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1 Introduction

In 1973, Fischer Black and Myron Scholes published a paper on how to price
an option. They did this by replicating an option via a portfolio consisting
of just the right amount of bonds and stocks.

From this portfolio they derived a partial differential equation that deter-
mines the option price. That is, the only price which, given their model
of stock price movement, ensures that one cannot make a sure profit by
constructing an appropriate portfolio. More than that, they derived a par-
tial differential equation that lead to an explicit solution with only a single
variable not directly observable from the market. This lead to tremendous
effects in the trading of options and a better understanding on how to price
financial derivatives.

Robert C. Merton published a paper that increased the mathematical un-
derstanding of the model, as well as proving that some of the assumptions
made in the paper published 1973 were redundant. For their contribution,
Merton and Scholes were awarded the 1997 Nobel Price in Economics (The
Sveriges Riksbank Price in Economic Sciences in Memory of Alfred Nobel).
Fischer Black died in 1995, and was thus ineligible for the price. He was
however mentioned as a contributor by the Royal Swedish Academy of Sci-
ence.

Although a breakthrough, the model has turned out to not describe the
reality perfectly and several suggestions on how to improve their model
have been suggested. Many of these alterations lead to partial differential
equations which cannot be solved explicitly.

The most well known discrepancy in the model from the reality is called
the volatility smile. It refers to their assumption that the volatility of a
stock is constant. If one reverts their formula with observed market prices
and solves it for the volatility then one will see that the volatility is not
constant, and in some cases it appears in the shape of a smile, hence the
name. For stocks, the volatility smile often appear as a smirk.

The aim of this thesis is to review one of the suggested models that al-
lows for a volatility function. Given this model, we try to reconstruct a
volatility function from observable market prices. From this model we derive
the partial differential equation describing an option price and a numerical
method for solving the differential equation is discussed. More than that,
it is shown how one can use splines in approximating the volatility func-
tion and a scheme to reconstruct the volatility function, so that the model
matches observed market prices, is given.
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2 Stochastic definitions and Itô’s formula

We will work with a model of stock price behaviour. Normally stock prices
act in a seemingly random way, with many small steps away from a general
trajectory, if such a trajectory exists at all. Therefore, the model that is
usually used is using a special kind of stochastic process called a “Wiener
process” or “Browian motion”, the model is a stochastic differential.

We here state a few definitions and the stochastic version of the chain rule in
order to gain some understanding about the model we work with. This part
is very brief, and to get a better understanding one can read for example [5]
or [13]. All definitions originate from these two works.

2.1 Basic definitions in probability theory

Definition. Let Ω be a set. F is a σ-algebra of subsets of Ω if

(a) ∅,Ω ∈ F .

(b) If A ∈ F , then the complement Ac ∈ F where Ac := Ω \A.

(c) If A1, A2, · · · ∈ F , then
∞⋃
k=1

Ak ∈ F .

Definition. Let Ω be a non-empty set. We say that a function P : Ω→ [0, 1]
is a probability measure if it has the following properties:

(a) P (∅) = 0, P (Ω) = 1.

(b) If A1, A2, · · · ∈ F , then P

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

P (Ak).

(c) If A1, A2, · · · ∈ F are disjoint, then P

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

P (Ak).

We refer to a set A ⊆ F as an event, and a point ω ∈ Ω as a sample point.
We say that P (A) is the probability of the event A. If we have two events,
A,B ∈ F then they are said to be independent if P (A ∩B) = P (A)P (B).

Definition. If we take a set Ω, a σ-algebra F of subsets of Ω and a probabil-
ity measure P defined on Ω, we say that the triple (Ω,F , P ) is a probability
space.

Now, the set Ω could for example consist of only heads or tails, in case
of a coin toss. We could of course observe the outcome of a coin toss, and
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write it down as either ‘heads’ or ‘tails’. However we are generally more
interested in some measurable quantity. This quote from [13] (p. 106) is a
motivation to the introduction of random variables,

“We can think of the probability space as being an essential mathematical
construct, which is nevertheless not “directly observable”. We are therefore
interested in introducing mappings X from Ω to R, the values of which we
can observe. These mappings are called random variables.”

Definition. We say that a mapping X : Ω → R is a random variable
if, ∀t ∈ R,

{ω|X(ω) ≤ t} ∈ F .

In the example of the coin toss we could for example have a random variable
that gives us the value 2 in case of heads, and 0 in case of tails. This ran-
dom variable then represents the outcome of betting on the result of a coin
toss where you get twice the money you bet if heads comes up. Normally
one does not display the random variables dependence on the sample point
ω ∈ Ω.

Definition. If we have two random variables X,Y , then they are inde-
pendent if, for all t, s ∈ R,

P (X ≤ t and Y ≤ s) = P (X ≤ t)P (Y ≤ s).

We interpret this as that the two random variables convey no information
about the other one. That is, if two random variables are independent and
we receive information of one of the two, the probability distribution of the
other one is still the same.

Definition. If X is a random variable, defined on some probability space
(Ω,F, P ), the expected value of X is

E[X] :=

∫
Ω
XdP.

We define the variance of X as

Var(X) := E[(X − E(X))2] = E[X2]− (E[X])2.

Definition. A random variable X is called normal with mean µ and vari-
ance σ2 if, for all −∞ ≤ a < b ≤ ∞,

P (a ≤ X ≤ b) =
1√

2πσ2

∫
Ω
e−

(x−µ)2

2σ2 dx.
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We write this short as “X is N(µ, σ2)”.

Definition. (i) If we have a collection of random variablesX(t), 0 ≤ t <∞,
all defined on the same probability space (Ω,F , P ), we say that this collec-
tion is a stochastic process.

(ii) For each point ω ∈ Ω we have a corresponding sample path that is
the mapping t 7→ X(t, ω).

If we run an experiment and observe the random values of X over time,
we are looking at a sample path {X(t, w)| t ≥ 0} for some fixed ω ∈ Ω.
Thus a stochastic process can either be viewed as a collection of random
variables or as a random function (path) over time. This path will generally
be different every time we run the experiment.

We are now ready to define the special kind of stochastic process we are
mainly interested in.

Definition. A stochastic process W (t) is called a Wiener process or Brow-
nian motion if

1. W (0) = 0.

2. Each sample path is continuous.

3. W (t)−W (s) is N(0, t− s) for all t > s, that is, normal with mean µ
and variance t− s.

4. For all distinct choices of times 0 < t1 < t2 < · · · < tn the increments
W (t1),W (t2) −W (t1), ...,W (tk) −W (tk−1) are independent random
variables.

Property 4 tells us that the increments between two time steps does not
depend on previous increments.

2.2 Stochastic integrals, stochastic differentials and Itô’s for-
mula

We are soon going to introduce a stochastic differential, but in order to do
so, we need the Itô stochastic integral. However, constructing it goes beyond
the scope of the paper. One can read more about it in chapter 4 of [5]. I
will however state a few properties of it that will play a part in this paper.

The aim is to have a integral for a certain class of stochastic processes.
This class should be nonanticipating, which means that it depends only on
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information available up until time t. Given a Brownian motion W one can
define the Itô stochastic integral ∫ t

0
Y dW

for stochastic processes Y with the property that at each time 0 ≤ s ≤ t,
Y (s) depends only on W (τ) for times 0 ≤ τ ≤ s but not on times s ≤ τ .
This means that Y is a nonanticipating stochastic process; at every time it
only depends on the Brownian motion up until that time, but not the future
movement. As already noted, we will not look further into the Itô integral
here.

Definition. Suppose that X is a stochastic process satisfying

X(t2)−X(t1) =

∫ t2

t1

Fdt+

∫ t2

t1

GdW (1)

for some F,G,∈ L2(0, T ) and all times 0 ≤ t1 ≤ t2 ≤ T. Then we say that
X has the stochastic differential

dX = Fdt+GdW. (2)

One needs to note that this is just a shorter way of typing the difference
between X(t2) and X(t1), strictly speaking, “dX”, “dt” and “dW” have
no meaning alone. Of the two integrals in (1), the left one is an ordinary
integral whereas the right one is a stochastic integral.

The model we are going to work with later will be on the form of a stochas-
tic differential. In order to manipulate it we are going to use the following
formula, which we can think of as the counterpart to the ordinary chain rule
for stochastic differentiation.

Theorem 1 (Itô’s formula)

Suppose that X has a stochastic differential

dX = Fdt+GdW

for F,G ∈ L2(0, T ). Let u : R × [0, T ] → R be continuous and suppose that
∂u
∂t , ∂u

∂x , ∂2u
∂x2

exist and are continuous. Let

Y (t) := u(X(t), t),
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then Y has the stochastic differential

dY =
∂u

∂t
dt+

∂u

∂x
dX +

1

2

∂2u

∂x2
G2dt

(3)

=

(
∂u

∂t
+
∂u

∂x
F +

1

2

∂2u

∂x2
G2

)
dt+

∂u

∂x
GdW.

We will not prove this theorem here, a proof can be found in for example
[5]. We will however use the theorem when deriving the partial differential
equation that gives us a correct option price.

3 How to price an option

In order to work with options we have to describe what an option is and how
we should price them. This section is devoted to explaining what options
are and what we wish to achieve when pricing them.

3.1 What is an option?

An option is a derivative financial instrument that specifies a contract be-
tween two parties on some underlying asset, for example a stock. The buyer
of the option pays for the right to engage in a transaction according to the
contract but does not have the obligation to do so. The seller on the other
hand is obliged to fulfil the contract if the buyer wishes to do so.

In other words one could say that an option gives you the right to buy
(or sell) an underlying asset at a fixed price if that gains you. This fixed
price is called the exercise price or the strike price of the option.

There are different kinds of options. We have call options which gives the
buyer the right to buy the specified underlying asset at the strike price. We
also have put options where you instead gain the right to sell the underlying
security at the strike price.

