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Handledare: Samuel Lundqvist

2011





Abstract

Being NP-complete, the problem of deciding boolean satisfiability, or SAT-
problem, is probably impossible to solve efficiently. Nevertheless, this hasn’t stopped
people trying, and in this paper we present one method based on abstract algebra.
The paper contains a repetition of basic abstract algebra, as well as an introduction
to Gröbner bases and the Buchberger algorithm. Then we will show how boolean
formulas can be transformed into polynomials in the Z2-polynomial ring, so that
satisfiability is preserved as solvability. After that we will take a closer look at the
ideal generated by such polynomials and the so called field equations, and prove
that any potential solutions to this ideal only has coordinates in Z2, precisely cor-
responding to solutions that satisfy the boolean formula. After that, we will show
how a quick glance at a Gröbner basis of this ideal will tell if any solutions exist.
Finally, there will be some technical discussion, heuristic suggestions and possible
ways to develop the technique further.
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1 Introduction

The problem of boolean satisfiability, the SAT-problem, is probably the most famous and
most discussed NP-complete problem. It looks quite simple on paper: given a boolean
formula, such as A∧ (B ∨¬A), is there any way to assign values to the variables so that
the formula evaluates to true? In our example, the answer is yes: assign both A and
B the value true. Using the notation > for true and ⊥ for false, the formula becomes
> ∧ (> ∨ ⊥) = > ∧ > = >. It is possible to satisfy this boolean formula, so the answer
to the SAT-problem is yes, in this case.

Not all boolean formulas can be satisfied, however. The simplest example is A∧¬A.
Since A is the only variable, we have two cases: we can give it the value true or the
value false. The two cases give us the two formulas > ∧ ⊥ and ⊥ ∧ >, both of which
evaluates to false. For this formula, the answer to the SAT-problem is no.

In these two examples, we were able to find the answers easily by guessing, but that
is obviously not possible in larger cases. One naive approach to solving the problem in
the general case would be to simply test all the possible variable assignments. This is,
not surprisingly, impractical: if the formula contains n variables, the number of cases
becomes 2n, and so the number of cases grows exponentially as the number of variables
increases. In practice, the number of cases quickly becomes unreasonably large, making
this approach worthless for all but the smallest formulas. We would much prefer to
have an algorithm which takes polynomial time to solve the problem: that is, if n is the
“size” of the problem, in our case the size of the boolean formula, then the algorithm
can solve the problem in at most f(n) steps, where f(n) is a polynomial function. The
reason polynomial time is more desirable than exponential time is that as the problem
grows infinitely large, a polynomial function will always grow slower than an exponential
function, so they will always be faster for larger problem instances.

In 1971 Stephen Cook proved that the SAT-problem was NP-complete, which means
that if the SAT-problem could be solved in polynomial time, then so could all NP-
problems. This is the main reason the SAT-problem is so well-discussed: not only is it
theoretically interesting, solving it efficiently would also be of immense practical value.

It has been shown that the SAT-problem can be reduced to other problems, some
similar like CNF-SAT, which is like regular SAT except that the boolean formula has
to be written on a certain form. It has also been reduced to some more exotic problems
like the Traveling Salesman problem, which involves finding the shortest path through
a graph while visiting all the vertices. The SAT-problem has even been reduced to
variations of the the popular puzzle Sudoku [15]. These problems are also NP-complete,
meaning it would be of equal practical value to solve them instead of the SAT-problem,
but since all these problems are shown to be NP-complete via reductions from SAT, most
people still view SAT as being *the* NP-complete problem. SAT is the “grandfather”
of all NP-complete problems, so to speak.

Sadly, it seems that NP-completeness, the very property which makes SAT so desir-
able to solve efficiently, also makes it impossible to solve efficiently: most mathemati-
cians and computer scientists simply don’t believe that NP-complete problems can be
solved in sub-exponential time. Not only are there strong theoretical reasons behind
this belief, there is also the fact that no sub-exponential solution has been found for any
NP-complete problem, even though this is among the most studied fields in computer
science. On the other hand, there is no proof for this belief: whether NP-complete
problems can be solved in sub-exponential time is still an open question, after almost
40 years of dedicated research. Computer scientists would be ashamed over this, if only
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they had emotions.
And now that we know the stakes, it is our turn to try to solve the SAT-problem.

Even though doing it efficiently is probably doomed to fail, we might still have fun along
the way.

We will use an algebraic method based on Hilbert’s Nullstellensatz. This work has
been written with undergraduate students in mind: some algebraic background is recom-
mended to fully understand this paper, but focus has been put on readability and com-
pactness rather than mathematical rigor. Some concepts are introduced informally and
some uninteresting concepts are skimmed over to keep things accessible. This doesn’t
mean that the mathematical rigor has been neglected: whenever necessary, a complete
proof can be found, either in the paper itself or in a reference.

We hope that students will find the paper interesting, that programmers find it
tempting to implement, and of course that professors find it thought-provoking enough
to warrant a high grade. If there are any questions or comments, the author is more
than willing to answer them.
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2 Algebra

This chapter will mainly consist of repetition of abstract algebra. It is entirely possible
to skip ahead to the section about Gröbner bases, or to skip the chapter entirely if the
reader is familiar with these concepts.

2.1 Polynomial rings and ideals

2.1.1 Polynomial rings

Let k be a field. Then a polynomial ring k[x] is the ring of single-variable polynomials
with coefficients in k, and k is called the coefficient field of k[x]. Just like with ordinary
polynomials, we can view the elements of the ring as functions: a polynomial p ∈ k[x]
can be evaluated at a ∈ k by replacing each occurrence of the variable x in p with a.
If the resulting element is b, we say that p(a) = b.

We can also evaluate polynomials at points outside of the field. Let p ∈ k[x] and let
k′ be an extension field of k, k ⊆ k′. Since the elements of k are also elements of k′,
then the coefficients of p are also in k′, meaning p ∈ k′[x]. Hence we can evaluate p at
a point in k′.

We can now introduce equations. Let 0 denote the additive identity in the field k.
Given a polynomial p ∈ k[x], is there any element a so that p(a) = 0? If so, we say that
a is a solution or a root to p, and that a solves p. All polynomials have roots, but
they are not always in the original field: they may lie in an extension field. If k is a
field and we are lucky enough that all polynomials p ∈ k[x] have corresponding solutions
a ∈ k, then we say that k is algebraically closed.

Example 1. The real numbers R is a field, and the complex numbers C is an extension
field of the real numbers, R ⊂ C. The polynomial x2 + 1 only has coefficients in R, but
it has no roots there, so R is not algebraically closed. The polynomial does have roots
in C, as ±i solves the polynomial. It even turns out that all polynomials in C[x] have
solutions in C, meaning that C is algebraically closed.

If we have a field k, then the smallest extension field of k which is algebraically closed
is called the algebraic closure of k, and is denoted as k. Each field has exactly one
algebraic closure, unique up to isomorphism, and if a field is already algebraically closed,
then it is its own algebraic closure. As it is usually more convenient do deal with fields
that are algebraically closed, we often refer to an algebraic closure of a field rather than
a field itself.

Example 2. Continuing our example, we have that C is the algebraic closure of R.

We can also have polynomials in more than one variable: if k is a field and X
is a set of variables x1, x2, . . . , xn, then k[X], or k[x1, x2, . . . , xn], is the ring of poly-
nomials in the variables x1, x2, . . . , xn with coefficients in k. A point is an n-tuple
(a1, a2, . . . , an), ai ∈ k′ where k′ is an extension field of k, and we can evaluate a poly-
nomial p ∈ k[x1, x2, . . . , xn] at the point (a1, a2, . . . , an) by replacing each occurrence
of xi in p with ai, for i = 1, . . . , n. If the resulting element is b, then we say that
p(a1, a2, . . . , an) = b.

We can similarly create equations, asking for points at which p becomes zero.
Polynomials in more than one variable are called multivariate polynomials. Poly-

nomials in only one variable are sometimes called univariate polynomials.
Let k be a field, let V be a vector space over k, and let v be a finite subset of V . Then

a sum c1v1 + c2v2 + . . . + cmvm, where ci ∈ k, vi ∈ v, is called a linear combination
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of the elements in v, or a linear combination of the vi. We can let v be a infinite subset,
or even V itself, but the sum must only contain a finite number of terms. If k is not
necessarily a field, but just a set of elements which can be multiplied with the elements
in v, then we simply call such a sum a k-combination of elements in v.

Example 3. Let R[x] be our vector space. The set of all linear combinations of the
elements in R[x] is the set {r1p1 + r2p2 + . . .+ rmpm : ri ∈ R, pi ∈ R[x],m ∈ N}

If we let k be the polynomial ring R[y], and our set v be a finite subset of R[x], for
example, v = {2x2 + x+ 1, x3 − x}, then one possible k-combination of the elements in
v is (y2 + y + 1)(2x2 + x+ 1) + 1 · (x3 − x).

Some more rigorous notation: If we have a polynomial ring R = k[x1, x2, . . . , xn],
then a monomial m ∈ R is a product of the variables x1, . . . , xn, that is, m =
xα1
1 xα2

1 . . . xαn
n , where the αi are non-negative integers. A term t ∈ R is a mono-

mial with a coefficient, t = cm, where m is a monomial and c ∈ k. A polynomial p ∈ R
is simply a sum of terms, or equivalently, a linear combination of monomials.

2.1.2 Ideals and varieties

If we have a ring1 R, then an ideal I is a subset of R which is closed under addition
with elements in I, and closed under multiplication with elements in R. This means
that if a, b ∈ I, then ca+ db ∈ I for all c, d ∈ R. In other words, all R-combinations of
elements in I belong to I as well.

If we have a ring R and a set S = {a1, a2, . . . , am}, ai ∈ R, then the set I consisting
of all R-combinations of the elements in S, I = {b1a1 + b2a2 + . . . + bmam : bi ∈ R},
fulfills the conditions to be an ideal. We say that I is generated by the elements in
S, denoted I = 〈a1, a2, . . . , am〉. The set generating an ideal does not have to be finite:
ideals can be generated by infinite sets. Note that ideals can often be generated in more
than one way; the same ideal can be generated by different sets. If an ideal can be
generated by a finite set, it is called a finitely generated ideal. It turns out that all
ideals of polynomial rings are finitely generated.

Note that it is not enough to define an ideal I by a set of generators: one must also
specify which ring R the ideal is a subset of, to specify what kind of coefficients we are
allowed to use in the sums.

Example 4. The ideal I = 〈2〉 can mean different sets depending on which ring we are
in. If we are in Z then I is just the set of all even numbers. If we are in R[x], then I
is actually the whole ring R[x] itself, since every polynomial p ∈ R[x] can be written as
the product p

2 · 2.

We can define some operations on ideals: let I = 〈a1, a2, . . . , an〉, J = 〈b1, b2, . . . , bm〉
be two arbitrary ideals of the same ring R. Then we define I + J as the ideal generated
by the generators of both I and J , I + J = 〈a1, a2, . . . , an, b1, . . . , bm〉. Note that this is
identical to saying that a ∈ I, b ∈ J ⇒ ac+ bd ∈ I + J for all c, d ∈ R.

Say that we have an ideal I of a polynomial ring R, either univariate or multivariate.
We can once again view the polynomials in I as equations, and ask ourselves if there are
any points which solves all polynomials in I. For that reason, we introduce the concept
of variety:

Definition 2.1 (Variety). Let I be a polynomial ideal, I ⊆ k[x1, x2, . . . , xn]. The set
of points which solve all polynomials in I is known as the variety of I, and is denoted
as V (I). More formally, V (I) = {(a1, a2, . . . , an) : ai ∈ k, p(a1, a2, . . . , an) = 0,∀p ∈ I}.

1For the sake of simplicity, we will assume that all rings are commutative, and that 1 6= 0 in them.
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If we are only interested in points with coordinates in a particular field h, either a
field containing k or a subfield of k, we can denote that set Vh(I). This can be useful
for specifying, for example, that we are interested in solutions with coordinates in the
coefficient field.

A set that is a variety to some ideal is called an algebraic set. The smallest ideal
with the variety S is denoted I(S).

Theorem 2.2. Let R = k[x1, . . . , xn] be a polynomial ring, and let h be either a subfield
or an extension field of k. Let I be the ideal generated by p1, p2, . . . , pm, and let S be the
set of points with coordinates in h which solve p1, p2, . . . , pm. Then S = Vh(I). In other
words, the variety of an ideal consists of the solutions of the generators of the ideal.

Proof. As p1, p2, . . . , pm ∈ I, the elements of the variety must solve the pi, so it is
clear that Vh(I) ⊆ S. Let p be an arbitrary element in I and let s be an arbitrary
element of S. Then p can be written as a R-combination of the generators of the ideal,
p = g1p1 + g2p2 + . . .+ gmpm, and since all elements of S solve p1, p2, . . . , pm, we have
p(s) = g1(s)p1(s) + . . .+ gm(s)pm(s) = g1(s) ·0 + . . .+ gm(s) ·0 = 0, so s solves p, giving
S ⊆ Vh(I). In total we have S = Vh(I).

Note that Theorem 2.2 is of course also true if we let h be the algebraic closure of
the coefficient field; this means that all solutions to the pi solves all polynomials in I.
We will finish with some useful variety properties:

Theorem 2.3.

1. Let I and J be two polynomial ideals, I ⊆ J . Then V (J) ⊆ V (I).

2. Let I and J be two arbitrary polynomial ideals. Then V (I + J) = V (I) ∩ V (J).

Proof.

1. Let a be an arbitrary element in V (J). This means that for all polynomials p ∈ J
we have p(a) = 0. But as I ⊆ J , the same is true for all polynomials in I, so
a ∈ V (I) as well.

2. All elements in V (I) ∩ V (J) must solve all generators of both I and J . But these
are exactly the generators of I + J , so V (I) ∩ V (J) = V (I + J) according to
Theorem 2.2.

2.1.3 A word on Z2

We will perform many calculations in the polynomial ring Z2[x1, . . . , xn] in this paper.
The simplest way to describe the field Z2 is simply as the set {0, 1}, where multiplication
and division follows the usual rules, but where 1 + 1 = 0 and 0 − 1 = 1. This means
that in the polynomial ring Z2[x1, . . . , xn], the only available coefficients for our terms
are 0 and 1. Moreover, for arbitrary polynomials p ∈ Z2[x1, . . . , xn], we have that
p + p = (1 + 1)p = 0 · p = 0, and 0 − p = (0 − 1)p = 1 · p = p. In other words, there is
no difference between plus and minus in this ring, making it very interesting to work in.
From here on, if a minus sign suddenly changes into a plus sign, it was probably not an
error, but rather an attempt to reduce clutter.
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2.1.4 Hilbert’s Nullstellensatz

One form of the famous David Hilbert’s theorem Hilbert’s Nullstellensatz states that

Theorem 2.4 (Hilbert’s Nullstellensatz, weak form). Let I be a polynomial ideal in
k[x1, x2, . . . , xn]. If and only if 1 ∈ I, then V (I) = ∅.

We will not prove this statement, but a proof can be found in [1]. Let’s try to
understand what the theorem means in practical terms. If an ideal contains 1, then
obviously this means that the variety must be empty, since the constant 1 can never be
“evaluated” to zero, no matter which point we consider.

But the weak form of Hilbert’s Nullstellensatz tells us that the converse is true as
well: when 1 /∈ I, then there must be some element in V (I). In other words, there must
be at least some point which solves all polynomials in the ideal. Whether or not 1 is part
of the ideal or not, is equivalent to whether or not there are solutions to the elements
in the ideal.

Let’s say that we have a set of polynomials p1, p2, . . . , pm ∈ R = k[x1, x2, . . . , xn],
and that we wanted to know if they were solvable, that is, if there were any point a so
that p1(a) = p2(a) = . . . = pm(a) = 0. Recall that Theorem 2.2 states that the variety
of an ideal is the same as the set of points solving the generators of the ideal, so this
is equivalent to asking if V (〈p1, p2, . . . , pm〉) is non-empty. Hilbert’s Nullstellensatz now
states that the variety is non-empty if and only if the ideal does not contain 1. In other
words, a set of polynomials p1, p2, . . . , pm is unsolvable if and only if 1 can be written
as a R-combination of the pi.

This can be a very powerful tool, but there is one catch: there doesn’t seem to be
an easy way of checking whether or not a given polynomial (in our case, 1) is part of an
ideal or not. That problem will be discussed in the next section.

2.2 Gröbner bases

2.2.1 Introduction to Reduction

Remember integer division? How, for each pair of integers a, b, where b 6= 0, there exists
unique integers q, r with r = 0 or r < b, so that a = bq + r? Similarly one can divide
univariate polynomials: for each pair of polynomials f, p ∈ k[x], where p 6= 0, there exists
unique polynomials q, r ∈ k[x], where deg(r) < deg(p) or r = 0, so that f = qp+ r. As
in the integer case, we call q the quotient and r the remainder.

If two polynomials f1 and f2 yield the same remainder when dividing by p, we say that

f1 ≡ f2 mod p, similar to the integer case. Another way of denoting this is f1
p−→ f2,

or that f1 can be reduced with p to f2. Note that if f1
p−→ f2, then f1 = f2 + qp for

some polynomial q.
We can also use reduction in a more active sense: we say that we reduce a polynomial

f with p when we simply subtract a multiple of p, so f
p−→ f − qp for any polynomial q.

Unless otherwise noted, reducing f with p in this way means picking q in such a way as
to minimize the degree of f − qp. This actually turns out to coincide with polynomial
division: the f−qp with smallest possible degree is in fact the remainder r when dividing
f with p. For that reason we will sometimes refer to the remainder r when dividing f
with p, by saying f reduced with p. Don’t forget, however, that reduction arrows work

slightly differently: f1
p−→ f2 simply means that there exists some q so that f1 = f2−qp,

not that this q necessarily yields the smallest degree.
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Reduction with a fixed polynomial p is obviously transitive: if f1
p−→ f2

p−→ f3, then

f1
p−→ f3.

