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Abstract

The central topic of this report is mathematical analysis of dynamical systems aris-

ing from systems biology, in particular three lower dimensional models on circadian

rhythms in drosophila. Such systems have the common feature that they are large

and nonlinear and many parameters and variables are nonnegative. The main issues

are stability of steady state solutions, bifurcation of type Saddle node and Hopf, limit

cycles and global bifurcation diagram in terms of biological parameters. The local

stability of steady state and the Hopf bifurcation are carried out by the linearization

together with a careful analysis using Routh-Hurwitz criterion in terms of parameters.

It is found that the conclusions drawn from computer simulations in many research

papers on these models are too rough to be qualified as Hopf bifurcation so a better

value for the Hopf bifurcation is provided here, based on more rigorous mathematical

analysis based on theory of zero locations and an extensive numerical simulation us-

ing Matlab and Mathematica. To prove the stability of the Hopf bifurcation, center

manifold theorem is studied in order to compute the first Lyapunov coefficient of a dy-

namical system although the goal for the five dimensional model has not been achieved.

In the end, descriptions on parameters resulting in saddle node bifurcation and the

Hopf bifurcation are given. To make the ideas apparent for non-mathematicians the

details on ”bacterial growth in chemostat” are worked in most of the mathematical

topics studied in this report. Some model reduction techniques are also discussed. To

the best of our knowledge the theoretical results found for the five dimensional model

are new.
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1 Introduction

In this report, some mathematical issues frequently appearing in analysis and mod-

elling of biological systems are discussed. The analysis of some lower (simplified)

dynamical systems, in particular, arising from modelling circadian rhythms based on

research papers [1, 5, 8, 13] are also presented.

Typically in biological modelling the dynamical systems are autonumous, that is,

they are governed by a nonlinear differential equation of the type

dx

dt
= f(x)

where x ∈ R
n is a state vector and f : Rn → R

n does not depend on t explicitly. In

the topics of this thesis, xi for example are the concentrations of different chemical

substances, and f is a rational function of x1, x2, x3, ......, xn.

To make the thesis more accessible to readers, a short presentation on biological

background relevant to the thesis is also given. A classical interesting example of the

bacterial growth in chemostat (described below) is analyzed throughout the thesis to

illustrate standard analysis used in biological modelling. For further details we refer

to [2]. Models of circadian rhythms mainly based on the research work of Leloup and

Goldbeter [5, 8] are also described briefly.

1.1 Bacterial growth in a chemostat

Let V be the constant volume of solution in culture chamber, F be (constant and

equal) flows in vol/sec, e.g. m3/s, N be bacterial population density in mass/vol, e.g.

g/m3, C(t), C be nutrient concentrations in mass/vol (C0 assumed to be constant).

It is assumed that the chamber is well-mixed (i.e. continuously stirred tank reactor

in chemical engineering). It is also assumed that

(i) the growth of biomass in each unit of volume is proportional to population (and

to time interval length), and depends on amount of nutrient in that volume, i.e

N(t+∆t)−N(t) = K(C(t))N(t)∆t

where K(C) will be discussed later.

(ii) The consumption of nutrient per unit volume proportional to increase of bacterial

population, i.e.

C(t+∆t)− C(t) = −α(N(t+∆t)−N(t))

due to consumption. Note that the total biomass is N(t)V , and the total nutrient in

culture chamber is C(t)V . It is clear that the biomass cahnge in the time interval △t

due to growth is

N(t+∆t)V −N(t)V = (N(t+∆t)−N(t))V = K(C(t))N(t)∆tV,

so contribution to d(NV )
dt is +K(C)NV .
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Observe that in a small interval △t, the volume out is F△t which is m3(= (m3/S)S).

So, since the concentration is N(t)(g/m3), the mass out is N(t) ± △t(g), thus the

contribution to d(NV )
dt is −N(t)F . Hence

d(NV )

dt
= K(C)NV −NF

For d(CV )
dt equation we have these terms −αK(C)NV (depletion), −C(t)F (outflow)

and C0F (inflow). Thus

d(CV )

dt
= −αK(C)NV − C(t)F + C0F

Finally, divide by constant V we obtain the following system

dN

dt
= K(C)N −NF/V

dC

dt
= −αK(C)N − CF/V + C0F/V

A reasonable choice for K(C) is

K(C) =
KmaxC

Km + C

or very usual notation
VmaxC

Km + C

This gives linear growth for small nutrient concentrations:

K(C) ≈ K(0) +K ′(0)C =
VmaxC

Km

but saturates at Vmax as C → ∞. This expression is called Michaelis-Menten kinetics.

When C = Km the growth rate is 1/2 of maximal, that is Vmax/2. This explains ”m”

(for middle). Therefore the two equations for the chemostat with Michaelis-Menten

kinetics are














dN

dt
=

KmaxC

Km + C
N −NF/V

dC

dt
= −α

KmaxC

Km + C
N − CF/V + C0F/V

(1)

1.2 Drosophila and Circadian Rhythms

In most kitchens the small flies that are found are Drosophila Melanogaster also called

fruit fly. They are often brought in by ripened tomatoes, grapes and other perishable

items from the garden. Drosophila melanogaster is a little two winged insect about

3mm long that belongs to the Diptera, the order of the flies. The drosophila egg is

about half a millimeter long. Fertilization takes about one day, the embryo to develop

and hatch into a worm-like larva. The larva eats and grows continuously, after two
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days as a third in star larva; it moults one more time to form an immobile pupa.

Over the next four days, the body is completely remodeled to give the adult winged

form, which then hatches from the pupal case and is fertile within about 12 hours.

Drosophila has been used as a model organism for research for almost a century, and

today. One of the reasons that people work on it is because it is a small animal, with

a short life cycle of just two weeks, and is cheap and easy to keep large numbers. [12]

Figure 1: Pictures of the Fruit fly (Drosophila)

The most important biological rhythms are those that occur with a period close to

24 hours and that allow the organisms to adapt to periodic variations in the earth’s

environment. Experimental advances during the past decades have clarified the molec-

ular bases of these rhythms. Everyone knows about his/her 24 hour sleep-wake cycle.

Many other daily rhythms are exhibited by human body such as urine production,

body temperature, hormone secretion and skin cell division. These kind of rhythms

are observed in all kind of animals, plants and fungi, as well as in unicellular organisms

and even in bacteria. As these rhythms run in the absence of external forces(cues) e.g.

temperature, light intensity etc., so they reflect an endogenous oscillator inside the

cells which runs at a period close to 24 hours. Circadian rhythms include the opening

and closing of flowers and the nighttime increase in activity of nocturnal animals.

1.3 Organization of the thesis

The thesis is organized as follows.

In section 2, the stability analysis of steady states, stability analysis of limit cycles, sta-

bility and linearization, Lyapunov’s linearization theorem, Routh-Hurwitz criterian,

quasi steady state and phase portraits and global stability analysis are discussed. The

knowledge of these topics is necessary to understand the theory which is discussed in

the present thesis. Some examples and propositions to give brief introduction to these

topics are explained. In the subsection ’quasi steady state’ a more complicated exam-

ple about ’Allosteric model’ to give brief knowledge about this topic is also discussed.

These examples include Chemostat bacterial growth, three variable model of circadian

rhythms in Drosophila, five variable model of Drosphila in full and in reduced form.

These proposions and examples give brief insight into these topics, so that it is very

easy for a person to understand the topic, who knows very little about these topics.

Section 3 is about the center manifold theory. In this section basics of center manifold
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theory, center manifold theorem and approximation theorem are given. To give clear

understanding about this, the examples which clarify the use of center manifold theo-

rem in the bifurcation analysis are included. Manifold theorem being one of the major

topics which contributes in bifurcation analysis of given systems, is the motivation to

include in this thesis.

The next section is the major part which was focussed at the start of the thesis. All

the topics discussed in the previous sections are useful to understand the logic in this

section. Here local bifurcation, global bifurcation, saddle-node bifurcation, Hopf bi-

furcation, Andronov-Hopf theorem are discussed with examples and figures. The five

variable model of circadian rhythms in drosophila is solved numerically. The phase

portraits and plots are drawn to understand the solution and the behaviour of certain

parameters on the curves. Bifurcation diagrams of the circadian model are the major

part of this section. A better approximation of Hopf bifurcation for five dimensional

system is given here. In the end of the section some theorems and statements about

the D-curve and H-curve are also given. Tangential property and convexity property

are also part of this section which give another view about the bifurcation analysis.

At the end a further discussion has been included, which clarify some topics which are

not discussed in this thesis.

2 Stability analysis of steady states

Consider the system described by

dx

dt
= f(x) (2)

where x(t) is the state vector and f is a vector having components fi(x1, x2, ..., xn),

for i = 1, 2, ..., n. If f(c) = 0 for all t where c is some constant vector, then it follows at

once from (2) that if x(t0) = c then x(t) = c for all t ≥ t0. Thus solutions starting at

c remains there, and c is said to be an equilibrium or steady state solution. The latter

is used in the biological context. It is assumed that there is no other constant solution

in the neighbourhood of a steady state solution, that is, the steady state solutions to

be studied are isolated.

The concept of steady state has relevance in many fields. In particular thermo-

dynamics and economics. Steady state is more general situation than dynamic equi-

librium. If a system is in steady state, then the recently observed behaviour of the

system will continue in the future.

In chemistry, thermodynamics and other chemical engineering, a steady state is

a situation in which all the variables are constant inspite of ongoing processes that

strive to change them. For an entire system to be at a steady state, i.e. for all state

variables of a system to be constant, there must be a flow through the system. One

of the simplest examples of such a system is the case of a bathtub with the tap open

but without the bottom plug. After some time the water flows in and out at the same

rate, so the water level (state variable being volume) stabilizes and the system is at

steady state.
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Example 2.1. (Bacterial growth in a chemostat, [2]) Now consider the chemostat model

(1). Define ĉ = Km, t̂ = V
F , N̂ = ĉ

αt̂Kmax
= KmF

αVKmax
. Make a variable change c = c⋆ĉ,

N = N⋆N̂ , t = t⋆t̂. A straight forward calculation gives the following dimensionless

differential equations, after dropping stars:

dN

dt
= α1

(

C

1 + C

)

N −N (3)

dC

dt
= −

(

C

1 + C

)

N − C + α2 (4)

where α1 = V Kmax

F > 0 and α2 = C0

Km
> 0 are two dimensionless parameters (in place

of the original six). The old and new variables are related as follows

N(t) = N̂N⋆

(

t

t̂

)

= N⋆

(

Ft

V

)

KmF

αV Kmax

C(t) = ĈC⋆

(

t

t̂

)

= KmC⋆

(

Ft

V

)

By definition, the steady state solutions (C̄, N̄)satisfy

F (N̄ , C̄) :=α1

(

C̄

1 + C̄

)

N̄ − N̄ = 0

G(N̄ , C̄) :=−
(

C̄

1 + C̄

)

N̄ − C̄ + α2 = 0

that is, two solutions

(N̄1, C̄1) =

(

α1

(

α2 −
1

α1 − 1

)

,
1

α1 − 1

)

(N̄2, C̄2) = (0, α2)

Note that mathematically two steady states are found. However, the second solution

represents a situation that is of no interest to the experimentalists, since there are no

bacteria left and the nutrient is at the same concentration as the stock solution. So the

first solution is more interesting in biological context. Nevertheless it does not always

exist biologically. It depends on the parameters α1 and α2. Obviously, if α1 < 1,

we get negative values. Since population density and concentrations must always be

positive, negative values would be meaningless in the biological context as pointed in

the Introduction. The conclusion is that α1 and α2 must be such that

α1 > 1, α2 >
1

α1 − 1
.

In experiment we have to interpret these conditions back in terms of the original six

parameters.
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Example 2.2. (A three dimensional circadian model in drosophia [8].)

As we know several organisms exhibit circadian rhythms. It is entrained due to the

24-hour cycle of darkness and light, under certain conditions. Two proteins PER and

TIM are thought to be responsible for this mechanism.

Tyson et al. in [13] introduced a new positive feedback loop into the original model,

consisting of six variables. These six variables are concentrations of per and tim mR-

NAs, PER and TIM monomers and PER/TIM dimers in the cytoplasm and nucleus.

The concentration of dimer in the cytoplasm, and in the nucleus are in equilibrium,

thus the model can be reduced to three differential equations in which the state vari-

ables are the concentrations of mRNA (M) the protein (P1) and the dimer (P2).

Ṁ =
vm

1 + (P2/Pc)2
− kmM (5)

Ṗ1 = vpM − k1P1

Jp + P1 + rP2
− k3P1 − 2kaP

2
1 + 2kdP2 (6)

Ṗ2 = kaP
2
1 − kdP2 −

k2P2

Jp + P1 + rP2
− k3P2 (7)

where M is mRNA, P1 is Monomer and P2 is Dimer and the dots upon M , P1 and

P2 stands for the derivative with respect to time t.

The variables have the following meanings:

M = per mRNA (messenger RNA)

P1= monophosphorylated PER

P2= biphosphorylated PER

Setting the functions in the right hand side to zero we can find the stationary

states of the above dynamical system. After some algebraic calculation we get

M =
vm

km(1 + (P2/Pc)2)
(8)

r(kd + k3)P
2
2 + h0(P1)P2 − ka(P1)

2(JP + P1) = 0 (9)

where h0(P1) = −kar(P1)
2 + (kd + k3)(JP + P1) + k2.

Since equation (9) is a quadratic equation P2 can be solved (because P2 is concen-

tration of dimer only positive solution is taken into account). Thus

P2 = h1(P1) :=
−h0(P1) +

√

h2
0(P1) + 4r(kd + k3)(JP + P1)kaP 2

1

2r(kd + k3)
(10)

Now from equation (8) we can write M in terms of P1

M = h2(P1) := vmP 2
c [km(P 2

c + h2
1(P1)]

−1 (11)

Putting P2 in (10) and M in the equation (11) into dP1/dt = 0 yields the following

equation

vph2(P1) + k1h3(P1) + h4(P1) = 0 (12)

8



where

h3(P1) = − P1

JP + P1 + rh1(P1)
(13)

h4(P1) = −k3P1 − 2kaP
2
1 + 2kdh1(P1) (14)

Equations (10) and (11) shows that P2 and M are functions of P1, i.e. they can be

determined once P1 is determined. If P1 is positive then P2 and M are also positive.

Therefore the number of stationary states with three positive components is the same

as the number of positive solution of (12) for P1. The number of solutions of the

system can only be changed if the derivative of (12) is also zero. i.e.

vp
dh2(P1)

dP1
+ k1

dh3(P1)

dP1
+

dh4(P1)

dP1
= 0 (15)

see [10]

Example 2.3. (A simple model of circadian rhythms based on dimerization and pro-

teolysis of PER and TIM [13]) When the dimerization is fast, then the monomer and

the dimer are in equilibrium with each other, that is P2 = KeqP
2
1 , then introduce

the notations Pt = P1 + 2P2 (total protein), m = M , Keq = ka/kd and using the

approximation k1 ≈ (k1 − k2), the system in the previous example is reduced to the

following two differential equations.

ṁ = g1(Pt)− kmm (16)

Ṗt = vpm− k1g2(Pt)− g3(Pt) (17)

where

g1(Pt) =
4P 2

c vm
4P 2

c + P 2
t (1− q)2

(18)

g2(Pt) =
qPt

JP + Pt
(19)

g3(Pt) =
k2Pt

JP + Pt
+ k3Pt (20)

q =
2

1 +
√

1 + 8KeqPt

(21)

where m is the concentration of mRNA, Pt is the concentration of protein and k1,

k2, k3, km, vm, vp, Pc, JP and Keq are positive parameters. It should be noted that

reduction of a model from higher dimensional to two dimensional system can be done

in different ways.

The steady states can be found from the following single equation

vpg1(Pt)− k1kmg2(Pt)− kmg3(Pt) = 0 (22)

because m can be determined by g1(Pt)/km. As Pt = P1 + 2P2 is postive (P1 and

P2 are preteins), then from the above equation it is clear that the steady state is also

positive.
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Example 2.4. (A five dimensional model [5]) The original Goldbeter model ofDrosophila

circadian rhythms is schematically shown in Fig.2. Here a five variable model is con-

sidered for circadian oscillations of the PER protein and per mRNA in drosophila as

proposed in ([5]). It is based on negative feedback (shown in figure) exerted by a

protein on the expression of its gene. This gene is expressed in the nucleus and trans-

mitted into mRNA and then sent into the cytosol where it is degraded and translated

into P0.Then it undergoes multi phosphorylation from P0 into P1 and from P1 into

P2. The fully phosphorylated form of the protein is marked up for degradation and

transported into the nucleus in a reversible manner. The nuclear form of the protein

PN represses the transcription of the gene.

According to these assumptions and assuming a well-mixed system, an ordinary dif-

ferential equation system for the concentrations is given by Goldbeter , which is:

Ṁ =
vsK

n
I

Kn
I + Pn

N

− vmM

km +M
(23)

Ṗ0 = ksM − V1P0

K1 + P0
+

V2P1

K2 + P1
(24)

Ṗ1 =
V1P0

K1 + P0
− V2P1

K2 + P1
− V3P1

K3 + P1
+

V4P2

K4 + P2
(25)

Ṗ2 =
V3P1

K3 + P1
− V4P2

K4 + P2
− k1P2 + k2PN − vdP2

kd + P2
(26)

ṖN = k1P2 − k2PN (27)

where the subscript i = 0, 1, 2 in the concentration Pi are the degreee of phosphoryla-

tion of PER protein,PN is used to indicate the concentration of PER in nucleus and

M is the concentration of PER mRNA. The total quantity of PER protein, Pt is given

by Pt = P0 + P1 + P2 + PN .

Figure 2: Scheme of the model for Circadian Rhythms in PER and per mRNA

The variables have the following meanings:

M = per mRNA (messenger RNA)

P0 = unphosphorylated PER (period protein)

P1= monophosphorylated PER

P2= biphosphorylated PER

PN= fully phosphorylated PER (referred to as simply PER)
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vs= maximum rate of M accumulation

vm= maximum rate of M degradation

vd= maximum rate of P2 degradation

ks= rate constant characterizing the synthesis of M

k1 and k2 = rate constant characterizing the transportation between P2 and PN

V1= maximum rate of conversion, P0 → P1

V2= maximum rate of reverse conversion, P1 → P0

V3= maximum rate of conversion,P1 → P2

V4= maximum rate of reverse conversion, P2 → P1

K1= Michaelis constant for describing V1

K2= Michaelis constant for describing V2

K3= Michaelis constant for describing V3

K4= Michaelis constant for describing V4

KI= Threshold constant

n= degree of cooperativity

The details of the equations are given here, so that the background of these equations

and the meaning of the constants and variables given, is understood. In 1st equa-

tion of the system
vsK

n
I

Kn
I
+Pn

N

is the Hill function (inhibition), and vmM
km+M is Michaelis-

Menten (Degradation). In 2nd equation of system ksM is Per synthesis: proportional

to mRNA, and in 3rd and 4th V1P0

K1+P0
± V2P1

K2+P1
, V3P1

K3+P1
+ V4P2

K4+P2
is Per phosphoryla-

tion/dephosphorylation: Michaelis-Menten and vdP2

kd+P2
is Per degradation:Michaelis-

Menten.In 4th and 5th k1P2 − k2PN is Per nuclear transport: linear.

Note that the above given model is of nonlinear nature, that is impossible to solve

analytically. They must be solved numerically, either implicitly or explicitly. The

inhibition terms takes the form of a Hill function in 1st equation with the degree of

cooperativity n, whereas mRNA and protein degradation, as well as phosphorylation-

dephosphorylation terms are described by Michaelis-enten functions.

The model stated above includes a negative feedback between PER and per mRNA,

as shown in the figure

Figure 3: Feedback Loop in the system

As PER increases, the production of per mRNA decreases, causing P0, P1,P2 and

PN also to decrease, but as PER decreases, the production of per mRNA increases,

causing PER to increase again, and so on, which results in oscillations shown in the
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figure.

By simple algeraic calculations the system of five equations system, by setting the

right hand side of (23) -(27) to zero, can be written as

F (PN ) := vmvdk2P
n+1
N + (vmvdk2K

n
I − vsK

n
I kmk2ks − vsK

n
I vdk2)PN − vsK

n
I kmk1kdks = 0.

(28)

If all are solved in terms of PN then

P2 =
k2PN

k1
,

P1 =
K3

(

k1P2 − k2PN + P2V4

K4+P2
+ P2vd

kd+P2

)

−k1P2 + k2PN + V3 − P2V4

K4+P2
+ P2vd

kd+P2

,

P0 =
K1

(

P1V2

K2+P1
+ P1V3

K3+P1
− P2V4

K4+P2

)

V1 −
(

P1V2

K2+P1
+ P1V3

K3+P1
− P2V4

K4+P2

) ,

M =
P0V1

K1+P0
− P1V2

K2+P1

ks
.

If n = 1 the equation becomes

vmvdk2P
2
N + (vmvdk2KI − vsKIkmk2ks − vsKIvdk2)PN − vsKIkmk1kdks = 0. (29)

It can be solved explicitly. Since the discriminant

(vmvdk2KI − vsKIkmk2ks − vsKIvdk2)
2 + 4vmvdk2vsKIkmk1kdks > 0

For all parameters, we have two solutions for PN . For simplicity we introduce

a = vmvdk2 > 0, b = k2KI(vmvd − vskmks − vsvd), c = −vsK
n
I kmk1kdks < 0. Now

F (0) = c < 0. Then there is at most one positive solution. If b ≤ 0, i.e.

−
KIk2[

vd
ks
(vm − vs)− vskm]

2 vd
ks
vmk2

< 0 (30)

vd
ks

(vm − vs)− vskm > 0 or
vd
ks

(vm − vs) > vskm

vd
ks

>
vskm

vm − vs
(31)

where vs < vm, then there is exactly one positive solution. If

vd
ks

<
vskm

vm − vs
, i.e. b > 0

Since F (PN ) is a convex function for all PN and F (0) < 0, so there exist exactly one

positive solution.

To conclude that there is exactly one positive solution, we prove the following propo-

sition.

Proposition 2.5. There is a unique positive solution of F (PN ) = 0.
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Proof. Let v̄ =
vmvd

kmks + vd
. Note that F (0) = c < 0 and dF (PN )/dPN = a(n+1)Pn

N+

b. From this if b > 0, or vs < v̄ then F is strictly increasing for Pn ≥ 0. Hence F has

a unique solution because F (PN ) → +∞ as PN → ∞. If b ≤ 0, or vs ≥ v̄ then the

convexity of F , together with the properties F (PN ) → +∞ as PN → ∞, F (0) < 0,

also yields that F has a unique positive solution.

2.1 Stability and linearization

As mentioned earlier a steady state is a situation in which the system does not appear

to undergo any change. However, in realistic situations there are always small unex-

pected disturbances. Therefore it is interesting to determine whether such deviations

from steady state will lead to drastic changes. This leads to the question of stability of

the steady state. There are many notions of stability. Only the following fundamental

statements are considered here.

A steady state x = c is said to be: stable (in the sense of Lyapunov) if for any

positive scalar ε there exists a positive scalar δ such that ‖x(t0) − c‖ < δ implies

‖x(t)− 0‖ < ε, for t ≥ t0;

asymptotically stable if it is stable and if in addition x(t) → 0 as t → ∞;

unstable if it is not stable; i.e. there exists an x(t0) with ‖x(t0)− c‖ < δ, ‖x(t1)‖ ≥ ε

for some t1 > t0. If this holds for every x(t0) in ‖x(t0) − c‖ < δ the steady state is

completely unstable.[3]

Now consider the linearized system

ẋ = Ax (32)

The following theorem is essential in stability analysis. For proof we refer to [7]

Theorem 2.6 (Lyapunov’s linearization theorem). If (32) is asymptotically stable or

unstable then the steady state x = c for ẋ = f(x), where f satisfies above condtions,

has the same stability property.

According to Lyapunov’s linearization theorem, the local stability can be com-

pletely determined by the linearized system as follows. Assume that f(x) = A(x −
c) + g(x), using f(c) = 0. The matrix A denotes the n× n constant matrix having el-

ements (∂fi/∂xj)x=0, g(c) = 0 and the components of g have power series expansions

in x1, x2, ..., xn beginning with terms of at least second degree.

Example 2.7. (Continuation of Example 2.1) Computation of the partial derivatives

of F and G gives rise to Jacobi matrix

J(N,C) =







α1C

1 + C
− 1

α1N

(1 + C)2

− C

1 + C
− N

(1 + C)2
− 1






.

Then

A1 = J(N̄1, C̄1) =









0
α1N̄1

(1 + C̄1)2

− 1

α 1
− N̄1

(1 + C̄1)2
− 1









, A2 = J(N̄2, C̄2) =





α1α2

1 + α2
− 1 0

− α2

1 + α2
−1




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Now tr(A1) = − N̄1

(1 + C̄1)2
−1 < 0 and det(A1) =

N̄1

(1 + C̄1)2
> 0, so by Routh-Hurwitz

property A1 is Hurwitz. On the other hand, tr(A2) =
α1α2

1 + α2
− 2 and det(A2) =

−(
α1α2

1 + α2
− 1) < 0, so A2 is not Hurwitz.

From the above discussion we can say that since A1 is Hurwitz then the system is

stable and since A2 is not Hurwitz so the system is not stable.

Example 2.8 (The two-dimensional circadian rhythm model.). By a straightforward

calculation the Jacobi matrix is

J(M,P ) =

(

−km a12

vp a22

)

where

a12 = −
4

(

4KeqP
2(1−q)q2)√

1+8KeqP
+ 2P (1− q)2

)

P 2
c vm

(P 2(1− q)2 + 4P 2
c )

2

a22 = −k3 +
k2P

(JP + P )2
− k2

JP + P
+

2k1Keqq
2P

(JP + P )
√

1 + 8KeqP
+

k1qP

(JP + P )2
− k1q

JP + P
.

Now investigated the stability of the steady state for the parameters vm = 1, km = 0.1,

vp = 0.5, k1 = 10, k2 = 0.03, k3 = 0.1 Keq = 200, Pc = 0.1, JP = 0.05 given by Tyson

et al [13]. In this case the steady state is the only real and positive (1.36829, 0.537769).

First our two phase plots starting atM(0) = 3, P (0) = 3.5 andM(0) = 1.3, P (0) = 0.5

close to the steady state, respectively, for simulation length t from 0 to 50000 are

shown. If phase portraits are plotted for t ∈ [0, 850] it can be seen that the trajectory

tends to a closed curve which will be called limit cycle, as claimed in [13]. Clearly the

trajectory does not converge to the steady state.

However if the phase portrait for t ∈ [0, 950] is drawn, it gives somewhat different

behavior, which indicates that the trajectory leaves the closed curve.

The steady state is unstable which can be proved by Lyapunov’s linearization theorem

because the Jacobi matrix at this point is

J =

(

−0.1 −0.454213

0.5 0.341759

)

.

with a positive trace. It still remains unanswered if there is a closed curve to which

the trajectory does not converge, or it is a numerical round off error.

Note that it is not necessary to compute the eigenvalues because the relation

between the zeros and the coefficients of the polynomial can be used. For a second

degree polynomial it is easy to show that a monic polynomial is Hurwitz if and only if

the coefficients are positive. Our question is as follows. Is there any similar algebraic

test for checking Hurwitz property of a higher degree polynomial? If there is no

parameter in the system then perhaps it is most efficient to enter the eigenvalue

problem to a computer to obtain the eigenvalues. But in biological context there are

many parameters, which does not make numerical solution appealing. It is also known

that there is no analytic expression for zeros of higher degree polynomials. Now the

root location of a polynomial in terms of the coefficients is studied here.

14



Out[157]=

1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

Out[166]=

1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Phase portraits for t between 0 and 850: Left M(0) = 3, P (0) = 3.5, right

M(0) = 1.33, P (0) = 0.5
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Figure 5: Phase portraits for t between 0 and 950: Left M(0) = 3, P (0) = 3.5, right

M(0) = 1.33, P (0) = 0.5
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2.2 Routh-Hurwitz criterion

It is demonstrated here that how Routh-Hurwitz criterion can be used in determining

whether or not a real polynomial is Hurwitz (i.e. all zeros located in the left half

complex plane) by examining the polynomial coefficients, rather than solving for zeros.

Some propositions are also proved which will be used in the bifurcation analysis of

five variable circadian model.

A necessary condition for Hurwitz polynomial is given.

Consider the real polynomial p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an with a0 > 0

Proposition 2.9. Suppose the real polynomial p(s) is Hurwitz, then the coefficients

ai > 0 for i = 1, 2, · · · , n.

Proof. Without loss of generality assume that a0 = 1. The polynomial p(s) can be

factored into the form

p(s) = (s+ r1) · · · (s+ rk1
)(s2 + 2c1s+ c21 + d21) · · · (s2 + 2ck2

s+ c2k2
+ d2k2

)

where the real roots are −ri for i = 1, 2, · · · , k1 and the complex roots are −cj ± dji

for j = 1, 2, · · · , k2 and k1 + 2k2 = n. If all of the roots are either negative or have

negative real parts, i.e. ri > 0 and cj > 0 for all i and j. Thus, all the coefficients in

the factors are positive, which implies that if p(s) is expanded and simplify

sn + a1s
n−1 + · · ·+ an−1s+ an = 0

then all of the coefficients must satisfy ai > 0 , i = 1, 2, 3, · · · , n

Example 2.10. Consider the differential equation

d3x

dt3
+ a2

dx

dt
+ a3x = 0, a2, a3 > 0

Because a1 = 0, it follows from the proposition that at least one of three conditions is

valid. The three conditions are (i) one eigenvalue is zero, (ii) one eigenvalue is purely

imaginary,(iii) one eigenvalue lies in the right half of the complex plane.

The so-called Routh array is computed as follows:

a0 a2 a4 ...

a1 a3 a5 ...

b1 b2 b3 ...

c1 c2 c3 ...
...

where b1 = (a1a2 − a0a3)/a1, b2 = (a1a4 − a0a5)/a1,... c1 = (b1a3 − a1b2)/b1, c2 =

(b1a5−a1b3)/b1, ......... It terminates if all the elements of the row becomes zero. Now

the most important theorem is stated here.

Theorem 2.11 (Routh-Hurwitz criterion). The polynomial p(s) is Hurwitz if and

only if there is no sign change in the first column of the Routh array.
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Since the proof is much involved , we refer to [14].

In other words, the number of zeros on the right half complex plane is equal to the

number of sign changes in the first column. This method does not compute the zeros.

This is particularly useful when there are parameters involved in the coefficients.

Example 2.12 (Continuation of Example 2.3). Let (xM , xP0
, xP1

, xP2
, xPN

) be a steady

state of the five dimensional system. Then the Jacobi matrix evaluated at this point

is

J =





























− kmvm
(km + xM )2

0 0 0 −Kn
I vsnPN

n−1

(Kn
I + xPN

)2

ks − K1V1

(K1 + xP0
)2

K2V2

(K2 + xP1
)2

0 0

0
K1V1

(K1 + xP0
)2

a32
K4V4

(K4 + xP2
)2

0

0 0
K3V3

(K3 + xP1
)2

a44 k2

0 0 0 k1 −k2





























where

a32 = − K2V2

(K2 + xP1
)2

− K3V3

(K3 + xP1
)2
, a44 = −k1 −

K4V4

(K4 + xP2
)2

− kdvd
(kd + xP2

)2
.

Now consider the following values for the parameters

k2 = 1.3, V1 = 3.2, V3 = 5, ks = 0.38, kd = 0.2, K1 = 2, K3 = 2, KI = 1, k1 = 1.9,

V2 = 1.58, V4 = 2.5, km = 0.5, vd = 0.95, n = 4, K2 = 2, K4 = 2, vm = .65. Choose

vs = 0.5, then the steady state is

(1.47154, 0.705875, 0.42255, 0.286166, 0.418242)

and it is stable because the eigenvalues of J are

−4.96177,−2.19738,−0.772061,−0.114706 + 0.141076i,−0.114706− 0.141076i.

For vs = 0.638, the steady state is

(1.77304, 0.965103, 0.606842, 0.487793, 0.712928).

It is unstable because the eigenvalues of J are

−4.40777,−1.92483,−0.804351, 0.0000269168 + 0.267101i, 0.0000269168− 0.267101i

Another way of checking the theorem (as given in [14]) is to make use of the

determinants of the following matrices:

H1 =
(

a1

)

, H2 =

(

a1 1

a3 a2

)

, H3 =







a1 1 0

a3 a2 a1

a5 a4 a3







and

Hn =

















a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an
















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where aj = 0 if j > n.

All the roots of the polynomial p(s) are negative or have negative real part if and

only if these determinants are positive. i.e.

det(Hj) > 0, j = 1, 2, 3, · · · , n

When n = 2, the Routh-Hurwitz criteria simplify to det(H1) = a1 > 0 and

det(H2) =

∣

∣

∣

∣

∣

a1 1

0 a2

∣

∣

∣

∣

∣

= a1a2 > 0

or equivalently a1 > 0 and a2 > 0.

For polynomials of degree n = 2, 3, 4 and 5, the Routh-Hurwitz criteria is summa-

rized as follows.

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a2 > 0, a3 > 0, and a1a2 > a3.

n = 4 : a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2 > a3 and a1a2a3 > a23 + a21a4.

n = 5 : ai > 0, i = 1, 2, 3, 4, 5, a1a2 > a3, a1a2a3 + a1a5 > a23 + a21a4, and

(a1a4 − a5)(a3(a1a2 − a3)− a1(a1a4 − a5)) > (a1a2 − a3)
2a5

or a1a2a3a4 − a23a4 − a21a
2
4 − a1a

2
2a5 + a2a3a5 + 2a1a4a5 − a25 > 0.

The following properties are useful in bifurcation analysis .

Proposition 2.13. 1. If a real (monic) polynomial p(s) = s3 + a1s
2 + a2s + a3

has a real negative zero and a pair of purely imaginary zeros then a1a2 = a3 and

a1a3 > 0. Assume a1a2 = a3. Then if a1a3 > 0, the polynomial has two purely

imaginary zeros and a real zero; if a1a3 < 0, the polynomial has three real zeros.

2. A real monic polynomial p(s) = s5 + a1s
4 + a2s

3 + a3s
2 + a4s+ a5 with a5 > 0

has exactly one pair of purely imaginary zeros and three negative real zeros then

A3 = 0 but A1 > 0, A2 > 0; and if it has two pairs of purely imaginary zeros

A1 = A2 = A3 = 0, where A1 = a1a2 − a3, A2 = a1a2a3 − a23 − a21a4 + a1a5,

A3 = (a1a4 − a5)(a3(a1a2 − a3) − a1(a1a4 − a5)) − (a1a2 − a3)
2a5 or A3 =

a1a2a3a4 + a2a3a5 − a23a4 − a21a
2
4 + 2a1a4a5 − a25 − a5a1a

2
2.

Proof. 1. Assume that α, βi,−βi are zeros then

α = −a1, β
2 = a2, αβ

2 = −a3

Thus a1a2 = a3 and a1a3 > 0. Now if a1a2 = a3, the polynomial becomes

s3 + a1s
2 +

a3
a1

s+ a3 = (s+ a1)(s
2 +

a3
a1

)

It is clear that there are purely imaginary zeros if a1a3 > 0 and there are three

real zeros if a1a3 < 0.
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2. Let α1 < 0, α2 < 0, α3 < 0,±βi be zeros. Then we have

a1 =− (α1 + α2 + α3),

a2 =α1α2 + α3α1 + α2α3 + β2,

a3 =− (α1α2α3 + α1β
2 + α2β

2 + α3β
2),

a4 =(α2α3 + α1α3 + α1α2)β
2,

a5 =− α1α2α3β
2.

A straightforward calculation shows that

A1 =− (α1 + α2)(α2 + α3)(α2 + α3) > 0,

A2 =α1α2α3(α1 + α2)(α2 + α3)(α2 + α3) > 0,

A3 =0.

Similarly, It can be shown that if there are two pairs of purely imaginary zeros

then A1 = A2 = A3 = 0.

Example 2.14 (The celebrated Lorenz system). Consider the following three dimen-

sional system

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy

where (x, y, z) ∈ R
3, σ, β, ρ > 0 are parameters. It is easy to prove that (0, 0, 0) is

the only one equilibrium point when ρ < 1, and the system possesses two additional

equilibrium points (
√

β(ρ− 1),
√

β(ρ− 1), ρ−1) and (−
√

β(ρ− 1),−
√

β(ρ− 1), ρ−1)

when ρ > 1. Hence the linearized system matrices at these equilibrium points is







−σ σ 0

ρ −1 0

0 0 −β






respectively







−σ σ 0

1 −1 ±
√

β(ρ− 1)

∓
√

β(ρ− 1) ∓
√

β(ρ− 1) −β







and the characteristic polynomials are

χ0(λ) = (λ+ β)(λ2 + (σ + 1)λ+ σ(1− ρ)) = 0

and

χ1(λ) = λ3 + (σ + β + 1)λ2 + (ρ+ σ)βλ+ 2σβ(ρ− 1) = 0

respectively. It is also easy to show that χ0(λ) has three real zeros when ρ > 0, and

all are negative when ρ < 1, but one is positive when ρ > 1. Now it is shown that

χ1(λ) possesses one real negative zero and two complex conjugate zeros when ρ > 1,

and that the complex conjugate zeros are purely imaginary if ρ = σ(σ+β+3)
σ−β−1 .

Since χ1(0) = 2σβ(ρ− 1) > 0 and χ1(λ) → −∞ as λ → −∞, there is at least one

negative real zero.
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By a straightforward calculation the first column of the Routh array can be found:

1, σ + β + 1,
β(ρ(β + 1− σ) + σ(σ + β + 3))

σ + β + 1
, 2σβ(ρ− 1)

The case where ρ > 1is considered now. It is seen that the third term is the only one

that can change the sign. Thus if

ρ(β + 1− σ) + σ(σ + β + 3) > 0 ⇔ ρ >
σ(σ + β + 3)

σ − β − 1

Then there is no sign change, assuming σ > β + 1. Hence χ1(λ) is Hurwitz. If

ρ <
σ(σ + β + 3)

σ − β − 1
then there are two sign changes, thus there are two zeros on the

right half plane. If assume σ < β + 1 then there is no sign change. Again the

polynomial is Hurwitz. By Proposition 2.13 there is a pair of purely imaginary zeros

if and only if

ρ =
σ(σ + β + 3)

σ − β − 1

because σ + β + 1 > 0, and 2σβ(ρ− 1) > 0. Now zeros depend on coefficient continu-

ously, hence there is a pair of complex conjugate zeros if ρ is increased or decreased.

Example 2.15 (Continuation of Example 2.4). Now check the conditions for vs = 0.638

with the parameters considered before. The reason why this value is picked, is due to

the statement made by Goldbeter that a Hopf bifurcation occurs at this point. Our

calculation shows that the characteristic polynomial of J has

a5 = 0.486865, a4 = 0.968316, a3 = 7.33274, a2 = 13.6488, a1 = 7.1369.

Then

A1 = 90.0776, A2 = 614.669, A3 = −0.256484,

and the sign in the first column of the Routh array +,+,+,+, ,−,+ Thus there are

two eigenvalues in right half plane, which was shown earlier. By Proposition 2.13,

there is no purely imaginary eigenvalues.

We summarize the standard analysis of root location as follows:

1. Two necessary but not sufficient conditions that all the roots have negative real

parts are

(a) All the polynomial coefficients must have the same sign.

(b) All the polynomial coefficients must be nonzero.

2. If condition 1. is satisfied, then compute the Routh-Hurwitz array and count

the sign change. If the sign is preserved in the first column of the Routh array

then the polynomial is Hurwitz.

Finally, the following remarks are:

1. Special Case 1: The first element of a row is zero, but some other elements

in that row are nonzero. In this case, simply replace the zero element by ”e”,

complete the table development, and then interpret the results assuming that

”e” is a small number of the same sign as the element above it. The results must

be interpreted in the limit as e tends to 0.
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2. Special Case 2: All the elements of a particular row are zero. In this case, some

of the roots of the polynomial are located symmetrically about the origin of the

s-plane, e.g., a pair of purely imaginary roots. The zero row will always occur

in a row associated with an odd power of s. The row just above the zero row

holds the coefficients of the auxiliary polynomial. The roots of the auxiliary

polynomial are the symmetrically placed roots. Be careful to remember that the

coefficients in the array skip powers of s from one coefficient to the next.

2.3 Phase portraits and global stability from local information

Stability as large can be established by using Lyapunov function V (x) together with

the property that V (x) → ∞ as ‖x‖ → ∞. Since energy dissipates through friction,

it can be taken as a Lyapunov function when modelling mechanical systems. For

biological systems, however, there is no obvious way of choosing a suitable Lyapunov

function. Instead phase portraits are used.

This is illustrated by working on the Chemostat model Example 2.1:- Now a days

vector field plots can easily be drawn by any computer algebra program (look at

the plot at the end of this example). Otherwise it can be sketched by studying the

nullclines, that is all curves from dN/dt = 0 (N -nullclines), N = 0 and C = 1/(α1−1),

and dC/dt = 0 (C-nullclines), N = (α2 − C)(1 + C)/C. Details are provided in [2]

5.10.

It is already known that the solutions that start close to the positive steady state

(N̄1, C̄1) approach it and that start close to the other steady state diverge from it.

It is showed here that there is an invariant subset where the trajectories that start

at any point on it will never leave it. And more important all the trajectories (except

those that start with N(0) = 0 converge to it. It is observed from the vector field plot

that the trajectories will approach to a line N +3C−3 = 0, corresponding to the case

α1 = 3, α2 = 1. Thus the invariant set is the line

N + α1C − α1α2 = 0,

that is the line passing through the two steady states and it also passes through

(α1α2, 0). For any solutions, consider the function z(t) = N(t) + α1C(t) − α1α2 and

consequently, by a simple calculation

dz/dt = dN/dt+ α1dC/dt = −z

implying that

z(t) = z(0)e−t.

Thus z(t) = 0 for all t > 0 if z(0) = 0 which is invariance, and in general z(t) tends

to 0 as t → ∞. In other words, solutions tend to the line.

Uniqueness of solutions implies that no trajectories can cross the line. Suppose a

trajectory starts, and remains on top of (under) the line and with N(0) > 0. Since

the trajectory gets close to the line, and must stay in the first quadrant, it will either

converge to the the stable steady state from the northwest of it will eventually enter
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the region with the northwest arrow, at which it must have turned and start moving

to the stable steady state. In conclusion every trajectory converges.
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2.4 Quasi-steady-state

A full analysis of systems with two variables using phase-plane methods can be pro-

ceeded. However, many models do have more than two variables. It is common to

make further assumption so that the system can be reduced to two dimensional. For

example small molecules such as glucose or other nutrients are typically found in

concentrations much higher than those of the receptors. So it could be argued that

receptors are always working at maximal capacity, so that their occupancy rate is vir-

tually constant. This assumption leads to the quasi-steady-state hypothesis (setting

part of ẋ1, ẋ2, ẋ2, ......, ẋn to zero) and permits further simplification.

A close look at derivation of Michaelis-Menten kinetics is taken before proceeding.

It is well-known that many biological phenomena exhibit saturating kinetics. For

example in bacterial growth in chemostat described above it was assumed that for low

levels of the nutrient concentration c, bacterial growth rate is roughly proportional to

c. At high levels, this rate approaches a constant value Kmax.

In biochemistry, Michaelis-Menten kinetics is one the simplest and best-known

models of enzyme kinetics. It is given by

K(C) =
KmaxC

Km + C

where Kmax represents the maximum rate achieved by the system, at maximum sub-

strate concentration. The constant Km is the substrate concentration at which the

reaction rate is half of Kmax. Note that biochemical reactions involving a single sub-

strate are often assumed to follow Michaelis-Menten kinetics, regardless the models

underlying assumptions.
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Now quasi-steady state approximations in Michaelis-Menten reactions is used.

Consider the following system derived from an enzymatic reactions, see [2]

dc

dt
= −k1rc+ (k−1 + k1c)x1

dx1

dt
= k1rc− (k−1 + k2 + k1c)x1

where c is the concentration of an external nutrient molecule, and x1 is the concen-

tration of a nutrient-receptor complex. The quasi-steady state hypothesis yields that

dx1

dt
≈ 0

i.e.

k1rc− (k−1 + k2 + k1c)x1 = 0

which is

x1 =
k1rc

k−1 + k2 + k1c
=

rc

kn + c
(33)

where kn = (k−1 + k2)/k1. Let Kmax = k2r we obtain

dc

dt
= −Kmaxc

kn + c
. (34)

The two dimensional system is reduced to one dimensional system. However by setting

dx1/dt = 0 changes the character of the mathematical problem. Setting dx1/dt = 0

implies that x1 is a constant k, but then the equation k =
rc

kn + c
implies that c must

be a constant, too. Hence dc/dt = 0. Then −Kmaxc

kn + c
=0, meaning c = 0. In other

words, above derivation can only be right if there is no external nutrient molecule.

One way to justify these derivations is as follows. Under appropriate conditions,

c changes more slowly than x1. So as far as x1 is concerned, it may be assumed that

c(t) is constant, say c(t) = c̄. Then, the equation for x1 becomes a linear equation.

Its solution converges to its steady state, which is given by (33) with c = c̄) obtained

by setting dx1/dt = 0. Now as c changes, x1 ”catches up” very fast so that this

formula is always (approximately) valid. From the point of view of c, the variable x1

is always catching up with ite expression given by (33). Thus as far as its slow motion

is concerned, c evolves according to (34). An exception will be at the start of the

whole process, when c(0) is initially far from its steady state value.

Example 2.16. A more complicated example.

For an enzyme with n protomers, the time evolution of the metabolites and of the
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free or complexed enzyme forms is governed by the following differential equations:

dR0

dt
=− k1R0 + k2T0 − na2PR0 + d2R01 − na1SR0 + (d+ k)R10

· · ·
dR0n

dt
=a2PR0(n−1) − nd2R0n − na1SR0n + (d1 + k)R1n

· · ·
dRnn

dt
=a1SR(n−1)n − n(d1 + k)Rnn

dT0

dt
=k1R0 − k2T0 − na′ST0 + (d′ + k′)T1

· · ·
dS

dt
=νi − na1SΣ0 − (n− 1)a1SΣ1 − ...− a1SΣn−1 + d1Σ1 + 2d1Σ2 + ...

nd1Σn − na′ST0 − (n− 1)a′ST1 − ...

− a′STn−1 + d′T1 + 2d′T2 + ...+ nd′Tn

dP

dt
=− na2PR0 − (n− 1)a2PR01 − ...− a2PR0(n−1) + d2R01 + 2d2R02 + ...

=nd2R0n + kΣ1 + 2kΣ2 + ...+ nkΣn + k′T1 + 2k′T2 + ...

+ nk′Tn − ksP

together with the conservation relations:

R0 +Rij + T0 + Ti = D0 (i, j,= 1, ...)

where S and P denote the concentrations of substrate and product, while Rij are the

concentration of enzyme form in the R state carrying i molecules of substrate bound to

the catalytic site and j molecules of product bound to the regulatory site; Ti denotes

the concentration of enzyme in the T state carrying i molecules of S. The sum of R

forms carrying i molecules of substrate is

Σi =
n
∑

j=0

Rij , i = 0, ..., n

The other constants are kinetic constants. See [6] for details.

If the concentration of the enzyme is known, which is much smaller than those

of the substrate and product, the enzyme forms evolve much more rapidly than the

metabolites. Then a quasi-steady state approximation can be made for the enzyme,

i.e.
dR0

dt
= 0,

dRij

dt
= 0,

dT

dt
= 0

yield two ordinary differential equations. Normally some normalizations take place

too, as did in the Chemostat example.

The above discussed system is shown in the following figure.
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Figure 6: Allosteric model for glycolytic oscillations. The enzyme is formed by n subunits

existing in the states R and T. The substrate (S), injected at a constant rate, binds to

the two forms of the enzyme with different affinities. The complexes thus formed in the

two states decompose with different rates to yield the product (P). The latter binds in an

exclusive manner to the the most active, R, form of the enzyme, and disappears from the

reaction medium in an apparent first-order reaction (Goldbeter Lefever, 1972; Venieratos

Goldbeter, 1979; Goldbeter, 1980). [16]

2.5 Stability analysis of limit cycles

In mathematics, in the area of dynamical systems, a limit cycle on a plane or a two

dimensional manifold is a closed trajectory in the phase space having the property that

at least one other trajectory spirals into it either as time approaches infinity or as time

approaches negative infinity. Such behaviour is exhibited in some nonlinear systems.

In the case where all the neighbouring trajectories approaches infinity, it is called a

stable or attractive limit cycle. If instead all neighbouring trajectories approach it as

time approaches negative infinity, it is unstable or non attractive limit cycle.

The limit cycle imply self sustained oscillations. Any small perturbation from the

closed trajectory would cause the system to return to the limit cycle, making the

system stick to the limit cycle. An example of a limit cycle is an undamped pendulum

which have a closed circle orbit equal to the amplitude of the pendulum’s swing.

3 Center manifold theorem

We saw in section 2 how to use linearization to study stability of steady states. We

also saw that it fails when the jacobian matrix evaluated at the steady state, has some

eigenvalues with zero real parts and no eigenvalues with positive real parts. In this

case the center manifold theorem provides a powerful tool in dynamical systems that
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reduces the dimension of a system to enable calculations easier.

Recall that for the linear system ẋ = Ax the corresponding invariant subspaces

Eu, Es and Ec have the characterizations

Eu = {x ∈ R
n : ∃ c > 0 such that lim

t→−∞

|e−cteAtx| = 0}

Es = {x ∈ R
n : ∃ c > 0 such that lim

t→+∞

|ecteAtx| = 0}

and

Ec = {x ∈ R
n : ∀c > 0 lim

t→−∞

|ecteAtx| = 0 and lim
t→+∞

|e−cteAtx| = 0}

The stable manifold theorem tells that for the nonlinear system ẋ = f(x) with f(0) =

0, the stable manifold Es(0) and the unstable manifold Eu(0) have characterizations

similar to Es and Eu, respectively:

Es = {x ∈ R
n : ∃ c > 0 such that lim

t→−∞

|ectϕ(t, x)| = 0}

and

Eu = {x ∈ R
n : ∃ c > 0 such that lim

t→−∞

|e−ctϕ(t, x)| = 0}

where ϕ is the flow generated by the nonlinear system. Now a center manifold similar

to Ec of the linear system is defined.

Let A = Df(0). A center manifold W c(0) of the equilibrium point 0 of the system

ẋ = f(x) is an invariant manifold whose dimension is equal to the dimension of the

invariant subspace Ec and which is tangent to Ec at the origin.

Theorem 3.1. A local center manifold exists.

For the proof of existence of a center manifold please refer to [7].

Note that the stable manifold and the unstable manifold are unique while center

manifolds may not be unique. For example

Example 3.2. Consider the system

ẋ = x2, ẏ = −y

By considering the linear part we get

A =

(

0 0

0 −1

)

It is obvious that the x-axis is a center manifold, but it is not the only center manifold.

Now solve this system by eliminating t:

dy

dx
=

−y

x2

It has a solution

y = ce1/x

So

{(x, y) ∈ R
2 : x < 0 and y = ce1/x} ∪ {(x, 0) ∈ R

2 : x ≥ 0}

is also a center manifold.
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This example raised two questions

(i) How is the center manifold calculated in general?

(ii) If the center manifold is not unique, what does the center manifold calculation

actually calculate?

The following construction answers the first question.

For simplicity it is assumed that the nonlinear system is already transformed to
{

ẋ =Ax+ F (x, y)

ẏ =By +G(x, y)
(35)

where x ∈ Ec, y ∈ Es ⊕ Eu, the eigenvalues of A all have zero real part, all of the

eigenvalues of B have nonzero real part, and F and G are higher order terms.

It is assumed that y = h(x) is an invariant center manifold of the nonlinear system.

Then

ẏ = Dh(x)ẋ.

By (35)

Dh(Ax+ F (x, h(x))) = Dh(x)ẋ = ẏ = Bh(x) +G(x, h(x))

Thus, if an operator M is defined by the formula

(Mϕ)(x) := Dϕ(x)(Ax+ F (x, ϕ(x)))−Bϕ(x)−G(x, ϕ(x))

the function h whose graph is the center manifold is a solution of the equationMh = 0.

This is the condition every center manifold should meet. It seems like finding h is

much harder than the original problem of establishing stability of the origin. However

something is gained in this complicated calculation.

Theorem 3.3 (Approximation Theorem). Let ϕ : Rc → R
s be a C1 map with ϕ(0) =

0, Dϕ(0) = 0. If M(ϕ(x)) = O(|x|q) as x → 0 (for q > 1), then

|h(x)− ϕ(x)| = O(|x|q) as x → 0

This theorem allows to use a power series to approximate the center manifold to

an arbitrary degree of accuracy. This answers the second question raised above.

With y = h(x) the dynamics of the nonlinear system to the center manifold can

be reduced. It is governed by

ẋ = Ax+ F (x, h(x)) (36)

Now we can state the following theorem:

Theorem 3.4. Assume all of the conditions in the previous theorem, then the zero

solution of ẋ = f(x) is stable, asymptotically stable, or unstable if the zero solution of

(36) is stable, asymptotically stable or unstable respectively.

Example 3.5. Consider the four dimensional system

ẋ1 = −x2 + x1(1− y)y

ẋ2 = x1 + x2(1− y)y

ẋ3 = −x3
3(1 + y)

ẏ = −y + x2
1 + x2

2 + 2(1− y)y2
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Clearly 0 is an equilibrium point. But conclusion about stability from the Lya-

punov linearization theorem can’t be drawn, since

A =











0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 1











So the next step would be to reduce the system by studying the flow on a center

manifold. Let

h(x1, x2, x3) = x2
1 + x2

2

It is to be checked that the graph condition (Mh = 0) is valid.

Dh(x) · x =2x1ẋ1 + 2x2ẋ2

=2(1− x2
1 − x2

2)(x
2
1 + x2

2)
2

ẏ =− y + x1 + x2
2 + 2(1− y)y2

=2(1− x2
1 − x2

2)(x
2
1 + x2

2)
2

The flow on this manifold is governed by

ẋ1 = −x2 + x1(1− x2
1 + x2

2)(x
2
1 + x2

2)

ẋ2 = x1 + x2(1− x2
1 + x2

2)(x
2
1 + x2

2)

ẋ3 = −x3
3(1− x2

1 + x2
2)

(37)

Note that the first two equations are decoupled from the last one. Now the stability

of the origin should be analyzed. Make polar coordinate change: x1 = r cos θ, x2 =

r sin θ. Then the above system reduces to

ṙ = r3(1− r2)

θ̇ = 1

ẋ3 = −x3
3(1− r2)

It can be shown that there is a stable limit cycle r = 1 because for V (r) = −r4/4 +

r6/6 + 1/12, V (1) = 0, V > 0 in the neighborhood of r = 1, and

V̇ = −r6(1− r2)2 < 0

Hence, the origin is unstable and the system (37) has a stable limit cycle defined by

C3 = (cos t, sin t, 0). Together with the center manifold theorem it implies that the

original system should have a stable limit cycle defined by C4 = (cos t, sin t, 0, 0).

Now proof on above mentioned claims are given.

Consider the function V (x1, x2, x3) = −r4/4+r6/6+1/12+x2
3 with r =

√

x2
1 + x2

2.

Clearly, V (C3) = 0 and V > 0 in the neighborhood of C3. Moreover

V̇ = −(r6(1− r2)2 − 2x4
3(1 + r2) < 0

in the neighborhood of C3. Hence C3 is a stable limit cycle of (37).
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It is natural to think that a similar argument will lead to the claim C4 is a stable

limit cycle for the original system by considering V = (x1, x2, x3, y) = −r4/4+ r6/6+

1/12 + x2
3 + y2. Nevertheless

V̇ = −(1− r2)r4(1− y)y − 2x4
3(1 + y)− 2y2 + 2yr2 + 4(1− y)y3

whose sign is not at all clear. So direct methods does not seem to work here. This

might tell us that the system does not always stay on the limit cycle. It might take

some time to approach the limit cycle then if it is close enough then it stays on the

limit cycle. To see this, the proof is divided into two steps. Firstly it is shown that

the trajectory eventually converge to the center manifold globally, the above given V

on the center manifold is used to show that the limit cycle is stable.

Let U = (y − x2
1 − x2

2)
2. Obviously, U = 0 for y = x2

1 + x2
2 and U > 0 otherwise.

Note that

U̇ = −2(y − x2
1 + x2

2)
2(y2 + (y − 1)2)

and therefore U̇ < 0 for y 6= x2
1 + x2

2 and 0 otherwise. So trajectories eventually con-

verge to the center manifold. Note that it is just proved global convergence (different

than the local construction).

It can be shown that V̇ < 0 on the neighborhood of the center manifold y =

x2
1 + x2

2 = r = 2, i.e., y = x2
1 + x2

2 + ǫ = r2 + ǫ.
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Figure 7: Figures for the above example

These are the plots for (x1, x2, x3) and (x1, x2, y) which shows that the trajectories

converge to the center manifold x2
1 + x2

2 = 1.

Note that we have read Lyapunov- type of functions in our analysis. It is not

always appreciated in biological models as explained earlier. However, the theorem is

useful to prove stability of limit cycle.
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In next section we will give an example on center manifold reduction to Hopf bifurca-

tion.

4 Bifurcation theory

Bifurcation theory is the mathematical study of changes in the qualitative or topolog-

ical structure of a given family. Examples of such families are the integral curves of a

family of vector fields or, the solutions of a family of differential equations. Most com-

monly applied to the mathematical study of dynamical systems, a bifurcation occurs

when a small smooth change made to the parameter values (the bifurcation parame-

ters) of a system causes a sudden ’qualitative’ or topological change in its behaviour.

Bifurcations occur in both continuous systems (described by ODEs, DDEs or PDEs),

and discrete systems (described by maps).

The dynamics of one-dimensional systems is very limited (all solutions either settle

down to a steady equilibrium or head off to one of ±∞). They can have an interesting

dependence on parameters. In particular, the qualitative structure of the flow can

change as parameters are varied. These qualitative changes in the dynamics are called

bifurcations and the parameter values at which they occur are called bifurcation points.

Bifurcations provide models of transitions and instabilities as some control parameters

are varied.

4.1 Types of bifurcation

It is useful to divide bifurcations into two principal classes:

1. Local Bifurcations

Local bifurcations, which can be analysed entirely through changes in the lo-

cal stability properties of equilibria, periodic orbits or other invariant sets as

parameters cross through critical thresholds. A local bifurcation occurs when

a parameter change causes the stability of an equilibrium (or fixed point) to

change. In continuous systems, this corresponds to the real part of an eigen-

value of an equilibrium point passing through zero. In discrete systems (those

described by maps rather than ODEs), this corresponds to a fixed point having a

Floquet multiplier with modulus equal to one. In both cases, the equilibrium is

”non-hyperbolic” at the bifurcation point. The topological changes in the phase

portrait of the system can be confined to arbitrarily small neighbourhoods of

the bifurcating fixed points by moving the bifurcation parameter close to the

bifurcation point (hence ’local’).

Examples of local bifurcations include:

(a) Saddle-node (fold) bifurcation

(b) Transcritical bifurcation

(c) Pitchfork bifurcation

(d) Period-doubling (flip) bifurcation

(e) Hopf bifurcation
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(f) Neimark (secondary Hopf) bifurcation

2. Global Bifurcations

Global bifurcations occur when ’larger’ invariant sets of the system, such as pe-

riodic orbits, collide with each other, or with equilibria of the system. They

cannot be detected purely by a stability analysis of the equilibria (fixed points).

This causes changes in the topology of the trajectories in the phase space which

cannot be confined to a small neighbourhood, as is the case with local bifurca-

tions. In fact, the changes in topology extend out to an arbitrarily large distance

(hence ’global’).

Examples of global bifurcations include:

(a) Homoclinic bifurcation in which a limit cycle collides with a saddle point.

(b) Heteroclinic bifurcation in which a limit cycle collides with two or more

saddle points.

(c) Infinite-period bifurcation in which a stable node and saddle point simulta-

neously occur on a limit cycle.

(d) Blue sky catastrophe in which a limit cycle collides with a nonhyperbolic

cycle.

Global bifurcations can also involve more complicated sets such as chaotic at-

tractors.

4.2 Saddle-node bifurcation

A saddle-node bifurcation is a collision and disappearance of two equilibria in dy-

namical systems. In systems generated by autonomous ODEs, this occurs when the

critical equilibrium has one zero eigenvalue. In other words if the phase plane is one-

dimensional, one of the equilibrium points is unstable (the saddle), while the other is

stable (the node). This phenomenon is also called fold or limit point bifurcation.[3]

For example consider the system

x′ = α+ x2

where α is a real valued parameter. The fixed points of the system are given by

α+ x2 = 0 ⇒ x2 = −α

Three possibilities can be observed here.

1. α < 0 : in this case −α is positive, means square root can be taken. Thus there

are two distinct fixed points

x∗ = ±√
α

The phase portraits do not change qualitatively as α changes in this range. The

fixed point at −
√
−α is always stable and the fixed point at

√
−α is unstable.

2. α = 0 : There is only one fixed point
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x∗ = 0

which is semi-stable.

3. α > 0 : in this case there are no fixed points, and the value of x increases forever.

4.3 Hopf bifurcation

In bifurcation theory a Hopf or Andronov-Hopf bifurcation is a local bifurcation in

which a fixed point of a dynamical system loses stability as a pair of complex conjugate

eigenvalues of the linearization around the fixed point cross the imaginary axis of the

complex plane. More rigorously, the existence of a limit cycle close to such a steady-

state is established by the Hopf bifurcation theorem.

Theorem 4.1. Hopf(Andronov-Hopf) Bifurcation Theorem.

Suppose x′ = f(x, y) has an isolated steady state at x1. Let
∂(x′)
∂(y) = A(y) is Jacobian

of f at x1. Suppose that A(y) has a pair of complex conjugate eigenvalues λ1,2 =

α(y)± iβ(y). Suppose that the following conditions hold for y = y0

1. α(y0) = 0.

2. β(y0) = β0 > 0.

3. γ ≡ ∂(α(y))
∂(y) |y=y0

6= 0, i.e. transversality (strict-crossing)

4. A(y0) has no other eigenvalues with zero real part.

then the system contains an isolated limit cycle for | y − y0 | small for either

y > y0 or for y < y0. The magnitude of the limit-cycle is proportional to
√

| y − y0 | and the frequency is close to β0. If γ > 0 and the limit cycle exists

for y > y0 or if γ < 0 and the limit cycle exists for y < y0 then it is stable,

otherwise it is unstable.

Proof. see e.g., Guckenheimer and Holmes [4]

Hopf bifurcation points are categorized as being either supercritical or subcritical,

depending on whether the limit cycle born at the steady-state is stable or unstable,

respectively. Whether a specific Hopf point is sub- or supercritical can be determined

based on the first Lyapunov coefficient, e.g.(Kuznetsov, 1998). According to the Hopf

theorem, the birth of a limit cycle is hence associated with loss of stability of a steady-

state solution. This implies again that a limit cycle usually will coexist with an

unstable steady-state. The latter always holds when the Hopf is supercritical and

there are no subsequent multiple limit cycle bifurcations of the limit cycle. However

in the case of subcritical Hopf points will there usually be an unstable steady-state

coexisting with the limit cycle and the two are connected through a Hopf point. The

reason in this latter case is that the unstable cycle born at the Hopf point will have

to bifurcate to generate a stable limit cycle, and the branch of stable limit cycles will

then usually extend over the branch of unstable steady-states. For systems in which an

unstable steady-state coexists with the limit cycle, a perturbation that translates the

steady-state into a Hopf bifurcation point will correspond to removal of a limit cycle.
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If the induced Hopf is supercritical, the stable limit cycle will disappear. However,

also for cases in which the induced Hopf is subcritical will the perturbation result

in a qualitative change of the network behavior in the sense that the limit cycle will

coexist with a stable steady-state after the perturbation and hence at best be locally

stable. Indeed, it is common when considering robustness with respect to parameter

variations to use the existence of stable steady-states as a criteria in the robustness

analysis, e.g., (Kim et al., 2006;Leloup and Goldbeter, 2004).

Figure 8: Figure showing the difference between the certain bifurcation conditions

Example 4.2. Investigating the effect of changing the parameter α on the dynamical

system

ẋ = αx− y − (x+
3

2
y)(x2 + y2) (38)

ẏ = x+ αy + (
3

2
x− y)(x2 + y2) (39)

It can be shown that the polar form of the system is

ṙ = αr − r3 (40)

θ̇ = 1 +
3

2
r2 (41)

from which it is clear that there is a single equilibrium point at the origin. The first

polar equation can be written as

ṙ = r(
√
α+ r)(

√
α− r), α > 0 (42)

Clearly there is a limit cycle of radius
√
α in this case. The origin is unstable since

for small r

ṙ ≃ αr (43)

which is positive. If α ≤ 0 then ṙ < 0 and the origin is globally asymptotically stable.

This behaviour is illustrated in the figure for the cases α = −4 and α = 4 respectively.
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Figure 9: For α = −4 (stable focus) and for α = 4 (unstable focus but stable limit cycle)

It can be seen from the figures that as the parameter α passes through zero from

negative to positive, a stable focus gives way to an unstable focus surrounded by a

stable limit cycle whose radius increases with
√
α.

Now we show how to use center manifold reduction.

Example 4.3. Consider

ẋ1 = x2 (44)

ẋ2 = −x1 − 2ax2 − x1x3 (45)

ẋ3 = −x3 + x2
1 (46)

Put this system in the form ẋ = A(a)x+ f(x)

Here

ẋ =







ẋ1

ẋ2

ẋ3






, A(a) =







0 1 0

−1 2a 0

0 0 −1






, f(x) =







0

−x1x3

x2
1







The eigenvalues of A(a) are +i,−i,−1 when a = 0.

This indicates the possibility of a Hopf bifurcation. Now we follow the scheme pro-

vided in [3] to compute the first Lyapunov coefficient.

(i) Find eigenvectors of A and A⋆ (the adjoint of A)

u =







i

1

0






= v,Au = iu, A⋆v = −iv

(ii) For normalization purposes, let v = 1
2u Then we have 〈v, u〉 = 1. Now check the

Hopf crossing condition

γ′(0) = 〈v,A′(0)u〉 = 〈1
2







i

1

0






,







0 0 0

0 −2 0

0 0 0













i

1

0






〉 = 1/2× 〈







i

1

0






,







0

−2

0






〉 = −1

Since γ′(0) 6= 0. This implies that there exists a Hopf bifurcation at λ = 0.

(iii) Compute the first Lyapunov coefficient l1(0). First we write the system in its
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complex normal form

ż = iwz + 1/2(g20z
2 + 2g11zz̄ + g02z̄

2) + 1/2g21z
2z̄2 + ..........

where

g20 = 〈v,B(u, u)〉, g11 = 〈v,B(u, ū)〉

g21 = 〈v, C(u, u, ū)〉 − 2〈v,B(u,A−1B(u, ū))〉+ 〈v,B(ū, (2iwI − 1)−1B(u, u))〉+ L

where

L = (1/iw)〈v,B(u, u)〉〈v,B(u, ū)〉 − (2/iw)|〈v,B(u, ū)〉|2 − (1/3iw)|〈v,B(ū, ū)〉|2

And

A = A(0)

B(x, x) and C(x, x, x) are the second and third order terms respectively. Here we emit

the explicit expression of g02, since it is not used in our calculation. As f(x) has only

quadratic terms so we see that C(x, x, x) = 0, and

B(x, x) = 2f(x, x) =







0

−2x1x3

2x2
1






=⇒ B(x, y) =







0

−2x1y3

2x1y1







By definition the first Lyapunov coefficient is defined as the quantity

l1(0) = (1/2w2)Re(ig20g11 + wg21)

In this example w = 1. Now both g20 and g11 are real, Re(ig20g11) = 0, and the last

three terms in g21 are imaginary, so l1(0) can be rewritten in the following way

l1(0) = (1/2w)Re(g21) = (1/2w)Re[〈v, C(u, u, ū)〉 − 2〈v,B(u,A−1B(u, ū), 〉+ L1]

Where

L1 = 〈v,B(ū, (2iwI − 1)−1B(u, u))〉

Now consider the second term in l1(0). After putting values and simplifying

−2〈v,B(u,A−1B(u, ū)〉 = 4i

So the second term in l1(0) is imaginary, thus it does not contribute to l1(0). The last

term becomes

〈v,B(ū, (2iwI − 1)−1B(u, u))〉 = (4/10)(2 + i)

Using these values we obtain

l1(0) = (1/2)Re(0 + 4i+ (4/5) + (2/5)i) = 2/5 that is l1(0) > 0

By the following theorem the Hopf bifurcation is supercritical, i.e the limit cycle is

stable.
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Theorem 4.4 (Stability of Hopf bifurcation [3]). Consider the equation

ẋ = A(a)x+ f(x, a)

where x ∈ Rn, a ∈ R with f(x, a) ∈ Ck, k ≥ 2, f(0, 0) = Df(0, 0) = 0. Let its center

manifold reduction have the form

ż = iwz + 1/2(g20z
2 + 2g11zz̄ + g02z̄

2) + 1/2g21z
2z̄2 + ..........

then the Hopf bifurcation is subcritical iff l1(0) > 0 and supercritical iff l1(0) < 0.

We close this section by the following remarks:

1. The Lyapunov coefficient l1(0) is not unique, since different normalizations will

result in a different quantity, see [3]. However the sign of l1(0) is preserved.

2. When l1(0) = 0, the system undergoes a further bifurcation, which is called

Bautin bifurcation. To study stability of Bautin bifurcation we need the second

Lyapunov coefficient. An example for existance of Bautin bifurcation is the

model of 3-dimensional circadian rhythms [10].

4.4 A discussion on bifurcation of the five dimensional model of cir-

cadian rhythm

The five variable model for circadian rhythms is given in the previous sections.

Here we solve the five variable model numerically. Parameter values used to

solve the system are given in the following table.

Parameter Value Parameter Value

k1 1.9 k2 1.3

V1 3.2 V2 1.58

V3 5 V4 2.5

K1 2 K2 2

K3 2 K4 2

KI 1 vm 0.65

vs 0.76 km 0.5

ks 0.38 vd 0.95

kd 0.2 n 4

Numerically, in a large domain of parameter values the system reaches a sus-

tained periodic oscillations, instead of stable steady state. The variations in per

mRNA and PER are shown in the following figure. This figure also shows the

periodic variation in the total amount of PER protein and in the phosphorylated

and phosphorylated, cytosolic form of PER. In the whole day(24 Hrs) the phase

difference between total PER and per mRNA is shorter.

To solve the given system, as in [8] initial conditions for the variables are

assigned in the MATLAB program. These are the sustained oscillations in
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PER protein and per mRNA corresponds towards a limit cycle in the (M,Pt)

plane. Limit cycle oscillations are normally stable as they are characterized by

a unique amplitude and frequency for a given set of parametric values, regard-

less of initial conditions(Minorsky 1962). The parametric values used here are

given in the above given table. The initial condition used here is as follows

M = 1.5, P0 = P1 = P2 = 0.8, so in this case Pt = 3.2.

Figure 10: Figures for the solution and phase portrait for given initial conditions

Figure 11: Figure for the limit cycle for different initial points

In the following figure for limit cycles, it can be observed that whatever the

starting point is, all the curves end up on the limit cycle.

In present model a parametric family of ordinary differential equations is fo-

cussed. By tuning the parameters it is tried to see, how the dynamics is going

to change. For this purpose, the given dynamical system is linearized by cal-

culating the Jacobian for a given set of parametric values at a fixed point. By
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changing parametric values, it is observed that when real part of an eigen value

changes its sign. Change in the sign of real part of eigen value is the indication

of bifurcation. Change from positive to negative sign directs towards stability

and change from negative to positive directs towards instability.

Firstly focus is on one parameter vs and to see how the sign is changed of the

eigenvalues of the Jacobian. To perform the analysis, all parameters are taken
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Figure 12: A

as given in the table given above: The range of values of vs is:

vs = 0.1 : .1/2 : 4;

In the plot ’A’, it can be observed that by changing the value of vs, the fixed

points moves its position.

Figures B and C are showing the plots between real and imaginary parts of eigen

values of Jacobian. It can be seen clearly that at some value of vs, real parts of

two of eigen values are changing the sign from negative to positive. Both eigen

values appear as a complex conjugate of each other on the right of y-axis. So,

it is the indication of bifurcation. Next section is focussed on to find the exact

value of parameter vs, where the bifurcation is going to occur.
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Figure 13: B

For vs = 0.637930420865621, the fixed point and the eigenvalues are

fixedpoint = 1.77297321324624

0.965038414935763

0.606792115161602

0.487732569294205

0.712839908968454)

eigenvalues = −4.4078869873484

− 1.92490179477781

− 5.7848966693308e− 009 + 0.267074602156167i

− 5.7848966693308e− 009− 0.267074602156167i

− 0.804332460566371

It is clear that the real parts of pair of complex conjugate eigen-values become

almost zero at vs = 0.637930420865621.

Phase portrait are drawn between M and Ptot for this value of vs in the figure

D given below
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Figure 14: C

Before Bifurcation, For vs = 0.637930420865621− 0.1

The fixed point and the eigenvalues are

fixedpoint = 1.6188776969146

= 0.822100612680711

= 0.502003810110188

= 0.367457955009496

= 0.537053934243986

Eigenvalues = −4.68746782101408

= −2.07468612323762

= −0.0627036866151932 + 0.201460002519662i

= −0.0627036866151932− 0.201460002519662i

= −0.772776924076349

Graphs related to these values are given in figure E,
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Figure 15: D

After Bifurcation, For vs = 0.637930420865621 + 0.1

The fixed point at this value is

fixedpoint = 1.8407238201227

= 1.03740396185673

= 0.66321110764272

= 0.558407500924826

= 0.816134039813207

The eigenvalues of model linearized around the strictly positive fixed point are

eigenvalues = −4.28593147932826

= −1.84777776455541

= 0.0284392963379789 + 0.293474694468739i

= 0.0284392963379789− 0.293474694468739i

= −0.825842286267537
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Figure 16: E

Corresponding plots are given in figure F.

These eigenvalues have corresponding eigenvectors as

















0.098

−0.043

0.26

−0.81

0.52

































−0.27

−0.18

0.70

0.17

−0.61

































0.78

0.36− 0.27i

0.092− 0.20i

−0.017− 0.22i

−0.089− 0.29i

































0.78

0.36 + 0.27i

0.092 + 0.20i

−0.017 + 0.22i

−0.089 + 0.29i

































−0.55

0.57

0.29

−0.13

−0.52

















As it can be seen that three eigenvalues are real, negative and much larger in

magnitude than the complex eigenvectors. The next two complex eigenvalues

contain a small positive real part. Near the fixed point, the nonlinear dynamics

are similar to the dynamics of the corresponding linear syatem.The three negative

real eigenvalues are very much larger than the real part of the complex part of

eigenvalues. This suggests that any trajectory starting close to two-dimensional

plane in the five dimensional space will rapidly converge to it. The real part and

the imaginary part of the complex eigenvectors
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span this plane(the plane of linearized oscillation). In the linearized system, tra-

jectories will slowly spiral outward on the plane of linearized oscillation.

As the amplitude of the oscillation increases, nonlinear effects become evident.

The manifold of oscillation deforms from the plane of linearized oscillation. Sim-

ilar to the plane of linearized oscillation, the three negative real eigenvalues and

their corresponding eigenvectors determine a three-dimensional stable manifold.

Near the fixed point, any trajectory on this three-dimensional manifold will con-

verge to the fixed point of the three-dimensional manifold. For details see [17].
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Figure 17: F

Now the critical value is perturbed and integration of the system is started in

the neighborhood of fixed point.
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Perturbation in the fixed point:

perturb− fixed− point = 1.77297321324624 + 0.00001

= 0.965038414935763 + 0.00001

= 0.606792115161602 + 0.00001

= 0.487732569294205 + 0.00001

= 0.712839908968454 + 0.00001

From now, in all rest of analysis, perturb-fixed-point will be used as starting

point for the integration of the system.

Now for vs = 0.637930420865621− 10−4, the fixed point and the eigenvalues for

the jacobian are

fixed− point = 1.77288183697706

= 0.964945337120554

= 0.606721071311119

= 0.487646142576252

= 0.712713592996062

Eigenvalues = −4.40805159985492

= −1.92500049197205

= −3.87234197764142× 10−5 + 0.267036917478186i

= −3.87234197764142× 10−5 − 0.267036917478186i

= −0.804305166680725

and the corresponding plots are
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It is clear that if real-parts of complex conjugate of eigen-values are negative,

system will converge to fixed point after long integration.

For vs = 0.637930420865621+ 10−4, the fixed point and the eigenvalues of jaco-

bian are

fixed− point = 1.77306452179638

= 0.965131435116119

= 0.606863118851551

= 0.487818953664867

= 0.712966163048652

eigenvalues = −4.4077224975284

= −1.92480315698259

= 3.8683363671169× 10−5 + 0.26711225493822i

= 3.8683363671169× 10−5 − 0.26711225493822i

= −0.80435974152151
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From this it is clearly observed that if real part of complex conjugate pair of

eigenvalues are positive, always their exist limit cycle.

4.4.1 Critical value of vd

From the above analysis, it is seen that two of the eigen-values are complex con-

jugates and with positive real parts. To find the values of parameter vd, when

the real parts of eigenvalues become zero is of focus here. Actually it is to be

observed that when real parts going to change the sign. All the parameters have

same values which are given already.

The critical value of vd is 2.69772513516755 and the corresponding fixed points
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and eigenvalues of Jacobian are:

Fixed− point = 5.07009317713357

= 10.6327619854791

= 1.88562192110702

= 0.499717539286752

= 0.730356403572946

Eigenvalues = −4.67380161140235

= −0.979450775198323

= 1.25736128841721e− 006 + 0.0913043948282707i

= 1.25736128841721e− 006− 0.091304394828270i

= −0.371146420427092

And corresponding plots are:
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Before the critical value vd = 2.69772513516755− 1/10

Fixed− point = 4.88739451093913

= 8.71114868065035

= 1.78571147919427

= 0.501599389576917

= 0.733106800150879

Eigenvalues = −4.64312611073311

= −1.01341045785567

= 0.00155432482574324 + 0.107127285380774i

= 0.00155432482574324− 0.107127285380774i

= −0.386248006669926

And corresponding plots are:
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It is clear that the real parts of complex eigen-values are positive, so fixed point

is repealer. Integrating the system in the neighborhood of fixed point shows

convergent behaviour towards limit cycle.
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After the critical value vd = 2.69772513516755 + 1/10

Fixed− point = 5.25269783077853

= 13.3938625154428

= 1.99103194495107

= 0.497948179269186

= 0.727770415854966

Eigenvalues = −4.70511092679921

= −0.947549456895608

= −0.00134745762309573 + 0.0751054115264168i

= −0.00134745762309573− 0.0751054115264168i

= −0.357640766703895

And corresponding plots are:
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It shows that all the real parts of eigenvalues are negative, so the fixed point

becomes attractor and this means that the limit cycle bifurcates.

49



4.5 A note on finding Hopf-bifurcation point

As shown in section 2, the Jacobi matrix has three negative and a pair of purely

imaginary eigenvalues implies that A1 > 0, A2 > 0 and A3 = 0. Hence the

parameters such that A3 = 0 are candidates for the Hopf bifurcation. The

numerical simulations given above show that vs = 0.637930420865621 results in

a pair of complex conjugate eigenvalues which are very close to the imaginary

axis. Thus this can be considered as a Hopf bifurcation point. However numerical

computations show that A1 > 0, A2 > 0 and A3 = 0.0000551355. It can be seen

that A3 is close to but not very close to zero.

4.6 D-curve

Consider the equation

f0(x) + f1(x)u1 + f2(x)u2 = 0 (47)

Assume f0, f1, f2 ∈ C2 and f2
1 (x) + f2

2 (x) 6= 0 for all x ∈ R. To determine

the number and values of solutions of this equation at a given parameter pairs

(u1, u2) consider the set

S = {(u1, u2) ∈ R
2 : ∃x ∈ R such that f(x, u1, u2) = f ′(x, u1, u2) = 0}.

Let W = {x ∈ R : f1(x)f
′

2(x)−f ′

1(x)f2(x) 6= 0}. The curve D : W → R
2 defined

by

D1 =
f2(x)f

′

0(x)− f ′

2(x)f0(x)

f1(x)f ′

2(x)− f ′

1(x)f2(x)
=: u1 D2 =

f0(x)f
′

1(x)− f ′

0(x)f1(x)

f1(x)f ′

2(x)− f ′

1(x)f2(x)
=: u2

is called D-curve (or discriminent curve) belonging to the bifurcation problem

(47). A simple calculation gives us the coordinates of the tangent vector D′(x)

D′

1(x) =f2(x)
f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x)

f1(x)f ′

2(x)− f ′

1(x)f2(x)
,

D′

2(x) =− f1(x)
f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x)

f1(x)f ′

2(x)− f ′

1(x)f2(x)

(48)

The following results can be found in [11].

Proposition 4.5. Assume that

(H1) f0, f1, f2 ∈ C2 and f2
1 (x) + f2

2 (x) 6= 0 for all x ∈ R,

(H2) R \W consists isolated points;

(H3) {x ∈ R : f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x) = 0} consists of isolated points.

Then

(a) the tangent unit vector of the D-curve e(x) = D′(x)/‖D′(x)‖ is defined on

R except at isolated points;

(b) For every x0 ∈ R there exists the left and right limits.
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Definition Let x0 ∈ R be a point and let ℓ be a line on the parameter plane

with A0 +A1u1 +A2u2 = 0. This line is called a tangent line of the D-curve at

x0 if limx→x0
dist(D(x), ℓ) = 0 (dist. stands for the distance), and the left and

right limits are orthogonal to (A1, A2), the normal vector of ℓ.

Note that x0 is not assumed to belong to W . Thus the definition is an extention

of the usual tangent. In the case x0 ∈ W they are identical. Let

M(x) = {(u1, u2) ∈ R
2 : f(x, u1, u2) =}.

Theorem 4.6 (Tangential property). Under conditions (H1)-(H3) for any x0 ∈
R the line M(x0) is a tangent of the D-curve at x0.

Theorem 4.7 (Convexity property). Assume that conditions (H1)-(H3) hold.

Let x0 ∈ W . If f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x) changes its sign at x0, then

the D-curve has a cusp point at x0, i.e. limx→x−

0

e(x) = − limx→x+

0

e(x). If

f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x) does not change its sign at x0, then the D-

curve is locally on the left (right) side of its tangent belonging to x0 if f1(x)f
′

2(x)−
f ′

1(x)f2(x) is positive (negative).

As computed earlier (see Section 2)

axn+1 + bx+ c = 0.

Now f0(x) = axn+1, f1(x) = 1, f2(x) = x and b and c are bifurcation parameters.

So the functions f0, f1, f2 are C
2-functions and satisfy f2

1 (x)+f2
2 (x) = 1+x2 6= 0

thus (H1) holds. f1(x)f
′

2(x) − f ′

1(x)f2(x) = 1 and f1, f2 have finite number of

zeros.

f ′′

0 (x) + f ′′

1 (x)D1(x) + f ′′

2 (x)D2(x) = f ′′

0 (x) = an(n+ 1)xn−1

whose roots are isolated. The D-curve is

c = D1(x) = anxn+1, b = D2 = −(n+ 1)axn.

Its derivative is

D′(x) = f ′′

0 (x)(x,−1) = a(n+ 1)nxn−1(x,−1),

Therefore the tangent line of the D-curve at the point D(x) is the line with

direction vector (x,−1). This line is called T (x). The tangential property yields

that a number x is a solution of axn+1+bx+c = 0 for any point (c, b) if and only

if (c, b) ∈ T (x). In other words T (x) = M(x). Thus for any point (c, b) in the

parameter plane, the number of the solutions of the equation under consideration

equals to the number of the tangent lines that can be drawn from (c, b) to the

D-curve. Moreover, the value of the solutions can be considered as the value of x

at the tangent point. According to the convexity property the D-curve contains

convex arcs. Now R = W . These arcs can join together only in cusp points. The

cusp point is x = 0 computed from from f ′′

0 (x) = 0. Furthermore, the convexity
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of the separate arcs means that they completely lie on one side of the tangent

line belonging to any point of the arc.

In this particular case, the following conclusion can be drawn.

Theorem 4.8. (a) The D-curve has a cusp point at the parameter value x if

and only if n is even.

(b) If n is odd then the D-curve is locally on the left side of its tangent at x

(the left normal vector of the curve is obtained by a counterclockwise rotation

from D′(x)).

(c) For n even f ′′

0 (x) does not change sign in the interval [0,∞) and n odd

f ′′

0 (x) does not change sign for all x ∈ R. Thus for any parameter pair

(c, b) the number of tangents which can be drawn from (c, b) to the arc of

the D-curve belonging to the interval [0,∞) for even n and R for odd n

respectively is at most two.

For global bifurcation diagram it is computed that

lim
x→−∞

f0(x)
√

f2
1 (x) + f2

2 (x)
=







−∞ if n is even

∞ if n is odd
; lim

x→∞

f0(x)
√

f2
1 (x) + f2

2 (x)
= ∞

Then the global bifurcation diagram is a subset of the singular set S, i.e. the

D-curve divides the parameter plane according to the number of solutions of

axn+1 + bx+ c = 0.

4.7 H-curve

The Jacobian matrix of the system is shown in Section 2. If this matrix has

three negative real and a pair of purely imaginary eigenvalues then A3 = 0, by

Proposition 2.13. Then the Hopf-bifurcation takes place under this condition.

Thus the H-curve in the (c, b)-plane is defined as

axn+1 + bx+ c = 0

A3 = 0

It is not possible to get an analytic expression for these parameters. One should

be able to plot the H-curve by numerical calculation. However all the details

are not worked here and this is left for further investigation.

5 Further discussions

Our original plan of this thesis was to give a bifurcation analysis of the five

dimensional circadian model as complete as possible. During the working pro-

cedure we found that there were many unclear statements in the literature on

systems biology. This made us to change the focus of our study. Our aim is to

clarify some theories used in the analysis of biological models and we have tried
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to verify the numerical results given in many papers by the theoretical analysis.

Some of these are classical and some are not. Thus we have tried to study differ-

ent theories on stability and bifurcation analysis and we exemplified by models

of circadian rhythms which are popular subjects in recent research literature.

Our mathematical analysis based on numerical computations showed that several

statements on Hopf-bifurcation are not completely correct. In turn we found that

the numerically observed limit cycles are limit cycle bifurcated in the sense of

Hopf.

Due to the time limit we are not able to work out details in Bautin bifurcation.

In the case of Hopf bifurcation we have obtained a clear picture of bifurcation

diagram. We have got better approximation for the Hopf bifurcation for five

dimensional system.

We would like to point out that there seems to exist a powerful method in

doing stability and bifurcation analysis using mathematical control theoretical

approach. Such work is represented by Angeli and Sontag, and their co-workers

(see e.g. [1]). The key concepts are monotone systems appearing naturally in

models from systems biology and small gain theorem from robust analysis in

control theory. One advantage of the small gain theorem is its robuestness with

respect to all perturbations that preserve monotonicity and stability properties

of a very low-dimensional model reduction. This robustness makes the tech-

nique useful in the analysis of molecular biological models in which there is large

uncertainty regarding the values of kinetic and other parameters.
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