An option always has an expiration date after which it is useless and we
call this date the maturity date. The time remaining until the contract
expires, that is, the time left until the maturity date, will be denoted the
maturity time. An option that can be exercised only on the maturity date
is called a European option.

In this paper we will be restricting ourselves to European call options. That
is an option which gives one the right to buy the underlying security if one
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wishes to do so. It can only be exercised on the expiration date.

3.2 The value of an option at the expiration date

Now that we have defined what an option is, we are able to specify the value
of an option at the expiration date.

Since you have the right, but not the obligation, to use the option you
will never lose any money at the expiration date if you have bought an op-
tion. Take for example that you are the owner of a European call option on
a stock with a strike price at 100 kr and the underlying stock is worth 120
kr on the expiration date. Exercising the option would result in buying the
stock for 100 kr when the market value is 120 kr. In other words you can
(instantaneously) sell the stock for 120 kr and gain 20 kr.

If the stock price on the expiration date would instead be 80 kr, then you
could buy the stock cheaper from the market than by exercising your option.
Due to the fact that you are not obliged to use the option you will not do
so. Thus the option is worth 0 kr for you. If we denote the strike price by K
and the stock price at the expiration date by ST then the value of the call
option at the expiration date is equal to

max(ST −K, 0).

3.3 Modelling the stock price behaviour

It is clear from the previous section that the value of the option depends
on how the stock behaves. A call option becomes more valuable if the price
of the stock increases and a put option becomes more valuable if the price
of the stock decreases. Thus it is in place to discuss how we anticipate the
movement of a stock price.

The following paragraph is based on [8], a book written by John C. Hull.

According to Hull (p. 287), the most widely used model of stock price
behaviour is the following. One assumes that we know the expected return
µ on the stock and that this return is constant in the sense that in a short
time interval ∆t the expected increase in a stock S is µS∆t. Since we cannot
know for certain whether our return will be exactly µ or not, we also take
into account some sort of error, or variance σ, on the return that we actually
get. σ is usually called the volatility of the stock. One usually assumes that
this error is given as a percentage of the stock price and that it in a short
time interval ∆t is equal to σSdW , where W is a Wiener process. With
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these two assumptions, the general model for stock price behaviour is the
stochastic differential

dS = µSdt+ σSdW. (4)

When pricing an option one has to start with the model of the stock price
behaviour since the option price for European options, for a given strike
price, is a function solely of the stock price at the expiration date.

From (4), and with the extra assumptions that are stated in appendix A,
one can derive the famous Black-Scholes partial differential equation of an
European option price f(s, t)

∂f

∂t
= rf − r∂f

∂s
s− 1

2

∂2f

∂s2
σ2s2, (5)

with the boundary condition

f(s, T ) = max(s−K, 0),

where

s is the current stock price;

K is the strike price;

r is the riskless rate of interest, compounded continuously;

T is the time to maturity from when the option started and t is the time

that has passed since then.

The derivation of (5) will be shown in 4.3. When one assumes constant
volatility this partial differential equation can be solved explicitly, and that
is one of the reasons why it has become so famous. The explicit solution of
the option price f(s, t) is

f(s, t) = s
1√
2π

∫ d1

−∞
e−

1
2
y2dy − ke−r(T−t) 1√

2π

∫ d2

−∞
e−

1
2
y2dy, (6)

where

d1 =
log( sk ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,

d2 =
log( sk ) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

In this explicit solution, the only thing that is not directly observable is
the volatility σ, since even the price can be observed on the market. That
means that one can, numerically, solve this equation for σ. Determining the
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volatility from observed market data is called computing the implied volatil-
ity.

However, (4) is not widely accepted as a good model for stock price be-
haviour. Both the assumption that the return on your investment would
be constant over time and that the volatility would be constant is far from
obvious.

For example, in [4] (p. 107) they say that studies on the implied volatil-
ity on underlying securities of options shows that at least the volatility is
not constant. If one studies the implied volatility using the BSM formula
from actual market prices on options one will notice what is referred to as
a volatility skew.

3.4 Example of the volatility skew

Here we give an example of the volatility skew. What one means with the
volatility skew is related to the assumption made in (4) that volatility is
constant. Would that assumption be correct, and we would calculate the
implied volatility for different strike prices on the same underlying stock,
then the graph of the volatility values plotted against strike prices should
be a flat line. According to [4], every volatility yields a unique option price,
so we do not need to worry about that. Here we give an example that the
implied volatility is not constant over different strike prices. We have taken
option prices for the OMX Stockholm 30 index. The strike price is on the
horizontal axis and the implied volatility on the vertical axis.

It appears as if the volatility would be a decreasing function of the strike
price, and this is indeed the general form the volatility skew takes when the
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underlying security is a stock [8]. The volatility is supposed to describe how
much the stock deviates from the expected path. It does not seem likely that
strike prices on options would affect how much the stock deviates from its
expected path. It is more likely that the volatility skew represents that the
underlying model simply does not describe the reality good enough, rather
than saying that the volatility is indeed a function of the strike price.

3.5 The right price of options

What is the goal when pricing an option? What is the right price? Since
there is a seller and a buyer, we want to price the option such that neither
one expects to lose money, that is, if they would calculate the price using the
same method. If, say, the one selling the option would expect to lose money
for sure on the transaction we assume that he or she will not be interested
in signing such a contract.

We already know that, at the expiration date, the owner of the option is the
only one that can earn money. Thus the buyer must pay the seller a certain
price for the option. How much should he pay? Everything the owner of
the option gains at the expiration date is a loss for the seller. Therefore it
is reasonable to expect that the price of an option would be equivalent with
the expected return for the buyer.

However, as they discuss in [1], this is not as intuitive as one would hope. We
cannot simply calculate the expected return from a probability distribution
and price it that way. In order to do that we would have to have a probabil-
ity distribution that describes the option return perfect. As mentioned, we
want a price that emphasizes that neither the buyer nor the seller expects
to lose money for sure, and that is the crucial part.

The phrase to lose money for sure is related to arbitrage opportunities.
An arbitrage opportunity is a chance to make money without taking any
risk. One example is if you have the chance to sign a contract where you
have the right to buy a stock for 100 kr in, say, 10 days. At the same time
you sign another contract where your counterpart agrees to buy that same
stock from you for 101 kr in 10 days as well. This example guarantees you
a net profit of 1 kr, without taking any risk at all.

A reason to expect that opportunities such as this example does not exist
is that people (are supposed to) have access to the same information from
the market. If you have the chance to sign both contracts in the example at
the same time, then so should both of your counterparts and then they will
probably engage in a transaction with each other instead of with you. For
example, if they agree on the price 100,50 kr, they both gain on that deal
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compared to the previous state. We can at least expect such opportunities
to be short-lived because if they do exist, many people are going to want
to take advantage of them, the demand should make the price rise and thus
eliminating this arbitrage opportunity.

Now, how does this make pricing options a bit more complicated? Well,
the general idea is that you can construct portfolios, that is gather different
securities, financial derivatives and bonds in order to synthesize for example
an option. If we are able to construct a portfolio which fully synthesize the
option but with a different price than the option, then either the seller or the
buyer can gain money without taking a risk, depending of course on whether
the portfolio is cheaper or more expensive than the option. The conclusion
we make is that if we can construct such portfolio, then there should be an
enforcing price of the option that we can derive from this portfolio.

Here we assume that there are no arbitrage opportunities at all. This as-
sumption implies something that is very important. A risk-free investment
cannot give a better effective yield than the risk-free rate of interest, which
is available to everyone.

4 Pricing an option, a derivation of the general-
ized BSM partial differential equation

Now we know what an option is and what the goal when pricing an option
is. In this section we will derive a differential equation describing the price
of an option. We will do this with a model that differs slightly from (4).

4.1 Notations and assumptions

Not all assumptions made are mentioned here, but they are listed in appendix
A.

As discussed in section 3.3, the assumption that volatility remains constant
might not be the best way to model volatility. In this paper we will therefore
follow the work of [3] and work with a different model for the underlying
security. We assume that the stock price follows a one-factor continuous
diffusion model where

dS(t) = µ(S(t), t)S(t) + σ(S(t), t)S(t)dW. (7)

The previous constant parameters µ and σ are now instead functions of the
underlying stock s and the time t. Both µ and σ are assumed to be at least
twice continuously differentiable, thus we can apply Itô’s formula.
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Let S(t) denote the stock price at time t. Let T denote the maturity time (in
years) of the option and let K be the strike price. We assume that we know
a risk-free interest rate r which is defined such that 1 kr today becomes ert

kr at time t.

We denote the sought value of the option as

Y (t) := f(S(t), t).

where f(s, t) is the right, no-arbitrage, price of the option that we seek given
a stock price s and a time t from the starting point.

4.1.1 Interest rates on the Swedish market

We said that we wanted the rate r to be defined such that the growth is
ert, this is the same as saying we have a risk-free rate that gives interest
continuously. This is not how interest rates are given by the market. The
rates that are assumed to be risk-free, for example the Swedish 10-year
government bond, are given as effective interest rates where you get paid
once every year. We get it on the form we want it by

1 + reff = er ⇔

ln(1 + reff) = r.

In this paper we have taken the rate from the Swedish 10-year government
bond, and used the formula above to get it expressed on the form we want.

4.2 Setting up the portfolio

The following two sections set up a good portfolio and derives the general-
ized BSM partial differential equation, that determines the option price. The
ideas are based on chapter 8 in [13], written by Amol Sasane. Robert Merton
was the one that first derived the equation by creating an appropriate, risk-
less, portfolio and arguing that the return must be the risk-free return, see [9].

One of the key ideas behind the Black-Scholes-Merton formula is that we
can reduce the risk that we take by setting up a portfolio consisting of a
position in both the derivative (the option) and the underlying stock. Why
is that?

