 repla
ement prob-lem in Chapter 4. In Se
tion 4.1 it is shown that the dual linear programming prob-lem when the maintenan
e o

asions are non-in
reasing with time and the mainte-nan
e o

asions are �xed is solvable by a greedy rule. An implementation of the Ben-ders de
omposition method on the opportunisti
 repla
ement problem is dis
ussedin Se
tion 4.2. The feasibility 
onstraints for the master problem in the Bendersde
omposition method are expli
itly derived. Results from numeri
al experimentsare reported.In Chapter 5 the e�e
t of generating rank-1 Chvàtal-Gomory 
uts for the oppor-tunisti
 repla
ement problem is questioned. The rank-1 Chvàtal-Gomory separationproblem is modeled as an mixed integer linear programming problem. Then, themodel is solved in a pure 
utting plane framework to �nd the most violated 
uts forthe 
onvex hull of the polyhedron de�ning the opportunisti
 repla
ement problem.Some 
omputational results are also presented.Finally, in Chapter 6 
on
lusions and remarks on future work are stated.

7



2 Integer linear programmingOptimization in the simplest way means to maximize (or minimize) a real-valuedfun
tion of real or integer variables by 
hoosing the values of these variables within anallowed set, whi
h is des
ribed by a set of 
onstraints on the variables. A te
hniquefor optimizing a linear obje
tive fun
tion of real valued variables with respe
t tolinear equality and/or inequality 
onstraints is 
alled linear programming. Addingextra restri
tions to the variables su
h as belonging to an integer set or taking binaryvalues gives new types of problems, whi
h has a wide range of appli
ations in everydaylife.Integer programming is about how to solve optimization problems with dis
rete(or integer) variables. A wide variety of pra
ti
al problems in management and thee�
ient use of resour
es 
an be formulated as integer linear programming problems.Problems su
h as distribution of goods, produ
tion s
heduling, transportation net-work design, fa
ility lo
ation, tele
ommuni
ations or ele
tri
ity generation planningmost often fall into the integer linear programming 
ategory.This thesis is dealing with an integer linear problem, where the fun
tion to beminimized and the inequality restri
tions are all linear. In this 
hapter, we brie�yaddress some basi
 and essential 
on
epts of integer linear programming problems.First the integer linear programming problem is de�ned, followed by de�nitions of apolyhedron, a 
onvex hull, the ideal formulation, and bounds for the integer linearprogramming problem. Then, the 
omplexity of linear integer programming prob-lems is dis
ussed. Valid inequalities and fa
ets are de�ned. Also Chvátal-Gomorypro
edure to derive valid inequalities for the integer linear programming problemsand the septation problem are presented. The 
hapter 
loses with the des
ription ofthe general Benders de
omposition pro
edure.2.1 An integer linear programming modelConsider the linear programming problem in the 
anoni
al form:(LP) max
x
{cx : Ax ≤ b, x ∈ Rn

+},where Rn
+ is the set of non-negative real n-dimensional ve
tors, A an m× n matrix,

c an n-row ve
tor, b an m-
olumn ve
tor, and x an n-
olumn ve
tor. x is the ve
torof de
ision variables. Letting some of the variables be integer, then the mixed integerlinear programming problem is de�ned as(MILP) max
x,y
{cx + hy : Ax + Gy ≤ b, x ∈ Rn

+, y ∈ Zp
+},where Zp

+ is the set of non-negative integral p-dimensional ve
tors, G is an m × pmatrix, h is a p-row ve
tor, y is a p-
olumn ve
tor of integer de
ision variables. Ifall variables are integer (i.e., if n = 0), we have (pure) integer linear programmingproblem (ILP) max
y
{hy : Gy ≤ b, y ∈ Zp

+}.Note that ILP is the spe
ial 
ase of MILP in whi
h there are no 
ontinuous variablesand LP is another spe
ial 
ase of MILP in whi
h there are no integer variables. At8



the end we de�ne a binary linear program:(BLP) max
x
{cx : Ax ≤ b, x ∈ {0, 1}n}.One should note that in understanding and solving integer linear programming prob-lems, the linear programming theory is fundamental. As in linear programming,translating a problem des
ription into a mathemati
al formulation should be donesystemati
ally. The data of the problem instan
e and the variables should be distin
tin the model. In the next se
tion we formulate a very famous problem 
alled, theset 
overing problem, as n BLP.2.1.1 The set 
overing problemTwo of the very well known integer linear programming problems are the set 
overingproblem and the set pa
king problem. The set 
overing problem 
an be des
ribedas follows. Given a 
ertain number of regions, the set 
overing problem is to de
idewhere to install a set of emergen
y servi
e 
enters. For ea
h possible 
enter the 
ostof installing a servi
e 
enter, and whi
h regions it 
an servi
e are known. The goal isto 
hose a minimum 
ost set of servi
e 
enters so that ea
h region is 
overed. Now, weformulate it as a BLP. Let M = {1, . . . ,m} be the set of regions, and N = {1, . . . , n}the set of potential 
enters. Let Sj ⊆ M be the regions that 
an be servi
ed bya 
enter at j ∈ N , and cj its installation 
ost. To fa
ilitate the des
ription, we�rst 
onstru
t a 0 − 1 in
iden
e matrix A su
h that aij = 1 if i ∈ Sj, and aij = 0otherwise. Let the de
ision variables be x = (x1, . . . , xn) where xj = 1 if 
enter j issele
ted, and xj = 0 otherwise. The set 
overing problem is de�ned asmin

x

n∑

j=1

cjxj, (1a)
n∑

j=1

aijxj ≥ 1, i = 1, . . . ,m, (1b)
xj ∈ {0, 1}, j = 1, . . . , n. (1
)The inequalities (1b) state that at least one 
enter must servi
e region i. The setpa
king problem is the integer linear program of the formmax

x

n∑

j=1

cjxj , (2a)
n∑

j=1

aijxj ≤ 1, i = 1, . . . ,m, (2b)
xj ∈ {0, 1}, j = 1, . . . , n. (2
)There are very strong ties between set 
overing problem and set pa
king problems.For more details see [12℄. The set 
overing problem is stru
turally similar to theopportunisti
 repla
ement problem de�ned in Chapter 3.2.1.2 De�nitions of some 
entral 
on
eptsIn integer programming, for the formulation of problems we are given a set of feasiblepoints, often des
ribed as the set of integer solutions to a linear inequality system9



S = {x ∈ Zn
+ : Ax ≤ b}. For a better understanding of how to deal with integerlinear programming problems, we give some ne
essary de�nitions and propositionswithout proof from linear algebra. The books [12℄ and [19℄ are used as referen
es forthis se
tion.De�nition 2.1 (Convex 
ombination and 
onvex hull). Given a set S ∈ Rn,a point x ∈ Rn is a 
onvex 
ombination of points of S if there exists a �nite setof points {xi}

t
i=1 ∈ S and a λ ∈ Rt

+ su
h that ∑t
i=1 λi = 1 and x =

∑t
i=1 λix

i.The 
onvex hull of S, denoted by conv(S), is the set of all points that are 
onvex
ombinations of points in S.De�nition 2.2 (Linear and a�ne independen
e). A set of points x1, . . . , xk ∈
Rn is linearly independent if the unique solution to the equations ∑k

i=1 λix
i = 0 is

λi = 0, i = 1, . . . , k. A set of points x1, . . . , xk ∈ Rn is a�nely independent ifthe unique solution to the equations ∑k
i=1 αix

i = 0 and ∑k
i=1 αi = 0 is αi = 0 for

i = 1, ..., k.Note that the maximum number of linearly and a�nely independent points in
Rn are n and n + 1 respe
tively. Linear independen
e implies a�ne independen
e,but the 
onverse is not true.De�nition 2.3 (Polytope and polyhedron). A polyhedron P ⊆ Rn is the set ofpoints that satisfy a �nite number of linear inequalities; that is, P = {x ∈ Rn : Ax ≤
b}, where (A, b) is an m × (n + 1) matrix. A polyhedron is bounded if there existsan α ∈ R1

+ su
h that P ⊆ {x ∈ Rn : −α ≤ xj ≤ α for j = 1, . . . , n}. A boundedpolyhedron is 
alled a polytope.De�nition 2.4 (Ray). Let P 0 = {r ∈ Rn : Ar ≤ 0}. If P = {x ∈ Rn : Ax ≤ b} 6= ∅,then r ∈ P 0 \ {0} is 
alled a ray of P .De�nition 2.5 (Extreme point and extreme ray). x ∈ P is an extreme pointof P if there do not exist x1, x2 ∈ P , x1 6= x2, su
h that x = 1
2x1 + 1

2x2. A ray of Pis an extreme ray if there do not exist r1, r2 ∈ P 0, r1 6= λr2 for any λ ∈ R1
+, su
hthat r = 1

2r1 + 1
2r2.De�nition 2.6 (Cone). C ∈ Rn is a 
one if x ∈ C implies λx ∈ C for all λ ∈ Rn

+.A polyhedron has a �nite number of extreme points and extreme rays. Let
V = (v1, v2, . . . , vk) and E = (e1, e2, . . . , el) be the set of extreme points and extremerays, respe
tively, of the polyhedron P . Then P = conv(V ) + cone(E) and if P is apolytope then P (A, b) = conv(V ).De�nition 2.7 (Dimension of a polyhedron). A polyhedron P is of dimension
k, denoted by dim(P ) = k, if the number of a�nely independent points in P is k+1.A polyhedron P ⊆ Rn is full-dimensional if dim(P ) = n.Proposition 2.1 (Pro.2.1 
hapter I.4. [12℄). A polyhedron is a 
onvex set.Proposition 2.2 (Pro.1.2 
hapter 1 [19℄). The extreme points of conv(S) all liein S.De�nition 2.8. A polyhedron P ⊆ Rn+p is a formulation for a set S ⊆ Rn × Zp ifand only if S = P ∩ (Rn × Zp). 10



Note that in a formulation of an ILP problem the integrality requirements aredisregarded and only the (in)equalities are 
onsidered, i.e., we 
onsider the polyhe-dron de�ned by the (in)equality 
onstraints. Most integer linear problems 
an bemathemati
ally formulated in several ways, but not every 
hoi
e of formulation isa good one. In an ideal formulation ea
h extreme point is integer, so if the idealformulation is solved �as the integer optimal solution is at an extreme point� thisyields an optimal integer solution. Propositions (2.1) and (2.2) enable us to repla
eThe ILP max{cx : x ∈ S} by the equivalent LP max{cx : x ∈ conv(S)}. The redu
-tion of the formulation of the polyhedron P to the ideal formulation conv(S) alsoholds for unbounded integer sets, and mixed integer sets. However, this is in generala theoreti
al 
onstru
tion, be
ause in most ILP problems an enormous number ofinequalities are needed to des
ribe conv(S). This makes it very hard and almostimpossible to �nd all su
h inequalities for realisti
�size real world problems. Butsin
e S ⊆ conv(S) ⊆ P , for all formulations P , we have the following de�nition:De�nition 2.9 (Strong formulation). Given a set S ⊆ Rn and two formulations
P1 and P2 for S, P1 is a stronger formulation than P2 if P1 ⊆ P2.2.1.3 Bounds on integer linear programming problemThis se
tion explains how upper and lower bounds to an ILP 
an be found. Considerthe integer linear programming problem:(ILP) zILP = max

x
{cx : x ∈ S}, S = {x ∈ Zn

+ : Ax ≤ b}, (3)where c is an n-ve
tor with integral 
oe�
ients and (A, b) is an m× (n + 1) matrixwith integral 
oe�
ients. In an algorithm to solve ILP, �nding a tight bound on
zILP would provide a stopping 
riterion, sin
e it 
an be 
onsidered as a fundamentalway of proving optimality for a feasible solution to the integer linear programmingproblem. Pra
ti
ally, this means that any algorithm will �nd an in
reasing sequen
eof lower bounds: z1 < z2 < . . . < zs and a de
reasing sequen
e of upper bounds:
z1 > z2 > . . . > zt, and stop when zt − zs ≤ ǫ, where ǫ ≥ 0 is suitably 
hosen forea
h ILP.Every feasible solution x ∈ S for (3) provides a lower bound z = cx ≤ zILP . Anupper bound on a maximization integer linear problem 
an be found by 
onsideringthe linear programming dual of (3). This is 
alled dual bound in 
ontrast to theprimal bound. Let P = {x ∈ Rn

+ : Ax ≤ b}, the polyhedron 
orresponding to theinteger program (3). Consider the linear program
zLP = max

x
{cx : x ∈ P}. (4)The linear program (4) is 
alled the linear programming relaxation of (3). The dualof (4) is de�ned as (D) wLP = min
u
{ub : u ∈ PD}, (5)where PD = {u ∈ Rm

+ : uA ≥ c}. It 
an be easily proven that the integer program(3) and the linear program (5) form a weak dual pair1. A relaxation of (3) must1[Prop. 2.2, Chapter I.2 [12℄℄(weak duality) If x∗ is primal feasible and u∗ is dual feasible,then cx∗ ≤ zLP ≤ wLP ≤ u∗b. 11



be solved to optimality to provide an upper bound on zILP . So we need to de�ne adual problem su
h that any dual feasible solution yields an upper bound on zILP . Aweak dual of (3) is any minimization problem(DP) wD = min
u
{zD(u) : u ∈ SD},that satis�es zD(u) ≥ cx for all x ∈ S and all u ∈ SD where SD ⊆ PD. We nowpresent a proposition whose proof is given in Chapter 2 of [19℄.Proposition 2.3. Suppose that (ILP) and (DP) form a weak-dual pair.(i) If (DP) has an unbounded obje
tive value, then (ILP) is infeasible.(ii) (strong dual) If x∗ ∈ S and u∗ ∈ SD satisfy cx∗ = zD(u∗), then x∗ is optimalfor (ILP) and (u∗) is optimal for (DP).2.2 Computational 
omplexity and well solved problemsThe purpose of the following dis
ussion on 
omputational 
omplexity of integer linearoptimization problems is to provide a better insight in how di�
ult it is to �nd anoptimal solution, and what are the properties of the so 
alled well solved problems.The theory in this se
tion is mainly adopted from the referen
es [12℄ and [19℄.2.2.1 NP-hard problemsOne might imagine an algorithm for solving an optimization problem: max{cx : x ∈

S} where the de
ision problem:Is there an x ∈ S with value cx ≥ k for k ∈ Z?is repla
ed by the 
orresponding optimization problem. Let us 
all this de
isionproblem P . For a problem instan
e X, the length of the input L = L(X) is thelength of the binary representation of a �standard� representation of the instan
e.An algorithm A is de�ned to be polynomial for a problem P and an instan
e Xwith L(X) = l if the running time of algorithm A is proportional to O(lp) for somepositive integer p.De�nition 2.10 (The 
lasses P an NP). NP is the 
lass of de
ision problemswith the property that where there exists a primal solution of value as good as orbetter than k, there is a polynomial proof. P is the 
lass of de
ision problems in NPfor whi
h there exists a polynomial algorithm.De�nition 2.11 (The 
lass NPC and redu
ibility). If the problems P,Q ∈ NP,and if an instan
e of P 
an be 
onverted in polynomial time to an instan
e of Q,then P is polynomial redu
ible to Q. NPC, the 
lass of NP-
omplete problems, isthe subset of problems P ∈ NP su
h that for all P,Q ∈ NP, Q is polynomiallyredu
ible to P .
P is the 
lass of easy problems i.e., for whi
h a polynomial algorithm existsfor solving all instan
es of su
h problems. A large number of famous optimizationproblems, e.g., the 0-1 knapsa
k problem, the set 
overing problem, the integer12



programming problem, belong to the 
lass NPC. Sin
e no polynomial algorithmfor problems in NPC is known today, this 
lass is said to be the 
lass of �the mostdi�
ult� problems. An optimization problem for whi
h the de
ision problem lies in
NPC is 
alled NP-hard. Set 
overing problem and set pa
king problem are NP-hard problems. There still remains a question to answer whi
h is how one 
an provethat a problem lies in P?We 
ontinue this se
tion with de�ning the separation problem and introdu
ingspe
ial 
ases where a polynomial algorithm exists for the integer linear programmingproblem. The problems belonging to the 
lass P are 
alled well solved problems.2.2.2 Separation problemThe separation problem asso
iated with max{cx : x ∈ S} is the problem: Given
x̊ ∈ Rn, does x̊ ∈ conv(S)? If not, �nd an inequality πx ≤ π0, where π ∈ Rnand π0 ∈ R satis�ed by all points x ∈ S, but violated by the point x̊. A 
lassof optimization problems has the e�
ient optimization property if and only if apolynomial algorithm exists for the 
lass. The e�
ient separation property refersto the property that there exists an e�
ient algorithm for the separation problemasso
iated with the problem 
lass.If a problem has the e�
ient separation property then the expli
it des
ription ofthe 
orresponding 
onvex hull is at hand. Therefore, the e�
ient optimization andthe e�
ient separation problems are equivalent. The family of optimization problems
max{cx : x ∈ conv(S)} is polynomially solvable if and only if the 
orrespondingfamily of separation problems is polynomially solvable.2.2.3 Integer programming with totally unimodular matri
esA starting point in solving ILP is that to answer the question whether there existssome problems with the property that conv(S) = {x ∈ Rn

