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Abstract

The research of social dilemmas is a popular research field that combines social
science and mathematics. In this field human behavior is studied in situations
where people have to choose between doing what is the best for the group and
making the best individual choice. These situations can be described in math-
ematical models and they can be analyzed to predict how humans behave. In
game theoretic terms these models form a family of games sharing the same
strategic structure. In this report different models of social dilemmas reported
in the literature have been analyzed. Two new models are proposed and an-
alyzed. First the well-known common resource dilemma, which previously has
been studied with the assumption that the resource is linearly decreasing, is
modified. In this report it has been changed with the assumption that the
resource is decreasing nonlinearly. This models a situation where it is more
difficult to exploit a resource the less there is left of it. Second, a novel type of
social dilemma is described where the public goods dilemma and the common
resource dilemma are combined into the model the dormitory kitchen dilemma.
For both new models, the analysis includes computation and comparison of
strategies and outcomes in the social optimum and the Nash equilibrium.
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Chapter 1

Introduction to game
theory and social dilemmas

1.1 Introduction

A social dilemma is a situation in which the best individual choice is not what
is the best for the group. This makes the situation a dilemma in the sense
that the person has to choose between doing what is the best for the group and
making the best individual choice. Situations like this can often be seen often
in everyday life.

An example from current news is the countries fishing in the Baltic Sea. On
one hand the countries could care only for themselves and catch as much fish
as possible. On the other hand they could think about the group and catch
a reasonable amount of fish. If everyone makes the best individual choice it
will end with no fish in the Baltic and the countries will have nothing to fish.
However, if one country chooses to fish less to prevent over-fishing it runs the
risk of losing, both in the short run (less fish is caught) and in the long run
(there is no fish left).

Similar problems occur in many real-life situations and affects individuals
as well as organizations and countries. The study of social dilemmas has conse-
quently become an important field of research. The research combines different
disciplines such as social science, economics, political science, biology, environ-
mental science and philosophy and it raises interesting mathematical questions,
mainly in game theory. An important tool for studying social dilemmas is math-
ematical modeling, as described below.

The aim of this thesis is to review n-player social dilemmas that have been
described in the literature, as well as to make new contributions by developing
some new models and analyzing them. In this chapter I give a more detailed
introduction to the theoretical framework and a summary of the work I have
done.
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1.2 A brief introduction to game theory

Game theory was originally developed by mathematicians and economists and
it seems that the first formal theorem was formulated by E. Zermelo in the
beginning of the 20th century. The theorem was about chess and it was a
part of one of the first articles in game theory [15]. However, it is commonly
acknowledged that John von Neumann can be seen as the founder of game theory
because he and Oskar Morgenstern published the first book in this field [13].
They described the general notation of a game as a situation with a number of
players, each of whom can choose between different strategies that yield different
outcomes depending on what strategies the other players choose.

A common way to specify a game is to describe its so-called payoff table,
which specifies the payoffs to the players of each possible combination of strate-
gies.

The easiest game to illustrate this with is a two-player game. An example is
the game matching pennies with two players, Kimmo and Pontus. The idea of
the game is that Kimmo and Pontus each has a coin which they simultaneously
show to each other. Kimmo wins if Pontus’ coin shows the same side as him and
Pontus wins if they show different sides. In other words they have two strategies
to choose between: heads or tails. Pontus wins if they play different strategies
and Kimmo wins if they play the same. The one who wins gets 1 point and
the one who loses gets -1. The game is illustrated with a payoff table where
Kimmo’s strategies are the rows and his payoffs are shown in the lower part of
the cells. Pontus’ strategies are the columns and his payoffs are shown in the
upper part of the cells.

Heads Tails

Heads
-1 +1

+1 -1

Tails
+1 -1

-1 +1

In general a game may have any number of players, usually denoted by n,
and they can choose between different actions or strategies. A combination of
one strategy per player is called a strategy profile. If Kimmo plays heads in
matching pennies and Pontus plays tails, the strategy profile is the combination
of heads and tails. To completely specify the game, the payoffs to every player
must be known for every possible strategy profile. Every strategy profile is a
possible outcome of the game.

However, if people are free to make their choices they will probably try to
maximize their payoffs. The aim of game theory is to make mathematically
based predictions of how players will behave in such a game.

