
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Model reduction for piezo-mechanical systems

using balanced truncation

av

Mohammad Monir Uddin

2011 - No 5

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Model reduction for piezo-mechanical systems

using balanced truncation

Mohammad Monir Uddin
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ABSTRACT

In today’s scientific and technological world, physical and artificial pro-
cesses are often described by mathematical models which can be used for
simulation, optimization or control. As the mathematical models get more
detailed and different coupling effects are required to include, usually the
dimension of these models become very large. Such large-scale systems
lead to large memory requirements and computational complexity. To han-
dle these large models efficiently in simulation, control or optimization
model order reduction (MOR) is essential. The fundamental idea of model
order reduction is to approximate a large-scale model by a reduced model
of lower state space dimension that has the same (to the largest possible
extent) input-output behavior as the original system. Recently, the system-
theoretic method ”Balanced Truncation (BT)”, which was believed to be
applicable only to moderately sized problems, has been adapted to really
large-scale problems. Moreover, it also has been extended to so-called de-
scriptor systems, i.e., systems whose dynamics obey differential-algebraic
equations. In this thesis, a BT algorithm is developed for MOR of index-1
descriptor systems based on several papers from the literature. It is then ap-
plied to the setting of a piezo-mechanical system. The algorithm is verified
by real-world data describing micro-mechanical piezo-actuators. Several
numerical experiments are used to illustrate the efficiency of the algorithm.
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CHAPTER

ONE

INTRODUCTION AND OVERVIEW

Mathematical modeling and simulation have become an important part of
today’s scientific and technological world. For various purposes such as
control, analysis, optimization and design of physical systems, simulation
of mathematical models play an important role. In order to simulate ac-
curately, when a physical model is converted into a mathematical model,
in many cases its dimension becomes extremely large. Such large systems
arise in different disciplines including chemical engineering, mechanical
and micro-electro-mechanical systems, computational biology, aerospace
engineering etc. In order to solve engineering problems dealing with
these large-scale systems, enormously expensive computational efforts are
needed. Sometimes the simulations, dynamic analysis and design of higher
order systems are even impossible due to restrictions caused by computer
memory or the applied numerical algorithms. To circumvent the size prob-
lems, it is a good idea to reduce the dimension of the mathematical models.
The way how a higher dimensional model is reduced to a lower dimensional
one is called model order reduction (MOR). See [2, 8, 63, 48, 54, 3, 52, 38, 72] to
learn about motivations, applications, restrictions and techniques of MOR.

The general idea of model order reduction is to approximate a large-scale
model by a reduced model of lower state space dimension, while their
input-output behavior is preserved to the largest possible extent. It is a
numerical process which possesses the following goals:

• The size of the reduced order model should be very small.

• The reduction process is automatic (the algorithm does not require
knowledge about the nature of the underlying systems).
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• System properties such as stability and passivity are preserved.

• The algorithm must be efficient.

• The error between original and reduced systems (more precisely their
transfer function matrices), measured by some suitable norm, must
be as small as possible.

Depending on the characteristics of mathematical models, various tech-
niques as for example optimal Hankel norm approximation [24], singu-
lar perturbation approximation [40], moment matching approximation
[29, 21], balanced truncation (BT) [43, 64] are commonly used for MOR.
Among those techniques BT is one of the well accepted methods for large
sparse linear time invariant (LTI) systems. One of the great advantages
of this projection based method is that it does preserve the stability of the
original systems, i.e., if the original model is stable, then the reduced order
model is also stable. Moreover it has a global error bound and by choosing a
priori error tolerances one can adapt the dimension of the reduced models.
The key idea of this method is to delete the unnecessary states, which can
be detected if the system is in balanced coordinates. The basic balancing
technique is closely related to the solution of Lyapunov equations. Today,
it is well known that among several Lyapunov solvers alternating direction
implicit (ADI) methods are one of those attractive for very large sparse sys-
tems. Again, ADI methods require ADI shifts parameters, which is one more
computational task.

Piezo-mechanical systems (as in Figure 1.1) considered in this thesis are
highly complex systems, where an adaptive spindle support (Figure 1.1(a))
is used for additional fine positioning movements during machining oper-
ations (see [16, 44] for more details). In order to analyze (the mechanical
design and the performance of) this spindle support regarding control as-
pects, a mathematical model is formed (see [34]) by using a finite-element
(FE)-model (see Figure 1.2). The mathematical model of this adaptive
spindle support is a very large multi-input multi-output second order LTI
continuous-time system. It is an index-1 descriptor system (see Section 3.3)
which is highly sparse. In order to be able to simulate this model efficiently,
MOR is unavoidable. To apply the BT technique for MOR of such a sys-
tem, at first it is converted into first order form which is also an index-1
descriptor system. In this representation the size of the system becomes
larger. Under these circumstances, if the sparsity pattern of the original
system can be preserved, it will not only consume less memory in storing
but also the computation will be extremely fast. From the title and above
discussion the motivation of this thesis is now clear. The main objective is to
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Figure 1.1: The CAD model of the adaptive spindle support (a) and real
component (b) mounted in a parallel-kinematic machine (PKM) (image
source: [16], with courtesy to Fraunhofer IWU, Dresden, Germany)

Figure 1.2: Adaptive spindle support and finite element model (image
source: [16], with courtesy to Fraunhofer IWU, Dresden, Germany)
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develop a BT algorithm for large sparse index-1 descriptor systems with a
block-structure as imposed by the piezo-mechanical model to derive small
standard state-space systems that can be used within MATLAB/Simulink
for control design. The whole MOR process suggested in this thesis is
represented by a flowchart given in Figure 1.3.

Figure 1.3: Different steps of MOR for piezo-mechanical systems using BT

This thesis consists of 6 chapters including this introductory one. Chapter 2
contains some notations and a review of some fundamental concepts, and
results from linear algebra and system theory. The concepts of this chapter
are used throughout the thesis. Chapter 3 then introduces the model prob-
lems. This chapter concentrates on converting a second order model into
a first order model by preserving system characteristics like stability, spar-
sity etc in order to adapt it for the proposed algorithm. Several techniques
in reducing first order representations are discussed here elaborately. The
benefits of preserving the sparsity pattern are also shown by graphical il-
lustration.

In Chapter 4 an algorithm, namely the generalized sparse low rank Cholesky
factor (GSLRCF-)ADI methods, is introduced to solve the generalized Lya-
punov equations for the large sparse index-1 descriptor systems. The re-
lated issues such as computation of ADI shift parameters, stopping criteria
of the algorithm are included here. The efficiency of the algorithm is illus-
trated by numerical results at the end of the chapter.

Then Chapter 5 discusses the BT algorithms for MOR of large sparse index-
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1 descriptor systems. In this chapter two algorithms are introduced sep-
arately. One derives a reduced order model in a descriptor form and an-
other one can be used to find a reduced standard state space model. The
algorithms are checked by interesting application data coming from micro-
mechanical piezo-actuators. The numerical experiments are discussed elab-
orately at the end of this chapter.

Finally, Chapter 6 contains the conclusions of the thesis.
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CHAPTER

TWO

PRELIMINARY CONCEPT

In this chapter, we establish some notation and review some fundamental
concepts and results that will be used in the later chapters of this thesis.
The first section presents basic concepts from system and control theory,
emphasizing system representations from different points of view, their
classifications, controllability and observability, and transfer functions. The
second section contains some important definitions, propositions, and the-
orems form Linear Algebra and Matrix Theory. For the sake of conciseness,
profound discussion of a topic, and proofs of the theorems are omitted,
since details are available in the references listed at the end of the thesis.

2.1 System identification and their representations

Generally speaking, systems are devices that take an input, and yield an
output. Usually, the word system is associated with dynamics, i.e., with the
way a system evolves with time which can be modeled in various ways,
such as as continuous and discrete are most common. To describe a system,
we focus on the black box approach, given by the diagram in Figure 2.1.
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Figure 2.1: Black box

Here Σ denotes the system, u(t) the input or control signal, and y(t) the
output signal. The way the output signal depends on the input signals
is called the input-output relation [22]. Such a description of a system is
called an external representation. On the other hand an internal representation
of a system is nothing but a model and can be represented as difference
(discrete case) or differential equations (continuous case). For example, a
finite dimensional LTI continuous-time system is

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) +Du(t),

(2.1)

where t ∈ R is the time variable, x(t) ∈ Rn is the state of the system,
u(t) ∈ Rp is the system’s input or control, y(t) ∈ Rm is called system output,
and E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p are matrices. Likewise, a
finite dimensional LTI discrete-time system is

Exγ+1(t) = Axγ(t) + Buγ(t), xγ(t0) = x0,
yγ(t) = Cxγ(t) +Duγ(t),

(2.2)

where t ∈ Z. E, A, B, C and D can be defined as above.
Since the matrices E, A, B, C and D are time-invariant and linear maps in
the linear spaces, system (2.1) and (2.2) are known as linear time-invariant
systems. The dimension of the system, that is identified by the dimension of
the state is n. If p = m = 1, the system is said to be a single-input single-output
(SISO) system. A multi-input multi-output (MIMO) system has m, p > 1. For
the sake of convenience we will write a system Σ compactly as (A,B,C,D,E)
or as (A,B,C) if E is the identity matrix and D is absent to represent a system.
Neither the time-varying system, where A,B,C,D,E are depending on time
nor the discrete-time system will appear in later discussion, because they
are not involved in this thesis. If E is an identity matrix (i.e., E = I), system
in (2.1) is called a standard state space system. Otherwise the system in (2.1)
is in generalized form and known as generalized state space system. Again,
if E is invertible then the system in (2.1) can be written in the following
standard state space form:

ẋ(t) = Āx(t) + B̄u(t), x(t0) = x0,
y(t) = Cx(t) +Du(t),

(2.3)
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where Ā = E−1A and B̄ = E−1B.

2.1.1 Descriptor systems

A descriptor system is a special form of a generalized state space model.
Systems of the form in (2.1) with singular matrix E (det(E) = 0) are often
referred to as descriptor systems. In some references, they are also known as
singular systems or differential-algebraic equation (DAE) systems (see [60, 23]).
Such a system appears in different disciplines including power systems,
piezo- mechanical systems, electrical circuits, chemical engineering, multi
body systems and so on (see [41, 19, 33, 34, 8, 60]). The behavior of such
a system is different from a standard state-space system. The eigen-pencil
P = λE−A (see Definition 6) is an important tool for analyzing a descriptor
system. Let us consider the following descriptor system

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t),

(2.4)

where E,A,B,C, x(t),u(t), and y(t) are defined as in (2.1). The solution char-
acteristics of the singular system in (2.4) are determined by the correspond-
ing matrix pencil P [35]. More precisely, the system has a solution if P is
regular (see Definition 7). The sub-space generated by solutions x(t) is sep-
arated into two sub-spaces where one is formed by the eigen-spaces associ-
ated with the finite eigenvalues and another one corresponds to the infinite
eigenvalues of the system, respectively. Since E is singular, rank(E) = r < n
and det(P) is a (nonzero) polynomial of degree k (0 ≤ k ≤ r), then there exist
non-singular matrices P,Q ∈ Rn×n such that pre-multiplying (2.4) by P, and
applying

Qx =

(
z̄1(t)
z̄2(t)

)
(2.5)

the following standard canonical form is obtained (see [35, 23]):

˙̄z1(t) = A1z̄1(t) + B1u(t), (2.6a)

N ˙̄z2(t) = z̄2(t) + B2u(t), (2.6b)

y(t) = C1z̄1(t) + C2z̄2(t), (2.6c)

where z̄1 ∈ Rk and z̄2 ∈ Rn−k and A1,B1,B2,C1 and C2 are constant matrices
of appropriate dimensions and N is an (n− k)× (n− k) matrix of nilpotency
ν, i.e., all eigenvalues of N are zero and Nν = 0 while Ni , 0 for i ≤ ν−1 [35].
In the case when k = r the matrix N is simply the zero matrix and the system
in (2.4) is called index-1 system and the second sub-system in (2.6) is purely
algebraic [35]. On the other hand, if k < r and N is in Jordan canonical
form, then the index of the system ν > 1 is the size of the largest Jordan
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block [35]. We refer to [4, 36] for more details about the index of a system.
For any initial condition z̄1(0) and any input u(t), (2.6a) has the following
unique solution

z̄1(t) = eA1tz̄1(0) +

t∫

0

eA1(t−τ)B1u(τ) dτ, t ≥ 0, (2.7)

while the solution of (2.6b) including the initial condition z̄2(0) is uniquely
determined by the forcing inputs u(t) [35]:

z̄2(t) = −
ν−1∑

i=0

NiB2u(i)(t), t ≥ 0, (2.8)

where u(i)(t) denotes the ith derivatives of the input. Therefore, unlike
ordinary differential equation (ODE) systems, DAE systems do not have
smooth solutions for arbitrary initial conditions [35]. Only initial conditions
x(0) that are consistent, i.e., x(0), for which z̄2(0) satisfies (2.8) at t = 0, yield
smooth solutions [35]. Furthermore, unlike ODE system, if the index ν for
the DAE system in (2.4) exceeds one, then the solution of the DAE system
may depend on the derivatives of the forcing input u(t), which must be
accordingly smooth [35].

