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Foreword

Ever since the dawn of civilization human beings have exchanged infor-
mation and occasionally secret information. Irrespective of the method of
encryption these questions can be addressed mathematically.

Once the message is encrypted and transmitted across (usually) insecure
channels it is of utmost importance that unauthorized parties cannot break
the encryption. Decryption should be easy for the authorized but (ideally)
impossible for the unauthorized.

You could encrypt by hashing for which you need a function easy to
compute but very hard to invert. Or, you could encrypt using a secret key
or, of late, public!

Public key cryptosystems started making their appearance with Diffie
and Hellman’s public key exchange in 1976 and the subsequent creation of
the RSA public key cryptosystem by Rivest, Shamir and Adleman in 1978.
The public key cryptosystems guard themselves against “burglars”, whom
we shall call cryptanalysts , through mathematical problems very hard to
solve. The mathematical cryptographic model may be very simple indeed
yet breaking it can be extremely hard.

These systems usually rely essentially either on group theory or lattice
theory. In this paper we shall consider the group theoretical variant. The
standard group in use is Fp

∼= Zp yet lately a more exotic group has come
to the fore, viz. the additive group of an elliptic curve, E(Fp). Since the
elliptic curve approach mimicks to a large extent the standard approach we
shall present them both in parallel.

The first chapter is about ciphers, symmetric (private key) ciphers and
asymmetric (public key) ciphers. It is intended more as a narrative back-
ground to the rest of the paper and as a methodological discussion than as
a mathematical argument.

Chapter two is devoted to cryptography. Here we present some cryp-
tosystems in use. Special focus will be placed on the elliptic curve approach.

The hard mathematical problems at the core of the public key cryptosys-
tems are either the discrete logarithm problem or the prime factorization
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problem. We shall consider only the former. In chapter three we discuss
the cryptanalytical issues.

The elliptic curves and the group structure defined on them are pre-
sented in chapter four as a kind of appendix. Very briefly we shall discuss
even hyperelliptic curves.
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1 Ciphers

“ ’ Mine is a long and a sad tale.’

’ It is a long tail, certainly, but why do you call it sad? ’

’ Turn witch into fairy.’

’ Witch, winch, wench, tench, tenth, tents,

tints, tits, tills, fills, falls, fails, fairs, fairy!’ “

(from Original Games and Puzzles by Lewis Carroll)
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1.1. SUBSTITUTION CIPHERS 3

1.1 Substitution ciphers

Arabella and Beau would like to exchange billets doux but have grown
weary of Cupid’s constant surveillance. They decide to shift every letter in
the alphabet (standard Latin alphabet, 26 letters) 6 steps forward, so a will
become g , b will become h , ..... , and, finally, z will become f . This is the
simplest type of cipher, the shift or Caesar cipher. The encryption could
be given as letter 7−→ letter+6 where we have labeled the letters from a to
z by numbers from 1 to 26. This is not very difficult to break, in the worst
of cases you can try all possible shifts, 26 in number. An improvement may
be this: write the alphabet in two rows in opposite directions and match.

a, b, c, ......................................m, n,......................................,x , y , z

z , y , x , ......................................n,m,......................................,c, b, a

It should be harder to break though not excessively so.
The two ciphers above are examples of simple substitution ciphers which

may be viewd as functions

{a, b, c, ......................., x, y, z} −→ {a, b, c, ......................., x, y, z}

with domain = plaintext letters and range = ciphertext letters, assigning
to each plaintext letter a different ciphertext letter. An arbitrary function
of this kind can be viewed as a randomly chosen permutation of the 26

letters. Consequently, there are 26! > 1026 different simple substitutions
ciphers. Each such simple substitution can be presented as a table with
two rows:

• upper row = plaintext letters

• lower row = ciphertext letters

and this table can be considered as the key . Decrypting an encrypted text
without knowing the key is called cryptanalysis .

How hard is the task of the cryptanalyst in this case? Try brute force
and check all 26! possibilities. Say that Cupid’s computer can check 1026

cipher alphabets per second. The process should take

26!
106·60·60·24·365 > 1026

106·60·60·24·365 > 1018

105
> 1013 years.
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Compare this to the estimated age of the universe, of the order of 1010

years! Yet, you should not dispair. One should always consider the best

of the known methods of breaking an encryption. One reasonably good
method of cryptananlysis in this case would be using a frequency table that
gives the frequency with which a certain letter appears in a text in a given
language. (See, for instance, Hoffstein, Pipher & Silverman, pp 5-9).

1.2 Symmetric ciphers

Arabella and Beau choose a secret key k from the space K of all possi-
ble keys to encrypt message m from the space M of all possible messages
(plaintext) and obtain ciphertext c which belongs to the space C of all
possible cirphertexts.

Encryption becomes thus a mapping:

e : K × M −→ C .

Decryption then is the inverse operation/function:

d : K × C −→ M ,

such that ∀k ǫ K ∀m ǫ M d(k, e (k,m)) = m.
A more compact notation would be

ek : M −→C and dk : C −→M

with property ∀k ǫ K ∀m ǫ M dk (ek(m)) = m. As I said before dk must
be the inverse of ek , dk = e−1

k .
The astute Cupid knows what encryption method Arabella and Beau

use, i.e. Cupid knows the function ek and ipso facto also function dk . What
he does not know is the key k.

A basic premise of modern cryptography is Kerckhoff ′s principle : the
security of a cryptosystem should depend only on the secrecy of the key,
not on the secrecy of the encryption algorithm.

The sine qua non conditions for a successful cipher (K , M , C , ek , dk)
are:

1. ∀k ǫ K ∀m ǫ M : it must be easy to compute the ciphertext ek(m).

2. ∀k ǫ K ∀c ǫ C : it must be easy to compute the plaintext dk(c).
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3. Given ciphertexts {ciǫC }ni=1 encrypted by means of the key kǫ K it
must be very difficult to compute the corresponding dk(c) with-
out knowing k.

4. Desideratum. Given pairs (m, c) ǫ M × C , i = 1, 2,.......,n, it must
be difficult to decrypt any ciphertext c that is not given in the list
without knowing k. This is security against a chosen plaintext attack.

Since we want to construct a mathematical model for encryption and de-
cryption it is most convenient and natural to consider keys, plaintexts and
ciphertexts as numbers and, furthermore, as binary numbers. Such an
encoding scheme, converting text into numbers, is given by the ASCII code
(American Standard Code for Information Interchange). An encoding
scheme is entirely public knowledge and everyone uses it for the same pur-
poses!

An encryption scheme is used to hide information from anyone who does
not possess the secret key. Using an encoding scheme we may view every
plaintext or ciphertext as a sequence of binary blocks, each block consisting
of eight bits (binary digit, 0 or 1). A block of eight bits is called a byte.
A byte is often written as a decimal number between 0 and 255 or as a
two-digit hexadecimal number between 00 and FF.

For simplicity we may decide to view the elements of M as bit strings of
a fixed length B which we call the blocksize of the cipher. The encryption
function then takes a message block from M consisting of exactly B zeros
and ones and transforms it into a ciphertext block of exactly B zeros and
ones in C . If the plaintext ends with a block of fewer than B bits we fill
the tail of the block with zeros. All this is public knowledge!

Since we encrypt and decrypt one block at a time it suffices to consider
the process for a single plaintext block m ǫ M . We identify the binary string
m with the corresponding number in binary form thus identifying M with
the set of integers m satisfying 0 ≤ m < 2B through the correspondence

mB−1mB−2 ....................... m2m1m0

l

mB−12
B−1+mB−2 2

B−2+ ...................... + m22
2+m12+m0,

where mi ǫ {0, 1}, i = 0, 1, ............,B−1.
We make similar identifications for C and K and thus we have:

K =
{
kǫZ | 0 ≤ k < 2Bk

}
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M =
{
mǫZ | 0 ≤ m < 2Bm

}

C =
{
cǫZ | 0 ≤ c < 2Bc

}
.

It is of course not necessary to have Bk = Bm = Bc but it can be wise
to let Bk = Bm = Bc .

Let p be some sufficiently (!) large prime number and K = M = C

= {1, 2, ......, p− 1}= F⋆
p, the group of units of the finite field Fp (∼= Zp),

which is a multiplicative group.
Arabella and Beau choose as their (common) secret key an integer k ǫ F⋆

p

and settle for the encryption function ek defined by the congruence ek(m)
≡ k ·m (mod p). Of course dk will be given by dk(c) ≡ k′ · c (mod p), where
k′ ≡ k−1 (mod p) .

Nota bene:

• If p is relatively small then Cupid may break the key by a brute force
attack, i.e. an exhaustive search attack, since he knows the decryption
algorithm (Kerckhoff’s principle). He takes every k ǫ K and computes
dk(c). Assuming that he can tell which text is a valid plaintext and
which is invalid he will recover the message m. An exhaustive search
is feasible (according to Hoffman, Pipher & Silverman) if the space
has at most 280 elements, so Arabella and Beau should choose Bk ≥
80.

• It is also known that it is easier to find matching objects (collisions)
in a set than it is to find a specific object in the same set. Such search
methods are called collision or meet − in − the −middle attacks. It
turns out that if such methods are available Arabella and Beau should
choose Bk ≥ 160. (See Hoffman, Pipher & Silverman).

Now, if Cupid tries a brute force attack on k, and 2159 < p < 2160 , he
will have a hard time trying approximately 2160 possibilities ( 2160 − 2159

= 2159(2− 1) = 2159).

What if he knows some ciphertext c?

ek: M −→C is one-to-one and the cardinalities of M and C are equal
and finite so ek is also onto, for any choice of k.

Consequently, for every c ǫ C and any k ǫ K there exists an m ǫ M

such that ek (m) = c. But then, since ek (m) = km (mod p) we solve the
congruence km ≡ c (mod p) and recover the message as m ≡ k−1c (mod p).
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This shows that although it would be difficult for Cupid to recover the
key k (for large p) it would not be impossible. The conclusion must be that
the cryptosystem above has Properties 1, 2 and 3 but not Property 4.

What about the encryption function ek(m) = k ·m ? The cipher still has
Properties 1 and 2 but not Property 3 any longer because, if Cupid tries
to decrypt c = k ·m, although he still has the difficult task of factoring a
large number, having acquired ciphertexts c1, c2 , ............. , cn , it is fairly
probable that

gcd(c1, c2 , ............. , cn) = gcd(km1, km2 , ............. , kmn) =

k· gcd(m1, m2 , ............. , mn) .

Instead of ek(m) ≡ k ·m (mod p) one could try e(m) ≡ m+k (mod p)
with dk(c) ≡ c−k (mod p), this being the shift cipher. Another variant is
the affine cipher, a combination of shift and multiplication. Its key is a pair
k =(k1,k2) and

ek(m) ≡ k1m+k2 (mod p) with dk(c) ≡ k−1
1 (c− k2) (mod p).

A generalization of the affine cipher is the Hill cipher where

• k1 is a n × n matrix with integer entries mod p, hence k−1
1 is the

inverse matrix of k1

• m, c, and k2 are column vectors of n integers mod p

Both the affine and the Hill ciphers lack Property 4, i.e. they are vul-
nerable to plaintext attacks (See Hoffman, Pipher & Silverman).

Let us consider the following operation:

xor denoted by ⊕, the exclusive disjunction. Given β, β′ ǫ {0, 1} we
define

β ⊕ β′ =

{
0 , β = β′

1 , β 6= β′

xor is obviously addition modulo 2.
For example, 10110⊕ 11010 = [1⊕ 1] [0⊕ 1] [1⊕ 0] [1⊕ 1] [0⊕ 0] = 01100.
Arabella and Beau can construct now the following cipher:

ek(m) = k⊕m and dk(c) = k⊕ c.
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Observe that ek and dk are the same function, i.e. dk = e−1
k = ek .

If they wanted to use this cipher (the Vernam one − time pad) to ex-
change N bits of information they would need to know already N bits of
secret information since the key is as long as the plaintext. (See Hoffman,
Pipher & Silverman, pg 43 & pg 249). This makes the cipher very cum-
bersome and inefficient for most practical applications. It is nonetheless
completely secure if the key is used only once. If the key is reused, by
mistake or in want of key material, then Cupid could use the fact that

c⊕ c′ = (k⊕m)⊕(k⊕m′) = m⊕m′

thus getting information about m or m′ although it is not quite clear
how he could determine k, m or m′. And yet, dispensing so easily with the
key k should be alarming!

At this stage we can ask ourselves if it is at all possible to use a single
relatively short key k to send securely and efficiently arbitrary messages.
Suppose we can define a function:

R: K × Z −→{0, 1}

satisfying the following conditions:

1. ∀k ǫ K ∀j ǫ Z it is easy to compute R(k,j )

2. Given an arbitrarily long sequence of integers j1, j2, .............. , jn and
given all the values R(k,j1), R(k,j2), ................., R(k,jn) it is hard to
determine k

3. Given any list of integers j1, j2, .............. , jn and given all the values
R(k,j1), R(k,j2), ................., R(k,jn) it is hard to guess the value R(k,j )
with better than 50% chance of success for any value of j not already
in the list.

In that case we can start with a key k , compute the sequence

R(k,1), R(k,2), .................

and then use this sequence of bits as the key for a one-time pad. But
is this sequence truly random ? R is actually a pseudorandom number
generator. Do such generators exist?

We can construct candidates for R in two ways:
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• Apply an ad hoc collection of mixing operations, efficient to execute
and hard to untangle. This is the basis for most practical symmetric
ciphers, including DES and AES, the two systems most widely used
today.

• Construct R using a function whose efficient inversion is a well-known
hard (or so believed to be) mathematical problem. Unfortunately
this second approach seems to be far less efficient than any ad hoc

constructions.

1.3 Asymmetric ciphers

In order to use a symmetric cipher Arabella and Beau must meet and agree
on a secret key k. But what if they cannot meet and any communication
between them is totally monitored by Cupid? Well, where there is a will
there is a way.

Diffie and Hellman had the cunning insight that this is possible under
certain conditions. Arabella buys a safe (the public key) with a narrow slot
and locks it with a personal key (the private key). The safe is displaced
in a public place. Beau comes by and drops a message through the slot
(encryption). Later Arabella unlocks the safe with her key (decryption).
Incidentally, anyone in the world can send encrypted messages to Arabella,
not only Beau!

Mathematically, this can be formulated like this. For k ǫ K it holds
that the complete key consists of a pair of keys:

k = (kpriv, kpub),

one private and one public. For every kpub there is a corresponding
encryption function:

ekpub : M −→ C

and for every kpriv there is a corresponding decryption function:

dkpriv : C −→M

with the property that if (kpriv, kpub) ǫ K then ∀m ǫ M dkpriv(ekpub(m))
= m.

If such an asymmetric cipher is to be secure then Cupid must have a very
hard time determining the decryption function dkpriv even though he knows
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the public key kpub. Arabella can send kpub to Beau any way she pleases and
Beau can send back the ciphertext ekpub(m) without worrying about Cupid.
Decryption should be easy only if you have access to the private key kpriv

and Arabella is, hopefully, the only one with that information. That is
Arabella’s trapdoor information.

Otherwise decryption should be very hard. The difficulty can consist in
solving, e.g.

1. the discrete logarithm problem (DLP) for a multiplicative group (the
classical ElGamal cryptosystems)

2. the discrete logarithm problem (ECDLP) for the additive group of an
elliptic curve (the elliptic curve ElGamal cryptosystems)

3. the prime factorization problem (the RSA cryptosystems)

4. the short vector problem (SVP) in a lattice (the NTRU cryptosystems)

In this paper we shall consider only the first two cases.

1.4 Digital signatures

Encryption systems secure communications over an insecure network. But
there are situations where you must authenticate the source of the message
or even its recipient. Arabella must sign her message to Beau.

Let us use the analogy of a bank deposit vault. It has a (narrow) slot
which is the public encryption key . Anyone can use it to deposit an envelope
(the message) but no one except the owner of the combination (the private

decryption key) can open it (decrypt and read the message). So a public
key cryptosystem can be viewed as a digital version of the bank deposit
vault.

In past ages people used to sign their letters with a signet ring (the
private signing key) with a recessed image which could be pressed into the
melted wax previously dropped onto the document. So a digital signature

may be the analogue of a signet ring.

The following are the ingredients of a digital signature scheme:

• a private signing key (kpriv)

• a public signing key (kpub)
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• a signing algorithm (sign) that takes as input a digital message m and
a private key kpriv and returns msign for m

• a verification algorithm (ver) that takes as input a digital message
m, a signature msign and a public key kpub and returns TRUE if msign

is a signature for m associated to the private key kpriv and FALSE,
otherwise.

It is essential though that the owner of kpriv be able to create valid signatures
at the same time as knowledge of kpub does not reveal kpriv. There are two
necessary general conditions for a secure digital signature scheme:

• Given kpub, an attacker cannot feasibly determine kpriv or any other
private key that produces the same signature as kpriv.

• Given kpub and a list of documents D1, D2, ............... , Dn with their
signatures D

sign
1 , Dsign

2 , ............... , Dsign
n , an attacker cannot feasibly

determine a valid signature or any document D that is not already in
the list.

You should keep in mind that every time you sign a document you re-
veal a new document/signature pair and this provides new information to
an attacker, so the second condition says that the attacker gains nothing
except the new pair. An attack that makes use of a large number of already
known signatures is a transcript attack therefore we say that the second
condition requires that a digital signature should not be vulnerable to tran-
script attacks. In real world applications digital signature schemes must
avoid a number of very subtle, but fatal, security problems. This is not of
our interest or concern here.





2 Elliptic Curve Cryptography

“ ’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

........................................................

’ It seems very pretty,’ she said when she had finished it, ’but it’s rather
hard to understand!’

(You see she didn’t like to confess even to herself, that she couldn’t make
it out at all.) “

(From Through the Looking − Glass , ch.1 Looking −Glass House, by
Lewis Carroll)

13
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2.1 The Diffie-Hellman key exchange

Choose a large prime p and a nonzero integer g mod p and make them
public. It is advisable to choose g such that its order in F⋆

p is a large prime.
Arabella chooses a secret integer a and Beau a secret integer b. Arabella

then computes the value A and Beau the value B :

A ≡ ga (mod p)

B ≡ gb (mod p)

and exchange them.
New computations give Arabella the value A′ and Beau the value B′ as

follows:

A′ ≡ Ba (mod p)

B′ ≡ Ab (mod p)

A′ ≡ Ba ≡
(
gb
)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′

This common value is the exchanged key. Now they can use this as
the common key for a symmetric cipher. If Cupid wants it he must solve
the congruence

ga ≡ A (mod p) for a

or

gb ≡ B (mod p) for b.

We shall call this the DLP, the discrete logarithm problem, for reasons
that will become apparent in chapter three.

This key exchange is due to Whitfield Diffie and Martin Hellman who
published their paper “New Directions in Cryptography” in 1976 and prac-
tically laid the foundations for what was to become the public key cryp-
tosystems. Others seem to have invented the same key exchange system
before though without making their results public for various reasons. (See
Hoffstein, Pipher & Silverman). But all this was only a public exchange of
a secret key. As yet no public key cryptosystem was available.
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DHP

The Diffie - Hellman Problem is the problem of computing the value of gab

(mod p) from the known values ga (mod p) and gb (mod p). The DHP is no
harder than the DLP (DHP 2 DLP) but nobody knows the answer to the
converse question.

ECDHP

Choose a particular E(Fp) and a particular point P ǫ E(Fp) and make them
public. Arabella chooses a secret integer nA and Beau chooses a secret
integer nB. Arabella and Beau then compute their respective multiples of
P:

QA = nAP

QB = nBP

and exchange them.
New computations give them the value

A′ = nAQB = nA(nBP) = nAnBP = nB(nAP) = nBQA = B′

This common value is their exchanged key.

Example. Let us look at the following set up:

E: y2 = x 3+171x+ 853

p = 2671

P = (1980, 431)

Arabella sends Beau the point QA = (2110, 543). Beau decides to use
the secret multiplier nB = 1943. What point is Beau going to send back
to Arabella? Well, of course, QB= nBP = 1943P. But what is this specific
point in terms of coordinates?

1943 = 1+ 2+ 22 + 24 + 27 + 28 + 29 + 210

or, in ternary expansion,
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1943 = 1+ 2+ 22 + 24 − 27 + 211.

We shall either need 10 doublings + 7 additions = 17 point operations,
or 11 doublings + 5 additions = 16 point operations. The difference is not
enormous but often it can be quite substantial. (See chapter three).

We compute:

P = (1980, 431)

2P = (1950, 1697)

4P = (1894, 1829)

8P = (1160, 1268)

16P = (1116, 2037)

32P = (2125, 1001)

64P = (862, 2268)

128P = (1135, 932)

256P = (586, 2069)

512P = (2040, 1378)

1024P = (1718, 584)

2048P = (2091, 1669)

and

P+ 2P = (415, 301)

3P+ 4P = (2288, 2333)

7P+ 16P = (1074, 754)

23P− 128P = (1704, 589)

−105P+ 2048P = (1432, 667)
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1943P = (1432, 667)

Beau will send Arabella the point (1432, 667)

What is their secret shared value? It is

nAQB = nBQA = 1943QA

New computations:

QA = (2110, 543)

2QA = (1687, 1454)

4QA = (1470, 1137)

8QA = (1189, 577)

16QA = (967, 1539)

32QA = (2000, 1792)

64QA = (844, 699)

128QA = (1655, 1926)

256QA = (1775, 523)

512QA = (1157, 973)

1024QA = (1871, 1455)

2048QA = (1535, 1641)

and

QA + 2QA = (809, 2136)

3QA + 4QA = (928, 1620)

7QA + 16QA = (401, 2422)

23QA − 128QA = (167, 869)

−105QA + 2048QA = (2424, 911)
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1943QA = (2424, 911)

Arabella and Beau share the secret value (2429, 911)

Cupid has to solve the ECDLP nAP = QA for nA or nBP = QB for nB

in order to get the key. We can formulate even here a ECDHP: compute
nAnBP knowing the values nAP and nBP .

In the example above Cupid must solve the ECDLP :

nA(1980, 431) = (2110, 543).

We still have ECDHP 2 ECDLP.
When exchanging points on an elliptic curve one need not really ex-

change both coordinates. It suffices to exchange only the x−coordinate
since the y−coordinate may be recuperated from the equation y2 = x3 +
ax + b. But, if Arabella does so and sends Beau only the x−coordinate
of QA then he either chooses the “correct” y , thus effectively using QA, or
chooses the “incorrect” y , thus using −QA. The following computations
will give Beau ±nBQA = ±(nAnB)P and Arabella gets the same, ±nAQB =
±(nBnA)P = ±(nAnB)P, so both can use the x−coordinate as the secret
key.

Example. Arabella and Beau decide to exchange a new piece of secret
information using the same prime, curve and point. This time Arabella
sends Beau only the x−coordinate of her point QA, viz. xA = 2. On
receiving this value Beau computes

y2 =23 + 171 · 2+ 853 = 1203

He solves this equation mod 2671 and gets two solutions: y1 =96 and
y2 =2575. So Arabella might choose as her secret point either (2, 96) or
(2, 2575). Beau then decides to use the secret multiplier nB = 875 and he
must send her back the x−coordinate of the point QB = nBP = 875P.

Back to the computer:

875 = 1+ 2+ 23 + 25 + 26 + 28 + 29

We have already computed enough points so we get:

P+ 2P = (415, 301)

3P+ 8P = (1858, 644)
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11P+ 32P = (247, 1420)

43P+ 64P = (303, 2012)

107P+ 256P = (921, 157)

363P+ 512P = (161, 2040)

875P= (161, 2040)

We conclude that Beau sends back to Arabella xB =161.
Furthermore, their secret shared value will be the x−coordinate of the

point ±nAQB = ±(nAnB)P = ± nBQA.
More computations in order to determine ±nBQA= ±875QA under the

possibly wrong but innocuous assumption that QA = (2, 96) !
First:

QA = (2, 96)

2QA = (2246, 937)

4QA = (1077, 2113)

8QA = (143, 27)

16QA = (2469, 1258)

32QA = (2124, 492)

64QA = (1930, 2279)

128QA = (1684, 544)

256QA = (454, 2201)

512QA = (1306, 607)

Second:

QA + 2QA = (1150, 326)

3QA + 8QA = (1566, 1752)
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11QA + 32QA = (915, 2120)

43QA + 64QA = (1124, 363)

107QA + 256QA = (2596, 741)

363QA + 512QA = (1708, 1252)

875 “QA” = (1708, 1252)

Arabella and Beau share the value 1708.

2.2 The ElGamal public key cryptosystem

The Diffie-Hellman key exchange did not as yet constitute a full-fledged
public key cryptosystem. It was only a method of sharing a key through
public channels but it could not permit exchange of specific information.
Such a system was created by Taher ElGamal who published his paper,
“A public key cryptosystem and a signature scheme based on discrtet loga-
rithms”, in 1985 in IEEE Trans. Inform. Theory, 31 (4).

Arabella publishes a key and an algorithm. The public key is a number
and the algorithm is the method for Beau to encrypt his messages using
Arabella’s key. Let us look at the details.

Classical ElGamal cryptosystems

Arabella chooses a large prime p and an element g (mod p) which she makes
public, then she chooses a secret/private key, a number a, and computes
A ≡ ga (mod p). A will be the public key.

Beau wants to send Arabella the message m, an integer 2 ≤ m < p. He
chooses randomly a number k (mod p). This will be an ephemereal key. It
will be used to encrypt a single message and then it will be discarded! He
computes

c1 ≡ gk (mod p)

c2 ≡ mAk (mod p).

The encryption of m will be the pair (c1, c2) and this is sent to Arabella.
She decrypts:
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x ≡ ca1 (mod p)

x−1c2 ≡ (ca1)
−1c2 ≡

(
gak

)−1·
(
mAk

)
≡

(
gak

)−1·
(
mgak

)
≡

(
gak

)−1·m·
(
gak

)
≡ m.

Example. Arabella uses the prime p = 2137 and the primitive root
g = 10. She chooses a = 73 as her private key and computes her public
key

A ≡ ga = 1073 ≡ 1405 (mod 2137)

Beau wants to send her the message m = 413, chooses as an ephemeral
key k =281 and computes the two values:

c1 ≡ gk = 10281 ≡ 2094 (mod 2137)

c2 ≡ mAk = 413 · 1405281 ≡1602 (mod 2137)

The pair (c1, c2) = (2094, 266) is the ciphertext that Beau sends Arabella
and Arabella computes:

x = ca1 = 209473 ≡ 445 (mod 2137)

x−1≡850 (mod 2137)

Finally:

c2x
−1 ≡ 1602 · 850 ≡ 413 = m

She has got the message!

Cupid, the cryptanalyst, would have to solve the congruence ga ≡ A

(mod p) for a, a DLP.

Theorem 1. Fix a prime p and base g for the ElGamal encryption. Sup-
pose that Cupid has access to an oracle that decrypts ElGamal ciphertexts
encrypted using arbitrary ElGamal public keys. Then he can use the oracle
to solve the Diffie − Hellman problem.
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Cupid’s problem is the DHP:

• given A ≡ ga (mod p) and B ≡ gb (mod p)

• compute gab (mod p).

The oracle returns the quantity (ca1)
−1·c2 (mod p).

What values should one choose for c1 and c2?
c1 = B ≡ gb and c2= 1 would work because the oracle would return

(gab)−1 and Cupid would compute the inverse of this, i.e. gab. But we
exclude c2= 1, the oracle most certainly should dismiss it !

Cupid could choose an arbitrary c2 and send the oracle the values c2,
the public key A and the ciphertext (B, c2 ), in other words, he would try a
chosen text attack. The oracle would return the supposed plaintext

m ≡ (ca1)
−1·c2 ≡ (Ba)−1·c2 ≡

(
gab

)−1·c2 (mod p)

and Cupid would be in business: gab≡ m−1·c2.
The conclusion must be that DHP 4 ElGamal. Furthermore, the DHP

could be solved without knowledge of either a or b so this is the solution to
the DHP but not to the DLP.

We have shown that assuming that the DHP is hard the ElGamal cryp-
tosystem is secure and quite specifically it is secure to chosen ciphertext
attacks.

Elliptic curve ElGamal cryptosystems

We choose a prime p, an elliptic curve E and a point P ǫ E(Fp). All this
will be made public. Then Arabella chooses her secret key nA and reveals
the public key QA = nAP. Beau wants to send her the message M ǫ E(Fp).
He chooses the ephemeral key, an integer k , computes C1 = kP and C2 =
M+ kQA and sends Arabella (C1,C2), two points.

Arabella now decrypts:

C2−nAC1 = (M+ kQA) −nA(kP) = M + knAP − knAP = M.

She has got the message!

All this is very well but there are a couple of practical issues/difficulties.
First, there is no obvious way to attach plaintext messages to points on
E(Fp). Second, the elliptic curve ElGamal cryptosystem has 4−to −1 mes-
sage expansion whereas the standard ElGamal cryptosystem has 2−to −1



24 CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

message expansion. This is due precisely to the fact that (C1,C2) is a pair
of points on the elliptic curve. Hasse’s Theorem (see Appendix) says that
there are approximately p different points in E(Fp), that is approximately
p different plaintexts, so we might have a scarcity problem.

We could, of course, avoid the problem of such large expansion by send-
ing only the x−coordinate. But, at decryption, you need whole points
because if you choose the “wrong” y−coordinate you get C2+nAC1 instead
of C2−nAC1 , and these are very different points indeed ! You might cir-
cumvent the problem by sending an

extra bit =

{
0 , 0 ≤ y < 1

2
p

1 , 1
2
p ≤ y < p

.

You might ask: why does this work? If Beau sends x = γ then Arabella
computes γ3 + aγ + b = δ and then tries to solve the equation y2= δ. A
solution must exist because Beau sends the x−coordinate of a point on the
elliptic curve.

Case 1. δ = 0.

The solution is unique, y = 0, and the point is unique too, (γ, 0).

Case 2. δ > 0.

(This case is enough because we shall eventually compute modulo p).
Solving we get the solution y1 and assume (without loss of generality) that
0 < y1 < p

2
. We know that y2 = −y1 ≡ p − y1 is the other solution. Suppose

that 0 < y2 < p
2

too. This is equivalent to 0 < p−y1 < p
2

which entails the
inequality y1 >

p
2

contradicting the assumption.

Nota bene. y1 =y2 = p
2

is not possible because the equation y2= δ> 0

has two distinct solutions.

So Beau would need two extra bits for the two points C1 and C2. This
is called point compression.

Example. Arabella and Beau decide to use the prime p =1123 and the
elliptic curve y2= x 3 + 54x + 87. Beau sends Arabella the x−coordinate
x = 278 and the bit β = 0. Arabella computes 2783 + 54 · 278+ 87 ≡ 216

(mod 1123).

Now she must solve the equation y2 = 216. Since p = 1123 ≡ 3 (mod
4)

y1 =216
1124/4 = 216281 ≡ 487 (mod 1123)
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will be a solution. The other solution will obviously be y2 ≡ −487 ≡
636 (mod 1123).

β = 0 indicates that Beau sent her the point (278, 487) since 487

<561.5 = p
2
.

β = 1 would have given the point (278, 636) as 636 >561.5 = p
2
.

2.3 Digital signatures

ElGamal

The El Gamal digital signature scheme was presented in 1985.
Arabella chooses a (large) prime p and a primitive root g (mod p) and

then she chooses a secret signing exponent s and computes the verification
exponent v ≡ g s (mod p).

(v , p, g) is Arabella’s public verification key.
Suppose she has the document 1 < D < p. She chooses now a random

number e, 1 < e < p, the ephemeral key, and computes

S1 ≡ ge (mod p)

S2≡ (D−sS1)e
−1 (mod (p − 1))

Caveat ! e−1 is to be computed modulo (p − 1).
Arabella’s digital signature on D will be the pair (S1, S2).
Beau verifies:

vS1 ·SS2
1 ≡ gsS1 · geS2≡

gsS1+eS2 ≡ gsS1+e(D−sS1)e
−1 ≡

gsS1+D−sS1 ≡ gD (mod p)

The verification algorithm returns TRUE.
Nota bene. We know that gp−1 ≡ 1 (mod p) so, in the expression gS2

(mod p) we may replace S2 by any other number congruent to S2 (mod
(p − 1)).

Example. Arabella chooses a prime

p = 70843

and a primitive root
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g ≡ 2 (mod 70843)

She selects her secret signing key s = 317 and computes her public
verification key associated to the pair (p, g) = (70843,7):

v ≡ gs ≡ 2317 ≡ 13219 (mod 70843)

Suppose she wants to sign the document D = 502. She chooses a random
number e = 427 (the ephemeral key) in the range

1 < e < 70843 with inverse e−1 = 65533 (mod 70842). This might
cause trouble, but she will simply choose e an odd number so it will be
invertible modulo (p − 1). Then she computes the values:

S1 ≡ ge ≡ 2427 ≡ 63851 ( mod 70843)

S2 ≡ (D− sS1)e
−1 ≡(502−317·63851)·65533 ≡ 12657 ( mod 70843).

Her digital signature on the document D will be S = (S1,S2) = (63851, 12657).

Beau receives the document and verifies the signature. He computes
and checks:

vS1SS2
1 ≡ 1321963851·6385112657 ≡

7373 ≡ 2502 ≡ gD( mod 11807)

S is the signature of his sweetheart. Bliss!

All Cupid needs to do is to solve the DLP gs ≡ v (mod p) .

But is this the only way to break the scheme?

Given v and gD Cupid must find integers x and y such that vxxy ≡gD

(mod p). Using discrete logarithms we get

x loggv + y loggx ≡ D (mod (p − 1))

If Cupid can solve the DLP then he can take an arbitrary value for x

and solve the above equation for y . This is the only known method to do
it (at present!). So Cupid must solve the DLP.
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DSA (Digital Signature Algorithm)

In 1991 a modified version of the ElGamal digital signature scheme was
proposed allowing shorter signatures, the DSA. This was officially pub-
lished in 1994 as a national Digital Signature Standard (DSS). (For all
this see NBS–DES. Digital Signature Standard (DSS). FIPS Publication
186-2, National Bureau of Standards, 199, as quoted by Hoffstein, Pipher
& Silverman, section 7.3).

The idea is to work in a subgroup of F⋆
p of prime order q . Arabella

chooses two primes p and q with p ≡ 1 (mod q). (Usually cryptographers
take 21000 < p < 22000 and 2160 < q < 2320). Then she chooses an element

g ǫ F⋆
p of order q , e.g. g ≡g

p−1

q

1 for a primitive root g1 ǫ F
⋆
p. She goes on and

chooses a secret exponent s and computes v ≡ g s (mod p).
(p, q , g) will be her public verification key. The document is D as before.

She chooses the ephemeral key e as before in the ElGamal version but now
computes:

S1 ≡ (ge (mod p)) (mod q)

S2 ≡ (D+sS1)e
−1 (mod q).

S = (S1, S2) will be Arabella’s digital signature on the document D, two
numbers modulo q .

Beau verifies by computing

V1≡ DS−1
2 (mod q)

V2≡ S1S
−1
2 (mod q)

and checking that

gV1vV2 ≡ gDS−1
2 gsS1·S

−1

2 ≡ g (D+sS1)S
−1
2 ≡ ge (mod p).

Then we have that (gV1vV2 (mod p))
q≡ (ge (mod p))

q≡ S1 and everything
is as it should be.

Example. Arabella chooses two primes

p = 70843

q = 11807
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p ≡ 1 (mod q).

She finds then a primitive root g1= 2 ǫ F⋆
p and computes an element

g = 2
p−1

q = 64 of order 11807 in F⋆
p .

Then she chooses a secret exponent s = 317 and computes her public
verification key associated to the triple (p, q , g) = (70843,11807, 64):

v ≡gs ≡ 64317 ≡ 4386 (mod 70843)

Suppose she wants to sign the document D = 502. She chooses a random
number e = 427 (the ephemeral key) in the range1 ≤ e < 11807

with inverse e−1 = 6498 (mod 11807) , and computes:

S1 ≡ (ge = 64427
p≡ 70605 ) ≡ 11570 ( mod 11807)

S2 ≡ (D+ sS1)e
−1 ≡ (502+317·11570)·6498 ≡ 10858 ( mod 11807).

Her digital signature on the document D will be S = (S1,S2) = (11570, 10858).

Beau receives the document and verifies the signature. First he com-
putes:

V1 ≡ DS−1
2 ≡ 502·10858−1≡

502·7552 ≡ 1057 ( mod 11807)

V2≡ S1S
−1
2 ≡ 11570·10858-1 ≡

11570·7552 ≡ 4840 ( mod 11807)

and checks

(gV1vV2 = 641057·43864840 p≡ 70605) ≡ 11570 ( mod 11807).

S is her signature. Euphoria ensues!
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ECDSA

The DSA works just as well in other groups, E(Fp) in particular, so we have
the elliptic curve version ECDSA:

1. A trusted party chooses a finite field Fp, an elliptic curve E(Fp), and
a point G = (x , y) ǫ E(Fp) of large prime order q .

2. Arabella chooses a secret signing key s , 1 < s < q − 1. She computes
V = sG ǫ E(Fp) and publishes this as the verification key.

3. She then chooses a document d mod q , an ephemeral key e (mod q),
computes eG ǫ E(Fp) and

a) s1 ≡ xeG (mod q)

b) s2 ≡ (d + ss1)e
−1 (mod q)

4. She publishes the signature (s1, s2).

5. Beau computes

a) v1 ≡ ds−1
2 (mod q)

b) v2 ≡ s1s
−1
2 (mod q)

c) v1G + v2V ǫ E(Fp)

6. He finally verifies that x (v1G + v2V) ≡ s1 (mod q)

Let us verify the last step modulo q :

x (v1G + v2V)≡

x (ds−1
2 G + s1s

−1
2 sG) ≡

x (d + s1s)s
−1
2 G ≡

xes2s
−1
2 G ≡

xeG ≡ s1
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2.4 The Massey – Omura public key

cryptosystem

Arabella chooses as usual a prime p and makes it public. Then she chooses
a secret key eA such that 0 < eA < p − 1 and gcd(eA, p − 1) = 1 , thus
making sure that dA ≡ e−1

A (mod (p − 1)) exists. eA is Arabella’s encryption
key and dA is her decryption key.

She sends Beau the message m encrypted by c ≡ meA (mod (p − 1)).
Beau cannot do anything because he does not know dA but he chooses
himself his own encryption and decryption keys, eB and dB, eBdB≡ 1 (mod
(p − 1)), and sends back to Arabella the message meAeB which she then
transforms into

meAeBdA ≡ meB

which she sends back to Beau who finally can decrypt it by means of
his decryption key dB:

meBdB≡ m.

This cryptosystem relies again on the difficulty of the DLP. Even this
system has its obvious elliptic curve version. We have a publicly known el-
liptic curve E(Fp) , p being a presumably large prime and we have computed
# E(Fp) = N which, of course, is public knowledge.

Arabella chooses her secret keys, eA and dA, and Beau his, eB and dB,
all of these modulo N. Arabella wants to send Beau the message/point P,
so she encrypts c = eAP and sends this. Beau computes eBeAP and sends it
back to Arabella who returns to him dAeBeAP = eBP which he is now able
to decrypt by dBeBP ≡ P.

If Cupid can solve the ECDLP then he is in the game.

But, apart from this, the system involves a lot of “traffic” which can
jeopardize its security. Let us reconsider. Arabella sends Beau meA or eAP.
Cupid intercepts this message and returns himself meAeC or eCeAP to Ara-
bella, pretending to be Beau. She now sends back, to whoever intercepts,
meAeCdA = meC or dAeCeAP = eCP which Cupid can decrypt: meCdC≡ m or
dCeCP = P.

Obviously there is a serious flaw in the system which must be rectified
by some scheme of authentication or digital signature.
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2.5 Applications of the Weil pairing

Tripartite Diffie–Hellman key exchange

Arabella and Beau want to include even Daphne in their circle of secrets.
They agree all three on an elliptic curve E and a point P ǫ E(Fq)[l ] of
prime order provided there exists an l−distortion map for P. Let êl be the
associated modified Weil pairing. (See Appendix).

Each one of our heroes chooses a personal secret integer nA, nB, nD,
respectively, and computes:

• Arabella: QA= nAP

• Beau: QB= nBP

• Daphne: QD= nDP

and they all publish the respective values.

Arabella computes now êl (QB,QD)nA , where, as we know, QB and QD

are multiples of P. Arabella does not know which these multiples are but
bilinearity gives:

• Arabella: êl (QB,QD)nA= êl (nBP, nDP)nA = êl (P,P)nAnBnD .

• Beau: êl (QA,QD)nB= êl (nAP, nDP)nB = êl (P,P)nAnBnD .

• Daphne: êl (QA,QB)nD= êl (nAP, nBP)nA = êl (P,P)nAnBnD .

So they all share the same secret value êl (P,P)nAnBnD . If Cupid can solve
the ECDLP then he can break this tripartite Diffie − Hellman key exchange.
He will then be able to recover at least one of the integers nA, nB or nD

and that is enough. He can, of course, compute êl (P,P) and êl (QA,P) =
êl (nAP,P) = êl (P,P)nA , thus he could recover nA if he could solve the DLP

in Fq.

We draw the conclusion that tripartite Diffie − Hellman key exchange is
vulnerable to the classical DLP in a subgroup of F⋆

q of order l . According to
Hoffstein, Pipher & Silverman there are subexponential algorithms for that
so one should use larger fields for tripartite key exchange than for bipartite.
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Id – based public key cryptosystems

Suppose Arabella wants to use her e-mail address as her identity-based pub-
lic key. She needs of course some private key which she uses for decryption
and that key must also be used in an essential way in encryption. Assume
that there is some higher authority, say Zeus, who publishes a master public
key Zeus Pub and keeps secret a private key Zeus Priv. Beau will use Zeus Pub

and Arabella’s id−based public key ArabellaPub to send messages to her.
Zeus, the master of all, creates out of ArabellaPub and Zeus Priv a private
key ArabellaPriv for Arabella who then uses it to decrypt messages from
Beau. It goes without saying that the omnipotent and omniscient Zeus can
keep track of all the private keys he has created and assigned, otherwise
havock ensues. It is furthermore necessary and essential that not Cupid
nor any other party be able to recover Zeus Priv from any number of keys
that they are allotted by Zeus on request.

These ideas were initially described by Shamir in 1984 and such an
id−based system was created by Boneh and Franklin in 2001. The system
uses pairings on elliptic curves. I shall present the basic ingredients but
abstain from any computations.

• Zeus, the master authority, selects a finite field Fq, an elliptic curve
E and a point P ǫ E(Fq)[l ] of prime order such that there is an
l−distortion map for P with êl the associated modified Weil pairing.

• Zeus publishes to functions

H1 : {userIDs} −→ E(Fq)

H2 : F
⋆
q −→ M = {the set of plaintexts}

• Zeus creates his master key PZeus = sP ǫ E(Fq), where s is Zeus’ master
private key, an integer, and PZeus becomes his master public key.

• Beau wants to send Arabella a message M ǫ M using her id−based
public key ArabellaPub. He uses this public key and the hash function
H1 to compute PArabella = H1(ArabellaPub) ǫ E(Fq).

• Beau chooses a random number (ephemeral key) 0 6=r (mod (q − 1))
and computes C1 = rP and C2 = M xor H2(êl(P

Arabella, PZeus)r). The
ciphertext becomes C = (C1, C2).

• Arabella requests from Zeus her private key ArabellaPriv , associ-
ated to ArabellaPub, and receives from Him QArabella= sPArabella =
sH1(ArabellaPub) ǫ E(Fq).
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• Arabella decrypts the message from Beau in two stages. First she
computes:

êl(Q
Arabella, C1) = êl(sP

Arabella, rP) = êl(P
Arabella, P)rs =

êl(P
Arabella, sP)r = êl(P

Arabella, PZeus)r

which is the quantity that Beau used to create C2. Then she recovers
the plaintext by:

C2 xor H2(êl(Q
Arabella, C1)) =

(M xor H2(êl(P
Arabella, PZeus)r)) xor H2(êl(P

Arabella, PZeus)r) = M,

since M xor L xor L = M for any bit strings M and L.





3 Elliptic Curve Cryptanalysis

“ I sent a message to the fish.

I told them ’This is what I wish.’

The little fishes of the sea,

They sent an answer back to me.

The little fishes’ answer was

’ we cannot do it, Sir, because —— ’ “

(From Through the Looking−Glass, ch.1 Looking −Glass House,
by Lewis Carroll)

35
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3.1 The discrete logarithm problem

DLP

We shall consider the finite field Fp
∼= Zp and its multiplicative subgroup

generated by a primitive element g , thus F⋆
p= < g >= {1 , g , g ,2 .......,gp−2}.

Let h 6= 0 be an element of F⋆
p. The discrete logarithm problem (DLP)

is to find an exponent n ǫ N such that

gn ≡ h (mod p) (⋆)

The smallest such n is called the discrete logarithm of h to the base g

and we write

n = loggh

An older terminology was the index of h to the base g with notation
n = indgh but since our n closely resembles the logarithm of calculus one
can understand the change in terminology.

If n is a solution to (⋆) then so is n + k(p − 1) because

gn+k(p−1)= gn·(gp−1)
k ≡ h·1k = h,

since gp−1 ≡ 1 by Fermat’s Little Theorem.
I shall show that we have a group homomorphism

logg: F⋆
p −→ Zp−1

Suppose loggh = a and loggh = b . This means that ga ≡ h ≡ gb (mod
p), so ga−b ≡ 1 (mod p), but by Fermat’Little Theorem, we know that gp−1

≡ 1 (mod p) and p − 1 is the smallest integer with this property. Hence we
have that a − b = k(p − 1), k ≥1, or equivalently , a ≡ b mod (p − 1).

∵ logg is well-defined.
Suppose





logga = q ⇔ gq ≡ a

loggb = r ⇔ gr ≡ b

loggab = s ⇔ gs ≡ ab

We have:

gs ≡ ab ≡ gq · gr = gq+r
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This entails

q + r ≡ s mod (p − 1)

logga+ loggb ≡ loggab mod (p − 1)

Furthermore

logg1 ≡ 0 mod (p − 1) since gp−1 ≡ 1 mod p.

∵ logg is a group homomorphism

logga ≡ loggb mod (p − 1) means that a ≡ gn ≡ b mod p

∵logg is injective

|F⋆
p |= p − 1

∵logg is surjective

∵ logg is a group isomorphism.

All the usual logarithm laws are valid.We have already shown that:

logga+ loggb ≡ loggab mod (p − 1)

Now:

logga ≡ q (mod (p − 1))

m

gq ≡ a (mod p)

m

an ≡ (gq)n ≡ gnq (mod p).

The second law follows:

logga
n ≡ nq ≡ nlogga

Replace b by b−1 in the first law and then use the second law. We get
the third law:
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logg
a
b
= loggab

−1 ≡ logga−loggb mod (p − 1)

How difficult is the DLP? Let us determine log213 mod 23. We must
solve the congruence 2x ≡ 13 mod 23.We shall simply compute by hand !

22 ≡ 4, 23 ≡ 8, 24 ≡ 16, 25 ≡ 9, 26 ≡ 18, 27 ≡ 13.

The answer is: log213 ≡ 7 mod 23.

Let us now determine log627608 mod 941. We must solve the congruence
627x ≡ 608 mod 941.We shall definitely need a computer !

The answer will be: log627608 ≡ 18 mod 941.

It is clear that with increasing values we need more computations and
the question is what is the order of computation steps needed.

The task will be to compute gA (mod N) for some large integers A and
N. The brute force method would be to set

g1≡ g (mod N)

and then to compute





g2 ≡ gg1 (modN)

g3 ≡ gg2 (modN)
...

gA ≡ ggA−1 (modN)

For large A this is pure and simple nightmare! Let us look at an example.
Compute 3319 (mod 1000). Consider the binary expansion of 319:

319 = 1+2+ 22 + 23 + 24 + 25+28

Thus

3319 = 31+2+22+23+24+25+28= 3· 32·322 ·323·324 ·325 ·328 .

It is not very difficult to compute the sequence
3,32,32

2

,32
3

,32
4

,........................., where each number is the square of its

predecessor since
(
32

n)2
= 32

n·2 =32
n+1

. In our case we need 8 squarings

from 3 to 32
8

thus needing 8 multiplications, and then:
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3319 = 31+2+22+23+24+25+28= 3· 32·322 ·323 ·324 ·325 ·328

≡ 3 · 9 · 81 · 561 · 721 · 841 · 521 ≡ 467 (mod 1000).

This shows that we need 6 more multiplications, a total of 14 multipli-
cations. Since we compute mod 1000 we need only store the last 3 digits
of every computation, so the storage room is not alarming!

The Square − and −Multiply Algorithm :

Step 1. Compute the binary expansion of A:

A = A0 + A1 · 2+ A2 · 22+ ............ + Ar · 2r

Ai ǫ {0, 1}, i = 1, 2,.................,r, Ar = 1

Step 2. Compute g2
i
(mod N), 0 ≤ i ≤ r :





a0 ≡ g (modN)

a1 ≡ a20 ≡ g2 (modN)

a2 ≡ a21 ≡ g2
2

(modN)
...

...

ar ≡ a2r−1 ≡ g2
r

(modN)

We need r squarings.
Step 3. Compute gA (mod N):

gA =gA0+A1·2+A2·22+............+Ar·2r≡

gA0·(g2)A1 ·
(
g2

2

)A2

·...........·
(
g2

r)Ar≡

aA0

0 ·aA1

1 ·aA2

2 ·........... ·aAr
r (mod N).

All the ai have already been computed in Step 2 so multiply together
mod N all such aAi

i where Ai 6= 0. This requires at most r multiplications
giving a total of, at most, 2r multiplications.

2r ≤ A ⇒ log22
r ≤ log2A ⇒ r ≤ log2A (usual logarithms)

∵ 2r ≤ 2log2A
This shows that the computation steps are of the order O(log2A).
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ECDLP

Let us look at the discrete logarithm problem over the group E(Fp). We shall
try to solve the same problem as before only, this time , for elements/points
in the additive group/elliptic curve E(Fp). (See Appendix). In other words,
given an elliptic curve over the finite field Fp with points P and Q on E(Fp)
find an integer n ǫ N such that

nP = Q

and, in analogy with the DLP, we shall write n = logPQ for the solution.

Already here we run into difficulties because Q may not be a multiple
of P in which case logPQ is not defined. And yet, if we want to encrypt
messages we start with a public point P and a secret/private integer n and
compute Q= nP so logPQ will exist but its value will be secret, indeed logPQ
= n is our secret integer.

Secondly, if there exists a value n such that nP = Q, then there exist
many.

We know that there exists 0 6= s ǫ N such that sP =O since E(Fp) is
a finite group, so every element/point of E(Fp) has finite order. Therefore
the points 2P, 3P, and so on, cannot all be distinct.

∃k > j ǫ N such that kP = jP. Then we may take r = k − j and the
smallest such r is called the order of P in E(Fp).

The consequence of this is that logPQ ǫ Zr so we define a map

logP : E(Fp) −→Zr.

Suppose

logPQ1 ≡ l ⇔ Q1 = lP

logPQ2 ≡ m ⇔ Q2 = mP

logP(Q1 + Q2) ≡ n ⇔ Q1 + Q2 = nP

Then

Q1 + Q2 = lP+mP = (l +m)P = nP, thus n ≡ l +m (mod r)



42 CHAPTER 3. ELLIPTIC CURVE CRYPTANALYSIS

∵logP(Q1 + Q2) = logPQ1 + logPQ2

We know that logPO = r ≡ 0 (mod r)

∵logP is a group homomorphism.

Let P and Q ǫ E(Fp). Assume Q is a multiple of P and let n0 > 0 be a
solution to nP = Q. Let s > 0 be the smallest solution to sP = O.

Write n = ms + r , 0 ≤ r < s . We have that:

Q = nP =(ms+r)P = m(sP) + rP = mO + rP = O + rP = rP

So if n is a solution to our equation then so is r and the smallest such
r is n0. We conclude that every solution is of the type

n= ms + n0 .

We need an efficient algorithm to compute nP and, since addition in
E(Fp) is not entirely trivial, we would not want to compute 2P, 3P, ... and
so on.

Let us now compute nP mimicking the square-and-multiply algorithm.

The Double − and − Add Algorithm:

Step 1. We write n in binary form:

n = n0 + n1 · 2+ n2 · 22+ ........................ + nr · 2r,

niǫ {0, 1}, 0 ≤ i ≤ r , nr = 1.

Step 2. Set Q0 = P. Compute:

Q1 = 2Q0 = 2P

Q2 = 2Q1 = 22Q0 = 22P

Q3 = 2Q2 = 23Q0 =2
3P

...

...

Qr = 2Qr−1 = 2rQ0= 2rP
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The points Qi are 2−power multiples of P. We are going to need r

doublings to compute them.

Step 3. Compute:

nP =n0Q0 + n1Q1 + ......... + nrQr = n0P + n12P + ........ + nr2
rP .

This requires r additions at most. The total number of operations will
be, at most, 2r point operations in E(Fp).

As before we get 2r ≤ 2log2n, so the order of the computation steps
needed is O(log2n).

Example. Let the elliptic curve over the field F83 be given by y2 = x3+
23x + 13. P = (24, 14) is a point on this curve. We shall compute 19P.

19 = 1 + 2 + 24

So we shall need 4 doublings and 2 additions. Using Mathematica I get

P (24, 14)
2P (30, 8)
4P (24, 69)
8P (30, 75)
16P (24, 14)

I am not going to determine the whole addition table for E(F83) but
simply give the relevant results:

P+ 2P = 3P = (30,75)

(P+ 2P) +16P = (24,69)

Thus, 19P = (24,69).
Incidentally, we observe that 3P = 8P (and 16P = P) so we have that

5P = O. We can conclude that ord P = 5.

Consider the binary expansion

947= 1+ 2+ 24+ 25+ 27+ 28+ 29

We need 9 doublings + 6 additions = 15 point operations if we want to
use the algorithm.

But
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947= 1+ 2− 24− 26+ 210 too.

This is called a ternary expansion of n and , considering points on E(Fp),
we might write

947P= P+ 2P− 24P− 26P+ 210P .

Now we need 10 doublings + 4 additions = 14 point operations. Conse-
quently, using sums and differences of 2−powers might reduce the number
of operations that the algorithm requires.

Suppose n is a large number. In the “worst” of cases

n = 2k−11 + 2 + 22 + .......................... +2k−1 = 1·(2k−1)
2−1

So, in the “worst” of cases, computing nP will require, at most, k dou-
blings + k additions = 2k point operations if we use the binary expansion.
If we take a random number its binary expansion will have approximately
the same number of 1’s and 0’s so we shall be needing, for most n, ap-
proximately k doublings + 1

2
k additions = 3

2
k point operations, but we can

diminish this if we use the ternary expansion.

Theorem 2. Let n be a positive integer and let k = xlog ny + 1, which
means that 2k > n. Then we can write

n =u0 + u1·2 + u2·22 + u3·23 + uk·2k

with ui ǫ {−1, 0, 1}, 0 ≤i ≤ k , and at most 1
2
k of the ui nonzero.

Proof. We consider the binary expansion of n. From left to right we spot
out the first occurrence of two or more consecutive nonzero coefficients ni,
e.g.

nj = nj+1 = ..........................= ns+t−1 = 1, ns+t = 0, t ≥1.

Thus 2s+2s+1 + .................+ 2s+t−1 + 0 · 2s+t will appear in the binary
expansion of n.

2s+2s+1 + .................+ 2s+t−1 + 0 · 2s+t =

2s(1+ 2+ 22 + ....+ 2t−1) = 2s(2t−1),

so we can replace this sequence with −2s + 2s+t . We repeat the proce-
dure until we end up with a ternary expansion of n in which no consecutive
ui are zero.
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Whole blocks with 2 or more nonzero coefficients are replaced with only
2 terms. On average 2

3
of the terms will be zero and, since the ternary

expansion might go up to 2k we shall be needing k + 1 doublings + 1
3
k

additions = 4
3
k + 1 point operations.

3.2 A collision algorithm

DLP

Say again that we want to solve the discrete logarithm problem in G:

gx = h

Theorem 3. (Trivial Bound for DLP). Let G be a group and let g ǫ G be
an element of order N. Then the discrete logarithm problem can be solved
in O(N) steps, where each step consists of multiplication by g.

Proof. Make a list g , g2, g3, .............., gN−1. If a solution exists it will
appear in the list.

Remark . According to Hoffstein, Pipher & Silverman, if G = F⋆
p, then

computing gx (mod p) requires O((logp)k) computer operations, where k is
a constant depending on the computer and the algorithm used for modular
multiplication, so the total number of computer steps, or the running time,
will be O(N(logp)k) but logp is negligible, thus we may say that the running
time is O(N).

This was the brute force attack!

Theorem 4. (Shank’s Babystep −Giantstep Algorithm) Let G be a group
and let g ǫ G be an element of order N ≥ 2. The following algorithm solves
the DLP gx = h in O(logN

√
N) steps:

(1) Let n = 1+ x
√
Ny, so n > N.

(2) Create two lists:

L1 = {e, g, g2, .........., gn}

L2 = {h, hg−n , hg−2n , .............., hg−n2

}

(Multiplication by g = babystep ; multiplication by g−n = giantstep.)
(3) Find a match between the two lists, say gi = hg−jn. Then x = i + jn

is a solution for the DLP.
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Proof. In L2 we start with u = g−n and then multiply:

h, hu, hu2 , ................., hun .

We need 2n multiplications to create the two lists. If a match exists,
using standard sorting and searching algorithms, we can find it in a small
multiple of logn steps (all this according to Hoffstein, Pipher & Silverman)
thus Step (3) above will require O(logn) steps. Consequently the total
running time for the algorithm is O(n logn) because, for each element in L1,
you have to search L2. Since n ≈

√
N, n logn≈

√
Nlog

√
N = 1

2

√
NlogN, we

have that O(n logn) = O(
√
NlogN), as desired.

We still have to show, though, that L1 and L2 have a match.
Let x be the unknown solution to the DLP and write x = nq + r , 0 ≤ r

< n. We know furthermore that 1 ≤ x < N, thus q = x−r
n

< N
n

< n, since

n >
√
N.

gx = h becomes gr = hg−qn with 0 ≤ r < n and 0 ≤q < n. Thus gr ǫ
L1 and hg−qn ǫ L2. Therefore, the lists always have a match.

The algorithm above relies on a probabilistic collision theorem that we
formulate without proof.

Theorem 5. An urn contains N balls, of which n are red and the rest are
blue. You select randomly a ball from the urn, replace it in the urn, select
randomly a second ball, replace it in the urn, and so on. You do this until
you have looked at a total of m balls. The probability that you select at least
one red ball is

P(at least one red) = 1−(1− n

N
)m.

Proof. (See Theorem 4.38 in Hoffstein, Pipher & Siverman).

To connect this theorem to our algorithm we consider the union of the
two lists to be an urn containg N numbered blue balls. In the process of
constructing L1 we repaint n of the balls red and return them to the urn. L2
is constructed by drawing m balls from the urn, one at a time, noting their
number and colour, and then replacing them in the urn. The probability of
selecting at least one red ball is equal to the probability of a match between
the two lists.

There is a more general (and, possibly, more efficient) algorithm. (See
Proposition 4.44 in Hoffstein, Pipher & Siverman).

Assume that the DLP gx = b has a solution
(1) Choose random exponents y1, y2, .................., yn between 1 and N.
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(2) Create the list

L1 = {gy1 , gy2 , ..............., gyn}⊆
{
1, g, g2, ....................., gN−1

}
, ( gN = 1).

(3) Choose new random exponents z1, z2, ........................., zn between 1

and some “large enough” k .
(4) Create the list

L2 = {bgz1 , bgz2 , ..............., bgzn}⊆
{
1, g, g2, ....................., gN−1

}
.

The inclusion is justified since we have assumed that gx = b has a
solution. L2 is created by selecting n elements from the urn. It takes about
2n steps to construct the two lists. Each element in each list requires a
computation of some gi, 1 ≤ i < N.

This takes approximately 2log2i group multiplications using the square–
and–multiply algorithm. Thus far we need approximately 4n log2N multi-
plications for the two lists. We need other log2n steps to check whether an
element in L2 has a match in L1, thus n log2n comparisons altogether. The
grand total becomes 4n log2N + n log2n = n log2(nN

4 ) steps.
According to Hoffstein, Pipher & Silverman (Proposition 4.44) n ≈ 3

√
N

gives a 99.98% chance of a match, in which case the running time will be
approximately 13.5

√
Nlog2(1.3N).

ECDLP

Let us look at the case G = E(Fp).
We want to solve the equation

Q =nP.

Choose random integers j1, j2, ............., jr and k1, k2, ..............., kr
between 1 and p and make the lists

L1 = {j1P, j2P, .................., jrP}

L2 = {k1P+ Q, k2P+ Q, .................., krP+ Q}.

If you find a match (collision) you are done since

juP = kvP+ Q

gives
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Q =(ju−kv)P

and we have a solution n = ju−kv .
Mimicking the general case if r is somewhat larger than

√
p, say r ≈

3
√
p, then there is a very good chance of a collision. There are no general

algorithms known to solve the ECDLP in fewer than O(
√
p) steps according

to our usual source.

3.3 Pollard’s ρ algorithm

All these algorithms seem to require a lot of storage room for the two lists.
Pollard has constructed an algorithm where practically no storage is needed!

DLP

Suppose S is a finite set and f : S −→ S an efficient mixing map. We iterate
f and create a sequence of elements

x0 = x, x1 = f (x0) = f (x ), x2 = f (x1) = f 2(x0) = f 2(x), ......... ,
xi = f i(x ).

f creates a discrete dynamical system and the set
O+

f (x ) = {x0, x1, ...............} is the forward orbit of x under f .
Since S is a finite set some element of S will appear a second time in

O+
f (x ) and from that moment onward the system will enter a loop (of length

M).
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Set T = the largest integer such that xT−1 appears only once in O+
f (x )

and M = the smallest integer such that xT+M = xT.
Suppose | S |= N. Since xT+M = xT we shall obtain a collision in

O(
√
N) steps (see below). But it seems as though we must store the list

x0, x1, ..........., xT, xT+1, ............, xT+M.
Create another sequence {yi}i such that y0 = x0 and yi+1 =f 2(yi), i =

0, 1, 2, .........., that is, at each step we apply f once to generate xi and once
again to generate yi, hence yi = x2i.

How long do we have to go on before we find some i such that xi = x2i?
In general, of course, for j > i , xj = xi if and only if i ≥ T and j ≡ i (mod
M). This should be clear from the picture above: we must have passed the
point xT , so i ≥ T, and xj must have passed xi an integral number of times
around the loop, so j − i = kM, i.e. j ≡ i (mod M).

In consequence, since we want x2i = xi, this is possible if and only if the
index i ≥ T and 2i ≡ i (mod M) meaning that M | i , so we get the first
x2i = xi exactly when i is equal to the first multiple of M larger than T.
But one of the numbers T,T+1, .....,T+M−1 must be divisible by M, so
x2i = xi for some 1 ≤ i < T+M.

We state, without proof, the following:

Theorem 6. If the map f is sufficiently (!) random, then the expected
value of T+M is E(T+M) ≈1.2533

√
N, a small multiple of

√
N. Hence if N

is large we are likely to find a match in O(
√
N) steps, where “step” means

one evaluation of f .

Proof. For a sketch of the proof see Theorem 4.47 (b) in Hoffstein, Pipher
& Siverman.

Let us try now to use Pollard’s ρ method to solve the DLP gx = b in
F⋆
p, when g is a primitive root mod p. We want basically to find a collision

between gibj and gkbl for some known exponents i , j , k , l .
gibj ≡ gkbl ⇔ gi−k≡ bl−j (mod p) and taking roots in Fp will do the

trick. The problem is finding a function

f : Fp −→Fp

complicated enough to give a good mixing of the elements of Fp , yet
simple enough to handle.

Pollard suggests the function

f (x )





gx , 0 ≤ x < p
3

x 2 , p

3
≤ x < 2p

3

bx , 2p
3
≤ x < p
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x will have to be reduced mod p before evaluating f (x ).
We must mention that no one has proved that f above is sufficiently ran-

dom but experimentally it works fairly well according to Hoffstein, Pipher
& Silverman.

Suppose we start with x0 = 1. At each step we either

• multiply by g , or

• multiply by b , or

• square the previous value.

What we get at each step is xi =gαibβi . Starting, clearly with α0 = β0 =
0, we can compute the subsequent values at each step by

αi+1 =





αi + 1 , 0 ≤ x < p
3

2αi , p

3
≤ x < 2p

3

αi , 2p
3
≤ x < p

and

βi+1=





βi , 0 ≤ x < p
3

2βi , p

3
≤ x < 2p

3

βi + 1 , 2p
3
≤ x < p

and we reduce their values mod p since gp−1 ≡ 1 ≡ bp−1 (Fermat’s Little
Theorem). Otherwise the values of αi and βi would become astronomical!

We compute in a similar fasion the other sequence given by y0 = 1

and yi+1= f 2(yi), thus yi =x2i = gγibδi , where the exponents γi and δi are
computed by two iterations of the same recursion as for αi and βi.

Nota bene: the first time we use yi and the second time we use f (yi) in
order to decide which case to apply.

This way we shall eventually find a collision between the two sequences,
say yi = x2i, meaning that we shall have found gαibβi = gγibδi , so letting
u ≡ αi−γi and v ≡ δi−βi (mod (p − 1)) we have gu ≡ bv in Fp which is
equivalent to u ≡ v loggb (mod (p − 1)).

If gcd(v , p − 1) = 1, then loggb ≡ v−1u (mod (p − 1)) and we have
solved the DLP. If gcd(v , p − 1) = d ≥ 2, then we use the Euclidean
algorithm to find an integer s such that sv ≡ d (mod (p − 1)) which then
leads to

sv loggb ≡ su (mod (p − 1))
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d loggb ≡ w (mod (p − 1))

We know that d |p − 1, thus d |w and so, finally, loggb ≡ wd−1 is one
solution. We get several, in fact

loggb ǫ {wd−1 + k(p−1)d−1 : k = 0, 1, 2, ...., d − 1}

ECDLP

The algorithms presented above can all be adapted to solve the ECDLP

nP =Q.
We shall try to find a collision of points. Mimicking the standard version

we want to find a collision between iP + jQ and kP + lQ for some known
integers i , j , k , l .

iP + jQ =kP + lQ

(i − k)P= (l − j )Q

We need a mixing function F : E(Fp) −→ E(Fp). Comparing with the
standard case we realize that the mixing occurs between the three classes
of a partition. Partition E(Fp) into the sets S1, S2 and S3 of approximately
the same size and with the proviso O /∈ S2. Define F by

F (R) =





R+ Q ,RǫS1

2R ,RǫS2

R+ Q ,RǫS3

Suppose we start with R0 = O . At each step we either

• add Q , or

• add P , or

• double the previous value.

What we get at each step is Ri =αiP+ βiQ. Starting, clearly with α0 =
β0 = 0, we can compute the subsequent values at each step by

αi+1 =





αi + 1 ,RǫS1

2αi ,RǫS2

αi ,RǫS3
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and

βi+1=





βi ,RǫS1

2βi ,RǫS2

βi + 1 ,RǫS3

We shall create, of course even here, two lists: {Ri} and {R2i}. For all
i we shall have logPR = logP(αiP) + logP(βiQ) = αi + βilogPQ = αi + nβi

for the sequence {Ri} whereas for the sequence {R2i} we get logPR = α2i +
nβ2i which entails that

α2i + nβ2i = αi + nβi

and the result is:

n = αi−α2i

β2i−βi
.

We have solved the ECDLP.

3.4 The Pohlig – Silver – Hellman algorithm

DLP

We shall present another algorithm for the DLP gx ≡ h (mod p).
x = loggh and as such it is determined modulo p − 1. If the order of g is

N then the solutions to gx = h in G are determined modulo N so the prime
factorization of N must be relevant.

Theorem 7. (Pohlig −Silver − Hellman) Let gǫ G be an element of order
N and suppose N factors into

N = qe11 qe22 .....................qett ,

qi being distinct primes.
Then the DLP gx ≡ h (mod p) can be solved in the following way:
Step 1. For each 1 ≤ i ≤ t let gi= gN/qei

i and hi = hN/qei
i . (Notice that

gi has order = qeii , prime power.)
Solve the DLP gyi ≡ hi and let y= yi be a solution.
Step2. Use the Chinese Remainder Theorem to solve
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



x ≡ y1 (modqe11 )

x ≡ y2 (modqe22 )
...

x ≡ yt (modqett )

The solution to this system of congruences is the solution to our DLP

gx ≡ h (mod p).

Proof. Let x be a solution to the system of congruences above. Then for
each i we have

x = yi + qeii ·zi , for some zi, so

(gx)
N/qei

i = g(yi+q
ei
i
·zi)

N/q
ei
i = g (

N/qei
i
)yi ·gNzi = gyii = hi = h

N/qei
i , (gN =1).

This means, in terms of the discrete logarithm to the base g , that

(⋆) N

q
ei
i

x ≡ N

q
ei
i

loggh (mod N).

Observe now that N

q
e1
1

, N

q
e2
2i

, ..............., N

q
et
t

have no nontrivial common

factors so their greatest common divisor is 1. By repeated application of
the Euclidean algorithm we get

(†) c1 N

q
e1
1

+ c2
N

q
e2
2i

+ ............... +ct
N

q
et
t

= 1.

Multiply (⋆) by ci and sum over i =1, 2, ........, t, in order to get

Σt
i=1ci

N

q
ei
i

x = Σt
i=1ci

N

q
ei
i

loggh (mod N).

By (†) we have x = loggh, thus x is a solution to gx ≡ h (mod p).

The lesson to draw is that the Pohlig − Silver − Hellman Algorithm
reduces the DLP for elements of arbitrary order to the DLP for elements
of prime power order and this means that the DLP in the group G is as
hard as the DLP in the subgroup of G with highest prime power order !
Furthermore, this can be refined to reduce the whole problem to the DLP

for elements of prime order.

Theorem 8. Let G be a group. Suppose q is a prime and let gǫ G be an
element of order qe, e ≥1. Then we can reduce the DLP gx≡ h in G for an
element of prime power order to a DLP for an element of prime order.
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Proof. Write the unknown exponent x as

x = x0 + x1q + x2q
2 + ............................ + xe−1q

e−1 , 0 ≤ xi < q

and, then, determine successively x0, x1, x2, .... like this:

hqe−1 ≡ (gx)q
e−1

= g(x0+x1 q+x2
2 +............................+xe−1 q

e−1)
qe−1

=

gx0qe−1 ·
(
gq

e)(x1+x2q+............................+xe−1qe−2) ≡
(
gq

e−1

)x0

Since gq
e
=1, the equation

(
gq

e−1

)x0

≡ hqe−1

which we must solve is a

DLP whose base gq
e−1

is an element of prime order q . After determining x0

we start afresh:

hqe−2 ≡ (gx)q
e−2

= g(x0+x1 q+x2
2 +............................+xe−1 q

e−1)
qe−2

=

gx0qe−2 ·gx1qe−1 ·
(
gq

e)(x2+x3q+............................+xe−1qe−3) ≡
(
gq

e−2

)x0

·
(
gq

e−1

)x1

.

At this level we must solve the DLP
(
gq

e−1

)x1

≡ (hg−x0)
qe−2

for x1 , with base gq
e−1

, an element of prime order q .
At the following level we have the DLP

(
gq

e−1

)x2

≡ (hg−x0−x1q)
qe−3

for x2 , with base gq
e−1

, an element of prime order q .
In general form we must solve the DLP

(
gq

e−1

)xi
(
gq

e−1

)x2

≡
(
hg−x0−x1q−.........−xi−1q

i−1

)qe−i+1

for xi , with base gq
e−1

, an element of prime order q .
Finally, after solving a number of DLP′s whose bases are elements of

prime order, we get the exponent

x = x0 + x1q + x2q
2 + ............................ + xe−1q

e−1 , 0 ≤ xi < q

which solves the original DLP.
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ECDLP

The Pohlig − Silver − Hellman Algorithm can be adapted for solving
ECDLP, i. e. nP = Q. Assume that ord P = m = Πt

i=1q
ei
i , qi distinct

primes.

Step 1. Let ti= m/qeii . Set Q′ = tiQ. We have

Q′ = tiQ = ti(nP) = n (tiP) = nP′.

(These equalities make it clear that both Q′ and P′ belong to a subgroup
of the group generated by P of order qeii , a prime order.) Now all we have
to do is to solve, for all i , the equations

Q′ = n P′ (mod qeii )

Step 2. Use the Chinese Remainder Theorem to recover n (mod m).
A further refinement now would be to reduce the problem to solving

equations modulo a prime.
Assume that ord P = qe, q a prime, i.e. qeP = O. Expand n as

n = n0 + n1q + n2q
2 + ............. + ne−1q

e−1

qe−1Q = qe−1(nP) =

qe−1(n0 + n1q + n2q
2 + ............. + ne−1q

e−1)P =

qe−1
0 n0P + ( n1 + n2q + ............. + ne−1q

e−2)qeP =

qe−1
0 n0P + O =

n0 (qe−1
0 P)

We must thus solve the equation

n0 (qe−1
0 P) = qe−1Q

whose base, qe−1
0 P, is an element of order q , a prime, as desired.

The rest follows as before and in the end we reassemble

n = n0 + n1q + n2q
2 + ............. + ne−1q

e−1,

the solution to the initial problem. Divide et impera !
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3.5 The MOV algorithm

(In what follows consult the Appendix for the definition of the relevant
concepts.)

Definition.

Let E be an elliptic curve over Fp and let m ≥ 1 with p ∤ m. (In cryptography
one usually chooses m to be a large prime.) The embedding degree of E with
respect to m is the smallest value of k such that

E(Fpk)[m] ∼= Z/mZ × Z/mZ.

We state without proof:

Theorem 9. Let E be an elliptic curve over Fp and let l 6= p be a prime.
Assume that E(Fp) contains a point of order l . Then the embedding degree
of E with respect to l is

• 1, not possible if l >
√
p + 1

• l , if p ≡ 1 (mod l)

• the smallest k ≥ 2 such that pk ≡1 (mod l), if q(p ≡ 1) (mod l).
(This is the case that most often happens in practice!)

Proof. For the proof of (iii) Hoffstein, Pipher & Silverman refer to L.C.
Washington, Elliptic Curves: Number Theory and Cryptography, 2003.

MOV

The MOV Algorithm (Menezes, Okamoto, V anstone) goes like this:

1. Compute N = #E(Fpk) which is feasible if k is not too large. Nota

bene: l | N because E(Fp) has a point of order l by assumption.

2. Choose a random point T ǫ E(Fpk) such that T /∈E(Fp).

3. Compute T′=(N/l)T. If T′= O discard it and go back to Step 2. If
not, ord T′ = l , so go to Step 4.

4. Compute
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α = el(P,T
′)ǫF⋆

pk
and β = el(Q,T

′)ǫF⋆
pk

5. Solve the DLP αn = β for n with α and β in F⋆
pk

.

6. Then it holds too that nP= Q which is the ECDLP in E(Fp).

Remark 1 . The point T′ is generally independent of P so {P,T′} forms
a basis for the 2−dimensional vector space E[l] ∼= Z/lZ × Z/lZ. Therefore
el(P,T

′) is a nontrivial lth root of unity in F⋆
pk

by the nondegeneracy of the

Weil pairing, i.e. el(P,T
′)r ≡ 1 if and only if l | r . Suppose Q = jP. We

want to determine j modulo l . The MOV algorithm finds an integer n such
that el(Q,T

′) = el(P,T
′)n . By linearity we have

el(P,T
′)n = el(Q,T

′) = el(jP,T
′) = el(P,T

′)j

so n ≡ j (mod l), which means that n solves the ECDLP for P and Q.

Remark 2 . What if k is large, say k > (lnp)2. Then the algorithm should
solve a DLP in Fpk with k > 4000 if we take p ≈ 2160. A random elliptic curve

over Fp almost always has embedding degree much larger than (lnp)2and so
the MOV algorithm would not do. Yet it shows that it can break elliptic
curve cryptography for a certain class of curves whose embedding degree is
small. These are the curves satisfying #E(Fp) = p + 1, the supersingular

curves, usually curves of the form y2 = x3+ax in char (Fp) = p ≡ −1 (mod
4) or y2 = x3 + b in char (Fp) = p ≡ −1 (mod 3). They have quite often
embedding degree k = 2 or, in any case, k ≤ 6. (See Koblitz, A Course in
Number Theory and Cryptography, VI.2)

Then there are even the anomalous curves for which #E(Fp) = p. What
can we do about these curves? Well, we can avoid them!

3.6 Lenstra’s algorithm

Shortly after the publication of Diffie and Hellman’s seminal paper in 1976
Rivest, Shamir and Adleman published their paper “ A method for obtaining
digital signatures and public-key cryptosystems” in Comm. ACM , 21(2).
This resulted in the first public key cryptosystem built upon the group ZN,
N = pq , p and q distinct primes. It relies on the notorious difficulty of
prime factorization and it is called RSA. The system is presented e.g. in
Hoffman, Pipher & Silverman and I am not going to discuss it since it is
not related or relatable in any way to elliptic curve cryptography. Yet one
can use elliptic curve cryptanalysis against it.
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Pollard divised his p − 1 method for prime factorization and Lenstra
mimicked that method to construct a prime factorization algorithm using
the addition law for E(Fp) instead of the multiplication law modulo N.

(See Lenstra, Factoring integers with elliptic curves,
in Annals of Mathematics (2), 126 (3), pp 649-673, 1987).
We start with an equation

E : y2 = x3 + ax+ b

Suppose P= (u, v) is a point on E (mod N) . This entails that v2 ≡
u3 + au+ b (mod N).

Then we compute 2P, 3P, ................
Nota bene. During our computations we might need the reciprocal of

non-units. ZN is not a field !
Mimicking Pollard’s p − 1 method Lenstra replaces multiplication mod-

ulo N with addition modulo N and computes

2!P, 3!P, ............ (mod N)

If we have already computed Q = (n − 1)!P then it is easy to compute
n!P = nQ. (The algorithm uses factorials since N is supposedly large so
this can speed up things a bit.)

What can happen?

• we are able to compute n!P and after a preset number of iterations
we get nothing and start again.

• during the computation we may need the reciprocal of a number d =
kN which is not good at all but not very likely to happen since we
would be working modulo N all along. In any case we start again.

• we may need the reciprocal of a number d such that 1 < gcd(d , N)
< N. We fail again to compute n!P but gcd(d , N) = d > 1 would
then be a non-trivial factor so we are done ! Lesson: failure may be
benefficient.

Algorithm

Input. Integer N to be factored.

1. Choose random values a, u and v modulo N.
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2. Set P = (u, v) and b ≡ v2−u3−a · u modulo N. (This solves the
problem of finding a point on the elliptic curve; we start with a point
and find a curve that will do instead !) Let E be the elliptic curve
y2= x3 + ax+ b.

3. Loop j = 2, 3, 4, ..... up to a specified bound.

4. Compute Q ≡ jP (mod N) and set P = Q.

5. If the computation in Step 4 fails, then we have found a d > 1 such
that d |N.

6. If d < N then success, return d .

7. If d = N, go to Step 1 and choose a new point and a new curve.

8. Increment j and loop again at Step 2.

Remark . There exist very powerful sieve factorization methods: the
average running time of the quadratic sieve to factor a composite number

N is approximately O(e
√

logN·log(logN)) steps thus depending on the integer
N.

Using the elliptic curve factorization algorithm the running time will

depend on the smallest factor of N, say p, viz. O(e
√

2logp·log(logp)) steps. But
a sieve method step is much faster than an elliptic curve step!

If N = pq and p ≈ q the running times of these two methods are ap-
proximately the same. Nonetheless, the elliptic curve method should not
be dismissed since it can find moderately large factors of extremely large
numbers in possibly shorter time since its running time depends on p < N

and not on N. (For all this see Hoffstein, Pipher & Silverman)





4 Appendix: Elliptic Curves

“ O mathématiques sévères, je ne vous ai pas oubliées, depuis que vos sa-
vantes leçons, plus douces que le miel, filtrèrent dans mon coeur, comme
une onde rafraîchissante.

[ ............................................................................................................ ]
Arithmétique! algèbre! géométri! trinité grandiose! triangle lumineux!
Celui qui ne vous a pas connues est un insensé! “

( Le Comte de Lautréamont, Les Chants de Maldoror , Chant II )

61
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4.1 Elliptic curves over R

Consider the equation :

y2+a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This is called a Weierstraβ equation. For (x , y) ǫ R2 the set of solutions
to this equation will determine a geometric locus which we shall call a cubic

curve. The presence of the mixed term a1xy suggests that some substitution
might rotate the axes and thus eliminate it. In fact, over any field k such
that char(k) 6= 2 the substitution

y = 1
2
(y ′ − a1x

′ − a3)

will do the trick.

1
4
(y − a1x − a3)

2+1
2

(a1x+ a3)(y − a1x − a3) =

(1
4
y−1

4
a1x−1

4
a3+

1
2
a1x+

1
2
a3)(y − a1x − a3) =

(1
4
y+1

4
a1x+

1
4
a3)(y − a1x − a3) =

1
4
(y+(a1x+ a3))(y−(a1x + a3)) =

1
4
(y2−(a1x + a3)

2) =

1
4
(y2 −a2

1x
2−2a1a2x−a2

3 ) =

1
4
y2−1

4
a21x

2−1
2
a1a3x−1

4
a23.

So we have :

1
4
y2−1

4
a21x

2−1
2
a1a3x−1

4
a23 = x3 + a2x

2 + a4x+ a6

which is equivalent to

y2 = 4x3+ 4a2x
2+a21x

2+4a4x+2a1a3x+a23+4a6

thus obtaining

y2= 4x3+(a21+4a2)x
2+2(a1a3+2a4)x+(a23+4a6).

Setting
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



b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

we can write

y2 = 4x3+ b2x
2+2b4x+b6.

Scaling y by means of y = 2y ′ and renaming coefficients we get in the
end

y2 = x3+ b2x
2+2b4x+b6

as the general Weierstraβ equation, or , equivalently,

y2 = f(x),

where, naturally, f (x ) = x3 + b2x
2 + 2b4x + b6. (It should, by the way,

be obvious that these curves are symmetric about the x−axis, intersecting
it at the zeros of f (x ).)

