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Abstract

The purpose of this project is to study mathematical properties of the oppor-
tunistic replacement problem introduced in [18]. The goal is to examine and
determine new techniques to compute the solutions for the opportunistic re-
placement problem faster. In this project the Benders decomposition method
and rank-1 Chvatal-Gomory cut generation are applied to the opportunistic
replacement problem.

Regarding the Benders Method, for the opportunistic replacement problem
with fixed maintenance occasions the dual of the resulting linear programming
problem is derived and it is shown that when the maintenance occasions are non-
increasing with time, this problem can be solved through a greedy procedure.
The feasibility constraints for the master problem in the Benders decomposition
method when implemented on the opportunistic replacement problem are ex-
plicitly derived. Then, the algorithm of Benders decomposition method applied
to the opportunistic replacement problem is presented.

Furthermore, the rank-1 Chvétal-Gomory separation problem for the oppor-
tunistic replacement problem is modeled. A branch and bound approach is then
used to generate valid inequalities for the replacement polytope, by solving the
separation model and finding the most violated cuts for non-integral extreme
points of the constraint set defining the opportunistic replacement problem.

Results from computation tests of the two solution procedures and conclu-
sions are finally reported.
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1 Introduction and background

1.1 Maintenance planning and problems

In aviation industry, power plants, and processing industry, expensive equipments
need to be used efficiently with few interruptions to pay back the huge costs of the
investments. Due to the huge costs of breakdowns of a system, it is of essential impor-
tance to avoid them as much as possible. In a typical setting every machine consists
of different modules, where each module contains several components. When a com-
ponent breaks or reaches its life a replacement of that component is unavoidable.
The life of each component can be considered as deterministic or stochastic.

In the literature sometimes it is assumed that the maintenance opportunity is
independent of the failure; sometimes the opportunity is equal to the first failure of an
individual part. In this case failure of one part is used as an advantage of preventive
maintenance for the other parts. The term opportunistic maintenance refers to the
situation that every maintenance occasion is considered as an opportunity to prevent
possible future failures of the system ([6]). This is often the case for aircraft engines.

The maintenance of aircraft engines is crucial in aviation industry. Since, in
particular, the major concern is safety. If an essential component of an aircraft
breaks, it may crash; therefore the interruption of the system function should be
avoided at any cost. In this case, the maintenance planning should be scheduled
in such a way that the system works without interruption between the planned
maintenance occasions. Since some of the parts are of great safety importance, they
are assigned fixed deterministic lives. Other parts of the engine are considered to
have stochastic lives.

The opportunistic replacement is motivated mainly by the unavoidable fixed costs
associated with each maintenance occasion rather than each component’s cost [6].
In simple words, when an engine is taken to the maintenance workshop, a spare
engine should replace it. Therefore at every maintenance occasion —accompanying
the cost of each part to be replaced there is often also an independent large fixed
cost. In opportunistic maintenance, the extra cost of a maintenance occasion should
be balanced with the costs of individual modules which have to be replaced, so there
is an optimization problem to be solved.

When a deterministic life of a component is reached, the engine must be taken
to the workshop for maintenance. This is a good opportunity to replace some of
the non-failed components with stochastic or deterministic lives. There are some
information needed to formulate the optimization problem such as the remaining
lives of the deterministic parts, costs of new spare parts, and the work cost for the
workshop when replacing components, etc. In case of not knowing the lives of the
components, it is possible to estimate their stochastic life time using historical data
and/or condition measurements.

A relevant optimization model for opportunistic replacement is to minimize the
expected costs in order to have functioning engine during a predetermined time
period. The optimization should create a maintenance schedule with as low total
cost as possible. In the opportunistic replacement problem for an aircraft engine
the time horizon is finite. This problem computationally is harder to solve than the
infinite time horizon counterpart (|18]).

A conclusion in [2]| is that it is extremely hard to find an optimal replacement



schedule when the number of parts is large. Different replacement policies can help
to simplify the solution process but they possibly lead to non-optimal solutions. On
the other hand, if all the parts have stochastic lives it is difficult to compute a reliable
schedule. In such cases it is essential that one uses replacement policies rather than
solving an optimization model.

In the aircraft engine studied about 75% of the components are considered to have
deterministic lives. If the lives of all the components are deterministic, an optimal
maintenance schedule is found by solving the opportunistic replacement problem.
This thesis constitutes a study of the mathematical structure and properties of the
problem when all the component lives are assumed to be deterministic.

1.2 The opportunistic replacement problem

This thesis is part of a research on analyzing and solving the maintenance decision
problems. A system (e.g., a jet engine or a wind power turbine) to maintain during
a finite planning time is considered. The idea is to use a mathematical model to
decide whether or not to perform maintenance at the time when the system needs a
corrective maintenance or a scheduled preventive one. A fairly simple maintenance
problem is presented.

The problem statement is as follows. Consider a system that consists of com-
ponents N = {1,..., N} with known deterministic lives. We assume that every
component must be replaced before its failure. Moreover, every maintenance oc-
casion generates the cost d and the replacement of a component ¢ € N generates
the replacement cost ¢;. We wish to minimize the expected maintenance cost over
the planning time [0,7]. This problem is denoted the opportunistic replacement
problem.

The research work in this thesis is based on the opportunistic replacement prob-
lem. Although, the intention is to generalize the results obtained to more general
maintenance problems in the future.

1.3 Outline

The aim of this thesis is to study some mathematical aspects of the opportunistic
replacement problem and then utilize these when solving the problem. The thesis is
organized as follows.

First some essential background from integer programming is briefly reviewed.
Chapter 2 is divided into five main sections in which the integer linear programming
is described and the complexity of such problems is discussed. Then, some of the
concepts helping to a better understanding of the geometry behind integer linear
programming are defined. Valid inequalities and facets for an integer linear program
is discussed and the Chvatal-Gomory procedure to obtain valid inequalities is pre-
sented. Section 2.4 discusses the Chvatal-Gomory cuts and the separation problem
for the integer linear programming problems. Finally, in Section 2.5, the general
Benders partitioning procedure to solve an integer linear programming problem is
presented.

In Chapter 3 a linear programming model is introduced for the opportunistic
replacement problem and some of its mathematical properties are discussed. Also a
study of the facial structure of the opportunistic replacement problem is presented.



Benders decomposition method is applied to the opportunistic replacement prob-
lem in Chapter 4. In Section 4.1 it is shown that the dual linear programming prob-
lem when the maintenance occasions are non-increasing with time and the mainte-
nance occasions are fixed is solvable by a greedy rule. An implementation of the Ben-
ders decomposition method on the opportunistic replacement problem is discussed
in Section 4.2. The feasibility constraints for the master problem in the Benders
decomposition method are explicitly derived. Results from numerical experiments
are reported.

In Chapter 5 the effect of generating rank-1 Chvatal-Gomory cuts for the oppor-
tunistic replacement problem is questioned. The rank-1 Chvatal-Gomory separation
problem is modeled as an mixed integer linear programming problem. Then, the
model is solved in a pure cutting plane framework to find the most violated cuts for
the convex hull of the polyhedron defining the opportunistic replacement problem.
Some computational results are also presented.

Finally, in Chapter 6 conclusions and remarks on future work are stated.



2 Integer linear programming

Optimization in the simplest way means to maximize (or minimize) a real-valued
function of real or integer variables by choosing the values of these variables within an
allowed set, which is described by a set of constraints on the variables. A technique
for optimizing a linear objective function of real valued variables with respect to
linear equality and/or inequality constraints is called linear programming. Adding
extra restrictions to the variables such as belonging to an integer set or taking binary
values gives new types of problems, which has a wide range of applications in everyday
life.

Integer programming is about how to solve optimization problems with discrete
(or integer) variables. A wide variety of practical problems in management and the
efficient use of resources can be formulated as integer linear programming problems.
Problems such as distribution of goods, production scheduling, transportation net-
work design, facility location, telecommunications or electricity generation planning
most often fall into the integer linear programming category.

This thesis is dealing with an integer linear problem, where the function to be
minimized and the inequality restrictions are all linear. In this chapter, we briefly
address some basic and essential concepts of integer linear programming problems.
First the integer linear programming problem is defined, followed by definitions of a
polyhedron, a convex hull, the ideal formulation, and bounds for the integer linear
programming problem. Then, the complexity of linear integer programming prob-
lems is discussed. Valid inequalities and facets are defined. Also Chvatal-Gomory
procedure to derive valid inequalities for the integer linear programming problems
and the septation problem are presented. The chapter closes with the description of
the general Benders decomposition procedure.

2.1 An integer linear programming model

Consider the linear programming problem in the canonical form:
(LP) HléiX{Cx cAx < b,z € R},

where R} is the set of non-negative real n-dimensional vectors, A an m x n matrix,
¢ an n-row vector, b an m-column vector, and x an n-column vector. x is the vector
of decision variables. Letting some of the variables be integer, then the mized integer
linear programming problem is defined as

(MILP) rr%ayx{cx +hy: Az + Gy <bx € Rl,yec Z}},

where Zﬁ is the set of non-negative integral p-dimensional vectors, GG is an m X p
matrix, h is a p-row vector, y is a p-column vector of integer decision variables. If
all variables are integer (i.e., if n = 0), we have (pure) integer linear programming
problem

(ILP) m;xx{hy :Gy <byecZi}

Note that ILP is the special case of MILP in which there are no continuous variables
and LP is another special case of MILP in which there are no integer variables. At



the end we define a binary linear program:
(BLP) max{cz: Az < b,z € {0,1}"}.
T

One should note that in understanding and solving integer linear programming prob-
lems, the linear programming theory is fundamental. As in linear programming,
translating a problem description into a mathematical formulation should be done
systematically. The data of the problem instance and the variables should be distinct
in the model. In the next section we formulate a very famous problem called, the
set covering problem, as n BLP.

2.1.1 The set covering problem

Two of the very well known integer linear programming problems are the set covering
problem and the set packing problem. The set covering problem can be described
as follows. Given a certain number of regions, the set covering problem is to decide
where to install a set of emergency service centers. For each possible center the cost
of installing a service center, and which regions it can service are known. The goal is
to chose a minimum cost set of service centers so that each region is covered. Now, we
formulate it as a BLP. Let M = {1,...,m} be the set of regions, and N = {1,...,n}
the set of potential centers. Let S; C M be the regions that can be serviced by
a center at j € IV, and ¢; its installation cost. To facilitate the description, we
first construct a 0 — 1 incidence matriz A such that a;; = 1if ¢ € Sj, and a;; = 0
otherwise. Let the decision variables be = (z1,...,2,) where z; = 1 if center j is
selected, and x; = 0 otherwise. The set covering problem is defined as

n
min Cily, la
. 3L
7=1

n
Zaiij-Zl, izl,...,m, (1b)
j=1
xzj € {0,1}, ji=1,...,n. (1c)

The inequalities (1b) state that at least one center must service region i. The set
packing problem is the integer linear program of the form

n

max chxj, (2a)
j=1
n
Zaija?jgl, izl,...,m, (Qb)
j=1
zj € {0,1}, j=1,...,n. (2¢)

There are very strong ties between set covering problem and set packing problems.
For more details see [12]. The set covering problem is structurally similar to the
opportunistic replacement problem defined in Chapter 3.

2.1.2 Definitions of some central concepts

In integer programming, for the formulation of problems we are given a set of feasible
points, often described as the set of integer solutions to a linear inequality system



S ={x € Z} : Az < b}. For a better understanding of how to deal with integer
linear programming problems, we give some necessary definitions and propositions
without proof from linear algebra. The books [12] and [19] are used as references for
this section.

Definition 2.1 (Convex combination and convex hull). Given a set S € R,
a point x € R"™ is a convex combination of points of S if there exists a finite set
of points {z;}!_; € S and a X € R". such that St =1andx =Yt N,
The convez hull of S, denoted by conv(S), is the set of all points that are convex
combinations of points in S.

Definition 2.2 (Linear and affine independence). A set of points z',..., 2" €
R"™ s linearly independent if the unique solution to the equations Zle Nzt =0 is
N =0,3=1,...,k. A set of points z',...,2% € R" is affinely independent if
the unique solution to the equations Zle a;xt = 0 and Zle a; =015 a; = 0 for
1=1,..., k.

Note that the maximum number of linearly and affinely independent points in
R"™ are n and n + 1 respectively. Linear independence implies affine independence,
but the converse is not true.

Definition 2.3 (Polytope and polyhedron). A polyhedron P C R™ is the set of
points that satisfy a finite number of linear inequalities; that is, P = {x € R™ : Ax <
b}, where (A,b) is an m x (n + 1) matriz. A polyhedron is bounded if there exists
an o € R}r such that PC {x € R": —a<z; <a for j=1,...,n}. A bounded
polyhedron is called a polytope.

Definition 2.4 (Ray). Let P° = {r e R": Ar <0}. IfP={x € R": Ax < b} # 0,
then r € P°\ {0} is called a ray of P.

Definition 2.5 (Extreme point and extreme ray). x € P is an extreme point
of P if there do not exist x', 2> € P, x' # 22, such that x = %xl + %xQ. A ray of P
is an estreme ray if there do not exist r',r2 € PO, r! £ \r? for any \ € R_l,_, such
that r = %7‘1 + %rz.

Definition 2.6 (Cone). C € R" is a cone if x € C implies \x € C for all X € R}

A polyhedron has a finite number of extreme points and extreme rays. Let
V = (v1,v9,...,u;) and E = (ey,ea,...,¢e) be the set of extreme points and extreme
rays, respectively, of the polyhedron P. Then P = conv(V') 4 cone(E) and if P is a
polytope then P(A,b) = conv(V).

Definition 2.7 (Dimension of a polyhedron). A polyhedron P is of dimension
k, denoted by dim(P) = k, if the number of affinely independent points in P is k+1.
A polyhedron P C R™ is full-dimensional if dim(P) = n.

Proposition 2.1 (Pro.2.1 chapter 1.4. [12]). A polyhedron is a convez set.

Proposition 2.2 (Pro.1.2 chapter 1 [19]). The extreme points of conv(S) all lie
n S.

Definition 2.8. A polyhedron P C R™"P is a formulation for a set S C R™ x ZP if
and only if S = PN (R™ x ZP).
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Note that in a formulation of an ILP problem the integrality requirements are
disregarded and only the (in)equalities are considered, i.e., we consider the polyhe-
dron defined by the (in)equality constraints. Most integer linear problems can be
mathematically formulated in several ways, but not every choice of formulation is
a good one. In an ideal formulation each extreme point is integer, so if the ideal
formulation is solved as the integer optimal solution is at an extreme point this
yields an optimal integer solution. Propositions (2.1) and (2.2) enable us to replace
The ILP max{cx : € S} by the equivalent LP max{cx : = € conv(S)}. The reduc-
tion of the formulation of the polyhedron P to the ideal formulation conv(S) also
holds for unbounded integer sets, and mixed integer sets. However, this is in general
a theoretical construction, because in most ILP problems an enormous number of
inequalities are needed to describe conv(S). This makes it very hard and almost
impossible to find all such inequalities for realistic size real world problems. But
since S C conv(S) C P, for all formulations P, we have the following definition:

Definition 2.9 (Strong formulation). Given a set S C R"™ and two formulations
Py and P for S, P; is a stronger formulation than Py iof P| C Ps.