2.1.2 Input-output relation in a system

Using the Laplace transformation1 we can convert an equation from the ’time
domain’ into the ’complex domain’. Applying the Laplace transformation
to the system in (2.1), the following relation can be found

Y(s) = C(sE − A)−1BU(s) + C(sE − A)−1EX(0) +DU(s), (2.9)

where X(s), Y(s) and U(s) are Laplace transformations of x(t), y(t) and u(t),
respectively. The rational matrix valued function G(s) = C(sE − A)−1B + D
in (2.9) is called transfer function (transfer function matrix called by some
authors) (TF) of the system in (2.1). If the initial condition X(0) = 0 is given,
(2.9) gives the following relationship:

G(s) =
Y(s)

U(s)
. (2.10)

From (2.10), it is clear that the transfer function is nothing but the ratio of
the output of a system to the input of a system in the Laplace domain. The

1The Laplace transformation of a function f (t), for all t ≥ 0, is denoted by F(s) and defined

by (L[ f (t)] =)
∫ ∞

0
f (t)e−st dt, where s is the complex number (s = a + ib, with real number a,

b).
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TF is a powerful tools for simulation, stability analysis, and control design.
System characteristics like stability, order of a system, their classification
and frequency responses, etc. can fully be described by its TF . We would
like to refer to [14, 11] for properties with examples of TF.

Definition 1 ([42]):

Let G(s) be a transfer function of the system in (2.4), defined as (2.9). G(s)
is called proper if lims→∞G(s) < ∞ and strictly proper if lims→∞G(s) = 0.
Otherwise G(s) is called improper. ♦

For a descriptor system in (2.4), the TF can be divided into two parts
(see [42]), G(s) = Gsp(s) + P(s), where Gsp(s) is strictly proper and P(s) is
the polynomial part of G(s), respectively. One should remember that in
model order reduction we only reduce the order of the Gsp(s) part.

NOTE: Suppose that G(s) = Gsp(s) + P(s) is the transfer function of the full order

model (2.4) and Gr(S) = Grsp(s)+ P̂(s) be the transfer function of the reduced order
model. Then ‖G(s) − Gr(s)‖ = ‖Gsp(s) − Grsp(s)‖ (‖.‖ can be measured by some
suitable norm) is small for a good approximation of the strictly proper part.

Impulse response: For a comparison, we consider the transfer function in
(2.10) in the time domain;

h(t) =
y(t)

u(t)
; t ∈ R. (2.11)

This relationship between input and output is known as impulse response,
h(t). However, we can not use the impulse response in order to find the
system output from the system input like the transfer function. If input and
impulse response of a system are given, the system output can be calculated
by the following convolution2 operation:

y(t) = h(t) ∗ u(t). (2.12)

On the other hand, the frequency response of a system is as same as the
transfer function except that it is the input-output relation of the system
in the complex Fourier domain ({s = iωwhere, ω ∈ R}), not in the Laplace
domain. Frequency response of a system can be obtained from the TF in
(2.10), by using s = jωwhere ω ∈ R.

2The convolution of two functions, x(t) and y(t) is (x ∗ y)(t) =
∫ ∞
−∞ x(τ)y(t − τ) dτ
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2.1.3 Controllability and observability

Controllability:

For convenience, we consider the following standard state space system
without any output:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2.13)

where x(t),u(t) ∈ Rn are vectors, and A ∈ Rn×n,B ∈ Rn×m are matrices. The
solution to (2.13) is given by [2, 11, 17]

x(t) = eAtx0 +

t f∫

0

eA(t−τ)Bu(τ)dτ for t ≥ 0. (2.14)

The integrand in the above equation is a vector, including the integral of
eAτBu(t). So each scalar entry of x(t) is just equal to the corresponding scalar
entry of a vector in the right hand side. Now an interesting question comes
to mind, do we have control over the values of x(t), to reach a desired
state, through choice of u(t)? If the answer is affirmative, then the system is
controllable.

Definition 2 ( [71]):

A system in (2.13) or the pair (A,B) is said to be controllable over the
interval [0, t f ], if for any x0 ∈ R. there exists an input u(t), for t ∈ [0, t f ],
such that the state of (2.14) is x(t f ) = 0. ♦

To be more clear let us study three related issues with respect to the system
in (2.13):

• Set of reachable states [56] : For a fixed t ≥ 0, let Rt denote the set
of all states that are reachable at time t by some input function u(t).
Namely Rt is the set

Rt = {ξ ∈ Rn;∃ u(t) such that x(t; u) = ξ}. (2.15)

It turns out that Rt is a subspace of Rn.

• Controllable subspace [2, 11, 56]: If a state space equation as in (2.13)
is given, the controllability matrix C, is defined as follows:

C = [B AB · · · An−1B]. (2.16)

Note that, the rank of this matrix is full (equal to the dimension of
the system) if only if the system is fully controllable. Controllability
subspace, denoted by Cs is the image of the controllability matrix, i.e.,

Cs = Im[B AB · · · An−1B]. (2.17)
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Thus we see that like Rt, Cs is also a subspace of Rn.

• Controllability Gramian: Another object associated with the state
equation is the controllability Gramian. For each t > 0 the time
dependent controllability Gramian is defined to be the n × n matrix

Wc =

∞∫

0

eAτBBTeATτ dτ. (2.18)

We would like to refer to [57] for more details.

Now we are ready to state some important results regarding controllability.

Theorem 1 ( [17, 11, 56]):

The following are equivalent for the matrix pair (A,B) of the system
(2.13):

1. (A,B) is controllable.

2. The controllability matrix has full rank i.e., rank(C) = n.

3. The controllability Gramian is positive definite i.e., Wc > 0 for
some t > 0.

4. rank[sI − A,B] = n for all s ∈ C.

5. The pair (Ã, B̃) is controllable, where Ã = TAT−1 and B̃ = TB for
any nonsingular T ∈ Rn×n. ♦

A proof is available in [17, 11, 56].

Observability:

To illustrate observability, let us consider the following system which has
an output but no input

ẋ(t) = Ax(t) with x(t0) = x0,
y(t) = Cx(t).

(2.19)

The solution of this equation is clearly,

y(t) = CeAtx0 for t ≥ 0. (2.20)

Again the same question arises: Is it possible to find x0 from the above
equation? If the answer is yes, we say that the system (2.19) is observable.
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Definition 3 ( [12]):

A system as in (2.19) with initial state x(t0) = x0 is observable if the value
of the initial state can be determined from the system output y(t), that
has been observed through the time interval t0 < t < t f . If the initial
state can not be so determined, then the system is unobservable. ♦

NOTE: The notations of controllability and observability can be thought as dual
of each other and any result that we obtain for controllability has a counterpart in
terms of observability.
The following concepts are related to observability [17, 2]:

1. Observability matrix O =




C
CA
CA2

...
CAn−1




.

2. The unobservable subspace is Oun
s = ker(O).

3. Observable subspace Os = Im(O).

4. Observability Gramian Wo =
∫ ∞

0
eATτCTCeAτ dτ.

We conclude this subsection with the following theorem:

Theorem 2 ( [17, 71]):

The following are equivalent:

1. (A,C) is controllable pair.

2. The rank of the observability matrix O is full; i.e., rank(O) = n.

3. The observability Gramian is positive definite: Wo > 0.

4. rank

[
A − sI

C

]
= n for all s ∈ C.

5. There exists a similarity transformation T, such that TAT−1 =[
Ã11 0
Ã12 Ã22

]
and CT−1 =

[
C̃1 0

]
, where (C̃1, Ã11) is observable. ♦

A proof of this theorem is available in [17, 71].
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2.1.4 Stability

The stability of a system can be described in many different ways, such
as exponential stability [12], asymptotic stability, Lyapunov stability, BIBO
(bounded-input bounded-output) stability. Here, we include the concept
of stability of a system briefly from [11, 55, 60].

Definition 4:

A system as in (2.1) is called asymptotically stable if limt→∞x(t) = 0
(equilibrium point of the system) for all trajectories x(t) of Eẋ(t) = Ax(t).♦

A time-invariant continuous time linear system (2.1) is stable if Re(λi(A,E)) <
0 (E is nonsingular); ∀ i i.e., all eigenvalues of the pencil (λE−A) have neg-
ative real parts, because in that case, Definition 4 is satisfied [17]. Another
popular test, to measure stability of a system is the Lyapunov stability condi-
tion which is stated in the following theorem.

Theorem 3:

Consider a system in (2.1) with nonsingular matrix E. If the system is
stable then the continuous time generalized Lyapunov equation

AXET + EXAT = −Q (2.21)

has a unique Hermitian positive semi-definite solution X, for every Her-
mitian positive definite matrix Q. ♦

2.1.5 Realization

In Subsection 2.1.2, we have shown that for a given system as in (2.1) the
transfer function of order m × p has the following form

G(s) = C(sE − A)−1B +D, s ∈ C. (2.22)

A set of matrices E,A,B,C,D which satisfies (2.22) is called realization
of G(s) [2, 22]. We will denote such a realization by (E,A,B,C,D) or[

sE − A B

C D

]
. However, this realization for G(s) is not unique. Among

different relations of a particular transfer function G(s), we are interested in
the so called minimal one as defined in the following:

Definition 5 ( [42]):

A realization of the transfer function G(s) is called minimal if the matrices
E and A have smallest possible dimension. ♦



16 Chapter 2. Preliminary concept

Theorem 4 ( [42]):

Suppose that (E,A,B,C,D) is a realization of G(s) in (2.22) of the system in
(2.1), then (E,A,B,C,D) is minimal if and only if the system is controllable
and observable. ♦

2.1.6 Hankel operator and Hankel singular values

Recall that, L2(I) be the space of square integrable functions, defined on the
interval I. The Hankel operator HΣ, of the systemΣwhich maps past inputs
(u−) into future outputs (y+) is defined as follows:

HΣ : L2(R−)→ L2(R+), (2.23)

u− → y+ where y+(t) =

0∫

−∞

hΣ(t − τ)u−(τ) dτ, t ≥ 0.

In control theory, Hankel singular values are considered as a measure of
energy for each state in a system. They are the basis of balanced model
reduction, in which low energy states are discarded while high energy
states are preserved.
The Hankel singular values of a stable system Σ are denoted by:

σ1(Σ) > · · · > σq(Σ) with multiplicities ri, i = 1, 2, · · · ,q,
q∑

i=1

ri = n,

(2.24)
the singular values of HΣ defined by (2.23) which are equal to the square
roots of the eigenvalues for the product of the two Gramians [1], i.e.,

σi(HΣ) =
√
λi(WcWo).

2.2 Background in linear algebra and matrix theory

2.2.1 Generalized eigenvalue problem

Let us consider an ordered pair (A,E), where A,E ∈ Cn×n and a nonzero
vector x ∈ Cn. If there exist α, β ∈ C not both zero, such that

αAx = βEx, (2.25)

if α , 0, then

Ax = λEx, (2.26)
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the scalar λ =
β
α is called eigenvalue or characteristic value of the pair (A,E)

and x is an eigenvector corresponding to the eigenvalue λ. These are the
finite eigenvalues. On the other hand if (2.25) holds with α = 0 and β , 0,
then the eigenvalues of (A,E) are called infinite. The eigenvalue problem
associated with the pair (A,E) is known as generalized eigenvalue problem
(see [49, 5, 15, 69]). In the case E = I (identity matrix) we obtain the standard
eigenvalue problem.

Theorem 5 ( [69]):

Let A,E ∈ Cn×n and λ ∈ C be nonzero.

• λ is an eigenvalue of (A,E) iff 1
λ is an eigenvalue of (E,A).

• ∞ is an eigenvalue of (A,E) iff E is a singular matrix.

• ∞ is an eigenvalue of (A,E) iff 0 is an eigenvalue of (E,A).

