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Abstract
Kontsevich graph complex is a universal version of the standard deformation

complex of the Lie algebra of polyvector fields. It was proved very recently by
Thomas Willwacher that the zeroth cohomology of this complex is precisely
the Grothendieck-Teichmiiller Lie algebra.

We develop an operadic approach to this complex based on the Kapranov-
Manin theorem. This gives us relatively simple definitions of all the structures
involved in the Kontsevich graph complex.
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0. INTRODUCTION

Kontsevich’s graph complex is one of the most mysterious complexes in homological
algebra and geometry. Kontsevich introduced this complex in [Kol], together with his
famous formality conjecture which he solved later in [Ko2].

Any smooth manifold M has an associated Lie algebra of vector fields, T'(M ), which are
derivations of the ring of smooth functions on M equipped with the standard Lie bracket,

[X,)Y]:=XoY —-YoX.

It is well known that this Lie bracket can be extended to the skew-symmetric tensor
algebra of T'(M),

dim M

Toory (M) := @ A"T(M)

and this extension is called the Schouten bracket, and is denoted by the same symbol
[, ]. According to Chevalley-Eilenberg, the deformation complex of the Lie algebra
(Tpoty (M), [, 1), is equal to the vector space,

@ Hom (A" Tpoty (M), Tpoty (M)
n=0

with the differential,

d:  Hom(A"Tpoty (M), Tpoty(M)) — Hom(/\nJrlEoly(M)only(M))
f — df

given (up to signs) by
df(’l)o,’l)l,...,vn) = Z(_l)i[viaf(v(]?vl?'"a{)\ia"'?v”)]
i=0
ST () ([ 0], 00 Ty Ty )

0<i<j<n
Note that, though this complex depends on the choice of a particular manifold M, but
it makes sense for any manifold. Kontsevich made this universal nature of the standard
Chevalley-Eilenberg deformation complex precise by inventing his famous graph complex
GC in [Kol]. This idea can be made even more precise when one uses the language of
operads: there is an operad, G, which admits a canonical representation,

p:GC — EndTpoly(Rd),

into the vector space of polyvector fields on an affine space R? for any dimension d.
We show that the Kontsevich graph complex is equal to the dg Lie algebra associated
to the operad G by the Kapranov-Manin theorem and controls, therefore, universal (i.e.
independent of the dimension d) deformations of the Schouten algebra (7,01, (RY), [, ])-
This operadic approach to the Kontsevich graph complex is the main theme of our work.

There is a strong interest on the Kontsevich graph complex nowadays stemming from
a deep result of Willwacher [Wi] which says that the 0-th cohomology of GC is equal to
the Grothendieck-Teichmiiller Lie algebra,

H°(GC) = grt.

The Grothendieck-Teichmiiller group GT' is a pro-unipotent group introduced by Drin-
fel’d in [Dr]. There is much interest in this group in various areas of mathematics, espe-
cially in number theory and algebraic geometry, because it contains the absolute Galois
group of Q, that is, there exist an injection

Gal(Q/Q)——=GT .



Rather mysteriously the Grothendieck-Teichmiiller group (or rather its graded version
GRT) appears naturally in two mathematically rigorous quantization theories: the first is
the Drinfel’d-Etingof-Kazhdan quantization theory of Lie bialgebras and the second one
is the Kontsevich quantization theory of Poisson structures.

There are still many open problems left with the Kontsevich graph complex. It is quite
desirable to compute the first cohomology group of that complex, the conjecture is that it
is equal to zero, this would mean that the Schouten bracket is rigid, i.e that it can not be
deformed in the category of L..-algebras. Computer simulations by Willwacher showed
that the second cohomology group of this complex is non-zero. The full cohomology of
the Kontsevich graph complex is a Lie algebra which contains grt, it is an open and urgent
problem to compute it.

The main purpose of the thesis is to develop an operadic approach to the Kontsevich
graph complex.

This thesis is divided up into three sections.

e In the first introductory section we explain those fact of category theory, the theory of
graphs and homological algebra that will be needed in the thesis.

e In the second section we describe the basic notions of operads. We discuss the general
definition, give the construction of the free operad and finally show some minimal models
of operads. We also give a detailed discussion of the Kapranov-Manin Theorem, which
associates to an operad in the category chain complexes a Lie algebra (in fact three).

e In the third and main section we will use all the structures discussed in the previous
ones to introduce a certain operad of graphs and deduce from it, using the Kapranov-
Manin theorem, the Kontsevich graph complex CG and finally give a detailed statement
of Willwacher’s theorem on the cohomology of the graph complex GC.



1. PRELIMINARIES

1.1. Basics of Category Theory. The notions of category theory are pervasive to mod-
ern mathematics. In this subsection we will introduce the basics we need in this thesis.

Definition 1.1.1. A category D is :

e a class of objects ob(D),

e a class of objects (called morphisms) hom(D) and for every f € hom(D) two objects
z,y € ob(D), called the source object and target object of f, represented as f : z — y.
The class objects of hom(D) with common source object x and target object y is denoted
hom(z, y)

e a binary operation hom(z,y) x hom(y, z) — hom(z, z), subject to the rules:

e (associativity) (hom(z,y) x hom(y,z)) x hom(z,w) — hom(z,w) = hom(z,y) X
(hom(y, z) x hom(z,w)) — hom(z,w)

e for every object x there exist an identity map idy such that if f : v — vy, then
idyof = foidy.

Example 1.1.2. Some common categories.

(1) The prototypical example of a category is the category Set, where objects are sets
and morphisms are functions between sets.

(2) The finite sets with functions form the category Setfirn.

(8) Topological spaces form a category with continuous functions as morphisms.

(4) The modules over a ring R with R-linear homomorphisms form a category.

(5) Chain complezes of R-modules with chain maps.

The idea of duality is central in category theory, and we’ll see it first in the construction
of the opposite category.