2.1.3 Bounds on integer linear programming problem

This section explains how upper and lower bounds to an ILP can be found. Consider
the integer linear programming problem:

(ILP) zipp =max{cr:x € S}, S={xeZ]:Ax <b}, (3)
T

where ¢ is an n-vector with integral coefficients and (A,b) is an m x (n + 1) matrix
with integral coefficients. In an algorithm to solve ILP, finding a tight bound on
zrr.p would provide a stopping criterion, since it can be considered as a fundamental
way of proving optimality for a feasible solution to the integer linear programming
problem. Practically, this means that any algorithm will find an increasing sequence

of lower bounds: z; < 23 < ... < z; and a decreasing sequence of upper bounds:
Z1 > 73 > ... > 7z, and stop when Z; — z; < €, where € > 0 is suitably chosen for
each ILP.

Every feasible solution z € S for (3) provides a lower bound z = cx < z;zp. An
upper bound on a maximization integer linear problem can be found by considering
the linear programming dual of (3). This is called dual bound in contrast to the
primal bound. Let P = {x € R} : Az < b}, the polyhedron corresponding to the
integer program (3). Consider the linear program

zrp = max{cz : x € P}. (4)
T

The linear program (4) is called the linear programming relazation of (3). The dual
of (4) is defined as
(D) wrp = min{ub: u € Pp}, (5)
u

where Pp = {u € R' : uA > c}. It can be easily proven that the integer program
(3) and the linear program (5) form a weak dual pair!. A relaxation of (3) must

'[Prop. 2.2, Chapter 1.2 [12|](weak duality) If 2* is primal feasible and u* is dual feasible,
then cx™ < zpp <wrp < u”b.

11



be solved to optimality to provide an upper bound on z;;p. So we need to define a
dual problem such that any dual feasible solution yields an upper bound on z;pp. A
weak dual of (3) is any minimization problem

(DP) wp = m&n{zp(u) : u€Spt,

that satisfies zp(u) > cx for all x € S and all u € Sp where Sp C Pp. We now
present a proposition whose proof is given in Chapter 2 of [19].

Proposition 2.3. Suppose that (ILP) and (DP) form a weak-dual pair.
(i) If (DP) has an unbounded objective value, then (ILP) is infeasible.

(ii) (strong dual) If z* € S and u* € Sp satisfy cx* = zp(u*), then x* is optimal
for (ILP) and (u*) is optimal for (DP).

2.2 Computational complexity and well solved problems

The purpose of the following discussion on computational complexity of integer linear
optimization problems is to provide a better insight in how difficult it is to find an
optimal solution, and what are the properties of the so called well solved problems.
The theory in this section is mainly adopted from the references [12] and [19].

2.2.1 NP-hard problems

One might imagine an algorithm for solving an optimization problem: max{cz : z €
S} where the decision problem:

Is there an x €S with value ecx >k for ke Z7?

is replaced by the corresponding optimization problem. Let us call this decision
problem P. For a problem instance X, the length of the input L = L(X) is the
length of the binary representation of a “standard” representation of the instance.
An algorithm A is defined to be polynomial for a problem P and an instance X
with L(X) = if the running time of algorithm A is proportional to O(I?) for some
positive integer p.

Definition 2.10 (The classes P an N'P). NP is the class of decision problems
with the property that where there exists a primal solution of value as good as or
better than k, there is a polynomial proof. P is the class of decision problems in NP
for which there exists a polynomial algorithm.

Definition 2.11 (The class N'PC and reducibility). If the problems P,Q € NP,
and if an instance of P can be converted in polynomial time to an instance of @,
then P is polynomial reducible to Q. N'PC, the class of N'P-complete problems, is
the subset of problems P € NP such that for all P,Q € NP, Q is polynomially
reducible to P.

P is the class of easy problems i.e., for which a polynomial algorithm exists
for solving all instances of such problems. A large number of famous optimization
problems, e.g., the 0-1 knapsack problem, the set covering problem, the integer

12



programming problem, belong to the class NPC. Since no polynomial algorithm
for problems in N'PC is known today, this class is said to be the class of “the most
difficult” problems. An optimization problem for which the decision problem lies in
NPC is called N'P-hard. Set covering problem and set packing problem are NP-
hard problems. There still remains a question to answer which is how one can prove
that a problem lies in P?

We continue this section with defining the separation problem and introducing
special cases where a polynomial algorithm exists for the integer linear programming
problem. The problems belonging to the class P are called well solved problems.

2.2.2 Separation problem

The separation problem associated with max{cx : = € S} is the problem: Given
z € R", does & € conv(S)? If not, find an inequality 7z < my, where 7 € R"
and my € R satisfied by all points x € S, but violated by the point . A class
of optimization problems has the efficient optimization property if and only if a
polynomial algorithm exists for the class. The efficient separation property refers
to the property that there exists an efficient algorithm for the separation problem
associated with the problem class.

If a problem has the efficient separation property then the explicit description of
the corresponding convex hull is at hand. Therefore, the efficient optimization and
the efficient separation problems are equivalent. The family of optimization problems
max{cx : x € conv(S)} is polynomially solvable if and only if the corresponding
family of separation problems is polynomially solvable.

2.2.3 Integer programming with totally unimodular matrices

A starting point in solving ILP is that to answer the question whether there exists
some problems with the property that conv(S) = {x € R} : Ax < b}, i.e., special
cases for which an efficient algorithm can be found, or when the LP relaxation
possesses an optimal solution which is integer. The following definitions and results
from [12] and [19] are utilized to answer this question.

Definition 2.12 (Totally unimodular matrix). A matriz A is totally unimodular
(TU) if every square sub-matriz of A has determinant +1,—1 or 0.

Definition 2.13 (Interval matrix). An mxn (0,1) matriz A is called an interval
matrix if in each column the 1’s appear consecutively; that is, if a;; = ar; = 1 and
k>i+1, then aj; = 1 for all I with i <1 <k.

Corollary 2.10 on page 544 in [12] states that interval matrices are (T'U).

Proposition 2.4 (Integral polyhedron). If A is TU, then P(b) = {x € R} :
Az < b} is integral for allb € Z™ for which it is not empty. Le. P(b) = conv(P(b)N
zm).

Proof. Consider the linear program with constraint set Az+Iy =b, z € R,y € R’
where A is TU and b is integral. From linear programming theory, we know that
the basic feasible solutions are 2 = (zp,2zy) where zp = B~ 'b and zy = 0. Also
(A,I) = (B,N), where B is an invertible m x m sub-matrix of (A, ), called a basis
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matrix for the linear program. Since A is TU, B and B! are also integral [form
Pro 2.1 page 540 [12]]. Thus B~1b is integral, so the correspondence between basic
feasible solutions and extreme points yields the result. O

Proposition 2.5. The linear program max{cx : Az < b,x € R}} has an integral
solution for all integer vectors b for which it has a finite optimal value if and only if
A is totally unimodular.

By propositions 2.4 and 2.5 we have shown that for S = {z € Z7 : Az < b},
and P = {x € R} : Az < b}, where A is TU and b is integral, It holds that
S = conv(S) = P. Thus, when A is TU the linear programming relaxation solves
IP. The converse also holds.

2.3 Valid inequalities and facets

A primarily and practically important problem in solving integer linear programming
problem is to find an equivalent representation of the integer program by a linear
program that have the same optimal solution. In Sections 2.1.2 and 2.2.2 it is noted
that if an ideal description of conv(S) is at hand then the integer linear programming
problem is polynomially solvable. Unfortunately this is not the case for most of the
integer linear programming problems. Therefore one needs to find additional valid
inequalities for the set S in hope to obtain a stronger formulation for conv(S). In
this section, by using integrality and valid inequalities for P, we address constructing
suitable valid inequalities for the set S.

Consider the general integer program (3), and let P = {z € R} : Az < b} so
that § = PN Z". Define the convexified integer program.

(CIP) max{cx : z € conv(S)}. (6)

Theorem 2.1. Given the set S =P NZ" #0, where P = {x € R} : Az < b}, and
any c € R", it follows that:

1. The objective value of (3) is unbounded from above if and only if the objective
value of (6) is unbounded from above.

2. If (6) has a bounded optimal value, then it has an optimal solution (namely,
an extreme point of conv(S)), that is an optimal solution to (3).

3. If & is an optimal solution to (3), then x is an optimal solution to (6).

For a proof of this theorem see Chapter 1.4.6 in [12]. This theorem states that
reducing an integer linear program to a linear program amounts to find the linear
inequalities representative of conv(S). For A'P-hard problems, finding a good de-
scription of conv(S) in terms of linear inequalities is a very hard problem. Generally,
the strategy one could take when trying to solve an NP-problem is to find effective
ways to approximate conv(S) for some instances of that problem. That is to deduce
the relevant inequalities from the linear inequality representation of the polyhedron
P and the integrality constraints on the variables.
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2.3.1 Valid inequalities and facets

In the polyhedral description of a integer linear programming problem, it is important
to find necessary inequalities and to get rid of redundant inequalities.

Definition 2.14 (Valid inequality). The inequality mx < 7y , denoted as (mw,m),
1s a valid inequality for a set P C R" if mx < mg, for all x € P.

Proposition 2.6 (Valid inequality for S). If nx < mg is valid for S = {x € Z7 :
Az < b}, it is also valid for conv(S).

Proof. Consider an z € conv(S). Then z = 3 . ; Ajz’, where 27 € S for j € J,
ZjGJ)\j =1, and \; >0 for j € J. Hence,

m;:ZAj(ﬂxj) SZ)WTO = 0, (7)

JjEJ JjeJ
which yields the result. U

Definition 2.15 (Face and facet). If mx < mg is a valid inequality for P and
F={x € P:nmx=my}, Fis called a face of P, and we say that (w,my) represents
F. A face F of P is said to be proper if F # () and F # P. A face F of P is a facet
of P if dim(F) = dim(P) — 1.

Proposition 2.7 (Proposition 4.2 Chapter 1.4 [12]). z is an extreme point of
P if and only if x is a zero-dimensional face of P.

Let P be a full-dimensional polyhedron. Then P = {z € R" : a'x < b; i =
1,...,m}, where each inequality is unique within a positive multiple, is the unique
description of P. These inequalities are necessary to define P: without any of them,
P is not completely defined. If a valid inequality for P is not a positive multiple
of these inequalities, it is redundant and can be removed. Note that an inequality
mx < mo representative of the facet F' is necessary in the description of P. Moreover,
the facets are sufficient for the description of P.

Identifying new classes of facets and including them in the problem description,
help to solve the AP hard ILP problem more efficiently. This is a strong motivation
to look for some techniques to generate all valid inequalities for an ILP or an MILP
problem. However, finding facets of the polyhedra defined by different integer linear
programming problems is not an easy task. The determination of families of strong
valid inequalities is more of an art than a formal methodology As a well known
integer linear programming problem finding classes of facets for the set covering
problem and set packing problems has been always of interest. Looking back to
the classical literature on these problems, two classes of facets for the set packing
polyhedron has been identified in [14]. In Chapter I1.2 of [12] the problem structure is
used to determine facets for convex hull of the constraint sets of some NP-hard TLP
problems. By some examples, it is shown in [14] and Chapter I1.2 [12] that generating
facets is considerably effective when solving the AP hard ILP problems. Studying
known facets for well known integer linear programming problems can always be
used as a guide for finding classes of facets for the arising new problems in the field
of integer programming. The following result from Theorem 3.6 of Chapter 1.4 in
[12], is widely used to determine facets of conv(S).
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Theorem 2.2 (characterization of facets). Let P be a full-dimensional polyhe-
dron and let F = {z € P | 7Tz =m} be a proper face of P (i.e., ) # F C P). Then
the following two statements are equivalent:

1. F is a facet of P.

2. If \T'aw = X\g for all x € F, then (A, X\o) = a(m,my) for some o € R.

We obtain valid inequalities for a given set P by taking non-negative linear com-
binations of rows of Ax < b. This would give an infinite family of valid inequalities.
Moreover under some technical assumptions stated in the theorem below (Chapter
I1.1, Prop. 1.1 in [12]), all valid inequalities for P can be obtained this way. The
linear combinations can be restricted to using, at most, min(m,n) rows of A.

Theorem 2.3. Let mx < mg be any valid inequality for P = {x € R} : Ax < b}.
Then mx < g s either equivalent to or dominated by an inequality of the form
uAx < ub, u € RY, if and only if P # 0, {u € RT : vA>n}#0 and A = (/}),

where I is an n X n identity matriz and A’ is a (m — n) X n sub-matriz of A.

A simple procedure for combining the rows of the matrix A to obtain valid in-
equalities for the set P has been developed by Chvatal and Gomory. The Chvéatal
Gomory procedure stated in the next section is from references [12| and [19].

2.3.2 The Chvatal-Gomory procedure to construct valid inequalities

Consider the feasible region S of the general ILP problem. How one can obtain
valid inequalities for S is based on the simple principle that if @ is an integer and
a < b, then a < |b], where |b] is the largest integer less than or equal to b. Let
X ={y e Z' : y <b}; then the inequality y < |b] is valid for X.

The Chvatal-Gomory procedure: For the set S = {z € Z7 : Az < b},
where A = (ay,az,...,a,) and N = {1,...,n} it holds that
1. The inequality ZjEN uajxj < ub is valid for P for all u > 0 since ZjEN a;x; < b,
i. The inequality ..y |ua;|z; < ub is valid for P for all u > 0,
i46. The inequality > y|uaj]z; < [ub] is valid for S whenever z is integer, and
thus > ¢ ylua;]z; is integer.

The valid inequality in 42¢ can be added to the linear system Az < b, and then
the Chvatal Gomory procedure can be repeated to the original set of inequalities or
the system with new inequalities. Note that it is sufficient to combine at most n
inequalities. This general procedure is called the Chvdtal Gomory (CG) rounding
method, and the inequalities it produces are called CG inequalities. It can be proved
that by applying the Chwvdtal Gomory (CG) procedure a finite number of times all
of the valid inequalities for S can be generated (Chapter 8, Theorem 8.4 in [19]).
Note that non-dominated CG-cuts only arise for w € [0,1)™ provided that (A,b) is
integral (Chapter 11.2 of [12]).

2.3.3 Software for finding facets by projection

In Section 2.2.2 it is stated that if a complete description of the polyhedron defining
the ILP problem is at hand, then a polynomial algorithm which solves the ILP
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exists. So, we may ask if is it possible to find all the facets of the polyhedron
defining ILP. Porta and Polymake ([16]) are two computer software designed for
analyzing polytopes and polyhedra; both are capable of generating all facets for
small instances of ILP. These two software find facets based on a projection method
which is described very briefly here.