+ : Ax ≤ b}, i.e., spe
ial
ases for whi
h an e�
ient algorithm 
an be found, or when the LP relaxationpossesses an optimal solution whi
h is integer. The following de�nitions and resultsfrom [12℄ and [19℄ are utilized to answer this question.De�nition 2.12 (Totally unimodular matrix). A matrix A is totally unimodular
(TU) if every square sub-matrix of A has determinant +1,−1 or 0.De�nition 2.13 (Interval matrix). An m×n (0, 1)�matrix A is 
alled an intervalmatrix if in ea
h 
olumn the 1's appear 
onse
utively; that is, if aij = akj = 1 and
k > i + 1, then alj = 1 for all l with i < l < k.Corollary 2.10 on page 544 in [12℄ states that interval matri
es are (TU).Proposition 2.4 (Integral polyhedron). If A is TU , then P (b) = {x ∈ Rn

+ :
Ax ≤ b} is integral for all b ∈ Zm for whi
h it is not empty. I.e. P (b) = conv(P (b)∩
Zn).Proof. Consider the linear program with 
onstraint set Ax+Iy = b, x ∈ Rn

+, y ∈ Rm
+ ,where A is TU and b is integral. From linear programming theory, we know thatthe basi
 feasible solutions are x = (xB , xN ) where xB = B−1b and xN = 0. Also

(A, I) = (B,N), where B is an invertible m×m sub-matrix of (A, I), 
alled a basis13



matrix for the linear program. Sin
e A is TU, B and B−1 are also integral [formPro 2.1 page 540 [12℄℄. Thus B−1b is integral, so the 
orresponden
e between basi
feasible solutions and extreme points yields the result.Proposition 2.5. The linear program max{cx : Ax ≤ b, x ∈ Rn
+} has an integralsolution for all integer ve
tors b for whi
h it has a �nite optimal value if and only ifA is totally unimodular.By propositions 2.4 and 2.5 we have shown that for S = {x ∈ Zn

+ : Ax ≤ b},and P = {x ∈ Rn
+ : Ax ≤ b}, where A is TU and b is integral, It holds that

S = conv(S) = P . Thus, when A is TU the linear programming relaxation solvesIP. The 
onverse also holds.2.3 Valid inequalities and fa
etsA primarily and pra
ti
ally important problem in solving integer linear programmingproblem is to �nd an equivalent representation of the integer program by a linearprogram that have the same optimal solution. In Se
tions 2.1.2 and 2.2.2 it is notedthat if an ideal des
ription of conv(S) is at hand then the integer linear programmingproblem is polynomially solvable. Unfortunately this is not the 
ase for most of theinteger linear programming problems. Therefore one needs to �nd additional validinequalities for the set S in hope to obtain a stronger formulation for conv(S). Inthis se
tion, by using integrality and valid inequalities for P , we address 
onstru
tingsuitable valid inequalities for the set S.Consider the general integer program (3), and let P = {x ∈ Rn
+ : Ax ≤ b} sothat S = P ∩ Zn. De�ne the 
onvexi�ed integer program.(CIP ) max{cx : x ∈ conv(S)}. (6)Theorem 2.1. Given the set S = P ∩ Zn 6= ∅, where P = {x ∈ Rn

+ : Ax ≤ b}, andany c ∈ Rn, it follows that:1. The obje
tive value of (3) is unbounded from above if and only if the obje
tivevalue of (6) is unbounded from above.2. If (6) has a bounded optimal value, then it has an optimal solution (namely,an extreme point of conv(S)), that is an optimal solution to (3).3. If x̊ is an optimal solution to (3), then x̊ is an optimal solution to (6).For a proof of this theorem see Chapter I.4.6 in [12℄. This theorem states thatredu
ing an integer linear program to a linear program amounts to �nd the linearinequalities representative of conv(S). For NP-hard problems, �nding a good de-s
ription of conv(S) in terms of linear inequalities is a very hard problem. Generally,the strategy one 
ould take when trying to solve an NP-problem is to �nd e�e
tiveways to approximate conv(S) for some instan
es of that problem. That is to dedu
ethe relevant inequalities from the linear inequality representation of the polyhedron
P and the integrality 
onstraints on the variables.14



2.3.1 Valid inequalities and fa
etsIn the polyhedral des
ription of a integer linear programming problem, it is importantto �nd ne
essary inequalities and to get rid of redundant inequalities.De�nition 2.14 (Valid inequality). The inequality πx ≤ π0 , denoted as (π, π0),is a valid inequality for a set P ⊆ Rn if πx ≤ π0, for all x ∈ P .Proposition 2.6 (Valid inequality for S). If πx ≤ π0 is valid for S = {x ∈ Zn
+ :

Ax ≤ b}, it is also valid for conv(S).Proof. Consider an x ∈ conv(S). Then x =
∑

j∈J λjx
j , where xj ∈ S for j ∈ J ,∑

j∈J λj = 1, and λj ≥ 0 for j ∈ J . Hen
e,
πx =

∑

j∈J

λj(πxj) ≤
∑

j∈J

λjπ0 = π0, (7)whi
h yields the result.De�nition 2.15 (Fa
e and fa
et). If πx ≤ π0 is a valid inequality for P and
F = {x ∈ P : πx = π0}, F is 
alled a fa
e of P , and we say that (π, π0) represents
F . A fa
e F of P is said to be proper if F 6= ∅ and F 6= P . A fa
e F of P is a fa
etof P if dim(F ) = dim(P ) − 1.Proposition 2.7 (Proposition 4.2 Chapter I.4 [12℄). x is an extreme point of
P if and only if x is a zero-dimensional fa
e of P .Let P be a full-dimensional polyhedron. Then P = {x ∈ Rn : aix ≤ bi i =
1, . . . ,m}, where ea
h inequality is unique within a positive multiple, is the uniquedes
ription of P . These inequalities are ne
essary to de�ne P : without any of them,
P is not 
ompletely de�ned. If a valid inequality for P is not a positive multipleof these inequalities, it is redundant and 
an be removed. Note that an inequality
πx ≤ π0 representative of the fa
et F is ne
essary in the des
ription of P . Moreover,the fa
ets are su�
ient for the des
ription of P .Identifying new 
lasses of fa
ets and in
luding them in the problem des
ription,help to solve the NP�hard ILP problem more e�
iently. This is a strong motivationto look for some te
hniques to generate all valid inequalities for an ILP or an MILPproblem. However, �nding fa
ets of the polyhedra de�ned by di�erent integer linearprogramming problems is not an easy task. The determination of families of strongvalid inequalities is more of an art than a formal methodology As a well knowninteger linear programming problem �nding 
lasses of fa
ets for the set 
overingproblem and set pa
king problems has been always of interest. Looking ba
k tothe 
lassi
al literature on these problems, two 
lasses of fa
ets for the set pa
kingpolyhedron has been identi�ed in [14℄. In Chapter II.2 of [12℄ the problem stru
ture isused to determine fa
ets for 
onvex hull of the 
onstraint sets of some NP�hard ILPproblems. By some examples, it is shown in [14℄ and Chapter II.2 [12℄ that generatingfa
ets is 
onsiderably e�e
tive when solving the NP�hard ILP problems. Studyingknown fa
ets for well known integer linear programming problems 
an always beused as a guide for �nding 
lasses of fa
ets for the arising new problems in the �eldof integer programming. The following result from Theorem 3.6 of Chapter I.4 in[12℄, is widely used to determine fa
ets of conv(S).15



Theorem 2.2 (
hara
terization of fa
ets). Let P be a full-dimensional polyhe-dron and let F =
{
x ∈ P | πT x = π0

} be a proper fa
e of P (i.e., ∅ 6= F ⊂ P ). Thenthe following two statements are equivalent:1. F is a fa
et of P .2. If λT x = λ0 for all x ∈ F , then (λ, λ0) = α(π, π0) for some α ∈ R.We obtain valid inequalities for a given set P by taking non-negative linear 
om-binations of rows of Ax ≤ b. This would give an in�nite family of valid inequalities.Moreover under some te
hni
al assumptions stated in the theorem below (ChapterII.1, Prop. 1.1 in [12℄), all valid inequalities for P 
an be obtained this way. Thelinear 
ombinations 
an be restri
ted to using, at most, min(m,n) rows of A.Theorem 2.3. Let πx ≤ π0 be any valid inequality for P = {x ∈ Rn
+ : Ax ≤ b}.Then πx ≤ π0 is either equivalent to or dominated by an inequality of the form

uAx ≤ ub, u ∈ Rm
+ , if and only if P 6= ∅, {u ∈ Rm

+ : uA ≥ π} 6= ∅ and A =
(
A′

I

),where I is an n× n identity matrix and A′ is a (m− n)× n sub-matrix of A.A simple pro
edure for 
ombining the rows of the matrix A to obtain valid in-equalities for the set P has been developed by Chvátal and Gomory. The Chvátal�Gomory pro
edure stated in the next se
tion is from referen
es [12℄ and [19℄.2.3.2 The Chvátal�Gomory pro
edure to 
onstru
t valid inequalitiesConsider the feasible region S of the general ILP problem. How one 
an obtainvalid inequalities for S is based on the simple prin
iple that if a is an integer and
a ≤ b, then a ≤ ⌊b⌋, where ⌊b⌋ is the largest integer less than or equal to b. Let
X = {y ∈ Z1 : y ≤ b}; then the inequality y ≤ ⌊b⌋ is valid for X.The Chvátal�Gomory pro
edure: For the set S = {x ∈ Zn

+ : Ax ≤ b},where A = (a1, a2, . . . , an) and N = {1, . . . , n} it holds thati. The inequality ∑
j∈N uajxj ≤ ub is valid for P for all u ≥ 0 sin
e ∑

j∈N ajxj ≤ b,ii. The inequality ∑
j∈N⌊uaj⌋xj ≤ ub is valid for P for all u ≥ 0,iii. The inequality ∑

j∈N⌊uaj⌋xj ≤ ⌊ub⌋ is valid for S whenever x is integer, andthus ∑
j∈N⌊uaj⌋xj is integer.The valid inequality in iii 
an be added to the linear system Ax ≤ b, and thenthe Chvátal�Gomory pro
edure 
an be repeated to the original set of inequalities orthe system with new inequalities. Note that it is su�
ient to 
ombine at most ninequalities. This general pro
edure is 
alled the Chvátal�Gomory (CG) roundingmethod, and the inequalities it produ
es are 
alled CG inequalities. It 
an be provedthat by applying the Chvátal�Gomory (CG) pro
edure a �nite number of times allof the valid inequalities for S 
an be generated (Chapter 8, Theorem 8.4 in [19℄).Note that non-dominated CG-
uts only arise for u ∈ [0, 1)m provided that (A, b) isintegral (Chapter II.2 of [12℄).2.3.3 Software for �nding fa
ets by proje
tionIn Se
tion 2.2.2 it is stated that if a 
omplete des
ription of the polyhedron de�ningthe ILP problem is at hand, then a polynomial algorithm whi
h solves the ILP16



exists. So, we may ask if is it possible to �nd all the fa
ets of the polyhedronde�ning ILP. Porta and Polymake ([16℄) are two 
omputer software designed foranalyzing polytopes and polyhedra; both are 
apable of generating all fa
ets forsmall instan
es of ILP. These two software �nd fa
ets based on a proje
tion methodwhi
h is des
ribed very brie�y here.In integer programming it is in prin
iple possible to �nd all the feasible solutions ifthe polyhedron de�ning the problem is bounded. De�ne P (A, b) = {x ∈ Rn : Ax ≤
b} where A ∈ Rm×n and b ∈ Rm to be a polytope. If F = (f1, f2, . . . , fM) is the setof integral feasible solutions inside the polytope P (A, b) then conv(P (A, b) ∩ Zn) =
conv(F ). The set of all the integer feasible solutions in P (A, b) 
an be utilized to�nd the fa
ets de�ning the 
onvex hull of P (A, b) ∩Zn. Every x ∈ P (A, b) ∩Zn 
anbe de�ned by

M∑

i=1

λifi = x, ∀x ∈ P (A, b) ∩ Zn, (8a)where M∑

i=1

λi, = 1, λi ≥ 0, i = 1, . . . ,M, (8b)for some λi ∈ R1
+, i = 1, . . . ,M . The idea is to eliminate the variables λi, toyield a system of equations 
ontaining only x. At the start we proje
t the setde�ned by inequalities (8) on the plane de�ned by λ1 = 0 and obtain a system ofinequalities whi
h does not 
ontain λ1. The proje
tion is done by the Fourier-Motzkinelimination pro
edure ([8℄). By iteratively proje
ting out the variables λ1, . . . , λM ,we obtain a system of inequalities 
ontaining the variable x and whi
h are fa
etsto the 
onvex hull of P (A, b) ∩ Zn. A big disadvantage with the Fourier�Motzkinmethod is that its 
omputational 
omplexity is exponential. (For more details, see[16℄.) Hen
e, even for small size instan
es this approa
h to �nd fa
ets 
an be verytime 
onsuming. However, studying the fa
ets of small instan
es of an ILP may helpto an understanding of the fa
ial stru
ture for that 
lass of problems.2.4 Chvátal�Gomory 
uts and the separation problemIn Se
tion 2.3.2 we have presented the Chvátal�Gomory pro
edure to obtain validinequalities (CG-
uts) for the feasible set of the ILP problem. Also, the separationproblem is de�ned in Se
tion 2.2.2. In this se
tion we dis
uss some further de�nitionsand notions of the Chvátal�Gomory separation problem. This se
tion is divided intotwo major parts. In the beginning we give the de�nition of the �rst Chvátal 
losureand then present the rank-1 separation problem. The remainder of this se
tiondis
usses the proje
ted 
uts for the mixed integer linear programming problems.The refren
es [7℄ and [4℄ are mainly used for this se
tion.Assume P = {x ∈ Rn

+ : Ax ≤ b} where A is an m × n integer matrix, and ban m-dimensional integer ve
tor. Let PI = conv(S) with S = P ∩ Zn and assume
PI 6= P . As de�ned in Se
tion 2.3.2, a CG 
ut is a valid inequality for PI of the form
⌊u′A⌋x ≤ ⌊u′b⌋, where u ∈ Rm

+ . The ve
tor u is 
alled the CG multiplier ve
tor.Note that CG-
uts depend on P and not dire
tly on PI , i.e. di�erent formulationsof the same problem 
an produ
e di�erent CG-
uts. The rank-1 
losure or the �rstChvátal Closure of P is de�ned as:
P1 = {x ∈ P : ⌊u′A⌋x ≤ ⌊u′b⌋, for all u ∈ [0, 1)m}. (9)17



We de�ne a {0, 1/2}�CG-
ut as a CG-
ut with multipliers u′ ∈ {0, 1/2}m and de�ne
P1/2 the polyhedron obtained by interse
ting P with the half-spa
es indu
ed by all
{0, 1/2}�CG-
uts, i.e:

P1/2 =
{
x ∈ P : ⌊u′A⌋x ≤ ⌊u′b⌋, for all u ∈ {0,

1

2
}m

}
. (10)Noti
e that P1/2 is a fun
tion of A and b. Clearly, PI ⊆ P1 ⊆ P1/2 ⊆ P . Although

P1 = P holds if and only if P = PI , one 
an have P1/2 = P even if P 6= PI . This
ase o

urs, e.g., when 1
2b ∈ Zm. Therefore, P1 ⊂ P in 
ase P 6= PI , i.e., P1 gives abetter approximation of PI than P . In some 
ases, P1 = P1/2 = P as, e.g, when Pis the solution set for the mat
hing problem ([5℄).2.4.1 Chvátal-Gomory separation problemBe
ause of the well-known equivalen
e between optimization and separation, wewill address the CG separation problem in whi
h we are given any point x∗ ∈ Rnand sear
h for a hyperplane separating x∗ from P1, if any exists. Without loss ofgenerality assume that this x∗ lies in P . Therefore the separation problem is thefollowing.De�nition 2.16 (CG-SEP). Given any point x∗ ∈ P �nd a CG 
ut that is violatedby x∗, i.e., �nd u ∈ Rm

+ su
h that ⌊u′A⌋x∗ > ⌊u′b⌋, or prove that no su
h u exists.If, in addition to the assumption in the de�nition of CG-SEP, u ∈ {0, 1
2}, thenthe separation problem is 
alled {0, 1

2}-SEP. It seems ne
essary to remind that theavailability of a polynomial-time algorithm for CG-SEP would allow to optimize inpolynomial time, a linear obje
tive fun
tion over P1 or P1/2. {0, 1
2}-SEP is equivalentto �nding the minimum-weight member of a binary 
lutter (see [5℄), whi
h is an NP-hard problem, implying that {0, 1

2}-SEP is NP-
omplete [5℄. There exist, however,spe
ial 
ases where {0, 1
2}-SEP is polynomially solvable. {0, 1

2}-SEP 
an be solvedin polynomial time if ĀT is an edge-path in
iden
e matrix of a tree(EPT matrix)2or if Ā =
(

M
I

), and M is an EPT matrix ([5℄).In general CG-SEP is NP-hard, so optimizing over P1 is also NP-hard. Herewe are interested in optimizing the obje
tive ve
tor c′x over the polyhedron P1 inorder to get a hopefully tight lower bound on the optimal value of the original integerlinear programming problem.2.4.2 Proje
ted Chvátal-Gomory 
uts for mixed integer linear programsSuppose we are given a mixed-integer problem with the feasible region:
T = {x ∈ Rp