Definition 1.1.3. Given a category C there exist a dual category called the opposite of C
and denoted C°? where ob(C) = ob(C°P) but where maps are reversed.

Just as we have maps between object in categories we also maps between categories.
These maps, called functors, are also expected to preserve the relative structures inside
the categories.

Definition 1.1.4. A covariant functor I' is a map from a category D to a category £ such
that:
e each D € ob(D) there is an object I'(D) € ob(E)
e for each f: D1 — Ds there is a map I'(f) : I'(D1) — I'(D2) subject to the rules

e I'(idp) = idr(p)

e I'(fg) =T(f)I'(g9), when g: D1 — D2 and f : D2 — Ds.
A contravariant functor F : D — & is a covariant functor F : D°? — £. Denote the
covariant functors from D — £ with Fun(D, ).

Definition 1.1.5. Let F' and G be functors from D to £. A natural transformation v :
F — G is a map vy for every x € ob(D) such that given f : x — y the following diagram

commutes

Fx) 2% @) .

luz lyy
G(f)
Fy) —=G(y)
In this case we also say that v is natural in x.

There is a weak notion of inverse for a functor called the adjoint.

Definition 1.1.6. A left adjoint for a functor F : D — & is a functor G : € — D and
two natural transformations



i) v:GF —idp
it) €:ide - FG
such that the following diagrams commute:

F—Y> FGF G —> GFG .

NN

Alternatively we could say that we have a bijection of sets ¢pq.e : home (Fd, e) = homp(d, Ge)
for all (d,e) € ob(D) x ob(E), which is natural in e and d.

Definition 1.1.7. An equalizer of a diagram

f
D—=D
g
is an object E and a map e : E — D such that fe = ge and for any other object E' and
map € : E' — D such that fe' = fe’ there is a unique map ¢« : E' — E which makes the

following diagram commute

El
The dual to the above construction is the coequalizer. A coequalizer of a digram

!

D'=——D

is an object C and a map ¢ : D' — C such that cf = cg and for any other object C' and
map ¢ : D' — C’ such that ¢'f = c'g there is a unique map (' : C' — C such that the
following diagram commute

f
C<—D'=—D.

L g
L/
Y

Cl

A more general construction which encompasses the equalizer is that of the limit of a
functor.

Definition 1.1.8. Let F : D — £ be a functor. A limit of F is an object L and a family
of maps (Vy : L — F(x))op(py with the property that if f : x — y then F(f)V, = Wy such
that given any other object N with maps (E¢ : N — F(x))op(p) with the property that if
f iz — y then F(f)E; = Ey then it must also exist a unique map ¢ : N — L such that
the following diagram commutes




The colimit L is characterized by the diagram produced if you in the above diagram turn
all the arrows except F(f) around;

F(z) F(f)

where it is obvious what should be changed in the description to give the diagram meaning.

Definition 1.1.9. A monoidal category is a category C with a functor ® : C x C — C and
a unit object I together with three natural isomorphisms,

i) the associator aapc: (A®B)®@C 2 A® (B®C)
i1) the left unitor pa : I Q@ A= A

i11) the right unitor va : AQI = A,

subject to the following coherence conditions:

(1) For all A,B,C,D € C the diagram

(AeB)®C)® D —""2 (A B)® (C® D)
iaA,B,c@)D
(A®(B®C)®D aa,B,c8D
AQap,c,D

A®(B®C)® D) ——————— A® (B® (C® D))

commutes
(2) For all A, B € C the diagram

@A,I,B

(AI)® B — A®(I® B)
vA®B
A®B

commutes.

Definition 1.1.10. A symmetric monoidal category is a monoidal category C with an
isomorphism oca,p : A® B> B® A subject to the following coherence conditions:
(1) For all A € C the digram

A®I—>I®A

N A

commutes
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(2) for all A,B,C € C the diagram

(AeB)oCc—2 (B AecC
A® (B®C(C) B (A®(C)
@A, B,C

(BRIC)®A————=BR(C® A)

commutes
(8) for all A, B € C the diagram

B® A commutes.

AQB

A®B A® B

Example 1.1.11. The following are symmetric monoidal categories

e Sets with the cartesian product,

e topological spaces with the cartesian product,

e Chain complezes of R-modules (for a commutative Ting R) with the product

(Ce,d) ® (De,d') = ((C@D)n: EB Ci®Dj,a>

i+j=n
On 1t @ tnei > di(ts) @ tni + (= 1)t @ djy_i(tn—i).

1.2. Theory of Graphs. This subsection will contain the graph theoretical framework
we need in the study of operads.

Definition 1.2.1. A graph G = (F,11,¢) is three pieces of data; a set of flags F, a
partition I of F' and an involution ¢ : I — F. Where
e the vertices of G, Vert(G), is the blocks of the partition II,
e the edges of G, Edge(QG), is the 2-cycles of ¢ and
o the legs of G, Leg(G), are the flags of F invariant under ¢.
A 7classical” graph would be a graph without legs.
Every graph has a geometric realization given by
(1) associating to each flag a copy of [0,1/2],
(2) identifying the points 0 € [0,1/2] for all flags in the same block and
(3) identifying the points 1/2 € [0,1/2] for all flags in the same orbit of the involution.

Example 1.2.2. Let T be the graph that has {a,b,c,...,i} as the set of flags, with partition
into blocks {a,b,c,d, e}, {f,g,h,i} and involution (df)(eg). The graphical representation

of T is
a e g h
c/d f \l
Definition 1.2.3. A cycle in a graph G is a collection of vertices vi, ..., vy, € Vert(Q)

and a collection of edges e1, . .., en € Edge(G) such that e; is given as the 2-cycle (vi, vit1),
fori=1,...,n—1 and e, being the 2-cycle (Vn,v1).

From cycle follows the notion of Tree.
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Definition 1.2.4. A tree is a graph without a cycle.