In integer programming it is in principle possible to find all the feasible solutions if
the polyhedron defining the problem is bounded. Define P(A,b) = {x € R": Az <
b} where A € R™*™ and b € R™ to be a polytope. If F' = (f1, fo,..., far) is the set
of integral feasible solutions inside the polytope P(A,b) then conv(P(A,b) N Z") =
conv(F). The set of all the integer feasible solutions in P(A,b) can be utilized to
find the facets defining the convex hull of P(A,b) N Z"™. Every x € P(A,b) N Z" can
be defined by

M
S Nifi = x, Vze P(Ab)NZ", (8a)
i=1
M
where Y X, = 1, X\ >0, i=1,...,M, (8b)
=1
for some \; € R}F, 1 = 1,...,M. The idea is to eliminate the variables );, to

yield a system of equations containing only z. At the start we project the set
defined by inequalities (8) on the plane defined by A\; = 0 and obtain a system of
inequalities which does not contain A;. The projection is done by the Fourier-Motzkin
elimination procedure ([8]). By iteratively projecting out the variables A1,..., Ans,
we obtain a system of inequalities containing the variable x and which are facets
to the convex hull of P(A,b) N Z™. A big disadvantage with the Fourier Motzkin
method is that its computational complexity is exponential. (For more details, see
[16].) Hence, even for small size instances this approach to find facets can be very
time consuming. However, studying the facets of small instances of an ILP may help
to an understanding of the facial structure for that class of problems.

2.4 Chvatal-Gomory cuts and the separation problem

In Section 2.3.2 we have presented the Chvatal-Gomory procedure to obtain valid
inequalities (CG-cuts) for the feasible set of the ILP problem. Also, the separation
problem is defined in Section 2.2.2. In this section we discuss some further definitions
and notions of the Chvatal Gomory separation problem. This section is divided into
two major parts. In the beginning we give the definition of the first Chvatal closure
and then present the rank-1 separation problem. The remainder of this section
discusses the projected cuts for the mixed integer linear programming problems.
The refrences [7| and [4] are mainly used for this section.

Assume P = {z € R} : Az < b} where A is an m X n integer matrix, and b
an m-dimensional integer vector. Let Py = conv(S) with S = PN Z" and assume
Pr # P. As defined in Section 2.3.2, a CG cut is a valid inequality for P; of the form
|u'A]z < [u'b], where w € R!. The vector u is called the CG multiplier vector.
Note that CG-cuts depend on P and not directly on P, i.e. different formulations
of the same problem can produce different CG-cuts. The rank-1 closure or the first
Chudtal Closure of P is defined as:

P={zxeP:|[vAlzx < |u'b], for all u € [0,1)}. (9)

17



We define a {0,1/2}-CG-cut as a CG-cut with multipliers «’ € {0,1/2}™ and define
Py /5 the polyhedron obtained by intersecting P with the half-spaces induced by all
{0,1/2}-CG-cuts, i.e:

Py ={zeP:|[uA]z < [u'b], forall u € {0, %}m} (10)

Notice that P/, is a function of A and b. Clearly, P C Py C P/, C P. Although
Py = P holds if and only if P = P, one can have Py = P even if P # P;. This
case occurs, e.g., when %b € Z™. Therefore, P, C P in case P # Pr, i.e., P gives a
better approximation of Py than P. In some cases, P, = P, = P as, e.g, when P
is the solution set for the matching problem ([5]).

2.4.1 Chvatal-Gomory separation problem

Because of the well-known equivalence between optimization and separation, we
will address the CG separation problem in which we are given any point x* € R"
and search for a hyperplane separating z* from P, if any exists. Without loss of
generality assume that this «* lies in P. Therefore the separation problem is the
following.

Definition 2.16 (CG-SEP). Given any point x* € P find a CG cut that is violated
by «*, i.e., find uw € R such that |u'A]x* > |u'b], or prove that no such u exists.

If, in addition to the assumption in the definition of CG-SEP, u € {0, %} then
the separation problem is called {0, %}—SEP. It seems necessary to remind that the
availability of a polynomial-time algorithm for CG-SEP would allow to optimize in
polynomial time, a linear objective function over Py or Py /5. {0, %}—SEP is equivalent
to finding the minimum-weight member of a binary clutter (see [5]), which is an N'P-
hard problem, implying that {0, %}—SEP is N'P-complete [5]. There exist, however,
special cases where {0, 2}-SEP is polynomially solvable. {0,4}-SEP can be solved
in polynomial time if AT is an edge-path incidence matriz of a tree (EPT matrix)2
orif A= (%), and M is an EPT matrix ([5]).

In general CG-SEP is N'P-hard, so optimizing over P is also NP-hard. Here
we are interested in optimizing the objective vector ¢’z over the polyhedron P; in
order to get a hopefully tight lower bound on the optimal value of the original integer
linear programming problem.

2.4.2 Projected Chvatal-Gomory cuts for mixed integer linear programs

Suppose we are given a mixed-integer problem with the feasible region:
T={zeRl, yeZ : Az + Gy < b},

where A and G are m x n and m X p rational matrices, respectively and, b is an
m-vector. One should consider that the CG-procedure does not work when there
are continuous variables, in particular, we can not round down the right-hand side
of an inequality to its integer part even when all of the coefficients on the left-hand

%A p x q {0,1}-matrix A is an EPT-matriz if there is a tree T with p + 1 nodes such that each
column of A is the characteristic vector of the edges of a path in T'.
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side are integers. However, we can obtain a procedure, related to the disjunctive
procedure, that generalizes the CG-procedure and generates valid inequalities for
T ([12]). These cuts are called Gomory Mized Integer (GMI) cuts (also known as
MIR cuts and split cuts). Although it is easy to find a GMI cut that separates
an integer infeasible basic solution of the linear programming relaxation, separating
other points by GMI cuts is NP-hard (|4]).

Consider the Mixed Integer Linear Program MILP defined in the region T as

min{c'z + Wy : Az + Gy <b, x € R, y € Z1},

where ¢ € RP and h € R™. Also consider the following two polyhedra in the (x,y)-
space

PXY = {(z,y) € R” x R": Az + Gy < b}; )
P = conv({(x,y) € P(x,y) : y integral}). (12)

Our aim here is to project first the linear programming relaxation of the MILP at
hand onto the space of the integer variables y, and then to derive CG-cuts for the
projected polyhedron. For this purpose, we define the projection of PXY onto the
space of the y variables as

PY ={yeRl: Iz e R} st. Az + Gy < b}
={ye R} : u*Gy < ufb, k=1,... K}
={ye Ry : Gy <b},
where ul, ... ,l_LK are the extreme rays of the projection cone {u € R : u'A > (0},
G =u*G and b = uFb.
~ The projected Chutdtal-Gomory (pro-CG) can be obtained from the system _C_}y <
b,y >0, ie., |G|y < |w'b] for some w > 0. Note that any row of Gy < b is a
linear combination of the rows of Gy < b with multipliers & > 0 where uA > 0.
Therefore a pro-CG cut can equivalently and directly be defined as an inequality of
the form
|[v/G|y < |u'b] for any u > 0 such that u'A > 0. (13)

Denote the rank-1 Chvatal closure of PY by Ply and the convex hull of PY N Z™ by
pY.

In Chapter 5 we model and solve the rank-1 separation problem for the oppor-
tunistic replacement problem. We also generate pro-CG cuts for the opportunistic
replacement problem defined in Chapter 3.

2.5 Benders decomposition procedure for mixed-variable program-
ming problems

The decomposition method refers to an algorithm which partitions the variables of
an optimization problem into two subsets. The first step of the Benders algorithm
consist of fixing a certain amount of variables in our original ILP problem, hereby
making the resulting sub-problem easy to solve. The essence of Benders decompo-
sition lies in determining which variables to fix, such as to simplify the resulting
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sub-problem. This decision will often require specific knowledge of the problem at
hand as well as known ways to solve similar problems quickly.

This section is divided into two parts, first we present the theoretical develop-
ments that leads to the decomposition. It is followed by the Benders algorithm.

2.5.1 An equivalent representation of mixed integer programing prob-
lems

Consider the general mixed integer programming problem defined by

minimize 'z + d'y, (14a)
s.t. Az + Fy > b, (14b)
x>0, yes, (14c)

where A and F' are m x n- and m X p- matrices, respectively, x and c¢ are n-vectors,
d and y are p-vectors. S is a nonempty and bounded subset of Z". Here, the =
variables are continuous and y discrete. Except for the integrality requirements on
y, the model (14) has a linear programming format. Benders method decomposes
this model in such a way that it can be solved as an alternating sequence of linear
programs and pure integer programs.

Assume that the vector y is fixed to some specific value. For this vector to be
feasible, it must lie in the set

R={ye S |3z >0 suchthat Az >b— Fy}. (15)

We assume that the set R is nonempty, otherwise the original problem (14) is infea-
sible. We can rewrite the problem (14) as that to

minirgize {dy+min{c'z | Az > b— Fy, > 0}}. (16)
ye

When the value of y is fixed, the minimization subproblem of (16) is a linear pro-
gramming problem in the variables z and we formulate the linear programming dual
of this subproblem. By the fundamental theorem of duality in linear programming
(Theorem 6.1, page 267, [3]) it holds that

min{dx | Az >b— Fy, >0} = max{(b — Fy)u' | Au<c, u>0}, (17)
T u

which states that if the primal and dual problems are feasible they possess finite
optimal solutions with equal objective values. This lets us formulate a new equivalent
problem to (14) as that to

minirﬁize {d'y +max{(b— Fy)u| Au<ec, u>0}. (18)
ye

Followed from the fact that an optimum solution to the maximization subproblem
of (18), (i.e., the right problem in (17)) must be at one of the extreme points of its
feasible region, a different approach can be taken to solve it. Consider the polyhedron
P defined by the constraint set of the dual problem; P = {u € R™ | A'u < ¢,u > 0}.
Assume that P is nonempty; otherwise, the dual problem is infeasible which implies
that (14) is unbounded. The optimum of the maximization subproblem is at an
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extreme point of P or approaches +o00 along an extreme ray. If the dual is unbounded
then, by the duality theorem (see [3]), the corresponding primal problem and as
a result— the original problem (14) is infeasible. But we assume that R # (), so the
polyhedron P is bounded and the number of extreme points is finite, so we only need
to check the extreme points to find the maximum (P unbounded <= (14) infeasible
<= R #0). Let u!, i = 1,...,n, be the extreme points of P. Then the problem
(18) can be rewritten as

migiergize {dy+ 122;(&) — Fy)ul'}, (19)
which is equivalent to
minimize z (20a)
subject to z > d'y + (b— Fy)'u?, i=1,...,np, (20b)
y e R. (20c)

In the model (20), there is one constraint for each extreme point of P.

Applying the Farkas lemma (Lemma 5.1, Sec.5.3, [3]) to the linear equality system
Ar —s=b— Fy with x > 0, s > 0, where y € R is fixed, yields that y is feasible for
(14) if and only if

(b—Fy)'u<0 (21)

forallu € Py ={u€ R™ | Au <0, u>0}. The cone P is a polyhedron; therefore
each vector u € Py can be written as a convex combination of the generators u;,

i=1,...,n (i.e., extreme rays of Py). Each u € Py can then be expressed as
Ny
U:Z)\iu;, where X\, >0, i=1,...,n,.. (22)
i=1

By substituting (22) in (21) we have that Y ;" \i(b — F'y)'u} < 0 which holds for
all A; > 0 if and only if

(b—Fy)u; <0, i=1,...,n,. (23)

Therefore, the vector y € S is feasible for (14) if and only if (22) holds. Hence the
set R can be written as

R={yeS|(b-Fy) u <0, i=1,...,n.} (24)

Using this explicit definition of R we obtain a new formulation of (14) given by

minimize 2 (25a)
subject to z>d'y+ (b—Fy)'ul, i=1,...,np, (25b)
0> (b— Fy)'ul, i=1,...,n, (25c¢)
yeSs. (25d)

The problem (25) is often referred to as the “complete master problem” of Benders
decomposition algorithm. In the model (25) there are integer variables y and one
real variable z. Theorem 1 on page 374 in [11] summarizes the previous statements.
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Theorem 2.4 (Equivalence of (25) and (14)).
a. (25) has a feasible solution <= (14) has a feasible solution.

b. (25) is feasible without having an optimal solution <= (14) is feasible without
having an optimal solution.

c. If (2,9) solves (25) and & solves the linear program to

minimize cx (26a)
subject to Az >b—Fy, x>0. (26D)

then (z,9) solves (14) and z =z + d'y

d. If (z,y) solves (14) and z = 'z + d'y, then (Z,9) solves (25).

2.5.2 Benders algorithm

Theorem 2.4 states that for obtaining the optimal solution to the original model
(14), one needs to solve (25) to find the solution (z,y) and then obtain the optimal
value z by solving the primal problem in (17) with y = y. The new model (25) can
not be practically solved because its formulation requires that all extreme points and
extreme rays of (25) are identified. The number of extreme points and extreme rays
can be considerably large even for small dimension problems. Since only a small
number of constraints will be binding at the optimal solution, (25) can be relaxed
to a problem with no or few constraints. Define the new modified problem (the
restricted master problem)

minimize 2 (27a)

subject to  z>d'y+ (b— Fy)ul, i€, (27b)

0> (b— Fy)ul, i€ Iy, (27¢c)

yes. (27d)

where I; and I are proper subsets of the sets {1,...,n,} and {1,...,n,}, respec-

tively. Let G, G’ be the set of all (z,y) satisfied by the constraints (25a)—(25d) and
(27b) (27d) respectively. Then G C G’. Benders algorithm begin with solving the
problem (27). If the solution satisfies the remaining constraints in (25a) and (25d),
the solution is also optimal to (25), i.e., it lies in G. If not, at least one constraint
in (25) is not satisfied. The linear programming problem or its dual in (17) is then
solved to find a new extreme point uf or an extreme ray u;. This solution is used to
define a new constraint which will be added to (27b) or (27c¢).

The maximization dual problem is solved in each step of Benders method, so
it is of importance to note the conditions where it is unbounded or has no feasible
solution. The feasible region P of the dual problem is independent of the variable y.
If the dual problem has no feasible solution, the primal problem is either infeasible
or unbounded for all y € R which yields that (14) is unbounded or infeasible. This
case is not interesting for practical problems so we assume that the dual problem in
(17) possesses feasible solutions. If the dual problem has an unbounded solution for
some y € S, the primal is then infeasible for that y and the simplex method locates
an extreme ray. This case may frequently happen and should be considered in the
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algorithm by adding a new constraint to (27c) with the new obtained extreme ray.
Now we state the general Benders method in details.

Let (27) have a finite optimal solution (2z,y). The solution is optimal to (25) if
and only if it holds that

(b—Fy)ul <z-dy, i=1,...,np, (28a)
(b— Fy)'ul <0, i=1,...,n. (28b)

We intend to find the most unsatisfied constraint in (28a) or (28b). The most
unsatisfied constraint of (28a) is given by
arg max (b— Fy)u? <2 —d'y. (29)
1<i<n,
Since the linear function (b — Fy)'u attains a finite maximum over P at an ex-
treme point of P, the constraint (29) can be obtained by solving the linear program
max {(b—Fy)'u | u € P}, which is the dual problem in (17) with y = ¢. This problem
has either a finite optimal solution or an unbounded solution. In the unboundness
case the objective value approaches +oo along the half line, u¥ + Aul, A > 0 and
(b— Fy)ul > 0 for some i € {1,...,n,}. This implies that one of the constraints
(28b) is violated. Thus both sets of constraints (28a) and (28b) are satisfied if and
only if it holds that

max{(b— Fy)'u | Alu<e, u>0} <z-dy. (30)
u
If some of the constraints (28a) and (28b) are not satisfied, then it holds that

mqjxx{(b —Fj)u| Au<e, u>0}>z2—dy. (31)

Consider the problem (27) with few or no constraints. If (27) is infeasible so are
(25) and (14). Let (Z,y) be finite optimal solution of the problem (27). If (27)
has an unbounded solution let Z = —oo and y be any vector in S. If the solution
to the maximization linear dual problem in (17) is bounded it is obtained at an
extreme point of P, say u, then (b— Fy)'t > z—d'y. This constraint is not satisfied
by the solution to the current problem (27), therefore we add the constraint z >
(b — Fy)'u+ d'y to the current problem which yields a new (27). In the case where
the solution of the linear dual program (17) leads to unboundness, an extreme ray of
P, v is found, where v satisfy (b — Fy)'v > 0, but 3 does not satisfy the constraint
0 > (b— Fy)'v. Thus, this constraint is added to (27). The problem (27) is solved
again with the new constraint, a new solution & is obtained by solving the primal
problem in (17) with y = y. Now the optimality of the solution to (27) should be
checked. An optimality test can be obtained directly from (30), according to the
following theorem.