If we own a call option we gain money when the price of the stock goes
up but we lose (gain less) money when the price of the stock goes down.
If we enter a short position in that stock, i.e. promise that we will sell the
stock to a fixed price, we are in the opposite position. We are glad when the
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price drops after our sell and we curse ourselves if the price goes up. Thus
we may be able to create a portfolio which is irrespective to the movement
of the stock price. This is assuming that we can buy and sell parts of stocks
which is of course not completely true. When trading in large quantities the
error will be small though.

We create a portfolio by buying one call option, we go short in A shares
of the underlying stock and invest that money in a bond which has a risk-
free interest rate. Let the right, no-arbitrage price of the option be Y (t) and
assume that we can express it as Y (t) = f(X(t), t), that is some function
of X(t) and t. We say that at time t, we are short A(t) shares of the stock
and have B(t) money in bonds. The value V (t) of our portfolio at time t
will then be

V (t) = Y (t)−A(t)S(t) +B(t)ert.

We want this portfolio to be self-financing, which means that we will not
have to add or remove money from the portfolio. This can be done in a
way that whenever we want to buy or sell stock, we just reallocate money
between the stocks and the bond. We thus demand that

∀t, S(t)dA(t) = ertdB(t). (8)

What does this mean for our portfolio? It means that the value of the
portfolio is not changed if we change our allocation of money, the only
change must thus come from changes in the underlying asset S(t).

4.3 Derivation of the generalized Black-Scholes-Merton par-
tial differential equation

In 3.3 we showed the partial differential equation describing an option value.
Here we give a derivation of it, but with the assumption that a stock follows
(7) instead of (4). The change in the assumed model does not affect the
derivation of the PDE, however we cannot get an explicit solution of the
PDE, and have to resort to numerical solutions.

The value of the portfolio V(t) gives us

dV (t) = dY (t)− S(t)dA(t)−A(t)dS(t) + ertdB(t) +B(t)rertdt.

The self-financing condition (8) cancel out two terms and we get

dV (t) = dY (t)−A(t)dS(t) +B(t)rertdt. (9)

Since we assume the option Y (t) = f(S(t), t) we have by Itô’s formula
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dY (t) =
∂f

∂t
(S(t), t)dt+

∂f

∂s
(S(t), t)dS(t) +

1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t)dt.

Inserting this into (9) yields

dV (t) =
∂f

∂t
(S(t), t)dt+

∂f

∂s
(S(t), t)dS(t) +

1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t)dt

−A(t)dS(t) +B(t)rertdt,

and after rearranging a bit we end up with

dV (t) =

(
∂f

∂t
(S(t), t) +

1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t) +B(t)rert

)
dt

+

(
∂f

∂s
(S(t), t)−A(t)

)
dS(t). (10)

What is interesting here is that we can get rid of the dS(t) part by choosing

A(t) =
∂f

∂s
(S(t), t).

We end up with an expression that does not depend on the function µ(S(t), t)
at all. More important is that we have come to the conclusion that if we
construct the portfolio like this, the differential dV (t) does not depend on
the stochastic dS(t) part at all. We interpret this as the portfolio being
riskless in a short time interval and thus, from our no-arbitrage assumption,
the instantaneous return must be the risk-free rate r, and

dV (t) = rV (t)dt. (11)

From our expression

V (t) = Y (t)−A(t)S(t) +B(t)ert,

we get by multiplying through with r,

B(t)rert = r (V (t)− Y (t) +A(t)S(t)) .

We know what Y (t) and A(t) is, and we get

B(t)rert = r

(
V (t)− f(S(t), t) + S(t)

∂f

∂s
(S(t), t)

)
. (12)
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Now we replace dV (t) by rV (t)dt and insert (12) in (10), ending up with

rV (t)dt =

(
∂f

∂t
(S(t), t) +

1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t) + r (V (t)− f(S(t), t)

+ S(t)
∂f

∂s
(S(t), t)

))
dt.

Here we have dt on both sides and a term rV (t) on both sides, thus we end
up with

0 =
∂f

∂t
(S(t), t) +

1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t)

−rS(t)f(S(t), t) + r
∂f

∂s
(S(t), t),

and we rearrange it so that we have it on the form it is usually written on,

∂f

∂t
(S(t), t) = rf(S(t), t)− rS(t)

∂f

∂s
(S(t), t)

−1

2
σ(S(t), t)2S(t)2∂

2f

∂s2
(S(t), t). (13)

Now, this will hold if f satisfies the partial differential equation

∂f

∂t
(s, t) = rf(s, t)− rs∂f

∂s
(s, t)− 1

2
σ(s, t)2s2∂

2f

∂s2
(s, t), (14)

with the boundary condition

f(s, T ) = max(s−K, 0).

The difference from the usual BSM partial differential equation (5) is that
we here have a function σ(s, t) which depends on the underlying stock price
and the time rather than being assumed constant.

Remark. We said that the portfolio was riskless in a short time inter-
val, and that the instantaneous return must be the risk-free rate of return.
There is an important thing to note about that. It means that a particular
portfolio is only riskless at a point in time, and thus one has to rebalance
the portfolio at all times to maintain this. It is an assumption made that
this is possible.
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5 Solving the partial differential equation for a
given function σ

Section 4 will be based on [11], written by Gerald Recktenwald and [10],
written by Morton and Mayers.

We now have a partial differential equation that determines the option price
when the volatility function is known. On the contrary to when the volatil-
ity is assumed to be constant, this differential equation does not have an
explicit solution. The aim of this section is to describe one way to numer-
ically solve this partial differential equation given a volatility function. In
this paper we use a Crank-Nicolson finite difference method.

5.1 Taylor’s Theorem

The theorem and the idea of the proof originate from [12].

An important part in this section will be the use of Taylor’s Theorem. This
theorem shows that a function f can be approximated by a polynomial of
degree n, and that we have a way to estimate the error, at least if we know
bounds on |f (n+1)(x)|.

Theorem 2. Let n ≥ 1 be an integer and suppose that f is a real func-
tion on [a,b], that f (n) is continuous on the interval [a,b] and that f (n+1)

exists on (a,b). Let α and β be distinct points in [a,b] such that α < β. We
define the n-th order Taylor polynomial of the function at the point α as

P (x) =
n∑
k=0

f (k)(α)

k!
(x− α)k. (15)

Then there exist a point ξ ∈ (α, β) such that

f(β) = P (β) +
f (n+1)(ξ)

(n+ 1)!
(β − α)n+1. (16)

Proof. Let M be defined as the number that satisfies

f(β) = P (β) +M(β − α)n+1

and put

g(x) = f(x)− P (x)−M(x− α)n+1 (a ≤ x ≤ b). (17)

If we can show that (n+ 1)!M = f (n+1)(ξ) for some ξ ∈ (a, b) we are done.
By (15) we have,

g(n+1)(x) = f (n+1)(x)− (n+ 1)!M (a < x < b) (18)
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hence, if g(n+1)(ξ) = 0 for some ξ ∈ (a, b) we are done. If k ≤ n we have, by
(15), that P (k)(α) = f (k)(α). This combined with (17) gives us

g(α) = g′(α) = · · · = g(n)(α) = 0. (19)

From our choice of M we know that g(β) = 0, and thus the mean value
theorem says that g′(ξ1) = 0 for some choice of ξ1 ∈ (α, β). Since g′(α) = 0,
again by the mean value theorem, applied to the interval [α, ξ1] we have
that g′′(ξ2) = 0 for some ξ2 ∈ (α, ξ1). After n + 1 steps we arrive at the
conclusion that g(n+1)(ξn+1) = 0 for some ξn+1 ∈ (α, ξn), that is, for some
ξn+1 ∈ (α, β).

5.2 The big O notation

We base the definitions here on the work of [7].

Since we are going to solve our partial differential equation numerically we
need to have control, or at least be aware, of how big the error, that will
inevitably come from approximations, is. A convenient way to do this is
with the big O notation.

Definition. f(x) = O(g(x)) means ∃c ∈ R ∀x (|f(x)| ≤ c|g(x)|).

In this definition we assume that the functions f and g have the same do-
main and codomain.

We can interpret O(g) as denoting a set,

O(g) = {f | ∃c ∈ R ∀x, |f(x)| ≤ c|g(x)|},

and then f(x) = O(g(x)) means f ∈ O(g), in other words the equality is
not an ordinary equality, the equality works in one way only since it denotes
that it belongs to a set.

Generally, whether f(x) = O(g(x)) or not might depend on what inter-
val we are working with. For example, if f(x) = 1

x and g(x) = x then
f(x) = O(g(x)) if x takes values greater than 1, but if we look at an interval
(0, 1] it will not be true since f is unbounded as x→ 0.

In order to solve that problem one can give side conditions to the vari-
able given, that is, put some kind of restrictions on the set, for example that
x ≥ x0 or x ≤ x0 for some fixed value x0. We will use the notation that
f(x) = O(g(x)) ∀x ∈ Ω where Ω is the set for which this is true, of course
this set will have to be specified each time.
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We here write down some rules of manipulations on the big O notation
and prove one which will be used consequently. One important note here
is that the set we are working with will be Ω = [0, 1], that is, x will be
restricted to values at most 1. In case one wishes to look at greater values
of x, that is, greater than 1., then the rules of manipulations will still be
true except for 1, where we would instead have 0 ≤ m ≤ m′.

1. xm = O(xm
′
) when 0 ≤ m′ ≤ m;

2. O(g(x)) +O(f(x)) = O(|g(x)|+ |f(x)|);

3. f(x) = O(f(x));

4. cO(f(x)) = O(f(x)), if c is a constant;

5. O(O(f(x))) = O(f(x));

6. O(f(x))O(g(x)) = O(f(x)g(x));

7. O(f(x)g(x)) = f(x)O(g(x)).

1. is clear since xm ≤ xm
′

when x ∈ [0, 1]. We will here prove 2., and refer
the interested reader to [7] for the rest of them.