Finally, since it is often more convenient (both for authors and readers) to deal with
monic polynomials2, we will cheat a little: in this paper, we will always multiply the
final result of a polynomial reduction with the inverse of the leading coefficient, so as
to make the polynomial monic. This is a common convention when dealing with this
type of reductions, as it reduces clutter while preserving the structure of the polynomial.
This does not affect the uniqueness of quotients or remainders.

Having refreshed the subject of polynomial reduction, let’s turn our eyes to an ap-
plication...

2.2.2 Deciding ideal membership

Say that we have a polynomial ideal I and a polynomial f , and we wanted to find out
whether or not f ∈ I. How would we do that?

Let us start with simple cases and work our way up. Say that I was generated by one
univariate polynomial, I = 〈p〉, p ∈ k[x]. In this case we can use ordinary polynomial

reduction: To check if f ∈ I = 〈p〉, we reduce f with p: If f
p−→ 0, then f is a multiple

of p and so f ∈ I. If reducing f with p yields a non-zero remainder, then due to the
uniqueness of remainders f is not a multiple of p, and is not in I.

A slightly more interesting case is when I is generated by several single-variable
polynomials, I = 〈p1, p2, . . . , pm〉, pi ∈ k[x]. Not much more interesting, however: in
this case we have that I can also be described as I = 〈gcd(p1, p2, . . . , pm)〉, where gcd
denotes the greatest common divisor. That this works is partly because the greatest
common divisor of univariate polynomials can be written as a k[x]-combination of the
polynomials, so the greatest common divisor is itself part of the ideal. Using the Eu-
clidean algorithm for polynomials [14], we can find this greatest common divisor, and
then treat I as if generated by one polynomial, as in the first case.

If I is generated by one multivariate polynomial, I = 〈p〉, p ∈ k[x1, x2, . . . , xn], we
start to reach problems. It is tempting to try and generalize the polynomial reduction
method to several variables, but doing so will prove more difficult than one might expect,
as the next section will show us. . .

2.2.3 Term orderings

Say that we wanted to reduce the polynomial f with the polynomial p. If f and p were
univariate polynomials, the first step would be to identify the leading terms of f and
p, by finding the terms of highest degree. If f and p were multivariate polynomials, we
would also try to find the leading terms, but this is where things get tricky: what is the
leading term in a multivariate polynomial? For example, what is the leading term in
the polynomial x21 + x1x

2
2?

The degree of a multivariate monomial is defined as a the sum of the exponents on
the variables, and one could argue that x1x

2
2 should be the leading term, since it has

the highest degree. But one could also argue that x21 should be the leading term, if one
considers the exponent of x1 more important than the one of x2, and thinks x1 should
have higher priority in deciding the order. If we introduce the notation � meaning
“higher order than” and ≺ meaning “lower order than”, then our first way of reasoning
gives us x1x

2
2 � x21 and the second one x1x

2
2 ≺ x21.

2Polynomials with 1 as the leading coefficient.
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Both of the above orderings seem natural and intuitive, and they are consistent with
the univariate case. However, attempting multivariate polynomial division with them
gives wildly different results depending on which one is used: the quotient and remainder
are no longer unique, but depend on which monomial ordering we decide on. Neither
monomial ordering can be shown to be more “correct” than the other: they are both
consistent and give meaningful results. In fact, these aren’t the only ways of ordering
monomials: many more exist, though not all are useful. We introduce the concept
of admissible orderings to give us some criteria for monomial orderings with useful
properties.

Definition 2.5 (Admissible monomial ordering). A relation � between monomials is
an admissible monomial ordering if it is

1. a total ordering: for all monomials m1, m2 we have m1 � m2, m1 ≺ m2 or
m1 = m2.

2. transitive: if m1 � m2 and m2 � m3, then m1 � m3.

3. compatible with monomial multiplication: if m1 � m2, then mm1 � mm2

for all monomials m.

4. 1 ≺ m for all monomials m 6= 1.

If we have an admissible monomial ordering � we can simply define the leading term
of a polynomial as the term of highest order. We denote the leading monomial of a
polynomial p as lm(p) and leading term as lt(p). Note that the difference between the
two is that the leading term includes the coefficient, whereas the leading monomial is
just a product of variables. For convenience we also denote the “tail” of a polynomial,
the polynomial with the leading term removed, as t(p).

The two examples of orderings we looked at above are called lexicographical and
degree-lexicographical (or lex and deglex for short), and are more rigidly defined as:

Definition 2.6 (Lex). m1 = xα1
1 xα2

2 . . . xαn
n � m2 = xβ1

1 x
β2

2 . . . xβn
n if for some k we

have α1 = β1, α2 = β2, . . . , αk−1 = βk−1, αk > βk.

Definition 2.7 (Deglex). m1 = xα1
1 xα2

2 . . . xαn
n � m2 = xβ1

1 x
β2

2 . . . xβn
n if deg(m1) =

α1 +α2 + . . .+αn > deg(m2)= β1 +β2 + . . .+βn or if deg(m1) = deg(m2) and m1 � m2

using lexicographical ordering.

Less formally, lex means that the higher term has a higher exponent on the first
variable where the exponent differs. In deglex, the higher term is the one with higher
total degree, and if the degree is equal, lex is used to decide.

Example 5. Let p be the polynomial x21+x1x
2
3+x1x2. If we use lexicographical ordering,

the terms are ordered as x21 � x1x2 � x1x23, but if we use degree-lexicographical ordering,
we get x1x

2
3 � x21 � x1x2.

A third ordering, not as intuitive but more useful for our purposes, is the degree-
reverse-lexicographical ordering, degrevlex:

Definition 2.8 (Degrevlex). m1 = xα1
1 xα2

2 . . . xαn
n � m2 = xβ1

1 x
β2

2 . . . xβn
n if deg(m1) >

deg(m2), or if deg(m1) = deg(m2) and for some k we have
αn = βn, αn−1 = βn−1,. . . ,αk < βk.

12



Less formally, degrevlex first compares the degree. If this is equal, it then does a
lexicographical check, starting from the least important variable: the first monomial
to have a lower exponent on the less important variables, is the monomial with higher
order. Since the total degree is equal, this lower exponent on the less important variables,
ensures that there is some more important variable with higher exponent.

This may seem like a strange criteria, but it is an admissible ordering and some
algorithms, including one we will introduce later, works best with degrevlex.

Example 6. The terms t1 = x21x2x
2
3 and t2 = x1x

3
2x3 are ordered as t1 � t2 in both lex

and deglex, but in degrevlex they are ordered as t1 ≺ t2.

Note that even though we are interested in ordering the terms of a polynomial, we do
not care about the coefficients: only the underlying monomial is actually interesting. For
this reason, we do not distinguish between the concepts of monomial ordering and term
ordering. It is also for that reason that term orderings are independent of coefficient
field of the polynomial ring.

As a final remark, note that in the above examples, we implicitly assumed an order
on the variables: in lex, we assume that the exponent on x1 is more important than the
exponent of x2, that the exponent of x2 is more important than the exponent of x3 and
so on, forming a variable ordering x1 � x2 � . . . � xn. This seems natural, but as the
indexes of the variables are arbitrary, there is nothing stopping us from reordering the
priority of the variables.

Example 7. Let m1 = x21 and m2 = x1x
2
2. If we use lex and the regular variable ordering

x1 � x2, then the leading term is m1, as the exponent of x1 is higher in m1 than in m2.
But if we had instead used the variable ordering x2 � x1, the leading term would be
m2, as the exponent of x2 now has higher priority.

As long as we are consistent, we can pick not only the term ordering, but also the
variable ordering. Note though that it is not often changing the variable ordering is
useful, whereas different term orderings often make a huge difference. The variable
ordering used is often seen as a part of the term ordering, and if not mentioned is
assumed to be the regular x1 � x2 � . . . � xn.

2.2.4 Multivariate polynomial reductions

Having overcome the problem of leading terms, we can look back at multivariate poly-
nomial reduction. We would like to have some algorithm which, for polynomials f and
p gives us a polynomial r so that f = pq + r for some polynomial q, and so that r has
terms of as low degree as possible, similar to reduction in the univariate case. Unfor-
tunately it is not possible to find an algorithm which perfectly resembles the algorithm
for the univariate case, since the leading terms no longer are unique. However, if we fix
an ordering, we can create a similar algorithm where we reduce a polynomial f so as to
receive a polynomial r, where we attempt to lower the order of the terms in r as much
as possible.

The algorithm is as follows: Let f, p ∈ k[x1, x2, . . . , xn], and let � be an admissible
monomial ordering. Let the leading term, with respect to �, of p be lt(p) and let S
be the set of terms in f which are divisible by lt(p). If S is empty, then r = f (No
further reduction is possible). If S is not empty, then let t be the term in S of highest
order, with respect to �. Perform the reduction f1 = f − t

lt(p)p. Note that the term t

will be canceled out. Repeat the process with f1 and p for as long as possible, in each
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step either ending the algorithm, or creating a new polynomial fi by removing a term
divisible by lt(p).

Algorithm 1 Multivariate polynomial reduction

Input: Two polynomials f, p ∈ k[xx, x2, . . . , xn], p 6= 0, and one admissible polynomial
ordering �.

Output: f reduced with p.
r ← f
Let S be the set of terms in r divisible by lt(p)
while r 6= 0 and S 6= ∅ do
t← the element in S of highest order.
r = r − t

lt(p)p

Let S be the set of terms in r divisible by lt(p)
end while
return r

We can use reduction arrows, exactly like in the univariate case. The algorithm

then creates a chain of reductions f
p−→ f1

p−→ . . .
p−→ r. As we want to simplify the

calculations, we also make each fi monic.

Example 8. Let f = 2x21 + x1x2 + x2, and let p = x1 + x2. Using deglex, we have that
lt(p) = x1, so S = {2x21, x1x2}. The highest order element in S is 2x21, which is our t, so

f1 = f − t
lt(p)p = 2x21 +x1x2 +x2− 2x2

1

x1
(x1 +x2) = −x1x2 +x2. Making the polynomial

monic gives us f1 = x1x2 − x2.
The new S only contains −x1x2, so we get f2 = x1x2−x2−x2(x1 +x2) = −x22−x2,

and the corresponding monic polynomial is x22 + x2. This time we get that S is empty,
so the algorithm stops.

In the end, we have that 2x21 + x1x2 + x2 reduced with x1 + x2 is x22 + x2.

Note the strategy of the algorithm: it tries to find a removable term with as high
order as possible in f , and then reduce it in such a way that the term disappears. Other
terms may appear, but they are of lower order, so in total the algorithm have reduced
the order of the terms. We could conceivably reduce the polynomial in such a way that
terms in f divisible by non-leading terms in p disappear, but then we would most likely
add other terms of higher order.

We finally have a division algorithm for multivariate polynomials. As long as we have
some fix monomial ordering, this algorithm will be able to fully reduce one polynomial
with another, resulting in something similar to a remainder. Note though that this
remainder will not be unique: it will depend on the monomial ordering we decided upon.
However, luckily for us, there is one case where the remainder is definitely unique:

Lemma 2.9. Let f, p be two polynomials so that f = qp for some some polynomial q.
Then f reduced with p will always become zero, no matter which monomial ordering we
decide on.

Proof. The proof will be an induction proof over the number of terms in q.
Say that q consists of a single term t1, so f = t1p. Then lt(f) = lt(t1p) = t1lt(p), no

matter which ordering we use, so the initial reduction becomes f− t1lt(p)
lt(p) p = f−t1p = 0.

The algorithm will yield 0 as the remainder in this case.
Next, assume that f = qp implies that the algorithm will yield zero when q contains

k terms. What happens when q contains k + 1 terms?
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We have that q = lt(q) + t(q), where t(q) contains k terms. We also have lt(f) =
lt(lt(q)p+ t(q)p) = lt(lt(q)lt(p) + lt(q)t(p) + lt(p)t(q) + t(p)t(q)) = lt(q)lt(p), no matter
which ordering is used. The first reduction step in the algorithm then becomes f −
lt(q)lt(p)

lt(p) p = pq − lt(q)p = pt(q). The next step in the reduction chain is to reduce pt(q)

with p, but according to the induction assumption, this reduction will lead to zero.

The converse is also true: if we are reducing a polynomial f with p, and f is NOT a
multiple of p, then the end result will never be zero.

Having shown these properties of the multivariate remainder, we can use it for our
original problem: deciding ideal membership. If we wish to know if f ∈ k[x1, x2, . . . , xn]
belongs to an ideal generated by a single multivariate polynomial, I = 〈p〉,
p ∈ k[x1, x2, . . . , xn], we simply reduce f with p. If the end result is zero, p is in the
ideal, otherwise not.

We have almost solved the problem of deciding ideal membership completely, but
the most difficult step remains: what do we do if our ideal is generated by several
multivariate polynomials, I = 〈p1, p2, . . . pm〉, pi ∈ k[x1, x2, . . . , xn]? Once again, it is
tempting to generalize the method used in the univariate case, where we used the fact
that the ideal was also generated by the greatest common divisor of the pi. This was
true partly because greatest common divisors could be written as k[x]-combinations of
the original polynomials in the univariate case.

This is sadly not true for multivariate polynomials. For example, in Z2[x, y], the only
common divisor x and y has is 1, so that is also the greatest common divisor. But 1
can clearly not be written as any sort of combination of x and y, so 1 is not in the ideal
generated by x and y! We must find another method for determining ideal membership
when dealing with several multivariate polynomials. Perhaps we can expand our division
algorithm to somehow perform reductions with multiple polynomials?

So let us do that: say that we have a polynomial f and several polynomials
p1, p2, . . . , pm. We wish to find a polynomial r such that f = q1p1+q2p2+ . . .+qmpm+r
for some polynomials qi, so that the terms in r are of as low order as possible.

Let f, p1, . . . , pm ∈ R = k[x1, x2, . . . , xn], and let � be an admissible polynomial
ordering. Let Si be the set of terms in f which are divisible by lt(pi) for i = 1, . . . ,m. If
all the Si are empty, then r = f . Otherwise, let Sj be the non-empty set Si with lowest
index, and let t be the term in Sj of highest order. Finally, let f1 = f − (t/lt(pj))pj .
The term t will be canceled out. Repeat the process with f1 and the pi for as long as
possible, in each step either ending the algorithm, or removing a term divisible by any
of the lt(pi), giving higher priority to reducing with pi’s with lower index.

Some notation is in order: if r is the remainder when reducing f with p1, p2, . . . , pm,
then we say that rem(f, (p1, p2, . . . , pm)) = r, and in this paper, we will make r monic.
Note that rem(f, (p1, p2, . . . , pm)) implies an ordering on the pi - we call this the reduc-
tion ordering.

Example 9. Let f = x21x2, p1 = x1x2−x22, p2 = x21. Using deglex, what is rem(f, (p1, p2))?
We have that lt(p1) = x1x2, lt(p2) = x21, so S1 = S2 = {x21x2}. Then f1 = x21x2 −

x2
1x2

x1x2
(x1x2 − x22) = x1x

2
2. As this already is monic, we do not alter it.

Next we get S1 = {x1x22}, S2 = ∅, so f2 = x1x
2
2 −

x1x
2
2

x1x2
(x1x2 − x22) = x32, which

handily enough is monic. In the next step, we get that S1 = S2 = ∅, so we are done:
the remainder is x32.

Keep in mind that if f
p−→ r, then f is a R-combination of r and p, since f =

r + pq for some q. This can be expanded to several polynomials: we have that f is
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Algorithm 2 Polynomial reduction with several polynomials

Input: A polynomial f and a ordered set of polynomials pi in k[xx, x2, . . . , xn], pi 6= 0,
and one admissible polynomial ordering �.

Output: f reduced with the pi.
r ← f
m← the number of pi
while r 6= 0 do

for i = 1 to m do
let Si be the set of terms in r divisible by lt(pi)
if Si is non-empty then

let t be the element in S with highest order, remember i and break the for-loop.
end if

end for
if some Si was non-empty, the loop found a t then
r = r − t

lt(pi)
pi

else
all the Si were found empty, break the while-loop

end if
end while
return r

a R-combination of rem(f, (p1, p2, . . . , pm)) and the p1, p2, . . . , pm. This means that if
rem(f, (p1, p2, . . . , pm)) ∈ I and p1, p2, . . . , pm ∈ I, then f ∈ I as well.

Of particular interested is when the remainder is zero: for example if f
p−→ 0. That

means that f is simply a multiple of p, as discussed earlier. Similarly for multiple
polynomials: if rem(f, (p1, p2, . . . , pm)) = 0, then f is a R-combination of the pi, and
p1, p2, . . . , pm ∈ I implies f ∈ I.

Can this method be used to determine ideal membership then? Unfortunately, not
as it is. It actually turns out that the final remainder is not unique, but depends on
the chosen reduction ordering, or how we have ordered the pi in rem(f, (p1, p2, . . . , pm)).
Let’s try the above example again, but having ordered the pi differently. . .

Example 10. This time we calculate rem(f, (p2, p1)). Once again we have S2 = S1 =
{x21x2}. As we are using another reduction ordering, however, we get f1 = x21x2 −
x2
1x2

x2
1

(x21) = 0.

Note that the remainder became zero in this case: this means that f is a R-
combination of the pi, so f ∈ 〈p1, p2〉. But our first attempt yielded a non-zero re-
mainder! The reduction method can clearly give false negatives: we may get a non-zero
remainder, even if the polynomial actually is a R-combination of the divisors. It seems
we can not use this method to decide ideal membership.

