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Abstract

The purpose of this study was to examine the connection between
theory and practice in the vast mathematics world and to investigate
the corresponding process in between. Another aim was to find out
the connection between mathematical models and financial solutions.
Because of this goal, in this thesis a financial problem was considered,
the components of the problem were analysed and in order to solve
such kind of problems, a method with the name ”Lie group analysis”
based on the symmetry analysis was chosen. Also different situation
of this problem were examined in the study to obtain the reductions
arising from Lie symmetry of a partial differential equation (PDE) to
an ordinary differential equation (ODE), which was easier to solve in
comparison with solving the PDE.
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1 Introduction

The world of finance, which is one of the fastest growing areas in the
modern banking and corporate world, consists of mathematical methods,
formulas, models and systems. Therefore the financial mathematics is al-
most new and a developing area in science. In 1973, among the first scientists
who obtained very important analytical results in this area were F. Black,
M. Scholes and D. Merton. They described a model, known as Black-Scholes
model. From the model, the Black-Scholes formula was generalized which
leads to the value of an option.

In this thesis we will study a non-linear partial differential equation
(PDE) arising from pricing asset related to one type of illiquid markets.
In order to solve this type of equation, we will introduce a method ”Lie
group analysis”, named after Sophus Lie, the Norwegian mathematician,
who founded the theory of continuous transformation groups.
The idea behind applying Lie group theory on differential equations (DE)
is as old as the theory itself, but this subject has been used quite recently,
because of some misconceptions such as

I) To find the symmetry group of an equation is as difficult as to solve
the equation itself.

II) Lie group analysis provides randomly particular solution.

III) Lie group analysis is only for solving linear equations.

Roughly speaking, the symmetry group of a system of differential equa-
tion is a group of transformation of all dependent and independent variables
which maps each solution of equations to another solution of the same equa-
tion, i.e., leaves the set of solutions invariant. When a symmetry group of a
system of an equation is obtained, then by using this, new solutions can be
generated from the old one. There are some important application of the
Lie group analysis, for example the symmetry reduction of a higher order
ordinary differential equation (ODE) to a lower order ODE, the reduction
of a partial differential equation to an ODE, which is the main subject of
this thesis.
This thesis consists of six Sections. The First Section is introduction. In
the Second Section, before describing any subject, we will study some fun-
damental definitions in mathematics and finance.
In Third Section we will analyse backgrounds in financial problems in math-
ematics, introduce some concepts and formulas which have an important role
in pricing an asset, and we will show that how an asset price relates to a
PDE. Then we will investigate three different illiquid market models and
state non-linear PDEs arise from their pricing.
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The aim of writing the Section Four is to understand the concept of sym-
metry and study definitions and examples informally which makes easier to
understand the whole idea about applying Lie group analysis on a differen-
tial equation.
The contexts in Section Five, will give a broad view on the Lie group the-
ory to the reader. We will study exact definitions and theorems about Lie
symmetry analysis. They are important concepts to study the main PDE
introduced in Section Three.
Section Six, under the title ”Lie analysis on the obtained PDE from a Finan-
cial Market”, is the main section of this research and consists of two parts.
In the first part we will construct Lie algebra admitted by main equation.
Then in the next part, we will study how we can find invariant and ordinary
differential equations which are easier to solve in comparison with PDE.
In Section Seven which is the last one, we will discuss and represent the
results. References are included.
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2 Some Fundamental Definitions

Definitions have a fundamental role in understanding different subjects
from the scientific aspect. Therefore here we state some important defi-
nitions in mathematics and finance, that we shall use them later in our
discussions.

Definition 2.0.1. A Partial Differential Equation is a kind of differen-
tial equation. An unknown function which depends on several independent
variables and their partial derivatives with respect to them.

Definition 2.0.2. σ − algebra. Let X be a set, and let F be a non-empty
subset of X. Then F is σ − algebra if the following hold

I) The set X ∈ F.

II) If a set A ∈ F , then the complement of A ∈ F too.

III) If An is a sequence of elements of F, then
⋃

An ∈ F.

Definition 2.0.3. A Measurable space is a set E together with a collec-
tion C of subsets of E which is a σ− algebra. The elements of C are called
measurable sets.

Definition 2.0.4. A Probability space is a triple space (Ω, F, P ) on the
domain Ω, where (Ω, F ) is a measurable space, F are the measurable subsets
of Ω, and P is a measure on F with P (Ω) = 1. Briefly, a probability space
is a measure space such that the measure of the whole space is equal to one.

Definition 2.0.5. A Stochastic Variable is called random variable too.
It is a measurable function X from a probability space (Ω, F, P ) into a mea-
surable space.

Definition 2.0.6. Stochastic Process. Let (Ω,F , P ) be a probability
space. Let X be a collection of X−valued random variables on Ω, indexed
by a set T (time). A stochastic process or random process F is a family Ft

for all t belong T i.e.,

{Ft : t ∈ T},

where Ft is a X−valued stochastic (random) variable on Ω.

Definition 2.0.7. Expected value (Countable case)
Let X be a discrete random variable, which takes values x1, x2, ... with respec-
tive probabilities p1, p2, ... . Then the expected value of this random variable
X, is the infinite sum

E[X] =
∑∞

j=1 xjpj ,
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provided that this series converges absolutely (i.e., the sum must remain
finite if we substitute xj’s with their absolute values.
In general, if X is a random variable defined on a probability space (Ω, F, P ),
then the expected value of this random variable, denoted by E[X], 〈X〉 or X̄,
is defined as follows

E[X] =
∫

ΩXdP =
∫

ΩX(ω)P (dω).

Definition 2.0.8. A Variance is a measure how far a set of numbers is
distributed (spread out). If X be a discrete random variable with discrete
probability distributions x1 7→ p1, ..., xn 7→ pn, then the variance is defined
as

V ar[x] =
∑n

j=1 pj(xj − µ)2,

where µ =
∑n

j=1 pjxj . (µ also is called mean).

Definition 2.0.9. A Random walk is a series of sequential movement in
which the size and the direction of each move is randomly determined.

Definition 2.0.10. Geometric Brownian motion. Let Xt be a stochas-
tic process. It is a Brownian motion if satisfies the following properties

I) Continuously of sample paths: The map t 7→ Xt(w) is continuous for
every w.

II) Independent increments: (Xt1 −Xt0)(Xt2 −Xt1), ..., (Xtn −Xtn−1) are
independent for any collection times.

III) Stationary of increments: The distribution of Xt − XS depends only
on (t− s).

Definition 2.0.11. A Quadratic variation is a kind of variation of a
process. Consider a real valued stochastic process Xt defined on a probabil-
ity space (Ω, F, P ) for a real and non negative time value t. Its quadratic
variation is the process, written as [X]t and defined as follows

[X]t = lim‖P‖→0

∑n
k=1(Xtk −Xtk−1

)2,

where P is the range over partition on interval [0, t].

Definition 2.0.12. A Filtration is a sequence of sets A1, A2, ..., An with
the property

A1 ⊂ A2 ⊂ ... ⊂ An.

Definition 2.0.13. Adapted process. Let t be time and Xt be a stochastic
process defined on a probability space (Ω, F, P ), we say that the process Xt

is adapted to the filtration Ft, where Ft ⊆ F if for all t ≥ t0, Xt is known
at time t.
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Definition 2.0.14. A Martingale is a sequence of random variables say
Xt. We expect for this sequence, at a particular time t, the next value in the
sequence is equal to the given knowledge of all prior observed value at the
current time, i.e., Xt is martingale if the following hold for all t

(i) E(|Xt|) <∞,

(ii) E(Xt+1|X1, X2, ..., Xt) = Xt.

Definition 2.0.15. Cadlag. A stochastic process X is said to be cadlag if
it is almost surely a sample paths which are continuous to the right and has
the left limits (In other words they are right continuous with the left limits).

Definition 2.0.16. Semi-martingale. For a real valued process Xt de-
fined on the filtered probability space (Ω, F, P ), we say that is semi-martingale
if it can be decomposed as follows

Xt =Mt +At,

where M is a local martingale and A is a Cadlag adapted process of locally
bounded variation (a real value function whose total variation is bounded
(finite).

Definition 2.0.17. Markov property is a property that a set of stochastic
process X(t) may have. It describes that the past state is irrelevant because
it does not matter how the present state was obtained, it is said that the
process is memoryless. The stochastic process X = (X(t) : t ∈ I) on some
probability space (Ω, F, P ) is Markovian if for any n and t1 < t2 < ... < tn
we have

P (X(tn) ≤ Xn | X(tn−1), ..., X(t1)) = P (X(tn) ≤ Xn | X(tn−1)).

Definition 2.0.18. An Ito process is a stochastic process with normally
distributed jumps and they are closed under functional transformations.

Definition 2.0.19. An Ito Lemma (Ito-formula) is used to find the
differential of function where this function has a particular type of stochastic
process. Consider the Ito precess

dSt = udt+ vdWt,

and for any twice differential function g(t,x) of two real variables t and x,
will define a new Ito process

dg(t, St) =
∂g

∂t
(t, St)dt +

∂g

∂S
(t, St)dSt +

1

2

∂2g

∂S2
(t, St)(dSt)

2,

where (dSt)
2 is computed by using
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dt.dt = dt.dWt = 0, and (dSt)
2 = dt,

where Wt is Brownian motion (See Definition 2.0.10).

Definition 2.0.20. Euler method is a first order numerical formula, and
is used to solve ordinary differential equations with a given initial value.

Definition 2.0.21. A Heaviside step function is a discontinuous func-
tion with these properties such as the function value is equal to zero for
negative arguments and equal to one for positive arguments.

Definition 2.0.22. A Lipschitz condition is a restriction on the increas-
ing of a function. It describes a property for a function which is a strong
form of uniform continuity for a function, and if the function f satisfies the
following condition at the point b in the neighbourhood of x

|f(x)− f(b)| ≤ C|x− b|α,

where C is a constant, 0 ≤ α ≤ 1.

Definition 2.0.23. A Stock is a type of security. It signifies ownership
position in a corporation and represents a right on the corporation’s assets,
earnings and profits.

Definition 2.0.24. An Option is a contract between two groups or parties.
It is the right to buy or sell an asset at a given price.

Definition 2.0.25. A Call option gives the right to buy an asset.

Definition 2.0.26. A Put option gives the right to sell an asset.

Definition 2.0.27. A Maturity date is a date at which the asset is con-
verted to payment or a specific amount of money.

Definition 2.0.28. An European option is a kind of contract that can be
exercised only at the maturity date.

Definition 2.0.29. An American option is a kind of contract that can
be exercised at any date up to and including the maturity date.

Definition 2.0.30. A Transaction is an agreement between a buyer and
a seller to exchange an asset for a certain amount of money (payment).

Definition 2.0.31. A Bid is the price for an asset that a buyer is willing
to pay at a given time t.
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Definition 2.0.32. An Ask is the price for an asset that a seller wants to
get at a given time t.

Definition 2.0.33. A Spread is the price that is the difference between bid
and ask.

Definition 2.0.34. A Liquidation value is the amount of money that the
large trader receives if he liquidates his stock position.

Definition 2.0.35. Illiquid is a property which says that an asset cannot
easily and quickly be converted into cash.

Definition 2.0.36. Self-financing Strategy (Markovian Strategy).
Consider strategy which is a collection of pairs of stocks (at,bt) and time
t, 1 ≤ t ≤ T , where T is maturity date. We say that the strategy is self-
financing if the following equality is satisfied

(atSt) + (btBt) = (at+1St+1) + (bt+1Bt+1).

In another words this quantity is the same in the time t and t+ 1.

Definition 2.0.37. Rate is paid or charged for the use of money.
Interest rate is often expressed as a yearly percentage of the amount of bor-
rowed or unpaid money.

Definition 2.0.38. An Expiry date is a date which a debt has to be paid.

Definition 2.0.39. A Portfolio is a collection of investment which all of
them are owned by the same individual organization.

Definition 2.0.40. Return is change in asset price divided by original
price, which often express in percentage.

Definition 2.0.41. A Volatility measures the standard deviation of the
return of an asset. In other word it is the rate at which the price of a
security moves up and down.

Definition 2.0.42. A Risk-less asset is an asset whose future return is
certainly known.

Definition 2.0.43. An Arbitrage is a try to profit by exploiting form price
difference of an identical or similar financial instrument on different mar-
kets.

Definition 2.0.44. Drift measures the average rate of an asset price.
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3 Backgrounds in Financial Mathematics

In the world of finance which is one of the fastest growing areas in the
modern banking and corporate world, there are many mathematical meth-
ods, formulas, models and system, we shall discuss some of them here below
and in the end we study three different illiquid market models and find their
corresponding price as a mathematical expression.

Notation

For simplicity here we make a list of the common notations coming in the
next discussions.

⋆ S asset price.

⋆ t time.

⋆ T time to expiry date. (See Definition 2.0.38).

⋆ V (S, t) price of an option. It is a function of stock price and time.
(Definition 2.0.24 and Definition 2.0.23).

⋆ σ volatility of S.
It measures the standard deviation of the return of an asset. (See also
Definition 2.0.41).

⋆ µ drift.
It measures the average rate (see Definition 2.0.37) of an asset price.

⋆ W Geometric Brownian motion. (See Definition 2.0.10).

⋆ r interest rate.

3.1 Mathematical Representation of an Asset Price

In this part we want to construct a mathematical representation about
generating asset price.

We should know that there is always an observation about the asset
price movement. Because of the efficiency of market hypothesis, it is usually
stated that this movement is randomly.
There are two basic assumptions about this hypothesis

• The present price is totally reflected by the past history.

• Market reacts instantly to any new information about asset.
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In fact making a model for the asset price is about making a model of new
arrival information which effect on the stock price.
By considering of two above assumptions, unanticipated changes in the asset
price are Markov process (is a time-varying random phenomenon for which
Markov property (Definition 2.0.17) holds).
We note that instead of absolute change of asset price which is not a useful
quantity, we associated return, defined as quotient of the change in the price
divided by the principal price.

Now we aim to model the corresponding return on the asset
dS

S
, where

S is the asset price at time t.
Consider dt as a small subsequence of time interval, in which the asset price
changes from S to S + dS.

This model consists of the following two parts
• The first one is predictable and deterministic return. It is also related to
the return on money invested in a risk-free bank

µdt,

where µ is the measure of the average rate of the asset price (also called
drift).

• The second part related to return
dS

S
, presents random changes in as-

set price such as unexpected news. This part is

σdW,

where σ is volatility which measures the standard deviation of the returns,
and the term dW is known as Brownian motion (also called Wiener process),
is a random variable and has normal distribution, where its mean value is
equal to zero and its variance is equal to dt, i.e.,

dW = N(0, (
√
dt)2).

Finally by combination of these parts, we obtain the stochastic differential
equation (SDE)

dS = µSdt+ σSdW, (1)

which is mathematical representation for generating assets price. (All com-
ponents in this formula have been introduced in Notation, in the previous
page.)

Let us study some properties of equation (1). One of these properties is
that this equation does not refer to past history of the corresponding asset
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price, i.e., the next price shown with (S+dS) depends only on today’s price.
This independent property is called Markov property, ”memoryless”, (See
also Definition 2.0.17).

The second property is that we consider the mean of dS as follows

E[dS] = E[σSdW + µSdt] = µSdt,

therefore E[dW ] = 0.

The third property is the variance of dS is the following expression

V ar[dS] = E[dS2]− E[dS]2 = E[σ2S2dW 2] = σ2S2dt.

3.2 Ito’s Lemma

As a matter of fact, asset prices are considered at discrete time inter-
val. Thus there is a practical lower bound for the basic time-step ”dt” of
the random walk (1). If we had used these time-steps in practice, then we
would have obtained an unmanageable large number of data. Instead we
established a mathematical continuous model by taking dt → 0. Ito lemma
is the most important concept of using random variables and it is a version
of Taylor’s expansion.

Taylor Series: Let f(x) be C
3, (three times differentiable) function of

(real or complex) number x in a neighbourhood of a. Then

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + o(x− a)3.

Now we investigate that what happens to equation (1) when t→ 0.
We state that

(dW )2 → dt as dt→ 0, with probability 1;

for the proof of this statement see [15].
Let S be the asset price. Suppose f(S) is a smooth function of S. If we

change S by a small amount dS, then it is clear that f will also changes.
Then from Taylor series we have

df =
df

dS
dS +

1

2

d2f

dS2
(dS)2 + ...,

where the dots denote a remainder, which is smaller than the other retained
term. Now by squaring (1), we obtain

(dS)2 = (µ2(dt)2 + 2µσdtdW + σ2(dW )2)S2.
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Since

(dW )2 → dt as dt→ 0,

σ2(dW )2S2 dominate the above expansion, as dt become smaller.
Thus in order to approximate (dS)2 as dt→ 0, we only use the term

σ2S2dt.

Then we have

df =
df

dS
dS +

1

2

d2f

dS2
(σ2S2)dt

=
df

dS
(µSdt+ σSdW ) +

1

2

d2f

dS2
(σ2S2)dt

= σS
df

dS
dW + (µS

df

dS
+

1

2

d2f

dS2
σ2S2)dt. (2)

This is Ito’s lemma relating a little change in a function of one stochastic
variable, to a little change in the variable itself.
A version of Ito’s lemma is for a function of several variables, for example
in our case if f is a function of two variables S and t, then we have

df = σS
∂f

∂S
dW + (µS

∂f

d∂S
+

1

2

∂2f

∂S2
σ2S2 +

∂f

∂t
)dt. (3)

3.3 Black-Scholes Mathematical Analysis

The Black-Scholes formula is used for calculating the price of European
and American put and call options. We obtain option price by solving the
Black-Scholes partial differential equation.
Before starting the analysis, we list the following assumptions

• The asset price satisfies the geometric Brownian motion (1).

• The asset volatility σ and interest rate r are known functions of time over
the life of corresponding options.

• There are no transaction costs.

• The corresponding underlying asset pays no dividends.

• There is absence of arbitrage possibilities.
It means that when there is no arbitrage opportunities, mean that all
risk-free portfolios must pay off the same.

• The underlying asset can be traded continuously.

• Short selling is permitted and the assets are divisible.
It says that there is an assumption that we can buy or sell any number of
assets, and also we may sell assets that we do not own them.

12



The analysis of the Black-Scholes leads to the value of an option. Let V (S, t)
be a differentiable function value of an (call or put) option, where S is stock
price and t is time. In order to find option value at an earlier time than the
expire time T, it is necessary to study about how V arise as a function of S
and t. Therefore by applying Ito lemma (3) on V (S, t) we obtain

dV = σS
∂V

∂S
dW + (µS

∂V

∂S
+

1

2
µ2S2∂

2V

∂S2
+
∂V

∂t
)dt. (4)

where µ is drift (see Definition 2.0.44) and σ is volatility (see Definition
2.0.41).
Now we construct a portfolio, which consist one option and a number −∆
of the underlying assets. Note that the value of this number is not specified
yet. The value of this portfolio is

Π = V −∆S. (5)

The jump of this value in one-time step is

dΠ = dV −∆dS.

By putting (1), (4), (5), we obtain the following random walk of value of
portfolio Π

dΠ = σS(
∂V

∂S
−∆)dW + (µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S)dt. (6)

To eliminate the random component, we put

∆ =
∂V

∂S
, (7)

for more information about this equality, see [15] section 2.4.
Therefore we obtain random walk of Π as

dΠ = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt. (8)

If the value of portfolio Π was invested in risk-less assets, then this value
would be seen as a growth of rΠdt in a interval of length dt.
Thus we should have the following expression for a fair price

rdΠdt = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt, (9)

or equivalently

r(V − ∂V

∂S
S) = (

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
).

13



Here we substituted (5) and (7) into equation (9) and then divide the whole
expression by dt to obtain the following Black-Scholes partial differen-
tial equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (10)

and for the American option the Black-Scholes partial differential equation
(second order) is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0.

See [15] for the proof.
By solving these equations we are able to calculate the price of European
and American put and call options.

3.4 Illiquid Market and Non-linear Black-Scholes Equations

Here we investigate three different illiquid market models and state non-
linear PDEs arise from pricing them. The aim is applying Lie group analysis
to the PDE. First we show that the solution of a non-linear standard Black-
Scholes equation (which we use to evaluate the price of options) is the value
of a self-financing strategy (usually called Markovian Strategy, see Defini-
tion 2.0.36). Then we introduce invariant variables and finally reduce the
corresponding PDE to an ODE. These models contain two assets, a risk
free money-market account B, and a risky asset S, called the stock (See
Definition 2.0.23). Also we consider that they are modelled in a filtered
probability space (Ω, F, {Ft}, P ). Another assumption is that the money-
market account is equal to one and the interest rate equal to zero.
We group these three illiquid market models as follows
I) Quadratic Transaction-Cost Model,
II) Reduced-Form Stochastic Differential Equation (SDE) Model,
III) Equilibrium or Reaction-Function Model.

Now we study each case briefly, for more detailed information see [13].

I) In this model we have a stock that its price S0 satisfies the following
geometric Brownian motion (As we demonstrated in Section 3.1)

dS0
t = µS0

t dt+ σS0
t dWt, (11)

where W is a standard Brownian motion, µ ∈ R and is drift and σ > 0, is
volatility, are constants.
We introduce the transaction price (See Definition 2.0.30) as

S̄t(α) = eραS0
t , (12)
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where α ∈ R is the number of shares, ρ > 0 is the liquidity parameter (See
Definition 2.0.34) and t is time, that the price will be paid at this time
for α. Considering a self-financing trading strategy (Φt, ηt), for the number
of stocks and the position in the money market for predictable stochastic
process, introduce paper value Vt which express the value of this strategy
by Vt = ΦtS

0
t + ηt. Then we can deduce that

dVt = ΦtdS
0
t − ρS0

t d[Φ]t, (13)

where [Φ]t is quadratic variation of semi-martingale and is defined as follows

[Φ]t =

∫ t

0
(φS(s, S

0
s )σS

0
s )

2 ds,

see [4] and [1] for the details.
According to [13] after combination this expression by equation (13), and
by considering the uniqueness property of semi-martingale, we apply Ito
Lemma on the value of a self-financing strategy u(t, S0

t ), and then we see
φ ≡ uS , that implies φS ≡ uSS , hence we obtain the following non-linear
PDE for u

ut +
1

2
σ2S2uSS(1 + 2ρSuSS) = 0. (14)

with the final condition u(T, S) = h(S), where h : [0,∞) → R.
See [13] for detailed computations.

II) In this model we have large traders instead of considering transaction
cost in the previous model and their trading activity affects the equilibrium
stock price. Here it is assumed that the stock price St satisfies the the
following stochastic differential equation

dSt = ρStdΦt + σStdWt, (15)

where ρ is the liquidity parameter, Φ is the semi-martingale (See Definition
2.0.16) and Wt is Brownian motion.

In this model there is a ∆Φ number of stock which is bought or sold by
the investor and a stock price which goes upward or downward by ρSt−∆Φt.
The strength of this price depends on the liquidity parameter ρ. Consider
a portfolio (See Definition 2.0.39) of stock trading strategy Φ and value V ;
we say that it is self-financing, if dVt = ΦtdSt.
Now suppose Vt = u(t, St) and Φt = φ(t, St) for smooth functions u and φ.
By applying Ito formula to the process (u(t, St)), it follows that φ ≡ uS ,
therefore φS ≡ uSS , and since semi-martingale is unique, it follows that u
must satisfy

ut +
1

2
(υ)2(t, S)S2uSS = 0.
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where υ(t, S) is called adjusted volatility. See [13] for a definition of adjusted
volatility.
After some algebraic calculating, we get the following non-linear PDE

ut +
1

2

σ2

(1− ρSuSS)2
S2uSS = 0, (16)

which should be considered with a suitable final condition.
For details, see [5], [6], [8],[9], [11].

III) In this model there is a smooth reaction function ψ. This function
gives the equilibrium stock price St at time t as a function of fundamental
value Ft and the stock position of a large trader, i.e.,

ψ 7−→ St(Ft, ρΦt),

where ρ is a parameter that shows the size of trading.
More general, a reaction function can be seen as a representation of a
reduced-form of an economic equilibrium point

D(Ft, St) + ρΦt = 1, (17)

where D(Ft, St) denotes the stock demand corresponding to the ordinary
investors.

Because equation (17) for suitable D, has a unique solution hence St can
be written as a function ψ which depends on Ft and ρΦt, in another word
St = Ψ(Ft, ρΦt).

According to the [10], by assuming Ψ(f, α) = fg(α), for some increasing
g, we obtain

St = Ftg(ρΦt) and dSt = g(ρΦt)dFt.

Now we assume that the Markovian strategy as the trading strategy of the
large trader has the form Φt = φ(t, S), for a smooth function φ. By applying
Ito formula on St = Ftg(ρΦt), we get the following dynamics

dSt = g(ρφ(t, St))dFt + ρFtgα(ρφ(t, st))φs(t, St)dSt + b(t, St)dt,

where b(t, St) is negligible because it is irrelevant to our aim.

According to [13], by assuming that the fundamental value process Ft follows
a geometric Brownian motion i.e., dFt = µFtdt+ σFtdWt, and by introduc-
ing variables St = S2 and dWt = uSS , we get the following PDE for the
value function u(t, S) for a self-financing strategy

ut +
1

2

(1− ρuS)
2

(1− ρuS − ρSuSS)2
ρ2S2uSS = 0. (18)
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For more detailed information we refer to [12], [1], [7],[10].

The non-linear PDEs (14), (16) and (18) in the above cases are of the
form

ut +
1

2
σ2S2υ(ρuS , ρSuSS)uSS = 0, (19)

where υ could be any function with property that υ(0, 0) = 1.

We often consider the liquidity parameter ρ as a very small value. Now
by first order Taylor approximation for υ(ρuS , ρuSS) around ρ = 0, equa-
tions (16) and (18) lead us to (14). Therefore we aim to solve (14), by
applying Lie group analysis, later in this thesis.
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4 Symmetry Methods for Differential Equations

In this section we will study informally some basic concepts and ideas
related to symmetry methods for solving differential equations (DEs). We
will solve some elementary examples which help to clarify the concepts later
on in this thesis (solving a PDE by applying Lie group methods). For study
more about basic concepts and simple examples, see [16] and [18].

4.1 Symmetry Concept

In order to understand the meaning of symmetry related to a DE, it is
useful to look at symmetry concept in other context. The symmetry con-
cept exists almost everywhere, in nature such as in some sort of planets,
crystals, art etc. We have a well developed sense for symmetry in daily
circumstances. The word symmetry comes from a Greek word ”symmertos”
that means ”well-proportioned” or ”harmonic”.

4.1.1 What does symmetry mean?

Generally it is easy to see if a geometric object has symmetry or not,
but to explain about how we distinguish this symmetry, is not easy. Thus
we should systematize the symmetry concept. In Mathematics we have the
following definition:

An object is symmetric if there exist a transformation which leaves the object
unchanged (or invariant). A transformation which leaves an object invari-
ant is called symmetry for the object.

A symmetry is a transformation or a mapping, which maps an object on
itself. Consider for example the following figures

The equilateral triangle can be mapped onto itself in many ways, for
example by rotation angel 2π/3, counter-clockwise, reflection or by a mirror
image on one of the three sides. Totally a equilateral triangle has six sym-
metries, which these symmetries make a group.
Similarly a square has eight symmetries (more than a triangle). The sym-
metry of these two figures are discrete. On the other hand a circle has a
continuous and infinite symmetry, for every rotation around the center of
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the circle maps circle on itself. For more information see [16].

4.1.2 Symmetry and physical laws

In many physical theories, symmetry is a fundamental concept. A symme-
try in this context is a transformation which leaves physical laws unchanged
(invariant). The relation between physical law and symmetry was observed
by Galileo and Newton. Specially Newton realized that these symmetries
arising from movement of particles in nature are even more important than
their movements. Generally many physical theories and connections are
consequences of some sort of symmetries.
From a mathematical point of view we can put some questions that how
symmetry for a physical system can be determined in differential equations.
In order to answer these questions we should first explain exactly what we
mean by a symmetry in differential equation.

4.1.3 Mathematics formulation of the symmetry

A symmetry of an object is a transformation with the following properties

i) It is a mapping of an object to itself.

ii) It preserves the structure.

Furthermore it is required that the number of all symmetries of an object
make a group (See also Definition 5.1.4 ) which should satisfies the following
properties

I) There exist a neutral element i.e., the identical transformation.

II) Every symmetry has an inverse.

III) Combination of two symmetries should be a symmetry.

IV) Combination of symmetries should be associative.

Group theory is a mathematical tool for studying the symmetry. We can say
that the group theory constitutes the abstract version of symmetry concept.
Here we mention that group theory was invented in 1832 by 21-years-old
French mathematician E. Galois, in order to describe symmetries of some
expressions of roots to an algebraic equation. Later, Sophus Lie substituted
algebraic equations with differential equations and roots with solutions to
differential equation.
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4.2 Introduction to Symmetries and Differential Equations

A common method to solve differential equations is to introduce new
variables to obtain an easier equation. For example a DE of the following
type (called homogeneous ODE )

y′ + f(x)y = g(x)yα, (α 6= 0, α 6= 1),

transforms to a linear DE by substituting

z = y1−α.

Then by some easy calculations we obtain

z′ = (1− α)y−αy′,

which implies

dz

dx
+ (1− α)f(x)z = (1− α)g(x).

This is a linear equation which is satisfied by new variable z. Solving this

equation gives y = z
1

1−α , α > 1.

The question is, how we can find a successful variable substitution for
general differential equations. To answer to this question Lie introduced the
method of symmetry groups. The transformation that Lie introduced and
used to study ODE and PDE were a group of continuous transformation,
which are known as Lie group.
Lie started from the following problems:

1. Is there a general method to determine a solution to a DE?

2. How can we classify DEs?

The theory that Lie developed to answer the above question, consist of two
main parts:

1. Lie symmetry concept for DE.

2. Lie invariant theory for DE.

4.2.1 Symmetry and differential equation

A symmetry for a differential equation is a transformation of dependent
and independent variables of the equation, which maps each solution of the
equation to a solution (generally another solution) of the same equation.
If a transformation is symmetry for an equation, thus the equation keeps its
structure invariant. Conversely if a DE is invariant under a transformation,

20



thus the transformation is symmetry to this DE. An important application
of the discussion above is, if we know a solution to an equation and symmetry
to this equation then we can generate several solutions.
If we find a symmetry for a PDE, then we can find solutions which are
functions of some combination of the main variables. For example a PDE
with two independent variables reduces to an ordinary differential equation.
Some of these symmetries such as translation, scaling and rotation, can
be obtained by an easy calculation. In this thesis we focus on continuous
symmetry.

4.2.2 One-parameter transformation

As mentioned before, a symmetry for a DE is a transformation which
leaves the solutions to the equation invariant. According to Lie’s investi-
gation these transformations make a group which always depends on one
or several variables. One type of these transformations is called ”point-
transformation”, which acts on the space of independent and dependent
variables. Here we consider only this type which is called one-parameter Lie
group of transformation.

Example 4.2.1. Let

dy

dx
=
y3 + x2y − y − x

xy2 + x3 + y − x
,

and consider the rotation for (x, y) as

(x̃, ỹ) = (x cos ε− y sin ε, x sin ε+ y cos ε).

The collection of solution curves (sketched in figure 1), shows that this ro-
tation form a one-parameter of Lie symmetries around the origin.

Figure 1: Symmetry around origin

�
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Example 4.2.2. Let

ut − uxx = 0.

This equation is invariant under family of transformations, denoted by {Γε},

x̃ = x+ 2εt,

t̃ = t,

ũ = u exp(−(εx+ ε2t)), (20)

since ũt̃ − ũx̃x̃ = 0.

Note that every transformation Γε in family (20) is determined by a spe-
cific parameter ε.

�

Generally every family {Γε} of invertible transformations Γε(x, t, u) = (x̃, t̃, ũ),
where ε ∈ R, and

x̃ = X(x, t, u, ε),
t̃ = T (x, t, u, ε),
ũ = U(x, t, u, ε),

is said to be a one-parameter Lie group of transformation if it satisfies the
following conditions:

I) There exists an identity element ε = 0, such that Γ0 = I, where I is
the identity mapping.

II) Every transformation Γε has an inverse Γ−1
ε = Γ−ε, so it follows that

Γ−ε(x̃, t̃, ũ) = (x, t, u).

III) Composition of two transformation in the family also belongs to the
family, i.e., Γε1Γε2 = Γε1+ε2 .

Example 4.2.3. Consider the ODE

dy

dx
=

2y

x
, (21)

which has the general solution

y = cx2, (22)

22



where c is an arbitrary constant.
Let us consider the region x > 0, y > 0, in which the family of solution curve
is determined by a specific value of the constant c > 0.
One of the symmetries to the ODE (21) is one-parameter Lie group of scaling

(x̃, ỹ) = (eεx, c1e
−εx2). (23)

By solving for variable x, we obtain x = e−εx̃, thus the transformed solution
becomes

ỹ = c1e
−3εx̃2. (24)

Hence the action of the symmetry (23) maps the solution y = cx2, to the
solution ỹ = c1e

−3εx̃2, (sketched in the figure 2).

Figure 2: The action of symmetry (23) on ODE (21).

�

Remark. Sometimes it happens that the composition of the transforma-
tions is just defined for the parameters which lies near to identity element
ε0. In this case the family of transformation Γε is called local one-parameter
Lie group.

The Lie’s first theorem states that we can parametrize a group such that

I) ε = 0 gives identical mapping.

II) The inverse is obtained by changing the sign of the parameter.

III) The group composition for the parameters are common addition.
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It follows that we can re-parametrize a one-parameter Lie group of trans-
formation such that these three conditions are satisfied.

4.2.3 Infinitesimal generator

Some type of symmetries, for example rotation to a DE can be obtained
by an easy calculation, i.e., in Example 4.2.1, where by ε = 0, we obtain
(x̃, ỹ) = (x, y). But to determine other types of symmetries, their definitions
lead to a complicated non-linear function of transformations.

Lie realized that there are some invariant conditions, based on a infinites-
imal (linearised) version of the problem. Instead of determining the global
(finite) form of the group, can use the linearised version by determining Tay-
lor expansion of the function which defines transformation around ε = 0.
Lie called this infinitesimal form.
Then the global form of the group can be obtained by either solving a cer-
tain kind of equation called Lie equation, or by using the group generators,
which is called infinitesimal generator.

Consider a Lie group of the type one-parameter group of transformations

x̃ = X(x, t, u, ε),

t̃ = T (x, t, u, ε),

ũ = U(x, t, u, ε), (25)

where by ε = 0, identity transformation is obtained.
The Taylor expansion around ε = 0 is

x̃ = x+ εξ(x, t, u) + o(ε2), (= X(x, t, u, ε)),

t̃ = t+ ετ(x, t, u) + o(ε2), (= T (x, t, u, ε)),

ũ = u+ εφ(x, t, u) + o(ε2), (= U(x, t, u, ε)), (26)

where

ξ =
∂x̃

∂ε
|ε=0, τ =

∂t̃

∂ε
|ε=0, φ =

∂ũ

∂ε
|ε=0 . (27)

The functions ξ, τ, φ are called the group’s infinitesimals. The differential
operator

V = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
, (28)

is called infinitesimal generator. This is one of the fundamental concepts in
symmetry analysis of differential equations.

We use Lie group of type (25) later in a PDE case;

∆(x, t, u, ux, ut, uxx, uxt, utt) = 0. (29)
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It means that equation (29) transforms to itself, i.e., the new variables sat-
isfies the same equation;

∆(x̃, t̃, ũ, ũx, ũt, ˜uxx, ũxt, ũtt) = 0,

and every solution u = Φ(x, t) maps on a solution to the same equation.

Other related concept in Lie theory is orbit. By orbit for a one-parameter
Lie group of transformation through a point (x, t, u), we mean the amount
of all points generated by (25).
The orbit for a point that does not map to itself, determines a curve and
the vector ~v = (ξ, τ, φ) is tangent vector to the curve in the point (x, t, u).
It means that the generator to a one-parameter Lie group of transformation
can be considered as a vector field.
The vector ~v = (ξ, τ, φ), characterizes the group entirely (not only locally),
since the global form i.e., (25), can be reconstruct from vector ~v. This is the
meaning of Lie equations.

Theorem 4.2.4. Lie equations: The global form of (26) is obtained by
determining the solution to the system

dx̃

dε
= ξ(x̃, t̃, ũ),

dt̃

dε
= τ(x̃, t̃, ũ),

dũ

dε
= φ(x̃, t̃, ũ),

which satisfies initial conditions x̃ |ε=0= x, t̃ |ε=0= t, ũ |ε=0= u.

For the proof of this theorem we refer to [17].

Example 4.2.5. Consider the ODE y = y(x), and a Lie group of the type

x̃ = X(x, y, ε),
ỹ = Y (x, y, ε),

and the rotation group

x̃ = x cos ε− y sin ε,
ỹ = x sin ε+ y cos ε.

The infinitesimals are

ξ = −y, φ = x.

It follows that the infinitesimal generator becomes
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V = −y ∂
∂x

+ x
∂

∂y
.

The global form is obtained by solving the system

dx̃

dε
= −ỹ, dỹ

dε
= −x̃,

with the initial conditions x̃ |ε=0= x, ỹ |ε=0= y.

�

4.2.4 Prolongation

In order to explain the concept of prolongation, we first study symmetry
conditions in higher order ODE such as

y(n) = f(x, y, y(1), ..., y(n−1)), (30)

where

y(k) =
dky

dxk
, k = 0, 1, ..., n.

The symmetries of (30) are diffeomorphism (See Definition 5.1.3) that map
the family solution of this ODE to itself. Each diffeomorphism

Γ : (x, y) 7−→ (x̃, ỹ),

preserves the structure of the object and maps smooth plane curve to smooth
plane curve.
A transformation of (x, y), which in fact is the action of Γ, induces a trans-
formation of the derivatives, which is the following map

Γ : (x, y, y(1), ..., y(n)) 7−→ (x̃, ỹ, ỹ(1), ..., ỹ(n)).

This mapping is called n-th prolongation of Γ. We determine the function

ỹ(k) =
dkỹ

dx̃k
,

by using the chain rule and calculating recursively, i.e.,

ỹ(k) =
dỹk−1

dx̃
=
Dxỹ

k−1

Dxx̃
, (31)

where ỹ(0) = ỹ.
Here Dx signifies the total derivative operator, with respect to x defined by

Dx =
∂f

∂x
+
∂f

∂y

dy

dx
+

∂f

∂y(1)
dy(1)

dx
+ ...

= ∂x + ∂yy
(1) + ∂y(1)y

(2) + ... . (32)
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(See also Definition 5.1.25).
The following expression is the symmetry condition for ODE (30)

ỹ(n) = f(x̃, ỹ, ỹ(1), ..., ỹ(n−1)), (33)

where ỹ(k) is determined by (31).

For the most of DEs, symmetry condition given by (33) is non-linear.
In order to obtain Lie symmetry, we linearise symmetry condition (33) by
Taylor expansion around ε = 0, and obtain the following prolonged Lie
symmetry

x̃ = x+ εξ + o(ε2),

ỹ = y + εφ+ o(ε2),

ỹ(k) = y(k) + εφ[k] + o(ε2), (34)

where k > 1.
Note the the superscript φ[k], is only an index and it does not denote a
derivative.
By substituting (34) into the symmetry condition (33), we obtain the lin-
earised symmetry condition

φ[n] = ξfx + φfy + φ[1]fy(1) + ...+ φn−1fy(n−1) . (35)

We calculate functions φ[k] recursively from (31) as follows. Consider k = 1,
then

ỹ(1) =
Dxỹ

Dxx̃
=
y(1) + εDxφ+ o(ε2)

1 + εDxξ + o(ε2)
= y(1) + ε(Dxφ− y(1)Dxε) + o(ε2).

By substituting (34) into this equation we obtain

φ[1] = Dxφ− y(1)Dxξ. (36)

Similarly

˜y(k) =
Dxỹ

Dxx
=
y(k) + εDxφ

[k−1] + o(ε2)

1 + εDxξ + o(ε2)
,

and therefore

φ[k](x, y, y(1), ..., y(k)) = Dxφ
[k−1] − y(k)Dxξ. (37)

Now consider (35), the right hand side of this expression is V f, where V is
infinitesimal generator

V = ξ∂x + φ∂y.
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As we mentioned before, infinitesimal generator is the vector field with the
tangent vectors ξ, φ, through the point (x, y). We need to deal with the
action of Lie symmetries of the n− th order differential equations, therefore
we introduce

pr(n)V = ξ∂x + φ∂y + φ[1]∂y(1) + ...+ φ[n]∂y(n) , (38)

which is called prolonged infinitesimal generator.
Similarly we can determine prolonged infinitesimal generator for a PDE,
that we will define exactly and study this subject in the next section.
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5 Some Basics of Lie Groups

Lie groups were studied by the Norwegian mathematician Marius Sophus
Lie (17 December 1842 - 18 February 1899), at the end of the 19th century.
His interest was solving the equations. At that time mathematicians used
to solve the equations by using a lot of tricks. A typical method to solve an
equation was changing the variables on a way that one of the variable drops
off the equation.

Lie groups lie between two fundamental fields of mathematics: algebra
and geometry. We should know that first of all the Lie group is a group; sec-
ondly is a smooth manifold where this manifold is a special sort of geometric
object. It can be said that Lie group is a group of continuous symmetries.
Lie groups are present in mathematics and all area of science. Lie groups
are associated to any system which has a continuous group of symmetries.

5.1 Lie Groups in PDE

In this section we introduce applying the Lie group analysis on non-linear
PDEs such as (14), (16), (18), and study all invariant solutions. Then by
using the symmetry group and its invariants, we can reduce a PDE to an
ODE. In [2] and [12] they have studied symmetry group to equations (14)
and (18). Here we will study the symmetry group and its invariant solution
to the (16).

5.1.1 Lie Group Analysis of Differential Equations

The PDEs that will be studied here consist of two independent variables
and one dependent variable.

In order to apply Lie symmetry group to the PDE, we start by intro-
ducing and defining some important concepts, where most of definitions are
taken from [14].
X : a space of independent variables (S, t), i.e., (S, t) ∈ X and X is isomor-
phic to space R

2.
U : a space of one dependent variable u ∈ U and U is isomorphic to R.
U(1) : a space that its coordinates are the first derivatives of u with respect
to (w.r.t.) S and t, i.e.,

U(1) =

(

∂u

∂S
,
∂u

∂t

)

.

U(2) : a space that its coordinates are the second derivatives of u w.r.t. S
and t, i.e.,
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U(2) =

(

∂2u

∂S2
,
∂2u

∂t2
,
∂2u

∂S∂t

)

.

(We can continue and introduce a space of type U(n), for n > 2, but because
we study the second order equation, it is enough with n = 2.)

Definition 5.1.1. Cartesian product is a direct product of two sets A
and B with these properties

• not necessarily commutative A×B 6= B ×A.

• not necessarily associative(A×B)× C 6= A× (B × C).

• nice with intersection (A ∩B)× (C ∪D) = (A ∩ C)× (B ∪D).

• for union and intersection hold A× (B ∩ C) = (A×B) ∩ (A× C).

• A× (B ∪ C) = (A×B) ∪ (A× C).

Definition 5.1.2. A n-dimension Manifold M is a set that contains a
number of countable subset Uα and some one-to-one functions Fα, which
map the Uα to connected open subset of Euclidean space Vα, called local
coordinate maps, which satisfy the following properties:

I) The coordinates charts cover M, i.e.,

⋃

α Uα =M.

II) For all Uα

⋂

Uβ

Fβ ◦ F−1
α : Fα(Uα

⋂

Uβ) → Fβ(Uα

⋂

Uβ)

is a smooth function i.e., infinitely differentiable function.

III) If x ∈ Uα and x̂ ∈ Uβ , then there exist two open subsets W and Ŵ ,

such that W ⊂ Vα, and Ŵ ⊂ Vβ , with Fα(x) ∈ W,Fβ(x̂) ∈ Ŵ which
satisfy

F−1
β (W )

⋂

F−1
β (Ŵ ) = ∅.

Definition 5.1.3. Diffeomorphism. Let M and N be two manifolds. Let
f be a bijective function from M to N . Then f is called a diffeomorphism
function if both

f :M → N
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and it’s inverse

f−1 : N →M

are smooth. If these functions are k−times continuously differentiable, the
function f if called a Ck−diffeomorphism.

Definition 5.1.4. A Group is a set G which has a binary operation (called
multiplication) between the elements of the group. Furthermore the following
axiom for arbitrary elements g, h and k, of the group must be satisfied by the
group operation:

I) Closure: If g, h in G then the result of operation g · h is also in G.

II) Associativity: h · (g · k) = (h · g) · k.

III) Identity element: there is an identity element, e, in a group which has
the following behaviour under group operation e · g = g · e = g.

IV) Inverse: For each element h in the group G there is an inverse h−1

which under the group multiplication returns the identity element e,
i.e., h · h−1 = h−1 · h = e.

Definition 5.1.5. A Lie group is a group G which carries the structure of
a smooth manifold that both the following group operations

m : G×G −→ G, m(h, g) = h ◦ g, h, g ∈ G,

and the inversion

i : G −→ G i(g) = g−1, g ∈ G.

are smooth maps between manifolds.

Lie groups are not often defined on the whole manifold, but they are defined
only on some part of the manifold. Therefore we consider a so-called local
Lie group.

Definition 5.1.6. A Local Lie group consists of connected open subsets
V0 ⊂ V ⊂ R

r that contains origin and smooth map as the group operation

m : V × V −→ R
r.

and a smooth map

i : V0 −→ V ,

as the group inversion, with the following properties
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I) If x, y, z ∈ V and m(x, y),m(y, z) ∈ V then
m(x,m(y, z)) = m(m(x, y), z),

II) For all x ∈ V m(0, x) = x = m(x, 0),

III) For all x ∈ V0 m(x, i(x)) = 0 = m(i(x), x).

Usually Lie groups arise as group of transformations on some manifold L.
Lie groups will be represented here as a group of transformation of some
manifold. It is not necessary for these transformation groups to be defined
for all of the elements of the group or for all of the points of the manifold,
i.e., it is enough to act locally.

Definition 5.1.7. Local group of transformation. Let M be a smooth
manifold. A local group of transformations acting on M is a (local) Lie
group G, an open subset U, with the domain of the definition of the group
action {e}×M ⊂ U ⊂ G×M, and a smooth function Γ : U −→M with the
properties

I) If (h, x) ∈ U, (g,Γ(h, x)) ∈ U, and besides (g.h, x) ∈ U,
then Γ(g,Γ(h, x)) = Γ(g.h, x),

II) For all x ∈ L,Γ(e, x) = x,

III) If (g, x) ∈ U, then (g−1,Γ(g, x)) ∈ U and Γ(g−1,Γ(g, x)) = x.

Briefly, we can denote Γ(g, x) by (g, x), where g, h ∈ G and x ∈ M, so
the conditions above of the definition take a simpler form

(i) g · (h · x) = (g · h) · x,

(ii) (e.x) = x,

(iii) g−1 · (g · x) = x.

In order to present the main tool of Lie group analysis of differential equa-
tions, called infinitesimal generator, we need at first to explain the concept
of a vector field.

Definition 5.1.8. Tangent vector. Let M be a manifold, and let I be a
subinterval of R. Suppose C is a smooth curve in M, which is parametrized
by φ : I →M. The curve C, for a real value ǫ, is given by smooth functions
φ(ǫ) = (φ1(ǫ), ..., φm(ǫ)), in local coordinates x = (x1, ..., xm). At each point
x = φ(ǫ) of C the curve has a tangent vector, that is to say the derivative

φ̇(ǫ) =
dφ

dǫ
= (φ̇1(ǫ), ..., φ̇m(ǫ)). So for the tangent vector to curve C at

x = φ(ǫ), we denote
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V |x= φ̇(ǫ) = φ̇1(ǫ)
∂

∂x1
+ φ̇2(ǫ)

∂

∂x2
+ ...+ φ̇m(ǫ)

∂

∂xm
.

Definition 5.1.9. Vector field. Let U be an open subset on manifold M,
and let x be a point on M. A vector field on U ⊂ M is a family of tangent
vectors Xx at each point x such that for every for every differentiable func-
tion f on an open subset V ⊂ U, the function x 7−→ Xx(f) is differentiable.

Definition 5.1.10. A Tangent space is the collection of all tangent vectors
which pass through the given point x on a manifoldM, is called tangent space
to M at x. It is denoted by TM |x .

Definition 5.1.11. Infinitesimal generator. Let V be a vector field on
M. Then this vector field assigns a tangent vector V |x,∈ TM |x to every
point x ∈ M. The tangent vector V |x in local coordinate has the following
form

V |x= ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ ξ3(x)

∂

∂x3
,

where it is called Infinitesimal generator.

Here we denote an infinitesimal generator by

V = ξ(S, t, u)
∂

∂S
+ τ(S, t, u)

∂

∂t
+ φ(S, t, u)

∂

∂u
,

where ξ, τ, φ are smooth functions.

Definition 5.1.12. Integral curve. Let V a vector field. An integral curve
of V is a smooth parametrized curve x = φ(ǫ) whose tangent vector at any
point coincide with the value of vector field V at the same point. In other
words for all ǫ

φ̇(ǫ) = V |φ(ǫ) .

Definition 5.1.13. Flows. Let V be a vector field and M be a manifold.
Let Γ(ǫ, x) be a notation of the parametrized maximal integral curve (by
maximal means manifold does not contain any longer integral curve), passing
through x ∈ M. We call Γ the flow generated by V . Thus for each x ∈ M,
and ǫ in some interval Ix ∈ R which contains 0, Γ(ǫ, x) will be a point on
the integral curve passing through x ∈ M. The flow of a vector field, for all
x inM, and δ, ǫ ∈ R, has the following basic properties

• Γ(δ,Γ(ǫ, x)) = Γ(δ + ǫ, x),

• Γ(0, x) = x,

• d

dǫ
Γ(ǫ, x) = V |Γ (ǫ, x).
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Definition 5.1.14. Lie algebra is a vector space V over a field F together
with a binary operation

[., .] : V × V → V, which is called Lie bracket or Lie product,

and with the operation

[X,Y ] = XY − Y X,

on the vector space V that satisfies the following axiom

a)Bi-linearity

[aX + bY, Z] = a[X,Z] + b[Y, Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ],

where a, b ∈ F , and X,Y, Z ∈ V.

b)Alternating on V

[X,X] = 0.

c)Alternating and Bi-linearity imply Skew-symmetry

[X,Y ] = −[Y,X].

d) Jacobian identity holds

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 .

Definition 5.1.15. Sub-algebra. Let g be a Lie algebra, and let h be a
vector space. Then h ⊆ g is a sub-algebra if h is closed under Lie bracket
operation, or h itself is a Lie algebra under the same bracket operation as
Lie algebra g.

Definition 5.1.16. An Ideal Lie algebra g is a subspace h for which
whenever x ∈ h or y ∈ h then [x, y] ∈ h.

Definition 5.1.17. Solvable Lie algebra. Let Lj , j <∞, be a Lie algebra.
It is said to be solvable if there is a sequence

L1 ⊂ L2 ⊂ ... ⊂ Lj−1 ⊂ Lj ,

of sub-algebras of the dimension j, j − 1, ..., 1 such that Lk is an ideal in
Lk+1 where 1 ≤ k ≤ j − 1.

Definition 5.1.18. A Jet bundle is a space M (n) =M × U × U(1) × ...×
U(n), which its coordinates represent independent and dependent variables
and derivatives of dependent variables up to order n, are called the n − th
order jet bundle of the base space M.
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Now consider a system of differential equation which has p independent
variables x = (x1, ..., xp), and q dependent variables u = (u1, ..., uq). The
solution to the differential equation is denoted as uα = fα(x1, ..., xp) where
α = 1, ..., q. We take the multi-index notation, defined below; by

∂Jf(x) =
∂kf(x)

∂xj1 , ..., ∂xjk
.

Definition 5.1.19. Multi-index. Let J = (j1, ..., jk) be an unordered
k−tuple of integers, with entries 1 6 jk > p. We denote the order of such a
multi index by #J =| J | . It indicates how many derivative are being taken.

Definition 5.1.20. Invariant function. Let G be a local group of trans-
formations acting on a manifold M, and N be another manifold. A function
F : M → N is called a G−invariant function if for all x ∈ M and for all
g ∈ G such that g · x is defined,

F (g · x) = F (x).

A real-valued G−invariant function Φ :M → R is called an invariant of G.

Another important concept that we define it below is symmetry group. It is
a local group of transformation. It has a property that transforms a solution
of a equation to another solution. By knowing the symmetry group we will
be able to reduce the differential equation to a simpler model.

Definition 5.1.21. Symmetry group. Let S be a system of differential
equations, and let M be an open subset of the space of independent and
dependent variables for the system. A symmetry group of the system S
is a local group of transformations G acting on M withe the property that
whenever u = f(x) is a solution of the system S, and whenever for g ∈ G, g·f
is defined, then u = g.f(x) is a solution of the system S.

By solution we mean any smooth solution u = f(x), which is defined on
any subset domain Ω ∈ X.

Definition 5.1.22. Prolongation of differential equation. Let u =
f(x) be a smooth function, so f : X → U, x ∈ X. There is an induced
function u(n) = pr(n)f(x), called n − th prolongation of the function f ,
which is defined by the equations

uαJ = ∂Jf
α(x).

Therefore pr(n)f(x) is a function from space X to space U (n).

A system of n−th order differential equations is given as the following
system of equations
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∆υ(x, u
(n)) = 0, υ = 1, ..., l.

with this assumption that all ∆(x, u(n)) =
(

∆1(x, u
(n)), ...,∆l(x, u

(n))
)

are
smooth functions in their arguments, therefore ∆ can be viewed as the
following smooth map

∆ : X × U (n) → R
l,

where X × U (n) is a jet space and R
l is a l−dimension Euclidean space.

Definition 5.1.23. Solution manifold. The equality ∆ = 0, determines
the system of differential equations solution manifold L∆, (is called sub-
variety) which is defined by

L∆ = {(x, u(n)) : ∆(x, u(n)) = 0} ⊂ X × U (n), (39)

of the jet space. It is called solution manifold.

We set U (2) = U1 × U2 as a vector which coordinates are all derivatives
up to order two of function f(x).

Definition 5.1.24. Maximal rank. Let

∆ν(x, u
(n)) = 0, ν = 1, ..., l,

be a system of differential equations. Let p and q be the number of cor-
responding independent and dependent variables in the system. Then the
system is said to be of maximal rank if the l × (p+ qp(n)) Jacobian matrix

J∆(x, u
(n)) =

(

∂∆ν

∂xi
,
∂∆ν

∂uαJ

)

,

of ∆ with respect to all the variables (x, u(n)) is of rank l when ∆(x, u(n)) = 0.

Theorem 5.1.1. Fundamental theorem of Lie group analysis.
Let

∆ν(x, u
(n)) = 0 , ν = 1, ..., l,

be a system of partial differential equations of maximal rank which is defined
over a space which is a subset of Cartesian product M ⊂ X × U . If G is a
local group of transformations acting on M, and

pr(2)V [∆ν(x, u
(n))] = 0 , ν = 1, ..., l whenever ∆(x, u(n)) = 0, (40)

for every infinitesimal generator V of G, then G is a symmetry group admit-
ted by the the system. The equation (40) is called determining equation.
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Definition 5.1.25. Total derivative. The i-th total derivative of function
ϕ(x, u(n)) is a unique smooth function Diϕ(x, u

(n+1)), defined onMn+1. This
smooth function is obtained by the following formula

Diϕ =
∂ϕ

∂xi
+

∑

J uJ,i
∂ϕ

∂uJ
,

where for J = (j1, j2, ..., jk), it is

uJ,i =
∂uj
∂xi

=
∂(k+1)u

∂xi, ∂xj1 ...∂xjk
.

Theorem 5.1.2. General Prolongation formula.
Let

V =
∑n

i=1 ξ
i(x, u)

∂

∂xi
+

∑q
α=1 ϕα(x, u)

∂

∂uα
,

be a vector field defined on an open subset M ⊂ X× U. Then n-the prolon-
gation of the vector V is the vector field

pr(n)V = V +
∑p

α=1

∑

J ϕ
J
α(x, u

(n))
∂

∂uαJ
,

defined on the jet space M (n) = X ×U (n), the second summation being over
all (unordered) multi-indices J = (j1, ..., jk) with 1 ≤ ji ≤ p, l ≤ k ≤ n.
The coefficient functions ϕJ

α of pr(n)V are given by the following formula

ϕJ
α(x, u

(n)) = DJ(ϕα −
p

∑

i=1

ξiuαi ) +

p
∑

i=1

ξiuαJ,i (41)

where

uαi =
∂uα

∂xi
and uαJ,i =

∂uαJ
∂xi

.

The idea behind prolongation procedure is introducing an equivalent re-
lation for all the smooth functions involve in prolongation formula. Consider
a point x that belongs to an open subset of X. If all the derivative of these
smooth functions up to order n coincide in the point x, then we call the
functions equivalent in the point. This point is called n − jet. In this way
we prolonged our space.

Theorem 5.1.3. Symmetry Group.
Let M be an open subset of X×U. Suppose ∆(x, u(n)) is an n-th order system
of a differential equation which is defined over space M, with its correspond-
ing manifold L∆ ⊂M (n), whereM (n) ⊂ X×U (n). Suppose G is a local group
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of transformations acting on M whose prolongation leaves L∆ invariant, in
the meaning that whenever (x, u(n)) ∈ L∆, we have pr(n)g.(x, u(n)) ∈ L∆

for all g ∈ G. Then G is a symmetry group of the system of differential
equations.
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6 Lie Analysis on the obtained PDE from a Fi-

nancial Market

In this section we shall discuss certain result in finance, using methods
from PDE and Lie group. We applying the methods discussed before, on
our equation (16).

6.1 Lie algebraic structure of the main equation

In other to show how we can solve equation (16), we consider a more
general equation from [3], as follows

ut +
σ2S2

2

uSS
(1− ρλ(S)SuSS)2

= 0, (42)

where λ : (0,∞) → (0,∞) is a continuous function , ρ > 0 is liquidity pa-
rameter (see Definition 2.0.34), and u is a smooth function of stock S > 0,
(see Definition 2.0.23) and time t ∈ (0, T ], where T denotes maturity date
(see Definition 2.0.27).
For λ ≡ 1 equation (42) becomes equation (16).

Claim 6.1.1. The differential equation (42) for λ(S) as an arbitrary func-
tion admits a three dimension Lie algebra spanned by the following infinites-
imal generators

V1 =
∂

∂t
, V2 =

∂

∂u
, V3 = S

∂

∂u
.

If we have a special form of function λ(S) such as λ(S) ≡ ωSk, where
ω, k ∈ R, then equation (42) admits four dimension Lie algebra spanned by
the following generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 = S

∂

∂u
V4 = S

∂

∂S
+ (1− k)u

∂

∂u
.

Proof: Consider λ(S) as an arbitrary function in PDE (42).

We want to study the Lie group analysis admitted by equation

∆(S, t, u, uS , ut, uSS , uSt, utt) = ut +
σ2S2

2

uSS
(1− ρλ(S)SuSS)2

= 0. (43)
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Therefore we should find infinitesimal generator of the corresponding Lie
algebra. Consider the infinitesimal operator

V = ξ(S, t, u)
∂

∂S
+ τ(S, t, u)

∂

∂t
+ φ(S, t, u)

∂

∂u
. (44)

According to the Theorem 5.1.2, in order to find the coefficient ξ, τ, φ, we
should calculate the prolongation of the infinitesimal generator (44), since in
our case, PDE (42) is second order, hence we determine second prolongation
pr(2)V, as follows

pr(2)V = ξ(S, t, u)
∂

∂S
+ τ(S, t, u)

∂

∂t
+ φ(S, t, u)

∂

∂u

+ φS(S, t, u)
∂

∂uS
+ φt(S, t, u)

∂

∂ut

+ φSS(S, t, u)
∂

∂uSS
+ φSt(S, t, u)

∂

∂uSt
+ φtt(S, t, u)

∂

∂utt
, (45)

where the coefficients φS , φt, φSS , φSt, φtt according to the formula (41), are
given by

φS = DS(φ− ξuS − τut) + ξuSS + τutS ,

φt = Dt(φ− ξuS − τut) + ξuSt + τut,

φSS = D2
S(φ− ξuS − τut) + ξuSSS + τuSSt,

φSt = DSDt(φ− ξuS − τut) + ξuSSt + τuSSt,

φtt = D2
t (φ− ξuS − τuu) + ξuStt + τuttt. (46)

Because in our case the PDE dose not depend on uSt, utt, t, u, so we skip

the terms φSt
∂

∂uSt
, φtt

∂

∂utt
, τ
∂

∂t
, φ

∂

∂u
, so we consider the following form of

prolongation

pr(2)V = ξ
∂

∂S
+ φt

∂

∂ut
+ φSS

∂

∂uSS
, (47)

where the coefficient from corresponding expression in (46) are

φt(S, t, u) = φt + utφu − uSξt − uSutξu − utτt − (ut)
2τu, (48)

and

φSS(S, t, u) = φSS + 2uSφSu + uSSφu

+ (uS)
2φuu − 2uSSξS − uSξSS − 2(uS)

2ξSu

− 3uSuSSξu − (uS)
3ξuu − 2uStτSS

− 2uSutτSu − (utuSS + 2uSuSt)τu − (uS)
2utτuu, (49)
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and partial derivative of PDE (42), in corresponding prolonged formula (47)
are

∂∆

∂S
= σ2S

uSS
(1− ρλ(S)SuSS)2

+
σ2S2

4

uSS
ρuSS(λ

′(S)S − λ(S))(−1 + 2ρλ(S)SuSS)
,

∂∆

∂ut
= 1,

∂∆

∂uSS
=

σ2S2

2

(

1− ρλ(S)SuSS)
2 − uSS(2ρλ(S)S(−1 + 2ρλ(S)SuSS)

)

(1− ρλ(S)SuSS)4
. (50)

In order to find functions ξ(S, t, u), τ(S, t, u), φ(S, t, u), we use determining
equation (40). This equation arises from the action of the prolonged formula
pr(2)V on the equation ∆ = 0.
In our case the determining equation takes the following form (see Theorem
5.1.1)

pr(2)V (∆) = ξ
(

σ2S
uSS

(1− ρλ(S)SuSS)2

+
σ2S2

4

uSS
ρuSS(λ

′(S)S − λ(S))(−1 + 2ρλ(S)SuSS)

)

+ φt

+ φSS
(σ2S2

2

(

1− ρλ(S)SuSS)
2 − uSS(2ρλ(S)S(−1 + 2ρλ(S)SuSS)

)

(1− ρλ(S)SuSS)4
)

= 0. (51)

By inserting all of the partial derivatives (50), the coefficients (48) and (49)
in equation (51), we obtain the following expression

pr(2)V (∆) |∆=0 = ξ
(

σ2S
uSS

(1− ρλ(S)SuSS)2

+
σ2S2

4

uSS
ρuSS(λ

′(S)S − λ(S))(−1 + 2ρλ(S)SuSS)

)

+ φt + utφu − uSξt − uSutξu − utτt − (ut)
2τu

+ φSS + 2uSφSu + uSSφu

+ (uS)
2φuu − 2uSSξS − uSξSS − 2(uS)

2ξSu

− 3uSuSSξu − (uS)
3ξuu − 2uStτSS

− 2uSutτSu − (utuSS + 2uSuSt)τu − (uS)
2utτuu

(σ2S2

2

(

1− ρλ(S)SuSS)
2 − uSS(2ρλ(S)S(−1 + 2ρλ(S)SuSS)

)

(1− ρλ(S)SuSS)4
)

= 0. (52)

Substituting ut = −σ
2S2

2

uSS
(1− ρλ(S)SuSS)2

in equation (52), makes sure

that we remain on solution manifold (Definition 5.1.23) of PDE (42).
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After this substitution and some transformation we should solve the system
of equations pr(2)V (∆) |∆=0≡ 0, by assuming that S, t, u, uS , ... all are inde-
pendent variables in M (2). The next step is demanding that all coefficients
of every monomial which contains all derivatives uS , uSS , ut..., must be equal
to zero. For similar detailed calculations see [2], [12].
After some calculations and relative integrations, we get a set of equations:

ξ(S, t, u) = a1S, τ(S, t, u) = a2, φ(S, t, u) = a3S + a4 + a5u, (53)

where a1, ..., a5 are arbitrary constants and ξ, τ, φ are the same as in equa-
tion (44).

According to [3], we obtain

a1Sλs(S)− (a1 − a5)λ(S) = 0. (54)

By satisfying this equation for all S, we obtain a1 = a5 = 0 which implies
that

ξ(S, t, u) = 0,

τ(S, t, u) = a2, (55)

φ(S, t, u) = a3S + a4.

In the end, by considering these equations and substituting them in
expression (44), Lie algebra admits the following infinitesimal generators

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
, (56)

and the relation [V1, V2] = [V1, V3] = [V2, V3] = 0,

(i.e., commutator relation [V1, V2] = V1 ·V2−V2 ·V1 =
∂

∂t
·S ∂
∂t

−S ∂
∂t

· ∂
∂t

= 0).

Now consider λ(S) = ωSk, ω, k ∈ R, in PDE (42).
By the same calculation as we did for the case λ(S) as an arbitrary function,
here we obtain

ξ(S, t, u) = a1S,

τ(S, t, u) = a2,

φ(S, t, u) = (1− k)a1u+ a3S + a4. (57)

Therefore the generators in this case are

V1 =
∂

∂t
, V2 = S

∂

∂u
, V3 =

∂

∂u
V4 = S

∂

∂S
+ (1− k)u

∂

∂u
, (58)

and moreover the commutator relation, are as follow
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[V1, V2] = [V1, V3] = [V1, V4] = [V2, V3] = 0,
[V2, V4] = −kV2, [V3, V4] = (1− k)V3.

�

6.2 The symmetry group admitted by the main equation

In this part we will show that how we can find the symmetry group and
we will use the symmetry group to create the invariant solution to the main
PDE (42).

Claim 6.2.1. The action of the symmetry group of equation (42), for λ(S)
as an arbitrary function is given by

Sǫ = S,

tǫ = t+ a1

uǫ = u+ Sa2 + a3, (59)

where a1, a2, a3 are arbitrary constants.
For the case λ(S) = ωSk, where ω, k ∈ R, equation (42) becomes the follow-
ing special form

ut +
σ2S2

2

uSS
1− ωρSk+1uSS

= 0. (60)

Hence the symmetry group corresponding to this form of PDE has the fol-
lowing structure

Sǫ = Sea1ǫ,

tǫ = t+ a2ǫ,

uǫ = u+
a3
a1
S(ea1ǫ − 1) + a4ǫ, k = 1,

uǫ = uea1ǫ + a3Sǫe
a1ǫ+

a4
a1

(ea1ǫ − 1) k = 0,

uǫ = uea1(1−k)ǫ +
a3
a1k

Sǫea1ǫ(1− e−a1kǫ)

+
a4

a1(1− k)
(ea1(1−k)ǫ − 1), k 6= 0, k 6= 1. (61)

with this assumption that a1 6= 0.

Proof : In order to show how we can obtain symmetry groups (59) and
(61), we consider different types for λ(S), as follows

• λ(S) as an arbitrary function.
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• λ(S) = ωSk,

where the last type divides to three cases

� k = 1 ⇒ λ(S) = ωS.

� k ∈ R ⇒ λ(S) = ωSk.

� k = 0 ⇒ λ(S) = ω.

We study the mentioned types separately here below.

• If λ(S) is an arbitrary function in PDE (42)

According to Claim 6.1.1 we have obtained the corresponding Lie algebra
(56) for the main PDE. According to the fundamental theorem of the Lie
group analysis, i.e., Theorem 5.1.1, in order to find the global representation
of the symmetry group admitted by the main PDE (42), we have to solve the
following system of ordinary differential equations with the corresponding
initial values

dSǫ
dǫ

= 0 Sǫ |ǫ=0= S,

dtǫ
dǫ

= a2, tǫ |ǫ=0= t,

duǫ
dǫ

= a3S + a4, uǫ |ǫ=0= u. (62)

We will consider the following cases of the system (62)

1. a2 6= 0, a3 6= 0, a4 6= 0,
2. a2 = 0, a3 6= 0, a4 6= 0,
3. a2 6= 0, a3 = 0, a4 6= 0,
4. a2 6= 0, a3 6= 0, a4 = 0.

Now our aim is to study the results of these different cases in the system
(62), their corresponding subgroup and their invariants. Then by using the
obtained invariants variables we can reduce PDE (42) to corresponding or-
dinary differential equations.

1. a2 6= 0, a3 6= 0, a4 6= 0, in ODE system (62).

Here we study the symmetry group admitted by equation (43).
By solving the first equation in system (62), we obtain

Sǫ = C1

44



where C1 is an arbitrary constant.
The corresponding initial condition will define the constant value as C1 =
S. Therefore the transformation of the variable S under the action of the
symmetry group has the following form

Sǫ = S. (63)

We solve the second equation in system (62)

tǫ = a2ǫ+ C2,

By inserting the corresponding initial condition, the value of the arbitrary
constant C2 becomes as follows

a2ǫ+ C2 |ǫ=0 = t

C = t

Thus the transformation of the variable t under the action of the correspond-
ing symmetry group has the following form

tǫ = a2ǫ+ t. (64)

The third equation of the system (62) defines the transformation of u which
is a dependent variable, under the action of the symmetry group.
By solving this equation we get

uǫ = a3Sǫ+ a4ǫ+ C3,

We insert the corresponding initial value in order to find the value of the
constant C3, i.e.,

(a3Sǫ+ a4ǫ+ C3) |ǫ=0= u
C3 = u.

It follows that the transformation of the variable u under the action of the
symmetry group has the following form

uǫ = a3Sǫ+ a4ǫ+ u. (65)

Thus by calculations above, we obtained symmetry groups (63), (64), (65),
hence we can identify the invariance of these symmetry groups.

In general any function of invariant is an invariant, therefore the invari-
ant is not unique and we represent one of the possible invariants of symmetry
group.

45



In order to construct the invariant solution, we define invariant variables
by excluding ǫ from the symmetry groups (63), (64), (65) i.e., from equation
(64) we obtain

ǫ =
tǫ − t

a2
. (66)

By substituting this in equation (65), we obtain

uǫ = a3S(
tǫ − t

a2
) + a4(

tǫ − t

a2
) + u,

which is equivalent with

uǫ − a3Stǫ − a4tǫ = −a3St− a4t+ a2u. (67)

In this case, by considering equations (63) and (67), we can obtain the
following invariants

inv1 = S,

inv2 = u− (a3Sǫ+ a4ǫ)t

a2
. (68)

These two invariant variables are unacceptable. Because they do not lead us
to any reduced ODE of PDE (42), in the case λ(S) as an arbitrary function.

For the Cases 2, 3 and 4, i.e., λ(S) as an arbitrary function in PDE (42)
and considering different cases for constants a2, a3, a4, in system (62); after
some calculation with the same way as we did in the case 1, we will obtain
the same result i.e., unacceptable invariant variables, therefore in the case
λ(S) as an arbitrary function, we should solve PDE equation with other
methods, and we do not discuss about them in this thesis.

• Case λ(S) = ωSk, in PDE (42)

We have found equations ξ, τ, φ as in (57) and the corresponding Lie alge-
bra (58). In order to find the global representation of the symmetry group
according to Theorem 5.1.1, we solve the following system of ordinary dif-
ferential equations with corresponding initial value

dSǫ
dǫ

= a1Sǫ, Sǫ |ǫ=0= S,

dtǫ
dǫ

= a2, tǫ |ǫ=0= t,

duǫ
dǫ

= (1− k)a1uǫ + a3Sǫ + a4, uǫ |ǫ=0= u. (69)

The result of solving the first equation in system (69) is
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Sǫ = C1e
a1ǫ,

where C1 is an arbitrary constant.
By inserting the corresponding initial value we obtain the constant value
C1 = S, thus the transformation for variable S under action of the symmetry
group becomes

Sǫ = Sea1ǫ. (70)

We solve the second equation in ODE system (69) and we obtain

tǫ = a2ǫ+ C2,

where C2 is an arbitrary constant.
The given initial value tǫ |ǫ=0= t, determines the constant value C2 = t, thus
the transformation for the variable t under action of the symmetry group
becomes

tǫ = a2ǫ+ t. (71)

In order to solve the third equation of system (69) and get transformation
for the variable u, we should consider three different cases

I) k = 1.

II) k = 0.

III) k 6= 0 and k 6= 1.

Case I) k = 1 in the third equation in ODE system (69) obtained by putting
λ(S) = ωSk, k ∈ R, in PDE (42):

For k = 1 in the third equation of system (69) becomes

duǫ
dǫ

= a3Sǫ + a4, (72)

and after solving this equation we obtain

uǫ = a3Sǫǫ+ a4ǫ+ C, (73)

where C is an arbitrary constant.

Now we use the method of variation of the parameters and represent con-
stant C as a function of ǫ, i.e., C = C(ǫ).
By inserting C(ǫ) and Sǫ = Sea1ǫ, in equation (73) and satisfying equation
(72), we obtain

C ′(ǫ) = −(a1a3ǫS)e
a1ǫ,
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and by integrating this equation with respect to ǫ, we obtain the following
expression for C(ǫ)

C(ǫ) = −ea1ǫ(a3ǫS) +
a3
a1
Sea1ǫ +D,

where D is an arbitrary constant.
Thus the expression for uǫ takes the following form

uǫ = a3Sǫǫ+ a4ǫ− ea1ǫ(a3ǫS) +
a3
a1
Sea1ǫ +D.

By inserting the initial value uǫ |ǫ=0= u, we obtain the value of the constant
D as

D = u− a3
a1
S.

Finally we obtain the transformation of the dependent variable u under the
action of the symmetry group

uǫ = u+
a3
a1
S(ea1ǫ − 1) + a4ǫ, k = 1. (74)

For the cases II and III, i.e., for different k−value in ODE system (69);
the transformation of variables S and t are the same as (70) and (71). In
order to find the corresponding transformation of u, we use the same method
as in case I and obtain

uǫ = uea1(1−k)ǫ +
a3
a1k

Sǫea1ǫ(1− e−a1kǫ)

+
a4

a1(1− k)
(ea1(1−k)ǫ − 1), k 6= 0, k 6= 1. (75)

and

uǫ = uea1ǫ + a3Sǫe
a1ǫ+

a4
a1

(ea1ǫ − 1), k = 0. (76)

The next step is to construct invariant variables. Since invariants are not
unique hence we can obtain the following invariants variables in the case
λ(S) = ωSk, k ∈ R. From equation (71) we can find that

ǫ =
tǫ − t

a2
. (77)

By substitution this expression in equation (70), we obtain

48



Sǫ = Se
a1(

tǫ−t

a2
)

which implies

Sǫe
−

a1
a2

tǫ = