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Abstract. We study the underlying theory of matrix equations, their inter-
pretation and develop some of the practical linear algebra behind the standard
tools used, in applied mathematics, to solve systems of linear equations: the
LU factorization, the QR factorization and the SVD (Singular Value Decom-
position.) We also extend our study to more general systems giving rise to
linear least squares problems and show how the QR and SVD factorizations
are used to solve overdetermined problems and can be applied to rank deficient
problems.
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1. Introduction

1.1. On Solving Matrix Equations. The most important problem in applied
mathematics is equations solving. If A is our coefficient matrix, the solution to the
matrix equation Ax = y is x = A

−1y, assuming the inverse A
−1 exists, which from

elementary linear algebra implies that A must be square and nonsingular. Even if
it does exist, it is not certain whether it or the solution x is useful. What happens
if we operate in finite precision arithmetic - for example doing calculations on a
calculator - if the data, i.e. the coefficients of the matrix A and/or vector y, is
collected using a measuring instrument with inaccuracies? A simple illustration of
a new class of problems:

Given the equations .01x + 1.6y = 32.1 and x + .6y = 22 inserting x
∗ = 10,

y
∗ = 20 verifies that this is the true solution. Solving the system of equations with

three digit accuracy using the standard Gaussian elimination (with reduction to
row echelon form) we get the augmented system

�
.01 1.6
1 .6

����
32.1
−3190

� Gaussian elimination

=⇒
3 digit accuracy

�
1 0
0 1

����
−10
20.1

�
.

We got x = −10 and y = 20.1. A small error caused catastrophic errors in the
solution. If we reorder the rows (pivot) we instead get

�
1 .6
.01 1.6

����
−3190
32.1

� Gaussianelimination

=⇒
3 digit accuracy

�
1 0
0 1

����
9.9
20.1

�
.

This is acceptable, but how would we reorder an arbitrary 500× 500 matrix to get
an acceptable solution? Even worse, suppose we are given the systems



.01 1.6
1 .6
3 −2.1

������

32.1
−3190
332



 or




.01 1.6 3
1 .6 −2.1

−.10004 −16.0001 −30.0009

������

32.1
−3190
−321



 .

One is rectangular and the other is singular in three digit accuracy, and neither is
solvable by matrix inversion. Both situations can and do arise in practice. Do they
have solutions?

These simple examples leads us to study linear systems of equations, their solu-
tions and their meanings, to see if we can extend our understanding and develop
practical methods for equation solving in applications.

1.2. About This Paper. This paper will focus on studying the theory of linear
systems of equations and their solutions, to see how it is expanded into practical
situations. We will limit our scope and focus on the practical linear algebra, devel-
oping the framework leading up to linear least squares solutions to problems. We
mostly ignore questions of implementation (algorithms, complexity, errors, pertur-
bation theory, problem conditioning and so on) as this is the domain of numerical
analysis and scientific computing.

Especially error propagation, perturbation theory and problem conditioning are
crucial, but a fair study of these would far oversize this paper, and its study depends
on findings in this paper (for example singular values.) Because it is so important
we none the less give a brief background in the Appendix. While these considera-
tions are important to fully understand the methods developed, the study of these
would still be highly selective, heavily implementation dependent and situation spe-
cific. There are good practices for every problem, but no best implementation for
all situations. Nor is this strictly necessary. The underlining linear algebra that
will be developed is still sound, and we will take a general approach, focusing on
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understanding the standard well-proven and generally robust methods that are used
in applications.

2. Background Theory

We begin by reviewing some concepts of linear algebra and build onwards, but
first some important notes on notation and matrices.

2.1. Note on Matrices and Their Representation. It will be assumed through-
out that vectors v are column vectors, and row vectors are represented as vT . Often
when studying the properties of algorithms it is more enlightening, convenient, and
sufficient ([Demmel]) to look at a matrix as divided into blocks of submatrices,
rather than individual elements or column vectors.

Definition 1. Let A be a matrix m × n. Let 1 ≤ i1 ≤ . . . ≤ ik ≤ m and
1 ≤ j1 ≤ . . . ≤ jk ≤ n be two sets of contiguous indexes. The k × l matrix S of
entries spq = aipjq with p ∈ [1, k], q = [1, l] is called a submatrix of A. If k = l and
ir = jr for r ∈ [1, k], S is called a principal submatrix of A. If S = A1:k,1:k where
k ≤ min(m,n) we call it a leading principal submatrix.

A submatrix S, of A, is A with any rows and columns removed. A leading
principal submatrix is the square k×k upper left corner of A. A principal submatrix
is a square matrix with corresponding rows and columns deleted. In our rectangular
definition, all rows/columns> max(m,n) are first removed to make it square.

We will also use more specific notation. If A is an m ×m matrix, then Ak:l,x:y

denotes the submatrix consisting of the elements in rows k to l from columns x to y.
Ak:l,p signifies the k to l elements of column p, and A1,1:m would denote the entire
first row of A. If A = 0, in the previous, it will signify matrix of zeroes of that size
and likewise A = I will be used to signify an (always square) identity submatrix.

Definition 2. A m×n matrix A is called block partitioned or said to be partitioned
into submatrices if

A =




A11 · · · A1l
...

. . .
...

Ak1 · · · Akl





where Aij are submatrices of A.

Provided that the size of each single block is such that any single matrix operation
is well-defined, from [QuaSacSal] we gather the following useful results.

Proposition 3. Let A and B be block matrices

A =




A11 · · · A1l
...

. . .
...

Ak1 · · · Akl



 , B =




B11 · · · B1l
...

. . .
...

Bk1 · · · Bkl





where Aij and Bij are matrices (ki × lj) and (mi × nj). Then we have
1.

λA =




λA11 · · · λA1l

...
. . .

...
λAk1 · · · λAkl



 , λ ∈ C; A
T =




A

T

11 · · · A
T

k1
...

. . .
...

A
T

1l · · · A
T

kl



 ;

2. if k = m, l = n, mi = ki and nj = lj, then

A+B =




A11 +B11 · · · A1l +B1l

...
. . .

...
Ak1 +Bk1 · · · Akl +Bkl



 ;
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3. if l = m, li = mi, n = ki, then letting Cij =
�

m

s=1 AisBsj,

C =




C11 · · · C1l
...

. . .
...

Ck1 · · · Ckl



 .

This simply means that we can treat the submatrices as elements in their own
right, as long as the resulting matrix operations between submatrices are defined.

Definition 4. A permutation matrix P is a identity matrix with permuted rows.

From [OlvShaDraft] (Chapter 1, Lemma 1.9) and [Demmel] (Section 2.3, Lemma
2.2) and we give the following without further proof.

Lemma 5. A matrix P is a permutation matrix iff each row of P contains all 0
entries except for a single 1, and, in addition, each column of P also contains all 0
entries except for a single 1.

Lemma 6. Let P , P1, and P2 be n × n permutation matrices and X be an n × n

matrix. Then
1. PX (XP ) is the same as X with its rows (columns) permuted.
2. P

−1 = P
T .

3. det(P ) = ±1.
4. P1 · P2 is also a permutation matrix.

Definition 7. Let S be any nonsingular matrix. Then A and B = S
−1

AS are
called similar matrices, and S is a similarity transformation.

Looking forward somewhat (to Definition 16 and on) we conclude the following
for similar matrices.

Lemma 8. Similar matrices have the same rank.

Proof. Assume rankP = n ≥ r. If rankA = r then PA cannot have larger rank and
neither can AP

−1 or PAP
−1 = B, so rankB ≤ rankA (excessive columns end up

in kerA). If rankB = k, and reversing the argument, we find that rankA ≤ rankB
which leaves us with rankA = rankB = r = k. Similar matrices have the same
rank. �

It is possible to show many other important properties for similar matrices, for
example that they form equivalence relationships1, have the same eigenvalues etc.

2.2. Vector spaces, Subspaces and Basis.

Definition 9. A vector space is a set V equipped with two operations:
(i) Addition: if v, w ∈ V then v + w ∈ V; (ii) Scalar multiplication: for c ∈ R,
cv ∈ V.

The operations are required to satisfy the following axioms for all u,v,w ∈ V
and all c, d ∈ R:
(a) Commutativity of Addition: v +w = w + v
(b) Associativity of Addition: u+ (v +w) = (u+ v) +w
(c) Additive Identity : There is a zero element 0 ∈ V satisfying v + 0 = v = 0+ v
(d) Additive Inverse: For each v ∈ V there is an element −v ∈ V such that
v + (−v) = 0 = (−v) + v.
(e) Distributivity : (c+ d)v = (cv) + (dv), and c(v +w) = (cv) + (cw).
(f) Associativity of Scalar Multiplication: c(dv) = (cd)v.
(g) Unit for Scalar Multiplication: the scalar 1 ∈ R satisfies 1v = v.

1S = I gives A similar to A; S−1 = M ⇒ M−1BM = A show symmetry; If N−1BN = C ⇔
N−1S−1ASN = C show A similar to C via SN , show transitivity; A ∼ B.
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Though we will focus on vectors, the members of the “vector space” do not have
to be vectors. They can just as well be matrices, polynomials, functions etc. In
practice we often work with subsets of the vector space.

Definition 10. A subspace of a vector space V is a subset W ⊂ V which is a
vector space in its own right.

Proposition 11. A subset W ⊂ V of a vector space is a subspace iff (a) for every
v,w ∈ W, the sum v + w ∈ W, and (b) for every v ∈ W and every c ∈ R, the
scalar product cv ∈ W.

Proof. We want to show that given (a) and (b) the subset is a vector space and that
the operations fulfill all axioms of Definition 9. Let c ∈ R, and v,w ∈ W which
we can regard as part of V. We know that v +w = w + v because V is a vector
space, but closure also implies that it is part of W. This shows (a) of Definition 9
is fulfilled. The other properties follow from equally trivial argumentation. �
Definition 12. Let v1, . . . ,vk be a finite collection of elements of a vector space
V. A sum of the form

k�

i=1

civi

where c1, . . . , ck are any scalars, is known as a linear combination of the elements
v1, . . . ,vk and their span is the subset W = span{v1, . . . ,vk} ⊂ V consisting of all
possible linear combinations.

Proposition 13. The span of a collection of vectors, W = span{v1, . . . , vk},
forms a subspace of the underlying vector space.

Proof. Let v =
�

k

i=1 civi and �v =
�

k

i=1 �civi. If there are any two linear combina-
tions, then their sum v+ v̂ = (c1+ ĉ1)v1+ . . .+(ck+ ĉk)vk and any scalar multiple
av = (ac1)v1 + . . .+ (ack)vk are also linear combinations. �
Definition 14. The vectors v1, . . . ,vk ∈ V are called linearly dependent if there
exists a collection of scalars c1, . . . , ck, not all zero, such that

�
k

i=1 civi = 0. Vectors
which are not linearly dependent are linearly independent.

Theorem 15. Let v1, . . . ,vn ∈ Rm and let A = (v1 · · · vn) be the corresponding
m× n matrix.

(a) The vectors v1, . . . ,vn ∈ Rm are linearly dependent iff there is a non-zero
solution v �= 0 to the homogenous linear system Ac = 0.

(b) The vectors are linearly independent iff the only solution to the homogenous
system Ac = 0 is the trivial one c = 0.

(c) A vector b lies in the span of v1, . . . ,vn iff the linear system Ac = b is
compatible, i.e., it has at least one solution.

Proof. For v1, . . . ,vn to be linearly dependent a c = (c1, . . . , cn)T �= 0 must exist
such that the linear combination Ac = c1v1 + . . . + ckvn = 0. Therefore the
linear dependence requires the existence of a nontrivial solution to the homogenous
linear system Ac = 0. This shows (a). Property (b) follows directly from (a) and
Definition 14, since any other solution c �= 0 would make it linearly dependent.
This also follows from (a) and (c) since two or more solutions implies a non-unique
linear combination ⇔ infinitely many solutions.

To show (c) we write A = [v1 . . . vn] = [v]. Then Ac = b can be expressed as
a linear combination c1v1 + . . .+ cnvn = b. Assume c

∗
i
, ci ∈ R, and civi = c

∗
i
vi ⇔

(ci−c
∗
i
)vi = 0, for any i = [1, n]. If this is to be valid (compatible) vi = 0∨ci = c

∗
i
.

Especially, if vi = 0 for any i (i.e. is a linear combination of some of the other vn−1

vectors) then any combination of ci and c
∗
i

will work and the system has infinitely
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many solutions. Assuming vi �= 0, either ci = c
∗
i

for all i and the solution is unique,
or ci �= c

∗
i

for some i and the linear combination does not make sense (incompatible)
and hence b has no solution and cannot lie in the space spanned by v. �

Definition 16. The rank r of a matrix A is the number of linearly independent
columns of A.

Lemma 17. Rank r of A is also=#pivots=#linearly independent rows.

Proof. The number of pivots (diagonal entries of the row echelon form) is the same
as the number of nonzero columns. If some column is a linear combination of the
others, it can be zeroed (expressed as linear combination of the other columns.)
This can be repeated for any linearly dependent column until no more linear com-
binations are left. The number of nonzero columns is then the number of linearly
independent columns, the rank. These could be rearranged into row echelon form
and we find that #pivots=rank. This rearrangement can be preformed by relabel-
ing, and/or rearranging A accordingly (e.g. vi ←→ vk, where the v’s are columns
of A) or applying a permutation matrix P . It is also clear that the same argument
holds for the rows: #pivots=#nonzero rows.2 �

Proposition 18. A set of n vectors in Rm is linearly independent iff the corre-
sponding m × n matrix A has rank n. In particular, this requires n ≤ m. Any
collection of n > m vectors in Rm is linearly dependent.

Proof. This follows from Theorem 15 and Lemma 17. The second part follows from
the fact that if m < n there are more free parameters than equations and hence
infinitely many solutions, since any solution c = (0, . . . , 0� �� �

m

, c1, . . . , cm−n� �� �
n−m

) �= 0 solves

the homogenous system. �

Proposition 19. A collection of n vectors will span Rm iff their m × n matrix
has rank m. In particular, this requires n ≥ m.

Proof. n < m linearly independent vectors cannot span Rm, because not all possible
linear combinations b ∈ Rm would be representable and it would not be closed
under addition. This requires rank n = m. If n > m, the further n−m vectors will
be linear combinations of the first m and thus lie in their span. �

Definition 20. A basis of a vector space V is a finite collection of elements
v1, . . . ,vn ∈ V which span V, and are linearly independent.

Proposition 21. Every basis of Rm contains exactly m vectors. A set of m vectors
v1, . . . ,vm ∈ Rm is a basis iff the m×m matrix A = (v1 . . . vm) is nonsingular.

Proof. Linear independence requires that the only solution to the homogenous sys-
tem Ax = 0 is the trivial one x = 0. Also, a vector b ∈ Rm will lie in the
span{v1, . . . ,vm} iff the linear system Ax = b has a solution. For v1, . . . ,vm to
span Rm, this must hold for all possible right hand sides b. Both results require
that rankA = m, meaning that it is square and full rank, i.e. nonsingular. �

Lemma 22. Suppose v1, . . . ,vm span a vector space V. Then every set of n > m

elements w1, . . . ,wn ∈ V is linearly dependent.