+, y ∈ Zn
+ : Ax + Gy ≤ b},where A and G are m × n and m × p rational matri
es, respe
tively and, b is an

m-ve
tor. One should 
onsider that the CG-pro
edure does not work when thereare 
ontinuous variables, in parti
ular, we 
an not round down the right-hand sideof an inequality to its integer part even when all of the 
oe�
ients on the left-hand2A p × q {0, 1}-matrix A is an EPT-matrix if there is a tree T with p + 1 nodes su
h that ea
h
olumn of A is the 
hara
teristi
 ve
tor of the edges of a path in T .18



side are integers. However, we 
an obtain a pro
edure, related to the disjun
tivepro
edure, that generalizes the CG-pro
edure and generates valid inequalities for
T ([12℄). These 
uts are 
alled Gomory Mixed Integer (GMI) 
uts (also known asMIR 
uts and split 
uts). Although it is easy to �nd a GMI 
ut that separatesan integer infeasible basi
 solution of the linear programming relaxation, separatingother points by GMI 
uts is NP-hard ([4℄).Consider the Mixed Integer Linear Program MILP de�ned in the region T as

min{c′x + h′y : Ax + Gy ≤ b, x ∈ Rp
+, y ∈ Zn

+},where c ∈ Rp and h ∈ Rn. Also 
onsider the following two polyhedra in the (x, y)-spa
e
PXY = {(x, y) ∈ Rn

+ ×Rp
+ : Ax + Gy ≤ b}; (11)

PXY
I = conv({(x, y) ∈ P (x, y) : y integral}). (12)Our aim here is to proje
t �rst the linear programming relaxation of the MILP athand onto the spa
e of the integer variables y, and then to derive CG-
uts for theproje
ted polyhedron. For this purpose, we de�ne the proje
tion of PXY onto thespa
e of the y variables as

P Y = {y ∈ Rp
+ : ∃ x ∈ Rn

+ s.t. Ax + Gy ≤ b}

= {y ∈ Rp
+ : ukGy ≤ ukb, k = 1, . . . ,K}

= {y ∈ Rp
+ : Ḡy ≤ b̄},where u1, . . . , uK are the extreme rays of the proje
tion 
one {u ∈ Rm

+ : u′A ≥ 0′},
Ḡ = ukG and b̄ = ukb.The proje
ted Chvtátal-Gomory (pro-CG) 
an be obtained from the system Ḡy ≤
b̄, y ≥ 0, i.e., ⌊w′Ḡ⌋y ≤ ⌊w′b̄⌋ for some w ≥ 0. Note that any row of Ḡy ≤ b̄ is alinear 
ombination of the rows of Gy ≤ b with multipliers ū ≥ 0 where ūA ≥ 0.Therefore a pro-CG 
ut 
an equivalently and dire
tly be de�ned as an inequality ofthe form

⌊u′G⌋y ≤ ⌊u′b⌋ for any u ≥ 0 su
h that u′A ≥ 0′. (13)Denote the rank-1 Chvátal 
losure of P Y by P Y
1 and the 
onvex hull of P Y ∩ Zn by

P Y
I .In Chapter 5 we model and solve the rank-1 separation problem for the oppor-tunisti
 repla
ement problem. We also generate pro-CG 
uts for the opportunisti
repla
ement problem de�ned in Chapter 3.2.5 Benders de
omposition pro
edure for mixed-variable program-ming problemsThe de
omposition method refers to an algorithm whi
h partitions the variables ofan optimization problem into two subsets. The �rst step of the Benders algorithm
onsist of �xing a 
ertain amount of variables in our original ILP problem, herebymaking the resulting sub-problem easy to solve. The essen
e of Benders de
ompo-sition lies in determining whi
h variables to �x, su
h as to simplify the resulting19



sub-problem. This de
ision will often require spe
i�
 knowledge of the problem athand as well as known ways to solve similar problems qui
kly.This se
tion is divided into two parts, �rst we present the theoreti
al develop-ments that leads to the de
omposition. It is followed by the Benders algorithm.2.5.1 An equivalent representation of mixed integer programing prob-lemsConsider the general mixed integer programming problem de�ned byminimize c′x + d′y, (14a)s.t. Ax + Fy ≥ b, (14b)
x ≥ 0, y ∈ S, (14
)where A and F are m× n- and m× p- matri
es, respe
tively, x and c are n-ve
tors,

d and y are p-ve
tors. S is a nonempty and bounded subset of Zn. Here, the xvariables are 
ontinuous and y dis
rete. Ex
ept for the integrality requirements on
y, the model (14) has a linear programming format. Benders method de
omposesthis model in su
h a way that it 
an be solved as an alternating sequen
e of linearprograms and pure integer programs.Assume that the ve
tor y is �xed to some spe
i�
 value. For this ve
tor to befeasible, it must lie in the set

R = {y ∈ S | ∃x ≥ 0 su
h that Ax ≥ b− Fy}. (15)We assume that the set R is nonempty, otherwise the original problem (14) is infea-sible. We 
an rewrite the problem (14) as that tominimize
y∈R

{
d′y + min{c′x | Ax ≥ b− Fy, x ≥ 0}

}
. (16)When the value of y is �xed, the minimization subproblem of (16) is a linear pro-gramming problem in the variables x and we formulate the linear programming dualof this subproblem. By the fundamental theorem of duality in linear programming(Theorem 6.1, page 267, [3℄) it holds thatmin

x
{c′x | Ax ≥ b− Fy, x ≥ 0} = max

u
{(b− Fy)u′ | A′u ≤ c, u ≥ 0}, (17)whi
h states that if the primal and dual problems are feasible they possess �niteoptimal solutions with equal obje
tive values. This lets us formulate a new equivalentproblem to (14) as that tominimize

y∈R

{
d′y + max{(b− Fy)′u | A′u ≤ c, u ≥ 0

}
. (18)Followed from the fa
t that an optimum solution to the maximization subproblemof (18), (i.e., the right problem in (17)) must be at one of the extreme points of itsfeasible region, a di�erent approa
h 
an be taken to solve it. Consider the polyhedron

P de�ned by the 
onstraint set of the dual problem; P = {u ∈ Rm | A′u ≤ c, u ≥ 0}.Assume that P is nonempty; otherwise, the dual problem is infeasible whi
h impliesthat (14) is unbounded. The optimum of the maximization subproblem is at an20



extreme point of P or approa
hes +∞ along an extreme ray. If the dual is unboundedthen, by the duality theorem (see [3℄), the 
orresponding primal problem and �asa result� the original problem (14) is infeasible. But we assume that R 6= ∅, so thepolyhedron P is bounded and the number of extreme points is �nite, so we only needto 
he
k the extreme points to �nd the maximum (P unbounded ⇐⇒ (14) infeasible
⇐⇒ R 6= ∅). Let up

i , i = 1, . . . , np be the extreme points of P . Then the problem(18) 
an be rewritten asminimize
y∈R

{
d′y + max

1≤i≤np

(b− Fy)′up
i

}
, (19)whi
h is equivalent tominimize z (20a)subje
t to z ≥ d′y + (b− Fy)′up

i , i = 1, . . . , np, (20b)
y ∈ R. (20
)In the model (20), there is one 
onstraint for ea
h extreme point of P .Applying the Farkas lemma (Lemma 5.1, Se
.5.3, [3℄) to the linear equality system

Ax− s = b−Fy with x ≥ 0, s ≥ 0, where y ∈ R is �xed, yields that y is feasible for(14) if and only if
(b− Fy)′u ≤ 0 (21)for all u ∈ P0 = {u ∈ Rm | A′u ≤ 0, u ≥ 0}. The 
one P0 is a polyhedron; thereforeea
h ve
tor u ∈ P0 
an be written as a 
onvex 
ombination of the generators ur

i ,
i = 1, . . . , n (i.e., extreme rays of P0). Ea
h u ∈ P0 
an then be expressed as

u =
nr∑

i=1

λiu
r
i , where λi ≥ 0, i = 1, . . . , nr. (22)By substituting (22) in (21) we have that ∑nr

i=1 λi(b − Fy)′ur
i ≤ 0 whi
h holds forall λi ≥ 0 if and only if

(b− Fy)′ur
i ≤ 0, i = 1, . . . , nr. (23)Therefore, the ve
tor y ∈ S is feasible for (14) if and only if (22) holds. Hen
e theset R 
an be written as

R = {y ∈ S | (b− Fy)′ur
i ≤ 0, i = 1, . . . , nr, }. (24)Using this expli
it de�nition of R we obtain a new formulation of (14) given byminimize z (25a)subje
t to z ≥ d′y + (b− Fy)′up

i , i = 1, . . . , np, (25b)
0 ≥ (b− Fy)′ur

i , i = 1, . . . , nr, (25
)
y ∈ S. (25d)The problem (25) is often referred to as the �
omplete master problem� of Bendersde
omposition algorithm. In the model (25) there are integer variables y and onereal variable z. Theorem 1 on page 374 in [11℄ summarizes the previous statements.21



Theorem 2.4 (Equivalen
e of (25) and (14)).a. (25) has a feasible solution ⇐⇒ (14) has a feasible solution.b. (25) is feasible without having an optimal solution ⇐⇒ (14) is feasible withouthaving an optimal solution.
. If (̊z, ẙ) solves (25) and x̊ solves the linear program tominimize c′x (26a)subje
t to Ax ≥ b− F ẙ, x ≥ 0. (26b)then (̊x, ẙ) solves (14) and z̊ = c′x̊ + d′ẙd. If (̊x, ẙ) solves (14) and z̊ = c′x̊ + d′ẙ, then (̊z, ẙ) solves (25).2.5.2 Benders algorithmTheorem 2.4 states that for obtaining the optimal solution to the original model(14), one needs to solve (25) to �nd the solution (̊z, ẙ) and then obtain the optimalvalue x̊ by solving the primal problem in (17) with y = ẙ. The new model (25) 
annot be pra
ti
ally solved be
ause its formulation requires that all extreme points andextreme rays of (25) are identi�ed. The number of extreme points and extreme rays
an be 
onsiderably large even for small dimension problems. Sin
e only a smallnumber of 
onstraints will be binding at the optimal solution, (25) 
an be relaxedto a problem with no or few 
onstraints. De�ne the new modi�ed problem (therestri
ted master problem)minimize z (27a)subje
t to z ≥ d′y + (b− Fy)′up
i , i ∈ I1, (27b)

0 ≥ (b− Fy)′ur
i , i ∈ I2, (27
)

y ∈ S. (27d)where I1 and I2 are proper subsets of the sets {1, . . . , np} and {1, . . . , nr}, respe
-tively. Let G, G′ be the set of all (z, y) satis�ed by the 
onstraints (25a)�(25d) and(27b)�(27d) respe
tively. Then G ⊆ G′. Benders algorithm begin with solving theproblem (27). If the solution satis�es the remaining 
onstraints in (25a) and (25d),the solution is also optimal to (25), i.e., it lies in G. If not, at least one 
onstraintin (25) is not satis�ed. The linear programming problem or its dual in (17) is thensolved to �nd a new extreme point up
i or an extreme ray ur

i . This solution is used tode�ne a new 
onstraint whi
h will be added to (27b) or (27
).The maximization dual problem is solved in ea
h step of Benders method, soit is of importan
e to note the 
onditions where it is unbounded or has no feasiblesolution. The feasible region P of the dual problem is independent of the variable y.If the dual problem has no feasible solution, the primal problem is either infeasibleor unbounded for all y ∈ R whi
h yields that (14) is unbounded or infeasible. This
ase is not interesting for pra
ti
al problems so we assume that the dual problem in(17) possesses feasible solutions. If the dual problem has an unbounded solution forsome y ∈ S, the primal is then infeasible for that y and the simplex method lo
atesan extreme ray. This 
ase may frequently happen and should be 
onsidered in the22



algorithm by adding a new 
onstraint to (27
) with the new obtained extreme ray.Now we state the general Benders method in details.Let (27) have a �nite optimal solution (̊z, ẙ). The solution is optimal to (25) ifand only if it holds that
(b− F ẙ)′up

i ≤ z̊ − d′ẙ, i = 1, . . . , np, (28a)
(b− F ẙ)′ur

i ≤ 0, i = 1, . . . , nr. (28b)We intend to �nd the most unsatis�ed 
onstraint in (28a) or (28b). The mostunsatis�ed 
onstraint of (28a) is given byarg max
1≤i≤np

(b− F ẙ)′up
i ≤ z̊ − d′ẙ. (29)Sin
e the linear fun
tion (b − F ẙ)′u attains a �nite maximum over P at an ex-treme point of P , the 
onstraint (29) 
an be obtained by solving the linear program

max
{
(b−F ẙ)′u | u ∈ P

}, whi
h is the dual problem in (17) with y = ẙ. This problemhas either a �nite optimal solution or an unbounded solution. In the unboundness
ase the obje
tive value approa
hes +∞ along the half line, up
i + λur

i , λ ≥ 0 and
(b − F ẙ)′ur

i > 0 for some i ∈ {1, . . . , nr}. This implies that one of the 
onstraints(28b) is violated. Thus both sets of 
onstraints (28a) and (28b) are satis�ed if andonly if it holds thatmax
u
{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} ≤ z̊ − d′ẙ. (30)If some of the 
onstraints (28a) and (28b) are not satis�ed, then it holds thatmax

u
{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} > z̊ − d′ẙ. (31)Consider the problem (27) with few or no 
onstraints. If (27) is infeasible so are(25) and (14). Let (̊z, ẙ) be �nite optimal solution of the problem (27). If (27)has an unbounded solution let z̊ = −∞ and ẙ be any ve
tor in S. If the solutionto the maximization linear dual problem in (17) is bounded it is obtained at anextreme point of P , say ů, then (b−F ẙ)′ů > z̊− d′ẙ. This 
onstraint is not satis�edby the solution to the 
urrent problem (27), therefore we add the 
onstraint z ≥

(b− F ẙ)′ů + d′y to the 
urrent problem whi
h yields a new (27). In the 
ase wherethe solution of the linear dual program (17) leads to unboundness, an extreme ray of
P , v̊ is found, where v̊ satisfy (b − F ẙ)′̊v > 0, but ẙ does not satisfy the 
onstraint
0 ≥ (b − Fy)′̊v. Thus, this 
onstraint is added to (27). The problem (27) is solvedagain with the new 
onstraint, a new solution x̊ is obtained by solving the primalproblem in (17) with y = ẙ. Now the optimality of the solution to (27) should be
he
ked. An optimality test 
an be obtained dire
tly from (30), a

ording to thefollowing theorem.Theorem 2.5 (Optimality test(Theorem 2 Se
.7.3 [11℄)). (̊z, ẙ) is optimal for (25)if and only if

max{(b− F ẙ)′u | A′u ≤ c, u ≥ 0} = z̊ − d′ẙ. (32)Theorem 2.6 (Finite 
onvergen
e(Theorem 3 Se
.7.3 [11℄)). Benders iterativepro
edure will terminate in a �nite number of iterations, either with the informationthat (14) is infeasible or unbounded, or with an optimal solution to (14).23



Proof. The program (25) has a �nite number of 
onstraints. If the optimality testis not passed, then one or more new 
onstraints are added to the program (27).Thus, in a �nite number of iterations either the optimality test is passed or a fullset of 
onstraints will be obtained. The program (14) is infeasible if and only if theprogram (27) is infeasible. The program (14) is unbounded if and only if the duallinear program is infeasible, whi
h will be dete
ted in the �rst step.In Chapter 4 some spe
ial properties of the opportunisti
 repla
ement problemwill be dete
ted whi
h will be essential in solving it using Benders de
ompositionmethod. Then Benders algorithm adopted to our problem will be presented.In the following 
hapter we introdu
e the opportunisti
 repla
ement problem.