Studying a little more closely f (x ) with the methods of elementary cal-
culus, if k = R, we realize that we have the following types of cubics:

y2 = x 2(x − α) (α> 0) (an isolated point at x =0)
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y2 = x 2(x − α) (α< 0) (a node at x =0)

y2 = x 3 (a cusp at x =0)

The origin is a singularity in all of the above cases.

y2 = (x − α)(x 2 + px + q) (α unique real root over R)



66 CHAPTER 4. APPENDIX: ELLIPTIC CURVES

y2 = (x − α)(x − β)(x−γ) (three distinct real roots)

We can do even more if char(k) 6= 2 or 3. Make the substitutions

{
x =(x ′−3b2)/36

y = y ′/108

(Nota bene. 108 =22·32 2,3≡ 0 and 36 = 22·32 2,3≡ 0).
We get:

y2

1082
= 4

(
x−3b2
36

)3
+b2

(
x−3b2
36

)2
+ 2b4

x−3b2
36

+ b6

y2 = 1082·4
363

(x3−9b2x
2+27b22x−27b32) + 1082·b2

362
(x2−6b2x+ 9b22) +

1082·2b4
36

(x − 3b2) + 1082b6

y2 =
x3−9b2x

2+27b22x−27b32+9b2x
2−54b22x+81b32+648b4x−1944b2b4+11664b6

y2 = x3−27(b22−24b4)x−54(−b32+36b2b4−216b6)

Setting

{
c4 = b22−24b4

c6 = −b32 + 36b2b4−216b6

we can write

y2 = x3−27c4x−54c6,
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or, with an obvious change of notation,

y2 = x3 + ax+ b.

This is the simplest, yet quite general, Weierstraβ equation giving the
whole family of curves just as the initial equation did, as long as char(k) 6=
2 or 3.

Since we shall work first over R, and char(R) = 0, everything is fine for
now.

Furthermore we shall define the discriminant function

∆ =−16(4a3+27b2).

(This definition is highly arbitrary and hardly illuminating at this point
but we shall leave it at that.)

If we start with a cubic and write the equation as F(x , y) = 0 we know
from the implicit function theorem that the curve in question will lack a
tangent at points where ∇F = 0. Such points are called singular ; the rest
of them are regular . In other words, we can always find the set of singular
points on a cubic by solving the system

{
F(x , y) = 0

∇F(x , y) = 0

Let us now concentrate on the curves

y2 = x3 + ax+ b

Writing

F(x , y) = y2−x3−ax−b

we get

∇F(x , y) = (−3x2−a, 2y),

so ∇F(x , y) = 0 if and only if

{
3x2 + a = f

′

(x ) = 0

2y = 0 ⇐⇒ y = 0

Consequently, the singular points (α, 0) must satisfy the system
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{
f (α) = 0

f
′

(α) = 0

and this would mean that x = α is a double root of the polynomial
function f (x ) = x3 + ax+ b.

Therefore the following must hold:

x3 + ax+ b = (x − α)2 (x − β) = ................... =

x3−(2α+β)x2 + (α2+2αβ)x −α2β,

which is possible if and only if





2α + β = 0 ⇐⇒ β = −2α

α2 + 2αβ = a

−α2β = b

But the system

{
α2 + 2αβ = a

β = −2α

entails

a = −3α2

while the system

{
−α2β = b

β = −2α

entails

b = 2α3.

Using the above values for a and b the discriminant becomes
∆ =−16(4a3+27b2) = −16[4(−3α2)3 + 27(2α3)2] = −16[−4 · 27α6+

4 · 27α6] = 0.
So if the curve y2 = x3 + ax + b is singular then the polynomial

f (x) =x3 + ax + b
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has a double root and we have just shown that this entails that ∆ = 0.
But, in fact, we might use a result in polynomial algebra which states

generally that two polynomials

f = amx
m+ am−1x

m−1+ .............. a1x + a0 , am 6= 0

and

g = bnx
n + bn−1x

n−1 + ................ + b1x + b0 , bn 6= 0

have a non-constant common factor if and only if their resultant

R(f , g) = 0.

The resultant is defined as the determinant of the matrix




am bn
am−1 am bn−1 bn

am−2 am−1
. . . bn−2 bn−1

. . .
...

. . . am
...

. . . bn

am−1
... bn−1

a0
... b0

a0
... b0

...
. . . . . .

a0 b0




.

(n columns + m columns)
In our case we have

R(f ,f ′) = det




1 3

0 1 0 3

a 0 a 0 3

b a a 0

b a




= 4a3 + 27b2.

We realize that ∆ = −16R(f ,f ′) and, consequently, ∆= 0 if and only
if R(f ,f ′) = 0 which is possible if and only if f and f ′ have a common
non-constant factor. In our case this means that f has a repeated root.
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Definition

An elliptic curve is the set of solutions to a Weierstraβ equation

E : y2= x3 + ax+ b,

together with an extra point O, and such that ∆ =−16(4a3+27b2) 6=0.

Remark : ∆ = 0 ⇐⇒ 4a3+27b2. We shall not discuss the factor −16.
Question: What is this extra point O ? Going back to our last two ex-

amples, which are the only elliptic curves among all the five curves depicted
there, we realize intuitively that any straight line L intersecting the elliptic
curve E in points P and Q must intersect E in a third point R, at least for
most pairs P and Q.

• What if P = Q ? Then L is tangent to E at P and, if L is not vertical,
it will meet E in another point which we shall consider the third point
and say that P is a double point

• What if P = (a, b) and Q = (a,−b)? Then L will be a vertical line.
This can be the case even if P = Q. Let the third point be O. We
shall call it the point at infinity .

All this was a preparation for defining an operation ⊕ on the set of points
of E, called addition, as follows:

Let P and Q be two points on E, not necessarily distinct. Let L be
the line through P and Q if P 6=Q ,or tangent to E at P, if P =Q . Then
L ∩ E consists of three points counting multiplicities, say L ∩ E = {P,Q,R}.
Writing R = (a, b) define the point ⊖R = (a,−b), the reflection of R across
the x -axis. Surely ⊖R ǫ E. Define P⊕ Q = ⊖R.

Theorem 10. Let E be an elliptic curve (over R). Then the addition law
described above has the following properties:

(a) (closure)

∀ P,Q ǫ E P ⊕ Q ǫ E

(b) (additive identity)

∃O ǫ E ∀P ǫ E P ⊕ O = O ⊕ P = P

(c) (additive inverse)

∀P ǫ E ∃ ⊖P ǫ E P ⊕ (⊖P) = (⊖P) ⊕ P = O
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(d) (commutativity)

∀ P,Q ǫ E P ⊕ Q = Q ⊕ P

(e) (associativity)

∀ P,Q,R ǫ E (P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R)

After the proof of this theorem we shall be able to assert safely that

< E(R), ⊕ > is an abelian additive group.

Proof. Let P = (x1, y1) and Q = (x2, y2) in what follows, assuming P 6= O,
Q 6= O. The case P = O or Q = O will be covered by (b) below.

(a) (closure)

If x1= x2 and y1 = −y2, then P⊕ Q = O ǫ E, by definition of ⊕.
Otherwise, define

k=

{
y2−y1
x2−x1

,P 6= Q
3x2

1
+a

2y1
,P = Q

and let
{
x3 = k2−x1 − x2

y3 = k(x1−x3)−y1

Nota bene:

• The coordinates x3 and y3 are rational functions of the coordinates of
P and Q .

• If Q = ⊖P, i.e. Q = (x , −y) then k = ∞ and L is vertical just as
expected. This is the case even if Q = ⊖P = P ( = (x , 0)).

We claim that P⊕ Q = (x3, y3).
Set the equation of L as y = kx+m and substitute this in the equation

determining E. We get:

(kx+m)2 = x3 + ax+ b.

This becomes, after expanding,

x3−k2x2+(a−2km)x+ (b−k2) = 0.
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But this cubic has, as two of its roots, x1 and x2, and we shall call the
third x3.

Thus

x3−k2x2+(a−2km)x+ (b−k2) = (x − x1)(x − x2)(x − x3) =

x3−(x1 + x2 + x3)x
2 + x1x2x+ (x1x3+x2x3−x1x2x3),

which is possible only if

k2 = x1+x2+x3

meaning that

x3= k2−x1 − x2

and, finally, we obtain :

−y3 = kx3 +m = kx3+(y1−kx1) = k(x3−x1) + y1

so

y3 = k(x1−x3)−y1

as desired.
We can be sure that P⊕ Q = (x3, y3) ǫ E.

Remark . We have actually given in this proof an algorithm for addition
and after proving the whole theorem we shall write + instead of ⊕ and −
instead of ⊖.

(b) (additive identity)

This is clear since O lies on every vertical line intersecting E. (I should
like to mention here that we could have chosen O as an arbitrary point on
E taking then reflections through O).

(c) (additive inverse)

Set ⊖P = (x1, −y1), the reflection of P, and we are done.

(d) (commutatitvity)

This is easy. The line through P and Q is identical with the line through
Q and P so the third intersection point R is the same.

(e) (associativity)

Associativity is hardest to prove. An elegant proof of this should defi-
nitely be geometrical but it is far from trivial. One could try an algebraic
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proof using the addition algorithm described in (a) above in some package
as Mathematica, for instance. It is pure and simple horror !

I shall nonetheless try a proof sketch following Husemöller, 2000. Con-
sider the following figure where we denote by PQ the third intersection point
on the chord through P and Q , and likewise for the other pairs of points
and have actually chosen O to be some visible point on E :

We have nine points: O, P, Q, R, PQ, P+ Q, QR, Q+ R and, finally, the
intersection T of the line joining P to Q+ R with the line joining R to P+ Q.
The union of the three dotted lines and the union of the three solid lines are
degenerate cubics each. By construction they pass through our nine points.
On the other hand our curve E passes through the first eight points. A
theorem of elementary algebraic geometry guarantees that it passes through
the ninth as well, i.e. through T in our case. (See Ekedahl, 2003, or
Fulton, 1989). But then (P+ Q)R = P(Q+ R) so we have (P+ Q) + R =
P+ (Q+ R), as desired.

We have only considered the case of three distinct points. The case
P = Q could be treated as a limiting position in our figure. We shall not
look into it.

4.2 Elliptic curves over finite fields

If we want to use elliptic curves in cryptography then we have to identify
messages with points on elliptic curves. A message is a finite object so we
shall only need finitely many points. Intuitively it is quite reasonable to
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content ourselves with finite fields so now we shall switch from R to Fp, p
being a prime, of course.

Considering the fact that the number of points on E(F2) can at most
be 5, namely (0,0), (0,1), (1,0), (1,1) and O, it is obvious that we cannot
do much cryptography with this; too few points, too few messages, if any!
Analogously, p = 3 will not bring us salvation.

There is no reason to consider these cases yet, so we shall concentrate
at present on Fp, p > 3, and, consequently, consider only the Weierstraβ
equation

y2 = x3 + ax+ b.

Everything that we have said about elliptic curves over R carries over
to curves over Fp, p > 3.

Definition.

An elliptic curve over Fp, p > 3, is the geometric locus determined by the
Weierstraβ equation y2 = x3 + ax + b with coefficients a, b ǫ Fp such that
∆ = −16(4a3+27b2) 6= 0 plus the point at infinity , O.

We shall denote this locus

E(Fp) = {(x, y) : x, yǫFp ∧ y2 = x3 + ax+ b} ∪{O}.

We have been considering up to now the Weierstraβ equation y2 =
x3+ax+b which we obtained from the initial equation by a first substitution
y = 1

2
(y ′ − a1x

′ − a3).
One can show that the substitutions that we have used are special cases

of the pair of substitutions

{
x = u2x′ + r

y =u3y′ + su2x ′ + t

where r , s , t , u ǫ k.
Indeed, we can even envisage the situation where r , s , t belong to some

(commutative) ring R (with unity) and u is a unit in R. (See Ekedahl or
Silverman). These transformations form a group under composition and
the orbits under this group are the equivalence classes of the curves.

Recalling the coefficients bi defined before we can add a new one to the
list, viz.
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b8 = a21a6−a1a3a4+4a2a6+a2a
2
3−a24

and define the discriminant as

∆= −b2
2b8−8b34−27b26+9b2b4b6 .

If char(k) 6=2,3 then, considering the class y2 = x3 + ax+ b , we have
a1= a2 = a3 = 0 , hence b2 = 0, b4= 2a4= 2a and b6 = 4a6 = 4b, so

∆ = −8b34 −27b26 = −8·(2a4) 3−27·(4a6)2 = −16(4a3 + 27b2)

which is the discriminant we defined initially.
If char(k) = 2 then an elliptic curve is the set of solutions to one of the

following two equations:

y2 + cy = x3 + ax+ b or y2 + xy = x3 + ax2 + b .

(See Koblitz, 1998, A Course in Number Theory and Cryptography, pg
168)

We shall not pursue this further but instead shall reconsider the most
general Weierstraβ equation:

y2+a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let us assure ourselves that we can define addition just as before.

Theorem 11. Theorem 10 holds for E(Fp).

Proof. Set P = (x , y) and −P = (x , y ′). If y ′ = y then P = −P and P−P =
O, so assume that y ′ 6=y . Since P, −P ǫ E the following must hold:

y′2 + a1xy
′ + a3y

′ = x3+a2x
2+ a4x + a6 = y2 + a1xy + a3y.

Hence:

(y′ + y + a1x+ a3)(y
′ − y) = 0

and therefore

y′ = −y−a1x−a3.

We have just shown that in the general case the reflection rule should
be (x , y) 7−→(x ,−y−a1x −a3)

and, therefore, −P = (x ,−y−a1x −a3).
Let P = (x1, y1) and Q = (x2, y2) be points on E. Let L be the line

through these point. The equation for L can, of course, be written as
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y = kx +m

and we get:

(kx+m)2+ a1x(kx+m)+ a3(kx+m) =

x3+a2x
2+ a4x + a6

Expanding and simplifying we get

x3+ (a2−a1k−k2)x2 + (a4 + a3k + a1m+ 2km)x + (a6 + a3m+m2) = 0.

This, of course, is a monic cubic equation in x , and, as such, can be
factorized in the form (x − x1)(x − x2)(x − x3) = 0. Setting the two expres-
sions equal we have

x3+ (a2−a1k−k2)x2 + (a4 + a3k + a1m+ 2km)x + (a6 + a3m+m2) =

x3−(x1+ x2 + x3)x
2 + x1x2x + (x1x3+ x2x3 −x1x2x3) (†)

with x3 and y′3 are the coordinates of R , the third point of intersection
of L with E. This is possible only if

x3 =k2+ a1k −a2−x1−x2.

As for y3 , we know that y3 = −y′3−a1x3−a3 , but y′3 = kx3 +m , and
so we get:

y3 = −(k + a1)x3−m− a3 .

Of course we must define k .
If x1 6= x2 we define

{
k = y2−y1

x2−x1

m = y1−kx = (y1x2−y2x1)/(x2−x1)

If x1 = x2 we know from elementary calculus that, given the curve
F(x , y) = 0, the slope of the tangent at that point is k = Fx

−Fy
. In our case

we have
F(x , y) = x3 + a2x

2 + a4x+ a6−y2−a1xy −a3y .
This yields, after some computations and simplifications,

{
k =(3x2

1 + 2a2x1 + a4−a1y1)/(2y1 + a1x1 + a3)

m = (−x3
1 + a4x1 + 2a6−a3y1)/(2y1 + a1x1 + a3)

We conclude:
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P + Q = (k2+ a1k −a2−x1−x2, −(k + a1)x3−m− a3 ).

If you thought that the addition algorithm for char(k) 6=2, 3 was quite
cumbersome, what about this ?

Could something go wrong if P = Q ?
I would like to formulate the problem like this: Given an elliptic curve

E(k) and a straight line L , non-collinear with the point at infinity O, such
that L∩E 6= ∅, what is the cardinality of L∩E ? There arise three theoretical
situations:

• | L∩E | = 3

L∩E = {P,Q,R}

We have three distinct points and no problems.

• | L∩E | = 2

L∩E = {P,R}

We have a double point, because our cubic equation must have three
roots counting multiplicities.

• | L∩E | = 1

This means that the cubic equation in question has a root x1 ǫ k and
two roots x2, x3 /∈ k and we might have a problem! Let us look into
it.

We know that x1 is a root of the equation (x − x1)(x − x2)(x − x3) = 0

Comparing coefficients in the expression (†) above we realize that it must
hold that x1x2 = a4+a3k+a1m+2km ǫ F⋆

p. Since x1 ǫ F
⋆
p, this entails that

x2 = x−1
1 ·x1x2 ǫ F

⋆
p, and then surely x3 ǫ F

⋆
p too. So our equation has either

three distinct roots in F⋆
p, which cannot be the case since we have chosen P

= Q , or it has one double root and that is x1= x2 , the coordinate of P,
while x3 is the x -coordinate of R such that 2P + R = O. So, | L∩E | = 1

is simply impossible and the answer to our former question is that nothing
can go wrong if P = Q !

Nota bene. Although the associative law can be proved as previously
using the addition algorithm it would require, besides tedious calculations,
considering many special cases. One solution would be to use Bézout’s
Theorem but this requires a more advanced set up. Hoffstein, Pipher and
Silverman refer to more elegant and advanced proofs presented in S. Lang,
J.H.Silverman or J.H.Silverman & J. Tate.
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Definition.

We call a an nth power residue mod m if the congruence xn ≡ a (mod m)
is solvable.