Note there are two different orderings affecting the outcome of the reductions here -
first we have the monomial ordering (lex, deglex, degrevlex, etc.) which decides whether,
for example, x1x

2
2 � x21 or x1x

2
2 ≺ x21. When performing reductions, we usually have a

fix monomial ordering, set from the start. The second type of ordering we speak of is
the reduction ordering, how we have ordered the pi in rem(f, (p1, p2, . . . , pm)).
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2.2.5 Gröbner Bases

This is where Gröbner bases enter: A Gröbner basis G is a set of multivariate poly-
nomials generating an ideal I, with the incredibly convenient property that, for a fix
monomial ordering �, if we try to reduce a polynomial f with the polynomials in G, the
reduction ordering doesn’t matter: the final remainder only depends on the ideal itself,
not on how we’ve ordered the generators we represent it with. More importantly, if f
is part of the ideal generated by G, then this remainder will always be zero. Gröbner
bases, are, in a sense, multivariate generalizations of greatest common divisors.

Example 11. Let our ring be R = R[x1, x2], and let p1 = x1x2 + x1, p2 = x1x2 − x2,
f = x21 − x1x22 be elements in R[x1, x2], and form the ideal I = 〈p1, p2〉. Using lex, we
can calculate some remainders. For the sake of convenience, we simplify the notation by
using reduction arrows.

rem(f, (p1, p2)): x21 − x1x22
p1−→ x21 + x1x2

p1−→ x21 − x1

rem(f, (p2, p1)): x21 − x1x22
p2−→ x21 − x22

Note that the two remainders are different, and can not be reduced any further either
with p1 or p2. As we got non-zero remainders, we can not conclude whether or not f ∈ I.

Luckily, I can also be generated by the two polynomials p3 = x1 + x2, p4 = x22 + x2,
I = 〈p3, p4〉. This can easily be verified by checking that both p1 and p2 can be written
as R-combinations of p3 and p4, and vice versa. In our case, we have that p1 = (x2 +
1)p3 − p4, p2 = x2p3 − p4, p3 = p1 − p2, p4 = x2p1 + (−x2 − 1)p2.

And we are even so fortunate that {p3, p4} is a Gröbner basis: this time the reduc-
tions give us

rem(f, (p3, p4)): x21 − x1x22
p3−→ x21 + x32

p3−→ x1x2 − x32
p3−→ x32 + x22

p4−→ 0

rem(f, (p4, p3)): x21 − x1x22
p4−→ x21 + x1x2

p3−→ 0

Both reductions give the same remainder, regardless of how the pi are ordered. And
this remainder happens to be zero, so we can even say that f ∈ I. Had the remainder
been non-zero, we could with confidence have said that f /∈ I.

A more strict definition of Gröbner basis is:

Definition 2.10 (Gröbner basis). Let k[x1, . . . , xn] be a polynomial ring. If I is an ideal
of k[x1, . . . , xn], then we define l(I) to be the ideal generated by the leading monomials
of the elements in I: l(I) = 〈lm(f) : f ∈ I〉. A set G = {g1, g2, . . . , gn} generating I is
called a Gröbner basis for I if 〈lm(g1), lm(g2), . . . , lm(gn)〉 = l(I).

Proving that reduction with a a Gröbner basis yields a unique remainder is nontrivial,
and will not be done here [1]. All ideals have at least one Gröbner basis, and they can
be found using the Buchberger algorithm, described in Section 2.3.

A Gröbner basis G = {p1, p2, . . . , pm} is called reduced if no leading monomials
divide any monomial in any other pi, and if all leading coefficients are one. Also, a
Gröbner basis is called minimal if it no longer is a Gröbner basis for the same ideal
when removing any element from the basis. It turns out that reduced minimal Gröbner
bases are unique: for each ideal and monomial ordering, there is precisely one reduced
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minimal Gröbner basis. This uniqueness makes reduced minimal Gröbner bases very
useful, but as they are not necessary for this paper, they will not be discussed further.

Example 12. In example 11, we have that {x1+x2, x
2
2−x2} is actually a reduced minimal

Gröbner basis.

Since reducing a polynomial f with the polynomials in a Gröbner basis G gives a
unique remainder independent of how the elements in G are ordered, we can expand on
our previous notation: we say that rem(f,G) = r if r is the remainder when reducing f
with the elements in G, independent of how they are ordered. Since this r only depends
on I and f , we can call r the normal form of f with respect to I.

Example 13. Continuing example 11, the normal form of x21 − x1x2 with respect to
I = 〈x1x2 + x1, x1x2 − x2〉 is zero, as seen in Example 11. The normal form of x1x2
is x2, as can be seen through the following reduction chain, where we reduce with the

Gröbner basis: x1x2
p3−→ x1x2 − x2(x1 + x2) = x22

p4−→ x22 − (x22 + x2) = x2.

Having overcome the problem of non-unique remainders, we can use the reduction
technique to easily decide whether or not a polynomial f is in an ideal I: first find a
Gröbner basis G of I. If and only if rem(f,G) = 0 then p ∈ I.

Particularly interesting to us are Gröbner bases of ideals consisting of the whole
polynomial ring. First note that an ideal I ⊆ R = k[x1, x2, . . . , xn] consists of the entire
polynomial ring R if and only if 1 ∈ I: if the ideal contains every element, then surely
it contains 1. Similarly, if it contains 1, then it must also contain every other element
m ∈ R, since m = m · 1. If we know that G is a Gröbner basis to an ideal I which
consists of the entire ring, what does that tell us about G?

Theorem 2.11. Let G be a Gröbner basis of the ideal I ⊆ k[x1, x2, . . . , xn]. Then
I = k[x1, x2, . . . , xn] if an only if G contains the element 1.

Proof. Remember that 1 ∈ I means that rem(1, G) = 0, since G is a Gröbner basis.
Note that if we reduce 1 with a polynomial pi ∈ G, the result will either be 1 or 0, as
1 is the monomial of lowest term order. This means the reduction process must have

contained one reduction on the form 1
p−→ 0 for some polynomial p ∈ G. But in order for

the remainder to be 0, the leading term of p must divide 1. Since none of the variables
x1, x2, . . . , xn divides 1, the leading term of p may not contain any variables: the leading
monomial of p is 1. This in turn means that the leading term of p must be 1, as we only
consider monic polynomials. Since all other monomials have higher order than 1, p can
not contain any other terms: we must have that p = 1.

Conversely, if G contains 1, then clearly G generates the entire ring.

2.3 The Buchberger algorithm

The Buchberger algorithm is the algorithm used for finding a Gröbner basis for an ideal
I, if we know one set generating I. Before we can discuss the Buchberger algorithm, we
will need to introduce S-polynomials.

Definition 2.12 (S-polynomial). Given two polynomials pi and pj, we define the S-
polynomial of pi and pj, or Si,j, as

S1,2 =
lcm(lt(pi), lt(pj))

lt(pi)
pi −

lcm(lt(pi), lt(pj))

lt(pj)
pj (1)

where lcm(a, b) is the least common multiple of a, b.
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Note that Si,j is a R-combination of pi and pj , meaning that if pi and pj belong to
an ideal, then so does their S-polynomial.

And now, the Buchberger algorithm. We fix some admissible monomial ordering,
and start with a polynomial ideal I generated by the n polynomials in the set G =
(p1, p2, . . . , pn). Let L be the set of all the non-ordered integer pairs from 1 to n, not
including pairs of the same integer. Initially, we have

L = {(1, 2), (1, 3), . . . , (1, n− 1)(1, n), (2, 3), (2, 4), . . . , (n− 1, n)}

Remove an element (i, j) ∈ L, and calculate Si,j . Let ri,j be the remainder when
reducing Si,j with the elements of G, in any order. If ri,j = 0, do nothing. Otherwise, if
G contains m elements, let pm+1 = ri,j , add pm+1 to G, and add to L the integer pairs
(1,m+ 1), (2,m+ 1), . . . , (m,m+ 1).

Repeat the process as long as there are elements (i, j) ∈ L: calculate ri,j , and if it is
non-zero, add it to G and add all pairs containing it to L. When L is empty, G will be
a Gröbner basis for I.

Algorithm 3 The Buchberger algorithm

Input: A set G of polynomials pi generating the ideal I.
Output: A Gröbner basis G generating the ideal I.
n← the number of elements in G
Let L be an empty set
for i = 1 to n− 1 do

for j = i+ 1 to n do
Add (i, j) to L

end for
end for
while L is not empty do

Pick an element (a, b) from L
r ← rem(Sa,b, G) (Where the pi in G have some arbitrary ordering)
if r = 0 then

do nothing
else
pn+1 ← R
Add pn+1 to G
for i = 1 to n do

Add (i, n+ 1) to L
end for
n = n+ 1

end if
end while
return G

Proving that the result is a Gröbner basis is not simple and will not be done here
[1], but it is at least clear that the ideals generated are the same: we never remove
polynomials from G, and each ri,j ∈ I, Si,j ∈ I, since it is an S-polynomial reduced with
elements in I.

Example 14. Let p1 = x1x2 + x1, p2 = x1x2 − x2, let I = 〈p1, p2〉 ⊆ R[x1, x2]. Using lex
as our ordering, we can use the Buchberger algorithm to find a Gröbner basis for I.
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Initially we have G = {x1x2+x2, x1x2−x2}, L = {(1, 2)}, so we begin by calculating
S1,2.

S1,2 =
lcm(lt(p1), lt(p2))

lt(p1)
p1 −

lcm(lt(p1), lt(p2))

lt(p2)
p2 =

=
x1x2
x1x2

(x1x2 + x1)− x1x2
x1x2

(x1x2 − x2) = (x1x2 + x1)− (x1x2 − x2) =

=x1 + x2

We then calculate rem(S1,2, (p1, p2)), but as the leading terms of p1 and p2 does not
divide any of the terms in S1,2, we can immediately conclude that the remainder will
be S1,2 = x1 + x2 itself. As the remainder is nonzero, we let p3 = x1 + x2, and add
it to our basis. We also add (1, 3), (2, 3) to L, so we now have L = {(1, 3), (2, 3)},
G = {x1x2 + x1, x1x2 − x2, x1 + x2}

Next we pick (1, 3) from L, and calculate S1,3

S1,3 =
lcm(x1x2, x1)

x1x2
(x1x2 + x1)− lcm(x1x2, x1)

x1
(x1 + x2) =

=
x1x2
x1x2

(x1x2 + x1)− x1x2
x1

(x1 + x2) = (x1x2 + x1)− x2(x1 + x2) =

=x1 − x22

Then we calculate the remainder rem(S1,3, (p1, p2, p3)) = rem(x1−x22, (x1x2+x1, x1x2−
x2, x1 + x2)):

x1 − x22
p3−→ x1 − x22 − (x1 + x2) = −x22 − x2

The corresponding monic polynomial is x22 + x2, and as we once again receive a non-
zero remainder, we call it p4 and add it to G. Now add (1, 4), (2, 4), (3, 4) to L, so
L = {(2, 3), (1, 4), (2, 4), (3, 4)}, and G = {x1x2 + x1, x1x2 − x2, x1 + x2, x

2
2 + x2}

We next pick (2, 4) and calculate the S-polynomial.

S2,4 =
x1x

2
2

x1x2
(x1x2 − x2)− x1x

2
2

x22
(x22 + x2) = x2(x1x2 − x2)− x1(x22 + x2) =

=− x1x2 − x22

And the remainder, rem(−x1x2 − x22, (x1x2 + x1, x1x2 − x2, x1 + x2, x
2
2 + x2))...

− x1x2 − x22
p1−→ −x1x2 − x22 + (x1x2 + x1) =

=x1 − x22
p3−→ x1 − x22 − (x1 + x2) = x22 + x2

p4−→ −x22 − x2 + (x22 + x2) = 0

As the remainder becomes zero, we add nothing to either our basis, or to L.
Our next element from L is (2, 3). First the S-polynomial...

S2,3 =
x1x2
x1x2

(x1x2 − x2)− x1x2
x1

(x1 + x2) = (x1x2 − x2)− x2(x1 + x2) = −x22 − x2

And the remainder

−x22 − x2
p4−→ −x22 − x2 + (x22 + x2) = 0
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Once again we have a zero remainder, and once again we don’t have to alter L or G.
The next element we pick is (1, 4).

S1,4 =
x1x

2
2

x1x2
(x1x2 + x1)− x1x

2
2

x22
(x22 + x2) = x2(x1x2 + x1)− x1(x22 + x2) =

=0

and as the S-polynomial becomes zero, then so will the remainder, meaning we don’t
have to add anything here either.

The final element in L is (3, 4).

S3,4 =
x1x

2
2

x1
(x1 + x2)− x1x

2
2

x22
(x22 + x2) = x22(x1 + x2)− x1(x22 − x1x2 = x1x2 − x32

And the remainder becomes

x1x2 − x32
p1−→x1x2 − x32 − (x1x2 + x1) =

=x1 + x32
p3−→ x1 + x32 − (x1 + x2) =

=x32 − x2
p4−→ x32 − x2 − x2(x22 + x2) =

=x22 + x2
p4−→ x22 + x2 − (x22 + x2) = 0

As L is now empty, the Buchberger algorithm is now complete, and our final basis is
{x1x2 + x1, x1x2 − x2, x1 + x2, x

2
2 + x2}

Note that there is a large degree of freedom when implementing this algorithm: apart
from monomial ordering, we can pick the pairs of L in any order we like, and when
reducing Si,j we can pick the reduction order of the polynomials. This can be of great
help when trying to implement the algorithm as efficiently as possible. For example,
in Example 14, we calculated the remainder of S2,4 with respect to G. Here we had a
choice in ordering our basis: if we had calculated rem(S2,4, (p1, p2, p3, p4)), we would have

gotten the reduction chain x1x2 +x22
p1−→ x22−x1

p3−→ x22 +x2
p4−→ 0. We could also have

calculated rem(S2,4, (p2, p3, p4, p1)), and gotten the chain x1x2 + x22
p2−→ x22 + x2

p4−→ 0,
making the chain shorter. When dealing with larger cases, these types of reorderings
can be immense time savers [3].

Also note that the result from the Buchberger algorithm is not unique, it actually
depends on the various orderings we decide on. Finally, note that we never remove
polynomials from G, we only add them. We would have to be very lucky if we were to end
up with a reduced and minimal Gröbner basis. As we are not interested in reducing or
minimizing our bases, however, we will manage perfectly with the Buchberger algorithm
on its own.
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3 Boolean formulas and Z2-polynomials

3.1 From formula to polynomial

We initially set out to find a way of deciding whether it is possible to satisfy a boolean
formula. So far this problem seems largely untouched, as the tools we discussed in the
previous section mainly related to abstract algebra and polynomial rings. In this section
however, we will show how a boolean formula can be converted to a Z2-polynomial, while
preserving satisfiability as solvability. After that we will hopefully find our algebraic tools
more useful.

We will only discuss boolean formulas consisting of variables (x1, x2, . . . , xn), dis-
junctions (“or”-signs, ∨), conjunctions (“and”-signs, ∧) and negations (“not”-signs, ¬).
This is not a large restriction since all other boolean signs, such as implication (⇒) can
be rewritten using the allowed ones. A⇒ B is for example equivalent with ¬A ∨B.

First some notation: Given a boolean formula φ containing the boolean variables
ψ1, . . . , ψn, a variable assignment is a function v that for each variable assigns a
boolean value, v : {ψ1, . . . , ψn} → {>,⊥}. We can evaluate φ using v simply by replacing
each occurrence of ψi with v(ψi) in φ for each i. We write the evaluation of φ using v
as φ(v). Note the similarity with how polynomials are evaluated.

Starting with a boolean formula φ, we can recursively transform it into a Z2-polynomial
T (φ) using the following rules. Note here that ϕ denotes a boolean subformula.

• If φ consists of a single boolean variable, φ = ψi, then let T (φ) = xi.

• If φ consists of a negation, φ = ¬ϕ, then let T (φ) = T (ϕ) + 1.

• If φ consists of a conjunction, φ = ϕ1 ∧ ϕ2, then let T (φ) = T (ϕ1) + T (ϕ2) +
T (ϕ1)T (ϕ2).

• If φ consists of a disjunction, φ = ϕ1 ∨ ϕ2, then let T (φ) = T (ϕ1)T (ϕ2).

Example 15. Let φ = (ψ1 ∧ ¬ψ2) ∨ ¬ψ1. Then

T (φ) = (x1 + (x2 + 1) + x1(x2 + 1))(x1 + 1) = x1 + x2 + 1 + x21x2

Note that the final equality is due to the fact that we are in Z2.

This transformation was given in [2], and is a modification of the Stone transforma-
tion [5].

It is clear that the process will end and that the rules will produce a proper polyno-
mial in Z2[x1, x2, . . . , xn], where n is the number of variables in φ. We will now show that
the rules also preserve satisfiability as solvability: let’s assume we have a variable assign-
ment v which satisfies the boolean formula φ. If we let the boolean value > correspond to
the Z2-value 0 and ⊥ correspond to 1, we can create a point v′ = (a1, a2, . . . , an) ∈ Zn2 ,
so that the ai correspond to v(ψi).

Example 16. If v(ψ1) = >, v(ψ2) = ⊥, v(ψ3) = ⊥, then v′ = (0, 1, 1).

Theorem 3.1. For an arbitrary boolean formula φ and variable assignment v, we have
that v will satisfy φ if and only if v′ solves T (φ). This means that the transformation
perfectly preserves satisfiability as solvability.
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Proof. It is enough to show that φ(v) = > ⇔ T (φ)(v′) = 0, since this is equivalent to
φ(v) = ⊥ ⇔ T (φ)(v′) = 1.