We will be using a more specific kind of tree, the labeled tree, when we later define the
free operad.

Definition 1.2.5. A rooted tree is a tree T where one leg | € Leg(T) have been singled
out to be the root of the tree, the other legs are called leafs and make up the set leaf(T).
Let vert(T) denote the set of internal vertices of T and let in(v) denote the number of
edges at an internal verter minus the one going up, i.e. in(v) = valence of v — 1.

A labeled tree (T,1) is rooted tree T and a bijection  : leaf(T) — [n].

1.3. Algebra. This section will contain basic algebraic theory.

Definition 1.3.1. An associative algebra A over a field k is a k-vector space with a
multiplication map p: A® A — A such that the following diagram commutes:

AAR A2 Ag A

AgA—" 54
and a unit map 1 : k — A.
Dual to this is the coalgebra

Definition 1.3.2. A coassociative coalgebra C over a field k is a k-vector space with a
comultiplication map A : C — C ® C such that the following diagram commutes:

CoCocl® ocgo

TW TA

CeC<—2 (¢

and a counit map i : k < C.

Definition 1.3.3. A Lie algebra g is a vector space over a field k with a binary operation
[, ]:9xg— g such that

o [ax + by, 2] = alz,z] + bly, 2] for all a,b €k and z,y,z € g

e [z,z] =0 forallz €g

o [[z,y], 2]+ [[y, 2], 2] + [[z,2],y] = 0 for all z,y,z € g.

Definition 1.3.4. Let V' be a vector space over a field k. We define the tensor algebra of
V' as the graded vector space @nZO VO™ and with the multiplication given on monomials

(M ®...0U) (U ®..QUR) =V1 R ..U QUL R ... R Un.
The symmetric algebra SV is defined as TV /I where I is the ideal of commutators,

I = {Ui®11j —vj®vi}.
The tensor algebra T'V is a coalgebra with comultiplication A defined on monomials
as
ATV - TVQTV
k
A(vi, ..., vE) — Z(vl, ey 05) @ (Vig1y e, Uk).
i=0

The above also makes SV into a coalgebra.
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Definition 1.3.5. A derivation of a k-algebra A is a k-linear map f: A — A such that
the following diagram commutes

A—f>A

A® A 1d® f+ f®id A® A
The set of k-derivations of an algebra A form a k-vector space and is denoted Dery(A),
or just Der(A) when it’s clear from the context what field we are using.

Dual to derivations of algebras are coderivations of coalgebras

Definition 1.3.6. A coderivation of a k-coalgebra C' is a k-linear map f : C — C such
that the following diagram commutes

C C

The set of k-coderivations of a coalgebra C' form a k-vector space and is denoted CoDery(C),
or just CoDer(A) when it’s clear from the context what field we are using.

Theorem 1.3.7. (a) Given a map p: V" — V of degree |p|, which can be viewed as a
map p : TV — V by letting its only non-zero component being given by the original
map on VE™. Then p lifts uniquely to a coderivation p: TV — TV with

TV
P L
/ ip'r‘o]ectzon
TV — 2 >V
by taking
p(vi,...,vk) =0, k <mn,
k—n
(o1, .. v) = Z(—l)‘pmvlH'”HU”)(UL oy P(Vik 1,5 Vi) -5 VR, k>n.

i=0

(b) thereis a one-to-one correspondence between coderivations o : TV — TV and systems
of maps {pi : V®" — V}iso, given by o = 2 i0Pi-

Proof. (a) Let 7’ denote the component of p mapping TV — V®I. Then p*,5%,...,p" !

will uniquely determine p™, by the coderivation property of p. To make this clear

consider the following equations

Ap(v1,...,v)) = (p@id+id®@p)(A(vi, ..., vk))

k
= (p@id+id@p)(>_(vi,...,v:) @ (Vit1, ..., vx))
i=0
k
vala"'y ®('Uz+1,...,’l)k)+
=0

(— )Pl 0D (L 0s) @ pvisn, - k).
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If we project both sides of the above to P VRV CcTV TV we get

k
AP (01, 5v) = T T 01, 0) @ (Wi, k) +

i+j=m

i=0
(—1)‘ﬁ|(‘vl‘+“'+|Ui|)(1]1, c.. ,’Ui) ®pm—i(vi+17 ey ’Uk).

The right hand side will depend on 5" for i < m, except for the expressions 5™ (v1, . . ., vx)®

1and 1 ® p™(v1,...,vk), which are uninteresting right now. From this we can build

an induction argument that proves that 7™ is only non-zero on the component V®*
where k =m +n — 1.
(b) The sum of coderivations is again a coderivation, so the map

a: {{pk: Vek V}ie>o} — CoDer TV, {p: ver Ve Zpk

is well-defined. It’s inverse 3 acts by giving the system of maps obtained by restricting
and projecting; So = {prv o | ek tk>0. From the lifting property of (a) we see that
B oa =id and from the uniquness in the construction of o we see that oo g = id.

O

Corollary 1.3.8. We have isomorphisms

CoDer(TV) = [ [ Hom(V®*,V)
k>0
CoDer(SV) = [ [ Hom(V®*, V).
k>0
Definition 1.3.9. Let R be a commutative ring. A chain complex C in the category of
R-modules is a series (Cs)icz of R-modules and a series of homomorphisms (d;)icz such
that d; : C; — Ci—1 and d; o dix1 = 0 for all i € Z. A chain complex is often written
(Ce,ds) and the map de is called a differential.
Given two chain complexes (Ce,ds) and (D.,d,), a series of homomorphisms fi : C; —
D, is called a chain map if the following infinite diagram is commutative

dit1 d;
Ci+1 Cz Cifl
ifi+1 lfi \Lfil
d;+1 d;
Di+1 Di Di—l

Chain complexes form a category with chain maps.