Theorem 12. If m possesses primitive roots and gcd (a, m) = 1, then a

is an nth power residue mod m iff aϕ(m)/d ≡ 1, where d = gcd (n, ϕ(m)).

Proof. Let g be a primitive root mod m and a = gb, x = gy. Then the
congruence xn ≡ a (mod m) is equivalent to gny ≡ gb (mod m), which in
turn is equivalent to ny ≡ b mod (ϕ(m)). The latter congruence is solvable
iff d | b. Nota bene: if there is a solution then there are exactly d solution.
In particular, if n = 2 then the congruence x2 ≡ a (mod m) has at most
two solutions.

If d | b , then aϕ(m)/d ≡ gbϕ(m)/d ≡ 1 (mod m). Conversely, if aϕ(m)/d ≡ 1

(mod m), then gbϕ(m)/d ≡ 1 (mod m), which implies that ϕ(m) | bϕ(m)/d
or d | b. The result follows.

Denoting the cardinality of the set of points on E(Fp) by # E(Fp) we
realize that it must be a finite quantity since we have p possibilities for the
x -coordinate and, since y2 = x3 + ax + b , we get, by Theorem 2, at most
two possibilities for the y-coordinate once x is chosen. The conclusion must
be that

# E(Fp) ≤ 2p + 1, the 1 because of the point O.

This upper bound is much larger than the true value of # E(Fp).
Pick a value for x and compute x3 + ax + b . This quantity may be a

quadratic residue modulo p in which case we get two square roots, meaning
two distinct values for y and, thus, two points on E(Fp). But how often does
this happen? Since there are as many residues as nonresidues according to
a result in number theory, 50% of the time.

Another possibility is that x3
0+ax0+ b = 0 and so we get only the point

(x0,0) but this rarely happens, according to Hoffstein, Pipher & Silverman.
Altogether this might indicate that we should expect

# E(Fp) ≈ 0.5·2p + 1 = p + 1.

Theorem 13. (Hasse) Let E be an elliptic curve over Fp. Then
# E(Fp) = p + 1 − tp, with tp satisfying | tp | ≤ 2

√
p.

The quantity tp is called the trace of Frobenius for E(Fp) .
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Proof. For a proof of this I refer to Silverman,1992.

Hasse’s theorem can be proved even for E(Fpk) stating then that

# E(Fpk) = pk + 1 − tpk

with tpk satisfying | tpk | ≤ 2p
k
2 . Hasse’s theorem gives a bound for the

quantity # E(Fp) but it is not as such constructive.

Example. We shall consider the eliptic curve

E(F11) : y2 = x3 + x+ 1.

We remark that △ = −16(4a3 + 27b2) = −16(4 · 13 + 27 · 12) ≡ 6 · 9 ≡ 10

so E is a nonsingular cubic and therefore elliptic.

We have just seen that # E(F11) ≤2 · 11 + 1 = 23. We could compute
by hand but I have used a Mathematica package.

The result is

E(F11) = {O, (0,1), (0,10), (1,5), (1,6), (2,0), (3,3), (3,8), (4,5), (4,6),
(6,5), (6,6),(8,2), (8,9)},

so # E(F11) = 14 and we can compute | t11 | = | 11+ 1− 14 |=| −2 |=
2 ≤2

√
11.

Let us compute (0,1) + (3,3) and (1,5) + (1,5) by hand.
First, (0,1) + (3,3):

k = y2−y1

x2−x1
= 3−1

3−0
= 2

3
≡2 · 3−1≡2 · 4 = 8

x3 = k2−x1 − x2 = 82−0− 3 ≡ 6

y3 = k(x1 − x3)− y1 = 8 · (0− 6)− 1 = 6

The result is (0,1) + (3,3) = (6,6).

Second, (1,5) + (1,5):

k = 3x21+1

2y1
= 3·12+1

2·5 = 4
10

≡4 · 10−1≡4 · 10 ≡ 7

x3 = k2−2x1 = 72−2 · 1 ≡ 3

y3 = k(x1 − x3)− y1 = 7 · (1− 3)− 5 = 3
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The result is (1,5) + (1,5) = (3,3).

Using again Mathematica I have determined the complete addition ta-
ble:

⊕ O (0, 1) (0, 10) (1, 5) (1, 6) (2, 0) (3, 3)

O O (0, 1) (0, 10) (1, 5) (1, 6) (2, 0) (3, 3)
(0, 1) (0, 1) (3, 3) O (4, 5) (2, 0) (1, 5) (6, 6)
(0, 10) (0, 10) O (3, 8) (2, 0) (4, 6) (1, 6) (0, 1)
(1, 5) (1, 5) (4, 5) (2, 0) (3, 3) O (0, 1) (8, 2)
(1, 6) (1, 6) (2, 0) (4, 6) O (3, 8) (0, 10) (1, 5)
(2, 0) (2, 0) (1, 5) (1, 6) (0, 1) (0, 10) O (4, 5)
(3, 3) (3, 3) (6, 6) (0, 1) (8, 2) (1, 5) (4, 5) (6, 5)
(3, 8) (3, 8) (0, 10) (6, 5) (1, 6) (8, 9) (4, 6) O
(4, 5) (4, 5) (8, 2) (1, 5) (6, 6) (0, 1) (3, 3) (8, 9)
(4, 6) (4, 6) (1, 6) (8, 9) (0, 10) (6, 5) (3, 8) (2, 0)
(6, 5) (6, 5) (3, 8) (6, 6) (4, 6) (8, 2) (8, 9) (0, 10)
(6, 6) (6, 6) (6, 5) (3, 3) (8, 9) (4, 5) (8, 2) (3, 8)
(8, 2) (8, 2) (8, 9) (4, 5) (6, 5) (3, 3) (6, 6) (4, 6)
(8, 9) (8, 9) (4, 6) (8, 2) (3, 8) (6, 6) (6, 5) (1, 6)

⊕ (3, 8) (4, 5) (4, 6) (6, 5) (6, 6) (8, 2) (8, 9)

O (3, 8) (4, 5) (4, 6) (6, 5) (6, 6) (8, 2) (8, 9)
(0, 1) (0, 10) (8, 2) (1, 6) (3, 8) (6, 5) (8, 9) (4, 6)
(0, 10) (6, 5) (1, 5) (8, 9) (6, 6) (3, 3) (4, 5) (8, 2)
(1, 5) (1, 6) (6, 6) (0, 10) (4, 6) (8, 9) (6, 5) (3, 8)
(1, 6) (8, 9) (0, 1) (6, 5) (8, 2) (4, 5) (3, 3) (6, 6)
(2, 0) (4, 6) (3, 3) (3, 8) (8, 9) (8, 2) (6, 6) (6, 5)
(3, 3) O (8, 9) (2, 0) (0, 10) (3, 8) (4, 6) (1, 6)
(3, 8) (6, 6) (2, 0) (8, 2) (3, 3) (0, 1) (1, 5) (4, 5)
(4, 5) (2, 0) (6, 5) O (1, 6) (4, 6) (3, 8) (0, 10)
(4, 6) (8, 2) O (6, 6) (4, 5) (1, 5) (0, 1) (3, 3)
(6, 5) (3, 3) (1, 6) (4, 5) (0, 1) O (2, 0) (1, 5)
(6, 6) (0, 1) (4, 6) (1, 5) O (0, 10) (1, 6) (2, 0)
(8, 2) (1, 5) (3, 8) (0, 1) (2, 0) (1, 6) (0, 10) O
(8, 9) (4, 5) (0, 10) (3, 3) (1, 5) (2, 0) O (0, 1)

I am not going to repeat the procedure for some E(Fpk) too but it should
be obvious what we have to do !

What if p = 2, 3 ?
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Computers work binarily so computations tend to become smoother
modulo 2 and therefore the case p = 2 may be interesting. On the other
hand, p = 3 does not present this advantage so we shall not consider it!

I have already mentioned that # E(F2) ≤ 5 so, since we need # E to be
“slightly” larger than that, we shall consider elliptic curves E(F2k), k > 1.

To reassume: one advantage of working with E(F2k) is ease of computa-
tions modulo 2, particularly congenial for computers. Choosing k composite
F2j is a subfield of F2k for all j | k . These subfields can sometimes be used
to speed up computations. This is another advantage but, of course, these
subfields can cause security problems too. There is though a third advan-
tage, namely using an elliptic curve with coefficients in F2 but points with
coordinates in F2k , a so called Koblitz curve.

Definition

The (p − power) Frobenius map:

τ : Fpk −→Fpk

α−→αp.

τ(αβ) = (αβ)p = αpβp = τ(α)τ(β) . (τ(1) = 1, trivial.) This shows
at once that the Frobenius map preserves multiplication. The binomial
theorem says that

(α + β)n = Σ
i

(
n
i

)
αiβn−i, n≥1.

(
n
i

)
= n!

i!(n−i)!
and, if n = p , a prime, then p | p!, yet, for 1 < i < p , p ∤

i !(p − i)! because these products are all strictly less than p. Consequently
p |

(
p

i

)
, for 1 < i < p and, hence, we are bound to have:

(α + β)p = αp+ βp.

Of course, we shall only need the case p = 2 which is immediate since

(α + β)2 = α2+ 2αβ + β2 2≡ α2+ β2.

Actually, by induction, we get even (α + β)p
k

= αpk+ βpk . In any case,
we have

τ(α + β) = (α + β)p = αp+ βp = τ(α) + τ(β),
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so τ preserves addition too. (τ(0) = 0, trivial.)

∵τ is a ring homomorphism.

Returning to the case p = 2, τ(α) = α2, but α ǫ F2 = {0, 1}. This
means that for every α ǫ F2 it holds that τ(α) = α, so F2 is invariant under
τ .

Let E be an elliptic curve given by a generalized Weierstraβ equation
with coefficients in F2 but points P = (x , y) ǫ F2k× F2k . (We shall write P

ǫ E(F2k)). We define a Frobenius map on E by τ(P) = (τ(x ),τ(y)).

Claim 1.

τ(P) ǫ E(F2k)

Proof. Given P = (x , y) ǫ E(F2k) and

E: y2+a1xy + a3y−x3−a2x
2−a4x−a6 = 0

we have:

τ(y2+a1xy + a3y−x3−a2x
2−a4x−a6 ) = τ(0)

τ(y)2+τ(a1)τ(x )τ(y)+τ(a3)τ(y)−τ (x)3−τ(a2)τ(x)
2−τ(a4)τ(x )−τ(a6) = 0

The Weierstraβ equation has coefficients in F2 and F2 is τ -invariant, so:

τ(y)2+ a1τ(x )τ(y) + a3τ(y) −τ (x)3 −a2τ(x)
2− a4τ(x ) −a6 = 0

But this means that τ(P) = (τ(x ), τ(y)) satisfies our Weierstraβ equa-
tion

∵τ(P) ǫ E(F2k) as claimed.

Claim 2.

τ(P+ Q) = τ(P) + τ(Q).

Proof. Recall first that τ is a ring homomorphism. (In fact it is a field
homomorphism.) If u is a unit we have

τ(u−1)·τ(u) = τ(u−1u) = τ(1)= 1.
∵(τ(u))−1 = τ(u−1)·

P + Q = (k2+ a1k −a2−x1−x2, −(k + a1)x3−m− a3 )

with k and m rational expressions of elements in F2k .
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τ(P + Q) = (τ(k2+ a1k −a2−x1−x2) , τ(−(k + a1)x3−m− a3 )) =

(τ(k)2+ a1τ(k) a2 − τ(x1) −τ(x2), −(τ(k)+a1)τ(x3) −τ(m) −a3)

τ(P) + τ(Q) = (k̂2 + a1k̂ −a2 −τ(x1) −τ(x2), −(k̂ + a1)τ(x3) −m̂ −a3)

k̂ = τ(y2)−τ(y1)
τ(x2)−τ(x1)

= τ(y2−y1)
τ(x2−x1)

= τ(y2−y1)(τ(x2−x1))
−1

τ(y2−y1)τ ((x2−x1)
−1) = τ

(
y2−y1
x2−x1

)
= τ(k)

or

k̂ = 3τ(x1)
2+2a2τ(x1)+a4−a1τ(y1)
2τ(y1)+a1τ(x1)+a3

=
τ(3x2

1
+2a2x1+a4−a1y1)

τ(2y1+a1x1+a3
= .... = τ(k)

Analogously one can show that m̂ = τ(m). Hence we get:

τ(P) + τ(Q) =

(τ(k)2 + a1τ(k) −a2 −τ(x1) −τ(x2), −(τ(k) + a1)τ(x3) −τ(m) −a3) =

τ(P + Q)

as claimed.

I formulate the following theorem just for the record.

Theorem 14. Let E be an elliptic curve over Fp and let t=p + 1−#E(Fp).

(a) Let α and β be the complex roots of the polynomial z2−tz + p.

Then | α |= | β |= √
p, and, for every k ≥1, we have

#E(Fp) = pk + 1 −αk − βk.

(b) Let τ : E(Fpk) −→ E(Fpk) be the Frobenius map.

Then for every point Q ǫ E(Fpk) we have τ 2(Q) −t·τ(Q) + p·Q = 0.

Proof. For a proof see J. H: Siverman, 1992 , The Arithmetic of Elliptic
Curves, (V.2, Prop. 2.3, pp 134-136)

We shall see later that in trying to solve the ECDLP we shall need to
compute nP. Using the Frobenius map we shall save time!
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Definition.

A Koblitz curve is an elliptic curve defined over F2 by an equation of the
form

Ea: y2 + xy = x3+ ax2 + 1, a ǫ {0, 1}.

The discriminant of Ea is ∆ = 1.
Let us consider the example

E0: y2 + xy = x3+1.

We check by brute force that

E0(F2) = {(0, 1), (1, 0), (1, 1),O} ,

so #E0(F2) = 4 and we get t2 = 2+ 1− 4 = −1.
Applying the previous theorem we solve the equation z2+z+2 = 0 and

get the roots
{
α = −1+

√
−7

2

β = −1−
√
−7

2

so #E0(F2k) = 2k+ 1 −
(

−1+
√
−7

2

)k

−
(

−1−
√
−7

2

)k

The same theorem says that the Frobenius map satisfies the equation
τ 2 + τ + 2 = 0 when it acts on points of E(F2k) and this means that τ 2(P)
+ τ(P) + 2P = O for all P ǫ E(F2k).

Write now an arbitrary integer n as a sum of powers of τ under the
assumption τ 2 + τ + 2 = 0 , e.g.

n = v0 + v1τ + v2τ
2 + ..... + vmτ

m, vi ǫ {−1, 0, 1}.

Then we can compute

nP = (v0 + v1τ + v2τ
2 + ..... + vmτ

m)P =

v0P + v1τ(P) + v2τ
2(P) ........... + vmτ

m(P).

All this will take less time because it is easier to compute τ j(P) than
2jP since

τ j(P) = τ j((x, y)) = (τ j(x), τ j(y)) = (x2j , y2
j
),

so we need only multiply in F2k not add in E(F2k).
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4.3 Torsion. Rational functions. Divisors

Torsion points.

Let m ≥1 be an integer. A point P ǫ E satisfying mP = O, m being the
least such integer, is called a point of order m in the group E . We write
E [m] = {P ǫ E: [m]P = O}. These points are called points of finite order
or torsion points. Suppose that P and Q belong to E [m] . Then:

m(P + Q) = mP + mQ = O ∵ P + Q ǫ E [m]

m(−P) = −mP = O ∵ −P ǫ E [m]

The conclusion is that E [m] is a subgroup of E.

Theorem 15. Let m≥1 be an integer.
(a) Let E be an elliptic curve over Q, R or C. Then E [m] ∼=Z/mZ ×

Z/mZ .
(b) Let E be an elliptic curve over Fp and assume that p does not divide

m. Then there exists a value k such that
E(Fpjk) [m] ∼=Z/mZ × Z/mZ for all integers j ≥ 1.

Proof. For a proof I refer to Silverman, 1992, (Cor. III 6.4)

If m is a prime and k is a field such that E(k) [m] ∼= Z/mZ × Z/mZ then
E [m] can be viewed as a 2–dimensional vector space over the field Z/mZ
∼= Zm. And even in case m is not a prime it can be proved that we still
can find a basis = {P1,P2} in the sense that every point P ǫ E [m] can be
represented as a linear combination P = aP1 + bP2 for unique coefficients
a, b ǫ Zm.

Nota bene. If m is very large it can be difficult to find a and b. If P =
aP1 then finding a amounts to solving the ECDLP for P and P1.

Rational functions.

Let k be a field. A rational function in x1, x2, ........., xm with coefficients
in k is a quotient f

g
of two polynomials f , g ǫ k[x1, x2, ........., xm] where g

is not the zero polynomial. Furthermore, two rational functions f
g

and h
l

are equal provided that lf = gh in k[x1, x2, ........., xm]. Finally, the set of
all rational functions in x1, x2, ........., xm with coefficients in k is denoted
k(x1, x2, ........., xm). For simplicity we shall consider first the case C(x ).