24



3 The opportunisti
 repla
ement problemThis 
hapter is dedi
ated to de�ning the opportunisti
 repla
ement model and thestudy of some of its mathemati
al properties. In Se
tion 3.1 a mathemati
al modelfor determining an optimal opportunisti
 repla
ement s
hedule when 
omponent livesare deterministi
 is introdu
ed. The opportunisti
 repla
ement problem is modeledas an integer linear programming problem. This basi
 opportunisti
 repla
ementproblem is NP-hard. In Se
tion 3.2 it is stated that the 
onvex hull of the set offeasible repla
ement s
hedules is full�dimensional. When the maintenan
e o

asionsare �xed, the remaining problem 
an be stated as a linear program for the 
ase whenthe maintenan
e 
osts are monotone with time, this linear program 
an be solvedby a greedy pro
edure. Furthermore, all the inequalities that are ne
essary in thede�nition of the problem are fa
et-indu
ing (Se
tion 3.3). At the end of this 
haptersome fa
ets of the polyhedron de�ning the opportunisti
 repla
ement problem whi
hhas been developed in [13℄ is brie�y presented. The referen
es used in this 
hapterare [18℄, [17℄ and [13℄.3.1 The opportunisti
 repla
ement modelIn this se
tion we introdu
e an optimization model for determining an optimal main-tenan
e s
hedule when the problem data is deterministi
. Consider a set N of 
om-ponents; with |N | = N . Consider also a set T = {1, . . . , T} of times, with T ≥ 2.
T is 
onsidered as the time horizon for the maintenan
e planning. Ea
h 
omponent
i ∈ N has a �xed life of Ti. Without loss of generality we 
an assume that for all
i ∈ N , Ti ≥ 2 holds, otherwise repla
ement of 
omponent i is ne
essary at ea
h timestep. Also Ti ≤ T , i ∈ N , i.e., ea
h 
omponent needs at least one repla
ement duringthe time horizon. The pur
hase 
ost at time t ∈ T for 
omponent i is cit > 0. Thereis a �xed 
ost of dt > 0 asso
iated with performing maintenan
e for any 
omponent
i at time t, independent of the number of parts repla
ed. For any given 
omponent
i ∈ N in the system, {l + 1, . . . , l + Ti} 
orresponds to a window of Ti time steps,starting at time step l + 1, in whi
h 
omponent i must be repla
ed.The obje
tive is to minimize the total 
ost for having a fun
tional system withoutfailure between times 1 and T , i.e., for ea
h 
omponent i ∈ N , no period withoutrepla
ement longer than the 
omponent's life Ti may exist. The model 
onsiders the
ost of maintenan
e o

asions and minimizes the maintenan
e 
osts. We de�ne thede
ision variables

zt =

{
1, if maintenan
e shall o

ur at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if 
omponent i shall be repla
ed at time t,

0, otherwise, i ∈ N , t ∈ T ,The opportunisti
 repla
ement problem is de�ned as to
minimize

(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtzt

)
, (33a)

subject to

l+Ti∑

t=l+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (33b)25



xit ≤ zt, t ∈ T , i ∈ N , (33
)
xit ≥ 0, t ∈ T , i ∈ N , (33d)
zt ≤ 1, t ∈ T , (33e)

xit ∈ {0, 1}, t ∈ T , i ∈ N , (33f)
zt ∈ {0, 1}, t ∈ T . (33g)The 
onstraints (33b) state that for all i ∈ N and in any time window of length Ti,the 
omponent i must be repla
ed at least on
e. The 
onstraints (33
) ensure thatif 
omponent i is repla
ed at time t a maintenan
e o

asion o

urs, whi
h enfor
esthe payment of the �xed maintenan
e 
ost dt. When this 
ost is paid it leads to noextra maintenan
e 
osts. The 
onstraints (33d)�(33g) de�ne the restri
tions on thevariables xit and zt for all i ∈ N and t ∈ T . If the 
onstraints (33f) and (33g) areremoved, a so 
alled LP relaxation of the problem is obtained.3.2 Complexity analysis and spe
ial propertiesA

ording to integer programming literature the set 
overing problem is 
onsideredto be an NP-hard problem. In [18℄, Theorem 1, it is proved that the set 
overingproblem is polynomially redu
ible to the opportunisti
 repla
ement problem. Thisleads to the 
on
lusion that the opportunisti
 repla
ement problem is NP-hard.However when �xing the values of some of the variables (e.g., z variables) in themodel (33), the resulting subproblem turns out to possesses �ni
er� properties. Inthis se
tion some spe
ial properties of the opportunisti
 repla
ement problem (33) ispresented.Consider the polyhedron in RN×T de�ned by (33b)�(33d) when zt, t ∈ T are�xed to binary values . Let z̃t ∈ {0, 1}, t ∈ T and de�ne T̃ = {t ∈ T |z̃t = 1}. Thefollowing proposition is stablished in [18℄.Proposition 3.1 (integrally polyhedron). The polyhedron de�ned by (33b), (33d),and
xit ≤ 1, t ∈ T̃ , (34a)
xit ≤ 0, t ∈ T \ T̃ , (34b)for i ∈ N , is integral.Proof. The 
onstraint matrix A 
orresponding to the system of inequalities given by(33b) and (34) is an interval matrix (see De�nition 2.13). Hen
e AT is an intervalmatrix and hen
e TU (see Se
tion 2.2.3). Proposition 2.1. on page 540 in [12℄ statesthat the transpose matrix of a TU matrix is TU . Thus the 
onstraint matrix Ais TU . Sin
e the right-hand sides of (33b) and (34) are all integral it follows fromProposition 2.4 that the 
orresponding polyhedral is integral.A dire
t result of Proposition 3.1 is that the binary requirements (33f) on thevariables xit 
an be relaxed, provided that the opportunisti
 repla
ement model isto be solved using an algorithm that dete
ts extreme optimal solutions to the linearprogramming subproblems.A spe
ial instan
e of the model (33) o

urs when the 
osts are monotonous withtime, i.e., 
osts are non-in
reasing (ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t) or26



non-de
reasing (ci,t+1 ≥ cit and dt+1 ≥ dt for all i and t) with time. For these 
asesinteresting spe
ial properties of the optimal solutions 
an be proven.Letting the variables zt, t ∈ T , be assigned binary values, z̃t ∈ {0, 1}, the remain-ing optimization model separates over the 
omponents i ∈ N and the 
orresponding
onstraint matrix is TU. Thus for every 
omponent i ∈ N the linear programmingsubproblem is given byminimize
xi

∑

t∈T

citxit, (35a)
l+Ti∑

t=l+1

xit ≥ 1, l = 0, . . . , T − Ti, (35b)
0 ≤ xit ≤ z̃t, t ∈ T . (35
)Assume without loss of generality that for ea
h i ∈ N , the 
osts cit and dt for all

t ∈ T are non-in
reasing with time. We 
laim that Algorithm 1, based on a greedyrule, yields an optimal solution to the linear program (35). In Algorithm 1, from[17℄, 
omponent i is repla
ed as late as possible within its life and among the times
t ∈ T̃ . Algorithm 1 is followed by a proposition, stated in [17℄, whi
h proves thatthe non-in
reasing greedy rule yields the optimum to the subproblem (35).Algorithm 1 (Non-in
reasing 
ost greedy rule for 
omponent i ∈ N )
T̃ ← {t ∈ T | z̃t = 1} ∪ {T + 1};
x̃it ← 0 ∀t ∈ T ; t̃← min{t | t ∈ T̃ }; s← 0; T̃ ← T̃ \ {t̃};while T̃ 6= ∅ do

t̂← min{t | t ∈ T̃ };if Ti < t̂− s then
x̃it̃ ← 1; s← t̃;end if

t̃← t̂; T̃ ← T̃ \ {t̃};end whileReturn x̃it, t ∈ T .Proposition 3.2 (Non-in
reasing greedy rule yields optimum). Assume that
ci,t+1 ≤ cit holds, i ∈ N , t ∈ T \{T}. Let z̃t ∈ {0, 1}, t ∈ T , and assume that the set
T̃ = {t ∈ T | z̃t = 1} is su
h that for ea
h t ∈ T̃ ∪ {0} there is an s ∈ T̃ ∪ {T + 1}with 1 ≤ s− t ≤ mini∈N Ti. Then, Algorithm 1 produ
es an optimal solution to themodel (35).Proof. By assumption, x̃i is feasible in (35). Let x̄i 6= x̃i be feasible in (35). Postpone,where possible, repla
ements 
orresponding to x̄i to the next time point in T̃ ∪{T+1}.This will transform x̄i to x̃i without introdu
ing any additional repla
ements and ata non-in
reasing 
ost. Hen
e, ∑

t∈T cit(x̃it − x̄it) ≤ 0 holds; the result follows.For the non-de
reasing 
osts an analogous algorithm and result 
an be obtained.The algorithm and more details is found in [17℄ and [18℄.27



3.3 The repla
ement polytopeIn this se
tion properties of the polyhedron de�ned by the opportunisti
 repla
ementis stated. A 
omplete des
ription of the polytope de�ned the opportunisti
 repla
e-ment problem 
an be a
hieved by a �nite set of linear inequalities. From Se
tions2.1.2 and 2.2.2 it follows that by knowing all the inequalities des
ribing the 
onvexhull of the set de�ning the problem, the ILP 
an be solved as a linear programmingproblem. Unfortunately, for NP-hard problems, there is almost no hope of �ndinga good des
ription. Still, for given instan
es of the opportunisti
 repla
ement prob-lem our goal here is to �nd e�e
tive ways to approximate the 
onvex hull and to
ontribute to this des
ription by studying polyhedral properties and sear
hing for
lasses of fa
ets.Let the set S ⊂ RN×T ×{0, 1}T be de�ned by the values of (x, z) that satisfy theinequalities (33b)�(33e). De�ne the repla
ement polytope as conv(S). The followingproposition is stated and proven in [18℄.Proposition 3.3 (Dimension of the repla
ement polytope). If Ti ≥ 2 forall i ∈ N , then the dimension of conv(S) is (N + 1)T , that is, conv(S) is full-dimensional.Proposition 3.4 ( The inequalities (33b)�(33e) de�ne fa
ets of the repla
e-ment polytope). If Ti ≥ 2 for all i ∈ N , then ea
h of the inequalities: ∑l+Ti

t=l+1 xit ≥
1, l = 0, . . . , T − Ti, i ∈ N ; xit ≤ zt, i ∈ N , t ∈ T ; xkt ≥ 0, k ∈ N : Tk ≥ 3, t ∈ T ;and zt ≤ 1, t ∈ T , de�ne a fa
et of conv(S).For proving Proposition 3.4 the Theorem 2.2 
an be utilized (see [18℄ or [17℄).The inequalities (33b)�(33e) de�ne fa
ets for conv(S) and they are thus ne
essaryin the des
ription of the polyhedron conv(S) but they are not 
ompletely des
ribingthe 
onvex hull of S, i.e., they are not su�
ient to de�ne conv(S) ([18℄).3.4 Previous work on fa
et generation for the opportunisti
 re-pla
ement problemThe polyhedron de�ned by the 
onstraints of the opportunisti
 repla
ement problemhas non-integer extreme points; therefore, �nding the hyperplanes whi
h, in additionto the 
onstraints of the asso
iated linear programming problem, de�ne the 
onvexhull of integer solutions to the problem is ne
essary. New 
lasses of fa
ets has beenfound for the opportunisti
 repla
ement problem in [13℄ derived by 
ombinatorialimpli
ations and {0, 1/2}-Chvátal-Gomory 
uts. In this se
tion we brie�y dis
ussthese 
lasses of fa
ets.Assume an instan
e of the opportunisti
 repla
ement problem (33) is in hand.Let p, q ∈ N be su
h that Tq < Tp. It is shown in [13℄ for s ∈ {1, . . . , l + Tp − Tq}and l ∈ {0, . . . , T − Tp} that the inequality

l+s−1∑

t=l+1

xpt +
∑

t∈{l+s,l+s+Tq}

zt +

l+s+Tq−1∑

t=l+s+1

(xpt + xqt) +

l+Tp∑

t=l+s+Tq+1

xpt ≥ 2, (36)de�nes a fa
et for conv(S). Some extensions 
an be done on this inequality. As-sume that p and l are �xed and let m inequalities of the form (36) be given as28



∑
i∈N

∑
t∈T λ

(k)
it xit +

∑
t∈T µ

(k)
t zt ≥ ρ(k) for k = 1, . . . ,m, where λ

(k)
it and µ

(k)
t arethe 
oe�
ients of xit and zt in ea
h inequality k, and ρ(k) is the right hand side
onstant in inequality k. De�ne a new inequality by

∑

i∈N

∑

t∈T

λitxit +
∑

t∈T

µtzt ≥ ρ, (37)where λit =

m∑

k=1

λ
(k)
it , i ∈ N \ {p}, t ∈ T ,

λpt = min
k
{λ

(k)
it }, t ∈ T ,

µt = max
k
{µ

(k)
t }, t ∈ T ,and ρ = 1 +

m∑

k=1

(
ρ(k) − 1

)
.We now seek to �nd some 
onditions under whi
h the inequality (37) is valid, andsome 
onditions under whi
h it de�nes a fa
et. Let τ

(k)
1 = min{t | µ

(k)
t = 1} and

τ
(k)
2 = max{t | µ

(k)
t = 1}. We will assume that these parameters are ordered su
hthat: τ

(1)
1 ≤ τ

(2)
1 ≤ . . . ≤ τ

(m)
1 and τ

(1)
2 ≤ τ

(2)
2 ≤ . . . ≤ τ

(m)
2 . The followingproposition from [13℄ states the 
onditions under whi
h (37) is fa
et.Proposition 3.5. An inequality of the form (37), su
h that if τ
(k)
1 = τ

(k′)
1 for some

k 6= k′, then τ
(k)
2 6= τ

(k′′)
2 for any k′′ = 1, . . . ,m, k′′ 6= k, is valid. Furthermore, if

τ
(k)
2 = τ

(k+1)
1 , k = 1, . . . ,m− 1, then (37) de�nes a fa
et for conv(S).Another valid inequality 
an be obtained from the inequality (37) with 
onditionsin Proposition 3.5. Assume that we are given the inequality (37) of the form (λ, µ, ρ)with the same 
omponent p at the window of time {l + 1, . . . , l + Tp}. Also assume

µl+1 = 0, pi
k a new 
omponent p′ su
h that T ′
p ≥ Tp+1 and l′ ∈ {l+Tp+1−Tp′ , . . . l}.De�ne a new inequality (λ′, µ′, ρ′) by:

∑

it

λ′
itxit +

∑

t

µ′
tzt ≥ ρ′, (38)where λ′

it = λit, i ∈ N \ {p, p′}, t ∈ T , λ′
pt = λpt −X{l+1},

λ′
p′t = X{l′+1,...,l′+T ′

p}\{l+1,l+Tp+1}, µ′
t = µt + X{l+1,l+Tp+1}, ρ′ = ρ + 1 and X is theindi
ator fun
tion. If (λ, µ, ρ) de�ned in (37) is a fa
et of conv(S) then the inequality

(λ′, µ′, ρ′) in (38) de�nes a fa
et for conv(S).From Se
tion 2.3.2 we know that by applying the Chvátal-Gomory pro
edure a�nite number of times all of the valid inequalities for S 
an be generated. It isknown that iteratively generating mod 2-
uts3 gives the 
onvex hull of bounded inte-ger feasible sets ([9℄). In [13℄ the generation of valid inequalities for the opportunisti
repla
ement problem with Chvátal-Gomory inequalities using only {1/2} as multi-pliers has also been studied. The pro
edure is to pi
k an odd number of inequalities3If P = {x ∈ Rn|Ax ≤ b} with A ∈ Zm×n, then a mod-2 is an inequality of the form 1

2
u′Ax ≤

⌊ 1

2
u′b⌋, where ui ∈ {0, 1} for all i = 1, . . . , m and 1

2
u′A ∈ Zn; i.e., u′A ≡ mod 2.29



of the form (33b) that overlap in time, and mix them together with the inequalitiesof the form (33
) in the Chvátal-Gomory pro
edure de�ned in Se
tion 2.3.2, using 1
2as multipliers to obtain CG-valid inequalities for the repla
ement polyhedron. Theauthor's 
on
lusion is that the 
hara
teristi
s of when {0, 1

2}-
uts be
ome fa
ets oreven valid inequalities seems very bad to in
lude in a 
omputer program. For produ
-ing fa
ets and valid inequalities for our problem stated above a 
onstraint generationapproa
h has been implemented, in whi
h the separation problem is formulated asa shortest path-problem in a spe
i�
 graph. Several graphs of reasonable sizes hasbeen 
onstru
ted. The fa
et generation seem to behave ni
ely when the asso
iatedgraphs are simple. Graphs 
orresponding to useful inequalities, however, are notsimple and hen
e 
omputationally very hard to generate.

30



4 Benders de
omposition method applied to the oppor-tunisti
 repla
ement problemThis 
hapter is dedi
ated to the implementation of the Benders de
omposition methodadopted to the opportunisti
 repla
ement problem.Consider the opportunisti
 repla
ement model (33). The variables zt refer to themaintenan
e o

asions at time t ∈ T and xit to the repla
ement of 
omponent i ∈ Nat time t. From Proposition 3.1 it is known that the binary requirements on thevariables xit 
an be relaxed, and if the maintenan
e o

asions are �xed�when the
ost are monotonous with time� the linear subproblems 
an be solved by a greedyrule. Therefore it seems natural to �x variables zt, t ∈ T and (to attempt) tosolve the mixed-integer model using an algorithm that dete
ts optimal solutions tolinear programming subproblems and sear
h among these solutions to obtain �thebest� one, whi
h is the optimal solution to the opportunisti
 repla
ement problem.By this knowledge, we expe
t Benders de
omposition method to be e�
ient for theopportunisti
 repla
ement problem.In this 
hapter Benders partitioning method adopted to our problem is dis
ussedand the summary of the algorithm is presented. Some 
omputational tests and resultsare also presented.4.1 Spe
ial properties of the opportunisti
 repla
ement linear dualprogramming problemBefore we des
ribe the Benders de
omposition of the opportunisti
 repla
ement prob-lem, we present some of the properties of the dual problem of the linear programmingsubproblems of the opportunisti
 repla
ement problem where the maintenan
e o

a-sions are �xed.Consider the opportunisti
 repla
ement problem in (33). Let the variables zt,
t ∈ T , in the problem be assigned binary values, z̃t ∈ {0, 1}. Then the remainingoptimization problem separates over ea
h 
omponent i ∈ N . Let i ∈ N be �xed.In order to simplify the presentation, we de�ne the sets T̃ = {t ∈ T | z̃t = 1},
Li = {0, . . . , T − Ti}, T il = {l + 1, . . . , l + Ti} for l ∈ Li and for t ∈ T , Lit ={

max{0, t− Ti}, . . . ,min{t− 1, T − Ti}
}, i.e., Lit = {l ∈ Li | t ∈ T il}.The linear programming subproblem for 
omponent i ∈ N is then to

(P ) minimize
xi

∑

t∈T

citxit, (39a)subje
t to ∑

t∈T il

xit ≥ 1, l ∈ Li, (39b)
0 ≤ xit ≤ z̃t, t ∈ T . (39
)The linear programming dual problem to the problem (P ) is to

(D) maximize
(vi,ui)

∑

l∈Li

vil −
∑

t∈T

z̃tuit, (40a)subje
t to ∑

l∈Lit

vil − uit ≤ cit, t ∈ T , (40b)
vil ≥ 0, ∀i ∈ N , l ∈ Li, (40
)31
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Figure 1: The xit 
oe�
ients in the 
onstraints (39b) in problem (P ) for 
omponent i withlife Ti = 4 and time horizon T = 10.
uit ≥ 0, ∀i ∈ N , t ∈ T . (40d)Using the de�nitions of T̃ and T il we may rewrite the problem (P ) as that to

(P ′) minimize
xi

∑

t∈eT

citxit, (41a)subje
t to ∑

t∈eT ∩T il

xit ≥ 1, l ∈ Li, (41b)
xit ≥ 0, t ∈ T̃ . (41
)The problems (P ) and (P ′) are equivalent, sin
e in (P ) must hold that xit = 0 for

t ∈ T \ T̃ . The linear programming dual of the problem (P ′) is given by
(D′) maximize

vi

∑

l∈Li

vil, (42a)subje
t to ∑

l∈Lit

vil ≤ cit, t ∈ T̃ , (42b)
vil ≥ 0, l ∈ Li. (42
)Let v′i be feasible in (D′), Let vi = v′i and

uit = max

{
0,

∑

l∈Lit

vil − cit

}
, t ∈ T . (43)Proposition 4.1. If (v′∗i ) is optimal in (D′) then (v̊i, ůi) is optimal in (D) where

v̊i = v′∗i and ůit are given by (43).Proof. Let xi, x′
i, (vi, ui) and v′i be any feasible solution to problems (P ), (P ′), (D)and (D′) respe
tively. De�ne:

fP (xi) =
∑

t∈T

citxit,32
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fP ′

(x′
i) =

∑

t∈eT

citx
′
it,

fD(vi, ui) =
∑

l∈Li

vil −
∑

t∈T

z̃tuit,

fD′

(v′i) =
∑

l∈Li

v′il.If v′i is feasible in (D′) then (vi, ui) given by (43) is feasible to (D), be
ause (43)implies that: ∑

l∈Lit

vil − cit ≤ uit, t ∈ T , (45)and uit ≥ 0. Note that from (43) and (42b)
uit = 0, t ∈ T̃ . (46)Assume that x∗

i and x′∗
i are the optimal solutions to the problem (P ) and (P ′),respe
tively. The equivalen
e of (P ) and (P ′) yields that fP (x∗

i ) = fP ′

(x′∗
i ). By thestrong duality theorem (Theorem 6.1 Chapter 6 [3℄) the following statement's aretrue:

fP (x∗
i ) = fD(v∗i , u

∗
i ), (47a)

fP ′

(x′∗
i ) = fD′

(v′∗i ), (47b)where (v′∗i ) and (v∗i , u
∗
i ) are optimal solutions to problems (D′) and (D) respe
tively.The equations (47a) and (47b) then yield that

fD(v∗i , u
∗
i ) = fD′

(v′∗i ). (48)Let (v′∗i ) be the optimal solution obtained by solving (D′) and let (v̊i, ůit) bede�ned by (43). It then holds that:
fD(v̊i, ůi) =

∑

l∈Li

v̊il −
∑

t∈T

z̃tůit =
∑

l∈Li

v̊il −
∑

t∈eT

ůit,33



and by (46),
fD(v̊i, ůi) =

T−Ti∑

l=0

v̊il =

T−Ti∑

l=0

v′
∗
il = fD′

(v′
∗
i ).Hen
e (v̊i, ůi) is an optimal solution to D.This proposition shows that we 
an solve the problem (D′) instead of (D). Theproblem (D′) has fewer variables than (D). Now we 
laim that for 
ases for whi
hthe 
osts are non-in
reasing in time (i.e., ci,t+1 ≤ cit and dt+1 ≤ dt for all i ∈ N and

t ∈ T ) (D′) 
an be solved by a greedy rule.Algorithm 2 solves the problem (D′). For ea
h �xed 
omponent i, it startsfrom the last 
onstraint row in (D′) and the last indexed dual variable (vi,T−Ti
). Itassigns to ea
h dual variable vil, the most positive (largest) feasible value su
h thatthe solution remains feasible. Ea
h 
onstraint in (D′) 
orresponds to a t in T̃ andthe algorithm terminates when all indi
es's t ∈ T̃ have been investigated.Algorithm 2 (Non-in
reasing 
ost greedy rule for problem (D′), ∀i ∈ N )

A← ∅while
T̃ 6= ∅ do

t̃← max{t | t ∈ T̃ }
B ← Lit̃if B \A 6= ∅ then

l̃← max{l | l ∈ B \ A}
v̊il̃ ← cit̃ −

∑
l∈A∩B v̊il

v̊il ← 0, l ∈ B \
{
A ∪ {l̃}

}end if
T̃ ← T̃ \ {t̃}
A← Bend whileThe next proposition shows that for ci,t+1 ≤ cit, i ∈ N , and zt ∈ {0, 1}, t ∈ T ,Algorithm 2 yields an optimal solution to (D′).Proposition 4.2 (non-in
reasing 
ost greedy algorithm for problem (D′)yields optimum). Assume that cit+1 ≤ cit, for all i ∈ N and for all t ∈ T \ {T}.Assume that z̃t ∈ {0, 1}, t ∈ T , and de�ne the set T̃ = {t ∈ T | z̃t = 1} su
h that forea
h t ∈ T̃ ∪ {0} and �xed i ∈ N there is an s ∈ T̃ ∪ {T + 1} with 1 ≤ s − t ≤ Ti.Then Algorithm 2 produ
es an optimal solution to (D′).Proof. Let i be �xed. Consider the primal problem (P ′), the 
ondition on T̃ impliesthat (P ) has a feasible solution. A

ording to Se
tion 3.2, the solution of (P ′) isobtained by repla
ing 
omponent i as late as possible within its life and among thetime points t ∈ T̃ . Assume that x∗

i is an optimal solution to problem (P ′) given byAlgorithm 1. Let T̂i be the set of time points at whi
h maintenan
e for 
omponent
i is performed, that is,

T̂i = {tk ∈ T̃ | x
∗
itk

= 1} for ea
h 
omponent i ∈ N . (49)34



Let T̂i be an ordered set, i.e., t1 ≤ t2 ≤ . . . ≤ tk. De�ne:
lk = min{l | l ∈ Litk},

lk = max{l | l ∈ Litk}.Let v̊i be the solution to problem D′ obtained by Algorithm 2. If we 
an provethat ∑
l∈Li

v̊il =
∑

t∈T citx
∗
it then weak duality implies that v̊i is an optimal solutionto (D′). We build our proof by iteration over the set T̂iInitial Step Take t1 ∈ T̂i. If 0 /∈ Lit1 , then t1 /∈ T i0 = {1, 2, . . . , Ti}, therefore

t1 > Ti; whi
h violates the primal feasibility. Hen
e 0 ∈ Lit1 . On the otherhand if 0 ∈ Lit for t > t1 and t ∈ T , then t ∈ T i0. This 
ontradi
ts the primalgreedy rule; Therefore 0 /∈ Lit for t > t1 and t ∈ T . t1 
orresponds to the timewhere the �rst maintenan
e o

urs as late as possible in T̃ . Sin
e 0 ∈ Lit1 and
0 /∈ Lit for t > t1 dual greedy (Algorithm (2)) yields

l1∑

l=0

v̊il = cit1 , by greedy.Sin
e x∗
it1

= 1 and x∗
it = 0 for t < t1 it holds that

cit1 = cit1x
∗
it1 =

t1∑

t=1

citx
∗
it.Thus for t1 : ∑l1

l=0 v∗il =
∑t1

t=1 citx
∗
it.Iterative Step Assume that the following holds for tk−1

lk−1∑

l=0

v̊il =

tk−1∑

t=1

citx
∗
it.It is obvious that lk−1 + 1 /∈ Litk−1

. If lk−1 + 1 /∈ Litk , then tk /∈ T i,lk−1+1 =

{lk−1 + 1 + 1, . . . , lk−1 + 1 + Ti}. Hen
e tk > lk−1 + 1 + Ti. It 
ontradi
tsthe feasibility of the primal problem. Also if for t ∈ T̃ and t > tk then
lk−1 + 1 ∈ Lit. This implies t ∈ T i,lk−1+1, whi
h 
ontradi
ts the primal greedyrule. Sin
e lk−1 + 1 ∈ Litk and lk−1 + 1 /∈ Lit for t ∈ T̃ and t > tk, dual greedyyields: ∑lk

l=lk
v̊il = citk and v̊il = 0 for l ∈ Litk and l < lk−1 + 1, this impliesthat:

lk∑

lk−1+1

v̊il = citk .Thus:
lk∑

lk−1+1

v̊il +

lk−1∑

l=0

v̊il =

tk−1∑

t=1

citx
∗
it + citk .35



Sin
e x∗
itk

= 1 and x∗
it = 0 for tk−1 < t < tk we have:

lk∑

l=0

v̊il =

tk∑

t=1

citx
∗
it.Note that ∃k su
h that lk = T − Ti, otherwise if for tk ∈ T̂i, T − Ti /∈ Litk then

tk /∈ T i,T−Ti
= {T − Ti + 1, . . . , T}. Therefore tk < T − Ti + 1, whi
h leads to aninfeasible primal problem. As T̂i is a �nite set, and xit = 0 for t > tk we will �nallyobtain: ∑

l∈Li
v̊il =

∑
t∈T citx

∗
itNote that this proposition 
on�rms that if 
omponent i ∈ N is repla
ed as lateas possible within its life and among the times in T̃ then the solution is optimal.One would ask about the fa
t that by knowing that problem (P ) with non-in
reasing 
osts 
an be solved using a greedy rule, whether is it possible to solvethe primal and �nd the optimal dual variables by 
omplementary sla
kness theorem(Theorem 6.2 [3℄). The solution to this question is that 
omplementary sla
knesstheorem will not give us more information than we already have. This be
ome 
learif we take a better look at the dual problem (D). Let us assume that x∗

it is optimalin (P ). Consider the sets T̃ and T̂i in (49). Note that T̂i ⊆ T̃ for ea
h i ∈ N .To obtain the 
orresponding dual solution (v∗i , u
∗
i ) to x∗

i , 
omplementary sla
knessapplied to the problems (P ) and (D) implies
∑

l∈Litk

v∗il = u∗
itk

+ citk , tk ∈ T̂i.The remaining 
onstraints of the dual problem (D) are:
uit ≥ 0, t ∈ T , (50a)
uit ≥

∑

l∈Lit

vil − cit, t ∈ T \ T̂i. (50b)Equality of the optimal obje
tive values of problems (D) and (D′) known from (48)implies that u∗
it = 0 for all t ∈ T̃ . To maximize the obje
tive value in (D), u∗

it shouldbe 
hosen as small as possible subje
t to (50a)�(50b), i.e., should be set equal to themaximum of the right-hand-side values in (50a) or (50b) . This yields the optimaldual solution as follows:
∑

l∈Lit

v∗il = citk , tk ∈ T̂i, (51a)
u∗

it = 0, ∀t ∈ T̃ ,

u∗
it = max

{
0,

∑

l∈Lit

v∗il − cit

}
, ∀t ∈ T \ T̃ , (51b)where v∗il's are yet to be found by solving the problem (D′). In general the proofof Proposition 4.2 
an be seen as 
he
king 
omplementary sla
kness theorem for x∗

iand v̊i. 36



4.2 An implementation of Benders de
omposition method appliedto the opportunisti
 repla
ement problemThe opportunisti
 repla
ement program in (33) with 
ontinuous variables xit is tominimize
(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtzt

) (52a)subje
t to ∑

t∈T il

xit ≥ 1 , l ∈ Li, i ∈ N , (52b)
0 ≤ xit ≤ zt, i ∈ N , t ∈ T , (52
)
zt = {0, 1}, t ∈ T , (52d)where T il = {l+1, . . . , l+Ti} for ea
h i ∈ N and l ∈ Li. We 
an rewrite the problem(52) as to minimize c′x + d′z, (53a)s.t. Ax + Bz ≥ b, (53b)

x ≥ 0, z ∈ {0, 1}T, (53
)where A and B are m × n and m × p matri
es with m = N(2T + 1) −
∑N

i=1 Ti,
n = NT and p = T , respe
tively, x and c are n-ve
tors, d and z are p-ve
tors and bis an m-ve
tor. This representation helps us to 
ompare problems (52) and (14).Letting z = (z1, z2, . . . , zT ) be �xed to z̃, makes (52) a linear programming prob-lem as to minimize

(x,z)

∑

t∈T

( ∑

i∈N

citxit + dtz̃t

) (54a)subje
t to ∑

t∈T il

xit ≥ 1 , l ∈ Li, i ∈ N , (54b)
0 ≤ xit ≤ z̃t, i ∈ N , t ∈ T . (54
)The linear dual programming of the problem (54) is tomaximize

(v,u)

∑

i∈N

( ∑

l∈Li

vil −
∑

t∈T

z̃tuit

) (55a)subje
t to ∑

l∈Lit

vil − uit ≤ cit, t ∈ T , i ∈ N , (55b)
vil ≥ 0, i ∈ N , l ∈ Li, (55
)
uit ≥ 0, i ∈ N , t ∈ T , (55d)where, for all i ∈ N and t ∈ T , Lit = {l ∈ Li | t ∈ T il}.Knowing from Se
tion 3.2, when the variables zt, t ∈ T , are assigned binaryvalues, the remaining optimization model separates over the 
omponents i ∈ N .The primal of the subproblem, for zt = z̃t, t ∈ T , is then given by

∑

t∈T

dtz̃t +
∑

i∈N




min
∑

t∈T

citxit,s.t. ∑

t∈T il

xit ≥ 1, l ∈ Li,

0 ≤ xit ≤ z̃t, t ∈ T




. (56)37



We denote the optimal solution to this program by x̃it, i ∈ N , t ∈ T .If zt = 1, maintenan
e o

urs at time t and the 
ost dt is in
urred. If zt = 0,then xit = 0 for all i ∈ N and the 
ost of maintenan
e is zero. Hen
e, sin
e z̃t = 0,
t ∈ T \ T̃ , it follows that x̃it = 0, i ∈ N , t ∈ T \ T̃ , whi
h yields the simpli�edsubproblem formulation:

∑

t∈eT

dt +
∑

i∈N




min
∑

t∈eT

citxit,s.t. ∑

t∈T il∩eT

xit ≥ 1, l ∈ Li,

0 ≤ xit ≤ 1, t ∈ T̃




. (57)Assuming that cit ≥ 0, i ∈ N , t ∈ T , the 
onstraints �xit ≤ 1� are unne
essary(redundant), a

ording to the following argument:If x̃it > 1 for some i ∈ N and t ∈ T̃ , the optimal value of the subproblem isalways redu
ing (or 
onstant, if cit = 0) with the value of xit. Sin
e the 
onstraints�xit ≥ 0� must hold for i ∈ N and t ∈ T , the 
onstraints �∑t∈T il
xit ≥ 1� will notbe violated (until xit < 1).This leads to the following further simpli�
ation of the subproblem formulationas

∑

t∈eT

dt +
∑

i∈N




min
∑

t∈eT

citxit,s.t. ∑

t∈T il∩eT

xit ≥ 1, l ∈ Li,

xit ≥ 0, t ∈ T̃




(58)with the 
orresponding linear programming dual
∑

t∈eT

dt +
∑

i∈N




max
∑

l∈Li

vil,s.t. ∑

l∈Lit

vil ≤ cit, t ∈ T̃ ,

vil ≥ 0, l ∈ Li




. (59)Note that the subproblems in (58) and (59) are the problems (P ′) and (D′), fromSe
tion 4.1, respe
tively. The optimal dual solution (ṽil, ũit) for z̃t = {0, 1} 
an beobtained by solving problem (55) dire
tly, or by solving the subproblems in (59) withAlgorithm 2 where ũit is given by (43).The polyhedron P is the set of all (v, u) satisfying (55b)�(55d). The 
ompletemaster problem 
an be expressed as that tominimize y (60a)s.t. y ≥
∑

i∈N

∑

l∈Li

vpk

il −
∑

i∈N

∑

t∈T

upk

it zt +
∑

t∈T

dtzt, k ∈ {1, . . . ,K}, (60b)
0 ≥

∑

i∈N

∑

l∈Li

vrm

il −
∑

i∈N

∑

t∈T

urm

it zt, m ∈ {1, . . . ,M}, (60
)
zt ∈ {0, 1}, t ∈ T , (60d)
y ∈ R, (60e)38



where (vpk

i , upk

i ) denotes the extreme points of the polyhedron P and (vrm

i , urm

i )denotes the extreme rays of the polyhedron P (see Se
tion 2.5). K is the numberof extreme points of the polyhedron de�ned by (55b)�(55d). This polyhedron isa
tually 
omposed by |N | polyhedra, one for ea
h i ∈ N , and k and m, respe
tively,denote one Benders iteration.The inequalities (60b)�(60
) are ne
essary and su�
ient for the values z to befeasible, i.e., to admit feasible values of xit in (52b)�(52
). In [10℄ there is a sug-gestion that by adding an arti�
ial 
onstraint, bounding the sum of all variables bya large positive number, the polyhedron 
an be made bounded, so the 
onstraints
orresponding to the extreme rays 
an be dropped. However there is an smarter wayto avoid inequalities for extreme rays in our problem. The program (58) is feasibleif and only if