Theorem 2.5 (Optimality test(Theorem 2 Sec.7.3 [11])). (2,9) is optimal for (25)
if and only if
max{(b— Fy)u | Au<ec, u>0}=2—dy. (32)

Theorem 2.6 (Finite convergence(Theorem 3 Sec.7.3 [11])). Benders iterative
procedure will terminate in a finite number of iterations, either with the information
that (14) is infeasible or unbounded, or with an optimal solution to (14).
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Proof. The program (25) has a finite number of constraints. If the optimality test
is not passed, then one or more new constraints are added to the program (27).
Thus, in a finite number of iterations either the optimality test is passed or a full
set of constraints will be obtained. The program (14) is infeasible if and only if the
program (27) is infeasible. The program (14) is unbounded if and only if the dual
linear program is infeasible, which will be detected in the first step. ]

In Chapter 4 some special properties of the opportunistic replacement problem
will be detected which will be essential in solving it using Benders decomposition
method. Then Benders algorithm adopted to our problem will be presented.

In the following chapter we introduce the opportunistic replacement problem.
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3 The opportunistic replacement problem

This chapter is dedicated to defining the opportunistic replacement model and the
study of some of its mathematical properties. In Section 3.1 a mathematical model
for determining an optimal opportunistic replacement schedule when component lives
are deterministic is introduced. The opportunistic replacement problem is modeled
as an integer linear programming problem. This basic opportunistic replacement
problem is NP-hard. In Section 3.2 it is stated that the convex hull of the set of
feasible replacement schedules is full-dimensional. When the maintenance occasions
are fixed, the remaining problem can be stated as a linear program for the case when
the maintenance costs are monotone with time, this linear program can be solved
by a greedy procedure. Furthermore, all the inequalities that are necessary in the
definition of the problem are facet-inducing (Section 3.3). At the end of this chapter
some facets of the polyhedron defining the opportunistic replacement problem which
has been developed in [13] is briefly presented. The references used in this chapter
are [18], [17] and [13].

3.1 The opportunistic replacement model

In this section we introduce an optimization model for determining an optimal main-
tenance schedule when the problem data is deterministic. Consider a set A/ of com-
ponents; with |[N| = N. Consider also a set 7 = {1,...,T} of times, with T" > 2.
T is considered as the time horizon for the maintenance planning. Each component
i € N has a fixed life of T;. Without loss of generality we can assume that for all
i € N, T; > 2 holds, otherwise replacement of component i is necessary at each time
step. Also T; < T, i € N, i.e., each component needs at least one replacement during
the time horizon. The purchase cost at time ¢ € 7 for component ¢ is ¢;; > 0. There
is a fixed cost of d; > 0 associated with performing maintenance for any component
7 at time ¢, independent of the number of parts replaced. For any given component
i € N in the system, {{ + 1,...,l 4+ T;} corresponds to a window of T; time steps,
starting at time step [ + 1, in which component ¢ must be replaced.

The objective is to minimize the total cost for having a functional system without
failure between times 1 and T, i.e., for each component i € N, no period without
replacement longer than the component’s life 7; may exist. The model considers the
cost of maintenance occasions and minimizes the maintenance costs. We define the
decision variables

1, if maintenance shall occur at time t,
Zt = . te T,
0, otherwise,

1, if component ¢ shall be replaced at time t,

Tyt = . 1€ N, teT,
0, otherwise,

The opportunistic replacement problem is defined as to

minimize Z (Z CitTit + dtzt>, (33a)

(@:2) teT NieN
I+T;

subject to  » @i > 1, 0=0,....,T—T, ieN, (33b)
t=l+1
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Tit < Zt, teT, ieN, (33c)
zit > 0, teT, 1eN, (33d)
2 <1, teT, (33¢)
zip €{0,1}, te€T, ieN, (33f)
z €40,1}, teT. (33g)

The constraints (33b) state that for all ¢ € A" and in any time window of length T},
the component ¢ must be replaced at least once. The constraints (33c) ensure that
if component ¢ is replaced at time ¢ a maintenance occasion occurs, which enforces
the payment of the fixed maintenance cost d;. When this cost is paid it leads to no
extra maintenance costs. The constraints (33d)—(33g) define the restrictions on the
variables x;; and z; for all i € N and t € 7. If the constraints (33f) and (33g) are
removed, a so called LP relaxation of the problem is obtained.

3.2 Complexity analysis and special properties

According to integer programming literature the set covering problem is considered
to be an N'P-hard problem. In [18], Theorem 1, it is proved that the set covering
problem is polynomially reducible to the opportunistic replacement problem. This
leads to the conclusion that the opportunistic replacement problem is A/P-hard.
However when fixing the values of some of the variables (e.g., z variables) in the
model (33), the resulting subproblem turns out to possesses “nicer” properties. In
this section some special properties of the opportunistic replacement problem (33) is
presented.

Consider the polyhedron in RN*T defined by (33b)-(33d) when 2z, t € T are

fixed to binary values . Let Z, € {0,1}, t € 7 and define 7 = {t € T |%; = 1}. The
following proposition is stablished in [18].

Proposition 3.1 (integrally polyhedron). The polyhedron defined by (33b), (33d),
and

<1, teT, (34a)
<0, teT\T, (34b)

fori e N, is integral.

Proof. The constraint matrix A corresponding to the system of inequalities given by
(33b) and (34) is an interval matrix (see Definition 2.13). Hence A is an interval
matrix and hence TU (see Section 2.2.3). Proposition 2.1. on page 540 in [12] states
that the transpose matrix of a TU matrix is TU. Thus the constraint matrix A
is TU. Since the right-hand sides of (33b) and (34) are all integral it follows from
Proposition 2.4 that the corresponding polyhedral is integral. O

A direct result of Proposition 3.1 is that the binary requirements (33f) on the
variables x;; can be relaxed, provided that the opportunistic replacement model is
to be solved using an algorithm that detects extreme optimal solutions to the linear
programming subproblems.

A special instance of the model (33) occurs when the costs are monotonous with
time, i.e., costs are non-increasing (¢j 41 < ¢ and dipqg < dy for all ¢ and ¢) or
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non-decreasing (c¢;+1 > ¢ and dyyq > d; for all 4 and t) with time. For these cases
interesting special properties of the optimal solutions can be proven.

Letting the variables z;, t € 7, be assigned binary values, Z; € {0,1}, the remain-
ing optimization model separates over the components i € N and the corresponding
constraint matrix is TU. Thus for every component i € A the linear programming
subproblem is given by

mlnirznlze Z CitTit, (35a)
teT
+T;
Y a1, 1=0,....T-T, (35b)
t=l+1
0 S Tt S Z~t, t e 7. (35C)

Assume without loss of generality that for each ¢ € N, the costs ¢;; and d; for all
t € T are non-increasing with time. We claim that Algorithm 1, based on a greedy
rule, yields an optimal solution to the linear program (35). In Algorithm 1, from
[17], component i is replaced as late as possible within its life and among the times
teT. Algorithm 1 is followed by a proposition, stated in [17], which proves that
the non-increasing greedy rule yields the optimum to the subproblem (35).

Algorithm 1 (Non-increasing cost greedy rule for component i € N)

T—{teT|z=13U{T+1} o
Ty O0VteT;, temin{t |teT};, s 0, T« T\ {t}
while 7 # (0 do
f—min{t|teT}
if T; <{— s then
T 1 s —t;
end if
P i T T\ {i)
end while
Return z,,t€ 7.

Proposition 3.2 (Non-increasing greedy rule yields optimum). Assume that
cZ 41 < ¢ holds, i e N, t € T\{T'}. Let z, € {0 1}, t € T, and assume that the set

= {t € T | 3 = 1} is such that for each t € T U{0} there is an s € T U{T + 1}
unth 1 <s—t<minenT;. Then, Algorithm 1 produces an optimal solution to the
model (35).

Proof. By assumption, &; is feasible in (35). Let &; # Z; be feasible in (35). Postpone,
where possible, replacements corresponding to Z; to the next time point in ?U{T%—l}.
This will transform Z; to Z; without introducing any additional replacements and at
a non-increasing cost. Hence, Y, 7 cit(Zi — Zi) < 0 holds; the result follows. O

For the non-decreasing costs an analogous algorithm and result can be obtained.
The algorithm and more details is found in [17] and [18].
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3.3 The replacement polytope

In this section properties of the polyhedron defined by the opportunistic replacement
is stated. A complete description of the polytope defined the opportunistic replace-
ment problem can be achieved by a finite set of linear inequalities. From Sections
2.1.2 and 2.2.2 it follows that by knowing all the inequalities describing the convex
hull of the set defining the problem, the ILP can be solved as a linear programming
problem. Unfortunately, for AP-hard problems, there is almost no hope of finding
a good description. Still, for given instances of the opportunistic replacement prob-
lem our goal here is to find effective ways to approximate the convex hull and to
contribute to this description by studying polyhedral properties and searching for
classes of facets.

Let the set S ¢ RV*T x {0,1}7 be defined by the values of (z, z) that satisfy the
inequalities (33b)—(33e). Define the replacement polytope as conv(S). The following
proposition is stated and proven in [18].

Proposition 3.3 (Dimension of the replacement polytope). If T; > 2 for
all i € N, then the dimension of conv(S) is (N + 1)T', that is, conv(S) is full-
dimensional.

Proposition 3.4 ( The inequalities (33b)—(33e) define facets of the replace-
ment polytope). IfT; > 2 for alli € N, then each of the inequalities: ZiilTj_l Tit >

Li=0,....T T, ieN;zu<z,icN, tecT;an>0keN: Ty >3, teT;
and zy < 1, t € T, define a facet of conv(S5).

For proving Proposition 3.4 the Theorem 2.2 can be utilized (see [18] or [17]).
The inequalities (33b) (33e) define facets for conv(S) and they are thus necessary
in the description of the polyhedron conv(S) but they are not completely describing
the convex hull of S, i.e., they are not sufficient to define conuv(S) ([18]).

3.4 Previous work on facet generation for the opportunistic re-
placement problem

The polyhedron defined by the constraints of the opportunistic replacement problem
has non-integer extreme points; therefore, finding the hyperplanes which, in addition
to the constraints of the associated linear programming problem, define the convex
hull of integer solutions to the problem is necessary. New classes of facets has been
found for the opportunistic replacement problem in [13]| derived by combinatorial
implications and {0,1/2}-Chvétal-Gomory cuts. In this section we briefly discuss
these classes of facets.

Assume an instance of the opportunistic replacement problem (33) is in hand.
Let p,q € N be such that T, < T),. It is shown in [13| for s € {1,..., 1+ T, — T,}
and [ € {0,...,T —T,} that the inequality

I4s—1 l4+s+T4—1 ATy
Z Tpt + Z Zt + Z (xpt + $qt) + Z Tpt Z 2, (36)
t=I+1 te{l+s,l+s+T4} t=l+s+1 t=l+s+T4+1

defines a facet for conv(S). Some extensions can be done on this inequality. As-
sume that p and [ are fixed and let m inequalities of the form (36) be given as
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DoieN DteT )\Z(-f)ajit + D ter ugk)zt > p) for k =1,...,m, where )\Ef) and ,ugk) are

the coefficients of z;; and z; in each inequality k, and p(k) is the right hand side
constant in inequality k. Define a new inequality by

Z Z AitTit + Z Wizt > p, (37)

ieN’teTm teT
where Nit = Z)\Ef), ie N\{p}, teT,
k=1
Apt = mkin{)\gf)}, teT,
e = m]gX{uﬁk)}, teT,
m
and pzl—l—Z(p(k)—l).
k=1

We now seek to find some conditions under which the inequality (37) is valid, and

some conditions under which it defines a facet. Let Tl(k) = min{¢ | ugk) = 1} and

(k)

T, = max{t | ,ugk) = 1}. We will assume that these parameters are ordered such
that: 7'1(1) < 7'1(2) < ... < Tl(m) and 7'2(1) < 7'2(2) < ... < TQ(m). The following
proposition from [13] states the conditions under which (37) is facet.

Proposition 3.5. An inequality of the form (37), such that if Tl(k) = Tl(k/) for some
k # k', then TQ(k) + TQ(k//) for any k" = 1,...,m, k" # k, is valid. Furthermore, if
TQ(k) = T1(k+1)’ k=1,...,m—1, then (37) defines a facet for conv(S5).

Another valid inequality can be obtained from the inequality (37) with conditions
in Proposition 3.5. Assume that we are given the inequality (37) of the form (A, u, p)
with the same component p at the window of time {{ +1,...,0 + T},}. Also assume
tuy1 = 0, pick anew component p’ such that 7)) > Tj,+1and ' € {I+Tp+1-Tpy,...1}.
Define a new inequality (X, u/, p’) by:

Z Ny iy + Z wize > p' (38)
it t

where Xj; = N, i € N\ {p,p'}, t €T, Ny = Apt — Xpigays

Ayt = Xt T\ 1,14 Ty 11} P = Mt + Xpgaign,1y, ¢ =p+ 1 and X is the
indicator function. If (A, u, p) defined in (37) is a facet of conv(S) then the inequality
(N, i/, p') in (38) defines a facet for conv(S).

From Section 2.3.2 we know that by applying the Chuvdtal-Gomory procedure a
finite number of times all of the valid inequalities for S can be generated. It is
known that iteratively generating mod 2-cuts® gives the convex hull of bounded inte-
ger feasible sets (|9]). In [13] the generation of valid inequalities for the opportunistic
replacement problem with Chvatal-Gomory inequalities using only {1/2} as multi-
pliers has also been studied. The procedure is to pick an odd number of inequalities

’If P = {z € R"|Az < b} with A € Z™*", then a mod-2 is an inequality of the form 1u'Az <
1u'b|, where u; € {0,1} for all i =1,...,m and 1u’A € Z"; i.e., v'A = mod 2.
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of the form (33b) that overlap in time, and mix them together with the inequalities
of the form (33c) in the Chvatal-Gomory procedure defined in Section 2.3.2, using %
as multipliers to obtain CG-valid inequalities for the replacement polyhedron. The
author’s conclusion is that the characteristics of when {0, %}—cuts become facets or
even valid inequalities seems very bad to include in a computer program. For produc-
ing facets and valid inequalities for our problem stated above a constraint generation
approach has been implemented, in which the separation problem is formulated as
a shortest path-problem in a specific graph. Several graphs of reasonable sizes has
been constructed. The facet generation seem to behave nicely when the associated
graphs are simple. Graphs corresponding to useful inequalities, however, are not
simple and hence computationally very hard to generate.
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4 Benders decomposition method applied to the oppor-
tunistic replacement problem

This chapter is dedicated to the implementation of the Benders decomposition method
adopted to the opportunistic replacement problem.