The key concept is the Nash equilibrium, which can be described as follows.
Consider the situation when the players in the game are asked to repeatedly play
the same game. How will they change their strategies over time? Probably they
will change it after every game to receive a higher payoff. What will happen with
the strategy profile after a few repetitions? Will it converge to some profile? If
so, to what profile?

This problem was attacked by the famous economist and mathematician
John Nash. He defined what later became known as a Nash equilibrium as
any strategy profile such that no player can increase her payoff by unilaterally

6



changing her strategy. Nash formulated and proved the theorem that said that
under generous assumptions, a game always has at least one Nash equilibrium
[8]. Some games have multiple equilibria and in those cases the strategy profile
in the repeated game converges to different profiles depending on what happens
in the early part of the process.

1.3 The prisoner’s dilemma

The prisoner’s dilemma is probably the most famous of all game theoretic mod-
els. It has been studied in thousands of papers across many scientific disciplines.
Albert W Tucker may have been the first to produce a mathematical descrip-
tion of the prisoner’s dilemma [12]. The dilemma can be formulated in many
different ways but an example is as follows:

Kimmo and Pontus are two gangsters, guilty of a major crime. The judge
knows that they are guilty but he is unable to convict either of them unless one of
them confesses. To make them confess he proposes a deal: If Kimmo confesses
and Pontus fails to confess, Kimmo goes free and Pontus is convicted to 10
years in prison. If both confess, both get 9 years in prison and if both fail to
confess they will be framed on a tax evasion charge so that each gets 1 year in
prison [1].

In the payoff table below coop means that a player fails to confess and defect
means that the player confesses.

If Pontus chooses to defect the best response for Kimmo is to also defect.
Then he only gets 9 years in prison instead of 10. But if Pontus chooses to
coop, the best reply for Kimmo is to defect because then he will go free instead
of getting one year in prison on the tax evasion charge. No matter what strat-
egy Pontus may choose, Kimmo will always get a higher payoff by defecting.
By symmetry the same argument is valid for Pontus. The Nash equilibrium is
therefore mutual defection. In the table below the best replies for an action is
bolded. To defect is the action that gives the best payoff regardless of what the
other player does.

Defect Coop

Defect
-9 -10

-9 0

Coop
0 -1

-10 -1

1.4 Why it is a dilemma: social optimum vs.
Nash equilibrium

The interesting nature of the prisoner’s dilemma is the fact that the Nash
equilibrium is equivalent to mutual defection leading to confession from both of
the prisoners (to the judge’s delight) despite the fact that if both prisoners were
cooperating they would get a better payoff. The latter outcome is known as the
social optimum of the game.

The social optimum of a game is a strategy profile that yields the best
possible outcome for the group as a whole. It is a strategy profile that maximizes
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the sum of the players’ payoffs.
In the prisoner’s dilemma the social optimum is the action of not confessing

(coop). If both Kimmo and Pontus fail to confess, both of them will get a good
payoff. The sum of their payoffs is maximized when both choose to coop. It is
not the best for the judge but he is not a player and it is the best for the group,
in this case the prisoners, and that is what social optimum is about.

The interesting about this is that the social optimum is different from the
Nash equilibrium and that is why this situation becomes a dilemma. This makes
the choice of strategy a choice between optimizing for oneself or attempting to
optimize for the group.

For further reading on dilemmas, a good reference is a book by Michael
Taylor [11].

1.5 Multi-player social dilemmas

Dilemmas similar to the prisoner’s dilemma can occur in situations with more
than two players. These situations go under the name social dilemmas or col-
lective action dilemmas. There are several situations in reality that can be
described as social dilemmas. One example is television financed by license fees.
As individuals we are better off using public television without making any con-
tribution, but if everyone acted like that financing would fail and there would
be no public television [7].

Another example is a group of people going to a restaurant, already decided
that they are going to split the bill. When each person orders a meal they can
choose a meal with a reasonable price for the others to share, on the other hand
they can order an expensive meal because they will get a favor from it [3].

In research on social dilemmas, much attention has recently been paid to
the work of Elinor Ostrom on common resource dilemmas. These are situations
like the fishing in the Baltic sea that was mentioned in the introduction, that
is, situations where a common resource (like fish) will be over-exploited if all
individuals follow their selfish inclinations, leading to often severely suboptimal
outcomes. Elinor Ostrom won the 2009 Nobel Memorial Prize in Economic
Sciences for her analysis of how humans sometimes manage to solve the problem
of governing behavior in common resource problems to maintain a sustainable
use of resources [10].