⋃

i∈N





⋃

l∈Li

T il









⋂
T̃ 6= ∅ ⇐⇒ T il ∩ T̃ 6= ∅, l ∈ Li, i ∈ N , (61)whi
h is in turn equivalent to the 
onstraints

∑

t∈T il

z̃t ≥ 1, l ∈ Li, i ∈ N (62)to hold. The 
onstraints (62) 
an be equivalently expressed as
l+Ti∑

t=l+1

z̃t ≥ 1, l ∈ {0, . . . , T − Ti}, i ∈ N . (63)De�ning T = mini∈N{Ti} the (ne
essary and) su�
ient feasibility 
uts for the masterproblem (
orresponding to the extreme rays of the feasible set of the dual subproblem(59)) are then given by
l+T∑

t=l+1

z̃t ≥ 1, l ∈ {0, . . . , T − T}. (64)Hen
e, (60
) 
an be dropped as long as the 
ondition (64) is enfor
ed. Notethat in
luding all the 
onstraints in (64) in (60
) ensures the problem (60) to havea bounded feasible set. The feasibility assumption on the opportunisti
 repla
ementproblem (33) yields that the problem (60) is also feasible.The Benders partitioning algorithm 
an be initiated with no 
onstraints of theform (60b) and the inequalities of the form (64) in the problem (60). i.e., in ea
hBenders step the problem tominimize y (65a)s.t. y ≥
∑

i∈N

∑

l∈Li

vpk

il −
∑

i∈N

∑

t∈T

upk

it zt +
∑

t∈T

dtzt, k ∈ {1, . . . ,K}, (65b)
l+T∑

t=l+1

z̃t ≥ 1, l ∈ Li, (65
)
zt ∈ {0, 1}, t ∈ T , (65d)39



y ∈ R, (65e)is solved, where, the number of 
onstraints in (65b) is equal to the Benders iterationnumber.Initiate the problem (65) with no 
onstraints of the form (65b). Let the solutionto the problem (65), be (ỹ, z̃). Now with z being �xed at z̃, the dual problem(55) should be solved to obtain (ṽil, ũit). Sin
e the primal problem is bounded, theproblem (55) is feasible. Let w̃ be the optimal obje
tive value of the problem (55)and ỹ the optimal value obtained by solving the problem (65). If w̃ = ỹ−
∑

t∈T dtz̃t,then by the optimality test, the 
urrent solution is optimal. Otherwise, we form anew 
onstraint from (ṽil, ũit) of the type (65b) and add it to the problem (65).The summary of the Benders algorithm based on an iterative pro
edure is givenin Algorithm 3.Algorithm 3 (Benders Algorithm)Step 0 (Initialization): Set ỹ = −∞ and r = 0. Initiate the problem (65) withthe 
onstraints (65
) and (65d).Step 1: Let r = r + 1. Solve the problem (65) to obtain a �nite optimal solution
(z̃r, ỹr).Step 2: Solve the dual linear program (55) with T̃ = {t ∈ T | z̃r

t = 1} to �nd
(ṽr

il, ũ
r
it).Step 3: If the optimal obje
tive value in step 2 is equal to ỹr −

∑
t∈T dtz̃

r
t , thesolution (ỹr, z̃r) solves (60). If x̃r solves the linear primal problem, then (x̃r, z̃r)solves the 
orresponding opportunisti
 repla
ement problem (33). Stop!Step 4: If the optimality test in step 3 is not passed, then

ỹr <
∑

i∈N

∑

l∈Li

ṽr
il −

∑

i∈N

∑

t∈T

ũr
itz̃

r
t +

∑

t∈T

dtz̃
r
t , (66)holds, so the 
urrent solution to (65) does not satisfy the 
onstraint

y ≥
∑

i∈N

∑

l∈Li

ṽr
il −

∑

i∈N

∑

t∈T

ũr
itzt +

∑

tT

dtzt. (67)Add the 
onstraint (67) to the problem (65) and return to Step 1.Upper and lower bounds: As shown before, in the iterative pro
edure we willsolve (65), whi
h is a relaxation of (60) in
luding only a subset of its 
onstraints.Let ỹr be the optimal obje
tive value to (65) at step r of the Bender's algorithm, i.e.,the number of 
onstraints (65b) is r in the 
urrent problem (65). Assume that y∗ isthe optimal obje
tive value to problem (60), so ỹr is a lower bound on the optimalvalue y∗ of the full master problem and it holds that
ỹr ≤ ỹr+1 ≤ y∗. (68)The upper bound is generated by a sequen
e of feasible solutions to the originalproblem. To obtain the upper bound, let (ỹr, z̃r) be the solution to (65) at step r. If

x̃r solves the primal problem (54), then (x̃r, z̃r) is feasible to (52), therefore it holds40



that ∑

i∈N

∑

t∈T

citx̃
r
it +

∑

t∈T

dtz̃
r
t ≥ y∗. (69)At ea
h iteration, lower and upper bounds are 
omputed. From (68) and (69),at step r it holds that̃

yr ≤ y∗ ≤ min
1≤s≤r

( ∑

i∈N

∑

t∈T

citx̃
s
it +

∑

t∈T

dtz̃
s
t

)
. (70)Hen
e, we 
an de�ne the optimality gap at step r.De�nition 4.1. : The optimality gap at step r is de�ned as

min1≤s≤r
∑

t∈T

( ∑
i∈N citx̃

s
it + dtz̃

s
t

)

y∗
− 1.The estimated optimality gap at step r is de�ned as

min1≤s≤r
∑

t∈T

( ∑
i∈N citx̃

s
it + dtz̃

s
t

)

ỹr
− 1.When the upper and lower bounds be
ome equal, the algorithm terminates withan optimal solution. The hope is that termination will o

ur when r is 
onsiderablyless than the number of extreme points of the polyhedron de�ning the problem (55).Benders algorithm may also be terminated when the 
omputation time ex
eeds aspe
i�
 time limit.4.3 Computational experiment and resultsIn this se
tion we present some numeri
al tests and their results for an implementa-tion of Benders algorithm applied to some instan
es of the opportunisti
 repla
ementproblem. The referen
e MILP solver used is IBM ILOG CPLEX 12.1. Algorithms arewritten in MATLAB R2009b. All numeri
al experiments are performed on a Linux desk-top operating system with the pro
essor Pentium(R), Dual-Core E5200 � 2.50GHz.The CPU MHz is 1200.000 and it has a 
a
he size of 2048 KB.The solvers used for the numeri
al tests, are introdu
ed as follows. CPLEXMEX isa MEX interfa
e for the 
plex 
allable library whi
h enables us to use 
plex fromwithin MATLAB. The CPLEXMEX interfa
e gives a

ess to most of the 
plex intera
tivemode fun
tionality from within MATLAB. It is intended for solving linear program-ming (LP), mixed integer linear programming (MILP), and other related problems.Cplexlp is a fun
tion of IBM ILOG CPLEX toolbox in MATLAB whi
h solves linear pro-gramming problems. Besides, 
plexmilp is a fun
tion of IBM ILOG CPLEX toolboxin MATLAB whi
h is intended to solve mixed integer linear programming problems.For the 
omputations, di�erent instan
es of the opportunisti
 repla
ement prob-lem are 
onsidered. Data des
ribing these instan
es �
alled testbed problems� areshown in Table 1. For all testbed problems it is assumed that cit = ci, i ∈ N , t ∈ T ,and dt = d, t ∈ T . Instan
e 1 in the testbed is a simple small size problem. Instan
e

2 is a middle sized problem intended to resemble a realisti
 problem. Instan
e 3 isa sparse problem in the sense that the 
omponents lives are short, it is designed toinvestigate the e�e
ts of a long planning horizon. Instan
e 4 is a dense problem in41



Table 1: The problems in the testbed. In problem 4, the 
osts, ci, are randomly 
hosen from
(0, 1]. instan
e T N min Ti maxTi d min ci max ci1 10 3 3 5 10 5 72 40 3 3 5 10 5 73 100 4 3 7 10 5 94 60 50 6 55 1 0.0089 1.00005 (HPT) 100 9 15 80 1 0.3613 4.02556 (LPT) 150 10 29 60 1 0.3171 1.54827 500 2 25 40 1 0.1324 0.74518 1000 2 25 40 1 0.1324 0.7451Table 2: Parameter setting when solving testbed problems with 
plex. Solutions reportedin Table (3). Dire
tive Value Des
riptiontime limit 86400 
plex stops after 24 hours and re-turn the 
urrent solutionnode�le 2 
reates a 
ompressed version ofthe node �le in memorya sense that the feasible solutions 
ontain many maintenan
e o

asions. The datain instan
es 5 and 6 are from real-world problems obtained from Volvo Aero and
orresponding to two modules of an air
raft engine. Instan
e 5 
orresponds to thedata from a high pressure turbine (HPT) and instan
e 6 from a low pressure turbine(LPT). Note that the data from real world instan
es are s
aled so that d = 1. In-stan
es 7 and 8 are very big sparse problems. All the 
omputation times are givenin CPU se
onds. The testbed problems solved with 
plex are reported in Table 3.For solving the testbed problems using 
plex [1℄, the parameter settings reported inTable 2 was used.As the �rst experiment we solve instan
es 
hosen from the testbed, where 
plexlpis used to solve the LP subproblems. CPLEXMEX is 
hosen as the solver for the MILPmasterproblem. Then for the same instan
es, instead of solving the LP subproblemsby 
plexlp, the greedy rule, developed in Se
tion 4.1, is implemented. The resultsare presented in Table 4.Table 4 shows that the time needed to solve a medium size problem (e.g., HPTand LPT instan
es) is 
onsiderably huge, so it seems natural to investigate howmu
h of the gap 
an be 
losed in 1 minute, 30 minutes and 24 hours for the di�erentinstan
es of the problem. Hen
e, the next experiments are to solve testbed problemsin a time limit of 1 minute (60 CPU se
onds), 30 minutes (1800 CPU se
onds ) and 24hours (86, 400 CPU se
onds). In all these experiments, the estimated optimality gapis de�ned in De�nition 4.1 and ea
h Benders iteration is 
onsidered as one iterationand also LP subproblems solved using the greedy algorithm from Se
tion 4.1. At �rst,42



Table 3: Testbed problems solved with 
plex. A † denotes that the 
omputer memory was�lled before the instan
e of the opportunisti
 repla
ement problem was solved to optimality.A * denotes that the problem was not solved to optimality when the time limit is rea
hed.instan
e N nodes 
plex iterations time(s) gap%1 3 0 60 0.0222 02 3 210 5,476 0.4183 03 4 3,272,759 125,312,690 8941.7 04 50 1,943 461,183 125.6857 05 (HPT) 9 115 7,631 1.2449 06 (LPT) 10 1,132 80,185 13.8381 07 2 9,233,344 †122068477 17,505.01 5.648 2 3,508,639 *156343889 86,400.02 10.99
Table 4: Solving the testbed problems by Benders algorithm. The estimated optimality gapis de�ned in De�nition 4.1 and ea
h Benders iteration is 
onsidered as one iteration. TheMILP master problems are solved using CPLEXMEX in all the 
omputations reported in thisTable. If Benders MILP master problems 
an not be solved be
ause out of memory statusit is marked in the table by a †. A time limit of 3 weeks (21 days) is put on test problem 3.Out of time statues is marked by a ∗. Computation times are given in CPU se
ondsinstan
e subproblems solved usingthe simplex method subproblems solved usingAlgorithm 2time(s) iter. est.opt. gap% time(s) iter. est.opt. gap%1 3.9000 6 0 0.3400 5 02 540330 1897 0 12452 433 03 *(≥ 1814400) 161 33.52 †(1291200) 107 32.775 (HPT) 1955600 1430 0 129110 789 06 (LPT) 45031 279 0 1437900 580 0
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testbed problems are solved for a time limit of 60 se
onds by Benders algorithm. TheMILP master problems are solved with CPLEXMEX and 
plexmilp. For these solvers,
omparing the results in Table 5 shows that CPLEXMEX is faster than 
plexmilp. InTable 5 the initial integral gap for ea
h instan
e is also reported. Tables 6 and 7shows the results for the testbed problems in a 30 minutes and a 24 hours CPU-timelimit respe
tively.Problem 5 (HPT) is then solved by Benders method to observe how the propertiesof the solution pro
ess 
hange when the time horizon varies. A CPU-time limit of
24 hours has been also 
onsidered. The results are written in Table 8. In all theproblems in Table 8, the LP subproblems are solved by the greedy rule des
ribed inAlgorithm 2. For having a better pi
ture, the data presented in Table 8 are illustratedin the graphs in Figure 3.It is known from Se
tion 4.2 that in every Benders iteration a new 
onstraintis added to the MILP master problem, so another question to answer is how thisaddition of 
onstraints e�e
t the solution speed. For answering this question we have
hosen the middle size problem 2 and save the time spent for �nding the solution ofea
h MILP master problem. A 
omputational di�
ulty is that, although 
plexmex isslightly faster than the 
plex toolbox fun
tion 
plexmilp in MATLAB, but 
plexmexlike 
plexmilp do not report the exa
t time spent by 
plex to MATLAB terminalwindow. Computing time spend for �nding ea
h MILP solution in MATLAB is notreliable as the time of the data transferring between 
plex and MATLAB will be addedto this time. Sin
e parallel solutions to the MILP master problems exist, 
plexmexand 
plexmilp might �nd di�erent ones. Choosing 
plexmilp instead of 
plexmexleads to a di�erent approa
h by the Benders method with 990 iterations and a gap
losed of 94.84 in 24 hours; 
ompare to what is reported in Table 7. Still it is a goodexample to observe how the solution time for ea
h MILP master problem in
reases.The average time for solving LP subproblems for this parti
ular example is 0.0200se
onds. Figure 4 shows the time reported from 
plex for solving ea
h MILP masterproblem.Con
lusions: When 
osts are non-in
reasing with time the greedy rule in Algo-rithm 2 
an be used to solve the LP subproblems. The greedy rule solves the LPsubproblems in a fra
tion of a se
ond for middle sized problems while the solutiontime with the simplex algorithm 
an be 
onsiderably larger. As alternative solutionsto LP subproblems exist, the greedy rule and the simplex algorithm may end upwith di�erent solutions that e�e
ts the behavior of Benders method, this 
an be seenin Table 4. In 
on
lusion, for most 
ases in Table 4, solving Benders when the LPsubproblems are solved using the greedy rule is faster with less number of iterations.From 
omparing Tables 5, 6 and 7 one 
an 
on
lude that most of the gap is
losed in the �rst se
onds (hours) of the 
omputation time. Figure 4 indi
ates thatthe time needed by 
plex to solve the MILP master problems in
reases linearly withthe iteration number. A

ording to Se
tion 4.2, a lower bound of the problem athand is the optimal obje
tive value of the MILP master problem. Within the �rstiterations lower bound in
reases rapidly, making the bounds on the optimal valueof the opportunisti
 repla
ement problem tighter. However, when the number of
onstraints of the MILP master problem with the Benders iteration number in
reases,the optimal value of the MILP master problem is barely di�erent from that of the last44