Allowing complex numbers we can factorize numerator and denominator
and write
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f (x ) = a(x−α1)e1(x−α2)e2 ........(x−αr)er

b(x−β1)d1 (x−β2)d2 .........(x−βs)ds

and we can assume that αj , 1 ≤ j ≤ r , and βi , 1 ≤ i ≤ s, are distinct
numbers because otherwise we might cancel certain factors. The numbers
αj are called the zeros of f whereas the numbers βi are called the poles of f
and the exponents ej and di , respectively, are the associated multiplicities .

Divisors.

The formal sum

div f = e1[α1] + ........ + er[α1r] − d1[β1] − ........ − ds[βs]

is called the divisor of f .

We can extend all these definitions to functions of two variables so if E
is the elliptic function given by y2= x3 + ax+ b we can consider a rational
function f (x , y) on E. Even in this case we can speak about the zeros and
poles of f and assigning the proper multiplicities to these zeros and poles
we can define

div f = Σ
PǫE

nP [P],

the divisor of f on E. The coefficients nP are integers and only finitely
many of them are nonzero so the sum is finite. If P is a zero of multiplicity
n then nP = n, if P is a pole of multiplicity n then nP = −n, and if P is
neither then nP = 0.

Definition

The degree of a divisor is the sum of its coefficients

deg D = deg ( Σ
PǫE

nP [P]) = Σ
PǫE

nP.

Definition

The sum of a divisor is simply

sum D = sum ( Σ
PǫE

nP [P]) = Σ
PǫE

nPP
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Theorem 16. Let E be an elliptic curve.
(a) Let f and g be rational functions on E. If div f = div g, then there

exists a nonzero constant c such that f = cg.
(b) Let D = Σ

PǫE
nP [P] be a divisor on E . Then D is the divisor of a

rational function if and only if
deg D = 0 and sum D = O. In particular, if a rational function on E

has no zeros or no poles, then it is constant.

Proof. For a proof of this see Silverman, 1992, (Prop. II 3.1 and III 3.4)

4.4 The Weil pairing

Let P and Q ǫ E[m] and let fP and fQ be rational functions on E satisfying

div f P = m [P] −m[O] and div fQ = m [Q] −m[O].

The Weil pairing of P and Q is the quantity

em(P,Q) fP(Q+S)
fP(S)

/ fQ(P−S)

fQ(−S)
,

where S ǫ E is any point satisfying S /∈ {O,P,−Q,P− Q}.

Claim.

em is well defined.

Proof. Let f ′
Pand f ′

Q be a different choice of rational functions
such that

div f
′

P = m [P] −m[O] and div f
′

Q = m [Q] −m[O].

It is immediate that

div f
′

P = div f P and div f
′

Q = div fQ.

Consequently, by Theorem 7, f
′

P = afP and f
′

Q = bfQ. Hence we have
that :

e′m(P,Q) =
f ′
P
(Q+S)

f ′
P
(S)

/
f ′
Q
(P−S)

f ′
Q
(−S)

= afP(Q+S)
afP(S)

/ bfQ(P−S)

bfQ(−S)
= fP(Q+S)

fP(S)
/ fQ(P−S)

fQ(−S)
= em(P,Q)

∵ em is independent of the choice of rational functions.

We would not want em to depend on the choice of point S ǫ E. Fix some
points P and Q, call them P and Q . Consider the function
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F(S) = fP (Q+S)
fP (S)

/ fQ(P−S)
fQ(−S)

.

Let us concentrate on fP (Q+S)
fP (S)

.

It is quite obvious that fP(Q+S) = ( fP◦τQ)(S), where τQ: E −→ E is
the (bijective !) translation given by S 7−→S + Q.

Trying to determine div ( fP◦τQ) we can consider ( fP◦τQ)(S) and de-
termine nS or consider fP(τQ(S)) and determine nτQ(S).

The following must hold:

div ( fP◦τQ) = Σ
SǫE

nS( fP◦τQ) [S]

Σ
SǫE

nS( fP) [τQ(S)] = Σ
τQ(S)ǫE

nτQ(S)( fP) [τQ(S)] = div (fP).

∵ fP◦τQ) = cfP .
Hence:

fP (Q+S)
fP (S)

= (fP◦τQ)(S)
fP (S)

= cf P (S)
fP (S)

= c , a constant.

Analogously we can show that fQ(P−S)
fQ(−S)

is constant.

∵ F(S) is a constant function and thus em does not depend on the point
S (as long as S /∈{O,P,−Q,P− Q}).

Theorem 17. (a) The Weil pairing is bilinear , which means that

em(P1 + P2,Q) = em(P1,Q)·em(P2,Q)

em(P,Q1 + Q2) = em(P,Q1)·em(P,Q2)

for all P,P1,P2,Q,Q1,Q2 ǫ E[m].

A consequence of this is that em(2P,Q) = em(P+P,Q) = em(P,Q)·em(P,Q)
= em(P,Q)2 , and then, more generally, and by induction, em(rP, sQ) =
em(P,Q)rs.

(b) The Weil pairing is alternating, which means that

em(P,P) = 1

A consequence of this and of bilnearity is that

1 = em(P+ Q,P+ Q) =

em(P,P) ·em(P,Q) ·em(Q,P) ·em(Q,Q) =
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1·em(P,Q) ·em(Q,P)·1

∵ em(Q,P) = em(P,Q)−1.

Another consequence. Consider the representations P = aPP1+ bPP2

and Q= aQP1 + bQP2, given the basis {P1,P2} of E [m] ∼= Z/mZ × Z/mZ.

em(P,Q) = em(aPP1+ bPP2 ,aQP1 + bQP2) =

em(aPP1, aQP1)em(aPP1, bQP2)em(bPP2, aQP1)em(bPP2, bQP2) =

em(P1, P1)
aPaQ ·em(P1, P2)

aPbQ ·em(P2, P1)
bPaQ ·em(P2, P2)

aPbQ =

1aPaQ ·em(P1, P2)
aPbQ ·em(P1, P2)

−bPaQ·1aPbQ =

em(P1, P2)
aP bQ−aQbP =

em(P1, P2)
det





aP aQ
bP bQ





.

(c) The Weil pairing is nondegenerate, which means that

em(P,Q) = 1

for all points Q if and only if P = O. A consequence of this and of
bilinearity is that

em(P,Q)m = em(mP,Q) = em(O,Q) = 1.

Finally we conclude that em(P,Q) is an mth root of unity.

Proof. For a proof see Silverman, 1992.

In cryptography we shall want to evaluate the Weil pairing at
P1 = aP and P2 = bP, so em(P1,P2) = em(aP,bP) = em(P,P)ab = 1, and

this is not very helpful.
The solution is to choose an elliptic curve that has some nice map

ϕ: E −→E

attached to it, such that P and ϕ(P) are linearly independent in E[m],
and then we can compute

em(P1, ϕ(P2) = em(aP, ϕ(bP)) =

em(aP, bϕ(P )) = em(P, ϕ(P )ab.
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4.5 Distortion maps

Let l ≥3 be a prime and let E be an elliptic curve with P ǫ E[l] a point of
order l . Let ϕ: E −→E be a map. We say that ϕ is an l – distortion map
for P if it has the following properties:

(i) ϕ(nP) = nϕ(P ) for all n ≥1.
(ii) The number el(P, ϕ(P)) is a primitive lth root of unity, meaning

that el(P, ϕ(P))
r = 1 if and only if r =kl .

Theorem 18. Let E be an elliptic curve, let l ≥3 be a prime, and view E[l]
∼= Zl × Zl as a 2–dimensional vector space over the field Zl. Let P,Q ǫ E[l].
Then the following are equivalent:

(a) P and Q form a basis for the vector space E[l].
(b) P 6= O and Q is not a multiple of P.
(c) el(P,Q) is a primitive l th root of unity.
(d) el(P,Q) 6= 1.

Proof. (a) ⇒(b) is obvious.
Suppose (b) holds and assume (a) is false, so uP + vQ = O, where u

and v ǫ Zl are not both zero.
If v = 0 then P = O so (b) turns out to be false too. Contradiction!
If v 6= 0 then v has an inverse in Zl , so Q = −v−1uP and this shows Q

to be a multiple of P which, again, contradicts (b).
Thus (a) must hold.
∵(b) ⇒(a)
∵(a) ⇔(b)

Set ζ = el(P,Q). We know that ζ l = 1. Let r ≥ 1 be the order of ζ, i.
e. ζr = 1.

Using the Euclidean algorithm we have sr+tl = gcd (r , l), s , t ǫ Z.
Hence:

ζgcd(r,l) = ζsr+tl = (ζr)s
(
ζ l
)t

= 1. Consequently r = gcd (r , l) by the
minimality of r . This implies that r | l . But l is prime so either r = 1 and
so ζ = 1 or r = l . This argument shows that

(c) ⇔(d)

Suppose (a) holds. Given that {P,Q} is a basis for E [l ] we then know
that P 6= O.

By the nondegeneracy of the Weil pairing there must exist a point R in
E [l ] such that el(P,R) 6=1. We can write R =uP+ vQ, u, v ǫ Zl. By the
bilinearity and alternating properties of the Weil pairing we get:
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1 6= el(P,R) = el(P,uP+ vQ) = el(P,P)u·el(P,Q)v1u·el(P,Q)v = el(P,Q)v.

∵ (d) is true
∵ (a)⇒(d)

Suppose (d) holds and assume that (b) is false. The latter assumption
means that either P = O or Q = uP, for some u ǫ Zl.

If P = O then el(P,Q) = el(O,Q) = 1. If Q = uP then el(P,Q) =
el(P, uP) = el(P,P)u = 1.

Thus (d) is false. Contradiction!
∵(d) ⇒(b)
We have shown that (a) ⇒(d) ⇒(b) ⇒ (a)
∵ (a) ⇔(d)
∵(a) ⇔(b) ⇔ (c) ⇔(d)

A modified Weil pairing

Let E be an elliptic curve, let P ǫ E[l], and let ϕ be an l – distortion map
for P. The modified Weil pairing êl on E[l] (relative to ϕ) is defined by

êl(P,P
′) = el(P,ϕ(P

′)).

This is important because in cryptographic applications we must evalu-
ate the modified Weil pairing at multiples of P.

Theorem 19. Let E be an elliptic curve, let P ǫ E[l], let ϕ be an l –
distortion map for P and let êl be the modified Weil pairing on E[l] (relative
to ϕ). Let Q and Q′ be multiples of P. Then

êl(Q,Q
′) = 1 if and only if Q = O or Q′ = O.

Proof. Let Q = sP and Q′ = tP.

êl(Q,Q
′) = êl(sP, tP) = el(sP, ϕ(tP)) = el(sP, tϕ(P)) = el(P, ϕ(P))

st .

el(P, ϕ(P)) is a primitive lth root of unity, so

êl(Q,Q
′) = 1 ⇐⇒ l | st ⇐⇒ l | s or l | t ⇐⇒ Q = O or Q′ = O .

Let us consider the elliptic curve E: y2 = x3 + 1 over the field F691. We
shall try to define a distortion map by
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ϕ(x, y) = (ωx, y)

with ω a primitive cube root of unity, i.e. ω3 = 1. Note that this means
that ω2 = ω−1. Furthermore we set ϕ(O) = O.

Let P = (x , y) ǫ E. Obviously, ϕ(P) = (ωx, y).

(ωx)3+ 1 = ω3x3+ 1 = x3 + 1 = y2,

and this shows that ϕ(P) ǫ E.
We shall denote the x−coordinate of P by X(P) and the y−coordinate

of P by Y (P).
Assume P and Q are two distinct points on E. Then we have:

X(ϕ(P) + ϕ (Q)) =

X ((ωx1,y1) + (ωx2,y2)) =

k2−ωx1−ωx2 = ( y2−y1
ωx2−ωx1

)2−ωx1−ωx2 =

1
ω2 ( y2−y1

ωx2−ωx1
)2−ωx1−ωx2 = ω ( y2−y1

ωx2−ωx1
)2−ωx1−ωx2 =

ω(( y2−y1
ωx2−ωx1

)2−x1−x2) = ωX (P+ Q)

∵ X (ϕ(P+ Q)) = X(ϕ(P) + ϕ (Q))

and

Y (ϕ(P) + ϕ (Q)) =

Y ((ωx1,y1) + (ωx2,y2)) =

k(ωx1−ωX (P+ Q)) −y1=

y2−y1
ωx2−ωx1

(ωx1−ωX (P+ Q)) −y1 =

1
ω
ω y2−y1

x2−x1
(x1−X (P+ Q)) −y1=

Y (P+ Q)

∵ Y (ϕ(P+ Q)) = Y (P+ Q)
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We conclude that

ϕ(P) + ϕ (Q) = ϕ(P+ Q)

Assume P = Q on E. Then we have:

X (2ϕ(P)) = X (2(ωx, y)) =

k2−2ωx = (3(ωx)
2

2y
) −2ωx =

ω2(3x
2

2y
)2 −2ωx = ω(k2−2x ) =

ωX (2P) = X (ϕ(2P))

and

Y (2ϕ(P)) = Y (2(ωx, y)) =

k(ωx −k2 + 2ωx) −y =

Y (ϕ(2P))

We conclude that

ϕ(2P) = 2ϕ(P)

and this can be generalized, by induction, to

ϕ(nP) = nϕ(P).

Now, with an appropriate point P ǫ E(F691) and by means of the Miller
algorithm we might show that êl(P,P) = el(P,ϕ(P))r = 1 if and only if r =
kl , where l = ord P in E(F691). This would prove ϕ to be an l−distortion
map for P. For all this I refer to Hoffstein, Pipher & Silverman, section
5.8.4.
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4.6 Hyperelliptic curves

A hyperelliptic curve of genus g is the set of solutions to an equation of the
form

H : y2 = x2g+1+a1x
2g+........... + a2gx+a2g+1,

where f (x ) = x2g+1+a1x
2g+........... + a2gx+a2g+1 has distinct roots.

To this set we add a point O at infinity. Obviously an elliptic curve has
genus g= 1, according to this definition.

In general we cannot define addition of points on H as we could in the
case of an elliptic curve E. But we shall define a divisor on H to be a formal
sum of points

n1[P1] + n2[P2] + .......... + nr[Pr]

with Pi ǫ H, ni ǫ Z for i = 1, 2, ..... , r .
Clearly a divisor is a finite sum of points each with its own multiplicity.

If f (x , y) is a rational function on H then we define div f = D by listing the
zeros and poles of f on H with their respective multiplicities. The degree of
a divisor is defined as

deg D= deg ( n1[P1] + n2[P2] + ......... + nr[Pr]) = n1+ n2+ .......... + nr.

We define then DivH to be the set of divisors on H.
We can clearly add and subtract divisors by adding and subtracting the

multiplicities at each point. Further, we denote by Div0H the set of divisors
of degree zero.

Two divisors D1 and D2 are said to be linearly equivalent if D1−D2 =
divisor of a function. The divisor of a function always has degree zero.
We define JacoH to be the set of divisors of degree zero where we identify
linearly equivalent divisors, i.e. JacoH∼= Div0H/∼.

JacoH together with the addition law obtained by adding the multi-
plicities of points is called the Jacobian variety of H. Thus JacoH can be
described as the set of solutions to a system of polynomial equations and
the addition law may be described using polynomials as well. If we take
solutions with coordinates in Fp we obtain a group analogous to E(Fp).

Setting J :=JacoH and writing J(Fp) for the points in JacoH with coef-
ficients in Fp we can formulate the discrete logarithm problem as follows:
given points P and Q in J(Fp) find an integer n such that Q = nP. Mim-
icking then the elliptic case we can construct cryptosystems based on the
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Hyperelliptic Curve Discrete Logarithm Problem (HCDLP), i.e. a hyper-
elliptic Diffie – Hellman key exchange and a hyperelliptic ElGamal public
key cryptosystem.

Why would we want to do that? Because there are more points on J(Fp)
than there are on E(Fp) for one thing.

An analogue of Hasse’s theorem due to Weil says that #J(Fp) = pg

+ O(pg−
1

2 ), so a hyperelliptic curve of genus 2 can offer approximately p2

points in J(Fp).
Cryptanalysis could now be conducted with collision algorithms such

as Pollard’s ρ algorithm yet this is not the best known method. An index
calculus algorithm seems to be better according to Hoffstein, Pipher &
Silverman (8.10)

Since #J(Fp) ≈ pg this means, according to the same trio, that solving
the HCDLP would require O(p

g
2 ) steps so using curves with g> 1 would

achieve levels of security equivalent to those offered by elliptic curves but
with a lesser p. There are of course both advantages and disadvantages
with regard to computations and security just as in the elliptic case.

I shall not pursue the matter further. I simply wanted to mention the
hyperelliptic curves and the existence of a hyperelliptic cryptography.
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