Consider the opportunistic replacement model (33). The variables z; refer to the
maintenance occasions at time ¢t € 7 and x;; to the replacement of component i € N’
at time . From Proposition 3.1 it is known that the binary requirements on the
variables x; can be relaxed, and if the maintenance occasions are fixed—when the
cost are monotonous with time the linear subproblems can be solved by a greedy
rule. Therefore it seems natural to fix variables z;, t € 7 and (to attempt) to
solve the mixed-integer model using an algorithm that detects optimal solutions to
linear programming subproblems and search among these solutions to obtain “the
best” one, which is the optimal solution to the opportunistic replacement problem.
By this knowledge, we expect Benders decomposition method to be efficient for the
opportunistic replacement problem.

In this chapter Benders partitioning method adopted to our problem is discussed
and the summary of the algorithm is presented. Some computational tests and results
are also presented.

4.1 Special properties of the opportunistic replacement linear dual
programming problem

Before we describe the Benders decomposition of the opportunistic replacement prob-
lem, we present some of the properties of the dual problem of the linear programming
subproblems of the opportunistic replacement problem where the maintenance occa-
sions are fixed.

Consider the opportunistic replacement problem in (33). Let the variables z,
t € 7, in the problem be assigned binary values, z; € {0,1}. Then the remaining
optimization problem separates over each component i € N. Let i € N be fixed.

In order to simplify the presentation, we define the sets T = {t € T| zz = 1},
L; = {0,...,T—TZ’}, Ta = {l—i— 1,...,l+Ti_} for | € L; andﬁ)r teT, Ly =
{max{0,t — T;},...,min{t — 1,T — T3} },ie., Ly ={l € L; | t € Ty}

The linear programming subproblem for component ¢ € A is then to

(P) minixrinize Z CitTit, (39a)
teT
subject to Z iy >1, leLl;, (39Db)
tE?U
0 S Tt S Z~t, te 7. (39C)

The linear programming dual problem to the problem (P) is to

(D) maximize Z vy — Z Zillit, (40a)

(viyui)

lel; teT

subject to Z v —ui <, tET, (40b)
lGZit
vy >0, VieN, leL; (40¢)
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Figure 1: The x;; coefficients in the constraints (39b) in problem (P) for component i with
life T; = 4 and time horizon T = 10.

uie >0, VieN, teT. (40d)

Using the definitions of T and T4 we may rewrite the problem (P) as that to

(P min:ivrinize Z CitTit, (41a)
teT
subject to Z x> 1, €L (41b)
teTNT B
i > 0, teT. (41(’,)

The problems (P) and (P') are equivalent, since in (P) must hold that x; = 0 for
t € T\ 7. The linear programming dual of the problem (P’) is given by

(D) maxiijzmize Z Vil (42a)
leL; "
subject to Z vg <cy, teT, (42b)
lEZit
vy 2> 0, lel;. (42¢)

Let v} be feasible in (D’), Let v; = v} and

U;p = Max {0, Z vy — cit}, teT. (43)

lGZit

Proposition 4.1. If (v[*) is optimal in (D') then (v;, ;) is optimal in (D) where
U; = v and uy are given by (43).

Proof. Let x;, «}, (v;,u;) and v, be any feasible solution to problems (P), (P’), (D)

77 Y

and (D’) respectively. Define:

fP(l“z‘) = Z Cit Tt s

teT
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Figure 2: The v;; coefficients in the constraints (42b) in problem (D’) for component ¢ with
life T; = 4 and time horizon T = 10.

!
fP (z3) = Zcitx;tu

teT
D ~
FPlosu) = D va—> Zua,
lel; teT
) = Y
leL;

If v} is feasible in (D’) then (v;,u;) given by (43) is feasible to (D), because (43)
implies that:

Z v —cip S ug, teT, (45)
lEZit
and u; > 0. Note that from (43) and (42b)
uy =0, teT. (46)

Assume that z and z}* are the optimal solutions to the problem (P) and (P’),
respectively. The equivalence of (P) and (P’) yields that fF(z) = f¥'(2}). By the
strong duality theorem (Theorem 6.1 Chapter 6 [3]) the following statement’s are
true:

f{g(ij) = fD/(U;k7 u;k)v (473)
) = P, (47b)

where (v}*) and (v}, uf) are optimal solutions to problems (D’) and (D) respectively.
The equations (47a) and (47b) then yield that

P05 uf) = 2 (). (48)

Let (v)*) be the optimal solution obtained by solving (D’) and let (v;,u;) be
defined by (43). It then holds that:

PP (i) = > v = > Z = Y v — Y i,

leL; teT leL; tef'
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and by (46),
'Uzauz szl_ Z’Uzl_fD, /*)'

Hence (v, ;) is an optimal solution to D. O

This proposition shows that we can solve the problem (D) instead of (D). The
problem (D’) has fewer variables than (D). Now we claim that for cases for which
the costs are non-increasing in time (i.e., ¢; 441 < ¢ and dyq < d; for all i € N and
t € T) (D') can be solved by a greedy rule.

Algorithm 2 solves the problem (D’). For each fixed component i, it starts
from the last constraint row in (D’) and the last indexed dual variable (v; 7—7,). It
assigns to each dual variable v, the most positive (largest) feasible value such that
the solution remains feasible. Each constraint in (D’) corresponds to a ¢ in T and
the algorithm terminates when all indices’s t € 7 have been investigated.

Algorithm 2 (Non-increasing cost greedy rule for problem (D’), Vi € N)
A0
while
7 #0 do N
t—max{t|teT}
B — Ly
if B\ A # () then
[ —max{l|le B\ A}
O <= ¢ — D1 anp Vil ~
o <—0, le B\ {AU{l}}
end if
T —T\{#}
A—B
end while

The next proposition shows that for ¢; ;41 < ¢y, @ € N, and 2z € {0,1}, t € T,
Algorithm 2 yields an optimal solution to (D’).

Proposition 4.2 (non-increasing cost greedy algorithm for problem (D’)
yields optimum). Assume that ciy1 < cit, for all i € N and for allt € T \ {T}.
Assume that 7, € {0,1}, t € T, and define the set T = {t € T | 3 = 1} such that for
cach t € T U {0} and fized i € N there is an s € T U{T + 1} with 1 < s —t < T}.
Then Algorithm 2 produces an optimal solution to (D’).

Proof. Let i be fixed. Consider the primal problem (P’), the condition on T implies
that (P) has a feasible solution. According to Section 3.2, the solution of (P’) is
obtained by replacing component ¢ as late as possible within its life and among the
time points ¢ € 7. Assume that xf is an optimal solution to problem (P’) given by
Algorithm 1. Let ’ZA; be the set of time points at which maintenance for component
1 is performed, that is,

={treT| xj;, =1} for each component i€ N. (49)
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Let 7; be an ordered set, i.e., t1 <t9 < ... <t,. Define:
Iy =min{l | [ € Lit, },

Iy =max{l | | € Ly, }.

Let ¥; be the solution to problem D’ obtained by Algorithm 2. If we can prove
that Zleci Vit = ) 47 CitTy, then weak duality implies that 0; is an optimal solution
0 (D'). We build our proof by iteration over the set 7;

Initial Step Take t; € 7;. 1f 0 ¢ Ly, then t; & T, = {1,2,...,T,}, therefore
t; > T;; which violates the primal feasibility. Hence 0 € L;;,. On the other
hand if 0 € £;; for t > t; and t € T, then t € T ;9. This contradicts the primal
greedy rule; Therefore 0 ¢ L;; for t > t; and t € 7. t; corresponds to the time
where the first maintenance occurs as late as possible in T. Since 0 € Zz-tl and
0 ¢ L for t > t; dual greedy (Algorithm (2)) yields

51
Zf}il = Cit, by greedy.
1=0
Since ¥, =1 and z}, = 0 for ¢t < t; it holds that
1t 1t

t1
_ * _§ *
City = Cit1 Ty, = CitTyy-
t=1

Thus for #; : Zélzo v = 2?:1 Cit Ty

Iterative Step Assume that the following holds for ¢4

lk—1 th—1

2 : o } : *
Vil = CitTt-
=0 t=1

It is obvious that [ + 1 ¢ Zz’tk,l- Iflpy1+1¢ Zitk, then tj ¢ Ti 1=

{lemr +1+1,... g1 + 1+ T;}. Hence ty > 1 + 1+ T;. It contradicts
the feasibility of the primal problem. Also if for ¢ € 7 and ¢t > ¢, then

l_1+1 € L;;. This implies t € Ti PERERE which contradicts the primal greedy
rule. Since lp_1+1 € Zitk and lj_1+1¢ Ly fort € T and t > ti, dual greedy

yields: ngzlk Oy = cit,, and ¥y = 0 for | € L, and [ < lx_1 + 1, this implies

that: _
s
E /i}Zl = City, -
lg—1+1
Thus:
E lk—l tk—l
o o 3
E Vg + E Vg = E CitTit + City,-
=0 t=1

lp—1+1

35



Since x;‘tk =1and zj, = 0 for {1 <t <t we have:

Note that 3k such that [, = T — T}, otherwise if for t; € '?i, T-T, ¢ Zz-tk then
tr ¢ Tir—1, ={T —T; +1,...,T}. Therefore t;, < T —T; + 1, which leads to an
infeasible primal problem. As ’j\', is a finite set, and x;; = 0 for ¢t > t; we will finally
obtain: )y, Ui = Y o7 CitTh O

Note that this proposition confirms that if component ¢ € N is replaced as late
as possible within its life and among the times in T then the solution is optimal.

One would ask about the fact that by knowing that problem (P) with non-
increasing costs can be solved using a greedy rule, whether is it possible to solve
the primal and find the optimal dual variables by complementary slackness theorem
(Theorem 6.2 [3]). The solution to this question is that complementary slackness
theorem will not give us more information than we already have. This become clear
if we take a better look at the dual problem (D). Let us assume that 7, is optimal
in (P). Consider the sets 7 and 7; in (49). Note that 7; C 7 for each i € N.
To obtain the corresponding dual solution (v}, u}) to z}, complementary slackness
applied to the problems (P) and (D) implies

* * T
Z vy = Uy, + Gty U €T
lEZitk

The remaining constraints of the dual problem (D) are:

uit > 0, teT, (50a)
Uit > Z v —¢ci, t€T \ 'j\; (50b)
leZit

Equality of the optimal objective values of problems (D) and (D’) known from (48)
implies that u}, = 0 for all ¢ € 7. To maximize the objective value in (D), u}, should
be chosen as small as possible subject to (50a)—(50b), i.e., should be set equal to the
maximum of the right-hand-side values in (50a) or (50b) . This yields the optimal
dual solution as follows:

Z ,U’zkl = citk) tk S ﬁ, (51&)

lezit B

uz =0, vteT,

uzft:maX{O, > vi}—cit}, Vte T\T, (51b)
lezit

where v’s are yet to be found by solving the problem (D’). In general the proof
of Proposition 4.2 can be seen as checking complementary slackness theorem for x}
and ;.

36



4.2 An implementation of Benders decomposition method applied
to the opportunistic replacement problem

The opportunistic replacement program in (33) with continuous variables x;; is to

mil(qirnize Z ( Z CitTit + dtzt> (52a)

z,2)

te7 ieN

subject to Z T >1, lel;, ieN, (52b)
teT
OSJ?Z‘tSZt, iEN,tET, (52C)
z = {0, 1}, teT, (52d)

where 7, = {I+1,...,1+T;} for each i € N and | € £;. We can rewrite the problem
(52) as to

minimize 'z + d'z, (53a)
s.t. Az + Bz > b, (53b)
x>0, z€{0,1}7T, (53c)

where A and B are m x n and m X p matrices with m = N(2T + 1) — ZﬁLTiv
n = NT and p =T, respectively, x and c are n-vectors, d and z are p-vectors and b
is an m-vector. This representation helps us to compare problems (52) and (14).

Letting z = (21, 22, ..., 2r) be fixed to Z, makes (52) a linear programming prob-
lem as to

minimize 4 it +d ~> 54a
(z,2) Z ( Z cirtit tet (542)

te7 ieN
subject to Z x> 1, lel;, ieN, (54b)

teT

0<xi <2, iEN,tGT. (54(’)

The linear dual programming of the problem (54) is to

maéi’um)ize Z ( Z vi] — Z Ztuit) (55a)

iEN  leL; teT

subject to Z vy — Ui < Cit, teT, ieN, (55Db)
leLy
v > 0, 1€ N, le Ll (55(2)
uzt > 0, 1eN, teT, (55d)

where, foralli € N and t € T, Ly = {l € L;|t € Ty}

Knowing from Section 3.2, when the variables z;, ¢ € 7, are assigned binary
values, the remaining optimization model separates over the components ¢ € N.
The primal of the subproblem, for z; = Z;, t € 7, is then given by

min E CitTit,

teT
Sdizm+> | st daw > 1, lel, (56)
teT ieN teT ;1
0<zy < %, teT
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We denote the optimal solution to this program by Z;, 1 € N, t € T.

If z; = 1, maintenance occurs at time t and the cost d; is incurred. If z; = 0,
then z;; = 0 for all i € A and the cost of maintenance is zero. Hence, since z; = 0,
teT)\ T, it follows that 7 = 0, i € N, t € T \ 7, which yields the simplified
subproblem formulation:

min g CitTit

teT
Zdt + Z s.t. Z e > 1, lel; |- (57)
teT iEN teT NT

0<azy < 1, teT

Assuming that ¢;; > 0,4 € N, t € T, the constraints “z;; < 1”7 are unnecessary
(redundant), according to the following argument:

If Z;; > 1 for some : € N and t € 'f, the optimal value of the subproblem is
always reducing (or constant, if ¢;; = 0) with the value of x;. Since the constraints
“ri > 07 must hold for i € N and t € T, the constraints “Zte?u z; > 17 will not
be violated (until z;; < 1).

This leads to the following further simplification of the subproblem formulation

min E CitLit,

as

teT
Zdt + Z s.t. Z iy > 1, leL,, (58)
teT ieN teTunT

iy > 0, teT

with the corresponding linear programming dual

max E Vil

leL;
DoAY | st Y < e, teT, | (59)
teff ieN ZEZ“

vg > 0, lek;

Note that the subproblems in (58) and (59) are the problems (P’) and (D'), from
Section 4.1, respectively. The optimal dual solution (0, ;) for Z, = {0,1} can be
obtained by solving problem (55) directly, or by solving the subproblems in (59) with
Algorithm 2 where a; is given by (43).

The polyhedron P is the set of all (v,u) satisfying (55b)—(55d). The complete
master problem can be expressed as that to

minimize y (60a)
s.t. y > Zszk —ZZuf:zt—i—Zdtzt, ke{l,...,K}, (60b)
ieN IeL; ieN teT teT
OZZZU;}m—ZZugnzt, me{l,...,M}, (60c)
iENIeL; iEN teT
z € {0,1}, teT, (60d)
y € R, (60e)
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where (vfk,ufk) denotes the extreme points of the polyhedron P and (v, ul")
denotes the extreme rays of the polyhedron P (see Section 2.5). K is the number
of extreme points of the polyhedron defined by (55b) (55d). This polyhedron is
actually composed by [N polyhedra, one for each i € N, and k and m, respectively,
denote one Benders iteration.