Dual to chain complexes are cochain complexes. The only difference is that the differ-
ential on cochain complexes is increasing, d; : C; — Ciy1.
An algebra in the category of (co)chain complexes is called a differential graded algebra.

Definition 1.3.10. The homology of a chain complex C = (C,ds) is the chain complex
(Hi(C),0)icz where H;(C) = Kerd;/Im ,di+1' Dually, the_ cohomology of a cochain complex
D = (D, ds) is the cochain complex (H*(D),0) where H*(D) = Kerd;/Imd;_1.
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2. THEORY OF OPERADS

An operad is a sophisticated combinatorial gadget which governs associativity of com-
positions on a countable collection of objects. Operads were invented by Peter May in
the 70:s to classify loop spaces and since then they have seen uses in multiple areas of
mathematics

The definition of an operad will be developed in a couple of steps. We do this to reduce
the initial difficulty that one can be faced with in trying to learn about operads.

2.1. Non-unital Operads. Before defining what a non-unital operad is we need to define
group actions.

Definition 2.1.1. Let G be a group and x an object in some category C. A left action by
G on x is a group homomorphism G — Aute(z, ), where Aute(z, x) is the group of units
in the monoid home (z, z). A right action by G on x is function G — Aute(x, z) such that
it is a group homomorphism when composed with the inversion map G — G

Definition 2.1.2. Let X be the category with objects the sets [n] = {1,...,n} and mor-
phisms the elements of the symmetric groups. A X-module in a category C is an element in
Fun(X°P,C). Alternatively we could say that a E is a X-module if there are objects E(n)
(where it is understood that E([n]) = E(n)) for alln > 0 with a right action of S,.

While stripped of much of the useful structure, the first level of the definition will have
the most important features of the operad, which is a generalized associative composition
map and an action of the symmetric groups.

Definition 2.1.3. A non-unital operad in a symmetric monoidal category (C,®,1) is a
Y-module {O(n)}n>1 and a composition map

k

v:0(k) @ Q) O3r) = 0 jr)

r=1
such that the following diagrams commute:

(1) (associativity)

Ok) @ (R, 0(j) @ (RE! Oiyr)) her Ok, ) ® (@T7 O(ir))
lshuffle
Ok) @ (®F_,(0(G,) @ (Rt .. Oliy)) ¥
lid®(®w)
O(k) ® (QF_, O iy st +a) u O z9ir)

(2) (equivariance)

O(k) & (®"_, 0(jr) — 27~ O(k) @ ®*_, Oljw(r)

P lw

. (1 ye-es k) .
O jr) L o1 jr)
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O(k) @ (®"_, 0(j)) L2221 o1y @ @F_, O(y)

I |

k . T1D...O7k k .
O(Z’I‘:l ]T) O(Zr:l ]7‘)
for o € Sy and 7 € S;,, where o(j1,...,jx) € Sy, is the induced permuation
action on the k blocks r; and where 11 & ... & T € SZ j» 18 the block sum permu-

tation.
Definition 2.1.4. A pseudo operad in a symmetric monoidal category (C,®,I) is a 3-
module {O(n)}n>1 and with composition maps
0;: O(n)®0O(m) - O(n+m—1) 1<j<n

such that the following conditions are fulfilled

e (associativity) For iterated compositions of O(n) ® O(m) ® O(p) the following apply
0jip_i(o;®id)(id®7) for1<i<j—1,

0i(0; ®id) = ¢ 0;(id ®0;—j+1) forj<i<j+4+n-—1and
0(0j—nt+1 ®id)(Id®@T) forj+n <i,
where T is the transposition O(n) @ O(m) — O(m) ® O(n).
We can also express these relations in commutative diagrams. For 1 <¢ < j—1:

id @7 0, ®id
—_—

O(n) ® O(m) @ O(p) O(n) @ O(p) ® O(m) ——=O(n+p—-1)@0O(m)

J{°j®id ioa‘wl

O(n+m—1)®O(p) > O(n+m+p—2),
forj<i<j4+n-—1:

O(n) ® O(m) ® O(p) ———*1 . O(n) ® O(m +p— 1)

J/o_]- ®id loj

0

On+m-1)®0@p) —————O0n+m+p—2),
forj4+n<i:

Qi—n+1®id

O(n) ® O(m) ® O(p) O(n) ® O(p) ® O(m) On+p—1)®0O(m)

\Loj®id ioj

O(n+m—1)® O(p) % O(n+m+p—2).
e (equivariance) For compositions O(n) ® O(m) the following apply:

id®T
—_—

0i(0 @ p) = (09 p)os(i)
where o € Sp, p € Sy such that 0, p € Spyn—1 withoo;p=01,...1,m1,.10(L XX
1xpx1x---x1), and where o1,...1,m,1,...,1 s the block permutation on the n blocks

1,...,1,m,1,...,1. Or, expressed in a diagram
O(n) ® O(m) —222 = O(n) ® O(m)
loou‘) ioi
On+m—1)—2 5 O(n+m—1).
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2.2. Operads.

Definition 2.2.1. An operad in a symmetric monoidal category (C,®,1I) is a X-module
{O(n)}n>1, a unit map v : I — O(1) and a composition map

7 O(k) @ éom -0 (> )

such that the following diagrams commute:
(1) (associativity)

O(k) ® (®F_, O(jr)) ® (RET O(ir))

lshuffle

O(k) @ (®r_1 (0(r) ® (@57 L, Oliy)) i
lid ®(®r7)
O(k) @ (Qr—y O(I, igi+ootir_1+a)) . O 1 it)
(2) (unitality)
O(k) ® (1)%* I®O(k)

id@(l,@k)l \ &@N

~

O(k) ® (0(1)®F) — = O(k) O(1) ® O(k) —— O(k)

Y®id

O(XF_ jr) ® (Q@ET O(iv))

R

(8) (equivariance)

Ok) @ (®F_, O(jr) — 27— O(k) ® ®"_, Oljw(ry)

A

. o(J1,e--s :) .
O jr) AL O jr)

O(k) @ (®F_, 0(j,)) “2 2 (k) © @_, O(y)

I [

. T1D...BT, .
ok, i) B o(xk )
for o € S and 7, € S;;, where o(j1,...,jk) € Sy, is the induced permuta-
tion action on the k blocks r; and where 71 @ ... ® Tx € Sy, is the block sum

permutation.
We can also give a partial definition of the operadic composition map.