2We will see this again clearly in Section 3.4 when the rank is the number of singular values
σi > 0.
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Proof. Each element wj =
�

m

i=1 aijvi, j = 1, . . . , n can be written as a linear
combination of the spanning elements.

c1w1 + . . .+ cnwn =
m�

i=1

n�

j=1

aijcjvi.

This linear combination will be zero whenever c = (c1, . . . , cn)T solves the ho-
mogenous linear system

�
n

j=1 aijcj = 0, i = 1, . . . ,m, of m equations in n > m

unknowns. Any homogenous system with more unknowns than equations always
has a non-trivial solution c �= 0, and this immediately implies that w1, . . . ,wn are
linearly dependent. �
Proposition 23. Suppose the vector space V has a basis v1, . . . ,vm. Then every
other basis of V has the same number of elements in it. The number is called the
dimension of V and is written as dimV = m.

Proof. Suppose we have two bases containing a different number of elements. By
definition, the smaller basis spans the vector space. But then Lemma 22 demands
that the elements in the larger supposed basis must be linearly dependent. This
contradicts our assumption that both sets are bases, and proves the proposition. �

From this we can summarize the following optimality property for bases.

Theorem 24. Suppose V is a n-dimensional vector space. Then
(1) Every set of more than n elements of V is linearly dependent.
(2) No set less than n elements span V.
(3) A set of n elements forms a basis iff it spans V.
(4) A set of n elements forms a basis iff it is linearly independent.

Lemma 25. The elements v1, . . . ,vn form a basis of V iff every v ∈ V can be
written uniquely as a linear combination thereof:

v = c1v1 + . . .+ cnvn =
n�

i=1

civi.

Proof. The condition that the basis span V implies every v ∈ V can be written as
some linear combination of the basis elements. Suppose we can write an element
x = c1v1 + . . .+ cnvn = ĉ1v1 + . . .+ ĉnvn as two different combinations.

Subtracting one from the other we find that (c1 − ĉ1)v1 + . . .+ (cn − ĉn)vn = 0.
Linear independence of the basis elements implies that the coefficients ci − ĉi =
0 ⇔ ci = ĉi and the linear combinations are the same. �
2.3. Inner Products and Norms.

Definition 26. An inner product on the real vector space V is a pairing that takes
two vectors v, w ∈ V and produces a real number �v;w� ∈ R. The inner product
is required to satisfy the following three axioms for all u, v, w ∈ V and c, d ∈ R
(i) Bilinearity

�cu+ dv;w� = c �u;w�+ d �v;w� ,
�u; cv + dw� = c �u;v�+ d �u;w� .

(ii) Symmetry
�v;w� = �w;v� .

(iii) Positivity
�v;v� > 0 whenever v �= 0, �0;0� = 0.

A vector space equipped with an inner product is called an inner product space.
A familiar example is the Euclidean dot product in Rn �v;w� = v ·w = vTw =�

n

i=1 viwi, which we already know from previous experience satisfy (i)-(iii) and is
thus an inner product norm.
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Definition 27. Given an inner product, the associated norm of a vector v ∈ V is
defined as ||v|| =

�
�v;v�.

Note. Definition 26 ensures that R � ||v|| ≥ 0 with equality only if v = 0.

Proposition 28. Every inner product satisfies the Cauchy-Schwarz inequality
| �v;w� | ≤ ||v|| ||w||, v,w ∈ V. Here ||v|| is the associated norm, while | · | denotes
the absolute value. Equality holds iff v and w are parallel vectors.

Proof. The case when w = 0 is trivial, since both sides of the inequality equal 0.
Thus we may suppose w �= 0. Let t ∈ R be an arbitrary scalar. Using the three
basic inner product axioms, we have

(2.1) 0 ≤ ||v + tw||2 = �v + tw;v + tw� = ||v||2 + 2t �v;w�+ t
2||w||2,

with equality holding iff v = −tw, which requires v and w to be parallel vec-
tors. We fix v and w, and consider their right hand side of Equation (2.1) as a
quadratic function, p(t) = ||w||2t2 + 2 �v;w� t+ ||v||2, of the scalar variable t. p(t)
assumes it minimum when p

�(t) = 2||w||2t+2 �v;w� = 0, so at t = −�v;w� /||w||2.
Substituting this value for t into Equation (2.1) gives

0 ≤ ||v||2 − 2
�v;w�2

||w||2 +
�v;w�2

||w||2 = ||v||2 − �v;w�2

||w||2 .

which with rearranging becomes �v;w�2 ≤ ||v||2||w||2. Taking the positive square
root of both sides gives the desired inequality. �

Theorem 29. The norm associated with an inner product satisfies the triangle
inequality ||v +w|| ≤ ||v|| + ||w|| for every v,w ∈ V. Equality holds iff v and w
are parallel vectors.

Proof.

||v +w||2 = �v +w;v +w� = ||v||2 + 2 �v;w�+ ||w||2

≤ ||v||2 + 2||v|| ||w||+ ||w||2 = (||v||+ ||w||)2,

using Cauchy-Schwartz inequality. Taking the positive square root of both sides
gives the desired result. �

Definition 30. A norm on the vector space V assigns a real number ||v|| to each
vector v ∈ V, subject to the following axioms for all v, w ∈ V, and c ∈ R:

(i) Positivity: ||v|| ≥ 0, with ||v|| = 0 iff v = 0.
(ii) Homogeneity: ||cv|| = |c|||v||.
(iii) Triangle inequality: ||v +w|| ≤ ||v||+ ||w||.

There are many different norms but the most common norms are the p-norms.

Definition 31. The general p-norm is defined as

||v||p = p

����
n�

i=1

|vi|p.

In Proposition 106 we show that, in some sense, all norms are equal in a finite-
dimensional vector space. Properties (i) and (ii) are straightforward for the p-norm
and property (iii) is known as Minkowski’s inequality, but we will use || · || as the
standard Euclidean (p = 2-norm) throughout.

Lemma 32. If v = 0 is any nonzero vector, then the vector u = v/||v|| obtained
by dividing v by its norm is a unit vector parallel to v.
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Proof. Making use of the homogeneity property of the norm, ||u|| = ||v/||v|| || =
||v||/||v|| = 1. �
Definition 33. Let A be m × n, || · ||m̂ be a vector norm on Rm, and || · ||n̂ be a
vector norm on Rn. Then

||A||m̂n̂ ≡ max
Rn�x �=0

||Ax||m̂
||x||n̂

= max
Rn�||x||n̂=1

||Ax||m̂

is called an operator norm or induced matrix norm or subordinate matrix norm.

It is the smallest C such that ||Ax||m̂ ≤ C||x||n̂ i.e. the maximum factor by which
A can stretch x. Is usefulness comes from the behavior of a matrix as an operation
from its (normed) domain and range spaces. We state the following without proof
(see [Demmel, GolubVanLoan] and others.)

Lemma 34. An operator norm is a matrix norm.

2.4. Orthogonality.

Definition 35. Two elements v,w ∈ V of an inner product space V are called
orthogonal if their inner product �v;w� = 0.

Definition 36. A basis v1, . . . , vn of a subspace V is called orthogonal if �vi;vj� =
0 for all i �= j. The basis is called orthonormal if, in addition, each vector has unit
length: ||v|| = 1, for all i = 1, . . . , n.

Lemma 37. If v1, . . . ,vm is any orthogonal basis, then the normalized vectors
ui = vi/||vi|| form an orthonormal basis.

Proof. Follows from Lemma 32. Since ||vi|| = vi ∈ R, and dividing by a scalar only
affects the length of and not the orientation of the orthogonal vectors. �
Proposition 38. If v1, . . . ,vk ∈ V are nonzero, mutually orthogonal, so �vi,vj� =
0 for all i �= j, then they are linearly independent.

Proof. Suppose c1v1 + . . . + ckvk = 0 = v. Taking any vi and using that the
elements are orthogonal and the linearity of inner product we get: �v;vi� =
c1 �v1 : vi� + · · · + ck �vk : vi� = ci||vi||2 = 0. Provided vi �= 0, we conclude
that the coefficient ci = 0. Since this holds for all i = 1, . . . , k, linear independence
of v1, . . . ,vk follows. �
Corollary 39. Suppose v1, . . . ,vn ∈ V are mutually orthogonal nonzero elements
of an inner product space V. Then v1, . . . ,vk form an orthogonal basis for their span
W = span{v1, . . . ,vn} ⊂ V, which is therefore a subspace of dimension n = dimW .
In particular, if dimV = n, then they form a orthogonal basis for V.

Theorem 40. Let u1, . . . ,un be an orthonormal basis for an inner product space
V. Then one can write any element v ∈ V as a linear combination v = c1u1 +
. . . + cnun, in which the coordinates ci = �v;ui�, i = 1, . . . , n, are explicitly given
as inner products. Moreover, the norm

||v|| =
�
c
2
1 + . . .+ c2

n
=

����
n�

i=1

�v;ui�2

is the square root of the sum of the squares of its coordinates.

Proof. The orthonormality condition is �ui;uj� = 0 if i �= j else = 1 if i = j and
because of bilinearity of the inner product

�v;u� =
�

n�

j=1

cjuj ;ui

�
=

n�

j=1

cj �uj ;ui� = ci||ui||2 = ci.
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Similarly using orthogonality of the basis elements we get

||v||2 = �v;v� =
n�

i,j=1

cicj �ui;uj� =
n�

i=1

c
2
i
.

�
Proposition 41. If v1, . . . ,vn form an orthogonal basis, then the corresponding
coordinates of a vector v = a1v1 + . . .+ anvn are given by ai = �v;vi� /||vi||2. In
this case the norm can be computed via

||v||2 =
n�

i=1

a
2
i
||vi||2 =

n�

i=1

�
�v;vi�
||vi||

�2

.

Proof. This proof is practically identical to previous proof (Theorem 40.) �
Definition 42. A square matrix Q is called an orthogonal matrix if it satisfies
Q

T
Q = I. This implies that Q

−1 = Q for an orthogonal matrix.
Proposition 43. A matrix Q is orthogonal3 iff its columns form an orthonormal
basis with respect to the Euclidean dot product on Rn.
Proof. Let u1, . . . ,un be columns of Q and uT

1 , . . . ,u
T

n
the rows of QT . The (i, j)th

entry of QT
Q = I is given as the product of the i

th row of QT times the j
th column

of Q. Thus ui · uj = uT

i
uj =

�
1, i = j,

0, i �= j,
which is the condition for u1, . . . ,un to

form an orthonormal basis. �
Lemma 44. An orthogonal matrix has determinant detQ = ±1.
Proof. From Definition 42 taking the determinant gives 1 = det I = det(QT

Q) =
detQT detQ = (detQ)2. �
Proposition 45. The product of two orthogonal matrices is also orthogonal.
Proof. If Q

T

1 Q1 = I = Q
T

2 Q2, then (Q1Q2)T (Q1Q2) = Q
T

1 Q
T

1 Q1Q2 = I, and so
Q1Q2 is also orthogonal. �
Definition 46. A vector z ∈ V is said to be orthogonal to the subspace W if it is
orthogonal to every vector in W, so �z;w� = 0 for all w ∈ W.
Note. z is orthogonal to W if it is orthogonal to every basis vector in W.
Definition 47. The orthogonal projection of v onto the subspace W is the element
w ∈ W that makes the difference z = v −w orthogonal to W.
Proposition 48. Let u1, . . . ,un be an orthonormal basis for the subspace W ⊂ V.
Then the orthogonal projection of a vector v ∈ V onto W is w = c1u1 + . . .+ cnun

where ci = �v;ui� , i = 1, . . . , n.
Proof. First, since u1 . . . ,un form a basis of the subspace, the orthogonal projection
element w = c1u1+ . . .+cnun must be some linear combination thereof. Definition
47 requires that the difference z = v −w be orthogonal to W. It suffices to check
orthogonality to the basis vectors of W. By our orthonormality assumption, for
each 1 ≤ i ≤ n,

(2.2) 0 = �z;ui� = �v;ui� − �w;ui� = �v;ui� − �ciui + . . .+ cnun;ui�
= �v;ui� − c1 �u1;ui� − . . .− cn �un;ui� = �v;ui� − ci.

We deduce that the coefficients ci = �v;ui� of the orthogonal projection w are
uniquely prescribed by the orthogonality requirement. �

3 This definition is standard throughout linear algebra. Matrices with non-normalized orthog-
onal columns do not have a specific name.



PRACTICAL LINEAR ALGEBRA FOR APPLIED GENERAL LINEAR SYSTEMS 12

Note. By the same reasoning, or by simply putting ui = vi/||vi|| (where vi is not
normalized) above, the orthogonal projection of v onto W, having a general orthog-
onal basis v1, . . .vn, is given by w = a1vi + . . . anvn, where ai = �v;vi� /||vi||2,
i = 1, . . . n.

Definition 49. Two subspaces W,Z ⊂ V are called orthogonal if every vector in
W is orthogonal to every vector in Z.

Definition 50. The orthogonal complement to a subspace W ⊂ V , denoted W⊥

is defined as the set of all vectors which are orthogonal to W, so W⊥ = {v ∈
W | �v;w� = 0 for all w ∈ W}.

Proposition 51. Suppose that W ⊂ V is a finite-dimensional subspace of an inner
product space. Then every vector v ∈ V can be uniquely decomposed into v = w+z
where w ∈ W and z ∈ W⊥.

Proof. We let w ∈ W be the orthogonal projection of v onto W. Then z = v −w
is by definition, orthogonal to W and hence belongs to W⊥. Note that z can be
viewed as the orthogonal projection of v onto the complementary subspace W⊥. If
we are given two such decompositions, v = w+z = w̃+ z̃, then w̃−w = z̃−z. The
left hand side of this equation lies in W while the right hand side belongs to W⊥.
But since they are orthogonal the only vector that can belong to both subspaces W
and W⊥ is the zero vector and thus w = w̃ and z = z̃, which proves uniqueness. �

Corollary 52. If W is a finite-dimensional subspace of an inner product space,
then (W⊥)⊥ = W.

Proposition 53. If dimW = m and dimV = n, then dimW⊥ = n−m.

Proof. This is a direct consequence of Proposition 51. Since n basis vectors span V
in total, removing the m basis vectors that span the orthogonal subspace W, leaves
n−m basis vectors orthogonal to W, which form an orthogonal subspace on their
own. �

2.5. Systems of Linear Equations. First we state the most basic and familiar
results, found in any book on elementary linear algebra. They can also be directly
inferred from the earlier discussion on linear independence.

Theorem 54. A linear system Ax = b has a unique solution for every choice of
right hand side b iff its coefficient matrix A is square and nonsingular.

Theorem 55. If A is invertible, then the unique solution to the linear system
Ax = b is given by x = A

−1b.

Theorem 56. A homogenous linear system Ax = 0 of m equations in n unknowns
has a nontrivial solution x �= 0 iff the rank of A is r < n. If m < n, the system
always has a nontrivial solution. If m = n, the system has a nontrivial solution iff
A is nonsingular.