The inequalities (60b)—(60c) are necessary and sufficient for the values z to be
feasible, i.e., to admit feasible values of z;; in (52b)—(52c). In [10] there is a sug-
gestion that by adding an artificial constraint, bounding the sum of all variables by
a large positive number, the polyhedron can be made bounded, so the constraints
corresponding to the extreme rays can be dropped. However there is an smarter way
to avoid inequalities for extreme rays in our problem. The program (58) is feasible
if and only if

USUTap ;(NT#0 <= TanT#0, 1€l icX, (61)

ieN | lel;

which is in turn equivalent to the constraints

o azl, leL, ieN (62)

teT
to hold. The constraints (62) can be equivalently expressed as

I+T;
Y z>1, 1€{0,....,T-T}, ieN. (63)
t=Il+1

Defining T' = min;en {7} } the (necessary and) sufficient feasibility cuts for the master
problem (corresponding to the extreme rays of the feasible set of the dual subproblem
(59)) are then given by

+T
Y &>1, 1€{0,.... T-T}. (64)
t=I+1

Hence, (60c) can be dropped as long as the condition (64) is enforced. Note
that including all the constraints in (64) in (60c) ensures the problem (60) to have
a bounded feasible set. The feasibility assumption on the opportunistic replacement
problem (33) yields that the problem (60) is also feasible.

The Benders partitioning algorithm can be initiated with no constraints of the
form (60b) and the inequalities of the form (64) in the problem (60). i.e., in each
Benders step the problem to

minimize y (65a)
s.t. y > Zszk —ZZuf:zt—i—Zdtzt, ke{l,...,K}, (65b)
ieEN leL; ieEN teT teT
+T
Yo a1, 1€ L, (65c¢)
t=1+1
z € {0,1}, teT, (65d)
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y € R, (65€)

is solved, where, the number of constraints in (65b) is equal to the Benders iteration
number.

Initiate the problem (65) with no constraints of the form (65b). Let the solution
to the problem (65), be (7,2). Now with z being fixed at Z, the dual problem
(55) should be solved to obtain (¥, @;). Since the primal problem is bounded, the
problem (55) is feasible. Let @ be the optimal objective value of the problem (55)
and ¢ the optimal value obtained by solving the problem (65). If w =3 — >, .+ diZ,
then by the optimality test, the current solution is optimal. Otherwise, we form a
new constraint from (9, 4;) of the type (65b) and add it to the problem (65).

The summary of the Benders algorithm based on an iterative procedure is given
in Algorithm 3.

Algorithm 3 (Benders Algorithm)
Step 0 (Initialization): Set § = —oo and r = 0. Initiate the problem (65) with
the constraints (65¢) and (65d).
Step 1: Let r = r 4 1. Solve the problem (65) to obtain a finite optimal solution
7).
Step 2: Solve the dual linear program (55) with 7 = {t € 7 | z = 1} to find
(i),
Step 3: If the optimal objective value in step 2 is equal to " — >, d;Z}, the
solution (g", 2") solves (60). If " solves the linear primal problem, then (z",2")
solves the corresponding opportunistic replacement problem (33). Stop!
Step 4: If the optimality test in step 3 is not passed, then

T <Y D Ty Y a4y diE, (66)

ieN lel; ieN teT teT

holds, so the current solution to (65) does not satisfy the constraint

Y= D =YY gzt Yy diz (67)

ieEN leL; iEN teT tT

Add the constraint (67) to the problem (65) and return to Step 1.

Upper and lower bounds: As shown before, in the iterative procedure we will
solve (65), which is a relaxation of (60) including only a subset of its constraints.
Let §" be the optimal objective value to (65) at step r of the Bender’s algorithm, i.e.,
the number of constraints (65b) is  in the current problem (65). Assume that y* is
the optimal objective value to problem (60), so §" is a lower bound on the optimal

value y* of the full master problem and it holds that
gyt <yt (68)
The upper bound is generated by a sequence of feasible solutions to the original

problem. To obtain the upper bound, let (", 2") be the solution to (65) at step r. If
Z" solves the primal problem (54), then (2", 2") is feasible to (52), therefore it holds
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that

SN il + Y diz >yt (69)

ieN teT teT

At each iteration, lower and upper bounds are computed. From (68) and (69),
at step r it holds that

§ <y < min 0D ey + > diz). (70)

ieEN teT teT

Hence, we can define the optimality gap at step r.

Definition 4.1. : The optimality gap at step r is defined as

mini<s<r Doyer (Dien Citdy + diZf)
y*

-1

The estimated optimality gap at step v is defined as

mini<s<r Y ser (Dien Cit®y + diZf) _
gT‘

When the upper and lower bounds become equal, the algorithm terminates with
an optimal solution. The hope is that termination will occur when 7 is considerably
less than the number of extreme points of the polyhedron defining the problem (55).
Benders algorithm may also be terminated when the computation time exceeds a
specific time limit.

4.3 Computational experiment and results

In this section we present some numerical tests and their results for an implementa-
tion of Benders algorithm applied to some instances of the opportunistic replacement
problem. The reference MILP solver used is IBM ILOG CPLEX 12.1. Algorithms are
written in MATLAB R2009b. All numerical experiments are performed on a Linux desk-
top operating system with the processor Pentium(R), Dual-Core E5200 @ 2.50GHz.
The CPU MHz is 1200.000 and it has a cache size of 2048 KB.

The solvers used for the numerical tests, are introduced as follows. CPLEXMEX is
a MEX interface for the cplex callable library which enables us to use cplex from
within MATLAB. The CPLEXMEX interface gives access to most of the cplex interactive
mode functionality from within MATLAB. It is intended for solving linear program-
ming (LP), mixed integer linear programming (MILP), and other related problems.
Cplexlp is a function of IBM ILOG CPLEX toolbox in MATLAB which solves linear pro-
gramming problems. Besides, cplexmilp is a function of IBM ILOG CPLEX toolbox
in MATLAB which is intended to solve mixed integer linear programming problems.

For the computations, different instances of the opportunistic replacement prob-
lem are considered. Data describing these instances —called testbed problems— are
shown in Table 1. For all testbed problems it is assumed that ¢;; = ¢;, i € N, t € T,
and d; = d, t € T. Instance 1 in the testbed is a simple small size problem. Instance
2 is a middle sized problem intended to resemble a realistic problem. Instance 3 is
a sparse problem in the sense that the components lives are short, it is designed to
investigate the effects of a long planning horizon. Instance 4 is a dense problem in
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Table 1: The problems in the testbed. In problem 4, the costs, ¢;, are randomly chosen from
(0,1].

instance T | N | minT; | maxT; d | mine¢; | maxc;
1 10| 3 3 5110 |5 7
2 40 | 3 3 5110 |5 7
3 100 | 4 3 71105 9
4 60 | 50 6 55 | 1] 0.0089 | 1.0000
5 (HPT) 100 | 9 15 80| 1] 0.3613 | 4.0255
6 (LPT) 150 | 10 29 60 | 1| 0.3171 | 1.5482
7 500 | 2 25 40 | 1] 0.1324 | 0.7451
8 1000 | 2 25 40 | 1] 0.1324 | 0.7451

Table 2: Parameter setting when solving testbed problems with cplex. Solutions reported
in Table (3).

Directive | Value | Description

time limit | 86400 | cplex stops after 24 hours and re-
turn the current solution
nodefile 2 creates a compressed version of
the node file in memory

a sense that the feasible solutions contain many maintenance occasions. The data
in instances 5 and 6 are from real-world problems obtained from Volvo Aero and
corresponding to two modules of an aircraft engine. Instance 5 corresponds to the
data from a high pressure turbine (HPT) and instance 6 from a low pressure turbine
(LPT). Note that the data from real world instances are scaled so that d = 1. In-
stances 7 and 8 are very big sparse problems. All the computation times are given
in CPU seconds. The testbed problems solved with cplex are reported in Table 3.
For solving the testbed problems using cplex [1], the parameter settings reported in
Table 2 was used.

As the first experiment we solve instances chosen from the testbed, where cplexlp
is used to solve the LP subproblems. CPLEXMEX is chosen as the solver for the MILP
masterproblem. Then for the same instances, instead of solving the LP subproblems
by cplexlp, the greedy rule, developed in Section 4.1, is implemented. The results
are presented in Table 4.

Table 4 shows that the time needed to solve a medium size problem (e.g., HPT
and LPT instances) is considerably huge, so it seems natural to investigate how
much of the gap can be closed in 1 minute, 30 minutes and 24 hours for the different
instances of the problem. Hence, the next experiments are to solve testbed problems
in a time limit of 1 minute (60 CPU seconds), 30 minutes (1800 CPU seconds ) and 24
hours (86,400 CPU seconds). In all these experiments, the estimated optimality gap
is defined in Definition 4.1 and each Benders iteration is considered as one iteration
and also LP subproblems solved using the greedy algorithm from Section 4.1. At first,
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Table 3: Testbed problems solved with cplex. A t denotes that the computer memory was
filled before the instance of the opportunistic replacement, problem was solved to optimality.
A * denotes that the problem was not solved to optimality when the time limit is reached.

instance| N nodes |cplex iterations | time(s) | gap%
1 3 0 60 0.0222 0
2 3 210 5,476 0.4183 0
3 4| 3,272,759 125,312,690 | 8941.7 0
4 50 1,943 461,183 125.6857 0

5 (HPT)| 9 115 7,631 1.2449, 0

6 (LPT)| 10 1,132 80,185 13.8381] O
7 219,233,344 1122068477 (17,505.01 5.64
8 2 | 3,508,639 *156343889 [86,400.02 | 10.99

Table 4: Solving the testbed problems by Benders algorithm. The estimated optimality gap
is defined in Definition 4.1 and each Benders iteration is considered as one iteration. The
MILP master problems are solved using CPLEXMEX in all the computations reported in this
Table. If Benders MILP master problems can not be solved because out of memory status
it is marked in the table by a 7. A time limit of 3 weeks (21 days) is put on test problem 3.
Out of time statues is marked by a *. Computation times are given in CPU seconds

instance|| subproblems solved using subproblems solved using
the simplex method Algorithm 2
time(s) |iter. | est.opt. gap% time(s) | iter. | est.opt. gap%

1 3.9000 6 0 0.3400 51 0

2 540330 1897 | 0 12452 | 433 | 0

3 *(> 1814400) | 161 | 33.52 T(1291200) | 107 | 32.77
5 (HPT) 1955600 (1430 | O 129110 | 789 | 0
6 (LPT) 45031 | 279 | O 1437900 | 580 | O
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testbed problems are solved for a time limit of 60 seconds by Benders algorithm. The
MILP master problems are solved with CPLEXMEX and cplexmilp. For these solvers,
comparing the results in Table 5 shows that CPLEXMEX is faster than cplexmilp. In
Table 5 the initial integral gap for each instance is also reported. Tables 6 and 7
shows the results for the testbed problems in a 30 minutes and a 24 hours CPU-time
limit respectively.

Problem 5 (HPT) is then solved by Benders method to observe how the properties
of the solution process change when the time horizon varies. A CPU-time limit of
24 hours has been also considered. The results are written in Table 8. In all the
problems in Table 8, the LP subproblems are solved by the greedy rule described in
Algorithm 2. For having a better picture, the data presented in Table 8 are illustrated
in the graphs in Figure 3.

It is known from Section 4.2 that in every Benders iteration a new constraint
is added to the MILP master problem, so another question to answer is how this
addition of constraints effect the solution speed. For answering this question we have
chosen the middle size problem 2 and save the time spent for finding the solution of
each MILP master problem. A computational difficulty is that, although cplexmex is
slightly faster than the cplex toolbox function cplexmilp in MATLAB, but cplexmex
like cplexmilp do not report the exact time spent by cplex to MATLAB terminal
window. Computing time spend for finding each MILP solution in MATLAB is not
reliable as the time of the data transferring between cplex and MATLAB will be added
to this time. Since parallel solutions to the MILP master problems exist, cplexmex
and cplexmilp might find different ones. Choosing cplexmilp instead of cplexmex
leads to a different approach by the Benders method with 990 iterations and a gap
closed of 94.84 in 24 hours; compare to what is reported in Table 7. Still it is a good
example to observe how the solution time for each MILP master problem increases.
The average time for solving LP subproblems for this particular example is 0.0200
seconds. Figure 4 shows the time reported from cplex for solving each MILP master
problem.

Conclusions: When costs are non-increasing with time the greedy rule in Algo-
rithm 2 can be used to solve the LP subproblems. The greedy rule solves the LP
subproblems in a fraction of a second for middle sized problems while the solution
time with the simplex algorithm can be considerably larger. As alternative solutions
to LP subproblems exist, the greedy rule and the simplex algorithm may end up
with different solutions that effects the behavior of Benders method, this can be seen
in Table 4. In conclusion, for most cases in Table 4, solving Benders when the LP
subproblems are solved using the greedy rule is faster with less number of iterations.

From comparing Tables 5, 6 and 7 one can conclude that most of the gap is
closed in the first seconds (hours) of the computation time. Figure 4 indicates that
the time needed by cplex to solve the MILP master problems increases linearly with
the iteration number. According to Section 4.2, a lower bound of the problem at
hand is the optimal objective value of the MILP master problem. Within the first
iterations lower bound increases rapidly, making the bounds on the optimal value
of the opportunistic replacement problem tighter. However, when the number of
constraints of the MILP master problem with the Benders iteration number increases,
the optimal value of the MILP master problem is barely different from that of the last
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Table 5: Testbed problems are solved for a time limit of 1 minute (60s) by Benders algo-
rithm where MILP master problems are solved with CPLEXMEX and cplexmilp. The LP
subproblems solved using the Algorithm 2. In this table the initial optimality gap for each
instance is also reported. The estimated optimality gap is defined in Definition 4.1 and each
Benders iteration is considered as one iteration.

instance| init.opt. gap % || MILP master problems || MILP master problems
solved using CPLEXMEX solved using cplexmilp
iterations est.opt. gap% [iiterations| est.opt gap%
1 60 5 0 5 0
2 154.65 69 20.11 35 24.29
3 254 15 41.83 12 47.01
4 27.42 19 22.22 14 22.54
5 (HPT)| 45.45 35 14.75 33 11.07
6 (LPT)| 57.04 29 35.86 24 50.22
7 93.41 15 55.73 11 57.61
8 87.79 4 63.95 4 63.95

Table 6: Testbed problems solved for at most 30 minutes (1800 sec) by Benders algorithm to
observe the remaining optimality gap. The MILP master problems are solved with CPLEXMEX
and the LP subproblems solved with the Algorithm 2. The estimated optimality gap is
defined in Definition 4.1 and each Benders iteration is considered as one iteration.

instance | iterations | est.opt. gap%
1 5) 0
2 202 | 17.61
3 32 | 41.58
4 63 | 21.25
5 (HPT) 185 | 14.31
6 (LPT) 89 | 23
7 45 | 56.90
8 9 1 60.97
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Table 7: Testbed problems solved for at most 24 hours by Benders algorithm to observe the
remaining optimality gap. The MILP master problems are solved with CPLEXMEX and the
LP subproblems are solved using the Algorithm 2. The estimated optimality gap is defined
in Definition 4.1 and each Benders iteration is considered as one iteration. If Benders MILP
master problems can not be solved because of out of memory status it is marked in the table

by a t.

instance | iterations | optimality gap %
1 51 0
2 433 0
3 61 | 39.56
4 174 | 15.05
5 (HPT) 690 | 4.977
6 (LPT) 274 | 18.73
7 88 | 55.67
8 110 | 60.97

Table 8: The opportunistic replacement problem solved by Benders algorithm with data
from HPT in a 24 hour limit. The MILP master problems are solved with CPLEXMEX and
the LP subproblems are solved using the Algorithm 2. The estimated optimality gap is
defined in Definition 4.1 and each Benders iteration is considered as one iteration. In this
table, n = (N 4 1)T denotes the number of variables in the corresponding opportunistic
replacement problem.

cplex Benders
problem| 7| n/|| time(s)| iterations || time(s) | iterations | est.opt gap%
1 o0, 3001 0.02 206 0.8700 121 0
2 60, 420 0.07 415 4.5500 411 0
3 68 476 0.07 536 10.7200 421 0
4 75 5251 0.14 624 155.6200 1171 0
) 85 8501 0.21 1347 602.5100 119 | 0
6 95 950 2.32 21237 || 7799.4 308 1 0
7 100, 1000 || 1.19 7631 (86400 690 | 4.97
8 110, 1100 || 9.74 49324 {86400 373 | 3.01
9 120 1200 || 28.47 172920 ||86400 386 | 17.69
10 130 1300 || 37.30 207838 ||86400 265 | 17.32
11 140} 1400 || 86.61 401851 (86400 170 | 19.53
12 150 1500 || 58.38 259860 |(|86400 170 | 31.04
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Benders iteration. This is because a considerable addition of constraints is required
to increase the MILP optimal objective value.

