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Abstract

We study the stochastic growth model known as Internal DLA which is a

growth model in Zd. It features a cluster determined by adding new particles

according to random walks. A particle travels from inside the cluster and

stops when reaching the first point outside the region, adding that point

to the region. We are mainly interested in the asymptotics of the occupied

sets and present how this relates to PDE theory, in particular the obstacle

problem and the Stefan Problem.

We also discuss some related models, the Divisible Sandpile, Rotor-

Router Aggregation and the Classical Sandpile.
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1 Introduction

1.1 Internal DLA

Internal diffusion limited aggregation (IDLA) is a stochastic growth model in Zd.
It was first introduced in [LBG] and later generalized in several directions, e.g.
in [DF] with a more algebraic approach and in [GQ] with connections to partial
differential equations. IDLA uses random walks to determine the growth of a
cluster.

We consider systems of discrete particles in Zd where d ≥ 2 is the dimension.

Definition 1.1.1. Let f : Zd → Z+ have finite mass

∑

x∈Zd

f(x) < ∞,

and call f a discrete mass configuration in Zd. We also say that there are f(x)
particles at the point x.

Definition 1.1.2. Let i ∈ Zd. Then let Ti be a function from a discrete mass
configuration m into another discrete mass configuration Ti(m) defined as follows.
Let Ti(m) = m if m(i) ≤ 1. For m(i) > 1, let XTi

be a simple random walk
(defined in Section 5.4.1) started at i and let j ∈ Zd be the point where the random
walk first hits the set {x|f(x) = 0}. Then

Ti(m) = m− δix + δjx

where δ is Kronecker’s delta and x ∈ Zd. The function Ti is called a toppling at i.
From now on, if we suppress the index or if we say that a function is a toppling
function we mean that it is a toppling function at some (unspecified) i.

Intuitively this function takes a particle from the site i if there are more than
one particle there and moves it, by a random walk, to the first empty site it hits.

Definition 1.1.3. Let σ be a discrete mass configuration and let {Tx1
Tx2

, ..., Txα}
be a set of toppling functions. If

sup
x∈Zd

Txα ...Tx2
Tx1

(σ) ≤ 1,

then
Txα ...Tx2

Tx1
(σ)

is called the final mass configuration obtained from the initial configuration σ (with
respect to {Tx1

Tx2
, ..., Txα}).
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In [DF] it is shown that for any collection of toppling functions with the prop-
erty that supx∈Zd Txα ...Tx2

Tx1
(σ) ≤ 1, the probability distribution of occupied

domains is the same. That is, the order of the topplings does not matter. This is
not hard to see by first considering the case of two particles. Suppose that the first
particle hits an empty site and therefore the second particle does not stop at that
site when it hits that site. But the particles are identical and from this follows
that we cannot distinguish which of the particles continues to move. Therefore the
result is identical. This enables us to formulate the definition of the final occupied
domain and be sure that it is independent of the choice of toppling functions.

Definition 1.1.4. Given a initial discrete mass configuration σ and any set of
toppling functions {Tx1

Tx2
, ..., Txα} so that supx∈Zd Txα ...Tx2

Tx1
(σ) ≤ 1 we will call

the discrete mass configuration

Txα ...Tx2
Tx1

(σ)

a final mass configuration and denote it by ν. The set

{x|ν(x) = 1}

is called the final domain of occupied sites.

The main problem is to describe how the final domain of occupied sites looks
for a given initial mass configuration σ. For n particles starting at the origin, the
final occupied domain will approach a Euclidean ball when n tends to infinity.
This is Theorem 3.1.1. It is noteworthy since it is not a priori clear because of the
structure of the lattice Zd.

1.2 Divisible Sandpile

In order to analyse IDLA with methods from potential theory and in particular
the obstacle problem we will define a deterministic analogue with continuous mass.
This is called the Divisible Sandpile and was introduced in [L]. The heuristic
motivation for this model is that if there is equal chance for a particle to move to
any neighbouring vertices (since we are considering simple random walks) then we
instead consider dividing the mass equally among the neighbours. The definition
for this model will be in the spirit of the discrete model.

Definition 1.2.1. Let f : Zd → R+ with
∑

x∈Zd

f(x) < ∞,

and call f a continuous mass configuration in Zd. We also say that at the point x
the amount of mass is f(x).
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Definition 1.2.2. Let Ti be a function from a continuous mass configuration m
into another continuous mass configuration Ti(m). Let Ti(m) = m if m(i) ≤ 1.
Otherwise let

Ti(m) = m− (m(i)− 1)δix +
1

2d

∑

j∼i

(m(i)− 1)δjx,

where δ is Kronecker’s delta and j ∼ i means that j is adjacent to i (i.e |i−j| = 1).
The function Ti is called a toppling at i.

The intuition behind this definition is that Ti takes all mass exceeding 1 at i
and divides it equally between its 2d neighbours.

Definition 1.2.3. Let σ be a continuous mass configuration and let {Tx1
Tx2

, ...}
be any sequence of toppling functions so that

lim
α→∞

sup
x∈Zd

Txα ...Tx2
Tx1

(σ) ≤ 1.

Then limα→∞ Txα ...Tx2
Tx1

(σ) is called the final mass configuration obtained from
the inital configuration σ (with respect to {Tx1

Tx2
, ...}).

As in the discrete case it can be shown that this is independent of the order of
topplings (see [L]). Thus it makes sense to make the following definition.

Definition 1.2.4. Let σ be an initial mass configuration and ν a mass configura-
tion

lim
α→∞

Txα ...Tx2
Tx1

(σ)

with the property that limα→∞ supx∈Zd Txα ...Tx2
Tx1

(σ) ≤ 1. Call ν a final mass
configuration. The set

{x|ν(x) = 1}

is called the final domain of fully occupied sites.

1.3 Connection with obstacle problems

We will reformulate the problem of finding the final occupied domain in terms that
can be analysed by tools from potential analysis. The key step is the definition
of a function called the odometer function. This is formulated for the Divisible
Sandpile. We can then analyse the asymptotic behaviour of IDLA by the looking
at divisible sandpile. A function similar to this appears naturally in the theory of
obstacle problems. We follow the approach of [L].
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Definition 1.3.1. Let σ be an initial configuration of continuous mass and let ν
be its final mass configuration after a sequence of topplings. Then for a specific
site i there is an amount of mass emitted from i. We will define the odometer
function u(i) as the total amount emitted from i. More precise

u(i) =
∑

k|xk=i

Txk−1
...Tx2

Tx1
(σ(i))− Txk

...Tx2
Tx1

(σ(i)),

that is the sum of the differences in mass after every toppling at i.

The important feature of this function is the following lemma.

Lemma 1.3.1. For the odometer function u we have the identity

∆u = ν − σ,

where σ is the initial mass distribution, ν is the final mass distribution and ∆ is
the discrete Laplace operator defined in section 5.1.

Proof. Since every site emits the same amount of mass to all of its neighbours, the
mass recieved by the site x is 1

2d

∑

y∼x u(y) where y ∼ x means that |x − y| = 1.
We then have

∆u(i) =
1

2d

∑

i∼j

(u(j)− u(i)) = −u(i) +
1

2d

∑

i∼j

u(j) = ν(i)− σ(i).

Note that our definition of the Laplace operator is scaled by dividing by a factor
of 2d (see Section 5.1).

Note that the odometer function only detects movement of mass. To obtain
information about the set of nonempty sites we need some more information about
the initial mass configuration. Consider for example an initial configuration where
every site has either zero mass or mass greater than 1. Then every site in the final
domain has either mass 1 or is a neighbour of a site with mass 1. In this case the
odometer function is of great help when finding all occupied sites.

We have ∆u = 1 − σ in the final domain of occupied sites and ∆u ≤ 1 − σ
outside of the final domain. We will construct a function γ with ∆γ = σ − 1. An
example of such a function is

γ(x) = −|x|2 −
∑

y∈Zd

g1(x, y)σ(y)

where |x| is the usual Euclidean norm defined by |x| =
√

∑d
i=1 |xi|2 and g1(x, y)

is the discrete Green’s function defined in section 5.5.2.
The next Lemma formulates the problem of finding the odometer function for

the divisible sandpile as a discrete obstacle problem.
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Lemma 1.3.2. Let σ : Zd → R+ be an initial continuous mass configuration for
the divisible sandpile. Let

S = {f |∆f ≤ 0, f ≥ γ},

with γ(x) = −|x|2 −
∑

y∈Zd g1(x, y)σ(y). Then we have

u = s− γ

with u as the odometer function and

s = inf
f∈S

f.

Proof. First observe that by construction of γ, we have ∆(u + γ) ≤ 0. Note that
since u is nonnegative it follows that u+γ ≥ s. We see that ∆(u+γ) ≥ 0 and that
u + γ ≥ γ so u + γ ∈ S. Hence u + γ ≥ s. Now we prove the reverse inequality.
For f ∈ S

∆(f − γ − u) ≤ 0

on the final domain of occupied sites since ∆u = 1 − σ on that domain. We also
see that it is nonnegative outside the final domain of occupied sites. By Theorem
5.2.1 we conclude that f − γ − u is nonnegative everywhere. Thus u+ γ ≤ s and
the result follows.

This Lemma allows us to define a continuous analogue of the divisible sand-
pile. It is defined by taking the dual view by constructing a continuous odometer
function which then determines a set where we say that there is mass 1. One has
to be careful since the odometer function does not determine the final occupied
cluster uniquely. However if the initial configuration is sufficiently nice (for ex-
ample demanding that every x satisfy σ(x) = 0 or σ(x) ≥ 1 + ǫ for some fixed
uniform ǫ) the final domain is determined uniquely except at the boundary. But
the situation at the boundary will in one sense be easier since in the continuous
case the measure of the boundary will be small and therefore the mass located at
the boundary is negligible.

Definition 1.3.2. Let σ : Rd → R+ be a function with bounded support. Then
define the continuous odometer function as

u = s− γ,

where

γ(x) = −|x|2 −

∫

Rd

g(x, y)σ(y)dy,

with g(x, y) as defined in section 5.5.1 and

s(x) = inf{f(x)|∆f ≤ 0 and f ≥ γ}.
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This is called the obstacle problem for the obstacle γ. This is a well-studied
problem; for a reference see [F]. This interpretation will allow us to analyse the
discrete models by using the continuous model which is easier to control. The
proof of the Theorem 2.1.1 uses the basic structure of the proof of Theorem 3.1.1
but with one crucial difference, the domain is not the circle but is decided by the
set of occupied sites of the Divisible Sandpile. We will point out in the proof
where this happens. There is also a lot of regularity arguments which is why we
don’t present the full proof of Theorem 2.1.1 here and only the conceptually easier
Theorem 3.1.1.

2 Scaling limit shapes

2.1 Shape theorem

For IDLA with a single source the asymptotic shape of the domain of occupied
sites is a Euclidean ball. This is Theorem 3.1.1 and was proved in [LBG] and we
present a proof of it in section 3. A natural question to ask is whether there exists
asymptotic domains for more general starting configurations. We will introduce a
scaling that reduces the size of the mesh and compensates by adding more particles.
In the limit where the mesh size approaches zero we have limiting shapes for many
starting configurations. Theorem 2.1.1 describes the situation. We again follow
the approach of [L].

Definition 2.1.1. Let B(x, ǫ) denote the open ball of radius ǫ around the point x.
Then let Aǫ be defined as

Aǫ = {x ∈ A|B(x, ǫ) ⊂ A}

and Aǫ as
Aǫ = {x ∈ Rd|B(x, ǫ) ∩ A 6= ∅}.

Aǫ is called the inner ǫ-neighbourhood and Aǫ the outer ǫ-neighbourhood.

Definition 2.1.2. Let A(n) ⊂ δnZd and A ⊂ Rd where δn is a sequence of positive
real numbers approaching 0. We will say that the sequence A(n) converges to A if
for every ǫ > 0 we have

Aǫ ∩ δnZ
d ⊂ A(n) ⊂ Aǫ

for sufficiently large n. We also write A(n) → A.

Our next definition defines our scaling. It is done by considering a mass con-
figuration defined in Rd and for every δn define a discrete mass configuration in Zd

so that the mass at each point is approximately the mean mass around the point.
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Definition 2.1.3. Let σ : Rd → Z+ be a locally integrable function. We define the
discretization of σ at x with respect to the grid δnZd as

σn(x) =

⌊

δ−d
n

∫

x�

σ(y)dy

⌋

where x� denotes the set x+ [−δn/2, δn/2]
d and ⌊a⌋ denotes the closest integer to

a (rounding down).

Definition 2.1.4. Let σn be an initial mass configuration in the grid δnZd. The
final domain of occupied sites for the divisible sandpile with starting mass σn is
denoted by Dn and the final domain of occupied sites for Internal DLA by In.

Definition 2.1.5. Let σ : Rd → R+ be a function with bounded support. Define

D = {x ∈ Zd|γ(x) < s(x)},

where

γ(x) = −|x|2 −

∫

Rd

g(x, y)σ(y)dy,

and
s(x) = inf{f(x)|∆f ≤ 0 and f ≥ γ}.

Theorem 2.1.1. Let d ≥ 2 and σ : Rd → Z+ be a bounded function that is
almost everywhere continuous. Suppose there exist an open set Ω ⊂ Rd such that
{σ ≥ 1} = Ω̄. Then as n → ∞,

Dn → D ∪ Ω.

Furthermore, if δn ≤ 1/ log(n),

In → D ∪ Ω

with probability one.

Proof. Due to the amount of technicalities we will not prove this here, however we
prove a special case in Section 3. For the full proof, see [L].

This means that for sufficiently nice initial configurations the scaling limit of
the divisible sandpile and IDLA is determined by the solution of a continuous
obstacle problem. For example one can see deduce that the scaling limit of IDLA
from a single site must be circular because the continuous obstacle problem is
rotationally invariant. Furthermore, by invoking results of potential theory and
complex analysis and our models relation to quadrature domains we can determine
the scaling limit of IDLA with n sources when d = 2. The boundary is then an
algebraic curve of degree 2n ([L]).

Our next step is to relate this to a free boundary problem which will also
provide us with a physical interpretation of our model.
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2.2 Stefan Problem

We will see that IDLA acts as a discretized version of a free boundary problem
known as the Stefan Problem if we consider the particle system as depending on
time. We follow the approach of [GQ]. By considering the special case t = ∞ with
no heat source we have an intuition for the situation in Theorem 2.1.1.

2.2.1 Classical formulation

Definition 2.2.1. Let D ⊂ Rd be a domain defined by D1 \ D0 for two solid
domains D0 and D1 with D̄0 ⊆ D◦

1. Set Γi = ∂Di (i = 0, 1) and assume that Γi is
a two times differentiable closed hypersurface and assume that there is a function
g(x, t) defined on Γ0, a function h(x) on D and a constant k > 0. A pair of
functions θ(x, t) and s(x) is called a solution of the classical Stefan problem if they
satisfy

s(x) = 0 if and only if x ∈ Γ1,

θ(x, 0) = h(x) for x ∈ D,

θ(x, t) = g(x, t) for x ∈ Γ0,

θ(x, t) = 0 for x such that s(x) = t,

∇xθ(x, t) · ∇xs(x) = −k for x such that s(x) = t,

and
∂tθ(x, t)−∆xθ(x, t) = 0 for x such that s(x) < t or x ∈ D.

This problem enjoys existence and uniqueness of solutions for some natural
regularity assumptions. However, we shall not consider this problem in detail and
refer the reader to [F].

To provide a bit of intuition, we will describe a physical situation where these
equations occur. Suppose we have a system of water, ice and a heat source. Let
D be the set occupied by water at t = 0. Let D0 be a heat source. We shall
not consider the situation inside the heat source and model it only by the fixed
temperature g(x, t) on the surface Γ0. The set D

c
1 is considered to be occupied by

ice at t = 0. The initial temperature of the water is given by the function h(x)
and the ice will be kept at 0. Now consider the melting of ice and let θ(x, t) be
the temperature at point x at time t. The moving interface between water and ice
is described by the function s(x) such that the curve defined by the solutions to
the equation s(x) − t = 0 is the boundary at time t. The region where s(x) < t
is occupied by water and the region where s(x) > t is occupied by ice at time t.
The constant k is a physical constant related to the specific melting heat of ice.

Now because we would like the free boundary at t = 0 to be equal to Γ1

we get the restriction that s(x) = 0 if and only if x ∈ Γ1. We have θ(x, 0) =
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h(x) for x ∈ D and θ(x, t) = g(x, t) for x ∈ Γ0 by the definition of h and g. We
have θ(x, t) = 0 for x such that s(x) = t by continuity of temperature at the free
boundary. The condition that ∇xθ(x, t) · ∇xs(x) = −k for x such that s(x) = t is
due to the physics of melting, in short the speed of melting is proportional to the
temperature of the surrounding water and the specific melting heat of ice. The
last condition that ∂tθ(x, t) − ∆xθ(x, t) = 0 for x such that s(x) < t or x ∈ D is
the ordinary heat equation for all points in the interior of the water region.

2.2.2 Adapted formulation

Our adapted formulation is almost the same as the classical with the difference
that we model the ”heat source” with points. For that we will use the Dirac delta
function and obtain the equation ∂tθ(x, t)−∆xθ(x, t)−

∑n
i=1 ciδxi

= 0. Specifically
we have the following setup.

Definition 2.2.2. Let D ⊂ Rn be a solid domain. Then define Γ = ∂D and
assume that Γ is a two times differentiable closed hypersurface. Furthermore as-
sume that there is a finite collection of points {xi}i inside D together with positive
constants {ci}i, a function h(x) on D and a constant k > 0. A pair of functions
θ(x, t) and s(x) is called a solution of the adapted Stefan problem if they satisfy

s(x) = 0 if and only if x ∈ Γ,

θ(x, 0) = h(x)for x ∈ D,

θ(x, t) = 0 for x such that s(x) = t,

∇xθ(x, t) · ∇xs(x) = −k for x such that s(x) = t,

and

∂tθ(x, t)−∆xθ(x, t)−
n

∑

i=1

ciδxi
= 0 for x such that s(x) < t or x ∈ D,

where δxi
denotes the Dirac delta at xi.

2.2.3 Continuous time IDLA

We will now consider a model of IDLA where the particles move simultaneously
in continuous time. It features both an initial configuration of particles and point
sources where new particles are created. Both the jumping times and the particle
creation will be modeled using Poisson processes (defined in Section 5.4.2).
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Definition 2.2.3. Assume the initial setup of particles is the same as in Definition
2.1.3 with grid size δn. Furthermore suppose there is a finite set of point sources
{xi}i with corresponding intensities {ci}i. The generalized IDLA model is the
process occuring if every particle has a probability to jump to a neighbouring vertex
according to a Poisson process with intensity δ−2

n and every point source xk creates a
new particle with a certain probability according to a Poisson process with intensity
ckδ

−d
n .

By considering the definition without heat sources and look at the configuration
at t = ∞ this will correspond to the earlier definition of IDLA. This is because
every particle will stop with probability 1 and the order of the particles does not
matter. We will not state the exact conditions and type of convergence of this
model, the details are found in [GQ].

Theorem 2.2.1. As δn → 0 the density of particles in the generalized IDLA model
converges weakly to the unique solution θ(x, t) of the adapted Stefan problem with
corresponding initial conditions and point sources.

Here h(x) of the Stefan problem is set to the initial density of the particles in
the IDLA model. The constant k in the Stefan problem is the amount of particles
every site absorbs before becoming full so according to our definition of IDLA the
constant will be k = 1.

Proof. See [GQ].

3 IDLA with a single source

3.1 Proof of the asymptotic shape

In this section we will present a proof of the circular asymptotics of IDLA with
a single source. The purpose of this is mainly to showcase the techniques used
when proving results about IDLA. The proof follows [LBG] which is one of the
first articles on the subject. We will not prove all lemmas but focus on the heart of
the matter. The lemmas used here can be found in the Appendix. In this section
let all balls be lattice balls, i.e. the usual Euclidean ball intersected with Zd.

Theorem 3.1.1. For any ǫ > 0 we have

B(0, n(1− ǫ)) ⊂ D⌊ωdnd⌋ ⊂ B(0, n(1 + ǫ)),

for large enough n with probability 1 where D⌊ωdnd⌋ is the IDLA cluster obtained
by starting with ⌊ωdn

d⌋ particles at the origin. Here ωd is the volume of the d-
dimensional unit ball and ⌊a⌋ denotes the closest integer to a (rounding down).

12



Proof. We will prove the theorem by first showing that for any ǫ > 0 and large
enough n,

B(0, n(1− ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋

with probability 1 and then using this to prove that for any ǫ > 0 and large enough
n,

D⌊ωdnd⌋ ⊂ B(0, n(1 +Kdǫ
1/d))

with probability 1 for some constant Kd and by this deduce the result. That
the first inclusion is sufficient can be seen for example by the change of variables
n′ = n(1 + ǫ)1/d and observe that the quantity in front of n′ in the left hand side
also approaches 1 from below when ǫ → 0+.

3.1.1 Inner bound

To prove that for any ǫ > 0 and large enough n,

B(0, n(1− ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋

with probability 1, we will introduce some quantities that we will estimate. First,
consider the random walks X i(t) (X i(t) denotes the i:th walk) determining the
cluster but we let them evolve forever, even after they leave the cluster. Then we
define the following random stopping times

σi = min{t|X i(t) /∈ Di−1},

τ iz = min{t|X i(t) = z},

and
τ in = min{t|X i(t) /∈ B(0, n)}.

These can be interpreted as follows, σi is the time of the first exit of the i:th
particle from the cluster, τ iz is the first hitting time of z for the i:th particle and
τ in is the first exit time of B(0, n) for the i:th particle.

To prove B(0, n(1 − ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋ for large enough n we will use the
following lemma.

Lemma 3.1.1. If

∞
∑

n=1

∑

z∈B(0,n(1−ǫ))

P(τ iz > σi for all i ≤ ⌊ωdn
d(1 + ǫ)⌋) < ∞. (1)

then B(0, n(1− ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋ for large enough n.
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Proof. First note that

B(0, n(1− ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋,

for large enough n is equivalent to that

lim sup
n→∞

P(B(0, n(1− ǫ)) ⊂ D⌊ωdnd(1+ǫ)⌋) = 1,

which in turn is equivalent to that

lim sup
n→∞

P(B(0, n(1− ǫ)) * D⌊ωdnd(1+ǫ)⌋) = 0.

Now
B(0, n(1− ǫ)) * D⌊ωdnd(1+ǫ)⌋

can be rephrased as
τ iz > σi for all i ≤ ⌊ωdn

d(1 + ǫ)⌋.

for some z ∈ B(0, n(1− ǫ)).
Now applying the Borel-Cantelli (Theorem 5.6.1) yields the result.

To estimate the terms in this sum we introduce the following random variables

N =

⌊ωdn
d(1+ǫ)⌋
∑

i=1

1{τ iz<σi},

M =

⌊ωdn
d(1+ǫ)⌋
∑

i=1

1{τ iz<τ in}
,

and

L =

⌊ωdn
d(1+ǫ)⌋
∑

i=1

1{σi≤τ iz<τ in}
.

These can be interpreted as follows, N is the number of particles hitting z before
stopping, M is the number of walks hitting z before exiting the ball B(0, n) and
L is the number of walks visiting z before leaving the ball B(0, n) but after the
particle stops. Now we can see that

P(τ iz > σi for all i ≤ ⌊ωdn
d(1 + ǫ)⌋) = P(N = 0)

and that
N ≥ M − L.
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Lemma 3.1.2.

P(N = 0) ≤ P(M ≤ a) + P(L ≥ a)

for any given a.

Proof. First we show that

P(N = 0) ≤ P(M ≤ a or L ≥ a)

for any given a. This can be seen by considering cases. Suppose M ≤ a, then we
are done. Suppose instead that M > a, then L > a since L ≥ M. Now the Lemma
follows from elementary probabilistic considerations.

Our strategy is now to estimate these terms and show that for some a they can
be made small. To estimate these we are going to use the large deviations estimate
for sums of independent variables (see Theorem 5.7.1). M is a sum of independent
variables, however L is not a sum of independent variables and to estimate this
we will enlarge the index set. Every summand corresponds to some stopping time
σi and some point z. If we include all points of B(0, n) and consider the post-tiz
random walks we get the random variable

L̄ =
∑

y∈B(0,n)

1y
{τ iz<τ in}

,

which is a sum of independent variables. The point is that since L ≤ L̄ we can
estimate P(L̄ ≥ a) instead of P(L ≥ a). So we have the following inequality

P(τ iz > σi for all i ≤ ⌊ωdn
d(1 + ǫ)⌋) ≤ P(M ≤ a) + P(L̄ ≥ a),

for any given a.

Lemma 3.1.3. For fixed ǫ > 0 and for large enough n,

P(L̄ ≥ (1 + ǫ/4)E[L̄]) ≤ exp(−cdn),

and
P(M ≤ (1 + ǫ/4)E[L̄]) ≤ exp(−cdn).

By putting a = (1 + ǫ/4)E[L̄]) the sum (1) converges since every term is dom-
inated by a decreasing exponential function.

Proof. First note that

E[M ] = ⌊ωdn
d(1 + ǫ)⌋P(τz < τn),
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and
E[L̄] =

∑

y∈B(0,n)

Py(τz < τn),

where Py(τz < τn) is the probability that a random walk starting at y hits z before
leaving B(0, n).

By standard results about Green’s functions (for example [LL]) we can write

Py(τz < τn) =
gB(0,n)(y, z)

gB(0,n)(z, z)
,

where gB(0,n) is the Green’s function for a random walk stopped when exiting
B(0, n) see (5.5.3). By using these identities and Theorem 5.5.5 we get

E[M ] = ⌊ωdn
d(1 + ǫ)⌋

gB(0,n)(0, z)

gB(0,n)(z, z)
≥ (1 + ǫ/2)

∑

y∈B(0,n)

gB(0,n)(y, z)

gB(0,n)(z, z)
= (1+ ǫ/2)E[L̄],

which relates M and L̄. We can also rewrite

E[L̄] =
∑

y∈B(0,n)

gB(0,n)(y, z)

gB(0,n)(z, z)
=

Ez[τn]

gB(0,n)(z, z)
.

Now by Theorem 5.5.5 we obtain, for d = 2

E[L̄] ≥ β2n
2/ log n,

and for d ≥ 3
E[L̄] ≥ βdn

2,

for large enough n and for suitable positive constants βd which depend on ǫ. By
our estimate E[M ] ≥ (1 + ǫ/2)E[L̄] we have the same lower bound for E[M ]. Now
since M and L are independent sums we can apply Theorem 5.7.1 with γ = 1/3
to obtain

P(L̄ ≥ E[L̄] + E[L̄]5/6) ≤ 2 exp
(−E[L̄]2/3

4

)

≤ exp(−cdn),

and

P(M ≤ E[M ]− E[M ]5/6) ≤ 2 exp
(−E[M ]2/3

4

)

≤ exp(−cdn).

Now by the relation E[M ] ≥ (1 + ǫ/2)E[L̄] the lemma follows.
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Remark 3.1.1. It can be interesting to note that almost the entire argument go
through in the case of more general starting configurations. The one thing which
fails is also the only argument where the domain as a ball appears explicitly, namely
the lemma that for n sufficiently large and z ∈ B(0, n(1− ǫ)) we have

∑

y∈B(0,n)

gB(0,n)(y, z) ≤ ωdn
dgB(0,n)(0, z).

This is saved (modulo some technicalities) by replacing the left hand side by
∑

y∈D

gD(y, z),

where D is the final occupied domain of the Divisible Sandpile and replacing the
right hand side by

∑

y∈D

σ(y)gD(y, z),

where σ is the initial starting configuration. But the domain of the Divisible Sand-
pile is close to the domain obtained from the continuous obstacle problem (the
support of the odometer function) in the limit for sufficiently nice starting con-
figurations. This suggests that the limit shape is the support of the corresponding
odometer function and is made precise in Theorem 2.1.1.

3.1.2 Outer bound

To obtain the outer bound we are going to use the inner estimate in an essential
way. The point is that most of the particles stay to fill up B(0, n(1−ǫ)) with only a
small portion leaving B(0, n). The next thing to check is that the particles exiting
B(0, n) are fairly spread out and do not create tentacles or other thin objects. To
begin we define the event F as when the following estimate holds,

|D⌊ωdnd⌋ ∩ B(0, n)c| < C0ǫn
d

with C0 chosen so that
P(F ) ≥ 1− ǫ,

by the inner bound. To control the particles leaving B(0, n) we define D̄(i) as the
shape after the ith particle leaving B(0, n) has stopped. Define Zk(i) as

Zk(i) = |D̄(i) ∩ S⌊1+Kdǫ1/d⌋+1+k|,

where Sj is the jth shell, namely Sj = {x so that j ≤ |x| < j + 1}. Zk(i) is
interpreted as the amount of particles in the k:th outer shell after i particles has
left the ball. We would like to prove

P(lim sup
n

{D⌊ωdnd⌋ * B(0, n(1 +Kdǫ
1/d))} ∩ F ) = 0
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as this together with the inner bound will imply our result. By Theorem 5.6.1 it
is enough to prove that

∑

n

P(D⌊ωdnd⌋ * B(0, n(1 +Kdǫ
1/d)), F ) < ∞.

We will therefore estimate these terms as

P(D⌊ωdnd⌋ * B(0, n(1 +Kdǫ
1/d)), F ) ≤ P(Zn′(⌊C0ǫn

d⌋ ≥ 1)) ≤ E[Zn′(⌊C0ǫn
d⌋)]

for large enough n and n′ = ⌊((K − 1)ǫ1/dn)⌋ and use the following lemma:

Lemma 3.1.4. For some constant C1 we have

E[Zk(j)] ≤ nd−1
(

C1
j

k
ǫ(1−d/d)n1−d

)k
.

Proof. We will not prove this lemma here. The technique used is to exploit that
to reach an outer shell a particle must pass through all inner shells. This leads to
a recursive estimate. The full proof is found in [LBG].

Using this lemma we see that

P(D⌊ωdnd⌋ * B(0, n(1 +Kdǫ
1/d)), F ) ≤ nd−1(

C1

K
)n

′

for large enough n and K. Now letting K > C0 this will be bounded by exp(αn)
for some positive α. This exponential tail clearly implies the convergence of

∑

n

P(D⌊ωdnd⌋ * B(0, n(1 +Kdǫ
1/d)), F ),

which in turn implies the theorem since we can choose ǫ arbitrarily.

4 Related Models

4.1 Rotor-Router Aggregation

We will describe a model that is related to IDLA, but has the advantage that it
is deterministic. It was introduced in [PDDK] under the name Eulerian Walkers.
Suppose we have an initial discrete mass configuration σ as in Definition 1.1.1.
Suppose moreover that we have a function r(x) : Zd → {0, 1, ..., 2d − 2, 2d −
1} assigning a ”direction” to every point in Zd where we have ordered the 2d
neighbours of a point. In 2 dimensions we can imagine the directions as North(0),
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West(1), South(2) and East(3). Now the toppling of a particle at x is defined by
moving a particle from x to the site where the function r points at and afterwards
changing the value r(x) to r(x) + 1(mod 2d). This corresponds to changing the
direction at x to the next neighbour. It can be shown that the final domain does
not depend on the ordering of the topplings. This model enjoys results in the same
sense as those for IDLA.

Definition 4.1.1. With σ and σn as in Definition 2.1.3, define Rn to be the final
domain of occupied sites for the Rotor-Router model with some fixed initial rotor
configuration r.

Theorem 4.1.1 ([L]). Let d ≥ 2. Let σ : Rd → Z+ be a bounded function that is
continuous almost everywhere. Suppose there exist an open set Ω ⊂ Rd such that
{σ ≥ 1} = Ω̄. Then as n → ∞,

Rn → D ∪ Ω,

for any initial rotor configuration r and where D is as in Definition 2.1.5.

Numerical simulations suggest that the Rotor-Router model converge much
faster and with very few anomalies to the shape of the divisible sandpile than
IDLA does (see [C] for a collection of information obtained from simulations).
There are several conjectures that seem reasonable, mostly concerning the Rotor-
Router shape for n particles, starting at the origin with all rotors pointing in the
same direction. For example, is the shape simply connected for all n? Is it convex
for all n? Does the difference in radius of the smallest ball containing the shape
and the largest ball contained in the shape stay bounded? Does the difference go
to zero?
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Figure 1: Rotor-Router shape created by 1 million particles starting at the origin,
the sites are colored by the direction of the rotors. [L]

4.2 Classical Sandpile

Another deterministic growth model is the Classical Sandpile or sometimes called
the Abelian sandpile. It was introduced in [Dh]. The simplest version of the
Classical Sandpile is described by considering an initial discrete mass configuration
σ as in Definition 1.1.1. A site topples if σ(x) ≥ 2d, adding one particle to every
neighbouring site and emptying x. As before, two neighbouring sites are x and
y such that |x ∼ y| = 1. We continue the topplings until every site satisfies
σ(x) < 2d. We then generalize this by saying that every empty site (x such that
σ(x) = 0) starts with a ”hole” of depth H, meaning that a site absorbs the first H
particles it recieves and then the site functions as normal, toppling once for every

20



2d particles recieved. That is, a site x with σ(x) = 0 absorbs 2d+H particles before
toppling the first time. When it does so it sends out just 2d particles. After the
initial toppling it topples once for every 2d particles it recieves as normal. We can
also consider the classical sandpile with negative H. This is defined by considering
the usual model but with −H particles starting at each site with σ(x) = 0, that
is, given σ we add −H particles to every empty site. We have to be careful since
if −H ≥ 2d− 1 the topplings will not stop if we add just a single grain. One can
then ask if there exists an asymptotic shape and what it may be. The existence
of an asymptotic shape is not known but we have some bounds of the domain of
occupied sites.

Theorem 4.2.1. Let H ≥ 2 − 2d. Denote the domain of visited sites of the
Classical Sandpile with parameter H run with n particles starting at the origin by
Sn,H . Let r be defined by n = ωdr

d, where ωd is the volume of the unit ball in d
dimensions. Then we have for H ≥ 1− d and for any ǫ > 0

Bc1r−c2 ⊂ Sn,H ⊂ Bc′
1
r+c′

2
,

where c1 = (2d− 1 +H)−1/d, c′1 = (d− ǫ+H)−1/d and c2 and c′2 are independent
of n. When H < 1 − d we do not have the full result, however we have the first
inclusion Bc1r−c2 ⊂ Sn,H .

Proof. See [L].

The proof strategy is to observe that the Divisible Sandpile will behave similarly
to the Classical Sandpile, enabling us to use results for the Divisible Sandpile.
However, simulations seem to suggest a much more complicated behaviour of the
asymptotic shape.

There is a conjecture that for d = 2, the asymptotic shape of Sn,H is a regular
polygon with 4H + 12 sides. For H = −2 it is known that the asymptotic shape
is a square; a proof by can be found in [FR].

5 Appendix

5.1 The discrete and the continuous Laplace operator

The continuous Laplace operator ∆ is commonly formulated in cartesian coordi-
nates in Rd for C2-functions by the following expression:

∆f(x) =
d

∑

i=1

∂2f

∂x2
i

,
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Figure 2: The picture shows Sn,0, Sn,−1 and Sn,−2 respectively for n = 250000
where the color indicates the amount of particles. [L]

and the discrete Laplacian of a function f defined on a graph is defined by

∆f(x) =
1

2d

∑

y∼x

f(y)− f(x),

where y ∼ x means that y and x are neighbours (i.e. |x ∼ y| = 1). Note that the
scaling by 2d in the discrete case is not standard, but it is used here since it makes
some correspondences more natural. The similarity of these operators is that they
in some sense measure how the local average compares to the function value of
that point. We can now define the notion of harmonic function:

Definition 5.1.1. A function f(x) is called harmonic at x if ∆f(x) = 0, super-
harmonic if ∆f(x) ≤ 0 and subharmonic if ∆f(x) ≥ 0.

In the continuous case we will extend the definitions to functions that are not
in C2.

Definition 5.1.2. Define the mean value of a function over a ball of radius r as

Arf(x) :=
1

ωdrd

∫

B(x,r)

f(y)dy.

Then if f is lower-semicontinuous and for any ball Arf(x) ≤ f(x) the function is
superharmonic and likewise if f is upper-semicontinuous and for any ball Arf(x) ≥
f(x) then f is subharmonic. If a function is both super- and subharmonic it is
called harmonic.

This generalization uses the mean-value property of harmonic functions.
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5.2 Discrete maximum-minimum principle

Theorem 5.2.1. Let f be a superharmonic (subharmonic) function defined in a
subset Ω ⊆ Zd, then f has no local minima (maxima) at interior points of Ω or it
is constant in that connected component. By a local minimum we mean a point x
so that f(x) ≤ f(y) for all neighbouring points y.

Proof. We will prove the theorem for a superharmonic function, the subharmonic
case is proven in the same way. Suppose f is superharmonic at x (for this to make
sense it must be defined at all neighbouring points) and x is a local minimum for
f . By the superharmonicity

1

2d

∑

y∼x

f(y)− f(x) ≤ 0.

It follows that either all neighbouring points are equal or that at least one of
the neighbouring points have less value. If all neighbouring points are equal we
pick another neighbouring point and proceed by induction. If it has neighbouring
points of less value it contradicts the assumption of local minimum.

Corollary 5.2.1. If f is superharmonic (subharmonic), defined on a finite set the
minimum (maximum) is obtained on the boundary.

5.3 Probabilistic concepts

5.3.1 Expected value

In this text we only use the expected value of functions on a probability space with
at most countably many values. The definition in the continuous case is similar,
substituting sums with integrals where needed.

Definition 5.3.1. Let f be a real valued function on a probability space with at
most countably many possible events {Ai}i with associated probability measure P .
Then, if the following series is absolutely convergent, we define the expected value
(expectation operator) as

E[f ] =
∞
∑

i=1

f(Ai)P (Ai).

5.4 Stochastic processes

Definition 5.4.1. A stochastic process with state space X is a collection of X-
valued random variables indexed by a time-set T . In this work the time-set can be
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taken to be either N or R. That is, a stochastic process as a collection of random
variables

{Ft|t ∈ T}.

A process where T = N is called a discrete time process and if T = R it is called
a continuous time process.

5.4.1 Simple random walk

Definition 5.4.2. A d-dimensional simple random walk is a Zd-valued discrete
time stochastic process. We define it recursively. Choose a starting vertex x ∈ Zd

and set F0 = x with probability 1. Then define Ft so that the probability that Ft

is at a site adjacent to Ft−1 is 1
2d
. This is interpreted as a particle moving in Zd

so that it starts at x and then moves to an adjacent site at each time step. Every
adjacent site is equally probable.

5.4.2 Poisson process

Definition 5.4.3. The Poisson process is an N-valued continuous time process.
It is defined to have the following properties, which defines it uniquely. First we
demand that F0 = 0. Secondly it should be nondecreasing and have independent
increments, that is the behavior in disjoint time intervals are independent. Further-
more the probability distribution of increments in a given interval is only dependent
of the length of the interval. Lastly, increments are always one at a time.

The expected number of increments in an interval of unit length is called the
intensity of the process.

Results and discussion about the Poisson process can be found for example in
[Fe].

5.5 Green’s function

5.5.1 Continuous Green’s function

Definition 5.5.1. For d = 2 we define

g(x, y) =
2

π
log |x− y|.

For d ≥ 3 we define

g(x, y) =
2

(d− 2)ωd

|x− y|2−d,

where ωd is the volume of d-dimensional unit ball.
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Note that this definitions differs by a factor 2d from the usual harmonic po-
tential. This is chosen because it is convenient when working with the discrete
Laplacian and random walks.

5.5.2 Discrete Green’s function

We will construct the discrete version of Green’s function using a random walk.
Note however that this function is useful just for its properties as well and there-
fore can be used even when the original problem does not involve random walks.
The relation with the continuous version can for example be seen as follows, if we
translate this definition to the continuous case (i.e. Brownian motion) the corre-
sponding function turns out to be that of Definition 5.5.1. For d ≥ 3 a simple
random walk is transient (see for example Theorem 4.1.1 of [LL]), meaning that
the expected number of returns to a single point is finite. Thus we can define

g1(x, y) = E(
∞
∑

n=1

1{Xx(n)=y}),

where E is the expectation operator and 1{Xx(n)=y} is a function that is 1 if the
simple random walk Xx(t) started at x is at site y after exactly n steps and 0
otherwise. We note that g1(x, y) = g1(y, x) = g1(x − y, 0) which should also be
clear from the intuition about random walks. What we want to prove now is that

∆g1(0, x) = −δ0x,

where δ is Kronecker’s delta.

Theorem 5.5.1. ∆g1(0, x) = −δ0x where g1 is the discrete Green’s function.

Proof. We can write

g1(0, x) = E(
∞
∑

n=1

1{X0(n)=x}) = 1{x=0} +
∑

y

p(y, x)g1(y, 0)

where p(x, y) is 1
2d

if x ∼ y and 0 otherwise or equivalently the probability that a
random walk jumps from y to x in one step. This identity is obtained by observing
that for every site the random walk visits it arrived from an adjacent site or that
it started there. Now applying ∆ to both sides we see that ∆g1(0, x) = −δ0x since
the second term vanishes.

In the case d = 2 the expected number of visits of a simple random walk at a
single site is unbounded (again see Theorem 4.1.1 of [LL]). We will therefore have
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to construct another function with similar properties in an alternative way. This
function is called the potential kernel (note however that some authors call the
negative of our function the potential kernel). We will use the same notation as
for the discrete Green’s function. It will be clear from the dimension number d
which function we mean. So, for d = 2, let

g1(x, y) =
∞
∑

n=0

(P(Xx(n) = y)− P(Xx(n) = x)) = lim
n→∞

[gn1 (x, y)− gn1 (x, x)]

where gn1 (x, y) is the expected number of visits at y in the n first steps of a simple
random walk started at x. We have

|P(Xx(n) = y)− P(Xx(n) = x)| ≤ c|x− y|n−3/2 (2)

making the sum
∑∞

n=1 P(Xx(n) = y)−P(Xx(n) = x) converge absolutely. However
we leave out the proof.

Note also that

∆y(P(Xx(n) = y)) = P(Xx(n+ 1) = y)− P(Xx(n) = y),

which is the key to proving that the potential kernel satisfies the same identity as
Green’s function. We want to prove that ∆g1(0, x) = −δ0x for the potential kernel
as well.

Theorem 5.5.2. ∆g1(0, x) = −δ0x, where g1 is the potential kernel.

Proof.

∆g1(0, x) = ∆
∞
∑

n=0

(P(X0(n) = x)− P(X0(n) = 0))

=
∞
∑

n=0

∆(P(X0(n) = x)− P(X0(n) = 0))

= lim
N→∞

N
∑

n=0

∆(P(X0(n) = x)− P(X0(n) = 0))

= lim
N→∞

N
∑

n=0

(P(X0(n+ 1) = x)− P(X0(n) = x))

= lim
N→∞

(P(X0(n+ 1) = x)− P(X0(0) = x))

= −P(X0(0) = x) = −δ0x,

where we have used the estimate (2) in the second equality.
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Next we are going to present a couple of asymptotic estimates for g1 both for
the case when d = 2 and when d ≥ 3. These are standard estimates and can for
example be found in [LL, Th. 4,3,1 and 4,4,4].

Theorem 5.5.3. If g1(x, y) is the discrete Green’s function in dimension d ≥ 3,
then

g1(x, y) =
2

(d− 2)ωd

|x− y|2−d +O(|x− y|−d),

where ωd is the volume of the unit ball in Rd.

Theorem 5.5.4. If g1(x, y) is the potential kernel in dimension d = 2, then

g1(x, y) = −
2

π
log |x− y|+

2γ + log(8)

π
+O(|x− y|−2),

where γ = limn→∞

∑n
k=1(1/k − log(n)) = 0.577... is Euler’s Constant.

The interesting thing to note is that g1 and g are very close. This is crucial for
our whole approach.

5.5.3 Green’s function for a random walk in a ball

Definition 5.5.2. Let Xy(t) be a random walk started at y that is killed upon
leaving the ball B(0, n). Then let

gB(0,n)(y, z) = E[
∞
∑

t=0

1{Xy(t)=z}].

Theorem 5.5.5. We have the following estimates

gB(0,n)(0, z) =
2

π
log

n

max(|z|, 1)
+ o(

1

max(|z|, 1)
) +O(

1

n
),

for d = 2,

gB(0,n)(0, z) =
2

(d− 2)ωd

((max(|z|, 1))2−d − n2−d) +O((max(|z|, 1))1−d),

for d ≥ 3 and
gB(0,ǫn)(0, 0) ≤ gB(0,n)(z, z) ≤ gB(0,2n)(0, 0),

for all d and z ∈ B(0, n(1− ǫ)).

Furthermore for z ∈ B(0, n), we have

n2 − (max(|z|, 1))2 ≤ P(τn) ≤ (n+ 1)2 − (max(|z|, 1))2,
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where τn is the time where the random walk leaves B(0, n).
Lastly, for n sufficiently large and z ∈ B(0, n(1− ǫ)) we have

∑

y∈B(0,n)

gB(0,n)(y, z) ≤ ωdn
dgB(0,n)(0, z).

Proof. See for example [LBG].

5.6 Borel-Cantelli

Borel-Cantelli’s lemma is a statement in probability theory that is very useful
when one wants to prove that something happens with probabilty 0.

Theorem 5.6.1. Let {En}
∞
n=1 be a sequence of events in some probability space.

Then
∞
∑

n=1

P(En) < ∞ ⇒ P(lim sup
n

En) = 0.

Proof. See for example [Fe].

5.7 Sums of independent indicator variables

Definition 5.7.1. A function defined defined on a probability space taking the
values 0 and 1 is called a random indicator function.

If we form a sum of independent indicator functions we would expect that this
is not too far away from the sum of the expectations. The next theorem tells us
exactly that.

Theorem 5.7.1. Let S be a finite sum of independent indicator random functions
with mean µ. Then for any 0 < γ < 1/2 and for large enough µ one has

P(|S − µ| ≥ µ1/2+γ) ≤ 2 exp(
−µ2γ

4
).

Proof. See for example [LBG].
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5.8 Notations

Zd The d-dimensional integers
Ti A toppling function at i
δij Kronecker’s delta function
σ An initial mass configuration
ν A final mass configuration
u The odomenter function
∆ Laplace operator, discrete or continuous
γ An obstacle given by some initial configuration
s A solution to an obstacle problem
Rd d-dimensional Euclidean space
B(x, r) A ball of radius r around the point x or in Section 3 the lattice ball
Aǫ Outer ǫ-neighbourhood
Aǫ Inner ǫ-neighbourhood
δnZd d-dimensional integers with grid size δn
⌊a⌋ The closest integer to a (rounding down)
x� The set x+ [−δn/2, δn/2]

d

Z+ {0,1,2,...}
Ω̄ Closure of the set Ω
Ω◦ Interior of the set Ω
Ωc Complement of the set Ω
∇ Gradient operator
δxi

Dirac delta function at xi

ωd Volume of the unit ball in Rd

1{E} Function with value 1 if E is true and 0 if it is false
P Probability operator
E Expectation operator
X i(t) The state of the i’th random walk after t steps
C2 The class of twice continuosly differentiable functions
g(x, y) Green’s function
g1(x, y) Discrete Green’s function or potential kernel
gB(0,n) Discrete Green’s function for a ball of radius n
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