For our purposes the use of the inverse A
−1 is purely theoretical. x = A

−1b
should not be thought of as a matrix-vector multiplication or that A

−1 is actually
computed, but viewed as a change of basis (expressing x as a linear combination
of y) or alternatively as solving a linear system of equations. This will be used
indirectly throughout this text so to clarify: since A

−1 is defined it has full rank,
i.e. has all linearly independent columns ⇐⇒ from a basis for the span of A−1 ⇐⇒
x is a linear combination x =

�rankA

j=1 bja
(−1)
j

, where a(−1)
j

signifies the j
th column

of A−1.
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Definition 57. The range of an m × n matrix A is the subspace rngA ⊂ Rm

spanned by the columns of A. The kernel or null space of A is the subspace kerA ⊂
Rn consisting of all vectors which are annihilated by A, so

rngA = {Ax |x ∈ Rn} ⊂ Rm and kerA = {z ∈ Rn |Az = 0} ⊂ Rn
.

Alternative names for the range are image and column space, as by definition a
vector Rm � b ∈ rngA iff it can be written as a linear combination of the columns
of A = (a1 a2 . . . an) i.e. b = x1a1 + . . . xnan and so b = Ax for some x, meaning
that a vector b lies in the range of A iff the linear system Ax = b has a solution.

An alternatives name for the kernel is the null space, as kerA is the set of
solutions to the homogenous system Az = 0. Suppose that z,w ∈ kerA so that
Az = 0 = Aw. Then for any c, d ∈ R: A(cz+ dw) = cAz+ dAw = 0 ∈ kerA, and
so kerA is a subspace. This is known as the superposition principle for solutions to
homogenous linear system of equations.

Proposition 58. If z1, . . . , zk ∈ kerA (are solutions to Az = 0), then so are
c1z1 + . . .+ ckzk ∈ kerA.

Proof. z1, . . . , zn ∈ kerA ⇔ Az1 = . . . = Azn = 0 so c1Az1 = . . . = cnAzn = 0 ∈
kerA, which also shows that kerA is a subspace (ckAzk + ciAzi ∈ kerA.) �
Note. The set x1, . . . ,xn of solutions to inhomogenous Ax = b, b �= 0, is not a
subspace (it would not contain x = 0.)

Theorem 59. The linear system Ax = b has a solution x∗ iff b ∈ rngA. If this
occurs, then x is a solution to the linear system iff

x = x∗ + z,

where z ∈ kerA is any element in the kernel of A.

Proof. The first part follows from Definition 57. If Ax = Ax∗ = b, their difference
z = x − x∗ satisfies Az = A(x − x∗) = Ax − Ax∗ = b − b = 0 and z ∈ kerA and
x = x∗ + z follows. �

In order to find the general solution to the system one needs to find a particular
solution x and the general solution z ∈ kerA to homogenous equation (as in the
case of linear ordinary differential equations).

Definition 60. The adjoint to a linear system Ax = b of m equations in n

unknowns is the linear system
A

Ty = f

of n equations in m unknowns. Here y ∈ Rm and f ∈ Rn.

Definition 61. The corange (or alternatively row space or coimage) of an m× n

matrix A is the range of its transpose,
corngA = rngAT = {ATy |y ∈ Rm} ⊂ Rn

.

The cokernel or left null space of A is the kernel of its transpose,
cokerA = kerAT = {w ∈ Rn |ATw = 0} ⊂ Rm

,

That is, the set of solutions to the homogenous adjoint system.

The following ([OlvShaDraft] Theorem 2.47) is the Fundamental Theorem of
Linear Algebra, found in any elementary linear algebra text.

Theorem 62. Let A be a m× n matrix of rank r. Then
dim corngA = dim rngA = rankA = rankAT = r,

dim kerA = n− r, dim cokerA = m− r.
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Proof. Briefly. The rank r of A is the #linearly independent columns=#linearly
independent rows= dimA = #pivots. The linearly independent rows of A are the
linearly independent columns of AT and so rankAT = r = #pivots. It follows that
#linearly dependent columns of A = n − r = dimkerA. Since cokerA = kerAT

(AT is n×m) similarly #linearly independent columns of AT= m− r. �

Theorem 63. Let A be an m× n matrix of rank r. Then its kernel and corange
are orthogonal complements as subspaces of Rn, of respective dimension n− r and
r, while its cokernel and range are orthogonal complements in Rm

, of respective
dimensions m− r and r:

(2.3) kerA = (corngA)⊥ ⊂ Rn
, cokerA = (rngA)⊥ ⊂ Rm

.

Proof. A vector x ∈ Rn lies in kerA iff Ax = 0. According to the rules of matrix
multiplication, the i

th entry of Ax equals the product of the i
th row rT

i
of A and

x. But this product vanishes, rT
i
x = ri · x = 0, iff x is orthogonal to ri. Therefore

x ∈ kerA iff x is orthogonal to all the rows of A. Since the rows span corngA =
rngAT , this is equivalent to the statement that x lies in the orthogonal complement
(corngA)⊥, which proves the first statement. The proof of range and cokernel
follows the same argument applied to the transposed matrix A

T . �

A linear system Ax = b will have a solution iff the right hand side b ∈ rngA
which requires b⊥cokerA, and we can write the compatibility conditions for Ax = b
as y · b = 0 for any y satisfying A

Ty = 0. Following [OlvShaDraft] we state
the following characterization of compatible linear systems, without proof, but is
actually a combination of Theorem 62 and Theorem 63.

Theorem 64. (Fredholm alternative) The linear system Ax = b has a solution iff
b is orthogonal to the cokernel of A.

We state the following theorem without proof.

Proposition 65. Multiplication by an m×n matrix A of rank r defines a one-to-
one correspondence between the r-dimensional subspace corngA ⊂ Rn and rngA ⊂
Rm. Moreover, if v1, . . . ,vr forms a basis of corngA then their images Av1, . . . , Avn

form a basis for rngA.

Proposition 66. A compatible linear system Av = b with b ∈ rngA = (cokerA)⊥

has a unique solution w ∈ corngA with Aw = b. The general solution is x = w+z
where z ∈ kerA. The particular solution is distinguished by the fact that it has
minimum Euclidean norm ||w|| among possible solutions.

We will briefly return to these in Section 3.3.3 where these results will become
clear.

2.6. Positive Definite Matrices.

Definition 67. An n × n matrix K is called symmetric positive definite - s.p.d -
if it is symmetric, KT = K, and satisfies the positivity condition xT

Kx > 0 for all
0 �= x ∈ Rn.4

Theorem 68. Every inner product on Rn is given by �x;y� = xT
Ky, for x,y ∈

Rn, where K is s.p.d.

Proof. Let �x;y� denote the inner product between the vectors x = (x1 . . . xn)T

and y = (y1 . . . yn)T , in Rn. Writing the vectors in terms of the standard basis

4This is sometimes written K > 0, but does not imply that all entries are > 0.
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x = x1e1+ . . .+xnen =
�

n

i=1 xiei, y =
�

n

j=1 yjei. Bilinearity of the inner product
gives

(2.4) �x,y� =
�

n�

i=1

xiei;
n�

j=1

yjej

�
=

n�

i,j=1

xixj �ei, ej� =
n�

i,j=1

kijxiyi = xT
Ky,

where K is the n × n matrix of inner products of the basis vectors, with entries
kij = �ei, ej�, i, j = 1, . . . , n. So any inner product can/must be expressed in the
general bilinear form.

Symmetry of the inner product implies that kij = �ei, ej� = �ej , ei� = kji, i, j =
1, . . . , n. Consequently, the inner product matrix K is symmetric with K = K

T .
Since �x;y� = xT

Ky = [since scalar] = (xT
Ky)T = yT

K
Tx = yT

Kx = �y;x�,
symmetry of K ensures the bilinear form is also symmetric.

Finally ||x||2 = �x;x� = xT
Kx =

�
n

i,j=1 kijxixj ≥ 0 for all x ∈ Rn, and equality
only iff x = 0. �

Proposition 69. All s.p.d matrices K are non-singular.

Proof. For the xT (Kx) = (KTx)Tx > 0 to hold (for K to be s.p.d.) rngK � x �=
0 ∈ corngK and only {0} = kerA (i.e. dimkerK = 0) and so square K has no
linearly independent columns and is invertible. More succinctly: if xT

Ax = 0 we
could find a nonzero x �= 0 to satisfy the equation (we would have linear dependent
columns/rows.) �

Definition 70. Let V be an inner product space, and let v1, . . . ,vn ∈ V. The
associated Gram matrix

(2.5) K =




�v1;v1� · · · �v1;vn�

...
. . .

...
�vn;v1� · · · �vn;vn�





is the the n × n matrix whose entries are the inner products between the chosen
vector space elements.

Proposition 71. All Gram matrices are positive semi-definite. A Gram matrix is
s.p.d. iff the elements v1, . . . ,vn ∈ V are linearly independent.

Proof. To prove (semi-)definiteness of K, we need to examine the associated qua-
dratic form

q(x) = xT
Kx =

n�

i,j=1

kijxixj .

Symmetry of the inner product implies symmetry of Gram matrix so kij = �vi;vj� =
�vj ;vi� = kji, and hence K

T = K. Substituting this into the above we get

q(x) =
n�

i,j=1

�vi;vj�xixj .

Bilinearity of the inner product of V implies that we can assemble this summation
into a single inner product

q(x) =

�
n�

i=1

xivi;
n�

j=1

xjvj

�
= �v;v� = ||v||2 ≥ 0,

where v = x1v1 + . . . + xnvn ∈ span(v1, . . . ,vn), so K is positive semi-definite.
Moreover, q(x) = ||v||2 > 0 as long as v �= 0. If v1, . . . ,vn are linearly independent
then v = 0 iff x1 = · · · = xn = 0, and hence, in this case, q(x) and K are s.p.d. �
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Given vectors v1, . . . ,vn ∈ Rm form the m × n matrix A = (v1 . . . vn). The
Euclidean inner product (dot product) v ·w = vTw gives that kij = vi ·vj = vT

i
vj

of the i
th row of AT with the j

th column of A i.e.

(2.6) K = A
T
A,

which by Proposition 71 is s.p.d. iff the columns of A are linearly independent.

Theorem 72. Given an m× n matrix A, the following are equivalent:
(i) The n× n Gram matrix K = A

T
A is positive definite.

(ii) A has linearly independent columns.
(iii) rankA = n ≤ m.
(iv) kerA = {0}.

3. Factorizations

We now turn to the problem of matrix factorizations, one of the most important
tools of linear algebra. The idea is to reduce a matrix into parts that are either
easier to solve, or display some important property of the matrix (for example
number of pivots, rank, invertibility, singular values, eigenvalues etc.) We will be
using the notations and definitions from Section 2.1 extensively.

3.1. Gauss Reduction and LU Factorization.

Gauss transformations. If M,A ∈ Rm×m we can express the matrix-matrix product
MA as matrix-vector products MA = [Ma1 · · · Mam], where ak is the kth columns
of A, and Mak forms the k

th column of MA. Now suppose ak ∈ Rm with ak �
ak,k �= 0 (the k

th element of ak.) Let lT
k

= (0, . . . , 0� �� �
k

, lk+1, . . . , lm), li = ak,i/ak,k,

i = k+1, . . . ,m and ak,i is the ith element of ak. We will call lk a Gauss vector with
multipliers li, and define the Gauss transform as M(lk) = Mk = I− lkeTk ∈ Rm×m,
where ek ∈ Rm is the k

th unit vector (ei=k = 1, ei �=k = 0.)5
On applying a Gauss transform Mk to A, the k

th column of the resulting MkA

becomes

Mkak =





1 · · · 0 · · · 0

0
. . .

...

1
...

... −lk+1
...

. . . 0
0 · · · lm 0 1









a1
...
ak

ak+1
...

am





=





a1
...
ak

0
...
0





.

Note 73. If we apply Mk to a m×m matrix B we get MkB = (I − lkeTk )B = B −
lk(eTkB) = B− lkBk,1:m = B−B̃, (where Bk,1:m is the k

th row of B.) Since l1:k = 0

in lk (i.e. the first k elements of lk are zero) we get B̃ =

�
01:k,1:m

B̃k+1:m,1:m

�
. Only

the submatrix Bk+1:m,1:m is affected, and the application will leave “subcolumn”

5The condition that li = 0 (for i = 1, . . . , k) is required for Mk to be a Gauss transform.
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Bk+1:m,1 = 0. For example, if m = 5 and k = 3 we get

l3e
T

3 B =





0
0
0

−l4

−l5





�
0 0 1 0 0

�





• • • • •
• • • • •

B3,1 B3,2 B3,3 B3,4 B3,5

• • • • •
• • • • •





=





0
0
0

−l4

−l5





�
B3,1 B3,2 B3,3 B3,4 B3,5

�
= lkb

T =

B̃ =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−l4B3,1 −l4B3,2 −l4B3,3 −l4B3,4 −l4B3,5

−l5B3,1 −l5B3,2 −l5B3,3 −l5B3,4 −l5B3,5





=





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
• • B4,3B3,3/B3,3 • •
• • B5,3B3,3/B3,3 • •





and, observing that only elements in B4:5,1 (the subdiagonal column) coincide es-
pecially with those of B, we get

B − B̃ =





• • • • •
• • • • •
• • • • •
• • • • •
• • • • •




−





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
• • • • •
• • • • •




=





• • • • •
• • • • •
• • • • •
• • 0 • •
• • 0 • •




.

Further, if for example B5,4 = 0 then after application of B̃ it will be −l5B3,4, and
we have “destroyed” a zero. Looking at the second step, lkbT , we see that zero
elements in bT will introduce zero columns in B̃. We use this fact in the following:

Definition 74. Let Mk = M(lk) where lk = l(Ak−1). Let Ak be the matrix A

after k applications M1 · · ·Mk. Gauss reduction (or upper triangularization) is the
process of successively applying such a sequence of Mk (k = 1, . . . ,m − 1) to zero
the subdiagonal and reduce A to row echelon form.

If A is m ×m, the Gauss reduction will need at most m − 1 steps since in the
last column the pivot is all that remains. Also, returning to Note 73 we find, in
step k �= 1, that since the subdiagonal entries in columns 1, . . . , k − 1 are zero,
the corresponding columns of B̃ will be zero, and only the lower right rectangular
corner of B is affected i.e. B22:

B − B̃ =

�
B1:k,1:k−1 B1:k,k:m

Bk+1:m,1:k−1 B22

�
−
�

01:k,1:k−1 01:k,k:m
0k+1:m,1:k−1 B̃k+1:m,k:m

�
.

Illustrating Gauss reduction with an arbitrary 4× 4 matrix A we see that
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A

[M1]
→
(1)





• • • •
a • • •
b • • •
c • • •



−





0 0 0 0
a • • •
b • • •
c • • •





[M2]
→
(2)





• • • •
0 • • •
0 d • •
0 e • •



−





0 0 0 0
0 0 0 0
0 d • •
0 e • •





[M3]
→
(3)





• • • •
0 • • •
0 0 • •
0 0 f •



−





0 0 0 0
0 0 0 0
0 0 0 0
0 0 f •





=





• • • •
0 • • •
0 0 • •
0 0 0 •



 = U

Other possibilities for reducing A to row echelon from are possible, but some prop-
erties make the Gauss transform, and the resulting Gauss reduction, particularly
useful.

Proposition 75. If M and M̃ are Gauss transforms, then
(1) M is nonsingular and its inverse M

−1 is also unit lower triangular,
(2) M

−1 is equal to M with its subdiagonal elements of opposite sign,
(3) MM̂ is also unit lower triangular.

Proof. (1) and (2): The pattern of mostly zeroes (sparsity6), in the general case, in
lk and ek implies that eT

k
lk = 0, because ek = 1 and the rest zero, but lk = 0 (the

k
th entry of lk.) Therefore (I− lkeTk )(I+ lkeTk ) = I− τkeTk lke

T

k
= I− l(eT

k
τ)eT

k
= I

and so M
−1
k

= I + lkeTk (= Lk), and we can easily determine the inverse (which
implies non-singularity.)
(3) Sparsity again gives eT

k
lk+1 = 0, MkMk+1 = (I + lkeTk )(I + lk+1eTk+1) = I +

lkeTk + lk+1eTk+1, a unit lower triangular matrix is obtained. Putting MkMk+1 = M

and multiplying with Mn = I + lneTn will give MMn = I + lkeTk + lk+1eTk+1+ lneTn ,
which is also unit lower triangular. �

We change the notation to Mk = L
−1
k

and M
−1
k

= Lk for the k
th Gauss trans-

form and its inverse. So by choosing L
−1
k

properly it is usually possible to zero
the subdiagonal elements in column k of the matrix A, and under the right cir-
cumstances (for example we required ak,k �= 0) one can find a sequence of Gauss
transforms L

−1
1 , . . . , L

−1
m−1 such that L

−1
m−1 · · ·L

−1
1 A = U is upper triangular. This

is the idea behind LU factorization.

LU factorization. LU factorization is the result of a complete Gauss reduction of
a nonsingular matrix A, resulting in a upper triangular matrix U and unit lower
triangular matrix L, such that A = LU .

We just saw that applying the L
−1
1 to L

−1
m−1 Gauss transformations successively

will give L
−1

m−1 . . . L
−1
1 A = U , where U is upper triangular. Setting L

−1
m−1 · · ·L

−1
1 =

L
−1, where L

−1 is invertible and unit lower triangular (Proposition 75) we get that

6Sparsity is a very important concept to making practical linear algebra practical. The opposite
is “full”, making no assumptions on the distribution or existence of zero entries.
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L
−1

A = U . Then L = (L−1
m−1 · · ·L

−1
1 )−1 = L1 · · ·Lm−1 (also unit lower triangular)

and we get A = LU . This is the LU factorization of A.
Proposition 76. The following statements are equivalent:

1. There exists a unique unit lower triangular L and nonsingular upper triangular
U such that A = LU .

2. All leading principal submatrices of A are nonsingular.
Proof. (1) =⇒ (2): A = LU may also be written

�
A11 A12

A21 A22

�
=

�
L11 0
L21 L22

� �
U11 U12

0 U22

�

=

�
L11U11 L11U12

L21U11 L21U12 + L22U22

�
,

where A11 is a j-by-j leading principal submatrix, as are L11 and U11. Therefore
detA11 = det(L11U11) = detL11 detU11 = 1 ·

�
j

k
(U11)kk �= 07, since L is unit

triangular and U is triangular.
(2) =⇒ (1): Using induction on m: in the basic case, for 1×1 matrices: a = 1 ·a.

To prove for m ×m matrices Ã we will find unique (m − 1) × (m − 1) triangular
matrices L and U (LU = A ∈ R(m−1)×(m−1)), unique (m − 1) × 1 vectors b, c, l
and u, and unique scalars δ, η �= 0 such that

Ã =

�
A b
cT δ

�
= L̃Ũ =

�
L 0
lT 1

� �
U u
0 η

�
=

�
LU Lu
lTU lTu+ η

�
.

By our induction assumption, unique L and U exist such that A = LU . Now let
u = L

−1b, lT = cTU−1, and η = δ − lTu, all of which are unique. The diagonal
entries of U are nonzero by induction (and those of L are 1), and η �= 0 since
0 �= det(Ã) = det(U) · η. If either of L and U are singular (though Ã is not) the
LU factorization fails. But by induction, since LU held for (m− 1), L̃Ũ holds for
m. �

As we just saw, though A may be nonsingular, submatrices may not be and
then LU factorization fails. Reordering (permuting) the components of A, if A is
nonsingular, we can get nonsingular leading principal submatrices as required.
Proposition 77. If A is nonsingular, then there exists permutations P1 and P2, a
nonsingular unit lower triangular matrix L and nonsingular upper triangular matrix
U , such that P1AP2 = LU . Only one of P1 and P2 are necessary.
Proof. We use induction on dimension m. For 1 × 1 matrices: P1 = P2 = L = 1
and U = A. Assume that it is true for dimension n − 1. If A is nonsingular, then
it has a nonzero entry; choose permutations P

�
1 and P

�
2 so that the (1, 1) entry of

P
�
1AP

�
2 is nonzero. (Only one of P �

1 and P
�
2 is needed since nonsingularity implies

that each row and column has nonzero entry.)
Now we write the desired factorization and solve for the unknown components:

�
a11 A12

A21 A22

�
=

�
1 0

L21 I

� �
u11 U12

0 Ã22

�

=

�
u11 U12

L21u11 L21U12 + Ã22

�
,

where A22 and Ã22 are (n−1)×(n−1), and L21 and U
T

12 are (n−1)×1. Solving for
the components of this 2×2 block factorization we get u11−a11 = 0 (u11 = a11 �= 0),
U12 = A12, and L21u11 = A21. Since u11 = a11 �= 0, we can solve for L21 = A21/a11.
Finally, L21U12 + Ã22 = A22 implies Ã22 = A22 − L21U12.

7This is the product of the traces of L and U .
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We want to apply induction to Ã22, but to do so we need to check that detÃ22 �=
0: Since detP �

1AP
�
2 = ±detA �= 0 and also

detP �
1AP

�
2 = det

�
1 0

L21 I

�
· det

�
u11 U12

0 Ã22

�
= 1 · (u11 · detÃ22),

then detÃ22 must be nonzero.
Therefore, by induction there exist permutations P̃1 and P̃2 so that P̃1Ã22P̃2 =

L̃Ũ , with L̃ unit lower triangular and Ũ upper triangular and nonsingular. Substi-
tuting this in the above 2× 2 block factorization yields

P
�
1AP

�
2 =

�
1 0

L21 I

� �
u11 U12

0 P̃
T

1 L̃Ũ P̃
T

2

�

=

�
1 0

L21 I

� �
1 0
0 P̃

T

1 L̃

� �
u11 U12

0 Ũ P̃
T

2

�
,

=

�
1 0

L21 P̃
T

1 L̃

� �
u11 U12P̃2

0 Ũ

� �
1 0
0 P̃

T

2

�

=

�
1 0
0 P̃

T

1

� �
1 0

P̃1L21 L̃

� �
u11 U12P̃2

0 Ũ

� �
1 0
0 P̃

T

2

�

so we get the desired factorization of A:

P1AP2 =

��
1 0
0 P̃1

�
P

�
1

�
A

�
P

�
2

�
1 0
0 P̃2

��

=

�
1 0

P̃1L21 L̃

� �
u11 U12P̃2

0 Ũ

�
.

�
Corollary 78. We can choose P

�
2 and P

�
1 so that a11 is the largest entry in absolute

value in the whole matrix. More generally, at step i of Gaussian elimination, where
we are computing the i

th column of L, we reorder the rows and columns i through
n so that the largest entry in this submatrix is on the diagonal. This is called
Gaussian elimination with complete pivoting - GECP.

We can choose P
�
2 = I and P

�
1 so that a11 is the largest entry in absolute value

in the column. More generally, at step i of Gaussian elimination, where we are
computing the i

th column of L, we reorder the rows so that the largest entry in the
column is on the diagonal. This is called Gaussian elimination with partial pivoting
- GEPP.8

Summarizing we get the following:

Theorem 79. Let A be a m×m matrix. Then the following conditions are equiv-
alent (i) A is nonsingular; (ii) A has m nonzero pivots; (iii) A admits a permuted
LU factorization: PA = LU ; (iv) once B (= PA) admits a LU factorization, it is
unique (for every P .)

Just as when forming the L of the LU factorization, we do not have the result-
ing matrices Prow or Pcolumn, the row or column ordering, beforehand. Rather
any permutation P is a consequence of Corollary 78, where at each step we do an
(hopefully) sufficient pivot Pi (the resulting leading principal submatrix is nonsin-
gular) for that, step and Prow is the resulting permutation matrix after we are done
with the LU factorization. To see clearly how this comes about, we illustrate if for
GEPP.

8GECP is almost never used in practice. GEPP is (almost) always sufficient in practice because
GEPP almost always works. ([Demmel])
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By Corollary 78, at each step A ∈ R(m+1)×(m+1) is first permuted by P1 so
that the maximum magnitude element is found in the diagonal and then the Gauss
transform L

−1
1 is applied. In the next step this is repeated and we get a sequence

L
−1
m

Pm · · ·L−1
1 P1A = U . If we put L

−1
m

= L
�
m

, L
�
m−1 = PmL

−1
m−1P

−1
m

, L
�
m−2 =

PmPm−1L
−1
m−2P

−1
m−1P

−1
m

, with the general L�
k
= Pm . . . Pk+1L

−1
k

P
−1
k+1 . . . P

−1
m

and
the final L�

1 = Pm . . . P2L
−1
1 P

−1
2 . . . P

−1
m

.
We see that L

�
k

and L
−1
k

are similar and will have the same structure. When
we show what happens for m = 3 it is a trivial mater to extend this result to
the general L�

m
. . . L

�
1Pm · · ·P1 = L

−1
m

Pm · · ·L−1
1 P1 = L

�
P , where L

� = (L�
m
· · ·L�

1)
which we already know to be L

−1.
L
�
Prow = L

�
3L

�
2L

�
1P3P2P1 = L

−1
3 (P3L

−1
2 P

−1
3 )(P3P2L

−1
1 P

−1
2 P

−1
3 )P3P2P1

= L
−1
3 P3L

−1
2 P2L

−1
1 P1.

3.2. Cholesky Factorization.

Proposition 80. If all leading principal submatrices of A ∈ Rn×n are nonsingular,
then there exists unique lower triangular matrices L and M and a unique diagonal
matrix D = diag(d1, . . . , dn) such that A = LDM

T .

Proof. We know that A has a LU factorization A = LU . Set D = diag(d1, . . . , dn)
with di = uii for i = [1, n]. D is nonsingular and M

T = D
−1

U is unit upper
triangular. Thus A = LU = LD(D−1

U) = LDM
T . Uniqueness follows from the

uniqueness of LU factorization. �
Theorem 81. If A = LDM

T is the LDM
T factorization of a nonsingular sym-

metric matrix A, then L = M .

Proof. The matrix M
−1

AM
−T = MLD is symmetric and lower triangular, i.e.

diagonal. Since D is nonsingular, this implies that M
−1

L is also diagonal, but
M

−1
L is unit lower triangular and so M

−1
L = I. �

Proposition 82. If X is nonsingular, then A is s.p.d. iff X
T
AX is s.p.d.

Proof. X nonsingular implies y = Xx �= 0 for all x �= 0. So 0 < xT
X

T
AXx =

(Xx)TAXx = yT
Ay > 0. Since this was true for all x �= 0 (and hence y �= 0) this

implies A is s.p.d. when X
T
AX is s.p.d. �

Proposition 83. If X is nonsingular, then X
T
AX is s.p.d. if A is s.p.d.

Proof. This is simply the reversal of Lemma 82. Beginning with A s.p.d and non-
singular X. For x �= 0 ⇔ y = Xx �= 0, and 0 < yT

Ay gives X
T
AX = K > 0. �

Note. We used X nonsingular to ensure that x �= 0 meant Xx �= 0. If we extend
the argument to rectangular X ∈ Rm×n with full rank n and x ∈ R

n, the argument
would still hold.

Lemma 84. If A is s.p.d. and S is any principal submatrix of A then S is s.p.d.

Proof. Suppose S ∈ Rm×m is any principal submatrix of A ∈ Rn×n. Let y �= 0 ∈
Rm, z = 0 ∈ Rn−m and let x∗ = [yT

, zT ]T ∈ Rn. Let PS be a permutation such that
P sx∗ = xs, where 0 �= xs � xk = yi is located in the k

th row where row/column
i of S comes from in A (see Definition 1.) We find that yT

Sy = c = xT

s
Axs, and

because c = xT

s
Axs > 0 for all such xs �= 0, then yT

Sy > 0 for all y �= 0 and S

must also be s.p.d. �
Corollary 85. The diagonal entries of a s.p.d matrix A are all positive.

Proof. Trivially: Select Si = [ai,i] ∈ A, then for any x �= 0, ax
2
> 0 since A is

s.p.d. �
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Proposition 86. If A is s.p.d. then the factorization LDL
T exists and D =

diag(d1, . . . , dn) all positive diagonal entries.

Proof. By Lemma 84 all leading principal submatrices of A are nonsingular so by
Proposition 80 A = LDM

T exist, and since L is nonsingular we can put X = L
−T

and apply Lemma 83 we have that XAX
T = L

−1
AL

−T = DM
T
L
−T = G which

must also be s.p.d. Since M and L
−T are unit upper triangular, ML

−T also is and
G must have the same positive diagonal as D.

Finally, since A is symmetric, by Theorem 81 M = L and A = LDL
T exists. �

Note that for Proposition 82 up to the last line of Proposition 86 we never used
symmetry, and these results hold for more general positive definite matrices. The
following result is s.p.d. specific.

Theorem 87. If A ∈ Rn×n is symmetric positive definite, then there exists a unique
lower triangular G ∈ Rn×n with positive diagonal entries such that A = GG

T , and
aii > 0. This reduction is known as the Cholesky factorization.

Proof. Since A is s.p.d. by Proposition 86 there exists a unit lower triangular
L and a diagonal D = diag(

√
d1, . . . ,

√
dn) such that A = LDL

T . Since the dk

are positive (by Lemma 85) the matrix G = L · diag(
√
d1, . . . ,

√
dn) is real lower

triangular with positive diagonal entries. It also satisfies A = GG
T
. Uniqueness

follows from uniqueness of LDL
T factorization (Theorem 81). aii > 0 follows

because aii = (diagG)2 > 0 (A is nonsingular.) �
Note. Equivalently one can use a upper triangular matrix U and write A = U

T
U .

3.2.1. Computing the Cholesky Factor. We want to derive an algorithm for the
Cholesky factorization L. We have just proved that it exists and thus A = LL

T

where A is s.p.d. Deriving it again using a different approach, provides us with the
means for an algorithm to compute the Cholesky factors L.

Lemma 88. Let A be s.p.d. Then there exists a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LL

T .

Proof. Choosing lii > 0 will determine L uniquely. Using induction on the dimen-
sion n. If n = 1, choose l11 =

√
a11, which must exist since aii > 0 for s.p.d.

A.

A =

�
a11 A12

A
T

12 A22

�
=

� √
a11 0

A
T
12√
a11

I

� �
1 0
0 Ã22

� � √
a11

A
T
12√
a11

0 I

�

=

�
a11 A12

A
T

12 Ã22 +
A

T
12A12

a11

�

so the (n − 1) × (n − 1) matrix Ã22 = A22 − A
T
12A12

a11
is symmetric. By Lemma 82

D =

�
1 0
0 Ã

�
is s.p.d. and thus by Lemma 83 Ã22 is s.p.d. By induction there

exists an L̃ such that Ã22 = L̃L̃
T and

A =

� √
a11 0

A
T
12√
a11

I

� �
1 0
0 L̃L̃

T

� � √
a11

A
T
12√
a11

0 I

�

=

� √
a11 0

A
T
12√
a11

L̃

�� √
a11

A
T
12√
a11

0 L̃
T

�
= LL

T
.

�
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We see that D is successively reduced to I by a series of operations that operate
on the L̃L̃

T portion of D. This gives the following algorithm called the Outer
product version Cholesky :9 :

Let A1 = A. At step i we have Ai =




Ii−1 0 0
0 aii a∗

i

0 ai Bi



. If we have a lower

triangular Li =




Ii−1 0 0
0

√
aii 0

0 1√
aii

ai In−i



 we can write Ai = LiAi+1L
T

i
where

Ai+1 =

�
Ii 0
0 Bi − 1

aii
aiaTi

�
. If we repeat this for i = [1, n] we get An+1 = I

and from this we can deduce L = L1 · · ·Ln.

Note. From the structure of Li (a Gauss transform) and its updating effects on
Ai we see that in fact we have a symmetric Gauss elimination! We don’t prove it
explicitly but by Lemma 84 Cholesky factorization will never require pivoting for
convergence and s.p.d. matrices are “diagonally dominant”.

3.3. Orthogonal Decompositions - QR Factorization. The idea of QR fac-
torization is to successively form a sequence of orthonormal vectors qi to span the
same space as the columns of A, i.e. to find an orthonormal basis for A. We also
want an upper triangular matrix R where the diagonal entries �= 0, which is easy
to solve by back substitution (Section 5.)

3.3.1. Gram-Schmidt Orthogonalization Process. Let V be a n-dimensional inner
product space with some known basis a1, . . . ,an (so ai �= 0.) We will construct
orthogonal elements qi of the basis q1, . . . ,qn. The projection of x onto y is
projy(x) =

�x;y�
�y;y�y = �x;y�

||y||2y.
We can choose any ai to start building our orthogonal basis from so we select a1,

and set q1 = a1/||a1||. Now q2 (2nd basis vector) must be orthogonal to q1. We
can achieve this by subtracting a suitable multiple of q1 so q2 = a2 − r1q1. Since
by orthogonality �q2;q1� = �a2;q1� − r1 �q1;q1� = �a2;q1� − r1||q1||2 = 0 we get
that r1 = �a2;q1� /||q1||2, and

(3.1) q2 = a2 −
�a2;q1�
||q1||2

q1 = a2 − projq1
(a2) = a2 − r1q1.

Next q3 = a3 − r13q1 − r23q2. Since q1 and q2 are orthonormal we only have
to look at �a3;q1� = 0 and �a3;q2� = 0. We get r12 = �a3;q1� ||q1||−1 and
r23 = �a3;q2� ||q2||−1 and

q3 = a3 − projq1
(a3)q1 − projq2

(a3)q2.

Continuing, we get orthogonal vectors q1, . . . ,qj−1 as linear combinations of a1, . . . ,
aj−1, and qj can be computed from qj = aj − r1q1− . . .− rj−1qj−1. The orthogo-
nality constraint �qj ;qi� = �aj ;qi� − rj �qj ;qi� = 0 requires ri = �aj ;qi� / �qj ;qi�
and the general classical Gram-Schmidt formula is

(3.2) qj = aj −
k−1�

i=1

projqi
(aj) = aj −

k−1�

i=1

rijqi

We can get an orthonormal basis by taking qi = qi/||qi||. Let ||qi||−1 = ci

and set rij = rijci above (it is convention to ensure rjj > 0 - since c = ||q|| =
±
�

q
2
1 + . . .+ q2

n
.) As a result the Gram-Schmidt process shows existence of an

9Based on [GolubVanLoan] with notation from [Wikipedia].
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orthogonal (orthonormal) basis for a finite-dimensional inner product space. In
addition, ensuring that all rjj > 0 removes ambiguity of signs.

In finite precision, roundoff (usually) result in loss of orthogonality ([Demmel])
and therefore a mathematically equivalent but algorithmically modified approach
is taken - modified Gram-Schmidt - given in Equation 3.3. Instead of updating one
vector at a time against the others to produce qj , all vectors are instead updated
at each step.

(3.3)

q(1)
j

= aj − projq1
(aj)

q(2)
j

= q(1)
j

− projq2
(q(1)

j
)

...

q(j−1)
j

= q(j−2)
j

− projqj−1
(q(j−2)

j
)

In the first step all components non-orthogonal to q1 will removed from all ai>1,
making q1 orthogonal to them. In the next step, all components non-orthogonal to
q2 will be removed from all ai>2 (labeled q(1)

i>2), but not from q1 since it is already
orthogonal.) By correcting the remaining bases in steps, rounding errors are leveled
out and it is therefore more stable when precision is finite.

If we use the normalized basis q1, . . . ,qn, looking at Equation (3.2) we can
rearrange the terms as

a1 = r11q1,

a2 = r12q1 + r22q2,

...
an = r1nqn + r2nq2 + . . .+ rnnqn.

This shows that the original matrix A can be expressed as the product of an or-
thogonal matrix Q and an upper triangular matrix R (where we choose rii > 0) -
the (full) QR factorization.

A = [a1 . . . an] , Q = [q1 . . . qn] , R =





r11 r12 · · · r1n

0 r22 r2n
...

. . .
...

0 0 · · · rnn




=⇒ A = QR.

Proposition 89. Assume Rm×n � A = QR, m ≥ n and full rank n. As-
sume A = {a1, . . . ,an} and Q = {q1, . . . ,qm} are column partitionings. Then
span{a1, . . . ,an} = span{q1, . . . ,qn}, k ∈ [1, n]. In particular if Qn = Q(1 : m, 1 :
n) and Qm−n = Q(1 : m,n + 1 : m) then rngA = rngQn and rngA⊥ = rngQm−n

and in addition A = QnRn, Rn = R(1 : n, 1 : n).

Note. R =

�
Rn

0

�
, Q = [Qn Qm−n] so A = QR = [Qn Qm−n]

�
Rn

0

�
= QnRn.

Also, we will use Q̂R̂ to denote the reduced (or thin) QR factors QnRn.

Proof. Since we saw from the QR factorization ak =
�

k

i=1 rikqi ∈ span{q1, . . . ,qk},
⊇ span{a1, . . . ,ak}. Since rankA = n we get dim span{a1, . . . ,ak} = k and hence
span{a1, . . . ,ak} = span{q1, . . . ,qk}. We see the rest as a trivial consequence. �
Proposition 90. Suppose A ∈ Rm×n has full column rank. Then the thin QR
factorization A = Q̂R̂ is unique where Q̂ ∈ Rm×n has orthonormal columns and R̂

is upper triangular with positive diagonal entries. Moreover R̂ = G
T
, where G is

the lower triangular Cholesky factor of AT
A.
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Proof. Since A
T
A = (Q̂R̂)T Q̂R̂ = R̂

T
R̂ we see that G = R̂

T is the Cholesky factor
of A

T
A. This factor is unique by Theorem 87 and since Q̂ = AR̂

−1, Q̂ is also
unique. �

Note. This of course again proves that A = QR is unique since it is a special case
of Proposition 90, and motivates the choice of rii > 0.

Putting all this together we reach the following result:

Theorem 91. Any nonsingular matrix A can be factorized, A = QR, into the prod-
uct of an orthogonal matrix Q and an upper triangular matrix R. The factorization
is unique if all the diagonal entries of R are assumed to be positive.

3.3.2. Projectors. We saw the use of projections in the Gram-Schmidt process,
when we computed the familiar projections of one vector onto another. We will
study this a bit further and see why projectors turn out to be important in appli-
cations.

Definition 92. A projector is a square matrix P that satisfies P
2 = P .

Such a matrix is said to be idempotent. The definition includes both orthogonal
and oblique (nonorthogonal) projectors. If P is a projector, I−P is also a projector,
because (I − P )2 = I − 2P + P

2 = I − 2P + P = I − P .

Note 93. If v ∈ rngP , then v applying P results in v itself, it lies in its own
projection. For some x, v = Px and Pv = P

2x = Px = v. If v �= Pv then
P (Pv− v) = P

2v−Pv = 0 and Pv− v ∈ kerP , or (I −P )Pv = 0. From this we
see that rng(I−P ) = kerP and the complementary fact that P = I− (I−P ) gives
ker(I−P ) = rngP . Also, if v ∈ kerP then v = v−Pv = 0 and also v ∈ ker(I−P )
then v(I − P ) = 0 and ker(I − P ) ∩ kerP = 0, and a projector separates Rm into
two spaces S1 and S2.

We wait until Section 3.4 to show the following:

Proposition 94. A projector P is orthogonal iff P = P
T .

From Note 101 we deduce that we can write P = Q̂Q̂
∗, where the columns of Q̂

are orthonormal. A special case of this is Pq = qqT which isolates the component
in the q direction (||q|| = 1). The complement of this is P⊥q = I − qqT or if we
have non-normalized: Q = qqT

/qTq or

(3.4) Q = I − qqT

qTq

which we recognize from the Gram-Schmit process.

3.3.3. Arbitrary Basis Projectors. We now show how to construct a projection with
an arbitrary basis (i.e. possibly not orthogonal) onto a subspace V of Rm.

Suppose V is spanned by the linearly independent vectors {a1, . . . ,an} = A (i.e.
A is m×n.) As w passes from v to its orthogonal projection b ∈ rngA, w = b−v
must be orthogonal to rngA ⇔ aT

j
(b− v) = 0 for every j. Since b ∈ rngA, we can

set b = Ax and write aT
j
(Ax− v) = 0 for each j, or equivalently A

T (Ax− v) = 0

or A
T
Av = A

Tv, where A
T
A of course is non-singular by Equation (2.6), so

(3.5) x = (AT
A)−1

A
Tv.

The projection of v, y = Ax = A(AT
A)−1

A
Tv and the orthogonal projector onto

rngA can be written as P = A(AT
A)−1

A
T , a multidimensional generalization of

Equation (3.4). In Theorem 109 we will see that x minimizes the norm, as promised
by Proposition 66.
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Figure 3.1. Orthogonal reflectors about hyperplanes Π+ and Π−.

3.3.4. Householder Reflection. Using projectors, we now show two other often used
methods to construct the QR factorization.

We want to construct an orthogonal matrix Qk ∈ Rm×n that zeros out the
subdiagonal elements in the kth column of a matrix A, without affecting subdiagonal
entries in previous columns. Each Qk is chosen to be an orthogonal matrix

(3.6) Qk =

�
I1:k−1 0

0 Hk:m

�
,

where I1:k−1 is the (k − 1)× (k − 1) identity matrix and Hk:m is an (m− k + 1)×
(m− k+1) orthogonal matrix (where I1:k−1 of course disappears when k = 1) and
multiplication by H introduces zeros in the k

th column (in the k + 1 elements.)
Suppose at step k, the entries k to m of the k

th column are given by x ∈ Rm−k+1.
The desired H should

x =





•
•
•
•



 → Hx =





±||x||
0
...
0




= ±||x||e1,

where • are any elements (not all = 0). There are many mappings that could
do this, the Householder reflector turns out to be easy to compute. The reflector
will reflect the space Rm−k+1 across the hyperplanes Π+ och Π− orthogonal to
v = ±||x||e1 − x. From Figure 3.1 we get a geometrical picture of the situation,
and why we get ±, and we will want to select the reflection that moves x the larger
distance. When applied, every point on one side of the hyperplane is mapped to the
other. x is mapped to ±||x||e1. The orthogonal projection of any vector y ∈ Rm

onto Π is Py =

�
I − vvT

vTv

�
y = y − v

�
vTy

vTv

�
, but with H we want to go even

further and reflect across H, go twice as far and thus H becomes

H = I − 2
vvT

vTv
= I − 2uuT

, u = v/||v||.

Mathematically either of ’+’ or ’−’ is satisfactory, but it is common practice to
choose the Householder vector v = −sign(x1)||x||e1 − x with sign(0) = 1, or more
commonly v = sign(x1)||x||e1 + x, to minimize cancelation in the xi component.

Because H
T = I − 2(uuT )T = H and HH

T = (I − 2uuT ) = I − 4uuT −
4u(uTu)uT = I = H

2, H is a symmetric and orthogonal matrix and H gives an
orthogonal transformation Qk as desired.
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Householder QR. First noting that the product of orthogonal matrices will be or-
thogonal (Proposition 45), we briefly illustrate how Householder reflections are used
to produce the QR factorization of a matrix A ∈ R5×4. At each step orthogonal Q
is easily constructed with H via v (depending on our current A at step i.)

A

[H]
→
(1)





• • • •
0 • • •
0 • • •
0 • • •
0 • • •





�
1 0
0 H2:m

�

→
(2)





• • • •
0 • • •
0 0 • •
0 0 • •
0 0 • •





�
I1:2 0
0 H3:m

�

→
(3)

· · ·
→
(3)





• • • •
0 • • •
0 0 • •
0 0 0 •
0 0 0 •





�
I1:3 0
0 H4:5

�

→
(4)





• • • •
0 • • •
0 0 • •
0 0 0 •
0 0 0 0




= Q4 · · ·Q1A = QR.

3.3.5. Givens Rotation. A 2 × 2 Givens rotation G(θ) ≡
�

cos θ − sin θ
sin θ cos θ

�
=

�
c −s

s c

�
is a counterclockwise rotation through an angle θ of x ∈ R2. Putting

G
T
G =

�
c s

−s c

� �
c −s

s c

�
=

�
c
2 + s

2
sc− cs

cs− sc s
2 + c

2

�
= I, so G is orthogonal.

The orthogonal transformation Q(Gijθ) = Qijθ matrix, with the general Givens
rotation Gijθ, is a θ radians rotation about the (i, k) coordinate plane of x ∈ Rm

given by
(3.7)

Qijθ =





I1:i−1 0
c −s

Ii+1:j−1

s c

0 Ij+1:m




=




I1:i−1 0

Gijθ

0 Ij+1:m



 .

Figure 3.2. A θ radians Givens rotation about the axis.

Say we want to zero yk
th component of y, then y = Gijθx gives

(3.8) yk =






cxi − sxj k = i

sxi + cxk k = j

xk k �= i, j

= 0 if
c = xi/σ,

s = −xj/σ,

σ =
�
x
2
i
+ x

2
j
.
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The way we showed that G was orthogonal, it follows trivially that Qijθ is also
orthogonal. Zeroing yk as in Equation (3.8) is not optimal (if σ → 0), but shows
how Givens rotations can be chosen to selectively zero off-diagonal elements.

Givens QR. We briefly illustrate how Givens rotations are used to produce the QR

factorization of A in the previous 5 × 4 example for Householder transformations,
interrupting after step (2).

Q
(1)
ijθ

A2 =





1
1

1
c −s

s c









• • • •
0 • • •
0 0 • •
0 0 • •
0 0 • •




=

(2.5)





• • • •
0 • • •
0 0 • •
0 0 • •
0 0 0 •




→

Q
(2.5)
ijθ

A2.5 =





1
1

c −s

s c

1









• • • •
0 • • •
0 0 • •
0 0 • •
0 0 0 •




=
(3)





• • • •
0 • • •
0 0 • •
0 0 0 •
0 0 0 •





We do not prove this explicitly, but it is clear that it is possible to construct these
orthogonal transformations to zero out the rows of A as well (e.g. QA

T → AQ
T ,

where Q is an orthogonal transformation) and is used in some applications.
Each of the three different methods construct the QR in different ways (remem-

ber that the QR is unique) and have their own problems and uses.

3.4. Orthogonal Decompositions - Singular Value Decomposition. The fol-
lowing decomposition is a very important theoretical tool that also has many prac-
tical applications. It turns out to be an extremely powerful and comprehensive
description of any matrix. Some of the most interesting properties, for example its
relation to the eigenvalue decomposition or its importance in studying conditioning
of problems, will not be examined in detail.

Theorem 95. Let A ∈ Cm×n (m, n arbitrary and A possibly rank deficient).
Then there exists a factorization (Singular Value Decomposition - SVD)

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . ,σp=min(m,n))
where σ1 ≥ . . . ≥ σp ≥ 0 ∈ R. The columns u1, . . . ,um of U are called left singular
vectors. The columns v1 . . . ,vn are called right singular vectors. The σi are called
singular values.

Proof. We use induction on m and n (and assume m ≥ n, if m < n we can consider
A

T instead.) Assume the SVD exists for (m − 1) × (n − 1) and A �= 0; otherwise
we can take Σ = 0 and let U and V be arbitrary orthogonal matrices.

The base case is when n = 1 (since m ≥ n). We write A = UΣV T with
U = A/||A||2, Σ = ||A||2, and V = 1.

For the induction step choose v so ||v||2 = 1 and ||A||2 = ||Av||2 > 0. Such
a v exists by the definition of ||A||2 = max||v||2=1 ||Av||2 (Definition 33). Let
u = Av/||Av||2, which is a unit vector. Choose Ũ and Ṽ to that U = [u, Ũ ] is an
m× n orthogonal matrix, and V = [v, Ṽ ] is n× n orthogonal matrix.

U
T
AV =

�
uT

Ũ
T

�
A
�
v Ṽ

�
=

�
uT

Av uT
AṼ

Ũ
T
Av Ũ

T
AṼ

�
.
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Then
uT

Av =
(Av)T (Av)

||Av||2
=

||Av||22
||Av||2

= ||Av||2 = ||A||2 ≡ σ

and Ũ
∗
Av = Ũ

∗u||Av||2 = 0. We claim uT
AṼ = 0 too because otherwise

σ = ||A||2 = ||UT
AV ||2 ≥ || [1, 0, . . . , 0]U∗

AV ||2 = ||
�
σ|uT

AṼ |
�
||2 > σ, a con-

tradiction.10

So U
∗
AV =

�
σ 0
0 Ũ

T
AṼ

�
=

�
σ 0
0 A

�
. We may now apply the induction

hypothesis to Ã to get Ã = U1ΣV T

1 , where U1 is (m− 1)× (n− 1), Σ1 is (n− 1)×
(n− 1), and V1 is (n− 1)× (n− 1). So

U
∗
AV =

�
σ 0
0 U1ΣV T

1

�
=

�
1 0
0 U1

� �
σ 0
0 Σ

� �
1 0
0 V1

�T

or

A =

�
U

�
1 0
0 U1

���
σ 0
0 Σ1

��
V

�
1 0
0 V1

��T

,

which is our desired decomposition. �
Note. We denote σmax = σ1 the largest singular value, the i

th largest σi, the
smallest singular value as σmin, and σp as the p

th (p = min{m,n} of a A ∈ Rm×n.)

Proposition 96. Let A ∈ Rm×n, r ≤ p the number of σi �= 0, and �x, . . . , z� =
span{x, . . . , z}. Then

1. rankA = r,
2. rngA = �u1, . . . ,ur� and kerA = �vr+1, . . . ,vn�,
3. For A ∈ Rm×m, | detA| =

�
m

i=1 σi.

Proof. (1) Choose m× (m− n) Ũ such that Û = [U, Ũ ] is square and orthogonal.

Since Û and V are nonsingular, A and Û
T
AV =

�
Σn×n

0(m−n)×n

�
= Σ̂ have same

rank r (the number of pivots in A).
(2) Clearly rngΣ = �e1, . . . , er� ⊆ Rm and kerΣ = �er+1, . . . , en� ⊆ Rn.

Az = Û Σ̂V T z = 0 ⇔ Û
T
Az = Σ̂V T z = Û

T
AV (V T z) = Σ̂V T z = 0. So for

z ∈ kerA, V T z ∈ ker Σ̂, which leaves us with �vk+1, . . . ,vn� = kerA.
A similar argument gives that Û · rng(ÛT

AV = Σ̂) = rngA = �u1, . . . ,ur�.
(3) If U orthogonal, detU = |1| and detUT = (detU)T , so | detA| = | det(UΣV T )| =
| detU | · | detΣ| · | detV T | = | detΣ| =

�
m

i=1 σi. �
From [GolubVanLoan] we provide the following results regarding norms without

proof.

Lemma 97. Let A ∈ Rm×n then ||A||2 = σ1 = σmax and min
x �=0

||Ax||2/||x||2 = σmin.

If we have A = UΣV T then Ax = b ⇔ U
T
Ax = U

T
UΣV Tx = U

Tb. Putting
U

Tb = b� and V
Tx = x�, we get b� = Σx�. Since the SVD exists for any matrix

this change of basis shows that any matrix A can be made diagonal if we use the
proper bases for rngA and kerA. Later we will show additional useful properties of
the SVD (related to the eigenvalue problem) that explain why it is such a powerful
decomposition.

Definition 98. If A = UΣV T ∈ Rm×n

{m≥n} is the SVD of A, then A = Û Σ̂V T , where
Û = U1:m,1:n = [u1, . . . ,un] ∈ Rm×n, and Σ̂ = Σ1:n,1:n = diag(σ1, . . . ,σn) ∈ Rm×n,
is the thin SVD.

10See [Demmel] p. 22-23, Lemma 1.7 part 7.
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Proposition 99. Assume we have the SVD of A ∈ Rm×n. If k < r = rankA and

(3.9) Ak =
k�

i=1

σiuiv
T

i

then min
rankB=k

||A−B||2 = ||A−Ak|| = σk+1.

Proof. U
T
AkV = diag(σ1, . . . ,σk, 0, . . . , 0) it follows that rankAk = k and that

U
T (A − Ak)V = diag(0, . . . ,σk+1, . . . ,σp) and so ||A − Ak||2 = σk+1. Now sup-

pose rankB = k for B ∈ Rm×n. It follows that we can find orthonormal vectors
x1, . . . ,xn−k such that kerB = span{x1, . . . ,xn−k}. Since (n − k) + (k + 1) > n,
span{x1, . . . ,xn−k} ∩ span{v1, . . . ,vk+1} �= {0} (they intersect). If z is a unit
2-norm vector in this intersection, Bz = 0 and Az =

�
k+1
i=1 σi(vT

i
z)ui we have that

||A−B||22 ≥ ||(A−B)z||22 = ||Az||22 =
k+1�

i=1

σi(v
T

i
z)ui ≥ σ

2
k+1.

�
We say that Equation (3.9) is a low rank approximation SVD of A. This also

shows that the SVD maximizes the “energy” of A, or the “information contents” of
A. Low-rank approximations Ak are used as a way to compress information with
minimal information loss or extract the “dominant” information in data mining
(see [Eldén] for an example). We give a final result that provides a geometrical
understanding of the SVD.

Proposition 100. Let Sn−1 = {x ∈ Rn : ||x||2 = 1}, the unit sphere in Rn. Let
A · Sn−1 = {Ax ∈ Rn : x ∈ Rn and ||x||2 = 1}. Then A · Sn−1 is an ellipsoid
centered at the origin of Rn, with principal axes σiui.

Proof. We will multiply by one factor of A = UΣV T at the time to form A · Sn−1.
Assume for simplicity that A nonsingular. Since V is orthogonal it maps unit
vectors to unit vectors and V

T · Sn−1 = S
n−1. Then, since v ∈ S

n−1 iff ||v||2 =
1, w = Σv ∈ ΣSn−1 iff ||Σ−1w||2 = 1 or

�
n

i=1(wi/σi)2 = 1. This defines an
ellipsoid with principal axes σiei, where ei is the i

th column of the identity matrix.
Multiplying each w = Σv by U just rotates the ellipsoid so that each ei becomes
ui, the i

th column of U . �
Hence the SVD describes a rotation (by V ,) a scaling of the unit hypersphere axes

(by the elements of Σ) and another rotation (by U) of the resulting ellipsoid (higher
dimensional ellipse). In the 2-dimensional case (or the rank 2 approximation) it is
a rotated ellipse.

We now present the proof of Proposition 94:

Proof. Px ∈ S1 and (I − P )y ∈ S2. If P = P
∗ then the inner product is x∗

P
∗(I −

P )y = x∗(P − P
2)y = 0.

Now suppose P projects S1 along S2 where S1⊥S2 and dimS1 = n. Let
{q1, . . . ,qm} be an orthonormal basis for Rm, where {q1, . . . ,qn} is a basis for
S1 and {qn+1, . . . ,qm} is a basis for S2. For j ≤ n we have Pqj = qj , and for
j > n Pqj = 0. Now let Q be the orthogonal matrix whose j

th column is qj . We
then have PQ = [q1, . . . ,qn, 0, . . .] so that QT

PQ = diag(1, . . . , 1� �� �
n

, 0, . . .) = Σ. Thus

we have constructed P = QΣQT , a SVD of P . Since P
T = QΣT

Q
T = QΣQT = P ,

P is orthogonal. �
Note 101. From this we can deduce that P = QQ

T = Q̂Q̂
T because P will have

m− n zero eigenvalues and we can drop those columns.
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3.4.1. On Computing the SVD. The following theorem illustrates the connection
between the SVD and the eigendecomposition of a matrix A.

Theorem 102. Let Rm×n � A = UΣV T be the SVD of A, with m ≥ n.11
1. Suppose A = A

T with eigenvalues λi and orthonormal eigenvectors ui, i.e.
A = UΛUT is the eigendecomposition with Λ = diag(λ1, . . . ,λn), U = (u1, . . . ,un),
and UU

T = I. Then a SVD of A is A = UΣV T , where σi = |λi| and vi =
sign(λi)ui, with sign(0) = 1.

2. The eigenvalues of the symmetric A
T
A are σ

2
i
. The right singular vectors vi

are corresponding orthonormal eigenvectors.
3. The eigenvalues of the symmetric matrix AA

T are σ
T

i
and m−n zeroes. The

left singular eigenvectors ui are the corresponding orthonormal eigenvectors for the
eigenvalues σ

2
i
. One can take any m−n other orthonormal vectors as eigenvectors

for the eigenvalue 0.

4. Let H =

�
0 A

T

A 0

�
where A is square and A = UΣV T , Σ = diag(σ1, . . . ,σn),

V = [v1, . . . ,vn] and U as before. Then the 2n eigenvalues of H are ±σi, with cor-

responding unit vectors ±1/
√
2

�
vi

±ui

�
.

Proof. (1) Is true by definition of SVD. (2) A
T
A = V ΣUT

UΣV T = V Σ2
V

T . This
is an eigendecomposition of AT

A, with the columns of V the eigenvectors and the
diagonal entries of Σ2 the eigenvalues. (3) Choose m × (m − n) matrix Ũ so that
[U, Ũ ] is square and orthogonal. We see that we get the eigendecomposition of AA

T

if we write12

AA
T = UΣV T

V ΣUT = UΣ2
U

T = [U, Ũ ]

�
Σ 0
0 0

�
[U, Ũ ]T .

(4) See [Demmel, GolubVanLoan] for more on this property. �

As we see, the SVD is closely related to the symmetric eigenvalue problem for
a matrix. Computing the SVD accurately, is an intricate matter and before the
modern approach13 the SVD was not used, but from the few properties we have
shown we see why it would be desirable. The solution of the symmetric eigenvalue
problem is well beyond the scope of this paper, indeed a paper in itself, and we
refer to in particular [Demmel, GolubVanLoan] for a detailed study of the eigenvalue
problem leading up to the the stable modern SVD algorithms. For a less detailed
but enlightening treatment refer to [TreBau, Björck].

A Naive Computation. None the less, for anyone familiar with basic eigenvalue the-
ory, we give a brief description of a “naive” way, based on [TreBau]. Given a matrix
A, we first form the s.p.d. A

T
A = H(= V ΣTΣV T ), and compute the eigenvalues

(the roots λi of p(λ) = det(H −λI) = 0.) Then use the λi to form the eigenvectors
xi in Axi = λixi by (A− λiI)xi = 0. We know from Theorem 102 that all xi will
be orthogonal and λi ≥ 0. It can be shown that the right and left eigenvectors are
equal and arranging λi in descending magnitude D = diag(λ1, . . . ,λn) with their
corresponding xi we can express H = XDX

T = UΣHV
T . Since σi,H = σ

2
i,A

we

11There are similar results for m < n.
12This is the Schur decomposition of the nondefective (real) heremetian matrix AAT , and

since Σ diagonal, the σi will be the eigenvalues. [Demmel]
13Formulated in: Golub, Gene H.; Kahan, William (1965). "Calculating the singular values

and pseudo-inverse of a matrix". Journal of the Society for Industrial and Applied Mathematics:
Series B, Numerical Analysis 2 (2): 205–224 and Golub, G. H.; Reinsch, C. (1970). "Singular
value decomposition and least squares solutions". Numerische Mathematik 14 (5): 403–420.
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take the σi,A = |√σi,H |. Then solve UΣ = AV for orthogonal U (for example with
the QR algorithm.)

4. Closest Point and Least Squares Problem

4.1. Quadratic Functions. We being studying quadratic functions, which are
important in studying certain minimization problems.

We want to minimize14 a real multivariate quadratic function

(4.1) p(x) = p(x1, . . . , xn) =
n�

i,j=1

kijxixj − 2
n�

i=1

fixi + c = xT
Kx− 2xT f + c,

where x = (x1, . . . , xn)T ∈ Rn and kij , fi, c ∈ R, and assume that kij = kji (the
quadratic terms are symmetric) so that K = (kij) is a symmetric n× n (quadratic
coefficient) matrix and f a constant vector. In order for this to have a minimum K

must be positive definite (i.e. K symmetric positive definite - s.p.d.)

Proposition 103. If K > 0 is s.p.d then the quadratic function, Equation (4.1),
has a unique minimizer, which is the solution to the linear system Kx = f , namely
x∗ = K

−1f . The minimum value of p(x) is equal to (any of)

(4.2) p(x∗) = p(K−1f) = c− fTK−1f = c− fTx∗ = c− (x∗)TKx∗

Proof. Suppose x∗ = K
−1f is the unique (the inverse is unique) solution to Kx = f .

Then for any x ∈ Rn

p(x) =xT
Kx− 2xT f + c = xT

Kx− 2xT
Kx∗ + c

=(x− x∗)TK(x− x∗) + [c− (x∗)TKx∗],

where the symmetry of K = K
T gives xT

Kx∗ = (x∗)TKx. The second term in the
final formula does not depend om x. Moreover, the first term has the form yT

Ky
where y = x − x∗. Since we assumed that K is positive definite, yT

Ky ≥ 0 and
vanishes iff y = x − x∗ = 0, which assumes minimum. Therefore the minimum of
p(x) occurs at x = x∗. The minimum value of p(x) is equal to the constant term.
The alternative expressions in Equation (4.2) follow from substitutions. �

Proposition 104. If K > 0 is s.p.d., the the quadratic function p(x) = xT
Kx −

2xT f + c has a unique global minimizer x∗ satisfying Kx∗ = f . If K ≥ 0 is positive
semi-definite, and f ∈ rngK, then every solution Kx∗ = f is a global minimum
of p(x). However, in the semi definite case, the minimum is not unique since
p(x∗ + z) = p(x∗) for any vector z ∈ kerK. In all other cases, there is no global
minimum, and p(x) can assume some arbitrarily large negative values.

Proof. The first part is just Proposition 103. The second part uses that definite
matrices have trivial kernels (but semi-definite do not.) If K is not semi-definite
(and not positive definite, i.e. is negative definite), then one can find a vector y
such that a = yT

Ky < 0. Set x = ty so that p(x) = p(ty) = at
2 + 2bt + c, with

b = yT f . Since a < 0, choosing |t| � 0 sufficiently large, one can arrange that
p(ty) � 0 is an arbitrarily large negative quantity. The remaining case is when K

is positive semi-definite but f /∈ rngA. �

14Maximizing a function f(x) is the same as minimizing −f(x).
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4.2. Closest Point or Distance to Subspace. Given a point b ∈ Rm and a
subset V ⊂ Rm we want to minimize the distance d(b,v) = ||v − b|| over possible
v, i.e. find the point v∗ ∈ V that is closest to b. If b ∈ V, in the subspace, the
distance is 0, and so we are left with studying the case when b /∈ V.

We assume V ⊂ Rn but any finite-dimensional subspace of any inner product
space will do for the methods to come. It is common to assume that || · || = || · ||2
because the 2-norm relates it to the usual interpretation of length in Euclidian space.
This will not be explicitly assumed here. Rather any norm coming from an inner
product (||v|| =

�
�v;v�) will be assumed. This gives a simpler linear minimization

problem in contrast to, for example the 1-norm or the ∞-norm, which give rise to
nonlinear minimization problems ([OlvShaDraft]) which we will not deal with. In
the end, all norms are, in some sense, analytically equivalent. From [Internet-blog]
we adapt the following for completeness.

Lemma 105. Suppose X is a n-dimensional normed space over R with basis x =
{x1, . . . ,xn}. There exists a c > 0 such that ||α1x1+. . .+αnxn|| ≥ c(|α1|+. . .+|αn|)
for any selection in X .

Proof. Let s = |α1| + . . . + |αn| and βi = αi/s. The inequality ||α1x1 + . . . +
αnxn|| ≥ c(|α1| + . . . + |αn|) becomes ||β1x1 + . . . + βnxn|| ≥ c for all β1, . . . ,βn

satisfying
�

n

i=1 |βi| = 1. If we suppose no such c > 0 exists, we can construct a
sequence (ym), where ym =

�
n

i=1 β
(m)
i

xi and
�

n

i=1 |β
(m)
i

| = 1 for each m, and
||ym|| → 0.

�
n

i=1 |β
(m)
i

| = 1 implies that the sequence (β(m)
i

)m∈N (where i is fixed)
is bounded, and we must have a convergent subsequence. Apply this for i = 1, let
the limit of that subsequence be β1 and let y1,m be the associated subsequence of
the original (ym) sequence. On that subsequence, apply again for i = 2, then on
that subsequence again on i = 3 and so on until we have yn,m =

�
n

i=1 β
(m)
i

xi.
Now note that each β

(m)
i

→ β (where βi is the limit of the subsequence with the
associated i from earlier.) This implies yn,m →

�
n

i=1 βixi = y. Since we required
�

n

i=1 |β
(m)
i

| = 1 for each m earlier, we now have that
�

n

i=1 |βi| = 1. This means
that y �= 0, so the subsequence converged to non-zero element, which means that
the original sequence can not converge to the zero element. We could only do this
because we assumed no such c > 0 existed, so a c > 0 with the desired property
must exist. �
Proposition 106. We say two norms, || · ||a and || · ||b, on the same vector space
X are equivalent if there exist c, C > 0 such that for every x ∈ X , c||x||a ≤ ||x||b ≤
C||x||a. In a finite dimensional normed space all norms are equivalent.

Proof. Suppose X is a n-dimensional space with basis e1, . . . , en and that || · ||a
and || · ||b are any norms on X . From Lemma 105 we know that for any x ∈
X we can choose γ > 0 such that ||α1x1 + . . . + αnxn||a = ||x||a ≥ γ(|α1| +
. . . + |αn|). If we consider the triangle inequality ||x||b ≤ k

�
n

i=1 |α1|, where k =
max(||e1||b, . . . , ||en||b), applying the earlier inequality we get ||x||b ≤ k||x||a/γ =
C||x||a.

If we reverse || · ||a and || · ||b and repeat the process we obtain ||x||b ≥ c||x||a.
x ∈ X , || · ||a and || · ||b were all arbitrary, and k, γ were not depend on the choice
of x. Therefore all norms on X are equivalent. �

With that behind us we can comfortably proceed with another “geometric” result,
which turns out to be important, a recurring theme, in binding together the theory
of matrix equations and their solutions.

Theorem 107. Let v1, . . .vn form a basis for the subspace V ⊂ Rm. Given b ∈
Rm, the closest point v∗ = x

∗
1v1 + . . . + x

∗
n
vn ∈ V is prescribed by the solution
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x∗ = K
−1f to the linear system Kx = f , where K(i, j) = kij = �vi;vj� and

f = �vi;b�. The distance between the point and the subspace is

(4.3) ||v∗ − b|| =
�

||b||2 − fTv∗.

Proof. The closest point is found by minimizing the distance to the subspace i.e.

(4.4) ||v − b||2 = ||v||2 − 2 �v;b�+ ||b||2

over all possible v ∈ V ⊂ Rm. If v1, . . . ,vn is a basis for V (so that dimV = n)
then any v ∈ V is a linear combination of these. So v = x1v1 + . . .+xnvn inserted
into Equation (4.4) gives that

(4.5) ||v||2 = �v;v� =
n�

i,j=1

xixj �vi;vj� =
n�

i,j

kijxixj = xT
Kx

Since K(i, j) = kij = �vi;vj� and inner products are symmetric kji = kij , K is the
symmetric n × n Gram matrix (also see the discussion following Equation (4.1).)
In addition

(4.6) �v;b� = �x1v1 + . . .+ xnvn;b� =
n�

i=1

xi �vi;b� =
n�

i=1

xifi = xT f ,

where f = (f1 . . . , fn, ) ∈ Rn and fi = �vi;b�. Putting ||b||2 = c and substituting
this, and equations (4.5) and (4.6) into Equation (4.4) gives

||v − b||2 = ||v||2 − 2 �v;b�+ ||b||2 =
n�

i,j

kijxixj − 2
�

fixi + c

= xT
Kx− 2xT f + c = p(x).

Since the basis of v is are linearly independent Proposition 71 ensures that the
Gram matrix K = A

T
A is positive definite and we can apply Proposition 103 to

solve the closest point problem (Equation (4.4)) and we get the result. �
4.3. Theory of Least Squares.

4.3.1. Overdetermined Systems. We now study the “solution” to equations Ax = b
when it does not have an solution, i.e. the solution is not in the range of A,
for example in the case when there are more equations than unknowns (m > n).
Though there might not exist a solution, there should exist a “best” solution x∗,
that most closely matches a true solution. The task is to minimize the residual
r(x) = Ax − b, or rather the norm of the residual ||r(x)|| = ||Ax − b||. It is
possible to use different norms, but if we choose the 2-norm we get the least squares
solution, which makes sense for the same reasons as before.

Definition 108. The least squares solution to a linear system of equations Ax = b
is the vector x∗ ∈ Rn that minimizes the Euclidean norm ||Ax− b|| = ||r||.

Theorem 109. Assume kerA = {0}. Set K = A
T
A and f = A

Tb. Then the least
squares solution to Ax = b is the unique solution to the normal equations

(4.7) Kx = f or (AT
A)x = A

Tb,

namely15

(4.8) x∗ = (AT
A)−1

A
Tb.

The least squares error is ||Ax∗−b||2 = ||b||2− fTx∗ = ||b||2−bT
A(AT

A)−1
A

Tb.

15(ATA)−1AT is called the pseudoinverse A+)
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Proof. Let V = rngA ⊂ Rm, the range of the column space of A. If the columns
are linearly independent (required for the solution to be unique) they form a basis
v1, . . . ,vn ∈ Rm for the range V, i.e. A = (v1 . . . vn). So every element in the range
can be written as v = Ax and therefore minimizing it is the same as minimizing
the distance ||Ax−b|| = ||v−b|| between point and subspace. Since the minimizer
x∗ is both the least square solution and the closest point v∗ = Ax∗ ∈ V, the least
square solution follows from Theorem 107.

For vectors v,w ∈ euclidean Rn the dot product can be identified with the
matrix product so �v;w� = v · w = vTw. Therefore (Equation (2.6)), under
Euclidean inner product the entries of the (Gram) matrix K and the vector f are
given by kij = vi ·vj = vT

i
vj(= kji) and fi = vi ·b = vT

i
b and hence we can write

K = A
T
A, f = A

Tb to express Kx = f and Equation (4.3) of Theorem (107) as
stated, and the equations follow. �
Orthogonal Least Square Connection.

Theorem 110. Let W ⊂ V be a finite-dimensional subspace of an inner product
space. Given a vector v ∈ V, the closest point or least squares minimizer w ∈ W
is the same as the orthogonal projection of v onto W.

Proof. Let w ∈ W be the orthogonal projection of v onto the subspace, which
requires that the difference z = v−w be orthogonal to W . Suppose w̃ ∈ W is any
other vector in the subspace. Then
||v− w̃||2 = ||w+ z− w̃||2 = ||w− w̃||2 +2 �w − w̃; z�+ ||z||2 = ||w− w̃||2 + ||z||2.
The inner product term vanishes (= 0) because z is orthogonal to every vector in
W, including w − w̃. Since z = v −w is uniquely prescribed by the vector v, the
second term ||z||2 does not change with the choice of the point w̃ ∈ W. Therefore
||v− w̃||2 will be minimized iff ||w− w̃||2 is minimized. Since w̃ ∈ W is allowed to
be any element of the subspace W, the minimal value ||w − w̃||2 = 0 occurs when
w̃ = w. Thus, the closest point w̃ coincides with the orthogonal projection w. �
4.3.2. Underdetermined (Rank Deficient) Systems. An underdetermined problem
is a rank deficient problem, when a matrix has more linearly independent columns
than equations. There is clearly no unique solution to such a problem.

Lemma 111. Let A ∈ Rm×n, with m ≥ n and rankA = r < n. Then there is a
n− r dimensional set of vectors that minimize ||Ax− b||2.

Proof. Let Az = 0. If x minimizes ||Ax− b||2, so does x+ z. �
So there is no unique least squares solution to an underdetermined system. In

practice, due to roundoff in the entries, A will often have one or more very small
computed singular values and the system will be near singular, rather than singular.
So despite singularity, we can often obtain a unique solution nonetheless, but it is
likely to be near singular, very large and sensitive to errors in b.

Proposition 112. Let σmin the smallest singular value of A. Assume σmin > 0.
Then

1. if x minimizes ||Ax − b||2, then ||x||2 ≥ |uT

n
b|/σmin where un is the last

column of U in A− UΣV T .
2. changing b to b + δb can change x to x + δx, where ||δx||2 is as large as

||δb||2/σmin.
Hence, if A is nearly rank deficient (σmin small) the solution x is ill-conditioned

and possibly large.

Proof. (1) x = A
+b = V Σ−1

U
Tb, so ||x||2 = ||Σ−1

U
Tb||2 ≥ |(Σ−1

U
Tb)n| =

|uT

n
b|/σmin. (2) choose δb parallel to un in previous. �
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Proposition 113. When A is exactly singular, the x that minimize ||Ax − b||2
can be characterized as follows. Let A = UΣV T have rank r < n, and write the
SVD of aA as

(4.9) A = [U1, U2]

�
Σ1 0
0 0

�
[V1, V2]

T = U1Σ1V
T

1 ,

where Σ1 is r×r and nonsingular and U1 and V1 have r columns. Let σ = σmin(Σ1),
the smallest nonzero singular value of A. Then
1. All solutions x can be written x = V1Σ

−1
1 U

T

1 b+ V2z, z an arbitrary vector.
2. The solution x has minimal norm ||x||2 precisely when z = 0, in which case
x = V1Σ

−1
1 U

T

1 b and ||x||2 ≤ ||b||2/σ.
3. Changing b to δb can change the minimal norm solution x by at most ||δb||2/σ.

In other words, the norm and condition number of the unique minimal norm
solution x depends on the smallest nonzero singular value of A.

Proof. Choose Ũ so
�
U, Ũ

�
=

�
U1, U2, Ũ

�
is an m×m orthogonal matrix. Then

||Ax− b||22 = ||[U, Ũ ]T (Ax− b)||22 =

������




U

T

1

U
T

2

Ũ
T



 (U1Σ1V
T

1 x− b)

������

2

2

=

=

������




Σ1V

T

1 x− U
T

1 b
U

T

2 b
Ũ

Tb





������

2

2

= ||Σ1V
T

1 x− U
T

1 b||22 + ||UT

2 b||22 + ||ŨTb||22.

(1) ||Ax − b||2 is minimized when Σ1V
T

1 x = U
T

1 b, or x = V1Σ
−1
1 U

T

1 b + V2z since
V

T

1 V2z = 0 for all z.
(2) Since the columns of V1 and V2 are mutually orthogonal, the Pythagorean
theorem implies that ||x||22 = ||V1Σ

−1
1 U

T

1 b||22 + ||V2z||22, and this is minimized by
z = 0.
(3) Changing b by δb changes x by at most ||V1Σ

−1
1 U

T

1 δb||2 ≤ ||Σ−1
1 ||2||δb||2 =

||δb||2/σ. �

This tells us that there is at least a minimum norm solution x, which is unique
and that may be well-conditioned if the smallest singular value is not to small.

Definition 114. Let A = UΣV T = U1Σ1V
T

1 as in Equation (4.9). Then A
+ ≡

V1Σ
−1
1 U

T

1 , or also written as A+ = V
TΣ+

U , where Σ+ =

�
Σ1 0
0 0

�+
=

�
Σ−1

1 0
0 0

�
,

is the Moore-Penrose pseudoinverse for the possibly rank-deficient problem A. The
Moore-Penrose pseudoinverse is also written as A

† .
So we find that the solution to the least squares problem is always x = A

†b and,
“even” when A is rank deficient, x has minimum norm out of the possible solutions.

But from ([Björck] p. 26, Theorem 1.4.1) we get the following:

Proposition 115. If rank(A + E) �= rankA (where E is a perturbation) then
||(A+ E)+ +A

+|| ≥ 1/||E||2.