1.6 Fear and greed

To quantify the difficulty of a dilemma one can compute two measures known
as greed and fear. The greed in a dilemma is the strength of the temptation
to obtain the best outcome for oneself [7]. It can be seen as the winning for
a player who plays the best individual strategy while the others plays social
optimum.

The greed in the prisoner’s dilemma described above is the units Kimmo
raises his payoff with if he chooses to defect instead of cooping. Then he will
increase his payoff with one unit.

The fear is, analogously the strength of the temptation to avoid being suck-
ered [4]. The fear in this situation is the fear of throwing away one’s effort on a
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lost cause [7]. It can be seen as the loss for a player who plays social optimum
while one of the others is playing the best individual strategy.

The fear in the prisoner’s dilemma is the amount of units that Kimmo loses
if he coops and Pontus defects instead of cooping. In that situation he will go
from getting -1 to -10 so the loss for him is 9 units. It can be seen that the fear
is bigger than the greed in this dilemma.

1.7 Summary of contributions

Although all models of social dilemmas share the strategic structure that the
social optimum is not the same as the Nash equilibrium, there may be important
differences between different models, both conceptually and mathematically.
The aim of this report is to explore such differences between different models of
social dilemmas. My work on this is reported in the three remaining chapters.

Chapter 2 reviews the literature on models of social dilemmas with respect to
which models are used. To anticipate, it seems that the literature is dominated
by just two models: a standard formulation of the common resource dilemma
(where players choose how much to exploit of a common resource) and a stan-
dard formulation of the public goods dilemma (where players choose how much
to contribute to a public good). The rest of the report is about my own further
developments of these models.

The focus in chapter 3 is on the common resource dilemma where a common
resource is used by several players. In the standard model the value of the
resource decreases linearly according to the effort that goes into exploiting the
resource. I analyze the consequences of instead assuming that exploitation is
less effective when less of the resource remains.

Chapter 4 develops a more radically novel model, the dormitory kitchen
dilemma. This can be seen as a hybrid of the two dominating models in that
the players can both contribute to a common resource and exploit the same
resource. From the literature, it seems that this kind of dilemma has not been
formulated mathematically before.
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Chapter 2

A survey of mathematical
models of multi-player
social dilemmas

Here I report the results of my review of the literature on models of multi-
player social dilemmas. Basically, I have used the search engine Google Scholar
to identify any papers that deal with modeling the of social dilemmas. This
search turned up no more than four different families of models: public goods
dilemmas, common resource dilemmas, threshold games and network games. Be-
low I describe these four types of models and the important differences between
them. Of these four models, the public goods dilemma and the common resource
dilemma are by far the most commonly used models of social dilemmas in the
literature. For these two models I also present their mathematical formulation
and derive the Nash equilibrium and the social optimum.

2.1 The public goods dilemma

In a public goods dilemma individuals are faced with an immediate cost that
generates a benefit that is shared by all. The best for the individual is to avoid
the cost, but the total benefit to the group of the public good is larger than the
total cost [7].

An example of a public goods dilemma is taxation. As individuals we are
better off by not paying the tax but if everyone would think like that there
would be no money to finance for example public school and health care.

In this model every player has an endowment of e units to contribute or
keep. xi denotes the contribution from player i and λ is the marginal payoff a
player can get. For a social dilemma to occur the marginal payoff λ should lie
between 1/n and 1. Otherwise there is no benefit for the group to share the
public good. The payoff for player i is:

πi = (e− xi) + λ

n∑
i=1

xi
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It is easy to see that the Nash equilibrium is equivalent to making no con-
tribution but this is how it is derived:
Given what the other players have done the payoff function for player i is:

πi = (e− xi) + λ(t∗ + xi)

t∗ =
∑
j 6=i

xj

The only maximum of this function is on the boundaries and assuming that
λ is less than 1 the maximum is when xi = 0. The Nash equilibrium strategy,
denoted by xne, is therefore to make no contribution, xne = 0.

To derive the social optimum the payoff function where every one makes the
same contribution,x, has to be maximized:

π = (e− x) + nxλ

Assuming that λ ≥ 1
n , so that nλ ≥ 1, the best action for the group is to

contribute e. The social optimum strategy, denoted by xso, is therefore xso = e.