Proof. Let a(x) ∈ O(g(x)) and let b(x) ∈ O(f(x)). Then by definition, for
every a(x) ∃c0 such that ∀x ∈ [0, 1], |a(x)| ≤ c0|g(x)|. Similarly ∃d0 such
that |b(x)| ≤ d0|f(x)| ∀x ∈ [0, 1].

Let e0 = max(c0, d0). Every function on the left hand side of 2. is on the
form a(x) + b(x), and |a(x) + b(x)| ≤ |a(x)|+ |b(x)| ≤ c0|g(x)|+ d0|f(x)| ≤
e0(|g(x)|+ |f(x)|, i.e. it is a member of the right hand side.

We are of course going to use these results in some way. We will later use
several, but finitely many, approximations, one at each point where we do
an approximation. The total error will be the sum of these errors, and by
result 2, that we proved, that error is easily described.

We will have error terms that are O(∆s), where ∆s is the variable that
we can control, and therefore we can choose to have it on the interval [0,1].
So, if we sum such terms we have, from 2, that O(∆s) + O(∆s) = O(∆s).
From 1 and 2 we get that O((∆s)k) +O((∆s)k−1) = O((∆s)k−1) for k > 1.
This is really all we need here, we now move on to the method.
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5.3 Finite Difference Method

We begin with explaining what a finite difference method is.

Solving a differential equation with finite differences means that we replace
the partial derivatives with a discrete approximation [11]. Discrete has the
meaning that instead of ∂f

∂s we instead look at an approximation

∂f

∂s
≈ fk+1 − fk

∆s
.

This means that we only evaluate the solution at a finite number of points,
with a specified distance ∆s from each other. fk denotes an approximated
solution that has been obtained using a finite difference method. The ap-
proximations obtained by the finite difference method of f(s, t) at a point
(sk, tj) will be denoted as f jk

The differential equation (14) has derivatives with respect to the time t
and the stock s, as well as a second derivative with respect to the stock s.
We assume that f(s, t) is twice differentiable with respect to t, four times
differentiable with respect to s and that the derivatives are bounded on the
relevant interval.

We use N different points for the stock prices that are uniformly spaced
on the interval 0 ≤ s ≤ 2sinit. That is,

sk := k∆s, k = 0, · · · , N − 1

and ∆s :=
2sinit

N − 1
.

Similarly we have 0 ≤ t ≤ T and space it uniformly with

tj := j∆t, j = 0, · · · ,M − 1

and ∆t :=
T

M − 1
.

Remark. Since we in section 5.2 used the interval [0,1] for our results, we
will assume that from this point, ∆s, ∆t ∈ [0, 1]. It could be so that, due to
computer limits, this is not possible. That is, a computer might not be able
to handle enough points in order to allow the distance between the points
to be ≤ 1.

The changes that would come from having a different interval would not
be great. The reason is that ∆s is variable only in the sense that we can
choose how many points we want to have. Thus, if the distance is not less
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than or equal to 1, then it is greater than 1. This means that at every time
we would like to calculate the error, ∆s (or ∆t) would be fixed. We could
thus handle values of ∆s > 1 separately. We would have to change some of
the rules for the big O notation, for example 1. would be reversed. We have
not done this here, but one can look in for example [7].

5.4 Approximating with Taylor’s Theorem, forward differ-
ence

We will look at this only for one variable, s, but the result holds for both
variables, it is only to simplify notation. Due to that we use the notation
f(s) for this section. Furthermore, the notation of approximations will be
written as, for example, fk− fk−1. That means that we really evaluate it at
f jk − f

j
k−1, that is, we look at the change in one variable, and keep the other

one fixed.

With Taylor’s theorem we get,

f(sk + δs) = f(sk) + δs
∂f

∂s
(sk) +

(δs)2

2!

∂2f

∂s2
(ξ)

for some ξ ∈ (sk, sk + δs). δs is the change in s from sk. This change δs can
be chosen as one wishes. We want it to be equal to the distance between
our points and thus let δs = ∆s, making the change as big as the distance
between our chosen points. Then we have that sk + ∆s = sk+1. If we do
that we get, for some ξ ∈ (sk, sk+1),

f(sk+1) = f(sk) + ∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(ξ). (20)

As we will show later, in the end of 5.8, we have access to initial conditions
at the time T , that is, we know the value of the option at the expiration day.

As we are interested in starting at the end in time, we are really interested
in going back from f(sk+1) to f(sk), we thus rearrange (20),

f(sk) = f(sk+1)−∆s
∂f

∂s
(sk)−

(∆s)2

2!

∂2f

∂s2
(ξ). (21)

The error of our partial derivative, that is, the error of going from f(sk+1)
to f(sk), is expressed by the error term with the unknown ξ. How big is

this? Well, we do not know the exact value of ∂2f
∂s2

(ξ) but it does not really
matter. It is bounded at least, so we can use the big O notation to express
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the error,

f(sk) = f(sk+1)−∆s
∂f

∂s
(sk) +O((∆s)2). (22)

That is, the error of going from f(sk+1) to f(sk), following the tangent at
that point, is O((∆s)2).

We could look at what happens if we take it one step further, that is, does
the error increase as we step our way back?

f(sk−1) = f(sk)−∆s
∂f

∂s
(sk−1) +O((∆s)2).

Here we can replace f(sk) by its corresponding approximation (22). We get,

f(sk−1) = f(sk+1)−∆s
∂f

∂s
(sk) +O((∆s)2)−∆s

∂f

∂s
(sk−1) +O((∆s)2)

= f(sk+1)−∆s
∂f

∂s
(sk)−∆s

∂f

∂s
(sk−1) +O((∆s)2. (23)

This procedure can be repeated as many times as needed. That is, the error
might increase in absolute values, but in the big O notation it stays of the
same magnitude regardless of how many steps we take.

This is however only part of the error that we face. It is important though.
But we are also replacing the derivative with the slope between two points.
We can solve (22) for the derivative, to see how big the error is of replacing
it with the slope between two points,

∂f

∂s
(sk) =

f(sk+1)− f(sk)

∆s
+O(∆s).

That is, the error of the replacement is of the magnitude

∂f

∂s
(sk)−

f(sk+1)− f(sk)

∆s
= O(∆s).

We have just one more thing to deal with before we can leave this. We are
not actually approximating the derivative with the true function values at
the points sk and sk+1 but with the approximated function values fk+1, fk.
Does this have any impact on the error? As we saw in (23), the magnitude
of the error did not depend on how far we had moved, that is, it did not
depend on what the value of k was. Thus, assuming that we have access to
one true initial value on the derivative, the error of the derivative will be,

∂f

∂s
(sk) =

fk+1 − fk +O((∆s)2)

∆s
+O(∆s),
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or

∂f

∂s
(sk)−

fk+1 − fk
∆s

= O(∆s). (24)

The error on the right hand side is called the truncation error of this finite
difference approximation. We cannot get much further here by just focusing
on the forward approximation alone. We need a differential equation to work
with in order to actually work with the errors.

5.5 Approximating with Taylor’s Theorem, backward differ-
ence

Instead of looking at Taylor’s theorem where you move ∆s forward we could
put δs = −∆s and would get the equation

f(sk−1) = f(sk)−∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(ξ)

for some ξ ∈ [sk−1, sk]. Here we have a similar situation to the forward
difference. We will not go through the details again. But solving here for
∂f
∂s (sk), replacing the function values with our approximated values fk−1, fk
and using the big O notation to sum up all errors, we get,

∂f

∂s
(sk) =

fk − fk−1

∆s
+O(∆s). (25)

Again, the truncation error is O(∆s).

5.6 Approximating with Taylor’s Theorem, central differ-
ence

If we combine two Taylor approximations we can get a truncation error
which approaches 0 faster for certain intervals on ∆s, namely the one we
assume we have here, with ∆s ∈ [0, 1]. We have to assume that f (3) exists
now, and will now use Taylor’s theorem to state two approximations around
a point sk for the second order Taylor polynomials,

f(sk+1) = f(sk) + ∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(sk) +

(∆s)3

3!

∂3f

∂s3
(ξ) (26)

for some ξ ∈ [sk, sk+1], and

f(sk−1) = f(sk)−∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(sk)−

(∆s)3

3!

∂3f

∂s3
(ζ) (27)
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for some ζ ∈ [sk−1, sk].

If we subtract equation (27) from equation (26) we get

f(sk+1)− f(sk−1) = 2∆s
∂f

∂s
(sk) +

(∆s)3

3!

∂3f

∂s3
(ξ) +

(∆s)3

3!

∂3f

∂s3
(ζ)

and solving for ∂f
∂s (sk) yields

∂f

∂s
(sk) =

f(sk+1)− f(sk−1)

2∆s
− (∆s)2

3!2

(
∂3f

∂s3
(ξ) +

∂3f

∂s3
(ζ)

)
.

We proceed as earlier, replacing the error terms with big O notation and
replacing the function values with approximated solutions obtained with the
finite difference method and we get,

∂f

∂s
(sk) =

1

2

fk+1 − fk−1

∆s
+O((∆s)2). (28)

The truncation error is here O((∆s)2).

5.7 Central difference, second order

In order to get a good approximation of the second order derivative we have
to assume that f (4) exists, we can then write down two third order Taylor
polynomials around a point sk with Taylor’s theorem,

f(sk+1) = f(sk) + ∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(sk) +

(∆s)3

3!

∂3f

∂s3
(sk)

+
(∆s)4

4!

∂4f

∂s4
(ξ)

for some ξ ∈ [sk, sk+1], and

f(sk−1) = f(sk)−∆s
∂f

∂s
(sk) +

(∆s)2

2!

∂2f

∂s2
(sk)−

(∆s)3

3!

∂3f

∂s3
(sk)

+
(∆s)4

4!

∂4f

∂s4
(ζ)

for some ζ ∈ [sk−1, sk].

Adding these two expressions yields,

f(sk+1) + f(sk−1) = 2f(sk) + (∆s)2∂
2f

∂s2
(sk) +

(∆s)4

4!