The point of this proposition is that A
† can vary discontinuously when rankA

changes (because from Lemma 97 this is related to σmin.) When the rank changes,
the change in A

† may be unbounded when ||E||2 → 0. This matters for rank-
deficient problems, since they are ill-conditioned. Therefore it is very important to
know what rank we are operating with.

Definition 116. A matrix A is said to have numerical δ-rank equal to k if k =
min{rankB ||A−B||2 ≤ δ}, where B = A+ E and E is a perturbation.
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From Proposition 99 we see that if k < n then inf
rankB≤k

||A−B||2 = σk+1, and our

low-rank approximation becomes A =
�

k

i=1 σiuivT

i
, which generally implies that

a matrix A has numerical rank (δ-rank) k iff σ1 ≥ . . . ≥ σk > δ > σk+1 ≥ . . . ≥ σn.
The selection of δ can be difficult, but a simple and reasonable way to go about it
would be to say that if the coefficients of A are accurate within ±ε we put δ = ε,
any smaller value would be outside the accuracy.

It follows that ||A − Ak||2 = ||AṼ ||2 ≤ δ, Ṽ = {vk+1, . . . ,vn} and N (Ṽ ) =
span(vk+1, . . . ,vn) is the numerical nullspace (kernel) of A.

5. Solving Linear Systems of Equations

We now summarize how to solve systems of linear equations Ax = b using the
methods we have developed.

Forward and Backward Substitution. Forward substitution is used to solve a lower
triangular system Lx = b, and solving for xi is given by xi = (bi−

�i−1
j=1 lijxj)/lii.

Backward substitution is used to solve the upper triangular system Ux = b, and
solving for xi is given by xi = (bi−

�n
j=i+1 uijxj)/uii.

5.1. Solving the Nonsingular Problems. Theoretically this problem can be
solved by computing and applying the inverse to both sides, but as we have said
this is not done in practice. We refer to any of [Demmel, OlvShaDraft, TreBau,
GolubVanLoan] or other texts on numerical analysis for the details but give two in-
tuitive motivations. (1) computing the inverse is done by Gauss-Jordan elimination
(using Gauss elimination and then more work to finalize the reduction) followed by
the added work of forming x = A

−1b; (2) it is prone to numerical instability, possi-

bly leading to rank deficiency in inexact arithmetic. If
�

1 0
0 104

����
1 0
0 10−3

�

is one step in the augmented Gauss-Jordan system, the final step would be to divide
the 2nd row by 104 to obtain [I|A−1], but 10−3 · 10−4 = 10−7 = 0 in three digit
accuracy, making A

−1 singular. This was just a simple example but we know that
A

−1 is undefined in this situation, though it is not clear how our new methods
would deal with this problem better, we can see the inverse is no good.

5.1.1. LU Solution. In Section 3.1 we showed the existence of the partially pivoted
LU factorization - GEPP.

If the m ×m matrix A is nonsingular, there exists a permutation matrix P , a
nonsingular lower triangular matrix L, and a nonsingular upper triangular matrix
U such that P

T
A = LU ⇔ A = PLU. To solve Ax = b, we solve the equivalent

system PLUx = b as follows:
(1) LUx = P

−1b = P
Tb (permute entries of b)

(2) Ux = L
−1(PTb) (forward substitution)

(3) x = U
−1(L−1

P
Tb) (backward substitution)

Putting this together the equation Ax = b ⇔ PA = LUx = b. This is then first
reduced to Ly = b, giving y = Ux = L

−1b = c (where L
−1 is only symbolic for

the change of basis operation preformed by forward substitution). Then backward
substitution gives that Ux = c becomes x = U

−1c. All this amounts to x =
U

−1
L
−1b.

5.1.2. QR factorization. Using QR factorization to solve Ax = b is straight for-
ward.

(1) Compute QR factorization A = QR so that QRx = b.
(2) Since Q is orthonormal, Rx = Q

Tb.
(3) Since R is upper triangular solve for x with back substitution.
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The resulting algorithm is numerically more stable for some (ill-conditioned) ma-
trices than LU factorization, but needs more work ([Demmel]).

5.1.3. SVD Solution. Forming the SVD is laborious but using it is simple.

Proposition 117. If A has full rank, the solution of minx ||Ax − b||2 is x =
V Σ−1

U
Tb.

Proof. This is just a special case of Proposition 113 where we put z = 0. �

We know A has full rank so we get:
(1) Compute A = UΣV T the SVD.
(2) Compute the vector U

Tb.
(3) Solve the diagonal system Σw = U

Tb for w.
(4) Set x = Vw.

5.2. Least Squares - Overdetermined Systems. A very common situation in
many applications are overdetermined systems, having more equations than un-
knowns i.e. a matrix A ∈ Rm×n, m > n, of rankA = n (full rank.) Usually the
problem is then to determine the coefficients of the equation that best fits the data,
i.e. that minimizes the error r = Ax − b = A(x − x∗), where x is the computed
solution and x∗ is the true solution.

5.2.1. Normal Equations Solution to Least Squares. The normal equations least
squares method first forms the s.p.d. matrix A

T
A and then computes the Cholesky

factorization of this.
Assume A ∈ Rm×n with rankA = n.
(1) Form the matrix A

T
A and the vector A

Tb.
(2) Compute the Cholesky factorization A

T
A = R

T
R

(3) Solve the lower triangular system R
Tw = A

Tb using forward substitution
for w.

(4) Solve the upper triangular system Rx = w using back substitution.

Note. The Cholesky factorization is effective and “inexpensive” to compute, but the
formation of A

T
A can lead to problems for matrices that are, for example, near

rank deficient. It is possible to show that in the formation of AT
A, the accuracy will

be negatively affected and how much ([Demmel, Björck]). This motivates the QR

method as the standard least square solver for all but well-conditioned problems.

5.2.2. QR Method Solution. The usual approach to solving the least squares prob-
lem is the Q̂R̂ factorization, via Gram-Schmidt or Householder reflections. We saw
that the orthogonal projector P can be written P = Q̂Q̂

T and we have y = Pb =
Q̂Q̂

Tb. Since y ∈ rngA the system Ax = y has an exact solution. Combining
y = Q̂Q̂

Tb and the QR factorization gives Q̂R̂x = Q̂Q̂
Tb ⇒ R̂x = Q̂

Tb, with
upper-triangular R̂ which is solved via backward substitution. If A has full rank,
the system is nonsingular.

Another way to derive this is A
T
A = A

Tb from the normal equations. Substi-
tuting the QR factorization into this gives R̂

T
Q̂

T
Q̂R̂x = R̂

T
Q̂

Tb, which implies
R̂x = Q̂

Tb.
(1) Compute the reduced QR factorization A = Q̂R̂.
(2) Compute the vector Q̂

Tb.
(3) Solve upper-triangular system R̂x = Q̂

Tb for x.
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5.2.3. SVD Solution. Let A = Û Σ̂V T . Now we can write the projector P = Û Û
T ,

so that y = Pb = Û Û
∗b, giving Ax = Û Σ̂V Tx = Û Ûb and Û Σ̂x = Û

Tb.
(1) Compute the reduced SVD A = Û Σ̂V T .
(2) Compute the vector Û

Tb.
(3) Solve the diagonal system Σ̂w = Û

Tb for w.
(4) Set x = Vw.

5.3. Solving the Rank-Deficient Problem. We saw that the underdetermined,
rank-deficient, problem does not have a unique solution, but rather infinitely many
solutions. We also saw that for rank deficient problems, due to round-off, new
singular values (i.e. ranks) could be introduced but that they would be near-
singular and that this would “blow up” the solution. The way to deal with this
is called regularization (improving poor conditioning.) A meaningful discussion on
regularization or the preferred non-SVD method, column pivoted QR, is once more
beyond the scope of this paper16 but [Björck], and to some extent [GolubVanLoan],
deal extensively with the rank deficient problem. Even so, given our discussions in
this paper, we briefly end with the two most obvious ways.

5.3.1. SVD.

Naive Approach. The naive approach to solving rank deficient Ax = b is to compute
A = UΣV T , form A

† and then obtain x from x = A
†b.

As we have seen this will often be numerically unstable and unusable, as the
computed rank and original rank may differ.

Truncated SVD Solution. In Proposition 99 we studied the low rank SVD. We can
think of it as a way to regularize A.

Assume that A ∈ Rm×n is rank-deficient with rankA = k(= δ-rank). Assume
A = UΣV T =

�
n

i=1 uiσiv
T

i
is the SVD of A.

(1) Given δ-rank = k, we put all σi>k = 0, and our best rank k approximation
is Ak =

�
k

i=1 uiσivT

i
. The least squares problem becomes min

x
||Akx−b||2,

(2) The truncated SVD (TSVD) solution is x =
�

k

i=1 civi/σi, c = U
Tb, where

vi are the right singular vectors.

16It would require a more extensive study of errors, stability and conditioning. Simply deter-
mining the δ-rank to use is not always straight forward.
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Appendix A. On Numerical Analysis

The introduction of errors (inexactness) leads to a range of complexities. If we
want to compute and use a result, usually dependent on many intermediate steps,
it is necessary to examine what happens to these errors in each step, how they
propagate, to know the final error. Different methods, formulations of the same
problem, can lead to different results since they take different paths. Practical
aspect of simply implementing the different methods, the algorithms, also need to
be taken into consideration. Resource balancing (time, accuracy, computer memory
and much more) forces different approaches.

The following informal discussions is based mainly on [Demmel, TreBau] but can
be found in most literature on numerical analysis.

A.1. Perturbations, Conditions Numbers and Errors. Numerical algorithms
rarely give exactly correct answers, with broadly two sources of errors. Errors in
input (e.g. measurement errors) and errors from the approximations the algorithm
does itself.

Let x, δx, f(x) ∈ R, where δx is a small perturbation (change) in data. The
expression ea = |f(x + δx) − f(x)| is called the absolute error, while er = |f(x +
δx)− f(x)|/|f(x)| is called the relative error.

It is desirable to bound the resulting error, to know how bad things can get. Using
a linear approximation of the Taylor expansion f(x+δx)−f(x) ≈ f(x)+δxf

�(x) ⇒
|f(x+ δ)− f(x)| ≈ |δx| · |f �(x)| we get an approximation of the bound. The term
|f �(x)| is called the absolute condition number of f at x, and bounds the absolute
error given a error bound on the perturbation. Similarly bounding the relative
error

|f(x+ δx)− f(x)|
|f(x)| ≈ |δx|

|x| · |f
�(x)| · |x|
|f(x)| ,

the term |f �(x)| · |x|/|f(x)| is called the relative condition number.

Definition. If alg(x) is an algorithm for f(x), including the effects of roundoff, we
call alg(x) a backward stable algorithm for f(x) if for all x there is a “small” δx such
that alg(x) = f(x+ δx). δx is called the backward error.

Informally, we say that we get the exact answer f(x + δx) for a slightly wrong
problem (x+ δx). It implies that we may bound the error |alg(x)− f(x)| = |f(x+
δx)− f(x)| ≈ |f �(x)| · |δx|.

We extend this discussion to multivariate functions, matrices in particular, of
which our previous findings are a special case. Let δx be a small perturbation
(change) in x, and δf = f(x+ δx)− f(x). Remembering Proposition 106, we will
simply assume that || · || is any norm and work with the corresponding induced
norms.

Definition. The absolute condition number κa = κa(x), of κa at x, is

κa = lim
δ→0

sup
||δx||≤δ

||δf ||
||δx|| ,

and the relative condition number κ(x) = κ, of κ at x, is

κ = lim
δ→0

sup
||δx||≤δ

�
||δf ||
||f(x)||

�
||δf ||
||δx||

�
.

We call κ the condition number, and we say that a problem is well-conditioned if κ
is small. A problem is ill-conditioned if κ is large.



PRACTICAL LINEAR ALGEBRA FOR APPLIED GENERAL LINEAR SYSTEMS 41

Note. Usually limδ→0 sup||δx||≤δ
is simplified as sup

δx when we are talking about
the supremum of all δx → 0. We will assume this. Also if f is differentiable then we
can express δf = δf(x) in terms of the Jacobian J(x), where Jij(x) = ∂fi(x)/∂xi,
as lim||δx||→0 δf = Jδx. Then κa = ||J(x)|| and κ = (||J(x)|| · ||x||)/||f(x)||.

From the definition we gather that a well-conditioned problem has the property
that a small δx leads to only a “small” perturbation in f(x), but to a “large”
perturbation in f(x) for an ill-conditioned problem. “Small” and “large” depends
on the situation. κ = 1 is good, since we have a one-to-one correspondence, whereas
κ ≈ 109 is bad since it roughly corresponds to a 9 digit loss of accuracy.

If || · ||2 = || · || then ||A|| = σ1 and ||A−1|| = 1/σmin and κ(A) = σ1/σmin

[TreBau]. We set κ(A) = ∞ if A is singular (since σmin = 0.)

Conditioning of Ax and A
−1b. Let A ∈ Rm×n. From the definition we get

κ = sup
δx

�
||A(x+ δx)||

||Ax||

�
||δx||
||x||

�
= sup

δx

�
||Aδx||
||δx||

�
||Ax||
||x||

�
= ||A|| ||x||

||Ax|| .

If A is invertible then we get that ||x||/||Ax|| ≤ ||A−1|| (see [TreBau].) To remove
the dependence on x, we write

κ = ||A|| · ||x||/||Ax|| ≤ ||A|| · ||A−1||.
Later we will provide a result that states that ||A|| · ||A−1|| = κ(A) under certain
conditions. For the inverse problem, A−1b, we simply replace A by A

−1 and the
result is identical. If A is not invertible but has full rank we can replace A

−1
with

A
+ (from Theorem 109.)

Conditioning of a System of Equations. We now perturb the coefficient matrix A

by an infinitesimal δA and get (A+ δA)(x+ δx) = b. We drop the δA · δx ≈ 0 for
(δA)x + A(δx) which is ≈ 0 because δA, δx ≈ 0 and δx = −A

−1(δA)x ⇒ ||δx|| ≤
||A−1|| · ||δA|| · ||x|| which is also

||δx||
||x||

�
||δA||
||A|| ≤ ||A−1|| · ||A|| = κ(A).

Equality can be shown to hold when δA is such that ||A−1(δA)x|| = ||A−1|| · ||δA|| ·
||x||, and that such a δA exists.

We conclude with two theorems from [TreBau] that summarize and generalize
these findings.

Theorem. Let A ∈ Rm×m be nonsingular and consider equation Ax = b. The
problem of computing b given x has condition number

(A.1) κ = ||A|| ||x||||b|| ≤ ||A|| · ||A−1||

with respect to perturbation of x. The problem of computing x given b, has condition
number

(A.2) κ = ||A−1|| ||b||||x|| ≤ ||A|| · ||A−1||

with respect to perturbations of b. If || · || = || · ||2, then equality holds in Equation
(A.1) if x is a multiple of a right singular vector of A corresponding to the minimal
singular value σmin. Equality holds in Equation (A.2) if b is a multiple of a left
singular vector of A corresponding to the maximal singular value σ1.

Theorem. Let b be fixed and consider the problem of computing x = A
−1b, where

A is square and nonsingular. The condition number of this problem with respect to
perturbations in A is κ = ||A| · ||A−1|| = κ(A).
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