We will now go through the recursion steps one by one, and, by an induction-like
reasoning, show that each transformation preserves solutions.

• The base case is that φ consists of a single variable ψi: if v(ψi) = >, then φ is
satisfied. Due to the correspondence, the i:th coordinate in v′ is then zero, and so
v′ solves the corresponding polynomial T (φ) = xi. The same reasoning can be used
to show the other direction of the implication. Hence v satisfying φ corresponds
precisely with v′ solving T (φ).

• Negation: Assume that v satisfies ϕ precisely when v′ solves the polynomial T (ϕ)
(so ϕ(v) = > ⇔ T (ϕ)(v′) = 0), and let φ = ¬ϕ, so T (φ) = T (ϕ) + 1.

Assume that T (φ)(v′) = 0, so T (ϕ)(v′) = 1. Since v′ does not solve T (ϕ), we
have ϕ(v) = ⊥ according to the induction assumption. This gives us that φ(v) =
¬ϕ(v) = >, and so φ is satisfied when T (φ) is solved.

For proving the other direction of the equivalence, we do the same: Assuming that
φ(v) = > will similarly show us that T (φ)(v′) = 0. In total we have that if ϕ(v) =
> precisely when T (ϕ)(v′) = 0, then ¬ϕ(v) = > precisely when T (¬ϕ)(v′) = 0.

• Conjunction: assume that ϕi(v) = > ⇔ T (ϕi)(v
′) = 0 for i = 1, 2 and let φ =

ϕ1 ∧ ϕ2. This means that T (φ) = T (ϕ1) + T (ϕ2) + T (ϕ1)T (ϕ2).

Assume that T (φ)(v′) = 0. As we are in Z2, this is only possible if T (ϕ1)(v′) =
T (ϕ2)(v′) = 0, since if either or both of them are 1, then T (φ) would be 1 as
well. According to the induction assumption, we then have ϕ1(v) = ϕ2(v) = >,
implying that φ(v) = ϕ1 ∧ ϕ2 = > as well. We have that T (ϕ1 ∧ ϕ2)(v′) = 0 ⇒
(ϕ1 ∧ ϕ2)(v) = >.

Conversely, assume that φ(v) = >. This must mean that ϕ1(v) = ϕ2(v) = > too,
and so according to the induction assumption T (ϕ1)(v′) = T (ϕ2)(v′) = 0. This
in turn implies that T (φ)(v′) = T (ϕ1)(v′) + T (ϕ2)(v′) + T (ϕ1)(v′)T (ϕ2)(v′) =
0 + 0 + 0 = 0, so φ(v) = > ⇒ T (φ)(v′) = 0. In total, we have that if ϕi(v) = > ⇔
T (ϕi)(v

′) = 0 for i = 1, 2, then (ϕ1 ∧ ϕ2)(v) = > ⇔ T (ϕ1 ∧ ϕ2)(v′) = 0

• Disjunction: once again assume that ϕi(v) = > ⇔ T (ϕi)(v
′) = 0 for i = 1, 2,

and let φ = ϕ1 ∨ ϕ2. Then T (φ)(v) = T (ϕ1)(v′)T (ϕ2)(v′) = 0 implies either
T (ϕ1)(v′) = 0, T (ϕ2)(v′) = 0, or both. According to the assumption, this implies
either ϕ1(v) = >, ϕ2(v) = > or both. In all three cases, we end up with φ(v) =
ϕ1(v) ∨ ϕ2(v) = >. We have that T (ϕ1 ∨ ϕ2)(v′) = 0⇒ (ϕ1 ∨ ϕ2)(v′) = >.

Conversely, assume that φ(v) = (ϕ1 ∧ ϕ2)(v) = >. We will by the same reasoning
arrive at the conclusion that φ(v) = > ⇒ T (φ)(v′) = 0, and in total ϕi(v) = > ⇔
T (ϕi)(v

′) = 0 for i = 1, 2 implies T (ϕ1 ∨ ϕ2)(v′) = 0⇔ (ϕ1 ∨ ϕ2)(v′) = >

We have now shown that the transformation perfectly preserves satisfiability as solv-
ability: If and only if there exists a variable assignment v so that φ(v) = >, then there
is a point v′ so that T (φ)(v′) = 0. We are finally ready to discuss our original problem:

Problem (SAT). Given a boolean formula φ, is there any variable assignment v so that
φ(v) = >? In other words, is φ satisfiable?
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We know that for every boolean formula φ, there exists a polynomial
T (φ) ∈ Z2[x1, x2, . . . , xn]. We also know that if, and only if, φ is satisfiable, then there
exists a point v′ ∈ Zn2 so that T (φ)(v′) = 0. The SAT-problem can hence be reformulated
as:

Problem (Z2-polynomial solvability problem). Given a polynomial p ∈ Z2[x1, x2, . . . , xn],
are there any points in Zn2 which solves p?

If we can answer the Z2-polynomial solvability problem, then we can easily answer
the SAT-problem: Convert φ to the polynomial T (φ), and insert that into the Z2-
polynomial solvability problem. The resulting answer will be the same as the answer to
the SAT-problem.

We can reformulate the problem once more using ideals: let I = 〈p〉 be an ideal.
We then know from Theorem 2.2 that VZ2

(I) contains precisely the solutions to p with
coordinates in Z2. If VZ2

(I) is empty, then p is unsolvable, and φ is unsatisfiable. We
have arrived at the next evolution of our problem:

Problem (Z2-variety problem). Given an ideal I = 〈p〉, I ⊆ Z2[x1, x2, . . . , xn], is VZ2
(I)

non-empty?

We can generalize our results slightly - imagine that we had several boolean formulas
ϕ1, ϕ2, . . . , ϕm, and we wanted to find out if it was possible to satisfy them all at once
using the same variable assignment. This is equivalent to finding a solution to the
equation system T (ϕ1) = T (ϕ2) = . . . = T (ϕm) = 0. Luckily, the ideal and variety
approach still work. We can solve the problem of satisfying several boolean formulas by
solving the generalized Z2-variety problem:

Problem (Generalized Z2-variety problem). Given an ideal I = 〈p1, p2, . . . , pm〉, I ⊆
Z2[x1, x2, . . . , xn], is VZ2

(I) non-empty?

3.2 Field equations

Let f = xp − x ∈ Zp[x], where p is a prime. Is f solvable? We can easily answer this
using Fermat’s little theorem:

Theorem 3.2 (Fermat’s little theorem). If p is a prime and a is an arbitrary integer,
then ap ≡ a mod p.

Fermat’s little theorem is well known and a proof can be found in, for example, [14].

Theorem 3.3. Let f = xp − x ∈ Zp[x], where p is a prime. Then f is solved by the
elements in Zp. No other solutions exist, even in the algebraic closure.

Proof. Let a be an arbitrary element in Zp. According to Fermat’s little theorem,
ap − a ≡ 0 mod p. This means that a solves f . Note that the degree of f is p, so f has
at most p solutions. Since Zp contains p elements, no other solutions can exist.

Our polynomial xp − x is a so called field equation, named so since its solutions
are the elements of the field Zp. The situation can be generalized to several variables:

Definition 3.4 (Field equations). The field equations of a polynomial ring
Zp[x1, x2, . . . , xn] are the polynomials

xp1 − x1, x
p
2 − x2, . . . , xpn − xn
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Theorem 3.5. Let R = Zp[x1, x2, . . . , xn]. The field equations of R are solved by the
points in Znp . No other solutions exists.

Proof. Say that we have a point a = (b1, b2, . . . , bn) which solves the field equations.
As a solves, for example, xp1 − x1, we must have that b1 solves the polynomial f from
Theorem 3.3, meaning that b1 must be an element of Zp. As b1 doesn’t appear in the
other equations, this is the only restriction. The same reasoning can be applied to the
other field equations, eventually giving us that they are solved when all bi ∈ Zp. In
other words, the field equations are solved by, and only by, the elements of Znp .

Note that when we are in Z2, the field equations are x2i − xi, which can also be
written as x2i + xi. In order to reduce clutter, we will use the latter version.

Instead of viewing the field equations as a system of equations, we can look at the
ideal generated by them: 〈xp1 − x1, x

p
2 − x2, . . . , xpn − xn〉.

Theorem 3.6. Let R = Zp[x1, x2, . . . , xn] be a polynomial ring. The ideal J = 〈xp1 −
x1, x

p
2−x2, . . . , xpn−xn〉, generated by the field equations of R, has the variety V (J) = Znp .

Proof. Recall from Theorem 2.2 that the variety of an ideal consists of the solutions to
its generators. Theorem 3.5 says that the solutions of the field equations are precisely
the points in Znp .

These results may seem trivial, but turn out to be very useful: say that we have a
set of polynomials S ⊆ Zp[x1, x2, . . . , xn], and that we are interested in finding out if
the polynomials in S have any solutions with coordinates in Zp.

Since an ideal is solved by the solutions to its generators, one approach would be
to let I be the ideal generated by the polynomials in S: I = 〈p1, . . . , pm〉. Then check
if VZp

(I) was empty, that is, if the variety over Znp was empty: if it is, there are no
solutions with coordinates in Zp. But since Zp is not algebraically closed, this is not
easily done.

It would be far easier to find whether the entire variety V (I) was empty: Hilbert’s
Nullstellensatz, Theorem 2.4 gives us one way, check if 1 is in the ideal or not. But that
variety may contain points with coordinates in the algebraic closure, outside Zp, which
we are not interested in.

However, the field equations give us a third option. Let J = 〈xp1−x1, x
p
2−x2, . . . , xpn−

xn〉 be the ideal generated by the field equations of Zp[x1, x2, . . . , xn]. Let us examine
V (I + J).

Theorem 3.7. Let I be an ideal in Zp[x1, x2, . . . , xn], and let J be the ideal generated
by the field equations, J = 〈xp1 − x1, x

p
2 − x2, . . . , xpn − xn〉. Then V (I + J) = VZp(I).

Proof. According to Theorem 2.3, V (A+B) = V (A)∩ V (B) for arbitrary ideals A and
B. This means that V (I + J) = V (I) ∩ V (J) = V (I) ∩ Znp , so V (I + J) contains those
points in Znp which solve the polynomials in I. This means V (I + J) = VZp

(I).

We have that V (I + J) contains the solutions of I which have coordinates in Zp,
even though we consider the whole variety! By adding the field equations to the ideal,
we can, so to speak, force the variety to only contain solutions with coordinates in Zp.
Undoubtedly, this will prove useful.
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3.3 Tying it all together

We are now ready to prove the following theorem:

Theorem 3.8 (Masterpiece Theorem). Let I ⊆ Zp[x1, x2, . . . , xn] be an arbitrary poly-
nomial ideal, let J be the ideal generated by the field equations, J = 〈xp1 − x1, x

p
2 −

x2, . . . , x
p
n − xn〉 and let G be a Gröbner basis of I + J . Then VZp

(I) will be empty if
and only if 1 ∈ G.

Proof. Recall from Theorem 3.7 that VZp(I) = V (I + J). According to Hilbert’s Null-
stellensatz, Theorem 2.4, V (I + J) is empty if and only if I + J = Zp[x1, x2, . . . , xn], or
equivalently, if 1 ∈ I + J . This, in turn, is equivalent to G containing 1, according to
Theorem 2.11.

We had previously reformulated the SAT-problem to this, seemingly more compli-
cated, problem...

Problem. Given an arbitrary ideal I = 〈p1, p2, . . . , pm〉 ⊆ Z2[x1, x2, . . . , xn], is VZ2
(I)

non-empty?

Using the Masterpiece Theorem, we know this is equivalent to asking...

Problem. Given an arbitrary polynomial ideal I = 〈p1, p2, . . . , pm〉, I ⊆ Z2[x1, x2, . . . , xn],
let J be the ideal generated by the field equations, J = 〈x21 + x1, x

2
2 + x2, . . . , x

2
n + xn〉,

and let G be a Gröbner basis to I + J . Is 1 ∈ G?

We have finally reached a problem we can solve. Calculating a Gröbner basis G to
〈x21+x1, x

2
2+x2, . . . , x

2
n+xn, p1, p2, . . . , pm〉 using the Buchberger algorithm is easy, and

we can return false immediately if the algorithm finds 1. If the algorithm stops without
finding 1, we return true. This is our algebraic approach for solving the SAT-problem.

3.3.1 The Basic Algorithm

Let’s recap the whole solution process: We started with the, seemingly simple, SAT-
problem:

Given a boolean formula φ, is φ satisfiable?
And we solve this by...

Algorithm 4 The Basic Algorithm

Input: A boolean formula φ
Output: True if φ is satisfiable, false otherwise

Using the steps found in Section 3.1, transform φ to the polynomial T (φ) ∈
Z2[x1, x2, . . . , xn], where n is the number of variables in φ.
Let I = 〈x21+x1, x

2
2+x2, . . . , x

2
n+xn, T (φ)〉. Using the Buchberger algorithm, calculate

a Gröbner basis G of I.
if 1 ∈ G then

return false
else

return true
end if

If we have several boolean formulas ϕ1, ϕ2, . . . , ϕm, let I be the ideal generated by
all corresponding polynomials T (ϕ1), T (ϕ2), . . . , T (ϕm) and the field equations. In fact,
in most cases this is the preferred approach - see Section 4.4 for more information.
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Example 17. Say that we had a boolean formula φ = ψ1∧¬ψ2∧¬(ψ1∨¬ψ2), and wanted
to know if φ is satisfiable.

We begin by recursively transforming the formula to a polynomial:

T(φ) =T(ψ1 ∧ ¬ψ2 ∧ ¬(ψ1 ∨ ¬ψ2)) =

=T(ψ1 ∧ ¬ψ2) + T(¬(ψ1 ∨ ¬ψ2)) + T(ψ1 ∧ ¬ψ2)T(¬(ψ1 ∨ ¬ψ2))

As intermediate steps, we calculate

T(ψ1 ∧ ¬ψ2) =T(ψ1) + T(¬ψ2) + T(ψ1)T(¬ψ2) =

=x1 + (T(ψ2) + 1) + x1(T(ψ2) + 1) = x1 + x2 + 1 + x1(x2 + 1) =

=x1 + x2 + 1 + x1x2 + x1 = x1x2 + x2 + 1

We also calculate

T(¬(ψ1 ∨ ¬ψ2)) =1 + T(ψ1 ∨ ¬ψ2) = 1 + T(ψ1)T(¬ψ2) =

=1 + x1(1 + T(ψ2)) = 1 + x1(1 + x2) = x1x2 + x1 + 1

Finally, we put them back in the original calculation:

T(φ) =T(ψ1 ∧ ¬ψ2) + T(¬(ψ1 ∨ ¬ψ2)) + T(ψ1 ∧ ¬ψ2)T(¬(ψ1 ∨ ¬ψ2)) =

=(x1x2 + x2 + 1) + (x1x2 + x1 + 1) + (x1x2 + x2 + 1)(x1x2 + x1 + 1) =

=x1x2 + x2 + 1 + x1x2 + x1 + 1+

+ x21x
2
2 + x21x2 + x1x2 + x1x

2
2 + x1x2 + x2 + x1x2 + x1 + 1 =

=x21x
2
2 + x21x2 + x1x

2
2 + x1x2 + 1

So the polynomial corresponding to φ is x21x
2
2 + x21x2 + x1x

2
2 + x1x2 + 1. We call this

polynomial p3. If, and only if, φ is satisfiable, then there is a solution to p3 in Zn2 .
The field equations corresponding to our ring are p1 = x21+x1 and p2 = x22+x2. Now

we take a look at the ideal I = 〈x21+x1, x
2
2+x2, x

2
1x

2
2+x21x2+x1x

2
2+x1x2+1〉 ⊆ Z2[x1, x2].

We initialize the Buchberger algorithm, by creating the sets G = {x21+x1, x
2
2+x2, x

2
1x

2
2+

x21x2 + x1x
2
2 + x1x2 + 1}, L = {(1, 2), (1, 3), (2, 3)}. We also decide to use deglex as our

ordering. We choose the pair (1, 3) at first, and calculate the S-polynomial...

S1,3 =
x21x

2
2

x21
(x21 + x1)− x21x

2
2

x21x
2
2

(x21x
2
2 + x21x2 + x1x

2
2 + x1x2 + 1) =

=x21x
2
2 + x1x

2
2 + x21x

2
2 + x21x2 + x1x

2
2 + x1x2 + 1 = x21x2 + x1x2 + 1

Calculating the remainder rem(S1,3, (p1, p2, p3)) is the next step...

x21x2 + x1x2 + 1
p1−→ x21x2 + x1x2 + 1− x2(x21 + x1) = 1

As this is a non-zero element, we add it to G. But then we can immediately conclude
that 1 will be an element in the basis. This in turn means that the V (I) = ∅, and that
φ is unsatisfiable.

Example 18. Let φ = ¬(ψ1 ∧ ψ2) ∧ (ψ1 ∨ (¬ψ1 ∧ ¬ψ2))
First we transform the formula into a polynomial...

T(φ) = T(¬(ψ1 ∧ ψ2) ∧ (ψ1 ∨ (¬ψ1 ∧ ¬ψ2)))

= T(¬(ψ1 ∧ ψ2)) + T(ψ1 ∨ (¬ψ1 ∧ ¬ψ2)) + T(¬(ψ1 ∧ ψ2))T(ψ1 ∨ (¬ψ1 ∧ ¬ψ2))
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We calculate the intermediate expressions one at the time...

T(¬(ψ1 ∧ ψ2)) = (1 + T(ψ1 ∧ ψ2)) = (1 + (T(ψ1) + T(ψ2) + T(ψ1)T(ψ2) =

= (1 + x1 + x2 + x1x2)

T(ψ1 ∨ (¬ψ1 ∧ ¬ψ2)) = T(ψ1)T(¬ψ1 ∧ ¬ψ2) =

= x1(T(¬ψ1) + T(¬ψ2) + T(¬ψ1)T(¬ψ2)) =

= x1((1 + T(ψ1)) + (1 + T(ψ2)) + (1 + T(ψ1))(1 + T(ψ2))) =

= x1((1 + x1) + (1 + x2) + (1 + x1)(1 + x2)) =

= x1(1 + x1 + 1 + x2 + 1 + x1 + x2 + x1x2) =

= x1(1 + x1x2) = x1 + x21x2

Putting these back into the original formula, we get

T(φ) =T(¬(ψ1 ∧ ψ2)) + T(ψ1 ∨ (¬ψ1 ∧ ¬ψ2)) + T(¬(ψ1 ∧ ψ2))T(ψ1 ∨ (¬ψ1 ∧ ¬ψ2)) =

=(1 + x1 + x2 + x1x2) + (x1 + x21x2) + (1 + x1 + x2 + x1x2)(x1 + x21x2) =

=1 + x1 + x2 + x1x2 + x1 + x21x2+

+ x1 + x21x2 + x21 + x31x2 + x1x2 + x21x
2
2 + x21x2 + x31x

2
2 =

=1 + x2 + x1 + x21 + x31x2 + x21x
2
2 + x21x2 + x31x

2
2

This is our corresponding polynomial. Now it’s time for to calculate a Gröbner basis for
the ideal generated by this polynomial and the field equations. We decide to use deglex
as our monomial ordering, and define our generators as p1 = x21 + x1, p2 = x22 + x2, and
let p3 = T(φ) = x31x

2
2 + x31x2 + x21x

2
2 + x21x2 + x21 + x1 + x2 + 1. Initially we have that

G = {p1, p2, p3}, and L = {(1, 2), (1, 3), (2, 3)}.
We decide to pick (1, 2) from L first, and calculate the S-polynomial. . .

S1,2 =
lcm(x21, x

2
2)

x21
(x21 + x1)− lcm(x21, x

2
2)

x22
(x22 + x2) =

= x22(x21 + x1)− x21(x22 + x2) = x21x2 + x1x
2
2

We then reduce the polynomial with the polynomials in G. Keep in mind that we can
order the polynomials in G however we like.

rem(x21x2 − x1x22, (p1, p2, p3)) :

x21x2 + x1x
2
2

p1−→ x21x2 + x1x
2
2 − x2(x21 + x1) =

=x1x
2
2 + x1x2

p2−→ x1x
2
2 + x1x2 − x1(x22 + x2) = 0

The reduction ends as zero, so we do not alter G or L.
Next we pick the element (1, 3) from L. The S-polynomial becomes...

S1,3 =
lcm(x21, x

3
1x

2
2)

x21
(x21 + x1)−

lcm(x21, x
3
1x

2
2)

x31x
2
2

(x31x
2
2 + x31x2 + x21x

2
2 + x21x2 + x21 + x1 + x2 + 1) =

=x1x
2
2(x21 + x1)− (x31x

2
2 + x31x2 + x21x

2
2 + x21x2 + x21 + x1 + x2 + 1) =

=x31x2 + x21x2 + x1 + x2 + 1
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...and the reduction gives us...

rem(x31x2 + x21x2 + x21 + x1 + x2 + 1, (p1, p2, p3)) :

x31x2 + x21x2 + x21 + x1 + x2 + 1
p1−→

x31x2 + x21x2 + x21 + x1 + x2 + 1− x1x2(x21 + x1) =

=x21x2 + x21x2 + x21 + x1 + x2 + 1 = x21 + x1 + x2 + 1
p1−→ x2 + 1

As this polynomial is nonzero, we call it p4 and add it to G, and add the pairs
(1, 4), (2, 4), (3, 4) to L. We currently have G = {x21 + x1, x

2
2 + x2, x

3
1x

2
2 + x31x2 + x21x

2
2 +

x21x2 + x1 + x2 + 1, x2 + 1}, L = {(2, 3), (1, 4), (2, 4), (3, 4)}.

We pick another element from L, taking (2, 3) this time. . .

S2,3 =
lcm(x22, x

3
1x

2
2)

x22
(x22 + x2)−

lcm(x22, x
3
1x

2
2)

x31x
2
2

(x31x
2
2 + x31x2 + x21x

2
2 + x21x2 + x21 + x1 + x2 + 1) =

=x31(x22 + x2)− (x31x
2
2 + x31x2 + x21x

2
2 + x21x2 + x21 + x1 + x2 + 1) =

=x21x
2
2 + x21x2 + x21 + x1 + x2 + 1

The next step is to reduce the S-polynomial. Here we use the opportunity to pick the
reduction order ourselves, and use (p2, p1, p3, p4) in order to gain a shorter chain.

rem(x21x
2
2 + x21x2 + x1 + x2 + 1, (p2, p1, p3, p4)) :

=x21x
2
2 + x21x2 + x1 + x2 + 1

p2−→ x21x
2
2 + x21x2 + x1 + x2 + 1− x21(x22 − x2) =

=x1 + x2 + 1
p4−→ 0

The polynomial is reduced to zero, so we do nothing with it. Instead we pick another
element from L, choosing (3, 4). . .

S3,4 =
x31x

2
2, x1

x31x
2
2

(x31x
2
2 + x31x2 + x21x

2
2 + x21x2 + x1 + x2 + 1)− x31x

2
2, x1
x1

(x1 + x2 + 1) =

= (x31x
2
2 + x31x2 + x21x

2
2 + x21x2 + x1 + x2 + 1)− x21x22(x1 + x2 + 1) =

= x31x2 + x21x
2
2 + x21x2 + x1 + x2 + 1− x21x32 − x21x22 =

= x31x2 + x21x2 + x1 + x2 + 1 + x21x
3
2
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. . . and then we reduce it, in the order (p1, p4, p2, p3). . .

rem(x21x
3
2 + x31x2 + x21x2 + x1 + x2 + 1, (p1, p4, p2, p3)) :

x21x
3
2 + x31x2 + x21x2 + x1 + x2 + 1

p1−→
x21x

3
2 + x31x2 + x21x2 + x1 + x2 + 1− x32(x21 − x1) =

=x31x2 + x1x
3
2 + x21x2 + x1 + x2 + 1

p1−→
x31x2 + x1x

3
2 + x21x2 + x1 + x2 + 1− x1x2(x21 − x1) =

=x1x
3
2 + x1 + x2 + 1

p4−→
x1x

3
2 + x1 + x2 + 1− x32(x1 + x2 + 1) =

=x42 + x32 + x1 + x2 + 1
p4−→

x42 + x32 + x1 + x2 + 1− (x1 + x2 + x1) =

=x42 + x32
p2−→ x42 + x32 + x22(x22 − x2) = 0

Another reduction ending in zero, so, we don’t have to do anything with this one.
The remaining elements in L are (1, 4) and (2, 4). We choose to take (1, 4) first. . .

S1,4 =
lcm(x21, x1)

x21
(x21 − x1)− lcm(x21, x1)

x1
(x1 + x2 + 1) =

= (x21 − x1)− x1(x1 + x2 + 1) = x1x2

. . . and reduce it. . .

rem(x1x2, (p1, p2, p3, p4)) :

x1x2
p4−→ x1x2 − x2(x1 + x2 + 1) =

=x22 + x2
p2−→ 0

And finally, we pick the element (2, 4) and get...

S2,4 =
lcm(x22, x1)

x22
(x22 − x2)− lcm(x22, x1)

x1
(x1 + x2 + 1) =

= x1(x22 − x2)− x22(x1 + x2 + 1) = x32 + x1x2 + x22

. . . and reduce it. . .

rem(x32 + x1x2 + x22, (p1, p2, p3, p4)) :

x32 + x1x2 + x22
p2−→ x32 + x1x2 + x22 − x2(x22 − x2) =

x1x2
p4−→ x1x2 − x2(x1 + x2 + 1) =

=x22 + x2
p2−→ 0

The reduction once again ends in zero, so we don’t have to do anything with this element
as well. Now L is finally empty, so the Buchberger algorithm is finished. We ended up
with the Gröbner basis G = {x21 − x1, x22 − x2, x31x22 + x31x2 + x21x

2
2 + x21x2 + x1 + x2 +

1, x1 + x2 + 1}. Since 1 /∈ G, we can happily draw the conclusion that φ is, in fact,
satisfiable.

We now have a working algorithm, but it is a very time consuming algorithm. Let’s
see if we can’t improve it somewhat...
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4 Technical discussion

We will now present some technical considerations for anyone interested in implementing
this idea.

4.1 Internal Reduction

Remember that ideals can, in general, be generated in more than one way. In other
words, if we have an ideal I = 〈p1, . . . , pk〉, we may be able to find a different way
of representing the same ideal, I = 〈p′1, . . . , p′l〉. The speed of Buchberger algorithm
obviously depends heavily on which generators we use to represent the ideal: finding a
Gröbner basis for an ideal represented by many large polynomials will, in general, take
longer time than finding a basis for an ideal represented by fewer smaller polynomials.
For an arbitrary set of polynomials generating an ideal, is there an easy way of finding
a simpler set generating the same ideal?

Yes there is. Say that we start with the ideal I = 〈p1, p2〉, and that lm(p2)|lm(p1).
We can also, without loss of generality, assume that p1, p2 are monic. If we performed

the Buchberger algorithm at once, we would first calculate S1,2 = lt(p1)
lt(p1)

p1 − lt(p1)
lt(p2)

p2 =

p1 − lt(p1)
lt(p2)

p2. But that polynomial is simply p1 with the highest term reduced by p2.

The next step of the algorithm is to reduce p1 − lt(p1)
lt(p2)

p2 further, but since it can not be

reduced with p1 (The leading term of p1 has been removed already), our only choice is
to reduce it more with p2. The end result is simply rem(p1, (p2)), which we denote p′1,
and if it is non-zero, we add it to our basis, G = {p1, p2, p′1}.

But notice that p1 = p′1 + qp2, for some polynomial q, meaning that p1 is no longer
necessary to generate our ideal. We can initially represent our ideal as either 〈p1, p2〉 or
as 〈p′1, p2〉: both ways give the same ideal. The difference is that if we had chosen the
first way, the next step would have been to immediately add p′1 anyway. By replacing
p1 with p′1 in our initial representation, we will save ourselves one polynomial, making
our basis smaller.

If lm(p2) - lm(p1), then rem(p1, (p2)) is not necessarily the reduced S-polynomial,
but it can still be used to generate the ideal, so replacing p1 with p′1 would not have
affected our representation in this case either. In fact, since reductions tend to make our
polynomials ”smaller”3, reductions like these are usually still helpful. We can always
safely, and most of the time usefully, attempt to reduce p1 with the other polynomials
in the basis.

In fact, if we had had started with several generators, I = 〈p1, p2, . . . , pm〉, then we
could have started with reducing p1 with all the other polynomials in the basis, yield-
ing the new representation I = 〈p′1, p2, . . . , pm〉, where p′1 = rem(p1, (p2, p3, . . . , pm))4.
Having found this new representation, we can simplify it further, by reducing p2 by
(p′1, p3, . . . , pm). We can continue this form of reductions all the way up to pm, obtain-
ing the representation I = 〈p′1, p′2, . . . , p′m〉. If at any point a polynomial is reduced to
zero, then it can simply be removed from the representation.

And why stop there? If possible, restart the process by reducing p′1 with the other
p′i, and so on. When no more reductions can be made, that is, when a representation
I = 〈p1, p2, . . . , pm〉 has been reached such that rem(pi, (p1, . . . , pi−1, pi+1, . . . , pm)) = pi
for all 1 ≤ i ≤ m, then and only then do we stop. The ideal should be the same, but

3Fewer terms of smaller degree, though this depends on the monomial ordering.
4We can, of course, choose to order the polynomials p2, p3, . . . , pm in any way we like
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the representation will yield a lower number of elements in the final basis, making the
algorithm significantly faster.

The process of reducing each pi ∈ G until no further reductions are possible is called
internal reduction, and is incredibly useful. There are even ways of implementing
the Buchberger algorithm by applying internal reduction to G after adding reduced S-
polynomials to it, as described in [3], though we will not discuss that method in this
paper.

4.2 Field equations in Z2

The large freedom given to us by the Buchberger algorithm and the fact that we are
working with a Z2-polynomial ideal containing the field equations means we can take
many shortcuts.

4.2.1 Ideal generation

Before we perform internal reduction, we can simplify the representation of our ideal in
another way.

Lemma 4.1. Let I be an arbitrary ideal in Z2[x1, x2, . . . , xn] containing the field equa-
tion x2i + xi, let f1 be an arbitrary polynomial, f1 = m1 + m2 + . . . + ml, and let mk

be an arbitrary monomial in f1 divisible by xi, so mk = m̃kx
β
i , β > 1, xi - m̃k for some

monomial m̃k. That is, f1 = m1 +m2 + . . .+ m̃kx
β
i + . . .+ml.

Let f2 be the same polynomial as f1, but with the exponent of xi in mk reduced to
one, so f2 = m1 +m2 + . . .+ m̃kxi + . . .+ml. Then p1 ∈ I ⇔ p2 ∈ I.

Proof. If β = 1, then the result is true. If β > 2, then since the field equation x2i + xi
is in I, we have that m̃kx

β−2
i (x2i + xi) + f1 = m1 + m2 + . . . + m̃kx

β
i + m̃kx

β−2+2
i +

m̃kx
β−2+1
i + . . .+ml = m1 +m2 + . . .+ m̃kx

β−1
i + . . .+ml ∈ I. We have managed to

lower the exponent by one. The process can be repeated with the new polynomial until
the exponent becomes one, so f2 ∈ I.

The same reasoning backwards can be used to show f2 ∈ I ⇒ f1 ∈ I.

Repeated application of the above lemma gives us the next theorem:

Theorem 4.2. Let I be an arbitrary ideal in Z2[x1, x2, . . . , xn] containing the field
equations, x21 + x1, x

2
2 + x2, . . . , x

2
n + xn ∈ I, and let f1 be an arbitrary polynomial,

f1 = m1 +m2 + . . .+ml, where mi = x
βi,1
αi,1x

βi,2
αi,2 . . . x

βi,ki
αi,ki

, βi,j > 1. Let the polynomial f2
be the same polynomial with all exponents reduced to one, so f2 = m̃1 + m̃2 + . . .+ m̃l,
where m̃i = xαi,1

xαi,2
. . . xαi,ki

. Then f1 ∈ I ⇔ f2 ∈ I.

Example 19. Say that we have an ideal I ⊆ Z2[x1, x2, . . . , xn] containing the field
equations, and we knew that x21x2 + x32 + x43 + 1 is in I. Then we can also say that
x1x2 + x2 + x3 + 1 is in I, as well as x501 x

50
2 + x502 + x503 + 1.

Another more subtle example: say that 1 + x1 + x21 + x31 + x41 is in I. Then we get
that 1 + x1 + x1 + x1 + x1 is in I, but since we are in Z2, the x1-variables will cancel
each other out. This means we can draw the conclusion that 1 ∈ I.

In other words, in a Z2-polynomial ideal I containing the field equations, a monomial
is, more or less, defined only by the variables it contains. The exponents are practically
irrelevant. Instead of working with a polynomial p, we can work with the, for all intents
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and purposes, equivalent polynomial where all exponents have been set to one. This can
be used to simplify, for example, ideal generation:

Theorem 4.3. Let I ⊆ Z2[x1, x2, . . . , xn] be an ideal generated by m polynomials and
the field equations, I = 〈x21 + x1, x

2
2 + x2, . . . , x

2
n + xn, pn+1, pn+2, . . . , pn+m〉. Let p̃i

be the same polynomial as pi, but with all exponents set to one. Then I is also gen-
erated by the polynomials p̃i and the field equations, I = 〈x21 + x1, x

2
2 + x2, . . . , x

2
n +

xn, p̃n+1, p̃n+2, . . . , p̃n+m〉.

This is a direct consequence of Theorem 4.2.
In the Basic Algorithm, we have precisely such an ideal

〈x21 − x1, . . . , x2n − xn, pn+1, pn+2, . . . , pn+m〉 ⊆ Z2[x1, . . . , xn]. Simplifying the polyno-
mials pi not only gives us smaller, more manageable exponents, but since we are in Z2,
two identical terms will cancel each other out. Since a monomial is now uniquely defined
by the variables in it, we will find that such cancellations more often occur. Even better,
sometimes we may find that two polynomials become the same, lowering the number of
generators.

The equivalence goes beyond ideal generators, however...

4.2.2 Field equation reductions

A large part of the Buchberger algorithm is spent calculating rem(Si,j , (x
2
1 + x1, x

2
2 +

x2, . . . , x
2
n + xn, pn+1, pn+2, . . . , pn+m)). Since we can perform the reduction with the

polynomials in any order we like, we can decide to perform the reductions with the field
equations first. What happens when we reduce a polynomial with a field equation?

Conveniently enough, it turns out that we can use the same technique as in Theorem
4.2 to speed up the reduction process.

Theorem 4.4. Let R = Z2[x1, x2, . . . , xn], let pi = x2i+xi be the field equation associated
with the arbitrary variable xi and let f = m1 +m2 + . . .+mk be an arbitrary polynomial

in Z2[x1, x2, . . . , xn]. For each monomial mj = x
βj,1

1 x
βj,2

2 . . . x
βj,i

i . . . x
βj,n
n , βj,l ≥ 0, let

m̃j be the same monomial, but with the exponent of xi as zero if βj,i is zero, or one if
βj,i is non-zero. Note that if βj,i is zero or one, m̃j = mj.