Definition 2.2.2. An operad in a symmetric monoidal category (C,®,1I) is a X-module
{O(n)}n>1, a unit map v : I — O(1) and n composition maps

0; : O(n)®O(m) - O(n+m—1)
such that o; = yor where
T:0n)R@0mM)=20Mm) P 'eOm)e 1"
c:0M)@P T R0m)@ I - OMn)0(1) ™ @O(m)eO(1)
7:0n)@01)Y'e0(m)@0(1)" 7 = O(n+m—1).
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Example 2.2.3. Let C be a symmetric monoidal category with internal hom-functor Hom
and let X be an object in C. The endomorphism operad of X, Endx, is the objects
Hom(X®* X)) with the composition map v is given as the composition of the following
maps

Hom(X®", X) ® Hom(X®*', X) ® ... ® Hom(X®"") — Hom(X®® ") X)
acting on f € Hom(X®", X) and g; € Hom(X®* X) such that

’Y(fagh' . '79") = f(gl(_)7‘ . '79"(_)) € Hom(X®(EkL>>X)

Example 2.2.4. The little k-disk operad. Let D denote the standard k-disk in RE.
Consider the set of m ordered non-intersecting k-discs contained in D, let these be denoted
L(m). Let d = {di,...,dmn} be an element from L(m) and a; = {a;1,...,aw,;} be an
element from L(k;) fori=1,...,m then the composition of d,a1,...,am is the set

’ ! / / ! /
{ally"'7a1k17a217~~'7a2k27"'7am17'~~7amkm}

each aj; is a k-disc and where the position of ai; is to di as a:;’s position was to D. A
picture illustrates

The collection L(m)m>o s an operad of topological spaces together with the above described
map.

Definition 2.2.5. Let O = {O(n)}n>1 and P = {P(n)}n>1 be operads. A morphism
¢ : O — P is a sequence of maps ¢(n) : O(n) — P(n) such that the following diagram
commutes

ide(Q; ¢(ki))p

O(n) ® (&); O(ki)) (n) @ (&, P(ki))

O(Y ki) PO ki)

where yo is the composition map in O and ~yp is the composition map in P.

P ki)

Definition 2.2.6. Let O be an operad in a symmetric monoidal category C. An algebra
A over O is an object from C and a morphism of operads 6 : O — Endx.

Definition 2.2.7. An ideal Z in an operad O is a collection of subobjects Z(n) C O(n)
such that whenever i € T then ~y(...,i,...) € L.

Given a family of elements, (z;):cr, from an operad O. The smallest ideal in O that
contains all the x; is the ideal generated by the family (x;)ier.
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Definition 2.2.8. The quotient of an operad O by an ideal T is the operad (O/I)(n) :=
O(n)/Z(n) and with the induced composition map from O.

2.3. The Free Operad.

Definition 2.3.1. Let Op denote the category of operads (in some fized but notationally
supressed symmetric monoidal category C) and let ¥Op denote the category of non-unitary
operads.

Given a non-unitary operad S there is a forgetful functor F' which takes S to it’s
underlying ¥-module. From this we can define the free non-unitary functor on the category
Y-mod as the left-adjoint to F', i.e. the functor taking the object A to W¥(A) where
homg_mod(A, F(S)) = hOIn\pop(\If(A)7 E)

Definition 2.3.2. Given a set Y of cardinality n and an assignment of objects Ay in C
for each y € Y. Let Ord(Y') denote the set of bijections {Y — [n]}. Let g € Ord(Y'), then
for each o € S, there exist an induced map o* : Q_; Aj-1;) — Qi Avogy-1(5)- We
define the unorded product over Y as

®Ay = coequalizer, g ¢ 0" : H éAy—l(i) — H éAy—l(i)

Y y€eOTrd(Y) i=1 y€eOTrd(Y) i=1

Given a non-unitary X-module A and a labeled tree (T,l) we form the unordered
product
AT D) = Q) Alin(v)),
vevert(T)

this product is a functor from Tree,, to YOp, where Tree,, is the category of labeled trees
with morphisms the label-preserving isomorphisms.

Definition 2.3.3. The free non-unitary operad on the X-module A is defined as
U(A)(n) = colim(r ;yetree, A(T,1)
and the composition maps are given as grafting of trees.

There exist a functor which takes a non-unitary operad A to an operad by formally
adjoining the unit
U:A=T]]A

The composition UV is the free operad functor on ¥-modules.
2.4. Minimal Models of Operads.

Definition 2.4.1. A differential graded 3X-module A is a X-module of differential graded
vector spaces (A(n),dn) such that the map d : A(n)" — A(n)"™ is k-linear and S,-
equivariant.

A differential graded operad (dg-operad) is a differential graded 3-module with the struc-
ture of an operad and where the composition maps are morphism of differential graded
vector spaces.

In this subsection we will assume that the operads are dg-operads over the field k.
Theorems are stated without proof in this thesis but the book by Markl, Shnider and
Stasheff ([MaShSt]) contains the omitted matter.

Let k be a field and define the ¥-module E as

Bn) = k[S2) = k l/l\“/l\l ifn =2

0 if n # 2.



19

Consider the free operad on E, ¥(E). It consist of binary trees decorated with elements
of k[S2]. We define the associative operad Ass as the operad ¥(E), modulo an ideal I.

Ass =VU(E)/I, where I = /\0(3) 0(1)/>'\

o(1) o(2) o(2) o(3)
o€S3

This associative condition makes it possible to rewrite all trees on the following form

{
//\ (1)

a(2)
o(3) for some o € S,
o(n) o(n—1)
so that it becomes clear that W(E)(n) = k[S,]. Note that algebras over the operad Ass is
the same thing as associative algebras.
Consider the operadic ideal

>\ >\ >.\.
J= o(1) 0'(3) 0'(2)
(é)\o(?ﬂ 0({)\ U(é)\

o€S3

Algebras over the quotient Lie = W(FE)/J is the same thing as Lie algebras.

Definition 2.4.2. Let O be a dg-operad {O(n)}n>1, with O(n) = {O(n)'}icz. The
homology of O is the operad of cohomology complezes, [H(O)(n)]" = H (O(n)).

Definition 2.4.3. A quasi-isomorphism © : O — P of dg-operads is a morphism of

~

operads such that the induced map on homology is an isomorphism, H(r) : H(O) = H(P).

Quasi-isomorphisms induce an equivalence relation on operads. Two operads Q and
S are weakly equivalent if they are connected by a chain of quasi-isomorphisms in the
following way

Q+Pr—Prs+ = Ps_1+Ps—S.

Definition 2.4.4. Let O be an operad with O(1) = k. Then the decomposables DO =
(DO(n))n>1 is the elements

v(0,01,...,0n) 0€ O(n),0; € O(k;)
where at least two of n,k1,...,k, are greater than 1.
The decomposables of an operad is an ideal.

Definition 2.4.5. A minimal operad M = (V(E),D) is a free dg-operad on a X-module
E with E(1) = 0 and a differential 8 such that O(E) C DIN.

Theorem 2.4.6. Minimal operads are isomorphic if and only if they are weakly equivalent.

Definition 2.4.7. Let O be a dg-operad. A minimal model of O is a minimal operad M
and a quasi-isomorphism q : M — O.

Theorem 2.4.8. Every dg-operad S = (S,0) such that
H(S)(1) =k

admits a minimal model g : M — S.
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We can consider Ass as a dg-operad with trivial differential, in which case H(Ass) =
Ass.

The minimal model of Ass is the operad A(co). It’s the free operad on the Y-module
T, with

k i ifn>2

o(1) a(n) oESy

0 ifn=1.
We write that

A(oco) =W (/i\, /l\, //l\\, .. > , /L\of degree n — 2
 —

n-legs

Where A is any corolla with n legs. The differential & on A(co) is defined as

|
9 i X '3 l(_l)k+l(n—k—l)+1 (%/\}\
o(l) o(k

o(k+14+1) o(n)

1=2

x>
Il

0

a(1 a(n [N
@) (n) o(k+1) o(k+l1)

The operad Lie can in the same way be considered as a dg-operad with trivial differ-
ential.

The minimal model of Lie is the operad L(oo). It’s free on the Y-module T, as above
with A(co). We can write this

L(co) =" </l\, /+\, //l\\, .. ) , /i\ antisymmetric of degree n — 2
.

And the differential is given as follows

l
(-1)"o i "_1ZX(U)(—1)l(n_l) ./\

=2
/\ =2 o o'(l)/.oxl) o(l+1) o(n)
o(1

o(n)
where the second summation is taken over all (I,n — [)-unshuffles o, i.e. such that
cl)<o2)<...<o(l)and o(I+1)<o(l+2) <...<o(n).

The term x(o) is a sign defined as follows. The Koszul sign convention states that when-
ever we have elements x and y with degrees degx = p and degy = ¢ we will add a sign
(—1)P? when we commute = with y in a formula. If 7 € S,, and

n
x1/\x2/\...AxnG/\(:ch...,mn)

then we will let e(m, z1,...,2n) := (7)) be the sign implied by the Koszul sign rule which
makes the following equality correct

TINT2 N ... NTyp = E(’JT):CTr(l) NZr)y N NTr(n)-
We now define x(o) = sgn(m)e(m).
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Algebras over the operad A(oco) are called strongly homotopy Ass-algebras or Aco-
algebras and algebras over the operad L(oo) are called strongly homotopy Lie-algebras or
Loo-algebras. Let us describe them explicitly.

Definition 2.4.9. An Aw-algebra A is a differential graded vector space (V,d) = (D, 4, Vi, d)
with a set of multi-linear maps {mn}nzg, mn : VO = V where degm, = n — 2. The
maps act as follows:

0
ma(ma(a,b),c) — ma(a,ma(b,c)) = [ms,d](a,b,c)
ms(ma(a,b), c,d) — ms(a,ma(b, c),d) + ms(a, b, ma(c,d))

)

—ma(ma(a,b,c),d)) — (=1)!"'ma(a, ms(b, ¢, d)) = [ma, d)(a, b, c, d)

n—j
ST S umilan, s a6 mi(@erts o Gos)s Getsits s an) = [rn,dl(a, . an)
itj=nt1 =0
,j>2

where u is the sign
(_1)j+8(j+1)+j(\a1|+-..+\a571\)
and where [my,,d) is the induced differential in the complezx Hom(V®", V)

n

[mn, d](a1, ..., an) := Z(—l)‘alH‘“H%*l‘mn(al, conydas, .y an)—(—1)"dmy (a1, ..., an)

s=1
forai,...,an € V.
Definition 2.4.10. An L(co)-algebra L is a differential graded wvector space (V,d) =

(B, V' d) with a system of maps {ln}n>2, ln : VO — V with degl, = n —2 and
subject to the rules

ln(a1, ceey an) = X(Tr)ln(aﬂ(n), e ,a,,m))
S XD YTV li(aoys - o)) Goi41)s - -5 Ga(m) = (—1)"[d, 1] (a1, . .., an)
i+j=n+1
i,j>2

for all m € S,,, and where the sum is taken over all (i,n — i)-unshuffles o, x is the same
as above, in the discussion on the L(oco)-operad.

2.5. A Theorem by Kapranov-Manin.

Theorem 2.5.1. Let O(n)n>1 be a dg-operad over some field k. Then L = @, -, O(n)
is a Lie algebra with bracket -

[a, b] :Zaoibf(fl)‘a”b‘Zboja a € O(m),b e O(n),
i=1 j=1
where oy, is the partial composition. Furthermore the subspaces Ls = €@, O(n)s, and

LS = D> O(n)>" are also Lie algebras with the induced bracket.

Proof. We will prove this in the ungraded case. Suppose that x € O(l), ¢ € O(m) and
© € O(n). Then we can represent the elements as corollas,

/J\ € O(l), /l\ € O(m), /l\ € On).

1 n
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The partial composition is given as the grafting of trees in the following manner:

/% : /i\ /K
1 zy\z+m I+m—1

i+m—1

The last tree is rather large and we would like to have an abbreviated notation for it. We
define

*
ii = x0; @

A S

'L' 7,+m 1

l4+m—1

where the ¢ signifies that the grafting took place at the i:th leg. The expression (xo;®)0; ¢
can be of essentially two types. If i < j < i+ m then

(xo0; @) 050 = K
/

1 //‘N’mﬁ»n 1 l+m+n—2

7 Jj— 1/ \]+n i+m+n—2
J jt+n—1
for which we define the following abbreviative notation

I
!

J

In the case j < i we get

1 ]—/ Wn ”%Jrnfy X+n+"n’z;1 I4+n+m—2

i Jj+n—1 i+n—1 i+n+m—2

and in the case j > m +1i — 1 we get

1 ’ z—/ Km ' .j.+mfy X+m+.ﬁ;1 I+m+n—2

3 1+m—1 j+m—1 j+m+n—2

we will abbreviate them both with the same tree
(*oi.)ojo:z/\i, ifj<iorj>m+41—1
[ ]

where the order in which the legs appear have no significance on what number of ¢ and j
is larger.

If we let o = (%, ®,9) the three-cycle permuting the elements then the Jacobi identity
states that

(1+0+0%)[[xe],0] = 0.
This identity is the only difficult part of the proof and hence the only part we will give.
The result will be clear when the brackets are expanded and rewritten with the rules given
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above.

ollx, o], 0] = [[0, 4], o]
R S I DI U
SIEATTI RN

Where all sums are taken in an exhaustive manner. It’s now easy to check that the terms
cancel. 0
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3. THE OPERAD OF GRAPHS

In this section we will define the operad of graphs and study some of its properties.
The section concludes with a definition of the Kontsevich graph complex and a statement
of Willwacher’s theorem.

3.1. Graph complexes. Let G, be the set of graphs G with n vertices, Vert(G), or-
dered with [n] = {1,2,...,n} and [ edges , Edge(G), totally ordered up to an even per-
mutation. The group Z2 acts on a graph by reversing the direction of the total order,
the orbit of a graph IT" is the set {I',Topp}. Let G, be the vector space spanned by the

isomorphism classes [I'], for graphs I' € Gy, and with the relation [I'] = —[I'opy]
. span, ({ITIIC € G
n,l — .
(I = —[Topp]

From this we can form the graded vector space
G(n) =EPGnal2n—1-2].
1>0

There is a natural action of S, on G(n) where we permute the vertices. It is clear that
G(n),~, is a X-module.

Consider a collection of graphs, I'o € G(n) and T'1 € G(k1),...,T'n € G(kx). In relation
to these graphs we can define the functions

fi € hom(Edge(i), Vert(I'y)) for 1 <i < n.

Each of the functions describe a way to connect the edges of the i : th vertex of I'g to the
vertices of I';. We use this to construct a composition map on the ¥-module {G(n)}n>1.
Let ', ,....7, be the graph where the vertices 1, ..., n have been replaced with the graphs
I'1,...,I'y and edges previously connected to 4 are reconnected to Vert(I';) according to
how f; acts.

The composition map is then given as

7:Gn)@Gk1)®...®G(kn) > G (k1 + ...+ kn)

To®T1®...0T, — > (=1)77T¢
=01, fn)€llf—, hom(Edge(i),Vert(T;)

This makes {G(n)},>1 into an operad. Furthermore the vertices of the graph I'y are
labeled and ordered in a lexicographically way such that the vertices that come from T';
will have labels {i,1},...,{i,k;} and that {4,5} < {4, 4’} if and only if i < ¢’ or if i = ¢’
and j < j'. The vertices are then relabeled with the minimal string of numbers

L2, k4ot kn

such that the previous ordering is preserved. The sign (—1)?/ is determined so that

/\ e=(-1)% /\ eo A /\ e1N... N\ /\ en.

e€Edge(Ty) eg€Edge(Tg) e1€Edge(T'y) en€Edge(Tr)

For graphs I'o € G(n) and I'1 € G(m) we also have partial composition

O; = "}/|g(1)i—1®g(m)®g<1)n—i—l

for all vertices ¢ € Vert(I'g). This is an example of how a composition can look:

1 1 1 3 1 4

1 1
[ [ [
1 1
/\ s|e® | @e|= + +/\ +/\
2 3 @ ®
2 2 3 2 3 4 2 4 3
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3.2. Representation of the graphs operad. In the introduction to this thesis we men-
tioned that there is representations of the operad G which are Lie algebras of polyvector
fields, this is explained in more detail now.