The report of the solutions for the HPT problem, when the time horizon (T)
changes, in Table 8 and Figure 3 shows that when the problem size increases the
time needed for Benders to solve it behave exponentially. The reason is that when
the number of variables increases, the size of the LP subproblems and the MILP
master problem increases. Moreover, the number of extreme points of the polyhedron
P ={u| A'u <c¢,u > 0} -defined by the constraint set of the dual problem- increases
when the polyhedron dimension increase. Since Benders method searches among the
extreme points of the polyhedron P, an increase in the number of extreme points
results in an increase in the number of constraints defining the complete master
problem. In Figure 3 it can be seen that the number of iterations increases rapidly,
so a considerable gap closes in the first 24 hours. On the other hand, when T is large
the number of iterations decreases. This is because, as the size of the MILP master
problems increases, solving them requires more computation time.

In general one can say, since in each step a MILP minimization problem should
be solved, Bender’s decomposition algorithm is very slow for our opportunistic re-
placement problem. The solution time may increase exponentially when the problem
size increases.
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5 A rank-1 separation problem applied to the oppor-
tunistic replacement problem

Known from Section 2.3.1, given the polyhedron P = {z : z € R}, Az < b}
and the set S = PN Z", facets of conv(S) can be constructed iteratively utilizing
integrality and the linear inequality description of P. This means that we start with
the valid inequalities Az < b and if they are not enough to define conv(S5), i.e., the
polyhedron P has non-integral extreme points, we progressively construct stronger
valid inequalities as follows. We obtain valid inequalities for P by taking non-negative
linear combinations of the inequalities defining P. For tightening the formulation of
S, a strategy which can be taken is to examine the initial formulation, find a set of
valid inequalities mx < mg for S, and add these to the original system, which gives a
new formulation P’ = {z € R} : Az < b, o < mo} C P with § = P' N Z". If the
valid inequalities are well chosen so that the set P’ is significantly smaller than P, the
bounds (see Section 2.1.3) should be improved and hence the integer programming
techniques should be more effective. On the other hand, often the number of valid
inequalities one would like to add is enormous. Increasing the number of constraints
makes the time required to solve the linear programs increase. One should also note
that finding the complete description of the convex hull is not of interest, but a good
approximation of conv(S) in the neighborhood of an optimal solution is desired.

In this chapter we address these general issues for the opportunistic replacement
problem (33) by studying its N'P-hard separation problem. By modeling and solving
the rank-1 Chvatal-Gomory separation problem we study how effective it is to op-
timize over the first Chvatal closure of the opportunistic replacement problem, i.e.,
which fraction of the integrability gap that can be closed by a branch and bound
approach based on finding the most violated cuts for the replacement polytope. We
also try to answer the question whether it is a benefit to generate rank-1 CG cuts
until no more such inequality exists or one should better follow the strategy of gener-
ating Chvatal-Gomory inequalities of any rank. Since the opportunistic replacement
problem is an MILP problem, here we introduce a projected version of the CG cuts
and its associated separation problem and study its practical strength for the oppor-
tunistic replacement problem. Finally, we want to investigate how the addition of
the generated CG cuts to the original formulation affect the general ILP branch and
bound procedure to solve the opportunistic replacement problem.

5.1 The separation problem for the opportunistic replacement prob-
lem

In this section first a modified MILP model for the rank-1 Chvatal-Gomory separa-
tion problem is described, which can be solved by a general-purpose MILP solver.
Then the projected Chvatal-Gomory separation problem is presented. This model
is implemented in a pure cutting plane framework to generate several rank-1 CG-
cuts in order to obtain a tighter bound on the value of the optimal solution of the
opportunistic replacement problem. In the next section the computational assump-
tions needed are described. In section 5.2 the results of the numerical tests on some
instances of the opportunistic replacement problem is reported.
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5.1.1 The MILP model for solving the Chvatal-Gomory separation prob-
lem

Let y = (x,z) to be the set of variables in the opportunistic replacement problem
(33) and define A and b the matrix of the coefficients and the right-hand side vector
in the constraints (33b) (33c) respectively. Let A’ = (¢/,d'). Then the opportunistic
replacement problem can be simply written in the general form of a BLP, as

min{h'y : Ay <b, y >0, y € {0, 1}V, (71)

First let us describe our MILP model for CG separation of the integer linear pro-
gramming problem (71). Consider the point y* > 0 given, CG-SEP (Definition 2.16)
finds a CG cut o'y < o which is maximally violated by y*, where o/ = |u’A| and
ag = |u'b] for a certain v € R7'. The first CG-SEP model then is to

maximize o/y* — ay, (72a)
(a,cx0,u)

s.t. aj <u'Aj, j=1,....n, (72b)

ag—e>u'b—1, (72¢)

w; > 0, i=1,...,m, (72d)

aeZl oy € Zy, (72e)

and € € (0,1). Note that n and m are determined by the information given by the
instance of (33). In this model the u;’s are continuous variables while a; and aq are
integer valued variables. Here, the integer variables o and ag represent |u'A;| and
|u'b] in the CG-cut, respectively. The rounding conditions on a; can be imposed
through upper bound conditions on the variables «j, j = 1,...,n, as in (72b), and
with a lower bound condition on agp, as in (72c). Since ap = [u/b] implies that
u'b—1 < ap < u'b, the small constant € > 0 is introduced to ensure that when u'b
is integral then ap = /b and not u'b — 1. Finally we should state that the objective
function gives the amount of violation of the CG-cut evaluated.

As mentioned in Section 2.3.2 the CG-cut associated with any u; > 1 is a dom-
inated one, so we only consider u; < 1. Also note that any variable y; with y;-“ =0
gives no contribution to the cut violation, so we use this property to reduce the size of
the separation problem by not considering it explicitly in the separation model. De-
fine the set J(y*) := {j € {1,...,n} : y} > 0} and slack variables f; = u'A;—|u'A;]
for j € J(y*) and fo = w'b— [u'b]. The slack variables f; for j € J(y*) U {0} are
fractional and we require their values to be in the range [0,1 — §] for a small fixed
value § > 0. Then the model (72) can be rewritten as to

where a = (aq,...,qp) u:(ul,...,um),n:(N—l—l)T,m:2NT—|—N—EZ-]\L1TZ~,

maximize oyt — ag, 73a

(Oé,ao,u,f,fo) . Z ]yj 0 ( )
JGJ(y*)/

s.t. fi=uA; —ajy, jeJy), (73b)
fo = u'b — )y, (73(3)
O<f<1-6  jedw)ulo), (73d)
0<u; <1-—4, i=1,...,m, (73e)
o, € Z, j e J(y) U {o. (73f)
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5.1.2 Projected Chvatal-Gomory separation problem

Since by Proposition 3.1 in Section 3.2, the binary requirements on the variables x;;
in the opportunistic replacement problem (33) can be relaxed, we can rewrite the
problem (71) as the problem below:

min{c’m +dz: Ale+A%2<b, >0, 2>0, x € RNT, 2 ¢ {0, 1}T} (74)

In other words the opportunistic replacement problem can be treated both as an
ILP and a MILP. This fact will give us the permission to project the problem onto
the space of the integer variables z;. Then we can derive CG-cuts for the projected
polyhedron. The separation problem associated with the polyhedron projected into
the z-dimension can be defined similarly to the problem (72)

maximize o/ 2* — ay, (75a)
(a,c0,u)

s.t. a; < u’A?, ji=1,....p, (75b)
0 < u'Aj, j=1,...,7 (75¢)
agp—e>u'b—1, (75d)
u; > 0, i=1,...,m, (75e)

aeZl, ageZy,

where r = NT, p=T and m = 2NT + N = ¥ | T;.

In [7] it is shown that for the matching problem, for which the convex hull and the
first Chvatal closure of the problems coincide, solving the rank-1 separation problem
is very effective. Our aim here is to investigate how tight is the first Chvatal-Gomory
closure, i.e., Pj, defined in (9), for the opportunistic replacement problem (33) and
how generating rank-1 CG inequalities can improve the bounds on the problem.
We therefore in the next section, implement these models into a branch and bound
procedure in which the separation model is solved and the most violated cuts for non-
integral LP relaxation solutions of the opportunistic replacement problem is found.
By a similar procedure we investigate how effective is the projected CG cuts on some
instances of the opportunistic replacement problem. Also we try to find CG cuts for
the opportunistic replacement problems of higher ranks. In the next section, first the
computational procedures made to answer these questions are described in details,
and then the computational results and conclusions are presented.

5.2 Computational tests

In this section we address the details of generating valid inequalities for the replace-
ment polytope by iteratively solving the MILP models (73) and (75) in a pure cutting
plane framework.

Implementation in a pure cutting framework: We have implemented our
CG separating problems into a pure cutting plane framework. As a first test, we gen-
erate CG-cuts of rank-1 with respect to the original formulation of the opportunistic
replacement problem at hand. The simple procedure for the first test is as follows.
We solve the continuous relaxation of an instance of the opportunistic replacement
problem using a general LP solver, then we try to find the most violated CG-cut for
the LP optimal solution y* by solving the separation problem (73) through a general
MILP solver. We store the corresponding CG-cut in a pool. Then, these CG-cuts
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is added to the current opportunistic replacement problem formulation. The contin-
uous relaxation of the updated opportunistic replacement problem is solved again
with the LP solver. In each step a new LP optimal solution y* is obtained, and a
CG-cut of rank-1 is obtained for that particular solution. Note that at each step,
to ensure that all generated cuts are of rank 1, we stick to the original formulation
of the opportunistic replacement problem when solving the separation problem (73),
i.e., at each step the pair (A, b) is given by (71) and only y* changes. We continue the
generation of CG-cuts of rank-1 until either an integer solution is found by the LP
solver or no such violated cut exists. In the latter case, if still there is a gap between
the LP optimal value and the known integer optimal value, this means that we have
optimized over the first Chéavtal closure and for improving the solution higher rank
CG-cuts are required. After the end of the separation phase, all the CG-cuts gen-
erated by this method can be added to the original ILP model of the opportunistic
replacement problem to study how it can affect solving the opportunistic replacement
problem through a general ILP solver.

The second test is designed to study the strength of the projected cuts. The
procedure taken in the second test follows the same scheme as test one, except that
in our cutting plane algorithm pro-CG-cuts of rank-1 are generated and saved. This
means that at each step the MILP model (75) is solved to find pro-CG-cuts for the
projected replacement polytope into the z; variables space. We generate pro-CG-
cuts iteratively to observe how a pro-cut can improve the optimal solution to the
continuous relaxation of the opportunistic replacement problem.

The experiments above concern the optimization over the first Chvatal closure.
For the next test we want to investigate whether producing CG-cuts of higher rank
could close the integrality gap and compare it with the case when only rank-1 CG-cuts
are generated. The new CG-cuts are found by combining the generated inequalities
and original ones. The generated cuts are saved in a pool in order to add these
inequalities to the original formulation when solving the opportunistic replacement
problem with a general ILP solver.

Making the cut sparser and stronger by the penalty term: A major
computational issue when solving the Chvtatal-Gomory separation problem is that
several equivalent solutions of the separation problem typically exists. Some of these
solutions produce very weak cuts for the opportunistic replacement problem which
makes the strength of the cuts an issue. One need to produce a violated cut as strong
as possible with respect to the first Chvatal closure. Therefore we look for a solution
with as few nonzero elements as possible. To obtain such an answer we introduce
the penalty term — > 1", p;u; in the objective function (73a) where p; = 107* for

all i =1,...,m. The objective function is then to
m
P T, *
maximize ( oG Ys — ag — ,uu)
(a,ao,u,f,fo) . Z 7 Z o
JeJ(y*) i=1

We have defined the gap closed percentage as follows

Definition 5.1 (gap closed). The proportion of the integrality gap closed is defined

as
optimal value py — optimal value p)

optimal value p,y — optimal 1)al71,e(P)7
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where P is defined in (9), and P; = conv(P N Z™), as defined in Section 2.4.
Furthermore, we choose ¢ = 0.01 in the model (73) in our computations.

5.2.1 Numerical results

In this section we report the outcome of our experiments on a test-bed made of
eight opportunistic replacement instances. The approach follows the scheme used
in Section 5.2, i.e., we implemented a pure cutting plane algorithm where, at each
iteration, CG-cuts are generated by solving the separation problems (73) and (75)
using a standard MILP solver. In order to speed up the overall computation, the
MILP solver is aborted when a certain time limit is reached. This time limit is
chosen by considering the size of the problem instance at hand. Our implementation
of the cutting-plane methods uses the commercial software ILOG-Cplex 12.0 as LP
solver, whereas the separation problems are solved by ILOG-Cplex 12.0 with the
parameter settings in Table 9. For a reference to the parameter settings see [1].
Algorithms are written in MATLAB R2009b. All numerical experiments are performed
on a Linux desktop operating system with the processor Pentium(R), Dual-Core
E5200 @ 2.50GHz. The CPU MHz is 1200.000 and it has a cache size of 2048 KB.
All times are reported in CPU seconds.

Each testbed problem correspond to different instances of the opportunistic re-
placement problem. The data for these instances is reported in Table 10. Problems
1 and 2 in the testbed are very simple problems. The vectors d, ¢ for problems 1
and 2 are reported in Table 10. For problems 3-8 in our testbed, it is assumed that
cit = c¢;, forallt € N and t € T, also d; = d for all t € 7. Problem 3 is a middle
sized problem intended to resemble a realistic problem. Problem 4 is a rather dense
problem in the sense that it makes the optimal solution to contain many maintenance
occasions. The data in problems 5 and 6 are from real-world instances obtained from
Volvo Aero aircraft engine. Problem 6 is a sparse problem. Problem 5 and 6 are
corresponding to the data from High Pressure Turbine (HPT) and Low Pressure
Turbine (LPT) respectively. Note that the data from real world instances are scaled
so that d = 1. Problems 7 and 8 are also rather dense with the same data in their
objective function while problem 7 has a longer planning horizon.