Then f = m1 + m2 + . . . + mk
pi−→ m̃1 + m̃2 + . . . + m̃k. In other words, reducing

a polynomial with the field equation x2i + xi is equivalent to lowering all xi-exponents to
one if they are non-zero, or keeping them at zero if they already are zero.

Proof. The leading term in pi is x2i , for all admissible orderings. We try to reduce f one
monomial at the time. For each monomial mj , we have three cases:

1. xi - mj

2. xi | mj but x2i - mj

3. x2i | mj

In the first and second case, lm(pi) - mj , so m̃j = mj and mj
pi−→ m̃j .

In the third case, we have that mj/lm(pi) = mj/x
2
i = x

βj,1

1 . . . x
βj,i−2
i . . . x

βj,n
n ,

so the first reduction step becomes x
βj,1

1 . . . x
βj,n
n − (x2i − xi)x

βj,i

1 . . . x
βj,i−2
i . . . x

βj,n
n =

x
βj,1

1 . . . x
βj,i−1
i . . . x

βj,n
n . The exponent has been reduced by one. Similarly, each further

reduction step will reduce the exponent by one, until the exponent reaches one, and so
mj has been reduced to m̃j .
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Since each reduction made this way only affects the term mj , the others terms will
not be affected until it is their turn to be reduced. This way, eventually all monomials
mj will be reduced to their corresponding m̃j .

Example 20. We have that x1x
3
2x

2
3 + x21x2 + x22 + x1x2 + x1x3

x2
2−x2−→ x1x2x

2
3 + x21x2 +

x2 + x1x2 + x1x3.

The process can be generalized to reduction with multiple field equations: let pαi =
x2αi

+ xαi
. A reduction with pα1

will lower exponents of xα1
to one without touching

the rest of the polynomial, a reduction with pα2
will lower the exponents of xα2

to one,
and so on. In the end, all exponents on the variables xαi

will be lowered to one.

Example 21. Continuing our previous example, reducing x1x
3
2x

2
3+x21x2+x22+x1x2+x1x3

with all field equations gives us x1x2x3 + x1x2 + x2 + x1x2 + x1x3. As we are in Z2, the
x1x2 terms cancel each other out, leaving us with x1x2x3 + x2 + x1x3.

The results are very useful for speeding up the calculation of rem(Si,j , (x
2
1 +x1, x

2
2 +

x2, . . . , x
2
n+xn, pn+1, pn+2, . . . , pn+m)). Instead of reducing Si,j with the field equations,

let S̃i,j be the S-polynomial with all exponents lowered to one, and then only reduce
with the polynomials pn+1, . . . , pn+m.

These types of polynomials in Z2[x1, x2, . . . , xn] with one as the only possible co-
efficient, are called boolean polynomials because of how they represent boolean
formulas this way. They can also be defined as the elements in the quotient ring
Z2[x1, . . . , xn]/〈x21 + x1, . . . , x

2
n + xn〉.

The idea can in fact be taken even further...

4.2.3 Multiplication Modification

There is in fact never any need to bother with those irritating exponents anywhere in
the Basic Algorithm. When implementing the algorithm, simply treat all exponents as
one, all the time. Monomials can be uniquely defined by which variables they contain, so
all monomials can be written as xα1

1 xα2
2 . . . xαn

n , where the exponents αi can either take
the value 0 or 1. This allows us to to represent monomials with integers between 0 and
2n−1 - view the integer as a number cncn−1 . . . c2c1 in base 2, where the ci are either one
or zero. If the variable xi divides the monomial, then we let ci be one. For example, the
monomial 1 can be represented with zero (no variables divide it), the monomial x1x3 can
be represented with 5, which in base 2 is 101. This will significantly save on memory and
reduce runtime. Multiplying two monomials m1 = xα1

1 xα2
2 . . . xαn

n ,m2 = xβ1

1 x
β2

2 . . . xβn
n

simply becomes m1m2 = x
max(α1,β1)
1 . . . x

max(αn,βn)
n . Using this form of multiplication,

we perform multiplications and reduce the result with the field equations at the same
time.

Example 22. Let f1 = x1x2 +x1x3 +x2 and let f2 = x1x2. Then the product under our
multiplication would be f1f2 = x1x2 ·x1x2+x1x2 ·x1x3+x1x2 ·x2 = x1x2+x1x2x3+x1x2,
which is equivalent with x1x2x3 as we are in Z2.

This type of multiplication is strongly recommended to be used from the start of the
algorithm, in all steps: performing internal reduction, calculating S-polynomials, and
reducing them. This completely eliminates the need of reducing with field equations, as
those operations are handled automatically.

Note though that there is still a need to consider the field equations when adding
elements to L: we have not eliminated the need for creating their S-polynomials. Also
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note that the multiplication must be used carefully when creating these S-polynomials -
make sure that the field equation itself isn’t canceled out. In Section 4.3 we will introduce
a simplification which eliminates the need for manually calculating the S-polynomials
involving field equations at all.

4.2.4 Order Preservation

The downside to this type of multiplication is that it does not preserve the monomial
order. For example, using deglex and x1 � x2, we have that x1 +x2 is a correctly sorted
polynomial, and multiplying it with x1 gives us x1 · (x1 + x2) = x21 + x1x2, which is still
correctly sorted. Using our new multiplication, however, we get x1 ·(x1+x2) = x1+x1x2,
where the correct sorting should be x1x2 + x1.

This may not seem like such a big problem, but keeping the terms in the polynomial
ordered is essential - we want to be able, at a glance, to find the leading term of any
polynomial. We could store the polynomials in a data structure which kept track of
the leading term, such as a heap. Another approach would be to resort the terms each
time we needed them sorted, but those are both time-consuming and inefficient. A
cleverer multiplication is probably in order: if we multiply a sorted polynomial f =
m1 + m2 + . . . + mk with a single variable xi, we could split f into f1 + f2, where
f1 = mα1

+ mα2
+ . . . + mαk1

consists of the terms divisible by xi and p2 = mβ1
+

mβ2 + . . . + mβk2
consists of the terms which are not divisible by xi. Using our new

multiplication, we get that xi · f1 = f1, so this polynomial is already sorted. Similarly,
we get that xi ·f2 is simply each monomial in f2 multiplied by xi, but since all monomials
did not originally contain xi, the order is still preserved.

We now have two correctly sorted polynomials f1 and xi · f2, and we wish to know
their correctly sorted sum. This can be done with a technique called merging: we know
that the leading term of f1 + xi · f2 is either the leading term of f1 or the leading
term of xi · f2. So we simply compare the two, to find the one with highest order: if
lt(f1) � lt(xi · f2), then we let lt(f1) be the leading term in f1 + xi · f2, otherwise, we
let lt(xi · f2) be the leading term.

Say that lt(f1) was the leading term. What is then the next term in f1+xi ·f2? Well,
that would have to be either lt(xi · f2) or the next term in f1, that is lt(t(f1)). So we
compare those two, and let the term of highest order be the second term in f1 + xi · f2.

Continue like this: compare the two leading terms of what remains of f1 and xi · f2,
and add the one of highest order to f1 + xi · f2. If the two terms should happen to be
equal, then remove both, as 1 + 1 = 0 in Z2. When either f1 or xi · f2 runs out of terms,
simply add all remaining terms from the other polynomial to f1 + xi · f2. The time it
will take to sort xi · f this way will be linear in the number of terms f contains.

This can be generalized to multiplication with monomials containing more than one
variable: if we are to multiply M = xα1

xα2
. . . xαk

with the polynomial f , then start
by multiplying f with xα1 , using the split/merge technique. Then continue with the
other variables in M . If M contains αk variables and f contains k terms, then this
multiplication will at worst take O(αkk) operations. Building a heap or resorting the
terms using using a fast comparison-based algorithm will at worst take O(k log(k))
operations, so if the number of variables in M is lower than the logarithm of the number
of terms in f , this split/merge technique is probably faster.

Example 23. In this example, we use lex as our ordering. Say that we wish to multiply
x2 with f = x1x2x3 + x1x2 + x1x3 + x2 + x3. Note that f is correctly sorted.
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Algorithm 5 Merging two sorted boolean polynomials

Here we view ”f1”, ”f2” and ”f1 + f2” as ordered lists of terms, where terms can easily
be added or removed via the operations + and −. For example, ”f1” ←− ”f1” + m1

means that we add the term m1 to the end of the list ”f1”. The intended data structure
for ”f1”, ”f2” and ”f1 + f2” is linear linked lists.
Input: Two non-zero correctly sorted boolean polynomials ”f1”, ”f2”.
Output: The boolean polynomial ”f1 + f2” will be the correctly sorted sum of ”f1”

and ”f2”
”f1 + f2”←− 0(Initially, the polynomial is zero)
m1 ←− lt(”f1”) (The two candidates for the leading term of f1 + f2)
m2 ←− lt(”f2”)
while ”f1” and ”f2” are both non-zero do

if ”m1” � ”m2” then
”f1 + f2”←− ”f1 + f2” +m1 (Add m1 to the end of ”f1 + f2”)
”f1”←− ”f1”−m1 (Remove the term from ”f1” . . .)
m1 ←− lt(”f1”)(. . . and let m1 be the candidate for the next term in the sum)

else
if m2 � m1 then

”f1 + f2”←− ”f1 + f2” +m2

”f2”←− ”f2”−m2

m2 ←− lt(”f2”)
else

if m1 = m2 then
”f1”←− ”f1”−m1

m1 ←− lt(”f1”)
”f2”←− ”f2”−m2

m2 ←− lt(”f2”) (Two identical terms found, remove both)
end if

end if
end if

end while
if ”f1” is zero then

”f1 + f2”←− ”f1 + f2” + ”f2” (Add the remaining terms in ”f2” to the sum)
else

if ”f1” is zero then
”f1 + f2”←− ”f1 + f2” + ”f2” (Add the remaining terms in ”f2” to the sum)

end if
end if
return ”f1 + f2”
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First go through the terms of f and split them into f1 and f2, depending on if they
contain x2 or not: we get that f1 = x1x2x3 + x1x2 + x2 and f2 = x1x3 + x3. Note how
f = f1 + f2, and how f1 and f2 are correctly sorted.

Next we perform the multiplication x2 · f = x2 · f1 + x2 · f2. Since x2 · f1 = f1, we
do not need to alter the terms of f1, and x2 · f2 = x1x2x3 + x2x3. Since no terms in f2
contain x2, the multiplication is order-preserving.

Finally, we need to merge the terms of f1 and x2 · f2 together. We call the leading
terms of each polynomial m1 and m2, and initially we have m1 = x1x2x3, m2 = x1x2x3.
Since the two terms are equal, they will cancel each other out, so we do not add them
to the polynomial x2 · f , but instead let m1 and m2 be the next terms in f1 and f2
respectively.

We then get that m1 = x1x2 and m2 = x2x3. Since m1 � m2, we add m1 to x2 · f ,
and replace m1 with the next term, x2. So far, we have that x2 · f = x1x2.

We once again compare m1 = x2 with m2 = x2x3. Since m2 � m1, we add m2 to
x2 · f , so now x2 · f = x1x2 + x2x3. We also try to replace m2 with the next term in
x2 · f2, but that was the final term in x2 · f2. This means that we can simply dump the
remaining terms from f1 to x2 ·f and call it a day: we get that x2 ·f = x1x2 +x2x3 +x2.
The polynomial is, as expected, sorted.

4.3 Simpler S-polynomials

The calculation of an S-polynomial can in many cases be simplified, or even skipped
entirely.

4.3.1 The Two Criteria

Theorem 4.5 (The Prime Criterion). Let pi, pj be two polynomials in the ring
k[x1, x2, . . . , xn], and let lm(pi) and lm(pj) be relatively prime. Then Si,j will always be
reduced to zero.

Proof. This means that lcm(lt(pi), lt(pj)) is simply lt(pi)lt(pj). We calculate the S-
polynomial and reduce with pi, pj .

Si,j =
lcm(lt(pi), lt(pj))

lt(pi)
(lt(pi) + t(pi))−

lcm(lt(pi), lt(pj))

lt(pj)
(lt(pj) + t(pj)) =

=lt(pj)(lt(pi) + t(pi))− lt(pi)(lt(pj) + lt(pj)) =

=lt(pj)t(pi)− lt(pi)t(pj)
pj−→

lt(pj)t(pi)− lt(pi)t(pj)− t(pi)pj =

=− t(pj)t(pi)− lt(pi)t(pj)
pi−→

− t(pj)t(pi) + t(pi)t(pj) = 0

When picking a pair (a, b) ∈ L, it can be useful to check if pa, pb fulfill the condition
of the prime criterion, thereby allowing us to discard the pair without performing any
calculations, as we know the end result can be reduced to zero anyway.

Theorem 4.6 (The Chain Criterion). If lm(pk)|lcm(lm(pi), lm(pj)), and if Si,k and
Sj,k has already been calculated, then it is possible to reduce Si,j to zero. In other words,
the pair (i, j) can be discarded in this case.

39



The two criteria can be used in all implementations of the Buchberger algorithm,
not just the special case described in this paper. For more information about the two
criteria, as well as a proof of the chain criterion, please see [6].

Implementing checks for the chain criterion is slightly trickier, as it requires keeping
track on which S-polynomials have already been calculated. The list L could concievably
be used for this, if implemented with a different data structure. While using the chain
criterion is highly recommended, we will not apply it in this paper, in order to keep the
algorithm simple.

The criteria can also be used preemptively, as we will show in the next section.

4.3.2 The S-polynomials of field equations

The leading term of a field equation pi = x2i + xi is always x2i , regardless of monomial
ordering. According to the prime criterion then, the S-polynomial Si,j of two field
equations pi = x2i + xi, pj = x2j + xj , will always be reduced to zero. This means that
we can skip checking all S-polynomials of two field equations.

But it doesn’t end there: when pi is the field equation x2i + xi and pj is an arbitrary
polynomial such that xi - lm(pj), the S-polynomial will also always be reduced to zero,
allowing us to skip those pairs without calculating anything.

And in the case when pi = x2i + xi and xi|lm(pj), we can simply pre-calculate the
result. We will assume that we have taken into account the exponent simplifications
from Section 4.2, so that xi only ever have the exponents zero and one. First we split up
pj into two smaller polynomials xipj1 and pj2, where xipj1 contains the terms divisible
by xi and pj2 contains the terms not divisible by xi. Note that no terms in either pj1
nor pj2 are divisible by xi and lt(pj) = xilt(pj1). The S-polynomial then becomes

lcm(x2i , lt(pj))

x2i
(x2i + xi)−

lcm(x2i , lt(pj))

lt(pj)
pj =lt(pj1)x2i + lt(pj1)xi + xipj =

=lt(pj1)x2i + lt(pj1)xi

+ xi(xilt(pj1) + xit(pj1) + pj2) =

=xilt(pj1) + x2i t(pj1) + xipj2

This can be reduced with x2i − xi, which gives us...

xilt(pj1) + xit(pj1) + xipj2 = xipj1 + xipj2

Now we reduce with pj = xipj1 + pj2, giving the end result (xi + 1)pj2. The polynomial
is non-zero, and after reduction with the other polynomials in G, we might be required
to add it to G.

We can now handle all cases of S-polynomials involving field equations:

Theorem 4.7. Let pi be the field equation x2i + xi.

• If pj is another field equation, then Si,j can be reduced to zero and does not need
to be calculated.

• If xi - lm(pj), then Si,j can be reduced to zero and does not need to be calculated.

• If xi | lm(pj), then Si,j becomes (xi + 1)pj2, where pj2 consists of the terms in pj
not divisible by xi. Note that we must still perform further reductions before we
are done.
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4.4 Conjunctive normal form or not?

According to the original Basic Algorithm, we are to examine the ideal
I = 〈p1, p2, . . . , pn, f〉, where the pi are field equations. The problem with this approach
is that as the original boolean formula grows larger, so does f , until it becomes unman-
ageably large. Is there any way we can modify our algorithm in order to combat this
problem?

Yes there is. Remember that according to the Masterpiece Theorem (Theorem 3.8)
our approach works equally well when we are dealing with multiple boolean formulas,
and so is working with the ideal I = 〈p1, p2, . . . , pn, f1, . . . , fm〉. If we could split up our
original boolean formula φ into smaller boolean formulas ϕi, we would instead deal with
an ideal generated by more and smaller polynomials, which might be more desirable. Is
this possible?

Luckily, all boolean formulas φ can be rewritten to a so called conjunctive normal
form, or CNF. A CNF-formula is always on the form φ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk, where
each ϕi is a boolean formula written on the form ϕi = (ψ1 ∨ ψ2 ∨ . . . ∨ ψl), where the
ψi are literals, that is, either variables or negations of variables. In other words, a
CNF-formula is a conjunction of disjunctions of literals. In a CNF-formula, each smaller
formula ϕi is called a clause.

Example 24. For example, the boolean formula φ = (ψ1∨¬ψ2∨ψ3)∧ (ψ2∨¬ψ3)∧ (¬ψ1)
is a proper CNF-formula.

Satisfying a CNF-formula ϕ1∧ϕ2∧ . . .∧ϕk is the same as satisfying each ϕi individ-
ually, using the same variable assignment. Instead of transforming the whole formula
φ to a single polynomial T (φ) and examine the ideal 〈p1, . . . , pn, T (φ)〉, we can first
transform φ to a CNF-formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk, transform each ϕi to a polynomial
T (ϕi) and examine the ideal 〈p1, . . . , pn, T (ϕ1), T (ϕ2), . . . , T (ϕk)〉. This will give more
generators, but smaller polynomials.

4.4.1 CNF-transformation

Transforming a boolean formula to a CNF-formula can be done in several ways. Some
consist of simply rewriting the formula while preserving equivalence, but these might
exponentially increase the size of the formula, leading to much larger polynomials. As
we are only interested in preserving satisfiability, we are not afraid of introducing more
variables, if it helps limit the number, and size, of clauses5.