∂4f

∂s4
(ξ)

+
(∆s)4

4!

∂4f

∂s4
(ζ).
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Solving for ∂2f
∂s2

and proceeding as earlier with big O notations and substi-
tuting for approximate solutions we get

∂2f

∂s2
(sk) =

fk+1 − 2fk + fk−1

(∆s)2
+O((∆s)2). (29)

5.8 Crank-Nicolson Finite Difference Method

We now have approximations for all differentials in the partial differential
equation. The Crank-Nicolson finite difference method uses the forward dif-

ference, equation (24), for ∂f
∂t . For ∂f

∂s ,
∂2f
∂s2

an average of the central difference
equations, (28) and (29), are used, evaluated at the current and the forward
time step. This introduces an extra factor 1

2 on both approximations.

We also evaluate f(s, t) as 1
2(f jk + f j+1

k ). The reason we want to use the av-
erage on the central differences is that the truncation errors will be O(∆t2)
and O(∆s2). It goes beyond the scope of this paper to show that we indeed
do have these truncation errors, but we refer the interested reader to [10].

The reason to use the current and future time steps is that we have at
hand an end condition in time for the option price and will work our way
backwards.

We replace the continuous derivatives in (14) with these finite difference
approximations and end up with

f j+1
k − f jk

∆t
=

1

2
(rf jk + rf j+1

k )− rsk
1

4

[
f jk+1 − f

j
k−1 + f j+1

k+1 − f
j+1
k−1

∆s

]
(30)

− 1

4

[
f jk+1 − 2f jk + f jk−1 + f j+1

k+1 − 2f j+1
k + f j+1

k−1

(∆s)2

]
σ(sk, tj)

2s2
k,

with the boundary condition

f(s, T ) = max(s−K, 0).

We rearrange equation (30) and sum up the coefficients to each f jk . In order

for the equation to be easier to read we write σjk instead of σ(sk, tj), the
function is still evaluated at those points though, it is not an approximated
solution of the function. We end up with
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f jk−1

(
(σjk)

2s2
k

4(∆s)2
− rsk

4∆s

)
+ f jk

(
− 1

∆t
−

(σjk)
2s2
k

2(∆s)2
− 1

2
r

)
(31)

+f jk+1

(
rsk
4∆s

+
(σjk)

2s2
k

4(∆s)2

)

= f j+1
k−1

(
−

(σjk)
2s2
k

4(∆s)2
+
rsk
4∆s

)
+ f j+1

k

(
− 1

∆t
+

(σjk)
2s2
k

2(∆s)2
+

1

2
r

)

+f j+1
k+1

(
− rsk

4∆s
−

(σjk)
2s2
k

4(∆s)2

)
.

In section 5.3 we defined sk := k∆s, k = 0, 1, · · · , N−1. We replace sk with
k∆s and multiply both sides by ∆t to end up with

f jk−1

(
∆t

4
(σjk)

2k2 − ∆t

4
rk

)
+ f jk

(
−1− ∆t

2
(σjk)

2k2 − ∆t

2
r

)
(32)

+f jk+1

(
∆t

4
rk +

∆t

4
(σjk)

2k2

)
= f j+1

k−1

(
−∆t

4
(σjk)

2k2 +
∆t

4
rk

)
+ f j+1

k

(
−1 +

∆t

2
(σjk)

2k2 +
∆t

2
r

)
+f j+1

k+1

(
−∆t

4
rk − ∆t

2
(σjk)

2k2

)
.

This can be written on a more compact form

ajkf
j
k−1 + (−1− bjk)f

j
k + cjkf

j
k+1 (33)

= −ajkf
j+1
k−1 + (−1 + bjk)f

j+1
k − cjkf

j+1
k+1 ,

where

ajk =
∆t

4
((σjk)

2k2 − rk),

bjk =
∆t

2
((σjk)

2k2 + r),

cjk =
∆t

4
((σjk)

2k2 + rk).

Note that this means that if one has a volatility function σ that depends on
the time t, then ajk, b

j
k, c

j
k would differ for different j. We will later make the

assumption that σ depends solely on s, so we will deal with them as being
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independent of j, and that we therefore can write them as ak, bk, ck.

We express the system of equations (33) as Df j = Ef j+1. This is a tridi-
agonal system

(−1− b0) c0 0 . . . 0 0
a1 (−1− b1) c1 . . . 0 0
0 a2 (−1− b2) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . (−1− bN−2) cN−2

0 0 0 . . . aN−1 (−1− bN−1)




f j0
f j1
...

f jN−2

f jN−1


︸ ︷︷ ︸

=fj

=



(−1 + b0) −c0 0 . . . 0 0
−a1 (−1 + b1) −c1 . . . 0 0

0 −a2 (−1 + b2) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . (−1 + bN−2) −cN−2

0 0 0 . . . −aN−1 (−1 + bN−1)




f j+1

0

f j+1
1
...

f j+1
N−2

f j+1
N−1


︸ ︷︷ ︸

=fj+1

From our initial condition we know the values on the elements of the vector
fM−1, they are max(sk −K, 0), k = 0, · · · , N − 1. Then we can iterate our
way back from fM−1. The elements of D and E can be calculated when we
have access to a volatility function.

6 Nonlinear least squares problem

This section is based on chapter 17 in [14], written by Amol Sasane and
Krister Svanberg.

As we will see in section 8, there will be a need for a method to solve a
nonlinear least squares problem. This section will be devoted to explaining
one method that can be used to solve such problems.

6.1 Defining the problem

We have a mathematical model describing an option price. We also have at
hand measurement data of option prices, and our problem will be to fit our
model to the measured data.

Assume that we have access to n different observed option prices. Each
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corresponding to a distinct strike price Kj
1. We define vj := v(Kj), j =

1, · · · , n, where v(Kj) is the observed price of an option with strike price Kj .

The corresponding theoretical option value, given by solving the partial
differential equation for a strike price Kj , will be denoted by vj(c(s, t;σ)).
We will show what we mean with c(s, t;σ) later on, in section 7. For now
we settle with that c denotes a volatility function and that σ is a vector
containing m elements, each element corresponding to a volatility value σi.
The vector σ is the one we wish to calibrate in order to fit our model to the
observed data.

We define hj(σ) := vj − vj(c(σ)), so hj is the difference between the ob-
served price and the price predicted by our model for a strike price Kj . In
a perfect world we would like to have

h1(σ) = 0
...

hn(σ) = 0.

However we probably do not have a perfect model, and have to settle with an
error. We cannot be sure to be able to match the observed values perfectly,
and in this paper we even seek a volatility function with other properties
than just matching the option prices. Instead we will try to minimize the
squared differences and work with a nonlinear least squares problem

minimize F (σ) :=
1

2

n∑
j=1

(hj(σ))2. (34)

It is a nonlinear problem because hj are nonlinear functions of σ.

6.2 Gauss-Newton

The method we are going to use is Gauss-Newton, which is an iterative
method, and therefore it will suffice to show how we go from one iterative
point σ(k) to σ(k+1).

At an iteration point σ(k) we approximate every function hi with its first
order Taylor polynomial at σ(k),

hj(σ) ≈ hj(σ(k)) +∇hj(σ(k))(σ − σ(k)), j = 1, · · · , n.

Let d := σ − σ(k), then the Taylor approximation can be written as

hj(σ
(k) + d) ≈ hj(σ(k)) +∇hj(σ(k))d, j = 1, · · · , n.

1It does not have to be distinct strike prices, they could differ in time to maturity as
well, thus one could have different observed option prices for the same strike price K.
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In order to write this in a more compact form, we define

h(σ) =

h1(σ)
...

hn(σ)

 and ∇h(σ) =

∇h1(σ)
...

∇hn(σ)

 =


∂h1
∂σ1

. . . ∂h1
∂σm

... . . . ...
∂hn
∂σ1

. . . ∂hn
∂σm

 .
We are now able to write the minimizing problem as

minimize F (σ) =
1

2
||h(σ)||2, (35)

and our first order polynomial approximation is

h(σ(k) + d) ≈ h(σ(k)) +∇h(σ(k))d.

Using this approximation in the objective function F we get

F (σ(k) + d) =
1

2
||h(σ(k) + d)||2

≈ 1

2
||h(σ(k)) +∇h(σ(k))d||2

=
1

2
||A(k)d− b||2, (36)

where A(k) := ∇h(σ(k)) and b := −h(σ(k)).

In the Gauss-Newton method one wishes to minimize the right side of (36)
for the vector d ∈ Rm:

minimize
1

2
||A(k)d− b||2. (37)

But this means we want to solve a linear least square problem, the solution
to this can be found in for example [14] and is given by the normal equation
(A(k))TA(k)d = (A(k))T b. Replacing A(k) and b with the corresponding
expressions of h(σ) yields

(∇h(σ(k)))T∇h(σ(k))d = −(∇h(σ(k)))Th(σ(k)). (38)

Let a solution of this normal equation be called d(k), then the next iteration
point is

σ(k+1) = σ(k) + d(k). (39)
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7 The volatility function

We have earlier said that in order to solve the partial differential equation
numerically, we need a volatility function. In the previous section we men-
tioned that the function h would depend on a vector σ, and that this vector
is going to be updated when we solve the minimizing problem that is to fit
our model to data from the market.

This section will be devoted to show what kind of function we want this
volatility function to be, and thus what kind of function we will recreate.
We will do this by solving a minimizing problem.

At this point we make a quite big simplification that makes the problem
easier to solve. The effect this has on accuracy of the solution has not been
looked at. The assumption made is that the volatility function, σ, does not
depend on time, i.e. it is a function of only one variable, the underlying
stock.

Remark. In case someone with a background in financial economics read
this we do not claim that the volatility is best, or even well, described as a
function of solely the stock price. It is a pure simplification made to enable
this paper to be written within the time frame. More than that, the method
given does not really depend on what one assumes that the volatility depend
on, the simplification made is really that it depends on only one variable.