• If E is nonsingular, the eigenvalues of (A,E) are exactly the eigen-
values of AE−1 and E−1A. ♦

Definition 6 ( [25]):

Let, A,E ∈ Cn×n be matrices, the expression A − λE with indeterminant
λ is called eigen pencil or matrix pencil. we denote this by P. ♦

The terms matrix pencil or matrix pair can be used interchangeably, i.e., if
any nonzero vector x is an eigenvector of the pencil P, it is also called an
eigenvector of the pair (A,E). Note that any λ ∈ C is an eigenvalue of (A,E)
iff A − λE is singular [69] i.e.,

det(λE − A) = 0. (2.27)

Equation (2.27) is known as characteristic equation of the pair (A,E), where
the function ∆(λ) = λE−A is the characteristic polynomial of degree n or less.

Definition 7 ( [69]):

A matrix pair (A,E), where A,E ∈ Cn×n is called singular if det(λE−A) = 0.
Otherwise it is called regular pair. ♦

To compute eigenvalues of large sparse matrices, the Krylov-based Arnoldi
process is one of the most powerful tools.

Definition 8 ( [15]):

Let A ∈ Rn×n and ν ∈ Rn with ν , 0 then,

Km(A, ν) = [ν,Aν, · · ·Am−1ν] (2.28)



18 Chapter 2. Preliminary concept

is called the mth Krylov matrix associated with A and ν. The correspond-
ing subspace

Km(A, ν) = span(ν,Aν, · · · ,Am−1ν) (2.29)

is called the mth Krylov subspace associated with A and ν. ♦

Theorem 6 ( [15, 65]):

Let the columns of Vm+1 = [ν1, ν2, · · · , νm+1] ∈ Rn×(m+1) form an orthog-
onal basis for Km+1(A, ν1), then there exists an (m + 1) × m unreduced
upper Hessenberg matrix [15]

Ĥm =




h11 h12 · · · h1m

h21 h22 · · · h2m

. . .
. . .

...
hm,m

hm+1,m




(2.30)

such that

AVm = Vm+1Ĥm. (2.31)

Conversely, a matrix Vm+1, with orthonormal columns satisfies a rela-
tion of the form in (2.31) only, if the columns of Vm+1 form a basis for
Km+1(A, ν1). ♦

Definition 9 ( [15, 65]):

Let the column of Vm+1 = [Vm, νm+1] ∈ Rn×m+1 form an orthogonal basis.

If there exists a Hessenberg matrix Ĥm ∈ Rm+1×m of the form in (2.30) so
that

AVm = Vm+1Ĥm, (2.32)

then (2.32) is called an (unreduced) Arnoldi decomposition of order m.♦

By a suitable partition of Ĥm, one can rewrite (2.32) as

AVm =
[
Vm νm+1

] [ Hm

hm+1,meT
m

]
= VmHm + hm+1,mνm+1eT

m. (2.33)

By the the orthogonality property of νm+1, (2.33) yields (see [65] or [49] for
details)

Hm = VT
mAVm. (2.34)

Note that Hm is a projection of A onto the Krylov subspaces Km(A, ν). As
a result, one can imagine that its eigenvalues are related to those of A and
these eigenvalues are known as Ritz values of A.
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Definition 10 ( [15]):

Let A ∈ Rn×n and let the columns of Vm ∈ Rn×m be orthonormal. The
m×m matrix Hm = VT

mAVm is called Rayleigh quotient, an eigenvalue λ of
Hm is called a Ritz value, and if ν is an eigenvector of Hm associate with
λ, then Vmν is called a Ritz vector belonging to λ. ♦

2.2.2 Projection matrix

A projector or projection matrix P is a square matrix that satisfies

P = P2. (2.35)

Such a matrix is also known as idempotent matrix. If P is a projector, I − P is
also a projector because

(I − P)2 = 1 − 2P + P2 = 1 − 2P + P = 1 − P.

I − P is called complementary projector to P [65].

Definition 11 ( [65]):

Let S1 and S2 be two orthogonal subspaces of Cm such that S1 ∩ S2 = {0}
and S1 + S2 = C

m, where S1 + S2 denote the span of S1 and S2, i.e., the set
of vectors s1 + s2 with s1 ∈ S1 and s2 ∈ S2. If a projector projects onto a
subspace S1 along a subspace S2 then it is called orthogonal projector. ♦

Theorem 7 ( [65]):

A projector P is orthogonal if and only if P = P∗ where P∗ is the Hermi-
tian. ♦

2.2.3 Singular value decomposition (SVD) and eigenvalue de-
composition

In this subsection we introduce two important decompositions in linear
spaces, namely the singular value decomposition and eigenvalue decom-
position briefly.

Definition 12:

If the columns of V ∈ Cn×n contain linearly independent eigenvectors of
A ∈ Cn×n, the eigenvalue decomposition of A is

A = VΛV−1, (2.36)

where Λ ∈ Cn×n is an n × n diagonal matrix whose entries are the eigen-
values of A. ♦
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Definition 13:

Let m,n ∈ R be arbitrary. Given A ∈ Cm×n, the singular value decomposition
of A is a factorization

A = UΣV∗, (2.37)

where U ∈ Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Rm×n is diagonal. In
addition, diagonal elements σ j ( j = 1, 2, · · · , k) of Σ are non-negative and
in decreasing order; i.e., σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, where k = min(m,n). ♦

This SVD is known as full singular value decomposition by some authors. On
the other hand, if U1 = (u1, · · · ,un) ∈ Cm×n, Σ1 = diag(σ1, σ2, · · · , σn) then
A = U1Σ1V∗. This factorization is known as thin SVD or economic SVD of A
(see [25] for details).
The following statements are true for a matrix A [65]:

1. The singular values σ1, σ2, · · · , σn of A are the square roots of the
eigenvalues of the symmetric positive semi-definite matrix ATA.

2. The right singular vectors are the eigenvectors of the matrix ATA, and
the left singular vectors are the eigenvectors of the matrix AAT.

3. The rank of A is r, the number of nonzero singular values.

4. If A = A∗, then the singular values of A are the absolute values of the
eigenvalues of A.

5. For A ∈ Cn×n, det(A) =
∏n

j=1 σ j.

6. A is the sum of rank-one matrices.

7. ‖ A ‖2= σ1 and ‖ A ‖F= (σ2
1
+ · · · + σ2

r )
1
2 .

8. The condition number of A is cond(A) = σmax

σmin
, where A ∈ Cn×n is non-

singular and σmax and σmin are the maximum and minimum singular
value, respectively of A.

2.2.4 Some important definitions

Vector norms and matrix norms [65]: Let X be a vector space.
A real valued function ‖ . ‖: X → R is said to be a norm on X if it satisfies
the following properties:

1. ‖ x ‖≥ 0 and ‖ x ‖= 0 iff x = 0,

2. ‖ x + y ‖≤‖ x ‖ + ‖ y ‖,

3. ‖ αx ‖= |α| ‖ x ‖,
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for any x ∈ X, y ∈ X and α ∈ R. Let x ∈ Cn. Then we define the vector
p − norm of x as

‖ x ‖p= (

n∑

i=1

‖ xi ‖p)
1
p , for 1 ≤ p < ∞.

In particular, when p = 1, 2,∞we have

‖ x ‖1 =
n∑

i=1

|xi|,

‖ x ‖2 =

√√
n∑

i=1

|xi|2,

‖ x ‖∞ = max
1≤i≤n

| xi | .

Let A = [ai j] ∈ Cm×n; then the matrix norm induced by a vector p−norm is
defined as

‖ A ‖p= sup
x,0

‖ Ax ‖p
‖ x ‖p

.

The matrix norms induced by vector p-norms are sometimes called induced
p-norms. In particular the induced matrix 1-norm and 2-norm can be com-
puted by

‖ A ‖1 = max
1≤ j≤n

‖ a j ‖1; a j is the jth column of A,

‖ A ‖2 =
√
λmax(A∗A).

The most important matrix norm which is not induced by a vector norm is
the Frobenius norm defined by

‖ A ‖F= (

m∑

i=1

n∑

j=1

| ai j |2)1/2. (2.38)

H∞ Space and H∞ norm [71]: H∞ is a (closed) subspace of
L∞( jR) (Banach space of matrix-valued or scalar-valued functions on jR)
with functions G(s) that are analytic and bounded in Re(s) > 0 (open right
half plane). The corresponding norm can be defined as

‖ G ‖∞= sup
Re(s)>0

σ[G(s)] = sup
ω∈R
σ[G( jω)]. (2.39)

Invariant subspaces: For a given transformation A, a subspace
S ⊂ Cn is called invariant, or A-invariant, if Ax ∈ S for every x ∈ S. In
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other words, that S is invariant for A means that S contains its image under
A i.e., AS ⊂ S. For example, 0, Cn, ker(A), img(A) are all A-invariant sub-
spaces.

Sparse matrices: A matrix with special structure (see Section 3.4 in
Chapter 3), that has relatively few nonzero entries is called sparse matrix.
A sparse matrix is a matrix that allows special techniques to take advan-
tage of the large number of zero elements and their locations. Usually,
standard discretizations of partial differential equations lead to large and
sparse matrices. More details about sparse matrices, their properties, their
representations, and the data structures used to store them, can be found in
[50].



CHAPTER

THREE

INTRODUCTION TO MODEL PROBLEMS

We now turn our attention to the study of some special model problems,
namely power system and piezo-mechanical models. How to reduce a higher
order system into state space representations, by preserving the system
properties (specially the sparsity) is one of the vital issues to discuss in this
chapter. In the first subsection we introduce general second order models,
whereas the second and third subsections, present power system models
and piezo-mechanical models, respectively. We will give some graphical
representations of system matrices in the later subsection. Reference papers
are [41, 19, 33, 10, 20, 34, 52, 53, 61].

3.1 Second order models

We consider LTI continuous-time second-order systems, as they arise in
many practical applications, including electrical circuits, mechanical sys-
tems, large structures and microsystems technology, etc [61]:

Mz̈(t) +Dż(t) + Kz(t) = B1u(t),
y(t) = C1ż(t) + C2z(t),

(3.1)

where M, D, and K are matrices of dimension n, B1 ∈ Rn×p, C1,C2 ∈ Rm×n,
z(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input vector and y(t) ∈ Rm is
the output vector. In mechanical engineering the matrices M, D and K have
special names: mass, damping and stiffness matrix, respectively. In case
D = 0, the system is called undamped. Equivalently, the model in (3.1) can
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be written as
[
F 0
0 M

]

︸  ︷︷  ︸
E

[
ż(t)
z̈(t)

]

︸︷︷︸
ẋ(t)

=

[
0 F

−K −D

]

︸      ︷︷      ︸
A

[
z(t)
ż(t)

]

︸︷︷︸
x(t)

+

[
0

B1

]

︸︷︷︸
B

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
C

[
z(t)
ż(t)

]
,

(3.2)

where E,A ∈ R2n×2n, B ∈ R2n×p, and C ∈ Rm×2n. This is the first order
representation of the system in (3.1). The choice of F ∈ Rn×n is optional.
For simplicity one may choose F = I. Most of the cases, M, K and D are
symmetric and even positive definite and K is nonsingular. Therefore it is
recommended to write (3.1) as the following first order form:

[
−K 0
0 M

]

︸     ︷︷     ︸
E

[
ż(t)
z̈(t)

]

︸︷︷︸
ẋ(t)

=

[
0 −K
−K −D

]

︸      ︷︷      ︸
A

[
z(t)
ż(t)

]

︸︷︷︸
x(t)

+

[
0

B1

]

︸︷︷︸
B

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
C

[
z(t)
ż(t)

]
.

(3.3)

In this case, E is symmetric since M and K are symmetric. A is also symmetric
as K and D are symmetric. A second order system in (3.1) can also be
transferred into a state space form as (see [52])

[
0 F

M D

]

︸   ︷︷   ︸
E

[
z̈(t)
ż(t)

]

︸︷︷︸
ẋ(t)

=

[
F 0
0 −K

]

︸    ︷︷    ︸
A

[
ż(t)
z(t)

]

︸︷︷︸
x(t)

+

[
0

B1

]

︸︷︷︸
B

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
C

[
ż(t)
z(t)

]
,

(3.4)

which is equivalent to (3.2). This representation might be helpful to have
numerical stability of the system if M is badly conditioned. In this case the
common choice of F can be I and that changes the system in (3.4) into [52],

[
0 I
M D

]

︸   ︷︷   ︸
E

[
z̈(t)
ż(t)

]

︸︷︷︸
ẋ(t)

=

[
I 0
0 −K

]

︸   ︷︷   ︸
A

[
ż(t)
z(t)

]

︸︷︷︸
x(t)

+

[
0

B1

]

︸︷︷︸
B

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
C

[
ż(t)
z(t)

]
.