Table 9: Parameter settings for solving the MILP separation problems with cplex

Directive Value | Description
mipemphasis 4 indicates emphasis on finding
very good feasible solutions.
nodefile 2 creates a compressed version
of the node file in memory.

The testbed problems, while the integrality requirements on the variables x;; and
z; are relaxed, is solved with cplex and the results are presented in Table 11. The
integer linear programming solutions, solution time in CPU seconds, and the number
of cplex iterations are also reported in Table 11.

As stated in Section 5.2, the CG separating problem (73) is solved at each step
of a pure cutting plane framework. CG-cuts of rank-1 with respect to the original
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Table 10: Basic data for the testbed problems

instance] T |N min7; |maxT; | polyhedron d c1 Co
dimension
1 412 3 4|12 (3,3,1,3) |(1,1,2,1)((1,5,5,1)
412 2 3|12 (3,3,1,3) |(1,1,2,1)((1,5,5,1)

minc; | maxc;

3 1019 2 8 | 100 11 0.3613 | 4.0255

4 18 | 2 3 4| 54 915 6
5(HPT)[100 | 9 15 80 | 1000 11 0.3613 | 4.0255
6(LPT)[110 |10 29 60 | 1210 1103171 | 1.5482

7 40 | 3 3 o | 80 10 | 5 7

8 15 |3 3 5 | 60 10 | 5 7

Table 11: Solution of the testbed problems. The continuous relaxations and the ILP’s are
solved by the general ILP solver cplex with default parameter settings.

instancel| continuous relaxation| ILP solution
time (s) | opt. value || time (s)# iterations |opt. value
1 0.0137 6.5 0.0160 10 7
2 0.0149 11 0.0360 12 12
3 0.0155 47.8397 0.0465 109 | 48.8397
4 0.0146 | 110 0.0271 96 | 114
5(HPT)|| 0.1116 57.5946 2.4483 28018 | 58.7463
6(LPT)|| 0.1332 23.7225 0.2659 1322 23.7225
7 0.0205 | 314.75 0.5799 7276 | 352
8 0.0171 | 118 0.0303 113 | 120
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formulation of the testbed problems are generated. The computations are stop when
either an integer solution is obtained or when no such cuts exists. The results are
reported in Table 12, which shows that for some instances of the opportunistic re-
placement problem, by only generating rank-1 CG-cuts, the integrality gap can be
significantly closed, while for testbed problem 5 with data from HPT it fails to in-
crease the lower bound. Table 13 reports the results for the cutting plane algorithm
using pro-CG-cuts for the testbed problems.

Table 12: Results when the rank-1 separation problem is implemented in a pure branch and
cut framework and applied to the test bed problems.

instance|| # cuts time(s) joptimal valuel % gap closed
1 1 2.27 7 100
2 3 10.61 | 12 100
3 4 2661.8 48.8397 100
4 8 2613.5 | 114 100
5(HPT) 28 | 71823.0 57.5946 0
6(LPT) 10 | 16710.0 23.7225 100
7 68 | 105800.60 | 335.9700 56.97
8 7 901.28 | 120 100

Table 13: Results when the projected separation problem is implemented in a pure branch
and cut framework and applied to the testbed problems. The number of projected cuts is
limited to 100.

instance| # cuts time(s) optimal | % gap closed
1 1 2.1700 7 100
2 2 3.7000 11 0
3 4 35.9900 | 48.8397 | 100
4 4 341.7400 | 111 25
5(HPT)|| 100 | 72452.0 57.5046 | 0
6(LPT) 7 674.8300 | 23.7225 | 100
7 19 | 51329.0 319.5000 12.75
8 13 813.6500 | 119 50

To observe how changing the time horizon 7" can affect the behavior of the solution
procedure, we have considered the testbed problem 5 with data from HPT and varied
T between 55 and 100. The LP relaxation and ILP solutions for instances of the
HPT problem with various time horizons are reported in Table 14. The results for
our implementations of the cutting plane method where the separation problems are
solved with the MILP models (73) and (75) are reported in Table 15. For the HPT
problem with various time horizons, it is obvious from Table 15 that the cutting
plane method generally fails to close any integrality gap, except for the instance
where T' = 60.
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Table 14: The continuous relaxation and the ILP solution of the opportunistic replacement
problems with data from HPT and various values of the time horizons T reported from
cplex

HPT || continuous relaxation solution ILP solution
T || time(s) | opt. value time (s)| # iterations | opt. value
55 || 0.0277 | 24.6670 0.0842 440 | 24.7946
60 || 0.0318 | 31.6229 0.0934 466 | 31.6229
70 || 0.0480 | 35.1382 0.4303 4937 | 35.3195
80 || 0.0562 | 46.1809 1.2196 21748 | 47.1809
90 || 0.0755 | 53.4250 1.7091 14456 | 54.2643
100 || 0.1116 | 57.5946 2.4483 28018 | 58.7463

Table 15: Rank-1 and projected separation problem applied to the HPT instance with
various values of T" in a pure branch and cut framework.

HPT|| Rank-1 separation problem Projected CG-cuts
T|[#cutsltime(s)opt. valueZogap clo|#cuts | time(s) |opt. value%gap clo.
55| 46 [13458.0] 24.6926 | 20.06 2 | 409.7000] 24.6670 0
60| 13 | 8365.0[ 31.6229 |100 23 | 1936.6 31.6229 100

70 19 20596.0] 35.1382
80| 10 | 6194.0] 46.1809
90| 15 [23474.0] 53.4250
100} 28 [71823.0] 57.5946

100 | 8859.3 35.1382
100 135023.0 46.1809
100 67851.0 53.4250
100 {72452.0 97.5946

o O OO
o O OO
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Our previous experiments show that optimization over the first rank closure in
some cases gives a very good approximation of the integer optimal value while in
some other cases it fails to close any integrality gap. In our experiments we consider
a case in which, in our cutting plane method, CG-cuts of higher ranks are generated.
In this test beside, the original constraints of the opportunistic replacement problem
(33), we consider the new generated CG-cuts from the separation problem (73). The
results are reported in Table 16.

Table 16: Beyond the first Chvatal closure, CG-cuts of higher ranks has been generated.
The separation problem to find the most violated cuts is limited to be solved 100 times for
problem 7 and 150 times for problem 5.

instance || # cuts time (s) opt. value | % gap closed
2 2 13.7300 | 12 100
3 7 9533.1 48.8397 100
4 10 2664.5 114 100
5(HPT) 148 | 166460.0 57.8292 20.37
6(LPT) 8 1984.0 23.7225 100
7 100 | 109110.0 331.1521 44.03
8 9 2662.6 120 100

The CG-cuts which have been generated in the separation phase have been saved.
We add the generated rank-1 cuts to the original formulations of the problem with
integrality gap as reported in Tables 12 and 15. Then these new formulated problems
are solved with cplex. The results are illustrated in Tables 17 and 18. We can
compare the results with the ones in the Table 11 and 14.

Table 17: Rank-1 CG cuts are added to the original formulation and solved with cplex to
obtain an integer solution for the instances for which the integrality gap is not completely
closed (Table 12). We compare the results with those from Table 11.

instance || time (s) | # iterations
5(HPT) || L5354 12869
7 0.7852 17311

5.2.2 Conclusions

The separation problem is AP-hard in general, so as expected the computation time
for solving the MILP models (73) and (75) is considerable. For many instances the
cutting plane algorithm based on finding the most violated rank-1 CG-cuts for the
LP solutions is effective to improve the lower bounds of the objective value. In
other words this pure branch and bound procedure for rank-1 CG-cuts is capable
of finding facets of the replacement polyhedron in the neighborhood of an optimal
solution. By the results obtained in Table 12 one can conclude that the effectiveness
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Table 18: Rank-1 CG-cuts are added to the original formulation and solved with cplex to
obtain an integer solution for the problem HPT with various time horizons. We compare it
with Table 14.

T | time (s) || # iterations
95 0.0541 243

70 0.1587 936

80 0.5849 7078

90 0.6739 4026
100 1.5854 12869

of generating the most violated CG-cuts is dependent on the sparseness of the con-
straint coefficients and the objective function rather than the size of the replacement
polyhedron.

Finding the projected CG-cuts requires less computation time. This is because
the MILP problem (75) is smaller than (73). For the strength of the projected
CG-cuts it is of importance whether, in the general MILP problem at hand, the
optimization of the integer variables, or optimizing over the continuous variables is
the key. More precisely for our opportunistic replacement problem where there is a
tie between the integer variables z; and continuous variables x;, a situation that may
occur is that the projection z* of the optimal solution (z*,z*) of the opportunistic
replacement relaxation problem belongs to the first Chvatal closure Pj(z). In this
case, no pro-CG-cut can cut off that point, although there might be a huge gap
between the optimal integer solution and its relaxation. This can be observed in
Tables 13 and 15, in which for most instances in comparison with rank-1 CG-cuts, a
smaller gap percentage is closed. Note that the percentage of gap closed is dependent
on the objective function.

Producing CG-cuts of higher rank needs more computation time than only gener-
ating rank-1 CG-cuts. The reason is that in each step a new CG inequality is added
to the matrix A in the model (73) which increases the size of the instance. Table 16
shows that it is beneficial to generate higher rank CG-cuts especially for dense and
high dimensional problems. By generating higher rank CG-cuts more dominate valid
inequalities can be generated and a tighter bound on the optimal solution with less
number of valid inequalities can be obtained. Table 16 shows that producing higher
rank cuts has the benefit of closing some of the integrality gap for the problem HPT
while generating only rank-1 CG-cuts fails to do so.

Finally we have added the generated rank-1 CG-cuts to the original formulation
of the opportunistic replacement instances where our cutting plane algorithm fails
to report an integer solution. Comparing Tables 17 and 11 shows that although
the generation of CG-cuts fails to increase the lower bound on the objective value
for the HPT problem with 7" = 100, adding these new constraints to the original
formulation simplifies the problem and decreases the computation time. However,
for the smaller problem 7, although by generation the rank-1 CG-cuts 56.97 % of
the integrality gap is closed, but adding the generated cuts to the original formula-
tion makes the problem more complex and increases the computation time and the
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number of simplex iterations. This is because adding the new inequalities makes the
linear programs big which takes more time to solve, and so this is not so much of
benefit for small size problems. Table 18 shows that the generated rank-1 CG-cuts
for the HPT problem with various time horizons increases the computation time and
the number of simplex iterations significantly.

In general, solving the separation problems (73) and (75) consumes huge amounts
of computer memory.
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6 Conclusions and future work

6.1 Conclusions

The focus of this thesis is to study the mathematical property and facial structure
of the opportunistic replacement problem with deterministic component lives. The
Benders decomposition method is implemented and a separation problem is modeled
and solved in a branch and bound algorithm. The main results are as follows.

If the maintenance occasions are fixed, the remaining optimization model is a
linear programming problem. The dual problem of this linear programming problem
is presented. It is shown that an equivalent representation of the dual problems ex-
ists. Moreover, if the maintenance costs are non-increasing with time, the dual linear
programming problem can be solved through a greedy algorithm. An implementa-
tion of the Benders decomposition method applied to the opportunistic replacement
problem is discussed. Feasibility constraints for the master problem in the Benders
algorithm are derived.

The computational experiments show that for the instances with non-increasing
maintenance costs, using the greedy algorithm to solve the dual linear programming
subproblems in the Benders algorithm often decreases the computational times. Be-
sides, the computation time for solving the master problems in the Benders algorithm
increases by each iteration. As an overall conclusion, when the size of the oppor-
tunistic replacement problem increases the computation time for solving the master
problems in Benders algorithm behave exponentially, which makes this method in-
efficient for the opportunistic replacement problem. However, it is suggested that
Benders decomposition method can be utilized to find a good feasible solution and
an initial point for solving the opportunistic replacement problem.

This thesis also includes a branch and cut approach for solving the opportunis-
tic replacement problem. A modified mixed integer linear programming model for
the rank-1 Chvatal-Gomory separation problem is described. Then the projected
Chvatal-Gomory separation problem is presented. The models are implemented in
a pure cutting plane framework to generate the most violated first rank CG-cuts in
order to obtain a tighter bound on the optimal solution. Then, Chvatal-Gomory cuts
of higher ranks have been generated for middle sized instances of the opportunistic
replacement problem. Since the separation problem is NP-hard, the computation
times and the memory usage are considerable. The effectiveness of generating most
violated CG-cuts seems to be dependent on the sparseness of the constraint coeffi-
cients and the objective function rather than the size of the replacement polyhedron.
However, generating the rank-1 Chvatal-Gomory cuts often yields a very tight ap-
proximation of the (integer) optimal value for the opportunistic replacement problem.

6.2 Future work

The work in this thesis shows that the Benders decomposition method is inefficient
for the opportunistic replacement problem in general. However, the author’s opin-
ion is that Benders decomposition method can be utilized to find a good feasible
solution and an initial point when solving the opportunistic replacement problem.
Also generating the rank-1 Chvatal-Gomory cuts often gives a tight bound on the
optimal solution of the opportunistic replacement problem. Obviously, one should
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generate CG-cuts of any rank and search for new techniques to generate valid in-
equalities and find new classes of facets for the opportunistic replacement problem
in order to obtain satisfactory results. Solving the separation problem and finding
most violated valid inequalities for the replacement polytope could be useful as a
tool to guess structures of some new classes of facets.

In this thesis work, a basic opportunistic replacement problem is considered in
which the lives of all the components are deterministic. One may ask whether the
work done generalizes to more realistic models for opportunistic maintenance or not.

In realistic situations, maintenance problems often include components with
stochastic lives and it is important to apply the opportunistic replacement model
to these problems as well. In [15], a two-stage stochastic programming approach for
the opportunistic replacement problem with stochastic component lives, is developed
and studied.

As an extension of the opportunistic replacement problem, one can consider a
maintenance problem with different lives for different individuals of the same compo-
nent. This problem is called the opportunistic replacement problem with individual
lives. Solving a stochastic opportunistic replacement problem with perfect informa-
tion about individual component lives leads to solving an opportunistic replacement
problem with individual lives ([17]). Furthermore, a model of the opportunistic re-
placement problem with individual lives is the basis of a model of the current problem
for the stochastic opportunistic replacement problem ([15]).

The scope of the future research work can be divided into three categories. One
can work on realistic problems directly from the industry, study more complex real
problems, and extend the current results to these kinds of problems. More exten-
sions can be obtained by considering other defining factors (such as human work
resource, etc). A second approach is to contribute to find effective methods in solv-
ing the multistage stochastic opportunistic replacement problem. A third possibility
is to utilize the results of the facial structure of the opportunistic replacement prob-
lem, to the generalized cases such as stochastic opportunistic replacement problem
and the opportunistic replacement problem with individual lives, in order to solve
these generalized problems more efficiently. The goal of these research areas is the
contribution of finding efficient solutions for larger and more complex maintenance
problems.
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