2.2 The common resource dilemma

The common resource dilemma, also called the tragedy of the commons, has been
known at least since the 19th century but Hardin made it famous in 1968 [6]
when he analyzed it in an article published in Science. The basic idea of the
dilemma is that a group of individuals share a common resource. The resource
is limited and the individuals can act in self-interest and choose to exploit just
as much as they want from the resource. The result is less of the resource for
the other individuals to use and if everyone acts in self-interest the outcome is
a disaster where nothing is left of the resource. Therein lies the dilemma.

The standard mathematical formulation of the common resource dilemma is
as follows. There is a group of n individuals who can choose to spend their time
to exploit from a private pool or a common pool. The exploitation of a pool is
often called an extraction. They have e units to extract either from the private
pool or the common pool. From the private pool they get w per units they
extract and from the common pool they get A minus the sum of all players’
extractions times B. The payoff for player i is:

πi = w(e− xi) + (A−B
n∑

j=1

xj)xi (2.1)

Here xi denotes how much player i extracts from the common pool. Player i
gets a higher payoff the less the other players extract from the common pool.
If all players try to extract a lot from the common pool they will receive a low
payoff.

The Nash equilibrium for the dilemma can be calculated. Ellinor Ostrom
gives an example on how it is done for a common resource dilemma in one of
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her articles [9]. Holding the other players’ strategies fixed, the payoff to player
i is differentiated with respect to xi:

−w +A−B
∑
j 6=i

xj − 2xi

The optimal strategy of player i is obtained when this derivative is zero. The
Nash equilibrium is obtained when all players optimize their strategies. Because
the problem is symmetric, in the Nash equilibrium all players will play the same
strategy xne, which gives the following equation:

A− w −B(n− 1 + 2)xne = 0⇐⇒ xne =
A− w
B(n+ 1)

This equation determines the Nash equilibrium strategy:

xne =
A− w
B(n+ 1)

(2.2)

The payoff in Nash equilibrium is:

πne =
−n(−1 + w)2 +B(1 + n)(−1 + w)2 +B2e(1 + n)2w

B2(1 + n)2
(2.3)

The social optimum is calculated by assuming that all players play the same
strategy and then maximizing the payoff.

π = w(e− x) + (A−Bnx)x

Differentiation with respect to x yields:

−w +A− 2Bnx

−w +A− 2Bnx = 0⇐⇒ x =
A− w
2Bn

The social optimum strategy xso is:

xso =
A− w
2Bn

(2.4)

The payoff in social optimum is:

πso =
−(−1 + w)2 + 2B(−1 + w)2 + 4B2enw

4B2n
(2.5)
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Figure 2.1: Payoff for a player while the others play Nash equilibrium or social
optimum

Figure 2.1 illustrates the superiority of the social optimum and the incentive
of the player to defect. Assuming that all other players choose either the social
optimum strategy or the Nash equilibrium strategy, the figure shows how the
payoff of one player varies with the strategy of that player. Here the parameters
are set to: w = 0.02, B = 0.01, n = 9, and e = 14. The social optimum strategy
and the Nash equilibrium strategy is marked on the x-axis.

2.3 Threshold games

A threshold game is a variant of the public goods dilemma. The difference is
that in this case, to get a part from the common goods the contributions has
to meet a certain threshold level [5]. An example of a dilemma of this kind is
the spread of a rumor. People have to hear a rumor to pass it forward to a new
person, but people vary in their credulity so to believe it they may have to hear
it from a couple of others before they can spread it [2].

This threshold level affects the Nash equilibrium and the social optimum.
In this game there are two kinds of Nash equilibria, one is the same as in the
public goods dilemma, to make no contribution and the other one is to contribute
the amount that is required to reach the level. There is therefore an infinite
amount of Nash equilibria since there is an infinite amount of combinations of the
contributions from every player that sum up to the level. The only symmetric
Nash equilibrium is for each player to contribute an identical amount [2].
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The social optimum is the same as in the public goods dilemma, to make
the largest possible contribution. However, versions of threshold games have
been proposed where there is no extra benefit of exceeding the threshold. For
instance, if a group of people is going to build a house together and are con-
tributing by working. The level that has to be reached is when the house is
ready. After that there is no need to contribute with more than that level so
the social optimum in such cases is the same as a Nash equilibrium (but the
presence of the other Nash equilibrium, at zero contributions, still makes it a
kind of social dilemma).

2.4 Network games

A fourth family of models of social dilemmas is formed by the network games
that were introduced by Yamagishi and Cook [14]. In these games, people can
choose to give resources to a person to which they are connected in a network.
In the example given by Yamagishi and Cook, the network is a directed n-cycle,
where every player is given an endowment and can choose to give some of it
to the successor in the cycle, in which case the donated sum is multiplied by
some factor less than one (as in the public goods dilemma). This is a social
dilemma, because the Nash equilibrium is obviously that everyone makes zero
donations whereas the social optimum is obviously that everyone donates the
entire endowment. It is different to the public goods dilemma in that each
player can affect only one other player’s decision and is affected by only one
other player’s decision, which will have impact on fear (but not on greed).
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Chapter 3

Analysis of a common
resource dilemma with
diminishing efficiency of
resource extraction

In the common resource dilemma treated in chapter 2, it is difficult to make
sense of the terms of the equation. The value of spending an effort on exploiting
the common pool resources decreases with exploitation. This seems to suggest
that the exploitation effort becomes increasingly less effective as the common
resources decreases. How much a player can exploit from the resource should
be affected by how much the players before have been exploiting. But if this
is so, then it is not realistic that the decrease is linear with the effort because
if exploitation becomes increasingly less effective, then the rate with which the
resource decreases ought to decrease in a corresponding way. In other words the
resource should decrease nonlinearly.

An example is a group of fishermen who has a common pool where they
can catch fish. The amount of fish they can get when they choose to fish from
the common resource depends on how much time the others have spent there
before. If the others spend much time there it is harder to get any fish. An
additional unit of effort will be less effective in decreasing the amount of fish.

In this chapter the payoff function is adapted according to the assumption
that the resource is decreasing nonlinearly. The new function is analyzed and
compared with the one in section 2.2 to see how the new assumption affects
the dilemma. At first the new payoff function is derived and then the Nash
equilibrium and the social optimum is derived.

3.1 Payoff function

The payoff function is here derived in terms of the fishing example. The amount
of fish in the sea is normalized to 1. One unit of fishing will yield a catch that
is a fixed proportion v of the current amount of fish in the sea. It follows that
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the amount of fish that is still left after j units of fishing is:

(1− v)j

In a total of t units of fishing, the average catch per unit is:

1

t

t∑
j=1

(1− v)j−1v

Summation of the geometric series yields an average catch per unit:

1− (1− v)t

t
(3.1)

To obtain the payoff function corresponding to (2.1), set u = 1 − v and let t
denote the total exploitation effort of all players. Then the payoff function is
obtained:

πi = w(e− xi) +
1− ut

t
xi (3.2)

To obtain a dilemma w has to be smaller than v because otherwise no player
will want to spend even a single unit of effort on the common pool.

3.2 Social optimum

The social optimum is calculated by using the same method as in section 2.1
and 2.2. If all players choose the same strategy the payoff function is:

w(e− x) +
1− unx

nx
x

The social optimum occurs when the derivative with respect to x is zero:

− w − unx log u

− w − unx log u = 0⇐⇒

xso =
log(− w

log u )

n log u
(3.3)

(3.4)

The total exploitation effort in the social optimum is t = nxso. Plugging these
values of t and xso into the payoff function, and simplifying, yields the following
payoff in the social optimum:

πso =
w + log(u) + enw log(u)− w log(− w

log(u) )

n log(u)
(3.5)

3.3 Nash equilibrium

To obtain the Nash equilibrium, fix the strategies for the other players and let
t∗ =

∑n
j 6=i xj be their total exploitation effort. Differentiation with respect to

xi yields the following equation for the optimal strategy of player i:

−w − (1− ut∗+xi)xi
(t∗ + xi)2

+
1− ut∗+xi

t+ xi
− ut

∗+xixi log u

t∗ + xi
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To find the symmetric Nash equilibrium all players are treated the same.
Then the equation takes the form:

−w − (1− unx)x

(nx)2
+

1− unx

nx
− unxx log u

nx
= 0

Since the equation contains x both in a linear form and in the exponential it
is difficult to solve the equation. A Taylor expansion of the term unx is therefore
done, keeping just a few terms, to obtain an approximation of the solution.

unx = 1 + n log ux+
1

2
n2 log u2x2 +

1

6
n3 log u3x3 +O(x)4

Plugging in this approximation into the equation yields a quadratic equation:

(−w − log u) + (−1

2
log u2 − 1

2
n log u2)x+ (−1

3
n log u3 − 1

6
n2 log u3)x2 = 0

Solving this equation yields the following approximation of the Nash equilibrium:

x =
(−3 log u2 − 3n log u2 +

√
3
√
−16nw log u3 − 8n2w log u3 + 3 log u4 − 10n log u4 − 5n2 log u4)

(2(2n log u3 + n2 log u3))

For any given set of parameter values, it is of course possible to solve the
original equation numerically, in order to check the accuracy of the approxima-
tion.

Figure 3.1: The Taylor approximation and the numerical solution

Figure 3.1 shows the approximation together with the numerical solution for
different values of w when n = 9,v = 0.02 and e = 14.
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3.4 Comparison with the standard model

To get a measurement of the dilemma the ratio between the extraction in the
social optimum and the Nash equilibrium, the SO:NE ratio, can be calculated.
This ratio shows how much players will need to adapt their equilibrium behavior
in order to achieve the social optimum. If the ratio is close to 1 it indicates that
the dilemma is not so difficult. In this section the SO:NE ratios for the standard
model and the new model is compared and a general result for large values of
n is concluded: The SO:NE ratio is closer to one in the standard model than
in the new model, i.e., the dilemma is worse in the new model. In the standard
model (from chapter 2) the SO:NE ratio is:

Q1 =
xso
xne

=

A− w
2Bn
A− w
B(n+ 1)

=
n+ 1

2n

One can see that for large groups (large values of n) the ratio converges to 1
2 ,

which may be interpreted as that the players in Nash equilibrium must cut their
extraction down to half to achieve the social optimum.

The SO:NE ratio from the new model (using the approximation) is:

Q2 =
xso
xne

=2(2n log u3 + n2 log u3) log (− w

log u
)/(n log u(−3 log u2 − 3n log u2+

+
√

3
√
−16nw log u3 − 8n2w log u3 + 3 log u4 − 10n log u4 − 5n2 log u4))

The ratio between Q2 and Q1 is calculated to see which one of them is the
largest.

Q2

Q1
=(4(2n log u3 + n2 log u3) log−(

w

log u
))/((1 + n) log u(−3 log u2 − 3n log u2+

+
√

3
√
−16nw log u3 − 8n2w log u3 + 3 log u4 − 10n log[u]4 − 5n2 log u4))

Assuming that n is large the equation can be simplified to:

4 log u2 log (− w
log u )

−3 log u2 +
√

3
√
−8w log u3 − 5 log u4

Setting z = w
log (1−v) the expression can be simplified further:

4 log (−z)
−3 +

√
3
√
−8z − 5

This expression takes real values only for z < −5/8 and by doing a Taylor
expansion of log (1− v):

log (1− v) = −v − v2

2
− v3

3
− v4

4
− v5

5
− v6

6
− v7

7
. . .

z = −w/(v +
v2

2
+
v3

3
+
v4

4
+
v5

5
+
v6

6
+
v7

7
. . . )
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From the conditions w < v and 0 < v < 1 and z < −5/8 it follows that z must
lie between -1 and -5/8.

Figure 3.2: Values for different z

Figure 3.2 shows the values of the ratio Q2

Q1
as z varies between −1 and −5/8,

demonstrating that the ratio takes values between 0 and 1. This means that
Q2 is less than Q1. This leads to the conclusion that the distance between the
extraction that yields social optimum and Nash equilibrium is larger in the new
model than in the standard model.

3.5 Fear and greed

Other measures of the severity of a dilemma are the fear and greed measures that
were presented in the introduction. To compare the two models with respect
to fear and greed, they must first be normalized in some way that makes them
comparable. Here the Nash equilibrium is set to be equal in both models. The
function (2.1) is normalized by putting A = 1. The value of the parameter v has
to be chosen, which is arbitrarily set to 0.02. The conditions on the parameters
for the game to be a dilemma are: 0 < B < 1−w, 0 < w < v, e > 0, and n ≥ 3.

To begin with the worst action is calculated. It is the action that yields the
best payoff when the others play social optimum. The fear is then calculated by
taking the difference between the payoff for a player who plays social optimum
when the others play social optimum and the payoff for one who plays social
optimum when one of the other is playing the worst.