We can think of the polyvector field on RY, T, (R?), as the graded commutative
algebra C®°(RY)[¥q, ..., ¥,], with |W;] = 1, i.e. subject to the rule ¥;¥; = —¥;¥,. Fix
some system of local coordinates z', ..., z? for R%. An element of Ty, (R?) will be of the
form

ZCQl"“’O‘p(xl, Wy AL AT,

where C*V 9P (x4, ..., 24) are smooth functions on the variables z1, ..., zq. Consider the
operator

82
A= Za: 010V,

We have the properties that A? = 0 and that A is Aff(R%)-invariant. The Schouten
bracket on Eoly(]Rd) is then defined on homogeneous elements as

1, 72s == (D) A(y2) = (D) AMG) 72 = 1A GRe).
We have a representation of the operad G,
p:G— SndTpoly(Rd);
a sequence of maps
P G(n) = Endy. . gy (n) = Hom(Tpoty (RY) ™, Tyory (RY)),

defined on graphs I' € G(n) in the following manner I' — ®r = (Tpo1y (RD)®™ = Tpory (RY)).
The map ®r is given as the composition of two maps, p o ¢, where p is just the regular
multiplication map a ® b — ab and where ¢ = HeeEdge<G) A., the product is taken over

the edges in their associated ordering. The map A. is defined on an edge e = — o as
follows

i i 0 i 0 i
-d®n 7 -d®7, 1 ~d®] i—1 ~d®n 7 )
55 % +i ® 5% ® 5 ®i

A=Y id® ®—6a ®id* "
xa

3.3. The Grothendieck-Teichmiiller Lie Algebra. Let Fo = k((z,y)) be the free
completed algebra on two generators. This algebra has a comultiplication defined on
primitive elements x and y as

Ar=2Q1+1Qx
Ay=y1+1Qy

Definition 3.3.1. An element ® is called group like if A® = PRP.
Equivalently we can say that ® = exp ¢ is group like if ¢ € ﬁLie(:c, y) C Fa.

Definition 3.3.2. The Drinfel’d Kohno Lie algebra, t(n), is generated by the indetermi-
nants ti; = tj; with 1 <4,j <n and i # j and subject to
[tij, tik + tr;] =0 for distinct i, 4,k
[tij,te] =0  for distinct i, 7, k, L.

Definition 3.3.3. Let u € k andt;; € t(n) for {i,j} C {1,2,3,4}. The group-like solutions
® € Fq to the system
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(1)

D(t12,t23 + toa)P(t13 + tas, t3a) = P(tas, t3a)P(t12 + t13, tas + t34)P(t12, t2s)

(2 exp(p(tis + t2s)/2) = B(t13, tr2) exp(ptis/2) P (tis, tas) " exp(utas/2)P(ta, t23)
(3 ®(z,y) = Dy, )

are called Drinfel’d associators when p # 0 and elements of the Grothendieck- Teichmdiller
group (GRT) when p = 0.

)
)

The following theorem was proved by Furusho [Fu].

Theorem 3.3.4. Any group-like solution ® € Fo to (1) will automatically be a solution
to (2) and (3) if u = /24c2(P), where c2(®) is the coefficient of xy in ®(x,y).

There is a group structure on GRT, the multiplication is given as
O o d'(z,y) = b(z,y) ¥ (P(z,y) zd(z,y),v)-

Associated to the group GRT is the Grothendieck-Teichmiiller Lie algebra, gtt. It is given
as the Lie series ¢ € Frie(z,y) such that

d(t12,ta3 + taa) + @(t13 + tos, t3a) = P(tas, tza) + d(t12 + t13, toa + t34) + @(t12, ta3)
0=¢(z,y) + ¢y, —r —y) + ¢(—x — y,z)
0= o(z,y) + o(y,z).

3.4. The Kontsevich Graph Complex. From the operad of graphs, {G(n)}»>1, we use
the Kapranov-Manin theorem to form the Lie algebra (€D,, -, G(n)~,[, ]) where

[,T] = ZFOZ- ' — ZFOJ- I for T € G(n),T' € G(m).
i=1 j=1

The map [, ]: G(n) ® G(m) — G(n+m — 1) has degree 0. To see this take two graphs I'y
and T's, with I; and Iz edges, respectively. The left hand side, I'y ® I'2, will be of degree
2m—11—2)+(2n—12—2) =2(n+m—1) — (l1 + l2) — 2, which is the degree of the right
hand side, [I'1, '2], since the number of edges is not changed when the bracket is applied.

The element
2 1
[ ]
SIS
12
has degree 1 so that the commutator
]
gives us a differential graded Lie algebra
( ]
fGC=Pon), -, —,d= [i —}

n>1

N | =

Consider the representation of operads p : G — EndTpoly(Rd>. Using the Kapranov-
Manin Theorem on the left side we get the Lie algebra fGC and using it on the right
hand side we get the Chevalley-FEilenberg complex of ’Emly(Rd). This complex is denoted
as CE(Tpoty (R?), Tpoty (R?)), from the construction we have that

CE('E)oly(Rd): %oly(Rd)) = @ Hom(Tpoty (Rd)®na noly(Rd))SﬂV

n>1
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It follows that there exists an induced representation
P FGC — CE(Tpoty (RY), Tyoty (R))

and that the graph
[ ]

l

is mapped to the Schouten bracket [, s € Hom(Tpory (RY)®2, Tpory (R?))%2 under p™?. In
fact more can be said; elements w in fGC satisfying the equation

dw + %[w,w] =0,

so called Maurer-Cartan elements, correspond to Lo, structures on Eoly(Rd).

Let GC be the subalgebra spanned by connected graphs where each vertex has at
least 3 edges. The differential and bracket from fGC is inherited to GC and the resulting
differential graded Lie algebra is known in the literature as the (odd) Kontsevich graph
complex. Very recently this remarkable theorem was proved by Willwacher [Wi]:
Theorem 3.4.1. The non-positive cohomology groups of GC are given as

. { if1 =20
HiGCa =
0 if 1 <0.

It’s an important open problem to compute the full cohomology of GC. It’s been
conjectured that the first cohomology of the Kontsevich graph complex is trivial, which
would mean that the Schouten bracket is undeformable in the category of L..-algebras.
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