7.1 Some basic theorems

We start by stating some theorems that will be needed when deciding what
kind of function it is we seek. Both theorems originate from [15]. We only
prove theorem 3 here since we have changed the statement a bit from the
original one, the idea of the proof is the same though.

Theorem 3. Suppose that x1 and x2 are fixed constants with x1 < x2, G(x)
is a continuous function on [x1, x2] such that for every continuous and differ-
entiable function η, with the property η(x1) = η(x2) = η′(x1) = η′(x2) = 0,
we have ∫ x2

x1

G(x)η(x)dx = 0. (40)

Then
G(x) = 0 ∀x ∈ [x1, x2]. (41)

Proof. If we can find one function η(x) for which (40) is false when (41) does
not hold, we are done. Let us therefore suppose that (41) does not hold,
that is, there exist a particular value x′ ∈ (x1, x2) such that G(x′) differs
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from 0 and (40) is still true.

For the sake of definiteness, suppose G(x′) > 0. G is a continuous func-
tion, therefore there exists an interval around x′, say [x′1, x

′
2], x1 ≤ x′1 <

x′ < x′2 ≤ x2, such that G(x) > 0 ∀x ∈ [x′1, x
′
2]. We can now consider the

function η defined by

η(x) =


0 for x1 ≤ x ≤ x′1,
(x− x′1)2(x− x′2)2 for x′1 ≤ x ≤ x′2,
0 for x′2 ≤ x ≤ x2.

(42)

This particular function satisfy the properties demanded of η, and the inte-
gral (40) becomes ∫ x′2

x′1

G(x)(x− x′1)2(x− x′2)2dx. (43)

Since G(x) > 0 ∀x ∈ [x′1, x
′
2], this integral is clearly positive, and thus violate

(40). We can reach a similar contradiction if G(x) < 0 on the interval, and
the proof is complete.

Theorem 4. Suppose that ∂f/∂ε is a continuous function of ε and of
x ∈ [x1, x2]. Suppose also that x1, x2 are differentiable with respect to ε. If

I = I(ε) =

∫ x2(ε)

x1(ε)
f(x, ε)dx,

then

dI

dε
= I ′(ε) = f(x2, ε)

dx2

dε
− f(x1, ε)

dx1

dε
+

∫ x2(ε)

x1(ε)

∂f

∂ε
(x, ε)dx.

If we have an integral where x1, x2 are independent of ε, the derivative is
reduced to the integral term.

7.2 Defining the problem

The main idea of what kind of function we are trying to recreate comes from
[3], a work of Thomas F. Coleman, Yuying Li and Arun Verma.

We seek to reconstruct the volatility function. To do that, we need to
have some restrictions on what kind of function we seek. Here we want
to get a fairly smooth function and therefore use splines which have good
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approximation properties. In order to get one we follow ideas from physics
and seek a volatility function σ ∈ P that minimizes

1

2

∫ sm+1

0
(σ′′(s))2ds, subject to σ(si) = σi, i = 1, · · · ,m

where σi are observed volatility values and sm+1 > sm is a fixed number in
R. P is a functional room consisting of functions that are C2[0, sm+1]. Apart
from belonging to P we also demand that all functions σ has the property
σ(si) = σi, i = 1, ...,m. As we noted in section 6, the vector σ denotes a
vector with σi as the elements. This vector is what will be variable in the
least squares problem defined in sec 6 that we are going to give a scheme to
solve later.

We make a definition of the kind of function that will later be proved to
be the minimizer of this integral.

Definition. A function σ ∈ C2[a, b] is called a cubic spline on [a, b] if
[a, b] = [c0, c1] ∪ [c1, c2] ∪ · · · ∪ [cm−1, cm] and if σ consists of cubic polyno-
mials pi on each subinterval [ci, ci+1], i = 0, 1, ...,m− 1.

If the polynomial σ(s) has the property that σ(si) = σi for given values
σi, then σ is called an interpolating cubic spline.

If furthermore the interpolating cubic spline has the property p′′0(c0) =
p′′m−1(cm) = 0 then it is said to have a natural spline end condition.

7.3 Finding the minimizers behaviour at (si, si+1)

Here we use methods presented in [15], chapter 3, when trying to find prop-
erties of the minimizer.

Let us assume that the function σ∗ ∈ P is the actual minimizing function
and introduce a one-parameter family of comparison functions,

σ(s) = σ∗(s) + εh(s),

where ε is the parameter of the family. We want σ to be a candidate to our
volatility function ∀ε. This can be achieved if h(si) = 0, i = 1, ...,m and
h(s) ∈ C2[0, sm+1]. These are the only restrictions we need to have on h,
and apart from that it can be arbitrarily chosen. We denote the set with
all functions having these properties as P ′. This choice of h ∈ P ′ gives us
σ(s) ∈ C2[0, sm+1] and thus σ ∈ P . Also σ(si) = σ∗(si) = σi, i = 1, · · · ,m,
and so σ is a candidate for our minimizing function ∀ε.
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Now we replace σ∗ by σ in the integrand and we get a comparison inte-
gral

I(ε) =
1

2

∫ sm+1

0

(
σ′′∗(s) + εh′′(s)

)2
ds.

Now this integral is clearly a function of one variable, ε, and since we have
assumed σ∗ to be the minimizing function, we see that the minimum of I(ε)
must be when ε = 0. Thus we get that

I ′(0) = 0. (44)

With Theorem 4 we can calculate the derivative with respect to ε,

I ′(ε) =
1

2

∫ sm+1

0

(
∂

∂ε

(
(σ′′∗(s) + εh′′(s)

)2
)

)
ds

=
1

2

∫ sm+1

0

(
2(σ′′∗(s) + εh′′(s))

∂

∂ε
(σ′′∗(s) + εh′′(s))

)
ds

=

∫ sm+1

0

(
(σ′′∗(s) + εh′′(s))h′′(s)

)
ds. (45)

We have used the fact that

σ′′(s) = σ′′∗(s) + εh′′(s).

(45) combined with (44) gives us

0 =

∫ sm+1

0
σ′′∗(s)h

′′(s)ds.

We start by focusing on some interval [si, si+1], 1 ≤ i ≤ m − 1. Since this
should hold for all h with the restrictions we have imposed, we can in par-
ticular choose h such that h(s) = 0 outside of this interval, and we can also
demand that h(si) = h(si+1) = h′(si) = h′(si+1) = 0.

Assume now that σ∗ ∈ C4 on every subinterval, we can proceed with in-
tegration by parts and derive information about the possible optimizer σ∗.

0 =

∫ si+1

si

σ′′∗(s)h
′′(s)ds

= [h′(s)σ′′∗(s)]
si+1
si︸ ︷︷ ︸

=0

−
∫ si+1

si

σ
(3)
∗ (s)h′(s)ds.

The first term is equal to 0 since h′(si) = h′(si+1) = 0. Can we use theorem

3 and conclude that σ
(3)
∗ = 0 on (si, si+1)? h′(s) has the property h′(si) =
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h′(si+1) = 0, but it has one extra restriction, namely that the integral∫ si+1

si
h′(s)ds = 0 and thus we cannot use theorem 3. We integrate by parts

once more and get

− [h(s)σ
(3)
∗ (s)]

si+1
si︸ ︷︷ ︸

=0

+

∫ si+1

si

σ
(4)
∗ (s)h(s)ds.

Here the first term vanishes since h(si) = h(si+1) = 0. We are left with

∫ si+1

si

σ
(4)
∗ (s)h(s)ds = 0.

Both σ∗ and h fulfils the requirements in Theorem 3 so we conclude that

σ
(4)
∗ (s) = 0 for s ∈ [si, si+1], and thus that it is a third degree polynomial on

this subinterval. Since we did not choose the interval in any particular way
this holds for all subintervals. We conclude that σ∗ consists of third degree
polynomials, that may differ from each other between each subinterval, but
that have the same values at the connecting points.

At the intervals [0, s1], [sm, sm+1] we only have a single point to pass through.
The function that minimizes the integral and passes through a single point
must be a first degree polynomial. Thus, on both the first and the last in-
terval, σ∗ is a first degree polynomial.

We know more about σ∗ though. Since we assumed it to be C2, at each
point si, i = 1, · · · ,m, we have that the possibly different third degree
polynomials must have the same slope as well as the same slope on their
derivatives.

Now we have a candidate for our minimizing function, is this then really
the minimizing function?

7.4 Confirming the minimizer

The definition and theorem of this section originates from [13], where one
can also find the proof of the theorem.

We wish to show that this minimizing function is a global minimizer, and
that it thus is the function we seek.

Definition. Let X be a normed space. A function I : X → R where,
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for all x1, x2 ∈ X, and all α ∈ [0, 1],

I(αx1 + (1− α)x2) ≤ αI(x1) + (1− α)I(x2)

is said to be convex. If, for all x1, x2 ∈ X with x1 6= x2, and all α ∈ (0, 1),

I(αx1 + (1− α)x2) < αI(x1) + (1− α)I(x2)

then I is said to be strictly convex.

Theorem 5. Let X be a normed space, and let I : X → R be differen-
tiable. Suppose that I is convex. If x0 ∈ X is such that I ′(x0) = 0, then
I has a global minimum at x0. If furthermore I is strictly convex then the
global minimizer is unique.

We know that our function σ∗ is a candidate to be the minimizer. If our
integral is a strictly convex functional then we know that this function is a
unique global minimizer.

We start by examining the function g(x) = x2, x ∈ R, since inside the
integral we have g(σ′′(s)). We know that g′′(x) = 2 ∀x ∈ R, which is greater
than 0 and thus g is strictly convex. From our definition of strictly con-
vex, this means that for α ∈ (0, 1), when x1 6= x2, g(αx1 + (1 − α)x2) <
αg(x1) + (1− α)g(x2).