The greed is calculated by taking the difference between the payoff for a
player who plays social optimum when the other plays the same and the payoff
for a player who plays the worst when the other plays social optimum.
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Figure 3.3: Fear and greed for (3.2)

Figure 3.4: Fear and greed for (2.1)
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Figure 3.3 shows the fear and greed for the new model when varying the
parameter w. The other parameters are set to: n = 9 and e = 14. From the
figure it seems like the greed is greater than the fear in this model.

Figure 3.4 shows the same thing for the model from section 2.2. The pa-
rameters n and e are the same as above and B is calculated by putting the
extraction that yields Nash equilibrium to be the same as in the model above.
It also seems that the greed is greater than the fear in this model.

The fear and the greed have also been calculated while varying n and e and
they show the same thing: the greed is greater than the fear in both models.
Interestingly, it seems that both measures behave qualitatively in the same way
when parameter values change. However, it remains to be seen if this holds for
more general cases.

3.6 Further analysis

The things that can be concluded from the analysis in this chapter is that the
distance between the social optimum and the Nash equilibrium is bigger in the
changed model. This can indicate that the dilemma introduced in this chapter
is even more serious than in the standard version. In the model in this chapter it
requires a larger effort to go from the extraction that yields the Nash equilibrium
to the extraction that yields the social optimum. The fact that the resource is
decreasing nonlinearly has consequences for the behavioral change that players
must undergo to achieve the social optimum.

Here are some ideas that I have not been able to explore in this work, but
which may be worthy of further analysis.(1) It is interesting that the ratio for the
model in section 2.2 only depends on the group size. No matter what the other
parameters are the ratio will always be the same. (2) It would be interesting to
find a general relationship between the models in terms of greed and fear. (3)
It would be interesting to analyze the differences between the payoffs for Nash
equilibrium and social optimum. How do they differ between the both models?
(4) In these analyses the game is only played once but often the situations
that have been described here are repeated. It would be interesting to see
what happens if the game is iterated and consider the evolution of the game.
(5) In the models in chapter two there are psychological aspects that affects
the behavior of the players in the game. There are also some psychological
aspects that can be thought of in the model in this chapter. (6) Introducing an
underlying nonlinearity in the payoff function may be relevant not only in the
common resource dilemma but also in the public goods dilemma.
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Chapter 4

The dormitory kitchen
dilemma

The public goods dilemma and the common resource dilemma are the two most
common models of social dilemmas. One of them describes the build-up of a
resource and the other one describes the exploitation of the resource. But what
if they occur at the simultaneously?

Situations as this occur in real life. An example is a common kitchen in a
student dormitory. The people sharing the kitchen are both responsible for the
messing up and the cleaning of the kitchen. The dilemma occurs when people
mess up but are free riding on the others by not cleaning. This is a common
problem in many situations in everyday life and this simple problem irritates
people and it often ends up in an argument. It can be seen in the common
kitchen at a workplace, at the common patio of an apartment building or in the
property of a voluntary association.

Yamagishi and Cook describe these situations as a general exchange dilemma
and they approach it as a type of public goods dilemma [14]. Everyone gives a
contribution by working towards a nice and clean kitchen which is then shared
by all. The difference from a usual public goods dilemma is that it is difficult
to share the common good. In other words, how do you divide a clean kitchen?
The benefits one can get from a contribution are not directly contingent and
Yamagishi and Cook refer to that as general exchange and analyze it in their
article.

In this chapter a different approach is used. Here the situation is described
as a hybrid of the public goods dilemma and the common resource dilemma.
The new model is first described mathematically with a payoff function and it
is then analyzed in terms of the Nash equilibrium and the social optimum.

4.1 Model of the dormitory kitchen dilemma

In this dilemma n people are sharing a kitchen. Player i decides to clean xi
and mess up yi units. The payoff for cleaning is A times xi, B times yi for the
messing up. The payoff for having a messy kitchen is C times the mess that
remains. The constants A, B and C are marginal payoffs and can be assumed
to lie between 0 and 1. To introduce some boundaries on how much a player
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can mess up yi can be any number between 1 and 0. That means that xi can
lie between 0 and yi. The payoff for player i is then:

πi = −Axi +Byi − C
n∑

i=1

(yi − xi) (4.1)

Cleaning the kitchen as well as having a messy kitchen gives a negative payoff
but to mess up gives a positive payoff. That should be realistic since it is an
advantage for the individual to be able to use the kitchen and mess it up, while
not having to clean so much. On the other hand it is not nice to have a dirty
kitchen.

4.2 Analysis

The analysis of the model has different outcomes depending on the relation
between A,B and C. There are six combinations but not all of them are realistic.
This can for example be concluded by considering the case when a single person
uses the kitchen and see if it matches the description of the dilemma above.

In the general case the Nash equilibrium is calculated by finding the value
of xi and yi that maximizes the payoff for player i :

πi = (C −A)xi + (B − C)yi − C
∑
j 6=i

(yj − xj)

If C < A and B < C the action that gives the best payoff for player i is xi = 0
and yi = 0. By considering the case of a single person, it can be concluded that
this is not realistic. If one person uses the kitchen, it gives a negative payoff
both for cleaning and messing up.

It is also not realistic when C > A and B < C because then it gives a
positive payoff for cleaning but not for messing up. And people should want
to use the kitchen. The Nash equilibrium in this case is when xi = 0, yi = 0,
because xi can not be larger than yi.

If C > A and B > C the Nash equilibrium is given by xi = 1 and yi = 1
which means that people would want to clean and mess up as much as possible.
This is not completely unrealistic but does not satisfy the description above.

The interesting case is when C < A and B > C. This is realistic as the rela-
tion gives the Nash equilibrium xi = 0 and yi = 1. This means that people want
to mess up as much as possible while not cleaning at all. It is also compatible
with the single person case.

The social optimum is found by maximizing this function where every player
has the same strategy, x :

πso = −Ax+By − C(ny − nx) = Cn(x− y) +By −Ax

There are three possible outcomes:

x = 1,y = 1⇐⇒ π = B −A
x = 0,y = 1⇐⇒ π = B − Cn
x = 0,y = 0⇐⇒ π = 0
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The social optimum for the two cases where B < C is the same and depends
only on the relation between A and B. If B < A the social optimum is given
by x = 1 and y = 1. If B > A it is given by x = 0 and y = 0. But the
case B < A < C can then be excluded since that case will have the same Nash
equilibrium as social optimum and that does not cause a dilemma.

In the case of B > C it can be assumed that B < Cn because n is prob-
ably large and B and C are assumed to be small. The social optimum is then
determined by the relation between A and B and is then the same as above.

An interesting case is when C < A < B because the Nash equilibrium is
x = 0 and y = 1 and the social optimum is x = 1 and y = 1. This means that
it is best for the individual not to clean and to mess up as much as possible
but for the group it is best to clean and to mess up as much as possible. In the
other case where C < B < A it is also best for the individual not to clean and
to mess up as much as possible but the best for the group is not to clean and
not to mess up.

Intuitively, these last two cases seem to correspond to reality. It should be
the best for the individual not to clean and it should be the best for the group
if everyone did not mess up or if they do, that they will clean as much as they
have messed up.

4.3 Further analysis

This was a simple model of the dilemma and as in chapter 3 there are several
aspects that can be further analyzed.

(1) The assumption that the payoff function is linear is probably not realistic
and can be changed. It is probably more difficult for a person to start to clean
than to continue cleaning once started. (2) The assumption that C is the same
for everybody can be changed, since people probably have different opinions
about how a clean kitchen should look. (3) There are also psychological aspects
like peer pressure. The fear of making the others in the group angry by not
cleaning could also be included. If the people who share the kitchen know
each other they probably care for each other and will therefore clean more.
Often people organize days when everyone helps out to clean the kitchen. This
may have a positive affect as people realize that the work could be avoided if
everyone cleaned after themselves. (4) It is also common to have rules in a
common kitchen saying that one has do a certain amount of work. If there is
a penalty for not following the rules it would make it harder for a person to
free-ride. (5) In many common kitchens there are some things for everyone’s
use and some things that are individual property. It can be easier for people to
clean their individual property than the common property. (6) Another aspect
is that things in a kitchen might break so there are less things to use. There
could also be things that do not have to be cleaned on a regularly basis.

As for the models described in chapter 2 and 3 there are many aspects that
can be discussed and it is difficult to find a model that completely reflects reality.
It is a challenge to model social behavior but it is of great importance for solving
problems in society.
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