One such way transforming a regular boolean formula to a CNF-formula while lim-
iting the size of the formula to linear growth is as follows: Let φ be a boolean formula,
for example ¬((ψ1 ∧ ψ2) ∨ ψ3). This formula consists of a number of subformulas: in
our case the subformulas ϕ1 = (ψ1 ∧ ψ2), ϕ2 = (ϕ1 ∨ ψ3) and ϕ3 = ¬ϕ2. For each
inner subformula ϕi, create a new variable %i, representing the boolean value of the
subformula.

Now we can create additional clauses for each subformula ϕi, so that %i is true if
and only if ϕi is true: in our example, the clauses corresponding to the subformula ϕ1

are (%1 ∨ ¬ψ1 ∨ ¬ψ2) ∧ (¬%1 ∨ ψ1) ∧ (¬%1 ∨ ψ2). Here, the first clause means %1 can not
be false while both ψ1, ψ2 are true, and the other two clauses mean %1 can not be true
while either ψ1 or ψ2 are false. In order for all clauses to be satisfied, we must have that
%1 is true precisely when both ψ1 and ψ2 are true, and false otherwise.

5More variables will mean more field equations, but if we take into account our earlier changes, many
of the corresponding S-polynomials will be discarded, and the reductions will be done automatically.
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Similarly, the clauses corresponding to the disjunction-formula ϕ2 can be written as
(¬%2 ∨ ψ3 ∨ %1) ∧ (%2 ∨ ¬%1) ∧ (%2 ∨ ¬ψ3). The final formula ϕ3 can be written as the
clauses (%3 ∨ %2) ∧ (¬%3 ∨ ¬%2). Putting all clauses corresponding to all subformulas ϕi
together creates one large CNF-formula, which is satisfiable if and only if the original
formula is satisfiable. For more detail in transforming boolean formulas this way, please
check [16].

4.4.2 Does it help?

This alternate way of describing boolean formulas helps immensely: a rudimentary
experiment in the open-source software SINGULAR, [7] have confirmed our suspicions
that, in general, it is better to deal with several smaller polynomials rather than one
large.

The test started with defining the field equations p1, . . . , pn ∈ Z2[x1, x2, . . . , xn], and
then randomizing m polynomials pi, i = n + 1, . . . , n + m. Then we let the program
calculate the reduced Gröbner basis of the ideal I = 〈p1, . . . , pn, pn+1, pn+2, . . . , pn+m〉.
This case corresponds with rewriting our boolean formula and dealing with multiple
smaller polynomials.

Afterwards, we defined the polynomial f = (pn+1 − 1)(pn+2 − 1) . . . (pn+m − 1)− 1,
and note that f is solved precisely when the pn+i are all solved. We then let the program
calculate the reduced Gröbner basis of the ideal J = 〈p1, p2, . . . , pn, f〉. This case would
correspond to transforming the boolean formula directly, and dealing with one large
polynomial.

The results were very clear: Already when with 18 variables and ten random polyno-
mials, there was a large difference between the two cases: the multipolynomial approach
took 9 seconds, the single-polynomial approach took 611 seconds.

The experiment may be considered primitive, as well as not completely applicable to
our situation; We would like to compare whether using CNF rather than an “untouched”
formula would result in smaller times. Using CNF would result in more and smaller
polynomials, as well as more variables and field equations. In our experiment, the two
cases had the same number of variables and field equations, skewing the result in favor of
the multi-polynomial case. Also, in the experiment, the large polynomial f was created
by putting the smaller polynomials together, something that will not happen if f was
based on an untouched boolean formula, making f much larger than necessary. This too
skews the results towards the multi-polynomial case. Nevertheless, the results were so
heavily in favor of the multi-polynomial case, that there is no doubt that this approach
is more effective in practice.

4.4.3 An explanation: Why not the regular Stone transformation?

Eagle-eyed readers will wonder why on earth we used a modified Stone transformation
back in Section 3.1, and we are now ready to answer that question.

The original Stone transformation transforms boolean expressions to polynomials
in Z2, just like the transformation presnted in this paper, with the difference that the
original Stone transformation represents > with 1 and ⊥ with 0. This also means that
the transformation rules are different: the original transformation lets ∧ be represented
by multiplication (T(φ1 ∧ φ2) = T(φ1)T (φ2), and ∨ is represented by repeated addition
(T(φ1 ∨ φ2) = T(φ1) + T(φ2) + T(φ1)T(φ2))
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This representation may seem more intuitive at first, but anyone actually interested in
using this method for solving the SAT-problem in real life, will undoubtedly first rewrite
the formula to CNF, then treating each clause as a separate formula, as discussed above.
This means that the formulas to be transformed will contain many disjunctions, and no
conjunctions, meaning that we want our disjunctions to have as simple form as possible.
For example, with our transformation, we get that

T (ψ1 ∨ ¬ψ2 ∨ ψ3) =x1(1 + x2)x3 =

=x1x3 + x1x2x3

whereas the original Stone transformation would have given us

T (ψ1 ∨ ¬ψ2 ∨ ψ3) =(x1 + (1 + x2) + x1(1 + x2)) + x3 + (x1 + (1 + x2) + x1(1 + x2))x3 =

=1 + x2 + x1x2 + x2x3 + x1x2x3

after simplification. As smaller polynomials are more manageable, a reasonable guess is
that the modified transformation is more useful for our purposes.

4.4.4 S-polynomials and CNF-formulas

Another upside to CNF-representation with the modified Stone-transformation is that
we get some more S-polynomials which can be discarded.

Theorem 4.8. Let pi be the field equation corresponding to the variable xi, and let pj be
on the form (xi+c)p′ for some constant c and polynomial p′, where lt(p′) is not divisible
by xi. Then Si,j can always be reduced to zero.

Proof. We have that lt(pj) = xilt(p
′), and two cases: either c = 0 or c = 1. If c = 0, we

get

Si,j =
lcm(xilt(p

′), x2i )

xilt(p′)
xip
′ − lcm(xilt(p

′), x2i )

x2i
(x2i − xi) =

=x2i (lt(p
′) + t(p′))− lt(p′)(x2i − xi) =

=x2i t(p
′) + xilt(p

′)
pi−→ xit(p

′) + xilt(p
′) = xip

′ pj−→ 0

In the second case, we have

Si,j =
lcm(xilt(p

′), x2i )

xilt(p′)
(xi + 1)p′ − lcm(xilt(p

′), x2i )

x2i
(x2i − xi) =

=x2i (lt(p
′) + t(p′)) + xip

′ + x2i lt(p
′) + xilt(p

′) =

=x2i t(p
′) + xip

′ + xilt(p
′)

pi−→
xit(p

′) + xip
′ + xilt(p

′) = xip
′ + xip

′ = 0

In both cases, we end up with a zero.

Our initial polynomials, the ones corresponding to boolean formulas, will all be
containing factors (xi + c) for constants c, and so we could use this discard these S-
polynomials.
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However, we will not use this. As many polynomials corresponding to boolean for-
mulas will be broken apart by the internal reduction, we will not probably not start with
such conveniently factorizable polynomials. Might it be useful to apply the theorem to
S-polynomials of field equations and arbitrary polynomials, by first checking if the ar-
bitrary polynomial can be factorized in this way? Probably not - checking factorization
is not easy, and using Theorem 4.3 is better in this case.

4.4.5 Interesting experiment details

Recall the experiment described in Section 4.4.2. An observation about the experiment
is the following.

Theorem 4.9. Let pi, i = 1, . . . , n be the set of field equations in Zp[x1, x2, . . . , xn],
and let pn+i,i = 1 . . . ,m be a set of arbitrary polynomials in Zp[x1, x2, . . . , xn]. Let
I = 〈p1, . . . , pn, pn+1, . . . , pn+m〉 and J = 〈p1, p2, . . . , pn, f〉, where f = (pn+1−1)(pn+2−
1) . . . (pm+n − 1)− 1. Then I = J !

Even though these results may not be relevant for our algorithm, they are still
interesting in their own right and deserve to be discussed. Impatient readers who do
not appreciate the beauty of mathematics may wish to skip this section and watch some
reality tv instead.

In order to prove this, we will need the following theorem:

Theorem 4.10. Let I, J ⊆ K[x1, x2, . . . , xn] be two arbitrary radical ideals, and let K
be algebraically closed. If V (I) = V (J), then I = J .

The proof is non-trivial, and can be found in [1].
We need to prove that our ideals are radical if we are to use this theorem. For the

uninitiated, an ideal I is radical, if for each rk ∈ I we have r ∈ I, that is, if I contains
all “roots” of its members.

Theorem 4.11. An ideal L ⊆ Zp[x1, x2, . . . , xn] that contains the field equations is
radical.

Proof. Say that rk ∈ L for some polynomial r = a1m1 +a2m2 + . . .+alml, where the ai
are coefficients and mi are monomials. Let d be the smallest exponentiation of p larger
than k, so that d = pc > k, and pc−1 ≤ k for some natural number c. We can then
multiply rk with rd−k and get that rd ∈ L.

rd = (a1m1 + a2m2 + . . .+ alml)
d = (a1m1 + (a2m2 + . . .+ alml))

d =

= ad1m
d
1 + (a2m2 + . . .+ alml)

d +

d−1∑
i=1

(
d!

i!(d− i)!

)
ai1m

i
1(a2m2 + . . .+ alml)

d−i

Note that each term apart from the first two are divisible by d, and so is a multiple
of p. As we are in Zp, they are canceled out. If we expand the second term similarly,
we will eventually get

rd = ad1m
d
1 + ad2m

d
2 + . . .+ adlm

d
l

The coefficients are equivalent to adi = ap
c

i . As api = ai since we are in Zp, we

get that ap
c

i = ap
c−1

i = . . . = api = ai. The monomials can be reduced with the field
equations to mi itself (remember, d is a multiple of p). In total, we have that rd = r, so
rk ∈ I ⇒ r ∈ L, so the inclusion of field equations makes an ideal in Zp radical.
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We are ready for the proof.

Proof of Theorem 4.9. We will use Theorem 4.10 for our proof.

First we need to show that our two ideals I and J have the same variety. For this
we refer back to Section 4.4.2. Note that the variety is the same, no matter what the
surrounding ring is.

If we were to use Theorem 4.10 directly, we would need that I and J were ideals in
a ring with coefficients in an algebraically closed field. Zp is not algebraically closed,
but we can easily get over that little problem: consider the ideals I ′ and J ′ as the ideals
with the same generators as I and J , but with the surrounding ring Z2 instead. We
have that V (I ′) = V (J ′), that they are radical and have coefficients in an algebraically
closed field, so I ′ and J ′ are the same ideal, according to Theorem 4.10.

But don’t be fooled; I ′ is still generated by the same generators as I, all of which
has coefficients in Z2. Say that we were to perform the Buchberger algorithm on I ′:
then we would get a Gröbner basis GI′ . As I ′ = J ′, this is also a basis for J ′. Since the
Buchberger algorithm doesn’t take the surrounding coefficient field into account when
creating GI′ , the Gröbner basis for I must be the same as the Gröbner basis for I ′,
meaning that GI′ is a Gröbner basis for I as well. Similarly, we can calculate a Gröbner
basis GJ′ for J ′, which also generates J and I ′.

Now take an arbitrary element p ∈ I. The normal form of p with respect to I is zero,
so NF(p,GI′) = 0. But as GI′ generates J ′ as well, the normal form of p with respect
to J ′ is also zero, and so NF(p,GJ′) = 0. But the normal form calculations does not
take the surrounding ring into account either, so NF(p,GJ′) = 0 implies that p ∈ J as
well. This means that the ideals are identical, even when the surrounding ring is not
algebraically closed.

4.5 The Main Algorithm

Algorithm 5 is a recap of the whole algorithm, including the improvements from this
section.

Given a boolean formula φ, is φ satisfiable? The algorithm can be performed
in any term ordering, but it is strongly recommended that degrevlex is used. One unused
freedom we have is that we can select the pair (a, b) however we like. There are clever
methods of deciding which pairs to treat first (for example, to maximize the potential
of the chain criterion), but we will not discuss this in detail.

Example 25. We will use degrevlex in this example. Let φ = (¬ψ1 ∨ψ2 ∨¬ψ3)∧ (¬ψ2 ∨
¬ψ3) ∧ (ψ1 ∨ ¬ψ2) ∧ (ψ1 ∨ ψ4). Note that φ is a CNF-formula. We define p1, p2, p3, p4
as our field equations, and transform each clause from φ into a polynomial:

p5 = (x1 + 1)x2(x3 + 1) = x1x2x3 + x1x2 + x2x3 + x2

p6 = (x2 + 1)(x3 + 1) = x2x3 + x2 + x3 + 1

p7 = x1(x2 + 1) = x1x2 + x1

p8 = x1x4

We set G = {x21 + x1, x
2
2 + x2, x

2
3 + x3, x

2
4 + x4, x1x2x3 + x1x2 + x2x3 + x2, x2x3 + x2 +

x3 + 1, x1x2 + x1, x1x4} and perform internal reduction: One possible reduction at this
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Algorithm 6 The Main Algorithm, part 1

Input: A boolean formula φ
Output: True if φ is satisfiable, false otherwise.

Rewrite φ to conjunctive normal form, ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕm
n← the number of variables in ϕ1 ∧ . . . ∧ ϕm
for i = 1 to n do

Let pi = x2i − xi
end for
for i = 1 to m do

Let pn+i = T(ϕi), the transformed polynomial of the i’th clause. Remember that
the transformation is done using the modified multiplication. The resulting poly-
nomials will then only contain variables with the exponent 1.

end for
Let G be the set of all pi
Perform internal reduction on G
n′ ←= n+m (n′ is the number of elements in G)
Let L be an empty set
for i = 1 to n do

for j = n+ 1 to n′ do
Add (i, j) to L (Note that we do not need to consider S-polynomials of two field
equations)

end for
end for
for i = n+ 1 to n′ − 1 do

for j = i+ 1 to n′ do
Add (i, j) to L

end for
end for
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Algorithm 7 The Main Algorithm, part 2

while L is not empty do
Select an element (a, b) from L, and remove it.
if a < n (That is, if pa is a field equation representing a variable xa) then

if xa | lt(pb) then
Let Sa,b = (xa + 1)p̂, where p̂ are the terms in pb not divisible by xa. Use the
modified multiplication.

else
Restart the while-loop (The S-polynomial can be discarded, Theorem 4.3)

end if
else

if gcd(lm(pa), lm(pb)) = 1 (The prime criteria, Theorem 4.5) then
Restart the while-loop

else
Calculate Sa,b, using the modified multiplication.

end if
end if
Calculate R = rem(Sa,b, (pn+1, . . . , pn′), where the pi are ordered arbitrarily. Use
the modified multiplication.
if R = 1 then

return false
else

if R 6= 0 then
n′ ← n′ + 1
pn′ = R
Add pn′ to G
for i = 1to n′ − 1 do

Add (i, n′) to L
end for

end if
end if

end while
return true
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stage is to reduce p5 with p6. . .

x1x2x3 + x1x2 + x2x3 + x2
p6−→ x1x2x3 + x1x2 + x2x3 + x2 − x1(x2x3 + x2 + x3 + 1) =

=x1x3 + x2x3 + x2 + x1
p6−→ x1x3 + x2x3 + x2 + x1 − (x2x3 + x2 + x3 + 1) =

=x1x3 + x1 + x3 + 1

Now p5 = x1x3 + x1 + x3 + 1, G = {x21 + x1, x
2
2 + x2, x

2
3 + x3, x

2
4 + x4x1x3 + x1 + x3 +

1, x2x3 + x2 + x3 + 1, x1x2 + x1, x1x4}, and since no leading terms divides any term in
the other polynomials, no more reductions are possible, and the internal reduction is
finished.

We then initiate the list

L = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5),

(4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8)}

Note how we don’t add pairs corresponding to two field equations.

Now we begin processing the list L, and we choose to start with those involving the
field equations. We can immediately discard (2, 5), (4, 5), (1, 6), (4, 6), (3, 7), (4, 7), (2, 8)
and (3, 8); they correspond to pairs of field equations and polynomials, where the field
equation variable does not divide the leading term of the polynomial, in accordance to
Theorem 4.3. The other S-polynomials corresponding to field equations are calculated
using as (xi + 1)pj,2, as described in Theorem 4.3. We of course use the modified
multiplication when evaluating expressions. As long as we only get zeros, we will keep
calculating.

S1,5 = (x1 + 1)(x3 + 1) = x1x3 + x1 + x3 + 1
p5−→ 0

S3,5 = (x3 + 1)(x1 + 1) = x1x3 + x1 + x3 + 1
p5−→ 0

S2,6 = (x2 + 1)(x3 + 1) = x2x3 + x2 + x3 + 1
p6−→ 0

S3,6 = (x3 + 1)(x2 + 1) = x2x3 + x2 + x3 + 1
p6−→ 0

S1,7 = (x1 + 1) · 0 = 0

S2,7 = (x2 + 1)x1 = x1x2 + x1
p6−→ 0

S1,8 = (x2 + 1) · 0 = 0

S4,8 = (x4 + 1) · 0 = 0

These S-polynomials are reduced to zero6, so we do not have to add them. We now
have L = {(5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8)} and G = {x21 +x1, x

2
2 +x2, x

2
3 +x3, x

2
4 +

x4, x1x3 + x1 + x3 + 1, x2x3 + x2 + x3 + 1, x1x2 + x1, x1x4}.
Of the remaining pairs in L, we can immediately discard (6, 8) due to the prime

criteria (Theorem 4.5).

We next pick pairs from L, calculate the S-polynomial, and attempt to reduce them

6We could have used the results from Section 4.4.4 for these calculations, but the improvement would
have been negligible.
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with p5, p6, p7 and p8
7.

S5,6 =x2(x1x3 + x1 + x3 + 1)− x1(x2x3 + x2 + x3 + 1) =

=x2x3 + x1x3 + x2 + x1
p5−→ x2x3 + x1x3 + x2 + x1 − (x1x3 + x1 + x3 + 1) =

=x2x3 + x2 + x3 + 1
p6−→ x2x3 + x2 + x3 + 1− (x2x3 + x2 + x3 + 1) = 0

S5,7 =x2(x1x3 + x1 + x3 + 1) + x3(x1x2 + x1) =

=x1x2 + x2x3 + x1x3 + x2
p5−→ x1x2 + x2x3 + x1x3 + x2 − (x1x3 + x1 + x3 + 1) =

=x1x2 + x2x3 + x1 + x2 + x3 + 1
p7−→ x1x2 + x2x3 + x1 + x2 + x3 + 1− (x1x2 + x1) =

=x2x3 + x2 + x3 + 1
p6−→ x2x3 + x2 + x3 + 1− (x2x3 + x2 + x3 + 1) =

=0

S5,8 =x4(x1x3 + x1 + x3 + 1)− x3(x1x4) =

=x1x4 + x3x4 + x4
p8−→ x1x4 + x3x4 + x4 − (x1x4) =

=x3x4 + x4

As this can not be reduced further, we call it p8, add p8 to G and add the corresponding
pairs to L. We notice that (6, 8) and (7, 9) can be discarded due to the prime criterion,
and continue with the other S-polynomials. . .

S6,7 =x1(x2x3 + x2 + x3 + 1) + x3(x1x2 + x1) =

=x1x2 + x1
p7−→ x1x2 + x1 − (x1x2 + x1) =

=0

S6,9 =x4(x2x3 + x2 + x3 + 1) + x2(x3x4 + x4) =

=x3x4 + x4
p9−→ x3x4 + x4 − (x3x4 + x4) =

=0

S5,9 =x4(x1x3 + x1 + x3 + 1) + x1(x3x4 + x4) =

=x3x4 + x4
p9−→ x3x4 + x4 − (x3x4 + x4) =

=0

S7,8 =x4(x1x2 + x1) + x2(x1x4) =

=x1x4
p8−→ x1x4 − x1x4 =

=0

S8,9 =x3(x1x4)− x1(x3x4 + x4) =

=x1x4
p8−→ x1x4 − x1x4 =

=0

And now that L is empty, the algorithm is finished. Since G does not contain 1, we can
safely draw the conclusion that φ is satisfiable.

4.6 Existing Implementations

The process of using Gröbner Bases to solve the SAT-problem is relatively new, but
there are already several implementations out there. Anyone interested implementing

7We do not consider reducing it with the field equations, as that was done automatically by the
modified multiplication.
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this algorithm may wish to take a look at these first.

We have already mentioned SINGULAR [7], an easy-to-use algebra program, which
among other things can calculate Gröbner Bases for polynomial ideals. It has a command-
line driven interface, with c++-like object oriented syntax. The program contains no
algorithms specific for boolean polynomials, however.

Secondly, we have Macaulay2 [8], a similar algebra program. This program does fea-
ture algorithms specialized for finding Gröbner bases for ideals of boolean polynomials,
available in the package BooleanGB [11]. The algorithms used in this package are
based on the same ideas found in this paper, but does not seem very well implemented
- a few bugs has been found8.

We also recommend PolyBoRi [9] (which stands for POLYnomials over BOolean
RIngs), a c++-library completely devoted to boolean polynomials. The package fea-
tures several algorithms, including efficient versions of the Buchberger algorithm. Some
experiments show that PolyBoRi without a doubt are the best of the alternatives pre-
sented here. PolyBoRi is also included with most recent Sage installations and can be
used with Python. The techniques used by the package, however, are not based on
the same idea as in this paper, where we represent a polynomial with its coefficients.
Rather, PolyBoRi uses a data structure called Binary Decision Diagrams, which will be
explained in a later section. Many of the improvements discussed in this paper are not
applicable to BDD’s, sadly.

Finally, there is X-Solve [12], an SAT-solver which uses precisely the methods dis-
cussed in this paper. It also takes into account the hybrid method discussed in Section
5.2.

4.6.1 Binary Decision Diagrams

A boolean polynomial can be represented, not only by coefficients and terms as in this
paper, but rather by what result you get when evaluating the polynomial at different
points. Say for example that we had the polynomial f = x. There is one variable in f ,
which we can assign either the value 1 or 0. This choice can be used to represent the
polynomial, and we can visualize it with a graph, such as this:

x

0 1

Standing at the node x and following the dashed line means that we assign the
variable x the value 0, and following the whole line means that we it the value 1. If we
have more variables, we simply add more nodes to the diagram: for example, this is how
we represent the polynomial x1x2 + x2x3 + x3 + 1:

8Specifically, it sometimes finds that {1} is a Gröbner basis for an ideal I when the standard
Macaulay2 functions claim that 1 /∈ I - clearly not true.
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x1

x2 x2

x3 x3 x3 x3

1 0 0 1 1 0 0 0

Feel free to verify that each point leads to the correct value.

Of course, the tree doesn’t have to be so large - why not just have one 1-node and
one 0-node?

x1

x2 x2

x3 x3 x3 x3

0 1

But some nodes are still superfluous: note the rightmost x3-node - both its outgoing
edges point to the 0-node. It doesn’t matter what value we assign to x3 at that stage,
why represent the choice when it has no effect? Let’s just allow the whole edge from the
x2-node to point at the 0-node immediately.

x1

x2 x2

x3 x3 x3

0 1

There are still more improvements available - note how both the rightmost and
leftmost x3 represent the same choice: set x3 = 1 and we get 0, set x3 = 0 and we get
1. The subtrees of the node are the same. Why represent the same choice twice? Let’s
just have one node representing both the choices.
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x1

x2 x2

x3 x3

0 1

This type of graph is called a Binary Decision Diagram, and is an alternative way of
representing boolean polynomials. There are algorithms for transforming a polynomial
to a diagram, adding or multiplying two diagrams, and so on [13][9]. Implementing the
algorithm with this representation can be preferable to representing the coefficients.

4.6.2 Experiments

We performed a rudimentary experiment with SINGULAR, Macuaulay2 with and with-
out the package BooleanGB, PolyBoRi, X-solve and Minisat, one of the best open source
SAT-solvers available [10]. Note that Minisat does not use boolean polynomials or
Gröbner bases, but is included in the experiment for comparison to conventional meth-
ods of SAT-solving.

In Singular, we measured the time it took for the program to calculate the minimal
reduced Gröbner basis for the ideal generated by the boolean polynomials and the field
equations. For this SINGULAR uses the regular Buchberger algorithm without any
improvements discussed in this chapter, so we are not expecting a very good performance
from this approach.

In Macaulay2, we first used the same method as with Singular, and expect similar
results. Then we removed the field equations and used the package BooleanGB and the
method gbBoolean. We expect better results using this package.

For PolyBoRi, we used the program Sage, imported the PolyBoRi commands, and let
it calculate the minimal reduced Gröbner basis for the ideal generated by the boolean
polynomials. As PolyBoRi is specialized in boolean polynomials, there is no need to
manually add the field equations, and the Buchberger algorithm is specialized for boolean
polynomials: a fairly good performance is expected.

In X-Solve and Minisat, we simply ran the program with the formulas.

The hardware used in the experiment is substandard; users with better equipment
will probably see much better results. However, the experiment should still give a rough
indication of the relative merits of the implementations.

We started with six formulas of various sizes9. . .

9The formulas were taken from http://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html and we thank
professor Michael Brickenstein for providing a script for converting the data to polynomials.
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Variables Clauses Satisfiable?
f1 20 94 Yes
f2 15 15 Yes
f3 45 178 Yes
f4 50 100 No
f5 75 325 No
f6 75 325 Yes

The first column shows the number of variables, the second the number of clauses,
and the third whether or not the formula is satisfiable. The formulas f1, f4, f5, f6 only
or mainly contain clauses of size 3, meaning that the ideal generators will have fewer
terms. Meanwhile f2, f3 have larger formulas, corresponding to larger polynomials.

Here are the resulting times. For convenience we only let the programs run 4 hours
at most.

Singular Macaulay2 Maulay2 with Package PolyBoRi X-Solve Minisat
f1 <1 sec <1 sec 2,5 sec <1 sec <1 sec <1 sec
f2 <1 sec 16 sec 3 sec <1 sec <1 sec <1 sec
f3 >4 hours >4 hours >4 hours 12 minutes 1 sec <1 sec
f4 400 sec 3 sec 9 sec <1 sec <1 sec <1 sec
f5 >4 hours >4 hours Would not run 20 minutes 71 sec <1 sec
f6 >4 hours >4 hours Would not run 1 hour 39 sec <1 sec

The results are the expected ones. Singular can not keep up for long before suc-
cumbing, having trouble at already at 50 variables and not even managing the larger
polynomials with 45 variables.

Macaulay2 has the interesting situation of not being made much more efficient by
its package: it does seem to help when dealing with larger polynomials, but actually
increases the running time when the polynomials have small size. The package also can
not handle more than 64 variables, severely reducing the usefulness of it.

PolyBoRi, one of the most efficient implementations for boolean polynomials avail-
able (as far as the author is aware), keeps up for much longer. X-solve, specifically
designed for SAT-solving, is the fastest implementations using boolean polynomials, but
is still far behind the award winning Minisat.

A word of caution: it is easy to draw the conclusion that the hybrid method used by
X-solve and the BDD-data structure used by PolyBoRi would be the best implementa-
tion of boolean polynomials, but keep in mind that there are many contributing factors
in these types of tests. It could very well be that PolyBoRi is simply more well-written
in general and that the Macaulay2 package is in the early stages of development. That
does not mean that BDD’s necessarily is the better implementation technique, or that
the advantage of the hybrid methods is as useful as the experiment implies.
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5 Further Development and Conclusion

5.1 Finding solutions

Say that we have a polynomial ideal I containing the field equations, and that V (I) only
contained one point. What does that tell us about the Gröbner basis?

Say that the point in V (I) was (a1, a2, . . . , an). We can then create another ideal
J〈x1 − a1, x2 − a1, . . . , xn − an〉. Then J is also solved by, and only by, (a1, a2, . . . , an),
so V (I) = V (J). The two ideals are also both radical, meaning that I = J by Theorem
4.10, and also that their reduced minimal Gröbner bases are the same.

But look at the generators of J - they already form a Gröbner basis, which even
happens to be minimal and reduced! So that is the unique minimal and reduced Gröbner
basis we will get by applying the Buchberger algorithm to I! Clearly, when the variety
only contains one point, the reduced minimal Gröbner basis will perfectly define that
point.

Similarly, say that there are two points in the variety,
(a1, a2, . . . , ak−1, 1, 0, ak+2, . . . , an) and (a1, a2, . . . , ak−1, 0, 1, ak+2, . . . , an). The poly-
nomials describing those two points would be x1 − a1, x2 − a2, . . . , xk−1 − ak−1, xk +
xk+1 + 1, x2k+1 + xk+1, xk+2 − ak+2, . . . , xn − an, and they happen to form a minimal
reduced basis for the ideal.

The application is obvious - given a Gröbner basis, it is possible to find the points in
the variety, and hence the corresponding solution to the boolean formula. As the variety
grows larger, the polynomials become more and more complicated, but it does create
a possibility that this method can not only be used to decide solvability, but also the
actual solutions.

One problem with this approach is that it is much easier to find points in the variety
this way if the Gröbner basis uses lex as its monomial ordering. However, we will want
to use the monomial ordering degrevlex when performing the Buchberger algorithm, as
it reduces running time, but that gives a base from which it is difficult to find solutions.

5.2 Hybrid strategies

One common strategy used by conventional SAT-solvers is to strategically attempt to
assign values to the variables, and thereby reducing the size of the formula, making
solutions easier to find. If no solutions exist for that particular variable assignment, the
program then goes back and tries to assign other values to the variables, like a slightly
more sophisticated version of the naive approach. Can a similar method be used in
conjunction with our algebraic method?

It seems so: we can simulate assigning the value ⊥ to the variable ψi by adding the
equation xi−1 to our basis during the Buchberger algorithm. At the same time, we also
save a copy of the state of the algorithm at that time. We then continue the algorithm:
if the basis is found to not contain one, we can draw the conclusion that a solution
exists, and if a one is found, we go back to that previous state where we assigned the
value, replace the polynomial xi − 1 with xi, and continue as usual.

That way we cover all possible cases, since any potential solutions must have either
that xi = 1 or xi = 0. This type of strategic assignment may reduce running time.

Of course, if a solution is found this way, then we don’t get a perfect Gröbner basis:
we get the Gröbner basis for the ideal, with the additional polynomials xi − 1 or xi
added. This may make the technique less useful, depending on the situation.
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The fact that SAT-solving strategies can be used to calculate Gröbner bases is also
theoretically interesting - can the techniques be used to calculate bases in more general
cases? Maybe other SAT-solving techniques have corresponding applications for the
Buchberger algorithm? Maybe it is possible to view SAT-solving as a special case of the
Buchberger Algorithm, and find techniques used in algebra to solve the SAT-problem
instead?

5.3 Generalizations

The method of deciding solvability of a set polynomials using Gröbner bases can be
applied on much broader subjects than just the SAT-problem. We could for example
generalize it to multivalued logics, that is, boolean algebras where the variables can take
on more than two values.

One such boolean algebra is Lukasiewicz’s modal logic [2], where variables can be
assigned the values >, ⊥ and Unknown, where Unknown represents a variable that is
either > or ⊥, but we don’t know which. For example, the formulas Unknown ∧ >
evaluates to >, as the formula is evaluated to true whether or not Unknown represents
> or ⊥. Similarly, we get that Unknown ∨ ⊥ = Unknown, as the evaluation depends
entirely on the Unknown variable.

We can represent these types of formulas algebraically as follows: let the value ⊥ be
associated with 0, > with 1 and Unknown with 2, in the ring Z3. We can then transform
the ¬, ∨ and ∧ connectives as follows:

• T (¬ψ) = 2x + 1. This gives us T (¬⊥) = 1, T (¬>) = 0, T (¬Unknown) = 2, as
expected.

• T (ψ1 ∧ ψ2) = x21x
2
2 + 2x21x2 + 2x1x

2
2 + 2x1x2

• T (ψ1 ∨ ψ2) = 2x21x
2
2 + x21x2 + x1x

2
2 + x1x2 + x1 + x2

Once a boolean formula has been transformed like this, it can be solved by calculating
the Gröbner basis of the ideal generated by the polynomial, as in the Basic Algorithm.
Note though that since truth is represented by 1 in this transformation, we must subtract
1 from each formula, as the method finds zeros. If the Gröbner basis contains no constant
polynomials, the original boolean formula is solvable.

But the method works well even for problems not based on boolean formulas: many
other problems can be described by algebraic representations, and can then be solved
similarly.

The first step is to find some algebraic representation of the problem, where solutions
to the problem perfectly correspond to solutions to a system of polynomials. Generate
an ideal I from these polynomials. If needed, add equations to remove extraneous
solutions: For example, if only integer solutions are interesting, consider adding the
field equations to the ideal. In case only the solutions x = ai are interesting, the
equation (x − a1)(x − a2) . . . (x − an) can be added to the ideal. Once you have the
ideal, use the Buchberger algorithm to find a Gröbner basis for it. Don’t be afraid to
modify the Buchberger algorithm - in fact, it is probably necessary to get an algorithm
with acceptable efficiency. Once a Gröbner basis has been obtained, check if it contains
the element one. If it does, then the original problem is unsolvable. If not, the original
problem is solvable.
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5.4 Conclusion

It will come as no great surprise that this algorithm will not finish in polynomial time.
The time consuming part of this algorithm, the Buchberger algorithm, can actually take
up to double-exponential time in the worst case, severely reducing the usefulness of this
approach.

This algebraic approach does have some advantages however. Many modern SAT-
solvers work by guessing solutions; very cleverly, one might add, eliminating unnecessary
guesses and trying the most promising ones first. But this guessing strategy means that
they have a clear advantage if a solution exists: if no solutions exist, if the formula is
unsatisfiable, they tend to take slower, since they can’t get ”lucky” and find a solution
early.

The algebraic algorithm, however, works by searching for the 1 in the Gröbner basis.
It can also get lucky, by finding the 1 early. But the 1 is only in the basis if the formula
is unsatisfiable! This algebraic approach should therefor tend to go faster, if the formula
is unsatisfiable! The two approaches, searching for a solution and searching the Gröbner
basis, complement each other in this way.

This can be illustrated by the experiment in Section 4.6.2. The formulas f5 and f6
contained the same number of variables and clauses, but f5 only took a third of the time
to solve by PolyBoRi. This is likely related to the fact that f5 was unsatisfiable, and f6
was satisfiable. Note that X-solve, using the hybrid method, handled f6 faster than f5
- the hybrid method works by finding solutions, just like traditional SAT-solvers.

Of course, this is all theoretical - no known implementation of this idea has even come
close to beating the traditional SAT-solvers, whether the formulas are satisfiable or not.
Further development is needed before this idea can be effectively used in practice.
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[1] R. Fröberg: An Introduction to Gröbner Bases (1997), John Wiley & Sons.

[2] J. Chazarin, A. Riscos, J. A. Alonso, E. Briales: Multi-valued Logic and Gröbner
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[10] N. Eén, N. Sörensson: Minisat, a minimalistic, open-source SAT solver.
Available at http://minisat.se
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