(3.5)
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Also, the choice of F = M in (3.4) would again preserve the symmetry and
might be an interesting choice. Note that, in the case of an undamped
model, one can put 0 (zero matrix) instead of D, in each of the above first
order representations.

Note: The input-output relation of the system in (3.1) can directly be de-
scribed by the following transfer function (or transfer function matrix)
(see [61, 51])

G(s) = (C1 + sC2)(s2M + sD + K)B1, where s ∈ C. (3.6)

3.2 Power system models

Linearizing around the equilibrium point, a stable time invariant power
system model can be represented by a set of differential and algebraic
equations [41, 19, 33, 10, 20]:

ẋ(t) = Jax1(t) + Jbx2(t) + B1u(t),
0 = Jcx1(t) + Jdx2(t) + B2u(t),

y(t) = C1x1(t) + C2x2(t) +Dsu(t),
(3.7)

where x1(t) ∈ Rn1 is the state vector, x2(t) ∈ Rn2 is the vector of algebraic
variables, u(t) ∈ Rp is the input vector, and y(t) ∈ Rm is the vector of
output variables. Ja, Jb, Jc, Jd are sub-matrices of the system’s Jacobian
matrix [41, 19]. Jd is always invertible and for large systems Ja, Jb, Jc,
Jd are highly sparse [10, 41, 19]. However, this is the descriptor form of
power system models. Eliminating the algebraic variables from (3.7), we
can reduce the system into standard state space form

ẋ(t) = (Ja − JbJ−1
d

Jc)x1(t) + (B1 − JbJ−1
d

B2)u(t),

y(t) = (C1 − C2J−1
d

Jc)x1(t) + (Ds − C2J−1
d

B2)u(t).
(3.8)

Now, consider Ja − JbJ−1
d

Jc = J, B1 − JbJ−1
d

B2 = B, C1 − C2J−1
d

Jc = C and

Ds − C2J−1
d

B2 = Da to write the set of equations in (3.8) as a simpler form

ẋ(t) = Jx1(t) + Bu(t),
y(t) = Cx1(t) +Dau(t),

(3.9)

where J ∈ Rn1×n1 , B ∈ Rn1×p, C ∈ Rm×n1 and Da ∈ Rm×p are matrices.

The descriptor form in (3.7) can also be written in a compact form as

Eż(t) = Az(t) + Fu(t),
y(t) = Lz(t) +Dsu(t),

(3.10)
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where E =

[
I 0
0 0

]
∈ R(n1+n2)×(n1+n2), A =

[
Ja Jb

Jc Jd

]
∈ R(n1+n2)×(n1+n2), F =

[
B1

B2

]
∈

R(n1+n2)×p, L =
[
C1 C2

]
∈ Rm×(n1+n2) and z(t) =

[
x1(t)
x2(t)

]
∈ Rn1+n2 .

3.3 Piezo-mechanical models

The piezo mechanical model considered in this thesis is assumed to be given
in the form [34]

Mξ̈(t) +Dξ̇(t) + Kξ(t) = Qu(t),
y(t) = Gξ(t),

(3.11)

where M ∈ Rn×n, D ∈ Rn×n, K ∈ Rn×n, Q ∈ Rn×p and G ∈ Rm×n are known
as mass, damping, stiffness, input and output matrices, respectively and
all are highly sparse. M is singular. Reordering M, system in (3.11) can be
reformulated as

[
M1 0
0 0

] [
z̈(t)
ϕ̈(t)

]
+

[
D1 0
0 0

] [
ż(t)
ϕ̇(t)

]
+

[
K11 K12

KT
12

K22

] [
z(t)
ϕ(t)

]
=

[
Q1

Q2

]
u(t),

y(t) =
[
G1 G2

] [z(t)
ϕ(t)

]
,

(3.12)

where z(t) ∈ Rn1 , ϕ(t) ∈ Rn2 , n1 + n2 = n, M1 is the mechanical mass ma-
trix, D1 is the mechanical damping matrix, and K is the stiffness matrix
(including mechanical (K11), electrical (K22 ) and coupling (K12) terms). The
general force quantities (mechanical forces and electrical charges) are cho-
sen as the input quantities u, and the corresponding general displacements
(mechanical displacements and electrical potential) as the output quanti-
ties y. The total mass matrix contains zeros at the locations of electrical
potential. More precisely, the electrical potential of piezo-mechanical sys-
tems (the electrical degree of freedom) is not associated with an inertia.
The equation of motion of a mechanical system can be found in [45] (eq.
1). This equation results from a finite element discretization of the balance
equations. For piezo-mechanical systems these are the mechanical balance
of momentum (with inertia term) and the electro-static balance. From this,
electrical potential without inertia term is obtained. Thus, for the whole
system (mechanical and electrical dof) the mass matrix has rank deficiency.
And so called index-1 system is arisen. This is the basic difference between
the piezo-mechanical and a general mechanical system. In the general me-
chanical system the piezo part is absent. Therefore, the mass matrix has full
rank in the general mechanical system. See [45] for more details. Equation
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(3.12) is equivalent to

M1z̈(t) +D1ż(t) + K11z(t) + K12ϕ(t) = Q1u(t),
KT

12
z(t) + K22ϕ(t) = Q2u(t),

y(t) = G1z(t) + G2ϕ(t).
(3.13)

Let us consider z(t) = x1(t), ż(t) = x2(t) ⇒ ż(t) = ẋ1(t), and z̈(t) = ẋ2(t).
Applying these to (3.13), we obtain the following first order form of the
piezo-mechanical model (3.11)




I 0 0
0 M1 0
0 0 0







ẋ1(t)
ẋ2(t)
ϕ̇(t)


 =




0 I 0
−K11 −D1 −K12

−KT
12

0 −K22







x1(t)
x2(t)
ϕ(t)


 +




0
Q1

Q2


 u(t),

y(t) =
[
G1 0 G2

]



x1(t)
x2(t)
ϕ(t)


 .

(3.14)

Let us consider

[
I 0
0 M1

]
= E1,

[
0 I
−K11 −D1

]
= Ja,

[
0
−K12

]
= Jb,

[
−KT

12
0
]
= Jc,

[
−K22

]
= Jd,

[
0

Q1

]
= B1, Q2 = B2,

[
G1 0

]
= C1, G2 = C2 and

[
x1(t)
x2(t)

]
= x(t),

and using in (3.14),

[
E1 0
0 0

]

︸     ︷︷     ︸
E

[
ẋ(t)
ϕ̇(t)

]
=

[
Ja Jb

Jc Jd

]

︸  ︷︷  ︸
A

[
x(t)
ϕ(t)

]
+

[
B1

B2

]

︸︷︷︸
F

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
L

[
x(t)
ϕ(t)

]
,

(3.15)

where E ∈ R(2n1+n2)×(2n1+n2), A ∈ R(2n1+n2)×(2n1+n2), B ∈ R(2n1+n2)×p, and C ∈
Rm×(2n1+n2). Jd is always invertible. System in (3.15) is an index-1 descriptor
system (see Chapter 2). Note that matrices E, A, F, and L are extremely
sparse. Since Jd is invertible one can easily put system in (3.15) as the
following generalized state space form

E1ẋ(t) = Jx(t) + Bu(t),
y(t) = Cx(t) +Dau(t),

(3.16)

where J = (Ja − JbJ−1
d

Jc) ∈ R2n1×2n1 , B = (B1 − JbJ−1
d

B2) ∈ R2n1×p, C = (C1 −
C2J−1

d
Jc) ∈ Rm×2n1 and Da = (−C2J−1

d
B2) ∈ Rm×p, or the following standard

state space form

ẋ(t) = Jx(t) + Bu(t),
y(t) = Cx(t) +Dau(t),

(3.17)
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where J = E−1
1

J and B = E−1
1

B. However, neither the representation in (3.16)
nor in (3.17) is our desired form, sice in both cases system matrices J and

J are dense. Although, the dimension of the system in (3.15) is larger, the
system matrices are highly sparse in this representation. We will discuss
this in the coming section.

3.4 Graphical representation of the system matrices

The aim of this section is to show the sparsity pattern and the comparison
of standard state space form and it’s descriptor form of the models that
are introduced in the above Sections. Figure 3.1 shows a power system
model from [20]. Figure 3.1a shows the sparsity pattern of the unreduced
Jacobian matrix A when the model is put as a descriptor form in (3.10)
where the dimension of this matrix is 7135. When this model is put into
standard state space form (3.9), the dimension of J (Figure 3.1b) is only 606,
but the number of non-zero elements is larger than that of the descriptor
form. Figure 3.2 presents the sparsity pattern of the piezo-mechanical
model considered from [34]. Figure 3.2a, Figure 3.2b and Figure 3.2c are
showing the sparsity pattern of the mass, damping and stiffness matrices
respectively in (3.11). Figure 3.2d and Figure 3.2e are showing the sparsity

pattern of the matrices E1 and A =

[
Ja Jb

Jc Jd

]
, respectively when the model is

represented in descriptor form (3.15). Figure 3.2f shows the sparsity pattern
of the matrix J = (Ja− JbJ−1

d
Jc) of the state space form of the piezo-mechanical

model in (3.16). From Figure 3.2d and Figure 3.2e one can easily identify
that dealing with the representation of the piezo-mechanical model in (3.15)
is convenient in the MOR algorithms.

(a) System matrix A in (3.10) (b) System matrix J in (3.9)

Figure 3.1: Sparsity patterns of the power system model (data source: [20])
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(a) Mass matrix M (b) Damping matrix D

(c) Stiffness matrix K (d) Matrix E1

(e) Matrix A (f) Matrix J

Figure 3.2: Sparsity patterns of the piezo-mechanical model (data
source: [34])
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CHAPTER

FOUR

GENERALIZED SPARSE LRCF-ADI METHODS FOR
SOLVING LYAPUNOV EQUATIONS OF LARGE

SPARSE SYSTEMS

It is well known that the most expensive part in approximating a large
system via balanced truncation is the solution of two Lyapunov equations
for the controllability Gramian and observability Gramian. Many books,
journals and research papers introduce numerous techniques or methods to
solve Lyaponuv equations exactly as well as approximately. Among these
methods, Bartels-Stewart methods [6], Hammarling methods [32], Krylov sub-
space methods [39], ADI methods [67], low rank iterative methods [62], and later
low rank Cholesky factor ADI methods [47, 39, 7] that have been developed over
the last decades are remarkable. But in real life, problems are not confined
with a particular size or structured indeed. As the methods become more
efficient, the size of the feasible and the desired problems grow. As a result
research is still going on in developing more and more efficient techniques.
This chapter studies one such method; sparse low rank Cholesky factor ADI
introduced in [20] and this idea is extended to the generalized case.

The first section gives a brief overview of past work on ADI methods.
GSLRCF-ADI (generalized sparse low rank Cholesky factor ADI) algorithm
is discussed in the second section. Finally the third section contains some
numerical results.
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4.1 A brief review of ADI methods

For convenience, let us recall the following LTI continuous-time system

E1ẋ(t) = Jx(t) + Bu(t), x(t0) = x0,
y(t) = Cx(t) +Dau(t),

(4.1)

where E1 is a nonsingular matrix, J = (Ja − JbJ−1
d

Jc), B = B1 − JbJ−1
d

B2, C =

C1 − C2J−1
d

Jc and Da = −C2J−1
d

B2. The sub-matrices Ja, Jb, Jc, Jd, B1, B2, C1,
C2 are defined in the earlier chapter. x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rm are
state, input and output vectors, respectively. When E1 = I (identity matrix),
clearly (4.1) is a standard state space system. However one can write (4.1)
as a descriptor form:

[
E1 0
0 0

]

︸  ︷︷  ︸
E

[
ẋ(t)
ϕ̇(t)

]
=

[
Ja Jb

Jc Jd

]

︸  ︷︷  ︸
A

[
x(t)
ϕ(t)

]
+

[
B1

B2

]

︸︷︷︸
F

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
L

[
x(t)
ϕ(t)

]
.

(4.2)

If the system in (4.1) is stable, the controllability Gramian Wc ∈ Rn×n and the
observability Gramian Wo ∈ Rn×n are the unique solutions of the following
pair of continuous-time algebraic Lyapunov equations (CALE) [31]:

• standard case (when E1 = I):

JWc +WcJT = −BBT [controllability CALE], (4.3a)

JT
Wo +WoJ = −CTC [observability CALE], (4.3b)

• generalized case:

JWcE
T
1 + E1WcJT = −BBT [controllability CALE], (4.4a)

JT
WoE1 + ET

1 WoJ = −CTC [observability CALE]. (4.4b)

Note that controllability Lyapunov equations and observability Lyapunov
equations are dual of each other. Therefore, we emphasize on the control-
lability Lyapunov equations through out the chapter.
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The ADI iteration was first introduced by the authors in [46] to solve
parabolic and elliptic difference equations. In general formulation, con-
sider a linear system of the form

(H + V)y = b, (4.5)

where b is an n−dimensional vector. The matrices H and V are commuting,
positive definite and symmetric. H may be represented as the discretiza-
tion in x−direction, whereas V may be represented as the discretization in
y−direction. Usually, the ADI method is proceeding in two stages. At first
a half-step is to take in the direction H implicitly and in the direction V
explicitly, then a half-step is to take in the direction V implicitly and in the
direction H explicitly. Now applying this idea to the general problem (4.5)
the equations for the ADI method can be written as:

(H + µ jI)y j− 1
2
= (µ jI − V)y j−1 + b,

(V + µ jI)y j = (µ jI −H)y j− 1
2
+ b,

(4.6)

where µ1, µ2, · · · are called ADI shift parameters. Author in [67] shows that,
one can considers (4.3a) as a ADI model problem, and the (approximate)
solution of Wc can be obtained by following iterations [31]:

(J + µiI)W
i− 1

2
c = −BBT −W

i
c(JT − µiI), (4.7a)

(J + µiI)(W
i
c)
∗ = −BBT − (W

i− 1
2

c )∗(JT − µiI), (4.7b)

where W0
c = 0, and ADI shift parameters P = {µ1, µ2, · · · } ⊆ C− (open left

half complex plane). Combining (4.7a) and (4.7b), one can find the following
single equation:

W
i
c =(J − µ∗i I)(J + µiI)

−1
W

i−1
c [(J − µ∗i I)(J + µiI)

−1]∗

− 2ρi(J + µiI)
−1BBT(J + µiI)

−∗, (4.8)

whereρi = real(µi). The spectral radius of the matrix
∏l

i=1

(J−µ∗
i
I)

(J+µiI)
, denoted by

ρsr, determines the rate of ADI convergence, where l is the number of shifts
used [31]. Note that since the matrix J is asymptotically stable, ρsr < 1 [31].
Smaller ρsr guarantees faster convergence [20]. The minimization of ρrs

with respect to shift parameters µi is called the ADI mini-max problem [47]:

{µ1, · · · , µl} = arg min
µ1,µ2,··· ,µl

max
λ∈Λ(J)

l∏

i=1

| µi − λ |
| µi + λ |

, (4.9)

which gives the idea to generate the optimal and suboptimal ADI param-
eters. Here, Λ(J) denotes the spectrum of J. One can use single shift
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(µi = µ; i = 1, 2, · · · l) throughout the ADI iteration. Then the ADI iteration
reduces to the Smith method which can be summarized as follows [31]

W
k
cs = −2µ

k−1∑

j=0

J
j
µBµB

T
µ(J

j
µ)

T, (4.10)

where

Jµ = (J − µI)(J + µI)−1,

Bµ = (J + µI)−1B.

However, later Penzl showed in [47], although Smith method is convenient
in using single shift, the rate of convergence is not up to mark. And he
proposed that instead of a single shift, if l number of shifts are used, then
the ADI convergence rate is faster. He also added that if one uses more
shifts than l the rate of convergence is not improved further (see [47] for
more details). Penzl introduces a set of l suboptimal shift parameters which
can be chosen by a heuristic procedure that will be discussed later.

LRCF-ADI iterations: If we assume that (BBT) in (4.3a) has lower
rank (r) compared to the order of the system (n) (r ≤ p << n), then the
numerical rank of Wi

c in (4.8) is usually small. Therefore one can compute
a low rank factor Zi, instead of Wi

c from (4.8), using the outer product

W
i
c = ZiZ

T
i . (4.11)

This version of ADI iteration is known as LR-ADI in [47], CF-ADI in [39],
LR-smith in [47], and LRCF-ADI in [7]. The key idea of LRCF-ADI is to
use (4.11) in (4.8), and calculate the Cholesky factor Zi, equating the terms
from both sides, which gives

Zi = [(J − µiI)(J + µiI)
−1Zi−1

√
−2ρi(J + µiI)

−1B]. (4.12)

Therefore, the ADI algorithm can be reformulated in terms of the Cholesky
factor Zi as

Z1 =
√
−2ρ1(J + µ1I)−1B, Z1 ∈ Rn×p,

Zi = [(J − µiI)(J + µiI)
−1Zi−1

√
−2ρi(J + µiI)

−1B], Zi ∈ Rn×ip,
(4.13)

where ρi = real(µi) < 0, with i = 2, 3, · · · , imax and imax is the maximum
number of iterations. In this formulation, the number of columns in each
iteration is increased by p (the number of columns in B). However, by using
a clever reordering the above LRCF-ADI method can be reformulated as
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follows (see [31, 39] for details computation):

Z1 = V1 =
√
−2ρ1(J + µ1I)−1B, (4.14)

Vi =

√
ρi

ρi−1
[Vi−1 − γi(J + µiI)

−1Vi−1], (4.15)

Zi = [Zi−1 Vi], i = 2, 3, · · · , imax, (4.16)

where γi = µi + µ
∗
i−1

and shift parameters are used in cyclic way (see [31]
for further details). The whole procedure is summarized in Algorithm 4.1.

Algorithm 4.1 [7] LRCF-ADI (for solving CALE (4.3a))

Input: J, B, P = {µ1, µ2, · · · , µimax}.
Output: Z = Zimax , such that ZZT ≈Wc.

1. V1 =
√
−2Re(µ1)(J + µ1I)−1B.

2. Z1 = V1.
for i = 2 : imax do

3. Vi =

√
Re(µi)

Re(µi−1) (Vi−1 − (µi + µ
∗
i−1

)(J + µiI)
−1Vi−1).

4. Zi = [Zi−1 Vi].
end for

Sparse low rank Cholesky factor ADI (SLRCF-ADI) methods

The most expensive operations in LRCF-ADI algorithm outlined above
are the solutions of linear system with the operators (J + µiI), where i =
1, 2, · · · , imax in the Steps 1& 3. If the matrix J in the system (4.1) is not
sparse or has a poor sparsity pattern, LRCF-ADI is too expensive be-
cause of solving a linear system to have the expression (J + µ1I)−1B and
(J+µiI)

−1Vi−1 in the Step 1 and Step 3, respectively of the Algorithm 4.1. Un-
der this circumstances, the SLRCF-ADI method introduced in [20], solves
the same linear system of equations by operating on the sparse descriptor
form of the system. Therefore the computational procedure is more effi-
cient. One can assume that the basic difference between LRCF-ADI and
SLRCF-ADI is in solving a linear system for the expression (J +µ1I)−1B and
(J + µiI)

−1Vi−1; {i = 2, 3, · · · , imax}, respectively in the Algorithm 4.1. The
procedure for the SLRCF-ADI is as follows.

The expression X1 = (J + µ1I)−1B can be assumed as a solution of the linear
system

(J + µ1I)X1 = B. (4.17)

Since, J = (Ja − JbJ−1
d

Jc) and B = (B1 − JbJ−1
d

B2), (4.17) can be reformed to

(Ja − JbJ−1
d Jc + µ1I)X1 = B1 − JbJ−1

d B2. (4.18)
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With X2 = −J−1
d

JcX1 + J−1
d

B2, (4.18) implies

[
Ja + µ1I Jb

Jc Jd

] [
X1

X2

]
=

[
B1

B2

]
. (4.19)

System of linear equations in (4.19) can easily be solved, for X1 by using
any convenient linear system solver. To compute (J + µiI)

−1Vi−1, in Step 3
solve the following system of linear equations:

[
Ja + µiI Jb

Jc Jd

] [
X1

X2

]
=

[
Vi−1

0

]
, (4.20)

for X1. The complete procedure is summarized in the Algorithm 4.2. The

Algorithm 4.2 [20] Sparse LRCF-ADI (for solving CALE (4.3a))

Input: Ja, Jb, Jc, Jd, B1 and B2 and P = {µ1, µ2, · · · , µimax}.
Output: Z = Zimax , such that ZZT ≈Wc.

1. Solve (4.19) for X1.
2. Compute V1 =

√
−2Re(µ1)X1.

3. Set Z1 = V1.
for i = 2 : imax do

5. Solve (4.20) for X1.

6. Determine Vi =

√
Re(µi)

Re(µi−1) (Vi−1 − (µi + µ
∗
i−1

)X1).

4. Zi = [Zi−1 Vi].
end for

low rank approximate solution Z of the observability Lyapunov equation
(4.3b), for observability Gramian (ZZT ≈ Wo), use the same algorithm as
above. In that case, for X1 in Step 1, solve (4.19) by replacing Ja, Jb, Jc, Jd

B1, and B2 by JT
a , JT

c , JT
b

, JT
d

, CT
1

and CT
2

, respectively. And solve (4.20), for X1

in Step 5 by replacing Ja by JT
a , Jb by JT

c , Jc by JT
b

and Jd by JT
d

. See [20] for
further details.

4.2 Generalized sparse low rank Cholesky factor ADI

(GSLRCF-ADI) methods

This section includes GSLRCF-ADI methods for solving GCALE (4.4) of the
system (4.1) by exploiting the sparsity of the descriptor representation in
(4.2). An algorithm namely GLRCF-ADI for solving GCALE is stated in [51]
(see Chapter 5 for details). But unfortunately this technique is not efficient
when index-1 system in (4.2) converts into a state space form in (4.1). Since,
in this formulation J is not sparse, as a result computational cost is extreme
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high. Moreover, in some cases this formulation is not possible at all for
a large-scale system. Under this circumstances we can use the technique
stated in SLRCF-ADI methods outlined above.

One can relate LRCF-ADI and GLRCF-ADI algorithm; when controllability
GCALE in (4.4a) is solved by GLRCF-ADI, compute (J + µ1E1)−1B instead
of (J + µ1I)−1B in the Step 1 of the Algorithm 4.1. And in the Step 3 of the
same algorithm, (J + µiI)Vi−1 is changed by (J + µiE1)(E1Vi−1). Expression
(J + µ1E1)−1B is nothing but the solution of the linear system

[
Ja + µ1E1 Jb

Jc Jd

] [
X1

X2

]
=

[
B1

B2

]
, (4.21)

for X1. Likewise, X1, the solution of the linear system
[
Ja + µiE1 Jb

Jc Jd

] [
X1

X2

]
=

[
E1Vi−1

0

]
, (4.22)

where i = 2, 3, · · · , imax, is the expression (J+µiE1)(E1Vi−1). Now, computing
X1 from (4.21) and (4.22), respectively and plug in the Step 2 and Step 6,
respectively in the Algorithm 4.2, the low rank approximation of controlla-
bility Gramian of GCALE can be obtained. This is known as GSLRCF-ADI
in this paper.
The complete procedure of GSLRCF-ADI method is shown in Algorithm-
4.3 .

Algorithm 4.3 Generalized sparse LRCF-ADI (GSLRCF-ADI) method for
solving GCALE (4.4a)

Input: E1, Ja, Jb, Jc, Jd, B1 and B2 and P = {µ1, µ2, · · · , µimax}.
Output: Z = Zimax such that ZZT ≈Wc.

1. Solve (4.21) for X1.
2. Compute V1 =

√
−2Re(µ1)X1.

3. Set Z1 = V1.
for i = 2 : imax do

5. Solve (4.22) for X1.

6. Determine Vi =

√
Re(µi)

Re(µi−1) (Vi−1 − (µi + µ
∗
i−1

)X1).

4. Set Zi = [Zi−1 Vi].
end for

When solving (4.4b) for the low rank approximation Z of the observability
Gramian Wo, such that ZZT ≈Wo, with the Algorithm 4.3, inputs are E1, Ja,
Jb, Jc, Jd, C1 and C2. Replace E1, Ja, Jb, Jc, Jd, B1 and B2 in (4.21) by ET

1
, JT

a , JT
c ,

JT
b

, JT
d

, CT
1

and CT
2

respectively and solve it for X1. Then this X1 put in step 2
of the Algorithm 4.3. Similarly for X1 in Step 6, solve (4.22) replacing E1 by
ET

1
, Ja by JT

a , Jb by JT
c , Jc by JT

b
and Jd by JT

d
.
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4.2.1 ADI shift parameter selection

The approximate solutions of Lyapunov equations in (4.4) by GSLRCF-ADI
methods, mentioned above converge to the exact solutions if a system is
asymptotically stable [62]. However, proper selection of ADI parameters
is one of the crucial task for fast convergence. It is mentioned earlier that
ADI optimal parameters µi where i = {1, 2, · · · , l} are the solutions of the
discrete rational mini-max problem (4.9), where Λ is the full spectrum of

J = (E−1
1

J) [67]. Since the entire spectrum of J may not be easily available,
instead of solving (4.9), one can solve the following problem to compute
ADI optimal shifts [39].

min
µ1,µ2,··· ,µl

max
λ∈R

l∏

i=1

| µi − λ |
| µi + λ |

, (4.23)

where R is the region in the open left half-plane. The parameters {µi} for
i = {1, 2, · · · , l} are called optimal if they satisfy mini-max problem (4.23).
But in practice, we compute near-optimal parameters, which are known
as ADI suboptimal parameters or ADI suboptimal shifts [47]. Several tech-
niques are proposed in different papers to compute ADI shift parameters,
see [66, 59, 47, 9] for example. Many papers investigated the performance
of these techniques (see [39, 62, 8, 7, 58, 51, 7] and the references therein).

Here, we consider the technique proposed in [47], called heuristic procedure.
The key ideas of heuristic procedure are as follows:

• Determine R based on the approximation of the dominant spectrum

(in magnitude) of J. Therefore, compute a set R+ containing K+ largest
(magnitude) and a set (1/R−) (R− is the set, containing K− largest Ritz-

values of inv(J)) containing K− smallest (magnitude) stable Ritz-values

of J via the Arnoldi process. Then apply R = R+ ∪ (1/R−).

• Choose the suboptimal ADI parameters P = {µ1, · · · , µl} among the
elements of R since the function

Sp(λ) =

l∏

i=1

| µi − λ |
| µi + λ |

, (4.24)

becomes small overΛ(J) if there is one of the shifts µi in the neighbor-
hood of each eigenvalue [47].

The complete heuristic procedure is shown in the Algorithm 4.4.
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Algorithm 4.4 [47] Heuristic procedure to compute suboptimal ADI shifts
for solving (4.4)

Input: E1, Ja, Jb, Jc, Jd, l, K+, and K−.
Output: P = {µ1, µ2, · · · , µl}.

1. Consider J = E−1
1

(Ja − JbJ−1
d

Jc)
2. Choose a vector ν ∈ Rn,which may be random or a particular choice.

3. Perform K+ steps of the Arnoldi process w.r.t. (J, ν) and compute the
set of Ritz-values R+.
4. Perform K− steps of the Arnoldi process w.r.t. (inv(J), ν) and compute
the set of Ritz-values R−.
5. R = {µ1, µ2, · · · , µK++K−} = R+ ∪ (1/R−).
6. IF R 1 C−, STOP.
7. Detect i with maxλ∈R S{µi}(λ) =minµ∈R maxλ∈R S{µ}(λ) and initialize

P =


{µi} : when µi real,

{µi, µ
∗
i
} : when µi complex.

while card(P) < l do

8. Detect i with Sp(µi) = maxλ∈R Sp(t) and set

P =


P ∪ {µi} : when µi real,

P ∪ {µi, µ
∗
i
} : when µi complex.

end while

4.2.2 Stopping criteria

There are several criteria in the literatures to stop ADI iterative methods (see
[51] and references therein for details). However we consider residual based
criteria [51] to stop GSLRCF-ADI algorithm. Let us consider the residual of
the GCALE (4.4a) be

R = JZiZ
T
i ET

1 + E1ZiZ
T
i JT + BBT, i = 1, · · · , imax (4.25)

where, J = Ja − JbJ−1
d

Jc and B = B1 − JbJ−1
d

B2. Then we use the expression

‖R‖2
‖BBT‖ 2

≤ tol, (4.26)

to stop the GSLRCF-ADI iterations by choosing appropriate tolerance based
on the problem . Note that, we use power iteration to compute the approx-
imate 2-norm of R, which reduces the computational costs extremely (see
[51] for further details). A similar procedure is followed, for solving ob-
servability GCALE (4.4a).
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4.3 Numerical examples

To verify the accuracy and efficiency of our algorithm (GSLRCF-ADI), some
results of numerical experiments are discussed in this section. A set of
artificial data as given below is considered for the piezo-mechanical model
(3.12). Where possible, results are compared with the results obtained by an
exact solver (using MATLAB function LYAP) and GLRCF-ADI algorithm
(Algorithm 5.1 in [51]).
Artificial data:

n = number of state variables,

l = number of algebraic variables,

nin = number of inputs,

nout = number of outputs,

I = speye(n);

M1 = .5*I+spdiags(-0.2*ones(n,1),2,n,n)+

spdiags(-0.2*ones(n,1),-2,n,n)+

spdiags(0.2*ones(n,1),4,n,n)+

spdiags(0.2*ones(n,1),-4,n,n);

K11 = spdiags(5*ones(n,1),0,n,n)+

spdiags(-1*ones(n,1),2,n,n)+

spdiags(-1*ones(n,1),-2,n,n)+

spdiags(2*ones(n,1),4,n,n)+

spdiags(2*ones(n,1),-4,n,n);

D1 = mu*M+nu*K11;% mu=0.005,nu=1

K44 = spdiags(-5*ones(l,1),0,l,l)+

spdiags(ones(l,1),2,l,l)+

spdiags(ones(l,1),-2,l,l)+

spdiags(-2*ones(n,1),4,l,l)+

spdiags(-2*ones(n,1),-4,l,l);

K12 = sprand(n,l,den);%den=density

E1 = [I spalloc(n,n,0);spalloc(n,n,0) M1];

Ja = [spalloc(n,n,0) I;-K11-D1]; Jb = [spalloc(n,l,0);-K12];

Jc = [-K12’spalloc(l,n,0) ]; Jd = -K44;

B1=[spalloc(n,nin,0);spdiags(ones(n,1),0,n,nin)];

B2=spdiags(ones(l,1),0,l,nin);

C1=[spdiags(ones(n,1),0,nout,n) spalloc(nout,n,0)];

C2=spdiags(ones(l,1),0,nout,l);

Changing n and l, one can choose the dimension of the system. Likewise
nin and nout can change the number of inputs and outputs of the system
respectively. And den can be used to change the number of nonzero in the

system matrix A =

[
Ja Jb

Jc Jd

]
. The sparsity patterns of the system matrices
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are shown in Figure 4.1. Figure 4.2 shows the convergence histories of

(a) Matrix M1 (b) Matrix D1

(c) Matrix K (d) Matrix E1

(e) Matrix A (f) Matrix J

Figure 4.1: Sparsity patterns of the artificial data

GSLRCF-ADI methods. Here we consider a model of order 10500 (descrip-
tor form), number of shifts is 10, and residual tolerance is 10−15. Figure 4.2a
shows the convergence history for the controllability Lyapunov equation,
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whereas, Figure 4.2b is for the observability Lyapunov equation. One can
notice that very fast convergence is obtained with the iteration steps 15 and
16, respectively in both cases.

Figure 4.3, shows the accuracy of the GSLRCF-ADI method. Considering
a model of dimension 2100, we compute the controllability and observ-
ability Gramian, using an exact solver and GSLRCF-ADI respectively. The

relative error for the controllability Gramian ( ‖Xc−Wc‖2
‖Xc‖2 ) and the observabil-

ity Gramian ( ‖Xo−Wo‖2
‖Xo‖2 ) are 2.7159 × 10−13 and 3.7648 × 10−13 respectively.

From Figure 4.3a, it can easily be observed that the largest singular values
of the controllability Gramians for both (exact and GSLRCF-ADI) solvers
match accurately. Figure 4.3b depicts the same histories for the observabil-
ity Gramian. In the case of computational time comparison, GSLRCF-ADI
method is more efficient than the exact solver (since GSLRCF-ADI method
works on the sparse descriptor form of the system). Computational times
for the controllability Gramian, for different systems via exact solver and
GSLRCF-ADI method respectively are shown in Table 4.1 with the relative
error, the comparison is also shown in Figure 4.4.

While comparing GSLRCF-ADI and GLRCF-ADI methods, we observe that
both solvers give the same results for a piezo-mechanical model that we
have considered. The only difference is in the computational time. Here,
we consider a model of dimension 10500 (descriptor form), and compute
the time for different iterations when GLRCF-ADI and GSLRCF-ADI is
performed for the low rank approximation of the controllability Gramian.
The result is also shown in Table 4.2. Figure 4.5 shows that in each step
the computational time for GLRCF-ADI is more than seven times that of
GSLRCF-ADI. But the scenario is different when we compute the time of a
model where the number of nonzero in the system matrices J and A does
not vary remarkably. In that case Figure 4.6 shows that GSLRCF-ADI is not
more efficient than GLRCF-ADI. This figure is generated from Table 4.3.

To compare the three solvers (exact, GLRCF-ADI, GSLRCF-ADI), we mea-
sure the computational time for solving the controllability Lyapunov equa-
tion for a model of dimension 2100 with the three solvers. Table 4.4 de-
scribes the computational time, and the respective figure is the bar chart in
the Figure 4.7.

Computing an appropriate number of ADI shifts is a vital issue to accelerate
the rate of convergence. Figure 4.8 illustrates this issue. The iteration
with ten shift parameters gives better convergence, while this number is
increased, the convergence gets worse. May be less than ten shifts would
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dimension Exact solver (sec) GSLRCF-ADI (sec) relative error

200 0.44 0.49 4.8773e-09
400 3.94 0.62 3.0492e-10
600 13.28 0.81 1.9979e-10
800 33.90 1.14 2.1388e-10
1000 65.42 1.38 3.5875e-10
1200 118.02 1.79 5.4358e-10
1400 194.88 2.73 5.1201e-10

Table 4.1: Computational time for different dimensional systems by exact
solver and GSLRCF-ADI and the relative errors

iteration GLRCF-ADI (sec) GSLRCF-ADI (sec)

5 114.07 14.67
10 194.87 28.38
15 335.67 51.47
20 439.75 63.38
25 596.70 79.61
30 702.53 93.84

Table 4.2: Computational time of low rank approximate of controllabil-
ity Gramian by GLRCF-ADI and GSLRCF-ADI (when system matrix J is
sparse)

iteration GLRCF-ADI (sec) GSLRCF-ADI (sec)

10 11.37 9.79
20 17.94 18.71
30 22.99 25.16
40 35.54 43.60
50 47.01 54.30

Table 4.3: Computational time for low rank factor of controllability Gramian
by GLRCF-ADI and GSLRCF-ADI (when system matrix J is not sparse)

Exact solver (sec) GLRCF-ADI (sec) GSLRCF-ADI (sec) relative error

696.98 92.51 18.38 1.4518e-09

Table 4.4: Computational time of exact solver, GLRCF-ADI and GSLRCF-
ADI



44 Chapter 4. Generalized sparse LRCF-ADI methods

(a) Controllability Gramian (b) Observability Gramian

Figure 4.2: GSLRCF-ADI convergence histories (normalized residual norm)

(a) Controllability Gramian (b) Observability Gramian

Figure 4.3: Singular values of the Gramians computed by exact solver and
GSLRCF-ADI



4.3. Numerical examples 45

Figure 4.4: Computational time for different dimensional systems by exact
solver and GSLRCF-ADI

Figure 4.5: Computational time of low rank approximate of controllability
Gramian by GLRCF-ADI and GSLRCF-ADI
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Figure 4.6: Computational time for low rank factor of controllability
Gramian by GLRCF-ADI and GSLRCF-ADI (when system matrix J is not
sparse)

Figure 4.7: Computational time for computing controllability Gramian by
the exact solver, GLRCF-ADI and GSLRCF-ADI
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Figure 4.8: Different number of shifts and corresponding convergence his-
tory of the low rank approximate solution of the controllability Gramian by
GSLRCF-ADI

not show any better result as well.
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CHAPTER

FIVE

MODEL REDUCTION OF LARGE SPARSE
PIEZO-MECHANICAL SYSTEMS BY BALANCED

TRUNCATION

In the first chapter, we have mentioned some very well known methods
and respective references to approximate a large-scale continuous-time LTI
system. We also have mentioned the main objective of this thesis, i.e., de-
veloping an algorithm for MOR of a large sparse peizo-mechanical systems
based on Balanced truncation (BT). This chapter includes the main algo-
rithm of this thesis. The first section contains a brief discussion of BT from
the literature, for example [1, 28, 8, 71, 11, 17]. While the second section
illustrates our algorithm for model order reduction based on BT, for a class
of index-1 DAE systems. And in the last section, numerical results obtained
by the algorithm are explained.

5.1 Balanced truncation for model reduction

Roughly speaking, truncation methods of model order reduction seek to
remove or truncate, unimportant states from the state space models. One
can detect these states easily when a system is balanced. A model reduction
method is known as balanced truncation when it applies the truncation oper-
ation to a balanced model. To make it clear, once again, recall a generalized
continuous-time LTI system,

E1ẋ(t) = Jẋ(t) + Bu(t),
y(t) = Cẋ(t) +Dau(t),

(5.1)
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where J = Ja− JbJ−1
d

Jc, B = B1− JbJ−1
d

B2, C = C1−C2J−1
d

Jc and Da = −C2J−1
d

B2,
are matrices and x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rm are vectors. (5.1) can be put
as a descriptor form:

[
E1 0
0 0

]

︸  ︷︷  ︸
E

[
ẋ(t)
ϕ̇(t)

]
=

[
Ja Jb

Jc Jd

]

︸  ︷︷  ︸
A

[
x(t)
ϕ(t)

]
+

[
B1

B2

]

︸︷︷︸
F

u(t),

y(t) =
[
C1 C2

]

︸    ︷︷    ︸
L

[
x(t)
ϕ(t)

]
.

(5.2)

The controllability Gramian Wc and and observability Gramian Wo, which
are the solutions of two Lyapunov equations play a crucial rule in energy
passing of the respective systems, that can be illustrated (in the case of
standard syatem) as follows [31]. Define two functions Qc and Qo as

Qc = min
x(−∞)=0, x(0)=x

‖ u(t) ‖2, t ≤ 0, (5.3)

Qo =‖ y(t) ‖2, x(0) = x0, t ≥ 0. (5.4)

The quantity Qc is the minimum energy required to drive the system from
the zero state at t = −∞ to the state x at t = 0 [31]. On the other hand, Qo is
the energy obtained by observing the output with the initial state x0 under
no input [31].

The function Qc and Qo are related to the controllability gramian Wc and
observability gramian Wo respectively as follows [8]

Qc = xT
W
−1
c x, (5.5)

Qo = xT
0 Wox0, (5.6)

where Wc and Wo be the reachability and observability Gramians, respec-
tively of a asymptotically stable and minimal system. It follows from the
above relations that, the states which are difficult to reach, i.e., require a
large energy Qc, are spanned by the eigenvectors of Wc corresponding to
the small eigenvalues [31]. Moreover, the states which are difficult to ob-
serve, i.e., yield a small observation energy Qo, are spanned by eigenvectors
of Wo corresponding to the small eigenvalues (see [31]). Hence relations
(5.5) and (5.6) yield a way to evaluate the degree of reachability and the
degree of observability for the states of the given system [31]. We can
obtain a reduced model by truncating the states which are difficult to reach
or difficult to observe. However, it is not necessary that states which are
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difficult to reach are difficult to observe as well, and vice-versa [1]. Hence,
the following question arises: for a given system , does there exist a basis
where states are difficult to reach and simultaneously difficult to observe?
Yes, it is possible, when a realization is balanced. Then reduced order model
can be obtained using the following theorem.

Theorem 8 ( [31]):

An asymptotically stable and minimal system Σ = (E1, J,B,C,Da) has

the balanced realization (Eb, Jb,Bb,Cb,Da) where Eb =

[
Er E12

E21 E22

]
, Jb =

[
Ar A12

A21 A22

]
, Bb =

[
Br

B2

]
, Cb =

[
Cr

C2

]
with Wc =Wo = diag(Σ1,Σ2), where

Σ1 = diag(σ1Im1
, · · · , σkImk

), k < n,

and Σ2 = diag(σk+1Imk+1
· · · , σNImN ).

The multiplicity of σi is mi; i = 1, 2, · · · ,N and m1+m2+· · ·+mN = n. Then
the reduced order model Σr = (Er,Ar,Br,Cr,Da) obtained by balance
truncation is asymptotically stable, minimal and satisfies

‖ Σ − Σr ‖H∞≤ 2(σk+1 + · · · + σN). (5.7)

The equality holds if Σ2 contains only σN. ♦

The above theorem states that if the neglected Hankel singular values [2]
are small, then the system Σ and Σr are guaranteed to be closed [31]. Note
that (5.7) is a priori error bound [31]. Therefore considering a suitable error
tolerance, we can decide how many states should be truncated to form a
reduced model.

This balancing method described above is know as Lyapunov balancing [31],
since it is involved with the solution of two Lyapunov equations. Besides
this, there exist other types of balancing methods, such as stochastic bal-
ancing, bounded real balancing, positive real balancing and frequency weighted
balancing. These methods are discussed in [27, 68, 26, 13, 18, 70, 30]. How-
ever all the methods are briefly introduced in [30].

5.2 Square root method (SRM) for reduced order mod-

els

For model reduction via balanced truncation, internal balancing of a given
model is a preliminary task. If a system is stable and both controllable and



52 Chapter 5. Model reduction of large sparse piezo-mechanical systems

observable, then there exists a transformation such that the transformed
controllability and observability Gramians are equal and diagonal [24]. To
have such a transformation see [11] in details with examples. Here, we
discuss a method, known as square root method (SRM) [64], to compute
a reduced order model for a stable non-minimal system. In this method
one can directly obtain a reduced balanced system without balancing the
whole system before truncation. More precisely, in this way both balancing
and truncation are yielded simultaneously. Let Σ = (J,B,C,Da) be a stable
standard state space system, which is not necessarily be both controllable
and observable (i.e., minimal). A balanced reduced order model Σr =

(Jr,Br,Cr,Da) can be obtained by performing the following steps:

• Step-1: Compute controllability Gramian Wc, and observability Gramian
Wo by solving two Lyapunov equations in (4.3a) and (4.3b), respec-
tively.

• Step-2: Let Wc = LcL
T
c and Wo = LoLT

o be the Cholesky factorization of
two Gramians respectively. This is always possible since Wc and Wo

are always symmetric and positive definite matrices.

• Step-3: Let singular value decomposition of LT
o Lc be LT

o Lc = USVT.
The singular values of LT

o Lc are indeed the Hankel singular values
[31]. Hence it can be written as

LT
o Lc = UΣVT, (5.8)

where Σ = diag(σ1Im1
, σ2Im2 , · · · σNImN ), N is the number of distinct

Hankel singular values with σi > σi+1 ≥ 0, mi is the multiplicity of
σi and m1 + m2 + · · · + mN = n. Let Σ1 = diag(σ1Im1

, σ2Im2 , · · · , σqImk
),

k < n, and r = m1 +m2 + · · · +mk.

• Step-4: Define two transformations TL = LoU1Σ
− 1

2

1
and TR = LcV1Σ

− 1
2

1
where U1 and V1 are formed by the leading r columns of U and V,
respectively.

• Step-5: Reduced order model of order r is obtained by setting

Jr = TT
L JTR, Br = TT

L B, and Cr = CTR.

It is not difficult to check TT
L

TR = Ir and hence TRTT
L

is an oblique projector
[31]. Again WcTL = TRΣ1 and WoTR = TLΣ1 gives

TT
L (JWc +WcJT + BBT)TL = JrΣ1 + Σ1JT

r + BrB
T
r , (5.9)

TT
R(JTWo +WoJ + CTC)TR = JT

r Σ1 + Σ1Jr + CT
r Cr, (5.10)
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which proves that the reduced order model is balanced and satisfies the
Lyapunov inertia theorem (see [2] for definition and proposition of Lyapunov
inertia theorem) [8]. Thus the reduced order model is asymptotically stable.
To make everything more clear let us consider the following example

Example: Find a reduced order model of a system Σ = (J,B,C,Da), where

J =




−1 2 3
0 −2 1
0 0 −3


, B =




1
0.5

0.005


, C =

[
1 0.5 0.005

]
and Da =

[
0
]

using

above algorithm.

Solution:

Wc =




0.9235 0.2095 0.0015
0.2095 0.6628 0.0005
0.0015 0.0005 0.0000


 , Wo =




0.5000 0.5000 0.5012
0.5000 0.5625 0.6135
0.5012 0.6135 0.7058


 ,

Lc =




0.9610 0 0
0.2180 0.1234 0
0.0016 0.0013 0.0002


 , Lo =




0.7071 0 0
0.7071 0.2500 0
0.7089 0.4490 0.0406


 ,

(U,Σ,V) =svd(LT
o Lc)

=




−0.9976 0.0692 0.0000
−0.0692 −0.9976 0.0018
−0.0001 −0.0018 1.0000







0.8814 0 0
0 0.0254 0
0 0 0.0000







−0.9942 0.1071 0.0002
−0.1071 −0.9942 −0.0032
0.0002 −0.0032 1.0000


 ,

TL = LoU(:, 1 : 2)Σ(1 : 2, 1 : 2)−
1
2 =




−0.7690 0.3072
−0.7879 −1.2578
−0.8048 −2.5033


 ,

TL = LT
c V(:, 1 : 2)Σ(1 : 2, 1 : 2)−

1
2 =




−1.0416 0.6459
−0.2507 −0.6233
−0.0018 −0.0070


 ,

then

Jr =

[
−0.8092 0.4780
−0.4780 −2.197

]
,Br =

[
−1.1670
−0.3343

]
, and Cr =

[
−1.1670 0.3343

]
,

therefore the reduced order model is Σr = (Jr,Br,Cr,Da).
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5.3 Algorithm for model reduction of piezo-mechanical

systems

The algorithm outlined above is applicable for a standard states pace sys-
tem to find a reduced order model. However, the idea is extended for a
generalized case in [51] (see Chapter 7 in [51] for details). Moreover, in
[20] the square root method is used to find reduced order models for Power
system models, by preserving the sparsity pattern of the models in the de-
scriptor form. In this section we present two algorithms (separately) based
on square root methods for reduced order models of the piezo-mechanical
systems in (5.2). Algorithm 5.1 gives a reduced order model in descriptor
form, whereas Algorithm 5.2 computes a reduced order model in standard
state space form.

5.3.1 How to use Algorithm 5.1 and 5.2 for MOR of piezo-mechanical
systems

1 Convert the second order index-1 descriptor system in (3.11) into a first
order index-1 descriptor form in 3.15, by preserving the sparsity pat-
tern of the original model (see Chapter 3).

2 To compute the set R+, Ritz-values with large magnitude, the Arnoldi
process is performed with respect to E−1

1
J. To compute Ritz-values

with small magnitude, first the Arnoldi process is performed with
respect to A−1E (since inverting J is difficult in this case), and compute
a set of Ritz-values R−. Then inverting R−we compute the Ritz-values
with small magnitude of the matrix E−1

1
J.

3 The low rank approximation Zc of the controllability Gramian in Step 2
of the Algorithm 5.1 and 5.2 becomes complex due to complex shifts.
But practically, it should be real since Zc is the Cholesky factor of
Wc ∈ Rn×n. To circumvent this problem one can compute real shifts
in Step 1. Otherwise, if the imaginary part of each column of Zc is
negligible, taking real (Zc) does not effect in finding a reduced order
model successfully. Same procedure is applicable for Zo.

4 In the Step 3, we compute Zo = E∗
1
Zo, because, we know that the control-

lability Gramian Wc and the observability Gramian Wo of the system
5.1 are the solutions of the Lyapunov equations

JWcE
T
1 + E1WcJT = −BBT, JTWcE1 + ET

1 WcJ = −CTC.
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Algorithm 5.1 SRM for MOR of index-1 descriptor systems (5.2) (descriptor
to descriptor form).

Input: E1, Ja, Jb, Jc, Jd, B1, B2, C1 and C2.
Output: Σr = (Er,Ar,Br,Cr).

1. Compute ADI shift parameters {µ1, µ2, · · · , µimax} using Algorithm 4.4.
2. Compute low rank Cholesky factors Zc and Zo, by solving Lyapunov
equations in 4.4 via GSLRCF-ADI method (Algorithm 4.4).
3. Zo = E∗

1
Zo.

4. Compute the (thin) singular value decomposition (SVD)

UΣV∗ = svd(Z∗oZc).

5. Truncate after the kth largest singular values and compute

U1 = U(:, 1 : k), Σ1 = Σ(1 : k, 1 : k) and V1 = V(:, 1 : k).

6. Define the matrix transformations TL and TR as follows:

TL = ZoU1Σ
− 1

2

1
and TR = ZcV1Σ

− 1
2

1
.

7. Compute

Ê1 = TT
L E1TR,

Ĵa = TT
L JaTR,

Ĵb = TT
L Jb,

Ĵc = JcTR,

B̂1 = TT
L B1,

Ĉ1 = C1TR.

8. Form

Er =

[
Ê1 0
0 0

]
, Ar =

[
Ĵa Ĵb

Ĵc Jd

]
, Br =

[
B̂1

B2

]
, Cr =

[
Ĉ1 C2

]
.
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Algorithm 5.2 SRM for MOR of index-1 descriptor systems (5.2) (descriptor
to standard form).

Input: E1, Ja, Jb, Jc, Jd, B1, B2, C1 and C2.
Output: Σr = (Jr,Br,Cr,Dr).

1. Compute ADI shift parameters {µ1, µ2, · · · , µimax} using Algorithm 4.4.
2. Compute low rank Cholesky factors Zc and Zo, by solving Lyapunov
equations in 4.4 via GSLRCF-ADI method (Algorithm 4.4).
3. Zo = E∗

1
Zo.

4. Compute the (thin) singular value decomposition (SVD)

UΣV∗ = svd(Z∗oZc).

5. Truncate after the kth largest singular values and compute

U1 = U(:, 1 : k), Σ1 = Σ(1 : k, 1 : k) and V1 = V(:, 1 : k).

6. Define the matrix transformations TL and TR as follows:

TL = ZoU1Σ
− 1

2

1
and TR = ZcV1Σ

− 1
2

1
.

7. Compute

Ê1 = TT
L E1TR,

Ĵa = TT
L JaTR,

Ĵb = TT
L Jb,

Ĵc = JcTR,

B̂1 = TT
L B1,

Ĉ1 = C1TR.

8. Form

Jr = Ê−1
1 ( Ĵa − ĴbJ−1

d Ĵc),

Br = Ê−1
1 (B̂1 − ĴbJ−1

d B2),

Cr = (Ĉ1 − C2J−1
d Ĵc),

Dr = −C2J−1
d B2.
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Now, write 5.1 in standard state space form

ẋ(t) = Jx(t) + Bu(t), y(t) = Cx(t), (5.11)

where J = E−1
1

J, B = E−1
1

B. The respective Lyapunov equations for
5.11 are

JW̃c + W̃cJ
T
= −BB

T
, J

T
W̃c + W̃cJ = −CTC.

It is observed that W̃c =Wc, but W̃o = E∗
1
WoE1. Therefore Z̃c = Zc, but

Z̃o = E∗
1
Zo, where Z̃c and Z̃o are the Cholesky factors of W̃c and W̃o,

respectively.

5 We choose k << n such that the k largest Hankel singular values are
preserved in the reduced order model. And it is adapted by using an
appropriate error tolerance according to 5.7.

6 We recommend to see [37] for details about the formulation of TL and TR

in the Step 6.

5.4 Numerical examples

Three sets of results are discussed in this section to assess the performance
of the proposed algorithm. One set for the SISO case, another one for the
MIMO case of the artificial models presented in Section 4.3 and finally a set
of results obtained for the piezo-mechanical original model from [34] are
included. All the results are obtained by using MATLAB 7.11.0 (R2010b).
But for the first two sets we use an Intel Pentium Dual-Core processor with
a 1.8-GHz clock and 2 GB of RAM, whereas the final set of results are carried
out with an Intel Xeon Dual-Core CPU with a 3.0-GHz clock and 64 GB of
RAM. Note that the dimension of the reduced order model in all cases is
controlled by the tolerance

√
ǫwhere ǫ is the machine precision.

For the different systems, the number of parameters used in the GSLRCF-
ADI methods, the iteration number for computing Zc and Zo and the di-
mensions of the reduced-order models are given in the Table 5.1.

5.4.1 SISO piezo-mechanical (artificial) model

Here a SISO piezo-mechanical (artificial) model of dimension 10500 (n=5000,
l=500) is considered, where B1 = [zeros(n, 1); ones(n, 1)], B2 = ones(l, 1),
C1 = [ones(1,n) zeros(1,n)] and C2 = ones(1, l) (see Section 4.3). 10 shifts
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systems ADI
shift no.

K+ K− iteration
num-
bers
(Zc, Zo)

ROM dimension

SISO (artificial) 10 20 15 15, 16 509 (des), 9 (stand)

MIMO (artificial) 12 20 15 13, 14 83

MIMO (original) 40 60 50 23, 23 38

Table 5.1: Parameters used in the GSLRCF-ADI methods, iteration numbers
for low rank approximation of Gramians and dimensions of reduced-order
models for different systems

are chosen from K+ = 20 and K− = 15 to compute Zc and Zo. The con-
vergence histories of the GSLRCF-ADI method are shown in Figure 4.2
(Section 4.3). Algorithm 5.1 and Algorithm 5.2 yield 509th (descriptor) and
9th (standard)-order reduced models, respectively. Figure 5.1 shows the
accuracy of both algorithms. The frequency responses for the full system
and its 509th and 9th-order reduced systems with very good matching are
shown in Figure 5.1a on the frequency domain 10−4 Hz to 104 Hz. On the
same domain the absolute errors and the relative errors of the frequency
responses for full and reduced-order (descriptor and standard) systems are
depicted in Figure 5.1b and Figure 5.1c, respectively.

5.4.2 MIMO piezo-mechanical (artificial) model

In this case a model of dimension 21000 (n=10000, l=1000) with 25 inputs
and 20 outputs is considered (see Section 4.3). While the GSLRCF-ADI
method is implemented with 12 ADI shifts (from K+ = 20 and K− = 15),
it takes 13 and 14 iteration steps to compute Zc and Zo, respectively. The
Algorithm 5.2 generate a 83rd-order reduced model. Figure 5.3 compares
the full and 83rd-order reduced model on the frequency domain. Figure 5.2a
shows the maximum and minimum singular value plots for both full and
reduced-order model which indicate a nice match between them. The
respective absolute errors and relative errors are shown in Figure 5.2b and
Figure 5.2c, respectively. A diagram showing the computational time for
different parts of the algorithm is given in Figure 5.3, which shows that 84%
of the overall computational time is consumed to compute the low rank
approximation of the controllability and observability Gramians.
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(a) Frequency responses

(b) Absolute errors (c) Relative errors

Figure 5.1: Frequency responses and errors in frequency responses for SISO
(artificial) piezo-mechanical (full and reduced) model by Algorithm 5.1 and
Algorithm 5.2
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(a) Sigma plots

(b) Absolute errors (c) Relative errors

Figure 5.2: Sigma plot (maximum and minimum) and errors for MIMO
piezo-mechanical (artificial) full and reduced-order model computed by
Algorithm 5.2
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Figure 5.3: Computational time of different parts in computing reduced
order model by Algorithm 5.2 for the MIMO piezo-mechanical (artificial)
model

5.4.3 MIMO piezo-mechanical (original) model

The piezo-mechanical (original) model considered in this thesis is a second
order system (3.11). A data of this model was provided by B. Kranz of
the Fraunhofer Institute for Machine Tools and Forming Technology (IWU)
in Dresden, Germany ([34]). In this data the dimension of the system is
290137 (second order model). In order to apply Algorithm 5.2 for MOR
of this model, first we convert it into a first order model as in (3.15) (see
Section 3.3 for details). The formulation represented in (3.13-3.15) is not
applicable for the given data due to the numerical error. As a result, we
represent the system as the form in (3.5). Then reordering the system
matrices, finally the desired first order index-1 descriptor representation
given in (3.15) is formed. And in this formulation the dimension of the
system become 580274.

To compute Zc and Zo the GSLRCF-ADI method are performed with nor-
malized residual norm tolerance

√
ǫ. The number of ADI (real) shifts used in

GSLRCF-ADI and the iteration numbers for computing Zc and Zo are shown
in the Table 5.1. The convergence histories of GSLRCF-ADI methods are
shown in Figure 5.4. Figure 5.4a and Figure 5.4b show the convergence his-
tories for Zc and Zo, respectively. Algorithm 5.2 yields 38th-order standard
state space reduced model when the truncation tolerance for the MOR is
set to

√
ǫ. The dimension of the reduced order model can be reduced fur-

ther by increasing the tolerance. This is shown in the Table 5.2. Figure 5.5
shows the sigma plots of full and 38th-order reduced model on a wide (100
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MOR tolerence ROM dimension√
ǫ (ǫ is machine precision) 38

10−5 27
10−4 23
10−3 22
10−2 18
10−1 16

Table 5.2: MOR tolerance and the dimensions of the reduced-order models
for MIMO piezo-mechanical (original) model using Algorithm 5.2

Hz to 108 Hz) frequency range. Figure 5.6 shows the errors between full
and reduced model (Figure 5.6a shows absolute errors, Figure 5.6b shows
relative errors) of sigma plots where the errors are very negligible.

On the other hand Figure 5.7 shows the frequency responses and the devia-
tion of the frequency responses for the individual component of the transfer
function. For example Figure 5.7a shows the frequency responses of full and
38th-order reduced model for G1,1( jω), and Figure 5.7b shows the deviation
between full and reduced model. Similarly, Figure 5.7c and Figure 5.7d
show the frequency responses and deviation, respectively for G1,9( jω).

From Figure 5.8 it can easily be identified that the reduced order model is
stable as it shows that all the poles of reduced order model lie in the open
left complex half plane.

(a) Controllability Gramian (b) Observability Gramian

Figure 5.4: Convergence histories of GSLRCF-ADI methods for MIMO
piezo-mechanical (original) model
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(a) (b)

Figure 5.5: Sigma plot (maximum singular value) of full and 38th-order
reduced systems for MIMO piezo-mechanical (original) model

(a) Absolute error (b) Relative error

Figure 5.6: Errors in the sigma plot of full and 38th-order reduced systems
for MIMO piezo-mechanical (original) model
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(a) Frequency responses for G1,1( jω) (b) Deviation of frequency responses for
G1,1( jω)

(c) Frequency responses for G1,9( jω) (d) Deviation of frequency responses for
G1,9( jω)

Figure 5.7: Frequency responses for full and 38th-order reduced system
for individual component of G( jω) and respective deviations for piezo-
mechanical (original) model
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Figure 5.8: Poles of 38th-order reduced system for MIMO piezo-mechanical
(original) model
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CHAPTER

SIX

CONCLUSION

In this thesis, we have developed a balanced truncation (BT) algorithm for
model order reduction (MOR) of piezo-mechanical systems. The algorithm
works for a class of large-scale index-1 DAE systems. The efficiency of
the algorithm is verified by real-world data describing micro-mechanical
piezo-actuators. The algorithm is tremendously efficient for the highly
sparse systems. We have discussed the algorithm along with numerical
results in the Chapter 5.

The most expensive part of our proposed algorithm is to solve two gen-
eralized continuous-time algebraic Lyapunov equations (GCALE), namely
controllability GCALE and observability GCALE. GSLRCF-ADI methods
described in the Chapter 4 ensure first computation to compute low rank
approximation of the Gramians. Since the algorithm is designed for index-1
descriptor systems which are highly sparse, the computation cost is cheap.
We have shown the performance of this method by numerical examples in
the same chapter.

To compute the ADI parameters, which play an important role in the conver-
gency of ADI methods, we have imitated the technique introduced in [47].
But this technique is reformulated for the index-1 descriptor systems, which
is also presented in the Chapter 4. For MOR of piezo-mechanical system we
consider real shifts parameters, and using these parameters we obtain a very
good reduced order model. To overcome the complexity of computing the
real low rank approximation of controllability and observability Gramians,
we recommend to compute real shift parameters. To stop the GSLRCF-ADI
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methods we use residual based criteria described in the Chapter 4. This
technique is less expensive than any other techniques since here we com-
pute the approximate 2-norm of the residuals of the GCALE. Nevertheless
ADI method is expensive due to the stopping criteria. And this can be an
interesting research topic in future.

Moreover, another important task in this thesis is to preserve the sparsity
while converting a second order system into a first order system to be
adapted for the algorithm. In Chapter 3, we have presented several tech-
niques to reduce a second order system into a first order equivalent system,
whereas the properties of the original system like sparsity, symmetry and
stability are preserved.
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