Table 5: Testbed problems are solved for a time limit of 1 minute (60s) by Benders algo-rithm where MILP master problems are solved with CPLEXMEX and 
plexmilp. The LPsubproblems solved using the Algorithm 2. In this table the initial optimality gap for ea
hinstan
e is also reported. The estimated optimality gap is de�ned in De�nition 4.1 and ea
hBenders iteration is 
onsidered as one iteration.instan
e init.opt. gap % MILP master problemssolved using CPLEXMEX MILP master problemssolved using 
plexmilpiterations est.opt. gap% iterations est.opt gap%1 60 5 0 5 02 154.65 69 20.11 35 24.293 254 15 41.83 12 47.014 27.42 19 22.22 14 22.545 (HPT) 45.45 35 14.75 33 11.076 (LPT) 57.04 29 35.86 24 50.227 93.41 15 55.73 11 57.618 87.79 4 63.95 4 63.95
Table 6: Testbed problems solved for at most 30 minutes (1800 se
) by Benders algorithm toobserve the remaining optimality gap. The MILP master problems are solved with CPLEXMEXand the LP subproblems solved with the Algorithm 2. The estimated optimality gap isde�ned in De�nition 4.1 and ea
h Benders iteration is 
onsidered as one iteration.instan
e iterations est.opt. gap%1 5 02 202 17.613 32 41.584 63 21.255 (HPT) 185 14.316 (LPT) 89 237 45 56.908 9 60.97
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Table 7: Testbed problems solved for at most 24 hours by Benders algorithm to observe theremaining optimality gap. The MILP master problems are solved with CPLEXMEX and theLP subproblems are solved using the Algorithm 2. The estimated optimality gap is de�nedin De�nition 4.1 and ea
h Benders iteration is 
onsidered as one iteration. If Benders MILPmaster problems 
an not be solved be
ause of out of memory status it is marked in the tableby a †. instan
e iterations optimality gap %1 5 02 433 03 61 39.564 174 15.055 (HPT) 690 4.9776 (LPT) 274 18.737 88 55.678 † 10 60.97
Table 8: The opportunisti
 repla
ement problem solved by Benders algorithm with datafrom HPT in a 24 hour limit. The MILP master problems are solved with CPLEXMEX andthe LP subproblems are solved using the Algorithm 2. The estimated optimality gap isde�ned in De�nition 4.1 and ea
h Benders iteration is 
onsidered as one iteration. In thistable, n = (N + 1)T denotes the number of variables in the 
orresponding opportunisti
repla
ement problem. 
plex Bendersproblem T n time(s) iterations time(s) iterations est.opt gap%1 50 300 0.02 206 0.8700 12 02 60 420 0.07 415 4.5500 41 03 68 476 0.07 536 10.7200 42 04 75 525 0.14 624 155.6200 117 05 85 850 0.21 1347 602.5100 119 06 95 950 2.32 21237 7799.4 308 07 100 1000 1.19 7631 86400 690 4.978 110 1100 9.74 49324 86400 373 3.019 120 1200 28.47 172920 86400 386 17.6910 130 1300 37.30 207838 86400 265 17.3211 140 1400 86.61 401851 86400 170 19.5312 150 1500 58.38 259860 86400 170 31.04
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Benders iteration. This is be
ause a 
onsiderable addition of 
onstraints is requiredto in
rease the MILP optimal obje
tive value.The report of the solutions for the HPT problem, when the time horizon (T )
hanges, in Table 8 and Figure 3 shows that when the problem size in
reases thetime needed for Benders to solve it behave exponentially. The reason is that whenthe number of variables in
reases, the size of the LP subproblems and the MILPmaster problem in
reases. Moreover, the number of extreme points of the polyhedron
P = {u | A′u ≤ c, u ≥ 0} -de�ned by the 
onstraint set of the dual problem- in
reaseswhen the polyhedron dimension in
rease. Sin
e Benders method sear
hes among theextreme points of the polyhedron P , an in
rease in the number of extreme pointsresults in an in
rease in the number of 
onstraints de�ning the 
omplete masterproblem. In Figure 3 it 
an be seen that the number of iterations in
reases rapidly,so a 
onsiderable gap 
loses in the �rst 24 hours. On the other hand, when T is largethe number of iterations de
reases. This is be
ause, as the size of the MILP masterproblems in
reases, solving them requires more 
omputation time.In general one 
an say, sin
e in ea
h step a MILP minimization problem shouldbe solved, Bender's de
omposition algorithm is very slow for our opportunisti
 re-pla
ement problem. The solution time may in
rease exponentially when the problemsize in
reases.
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5 A rank-1 separation problem applied to the oppor-tunisti
 repla
ement problemKnown from Se
tion 2.3.1, given the polyhedron P = {x : x ∈ Rn
+, Ax ≤ b}and the set S = P ∩ Zn, fa
ets of conv(S) 
an be 
onstru
ted iteratively utilizingintegrality and the linear inequality des
ription of P . This means that we start withthe valid inequalities Ax ≤ b and if they are not enough to de�ne conv(S), i.e., thepolyhedron P has non-integral extreme points, we progressively 
onstru
t strongervalid inequalities as follows. We obtain valid inequalities for P by taking non-negativelinear 
ombinations of the inequalities de�ning P . For tightening the formulation of

S, a strategy whi
h 
an be taken is to examine the initial formulation, �nd a set ofvalid inequalities πx ≤ π0 for S, and add these to the original system, whi
h gives anew formulation P ′ = {x ∈ Rn
+ : Ax ≤ b, πx ≤ π0} ⊆ P with S = P ′ ∩ Zn. If thevalid inequalities are well 
hosen so that the set P ′ is signi�
antly smaller than P , thebounds (see Se
tion 2.1.3) should be improved and hen
e the integer programmingte
hniques should be more e�e
tive. On the other hand, often the number of validinequalities one would like to add is enormous. In
reasing the number of 
onstraintsmakes the time required to solve the linear programs in
rease. One should also notethat �nding the 
omplete des
ription of the 
onvex hull is not of interest, but a goodapproximation of conv(S) in the neighborhood of an optimal solution is desired.In this 
hapter we address these general issues for the opportunisti
 repla
ementproblem (33) by studying its NP-hard separation problem. By modeling and solvingthe rank-1 Chvátal�Gomory separation problem we study how e�e
tive it is to op-timize over the �rst Chvátal 
losure of the opportunisti
 repla
ement problem, i.e.,whi
h fra
tion of the integrability gap that 
an be 
losed by a bran
h and boundapproa
h based on �nding the most violated 
uts for the repla
ement polytope. Wealso try to answer the question whether it is a bene�t to generate rank-1 CG 
utsuntil no more su
h inequality exists or one should better follow the strategy of gener-ating Chvátal-Gomory inequalities of any rank. Sin
e the opportunisti
 repla
ementproblem is an MILP problem, here we introdu
e a proje
ted version of the CG 
utsand its asso
iated separation problem and study its pra
ti
al strength for the oppor-tunisti
 repla
ement problem. Finally, we want to investigate how the addition ofthe generated CG 
uts to the original formulation a�e
t the general ILP bran
h andbound pro
edure to solve the opportunisti
 repla
ement problem.5.1 The separation problem for the opportunisti
 repla
ement prob-lemIn this se
tion �rst a modi�ed MILP model for the rank-1 Chvátal-Gomory separa-tion problem is des
ribed, whi
h 
an be solved by a general-purpose MILP solver.Then the proje
ted Chvátal-Gomory separation problem is presented. This modelis implemented in a pure 
utting plane framework to generate several rank-1 CG-
uts in order to obtain a tighter bound on the value of the optimal solution of theopportunisti
 repla
ement problem. In the next se
tion the 
omputational assump-tions needed are des
ribed. In se
tion 5.2 the results of the numeri
al tests on someinstan
es of the opportunisti
 repla
ement problem is reported.50



5.1.1 The MILP model for solving the Chvátal-Gomory separation prob-lemLet y = (x, z) to be the set of variables in the opportunisti
 repla
ement problem(33) and de�ne A and b the matrix of the 
oe�
ients and the right-hand side ve
torin the 
onstraints (33b)�(33
) respe
tively. Let h′ = (c′, d′). Then the opportunisti
repla
ement problem 
an be simply written in the general form of a BLP, asmin{h′y : Ay ≤ b, y ≥ 0, y ∈ {0, 1}(N+1)T
}
. (71)First let us des
ribe our MILP model for CG separation of the integer linear pro-gramming problem (71). Consider the point y∗ ≥ 0 given, CG-SEP (De�nition 2.16)�nds a CG 
ut α′y ≤ α0 whi
h is maximally violated by y∗, where α′ = ⌊u′A⌋ and

α0 = ⌊u′b⌋ for a 
ertain u ∈ Rm
+ . The �rst CG-SEP model then is tomaximize

(α,α0,u)
α′y∗ − α0, (72a)s.t. αj ≤ u′Aj, j = 1, . . . , n, (72b)
α0 − ǫ ≥ u′b− 1, (72
)
ui ≥ 0, i = 1, . . . ,m, (72d)
α ∈ Zn

+, α0 ∈ Z+, (72e)where α = (α1, . . . , αn), u = (u1, . . . , um), n = (N + 1)T , m = 2NT + N −
∑N

i=1 Ti,and ǫ ∈ (0, 1). Note that n and m are determined by the information given by theinstan
e of (33). In this model the ui's are 
ontinuous variables while αj and α0 areinteger valued variables. Here, the integer variables αj and α0 represent ⌊u′Aj⌋ and
⌊u′b⌋ in the CG-
ut, respe
tively. The rounding 
onditions on αj 
an be imposedthrough upper bound 
onditions on the variables αj, j = 1, . . . , n, as in (72b), andwith a lower bound 
ondition on α0, as in (72
). Sin
e α0 = ⌊u′b⌋ implies that
u′b − 1 ≤ α0 ≤ u′b, the small 
onstant ǫ > 0 is introdu
ed to ensure that when u′bis integral then α0 = u′b and not u′b− 1. Finally we should state that the obje
tivefun
tion gives the amount of violation of the CG-
ut evaluated.As mentioned in Se
tion 2.3.2 the CG-
ut asso
iated with any ui ≥ 1 is a dom-inated one, so we only 
onsider ui < 1. Also note that any variable yj with y∗j = 0gives no 
ontribution to the 
ut violation, so we use this property to redu
e the size ofthe separation problem by not 
onsidering it expli
itly in the separation model. De-�ne the set J(y∗) :=

{
j ∈ {1, . . . , n} : y∗j > 0

} and sla
k variables fj = u′Aj−⌊u
′Aj⌋for j ∈ J(y∗) and f0 = u′b − ⌊u′b⌋. The sla
k variables fj for j ∈ J(y∗) ∪ {0} arefra
tional and we require their values to be in the range [0, 1 − δ] for a small �xedvalue δ > 0. Then the model (72) 
an be rewritten as tomaximize

(α,α0,u,f,f0)

∑

j∈J(y∗)

α′
jy

∗
j − α0, (73a)s.t. fj = u′Aj − αj, j ∈ J(y∗), (73b)

f0 = u′b− α0, (73
)
0 ≤ fj ≤ 1− δ, j ∈ J(y∗) ∪ {0}, (73d)
0 ≤ ui ≤ 1− δ, i = 1, . . . ,m, (73e)
αj ∈ Z, j ∈ J(y∗) ∪ {0}. (73f)51



5.1.2 Proje
ted Chvàtal-Gomory separation problemSin
e by Proposition 3.1 in Se
tion 3.2, the binary requirements on the variables xitin the opportunisti
 repla
ement problem (33) 
an be relaxed, we 
an rewrite theproblem (71) as the problem below:min{
c′x + d′z : A1x + A2z ≤ b, x ≥ 0, z ≥ 0, x ∈ RNT , z ∈ {0, 1}T

} (74)In other words the opportunisti
 repla
ement problem 
an be treated both as anILP and a MILP. This fa
t will give us the permission to proje
t the problem ontothe spa
e of the integer variables zt. Then we 
an derive CG-
uts for the proje
tedpolyhedron. The separation problem asso
iated with the polyhedron proje
ted intothe z-dimension 
an be de�ned similarly to the problem (72)maximize
(α,α0,u)

α′z∗ − α0, (75a)s.t. αj ≤ u′A2
j , j = 1, . . . , p, (75b)

0 ≤ u′A1
j , j = 1, . . . , r, (75
)

α0 − ǫ ≥ u′b− 1, (75d)
ui ≥ 0, i = 1, . . . ,m, (75e)
α ∈ Zp

+, α0 ∈ Z+,where r = NT , p = T and m = 2NT + N −
∑N

i=1 Ti.In [7℄ it is shown that for the mat
hing problem, for whi
h the 
onvex hull and the�rst Chvátal 
losure of the problems 
oin
ide, solving the rank-1 separation problemis very e�e
tive. Our aim here is to investigate how tight is the �rst Chvátal-Gomory
losure, i.e., P1, de�ned in (9), for the opportunisti
 repla
ement problem (33) andhow generating rank-1 CG inequalities 
an improve the bounds on the problem.We therefore in the next se
tion, implement these models into a bran
h and boundpro
edure in whi
h the separation model is solved and the most violated 
uts for non-integral LP relaxation solutions of the opportunisti
 repla
ement problem is found.By a similar pro
edure we investigate how e�e
tive is the proje
ted CG 
uts on someinstan
es of the opportunisti
 repla
ement problem. Also we try to �nd CG 
uts forthe opportunisti
 repla
ement problems of higher ranks. In the next se
tion, �rst the
omputational pro
edures made to answer these questions are des
ribed in details,and then the 
omputational results and 
on
lusions are presented.5.2 Computational testsIn this se
tion we address the details of generating valid inequalities for the repla
e-ment polytope by iteratively solving the MILP models (73) and (75) in a pure 
uttingplane framework.Implementation in a pure 
utting framework: We have implemented ourCG separating problems into a pure 
utting plane framework. As a �rst test, we gen-erate CG-
uts of rank-1 with respe
t to the original formulation of the opportunisti
repla
ement problem at hand. The simple pro
edure for the �rst test is as follows.We solve the 
ontinuous relaxation of an instan
e of the opportunisti
 repla
ementproblem using a general LP solver, then we try to �nd the most violated CG-
ut forthe LP optimal solution y∗ by solving the separation problem (73) through a generalMILP solver. We store the 
orresponding CG-
ut in a pool. Then, these CG-
uts52



is added to the 
urrent opportunisti
 repla
ement problem formulation. The 
ontin-uous relaxation of the updated opportunisti
 repla
ement problem is solved againwith the LP solver. In ea
h step a new LP optimal solution y∗ is obtained, and aCG-
ut of rank-1 is obtained for that parti
ular solution. Note that at ea
h step,to ensure that all generated 
uts are of rank 1, we sti
k to the original formulationof the opportunisti
 repla
ement problem when solving the separation problem (73),i.e., at ea
h step the pair (A, b) is given by (71) and only y∗ 
hanges. We 
ontinue thegeneration of CG-
uts of rank-1 until either an integer solution is found by the LPsolver or no su
h violated 
ut exists. In the latter 
ase, if still there is a gap betweenthe LP optimal value and the known integer optimal value, this means that we haveoptimized over the �rst Chávtal 
losure and for improving the solution higher rankCG-
uts are required. After the end of the separation phase, all the CG-
uts gen-erated by this method 
an be added to the original ILP model of the opportunisti
repla
ement problem to study how it 
an a�e
t solving the opportunisti
 repla
ementproblem through a general ILP solver.The se
ond test is designed to study the strength of the proje
ted 
uts. Thepro
edure taken in the se
ond test follows the same s
heme as test one, ex
ept thatin our 
utting plane algorithm pro-CG-
uts of rank-1 are generated and saved. Thismeans that at ea
h step the MILP model (75) is solved to �nd pro-CG-
uts for theproje
ted repla
ement polytope into the zt variables spa
e. We generate pro-CG-
uts iteratively to observe how a pro-
ut 
an improve the optimal solution to the
ontinuous relaxation of the opportunisti
 repla
ement problem.The experiments above 
on
ern the optimization over the �rst Chvátal 
losure.For the next test we want to investigate whether produ
ing CG-
uts of higher rank
ould 
lose the integrality gap and 
ompare it with the 
ase when only rank-1 CG-
utsare generated. The new CG-
uts are found by 
ombining the generated inequalitiesand original ones. The generated 
uts are saved in a pool in order to add theseinequalities to the original formulation when solving the opportunisti
 repla
ementproblem with a general ILP solver.Making the 
ut sparser and stronger by the penalty term: A major
omputational issue when solving the Chvtátal-Gomory separation problem is thatseveral equivalent solutions of the separation problem typi
ally exists. Some of thesesolutions produ
e very weak 
uts for the opportunisti
 repla
ement problem whi
hmakes the strength of the 
uts an issue. One need to produ
e a violated 
ut as strongas possible with respe
t to the �rst Chvátal 
losure. Therefore we look for a solutionwith as few nonzero elements as possible. To obtain su
h an answer we introdu
ethe penalty term −∑m
i=1 µiui in the obje
tive fun
tion (73a) where µi = 10−4 forall i = 1, . . . ,m. The obje
tive fun
tion is then tomaximize

(α,α0,u,f,f0)

( ∑

j∈J(y∗)

αT
j y∗j − α0 −

m∑

i=1

µiui

)
.We have de�ned the gap 
losed per
entage as followsDe�nition 5.1 (gap 
losed). The proportion of the integrality gap 
losed is de�nedas optimal value(P1) − optimal value(P )optimal value(PI) − optimal value(P )
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where P1 is de�ned in (9), and PI = conv(P ∩ Zn), as de�ned in Se
tion 2.4.Furthermore, we 
hoose δ = 0.01 in the model (73) in our 
omputations.5.2.1 Numeri
al resultsIn this se
tion we report the out
ome of our experiments on a test-bed made ofeight opportunisti
 repla
ement instan
es. The approa
h follows the s
heme usedin Se
tion 5.2, i.e., we implemented a pure 
utting plane algorithm where, at ea
hiteration, CG-
uts are generated by solving the separation problems (73) and (75)using a standard MILP solver. In order to speed up the overall 
omputation, theMILP solver is aborted when a 
ertain time limit is rea
hed. This time limit is
hosen by 
onsidering the size of the problem instan
e at hand. Our implementationof the 
utting-plane methods uses the 
ommer
ial software ILOG-Cplex 12.0 as LPsolver, whereas the separation problems are solved by ILOG-Cplex 12.0 with theparameter settings in Table 9. For a referen
e to the parameter settings see [1℄.Algorithms are written in MATLAB R2009b. All numeri
al experiments are performedon a Linux desktop operating system with the pro
essor Pentium(R), Dual-CoreE5200 � 2.50GHz. The CPU MHz is 1200.000 and it has a 
a
he size of 2048 KB.All times are reported in CPU se
onds.Ea
h testbed problem 
orrespond to di�erent instan
es of the opportunisti
 re-pla
ement problem. The data for these instan
es is reported in Table 10. Problems
1 and 2 in the testbed are very simple problems. The ve
tors d, c for problems 1and 2 are reported in Table 10. For problems 3�8 in our testbed, it is assumed that
cit = ci, for all i ∈ N and t ∈ T , also dt = d for all t ∈ T . Problem 3 is a middlesized problem intended to resemble a realisti
 problem. Problem 4 is a rather denseproblem in the sense that it makes the optimal solution to 
ontain many maintenan
eo

asions. The data in problems 5 and 6 are from real-world instan
es obtained fromVolvo Aero air
raft engine. Problem 6 is a sparse problem. Problem 5 and 6 are
orresponding to the data from High Pressure Turbine (HPT) and Low PressureTurbine (LPT) respe
tively. Note that the data from real world instan
es are s
aledso that d = 1. Problems 7 and 8 are also rather dense with the same data in theirobje
tive fun
tion while problem 7 has a longer planning horizon.Table 9: Parameter settings for solving the MILP separation problems with 
plexDire
tive Value Des
riptionmipemphasis 4 indi
ates emphasis on �ndingvery good feasible solutions.node�le 2 
reates a 
ompressed versionof the node �le in memory.The testbed problems, while the integrality requirements on the variables xit and
zt are relaxed, is solved with 
plex and the results are presented in Table 11. Theinteger linear programming solutions, solution time in CPU se
onds, and the numberof 
plex iterations are also reported in Table 11.As stated in Se
tion 5.2, the CG separating problem (73) is solved at ea
h stepof a pure 
utting plane framework. CG-
uts of rank-1 with respe
t to the original54



Table 10: Basi
 data for the testbed problemsinstan
e T N minTi maxTi polyhedrondimension d c1 c21 4 2 3 4 12 (3, 3, 1, 3) (1, 1, 2, 1)(1, 5, 5, 1)2 4 2 2 3 12 (3, 3, 1, 3) (1, 1, 2, 1)(1, 5, 5, 1)

min ci max ci3 10 9 2 8 100 1 0.3613 4.02554 18 2 3 4 54 9 5 65(HPT)100 9 15 80 1000 1 0.3613 4.02556(LPT) 110 10 29 60 1210 1 0.3171 1.54827 40 3 3 5 80 10 5 78 15 3 3 5 60 10 5 7

Table 11: Solution of the testbed problems. The 
ontinuous relaxations and the ILP's aresolved by the general ILP solver 
plex with default parameter settings.instan
e 
ontinuous relaxation ILP solutiontime (s) opt. value time (s)# iterations opt. value1 0.0137 6.5 0.0160 10 72 0.0149 11 0.0360 12 123 0.0155 47.8397 0.0465 109 48.83974 0.0146 110 0.0271 96 1145(HPT) 0.1116 57.5946 2.4483 28018 58.74636(LPT) 0.1332 23.7225 0.2659 1322 23.72257 0.0205 314.75 0.5799 7276 3528 0.0171 118 0.0303 113 120
55



formulation of the testbed problems are generated. The 
omputations are stop wheneither an integer solution is obtained or when no su
h 
uts exists. The results arereported in Table 12, whi
h shows that for some instan
es of the opportunisti
 re-pla
ement problem, by only generating rank-1 CG-
uts, the integrality gap 
an besigni�
antly 
losed, while for testbed problem 5 with data from HPT it fails to in-
rease the lower bound. Table 13 reports the results for the 
utting plane algorithmusing pro-CG-
uts for the testbed problems.Table 12: Results when the rank-1 separation problem is implemented in a pure bran
h and
ut framework and applied to the test bed problems.instan
e # 
uts time(s) optimal value % gap 
losed1 1 2.27 7 1002 3 10.61 12 1003 4 2661.8 48.8397 1004 8 2613.5 114 1005(HPT) 28 71823.0 57.5946 06(LPT) 10 16710.0 23.7225 1007 68 105800.60 335.9700 56.978 7 901.28 120 100Table 13: Results when the proje
ted separation problem is implemented in a pure bran
hand 
ut framework and applied to the testbed problems. The number of proje
ted 
uts islimited to 100.instan
e # 
uts time(s) optimal % gap 
losed1 1 2.1700 7 1002 2 3.7000 11 03 4 35.9900 48.8397 1004 4 341.7400 111 255(HPT) 100 72452.0 57.5946 06(LPT) 7 674.8300 23.7225 1007 19 51329.0 319.5000 12.758 13 813.6500 119 50To observe how 
hanging the time horizon T 
an a�e
t the behavior of the solutionpro
edure, we have 
onsidered the testbed problem 5 with data from HPT and varied
T between 55 and 100. The LP relaxation and ILP solutions for instan
es of theHPT problem with various time horizons are reported in Table 14. The results forour implementations of the 
utting plane method where the separation problems aresolved with the MILP models (73) and (75) are reported in Table 15. For the HPTproblem with various time horizons, it is obvious from Table 15 that the 
uttingplane method generally fails to 
lose any integrality gap, ex
ept for the instan
ewhere T = 60. 56



Table 14: The 
ontinuous relaxation and the ILP solution of the opportunisti
 repla
ementproblems with data from HPT and various values of the time horizons T reported from
plexHPT 
ontinuous relaxation solution ILP solution
T time(s) opt. value time (s) # iterations opt. value55 0.0277 24.6670 0.0842 440 24.794660 0.0318 31.6229 0.0934 466 31.622970 0.0480 35.1382 0.4303 4937 35.319580 0.0562 46.1809 1.2196 21748 47.180990 0.0755 53.4250 1.7091 14456 54.2643100 0.1116 57.5946 2.4483 28018 58.7463

Table 15: Rank-1 and proje
ted separation problem applied to the HPT instan
e withvarious values of T in a pure bran
h and 
ut framework.HPT Rank-1 separation problem Proje
ted CG-
uts
T #
utstime(s)opt. value%gap 
lo. #
uts time(s) opt. value%gap 
lo.55 46 13458.0 24.6926 20.06 2 409.7000 24.6670 060 13 8365.0 31.6229 100 23 1936.6 31.6229 10070 19 20596.0 35.1382 0 100 8859.3 35.1382 080 10 6194.0 46.1809 0 100 35023.0 46.1809 090 15 23474.0 53.4250 0 100 67851.0 53.4250 0100 28 71823.0 57.5946 0 100 72452.0 57.5946 0
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Our previous experiments show that optimization over the �rst rank 
losure insome 
ases gives a very good approximation of the integer optimal value while insome other 
ases it fails to 
lose any integrality gap. In our experiments we 
onsidera 
ase in whi
h, in our 
utting plane method, CG-
uts of higher ranks are generated.In this test beside, the original 
onstraints of the opportunisti
 repla
ement problem(33), we 
onsider the new generated CG-
uts from the separation problem (73). Theresults are reported in Table 16.Table 16: Beyond the �rst Chvátal 
losure, CG-
uts of higher ranks has been generated.The separation problem to �nd the most violated 
uts is limited to be solved 100 times forproblem 7 and 150 times for problem 5.instan
e # 
uts time (s) opt. value % gap 
losed2 2 13.7300 12 1003 7 9533.1 48.8397 1004 10 2664.5 114 1005(HPT) 148 166460.0 57.8292 20.376(LPT) 8 1984.0 23.7225 1007 100 109110.0 331.1521 44.038 9 2662.6 120 100The CG-
uts whi
h have been generated in the separation phase have been saved.We add the generated rank-1 
uts to the original formulations of the problem withintegrality gap as reported in Tables 12 and 15. Then these new formulated problemsare solved with 
plex. The results are illustrated in Tables 17 and 18. We 
an
ompare the results with the ones in the Table 11 and 14.Table 17: Rank-1 CG 
uts are added to the original formulation and solved with 
plex toobtain an integer solution for the instan
es for whi
h the integrality gap is not 
ompletely
losed (Table 12). We 
ompare the results with those from Table 11.instan
e time (s) # iterations5(HPT) 1.5854 128697 0.7852 17311
5.2.2 Con
lusionsThe separation problem is NP-hard in general, so as expe
ted the 
omputation timefor solving the MILP models (73) and (75) is 
onsiderable. For many instan
es the
utting plane algorithm based on �nding the most violated rank-1 CG-
uts for theLP solutions is e�e
tive to improve the lower bounds of the obje
tive value. Inother words this pure bran
h and bound pro
edure for rank-1 CG-
uts is 
apableof �nding fa
ets of the repla
ement polyhedron in the neighborhood of an optimalsolution. By the results obtained in Table 12 one 
an 
on
lude that the e�e
tiveness58



Table 18: Rank-1 CG-
uts are added to the original formulation and solved with 
plex toobtain an integer solution for the problem HPT with various time horizons. We 
ompare itwith Table 14.
T time (s) # iterations55 0.0541 24370 0.1587 93680 0.5849 707890 0.6739 4026100 1.5854 12869of generating the most violated CG-
uts is dependent on the sparseness of the 
on-straint 
oe�
ients and the obje
tive fun
tion rather than the size of the repla
ementpolyhedron.Finding the proje
ted CG-
uts requires less 
omputation time. This is be
ausethe MILP problem (75) is smaller than (73). For the strength of the proje
tedCG-
uts it is of importan
e whether, in the general MILP problem at hand, theoptimization of the integer variables, or optimizing over the 
ontinuous variables isthe key. More pre
isely for our opportunisti
 repla
ement problem where there is atie between the integer variables zt and 
ontinuous variables xit, a situation that mayo

ur is that the proje
tion z∗ of the optimal solution (x∗, z∗) of the opportunisti
repla
ement relaxation problem belongs to the �rst Chvátal 
losure P1(z). In this
ase, no pro-CG-
ut 
an 
ut o� that point, although there might be a huge gapbetween the optimal integer solution and its relaxation. This 
an be observed inTables 13 and 15, in whi
h for most instan
es in 
omparison with rank-1 CG-
uts, asmaller gap per
entage is 
losed. Note that the per
entage of gap 
losed is dependenton the obje
tive fun
tion.Produ
ing CG-
uts of higher rank needs more 
omputation time than only gener-ating rank-1 CG-
uts. The reason is that in ea
h step a new CG inequality is addedto the matrix A in the model (73) whi
h in
reases the size of the instan
e. Table 16shows that it is bene�
ial to generate higher rank CG-
uts espe
ially for dense andhigh dimensional problems. By generating higher rank CG-
uts more dominate validinequalities 
an be generated and a tighter bound on the optimal solution with lessnumber of valid inequalities 
an be obtained. Table 16 shows that produ
ing higherrank 
uts has the bene�t of 
losing some of the integrality gap for the problem HPTwhile generating only rank-1 CG-
uts fails to do so.Finally we have added the generated rank-1 CG-
uts to the original formulationof the opportunisti
 repla
ement instan
es where our 
utting plane algorithm failsto report an integer solution. Comparing Tables 17 and 11 shows that althoughthe generation of CG-
uts fails to in
rease the lower bound on the obje
tive valuefor the HPT problem with T = 100, adding these new 
onstraints to the originalformulation simpli�es the problem and de
reases the 
omputation time. However,for the smaller problem 7, although by generation the rank-1 CG-
uts 56.97 % ofthe integrality gap is 
losed, but adding the generated 
uts to the original formula-tion makes the problem more 
omplex and in
reases the 
omputation time and the59



number of simplex iterations. This is be
ause adding the new inequalities makes thelinear programs big whi
h takes more time to solve, and so this is not so mu
h ofbene�t for small size problems. Table 18 shows that the generated rank-1 CG-
utsfor the HPT problem with various time horizons in
reases the 
omputation time andthe number of simplex iterations signi�
antly.In general, solving the separation problems (73) and (75) 
onsumes huge amountsof 
omputer memory.
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6 Con
lusions and future work6.1 Con
lusionsThe fo
us of this thesis is to study the mathemati
al property and fa
ial stru
tureof the opportunisti
 repla
ement problem with deterministi
 
omponent lives. TheBenders de
omposition method is implemented and a separation problem is modeledand solved in a bran
h and bound algorithm. The main results are as follows.If the maintenan
e o

asions are �xed, the remaining optimization model is alinear programming problem. The dual problem of this linear programming problemis presented. It is shown that an equivalent representation of the dual problems ex-ists. Moreover, if the maintenan
e 
osts are non-in
reasing with time, the dual linearprogramming problem 
an be solved through a greedy algorithm. An implementa-tion of the Benders de
omposition method applied to the opportunisti
 repla
ementproblem is dis
ussed. Feasibility 
onstraints for the master problem in the Bendersalgorithm are derived.The 
omputational experiments show that for the instan
es with non-in
reasingmaintenan
e 
osts, using the greedy algorithm to solve the dual linear programmingsubproblems in the Benders algorithm often de
reases the 
omputational times. Be-sides, the 
omputation time for solving the master problems in the Benders algorithmin
reases by ea
h iteration. As an overall 
on
lusion, when the size of the oppor-tunisti
 repla
ement problem in
reases the 
omputation time for solving the masterproblems in Benders algorithm behave exponentially, whi
h makes this method in-e�
ient for the opportunisti
 repla
ement problem. However, it is suggested thatBenders de
omposition method 
an be utilized to �nd a good feasible solution andan initial point for solving the opportunisti
 repla
ement problem.This thesis also in
ludes a bran
h and 
ut approa
h for solving the opportunis-ti
 repla
ement problem. A modi�ed mixed integer linear programming model forthe rank-1 Chvátal-Gomory separation problem is des
ribed. Then the proje
tedChvátal-Gomory separation problem is presented. The models are implemented ina pure 
utting plane framework to generate the most violated �rst rank CG-
uts inorder to obtain a tighter bound on the optimal solution. Then, Chvátal-Gomory 
utsof higher ranks have been generated for middle sized instan
es of the opportunisti
repla
ement problem. Sin
e the separation problem is NP-hard, the 
omputationtimes and the memory usage are 
onsiderable. The e�e
tiveness of generating mostviolated CG-
uts seems to be dependent on the sparseness of the 
onstraint 
oe�-
ients and the obje
tive fun
tion rather than the size of the repla
ement polyhedron.However, generating the rank-1 Chvátal-Gomory 
uts often yields a very tight ap-proximation of the (integer) optimal value for the opportunisti
 repla
ement problem.6.2 Future workThe work in this thesis shows that the Benders de
omposition method is ine�
ientfor the opportunisti
 repla
ement problem in general. However, the author's opin-ion is that Benders de
omposition method 
an be utilized to �nd a good feasiblesolution and an initial point when solving the opportunisti
 repla
ement problem.Also generating the rank-1 Chvátal-Gomory 
uts often gives a tight bound on theoptimal solution of the opportunisti
 repla
ement problem. Obviously, one should61



generate CG-
uts of any rank and sear
h for new te
hniques to generate valid in-equalities and �nd new 
lasses of fa
ets for the opportunisti
 repla
ement problemin order to obtain satisfa
tory results. Solving the separation problem and �ndingmost violated valid inequalities for the repla
ement polytope 
ould be useful as atool to guess stru
tures of some new 
lasses of fa
ets.In this thesis work, a basi
 opportunisti
 repla
ement problem is 
onsidered inwhi
h the lives of all the 
omponents are deterministi
. One may ask whether thework done generalizes to more realisti
 models for opportunisti
 maintenan
e or not.In realisti
 situations, maintenan
e problems often in
lude 
omponents withsto
hasti
 lives and it is important to apply the opportunisti
 repla
ement modelto these problems as well. In [15℄, a two-stage sto
hasti
 programming approa
h forthe opportunisti
 repla
ement problem with sto
hasti
 
omponent lives, is developedand studied.As an extension of the opportunisti
 repla
ement problem, one 
an 
onsider amaintenan
e problem with di�erent lives for di�erent individuals of the same 
ompo-nent. This problem is 
alled the opportunisti
 repla
ement problem with individuallives. Solving a sto
hasti
 opportunisti
 repla
ement problem with perfe
t informa-tion about individual 
omponent lives leads to solving an opportunisti
 repla
ementproblem with individual lives ([17℄). Furthermore, a model of the opportunisti
 re-pla
ement problem with individual lives is the basis of a model of the 
urrent problemfor the sto
hasti
 opportunisti
 repla
ement problem ([15℄).The s
ope of the future resear
h work 
an be divided into three 
ategories. One
an work on realisti
 problems dire
tly from the industry, study more 
omplex realproblems, and extend the 
urrent results to these kinds of problems. More exten-sions 
an be obtained by 
onsidering other de�ning fa
tors (su
h as human workresour
e, et
). A se
ond approa
h is to 
ontribute to �nd e�e
tive methods in solv-ing the multistage sto
hasti
 opportunisti
 repla
ement problem. A third possibilityis to utilize the results of the fa
ial stru
ture of the opportunisti
 repla
ement prob-lem, to the generalized 
ases su
h as sto
hasti
 opportunisti
 repla
ement problemand the opportunisti
 repla
ement problem with individual lives, in order to solvethese generalized problems more e�
iently. The goal of these resear
h areas is the
ontribution of �nding e�
ient solutions for larger and more 
omplex maintenan
eproblems.
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