Now, let σ̃1, σ̃2 ∈ P be functions such that σ̃1 6= σ̃2 and σ̃1(si) = σ̃2(si) = σi,
i = 1, · · · ,m. Then they are any two functions which could be the minimiz-
ing function. Let

Ψ(σ) =
1

2

∫ sm+1

0
(σ′′(s))2ds

and let α ∈ (0, 1). Then,

Ψ(ασ̃1 + (1− α)σ̃2) =
1

2

∫ sm+1

0
(ασ̃′′1(s) + (1− α)σ̃′′2(s))2ds

≤ 1

2

∫ sm+1

0
(α(σ̃′′1(s))2 + (1− α)(σ̃′′2(s))2)ds

=
1

2

∫ sm+1

0
ασ̃′′1(s)2ds+

1

2

∫ sm+1

0
(1− α)σ̃′′2(s)2ds

= α
1

2

∫ sm+1

0
σ̃′′1(s)2ds+ (1− α)

1

2

∫ sm+1

0
σ̃′′2(s)2ds

= αΨ(σ̃1) + (1− α)Ψ(σ̃2).

When is the inequality a strict inequality? Since g is strictly convex, the
inequality is a strict inequality unless σ̃′′1(s) = σ̃′′2(s) ∀s ∈ [0, sm+1]. Let
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us see then if this equality can hold for any two different σ that we are
interested in.

σ̃′′1(s) = σ̃′′2(s) ⇔ σ̃′1(s) = σ̃′2(s) + c

for some constant c. If c = 0, then σ̃1(s) = σ̃2(s) + d, but σ̃1(si) = σ̃2(si) =
σi, which implies that d = 0. Then σ̃1 = σ̃2, contrary to our choice of σ̃1

and σ̃2.

If c is different from 0, assume for definiteness that c > 0, then we have
σ̃′1(s) < σ̃′2(s). This implies that if σ̃1(s1) = σ̃2(s1) = σ1 then σ̃1(s2) <
σ̃2(s2), hence they cannot both be equal to σ2, which is a contradiction to
our choice of σ̃1, σ̃2. This is only true if there are more than one point we
must pass through. An analogous argument hold if c < 0 and thus, if we
have at least two points to take into consideration, our functional is strictly
convex, and σ∗ is indeed the unique global minimizer.

If we only do have one point we must pass through, the minimizer of the
integral is any straight line that passes through that point since then the
integral is 0.

7.5 Finding the coefficients of the polynomials

Now we have everything we need in order to find the coefficients of our
polynomials. We know that the minimizing function σ∗ consists of, possibly
different, third degree polynomials on the intervals [si, si+1], i = 1, ..,m− 1.
We make a convenient definition.

pi(s) := σ∗(s) for s ∈ [si, si+1], i = 0, 1, ...,m

where s0 := 0 (the reason it needs to be defined is that we do not actually
have a point s0).

What we have done is simply to let each subinterval be represented by a
polynomial of its own. We have that pi(s) = Ai(s − si)3 + Bi(s − s1)2 +
Ci(s− si) +Di, i = 0, ...,m, where the coefficients may be different for dif-
ferent i. The reason to write (s − si) instead of just s is that it becomes
very easy to determine the value of Di due to the fact that σ∗(si) = σi,
i = 1, · · · ,m.

For p0 and pm we have that p0(s) = C0s+D0 and pm(s) = Cm(s−sm)+Dm

since we know that they are first degree polynomials.

Now we write up everything we know about the polynomials pi.
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pi(si) = σi,

pi(si) = pi−1(si)

p′i(si) = p′i−1(si)

p′′i (si) = p′′i−1(si)

for i = 1, ...,m. (46)

The third and fourth condition follows since σ∗ ∈ C2[0, sm+1. The fourth
condition, together with the fact that p0 and pm are first degree polynomials,
gives us that p′′1(s1) = p′′m−1(sm) = 0. This means that we have a natural
interpolating cubic spline on the interval [s1, sm].

We continue with calculating the derivatives which are the following,

pi(s) = Ai(s− si)3 +Bi(s− si)2 + Ci(s− si) +Di

p′i(s) = 3Ai(s− si)2 + 2Bi(s− si) + Ci

p′′i (s) = 6Ai(s− si) + 2Bi

p0(s) = C0s+D0

p′0(s) = C0

pm(s) = Cm(s− sm) +Dm

p′m(s) = Cm.

We note that pi(si) = Di, p
′
i(si) = ci and p′′i (si) = 2Bi. Inserting this

into (46) yields
Di = σi

Di = Ai−1(si − si−1)3 +Bi−1(si − si−1)2 + Ci−1(si − si−1) +Di−1

Ci = 3Ai−1(si − si−1)2 + 2Bi−1(si − si−1) + Ci−1

2Bi = 6Ai−1(si − si−1) + 2Bi−1,

and we rewrite it slightly to end up with


Di = σi

Ai−1(si − si−1)3 +Bi−1(si − si−1)2 + Ci−1(si − si−1) = Di −Di−1

3Ai−1(si − si−1)2 + 2Bi−1(si − si−1) + Ci−1 − Ci = 0

6Ai−1(si − si−1) + 2Bi−1 − 2Bi = 0.

(47)

We leave the coefficients C0 and D0 for now, and deal with them a little
bit later. The rest of this system of equations can be explicitly solved for
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Ai−1, Bi−1 and Ci−1 in terms of the coefficients Ai, Bi and Ci. We express
the system of equations in a matrix where the first column corresponds to
the coefficients of Ai−1, the second the coefficients of Bi−1 and the third the
coefficients of Ci−1. We denote the distance si− si−1 as ∆si. The system is (∆si)

3 (∆si)
2 ∆si

3(∆si)
2 2(∆si) 1

6∆si 2 0

∣∣∣∣∣∣
σi − σi−1

Ci
2Bi

 .

Let R1, R2 and R3 denote row 1, 2 and 3. If we subtract ∆siR3 from R2

and 1
2(∆si)

2R3 from R1 we get−2(∆si)
3 0 ∆si

−3(∆si)
2 0 1

6∆si 2 0

∣∣∣∣∣∣
σi − σi−1 −Bi(∆si)2

Ci − 2Bi∆si
2Bi

 .

Now we divide R3 by 2, and we subtract −∆siR2 from R1 and get (∆si)
3 0 0

−3(∆si)
2 0 1

3∆si 1 0

∣∣∣∣∣∣
σi − σi−1 +Bi(∆si)

2 − Ci∆si
Ci − 2Bi∆si

Bi

 .

Finally, adding 3
∆si

R1 to R2 as well as subtracting 3
(∆si)2

R1 from R3, and

then dividing R1 by (∆si)
3 yields

1 0 0
0 0 1
0 1 0

∣∣∣∣∣∣∣∣∣
σi−σi−1+Bi(∆si)

2−Ci∆si
(∆si)3

−Bi∆si + σi−σi−1

∆si

−2Bi − 3σi−σi−1−Ci∆si
(∆si)2

 .

We have now showed how one determines every point. Only one question
remains in order to say that the system has a unique solution, do we have
a starting point? That is, do we have Cm and Dm? The question is no, not
from the beginning. Dm = σm, but Cm is unknown, and thus all coefficients
will be expressed in this term until we reach the end. Here we once again
turn our attention to p0(s) = C0s+D0. From the system (47) we get,

A0(s1)3 +B0(s1)2 + C0(s1) +D0 = σ1

3A0(s1)2 + 2B0(s1) + C0 = C1

6A0(s1) + 2B0 = 2B1.

But A0 = B0 = 0, so this turns into
C0(s1) +D0 = σ1

C0 = C1

0 = 2B1.
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Since B1 is unknown solely in Cm we can get Cm from the last equation,
and then all coefficients are determined.

In order for a computer to solve the system of equations efficiently we write
it on matrix form. We first note that we can ignore all Di, except for D0,
due to the fact that we assume knowledge of the values σi. Therefore we
will form block matrices where the different rows represent the equations
above on the corresponding places. The columns will in general represent
the coefficients of Ai, Bi and Ci.

We will write two matrices on a special form though. Since p0(s) = C0s+D0

we will skip the coefficients A0 and B0 entirely but have D0 represented. For
the same reason we will skip Am and Bm. We define the block matrices,

a1(p0) :=

s1 1
1 0
0 0


ai(pi−1) :=

 (si − si−1)3 (si − si−1)2 (si − si−1)
3(si − si−1)2 2(si − si−1) 1
6(si − si−1) 2 0



ai(pi) :=

0 0 0
0 0 −1
0 −2 0



am(pm) :=

 0
−1
0

 .

We insert them into a big matrix, denoted by V. The zeros in each col-
umn represent block matrices filled with zeros of the same dimension as the
block matrices in that column that we have stated above. We define

V :=



a1(p0) a1(p1) 0 . . . . . . 0
0 a2(p1) a2(p2) 0 . . . . . 0
. .
. .
0 . . 0 ai(pi−1) ai(pi) 0 . . .
. .
. .
0 . . . . . . 0 am(pm−1) am(pm)


.

In case there is any confusion, the zeros below a1(p0) have the dimension
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3x2, and the zeros above am(pm) have the dimension 3x1 while the rest of the
zeros have the dimension 3x3. We thus have that V is a 3m-by-3m matrix.
In order to completely structure up the system of equations we write down
the coefficients of the polynomials as a vector. The same thing is done with
the right hand side of the equations. We define O as the matrix containing
all coefficients and L as the matrix representing the right hand side. We have

O :=



C0

D0

A1

B1

C1
...

Am−1

Bm−1

Cm−1

Cm


L :=



σ1

0
0

σ2 − σ1

0
0
...

σm−1 − σm−2

0
0

σm − σm−1

0
0


VO = L and we can solve for the coefficients in O by inverting V.

8 Reconstructing the volatility function

The minimizing problem and much of the notation follows the work in [3].

We now have at hand a method to produce the coefficients we seek when
we know the values (σ1, σ2, ..., σm). The problem is that we do not have
access to these. We do however have access to market prices of options for
different strike prices. We also have at hand the partial differential equation
that, following our model of stock price movement, yields the option price,
at least now that we have defined what our volatility function is. In section
5 we described how we are going to solve that partial differential equation
numerically and ended up with the finite difference partial differential equa-
tion (30).

In section 6 we showed a method to fit our mathematical model to observed
data, that is, we showed a method to solve a nonlinear least squares problem.

What is left to do is to define just what it is we are going to optimize,
and what our scheme for doing this is.
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8.1 The minimizing problem

Since we are going to do this with the help of a computer, and its compu-
tational capacity is limited, we will here let sm+1 = 2sinit, where sinit is the
observed stock price corresponding to our observed option prices.

We will denote the interpolating cubic spline, described in section 7 as
c(s;σ), where σ := (σ1, · · · , σm), i.e. a vector containing the values that
determines the coefficients of c. Thus,

c(s;σ) :=


p0(s), 0 ≤ s < s1

p1(s), s1 ≤ s < s2

...

pm(s), sm ≤ s ≤ sm+1.

We use the same notation as when describing the Gauss-Newton method and
denote the option value we get when solving the partial differential equation
as vj(c(s;σ)), the meaning of the j is that this denotes the option value for
a strike price Kj .

The parts that are unknown in this problem are the values in the vector
σ. In fact that is the only unknown part in our problem. It determines the
values of the coefficients on the function we are trying to recreate from our
data. Thus, the volatility values are the ones that will be optimized. We
define an inverse spline local volatility approximation problem

min
σ∈Rm

F (σ) =
1

2

m∑
j=1

[vj(vj − c(s;σ))]2, (48)

where vj , just as before, denotes the observed market prices for options cor-
responding to a strike price Kj and m is the number of data we have at
hand. The choice to have m number of data, just as the number of spline
knots, is not a coincidence. More correctly would be to say that we choose
to have as many spline knots as data we have at hand. When one normally
uses splines it is to fit a model to observed points. Here we do not actually
have data points that the spline has to go through, and we could therefore
have chosen more (or fewer) spline knots than we had option prices. As
noted in [3], having the same number of spline knots can lead to computa-
tional advantages so we choose that as our approach.

When looking for market prices on options it is typically difficult to find
enough data on closed deals if one wants the same value on the underlying
stock for every deal. The reason is partly that stocks are traded a lot, and
thus the price changes often. Apart from that options are not traded that
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much, and it can be hard to even find many closed deals with the same
maturity, that is, during the same day.

There is however a way to solve this problem, at most times one can find
a bid-ask pair on options for different strikes. A bid-ask pair (bidj , askj)
consists of a bid price, denoted bidj , which is the highest price someone is
interested in paying for the option with strike price j at this moment. The
ask price, denoted askj , is correspondingly the lowest price someone is will-
ing to sell the option with strike price j for at this moment. We define the
option price as

vj :=
bidj + 3askj

4
.

We weight it towards the ask prices based on a fairly small investigation on
actual prices on options compared to the original bid-ask spread. It turned
out to be in average this weight and therefore we use it here. The method
used to get this weight is presented in appendix B.

If one has access to a more accurate approximation of the actual option
price from bid-ask pairs then one could use that instead. It is also possible
to instead use the last closed deal as the option price. However, we have
chosen here to use one price on the stock for all strike prices, as well as one
time to maturity. These restrictions forced us to take the option prices at
one time for different strike prices, at least if we wanted more than a single
option price to work with. The values of the options was taken after OMX
closed for the day, making it possible to take the bid-ask pairs from the same
point in time.

8.2 Setting up the numerical scheme

Note that this section is mainly a description of one way to set up a scheme
using the methods we have described in the paper. We have not compared it
to any other scheme, nor have we computed efficiency. It is just a suggestion
as to how one could use the methods described in this paper to, hopefully,
reconstruct a volatility function.

In order to start we will have to guess values on the vector σ. We use the
implied volatility to do this, that is, the volatility given by solving (6) for σi.

We are going to use the differential equation (30) to determine the cur-
rent value of vj(c(s;σ)). We then need a way to update the values of σ in
order to get a volatility function that is good enough for our minimizing
problem. For this purpose we will use the Gauss-Newton method described
in 6.
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We assume that one has defined N and M, that is, defined at how many
points one evaluates the partial differential equation. When one gathers
option prices to fit the model to one gets access to the stock price sinit as
well as strike prices Kj , j = 1, · · · ,m and the time to maturity T . One also
need the riskfree interest rate r. Since the vector σ is what will be updated
we will denote the current vector with σ(k). The scheme is the following:

1. Find coefficients to the spline c(s;σ(k)) by solving the system VO = L
for your current vector σ(k).

2. Calculate the theoretical option prices vj(c(sinit;σ
(k))). Note that the

option price is a function of the maturity time T, the stock price sinit,
the riskfree rate of interest r, the strike price Kj and the volatility
function c. We have chosen an approach where all but the strike price
and volatility are the same. That is the reason that the option price
function does not take all the other variables as variables, that is, we
assume them as fixed.

3. Calculate hj(σ
(k)) := vj − vj(sinit;σ

(k))) and define the vector

h(σ(k)) :=

h1(σ(k))
...

hm(σ(k))

 .
4. Calculate F (σ(k)) = ||h(σ(k))||. If F (σ(k)) < γ, where γ > 0 is defined

to be the number deciding when we are “close enough”, then we are
done. Otherwise,

5. calculate

∇h(σ(k)) =


∂h1
∂σ

(k)
1

. . . ∂h1
∂σ

(k)
m

... . . . ...
∂hn
∂σ

(k)
1

. . . ∂hn
∂σ

(k)
m

 .
We have here tried to approximate the partial derivatives with

∂hi

∂σ
(k)
j

≈ hi(σ
(k) + εej)− hi(σ(k))

ε
.

where ε > 0 is chosen as small as allowed by Matlab, the program used
to implement this. ej represent a unit vector with the j:th element
being equal to 1. It is likely that there are more accurate ways to
calculate the derivatives that we have not looked into.
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6. Solve the normal equation

(∇h(σ(k)))T∇h(σ(k))d = −(∇h(σ(k)))Th(σ(k)) (49)

in order to,

7. update your vector σ(k) and obtain a new one by σ(k+1) = σ(k) + d(k),
where d(k) is the solution to the normal equation.

8. Repeat from 1.
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[4] Cornuejols, G., and Tütüncü, R. Optimization Methods in Fi-
nance, Carnegie Mellon University, Pittsburgh, USA (Summer 2005).

[5] Evans, L. C. An Introduction to Stochastic Differential Equations
Version 1.2, UC Berkeley, course notes.

[6] Giles, M. B. and Carter, R. Convergence analysis of Crank-
Nicolson and Rannacher time-marching, Journal of Computational Fi-
nance, Vol. 9. No. 4 (Summer 2006), pp. 89-112.

[7] Graham, R. L., Knuth, D. E. and Patashnik, O. Concrete mathe-
matics: a foundation for computer science, Addison-Wesley Publishing
Company, Reading, Massachusetts, second edition, 1994.

[8] Hull, J. C. Options, Futures, And Other Derivatives, global edition,
Pearson Education Limited, eighth edition (2011).

[9] Merton, R. C. Theory of Rational Option Pricing, The Bell Journal
of Economics and Management Science, Vol. 4. No. 1 (spring 1973),
pp. 131-183.

[10] Morton, K. W. and Mayers, D. F. Numerical Solutions of Partial
Differential Equations: An Introduction, second edition, Cambridge
University Press, 2005.

[11] Recktenwald, G. W. Finite-Difference Approximations to the Heat
Equation, Royal Institute of Technology, Stockholm, Sweden, (March,
2011), course notes.

[12] Rudin, W. Principles of Mathematical Analysis, McGraw-Hill Book
company, New York, third edition, 1976.

[13] Sasane, A. MA3260 Mathematical Economics, Stockholm University,
Stockholm, Sweden (July 2007), course notes.

47



[14] Sasane, A. and Svanberg, K. Optimization (SF1811 /SF1831 /
SF1841), Royal Institute of Technology, Stockholm, Sweden, course
notes.

[15] Weinstock, R. Calculus of Variation with applications to physics and
engineering, Dover, 1974.

48



Appendices

A Assumptions in the normal Black-Scholes-Merton
option pricing formula

The Black-Scholes-Merton formula uses a number of assumptions which are
listed here, they all originate from page 309 in [8].

1. The stock price follows a geometric Brownian motion and the return
µ aswell as the volatility σ are constant.
2. The short selling of securities with full use of proceeds is permitted.
3. There are no transactions costs or taxes. All securities are perfectly di-
visible.
4. There are no dividends during the life of the derivative.
5. There are no riskless arbitrage opportunities.
6. Security trading is continuous.
7. The risk-free rate of interest, r, is constant and the same for all maturities.

The difference in assumptions in this paper is that µ and σ does not have to
be constant but functions of s and t, although we later on made the extra
assumption that σ did not depend on t.

B Why vj :=
bidj+3askj

4

This paper is mainly a mathematical one and data has been gathered with
the only objective to have values to try and reconstruct a local volatility
function. Due to this, the process of gathering data has not received much
attention.

B.1 The method used to determine vj =
bidj+3askj

4

The method used to determine this weight was fairly simple and straight-
forward. We gathered all option prices from one day (from OMX), the same
day the option prices were gathered, 2011-11-14, and chose every bid-ask
pair that had a closed deal the last hour it was open. We then chose every
bid-ask pair with a last closed deal that was higher than the bid price and
lower than the strike price.

Let Cj denote the last closed deal on an option for a given strike price.
For all these remaining pairs, the weight on each bid and ask was computed
by solving the equation

w1bidj + (1− w1)askj = Cj .
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That is, we found out how close the last closed deal was to the current bid-
ask pair. Once this was done, an arithmetic mean of all the weights on the
bid prices was computed, and this resulted in the weights used here.
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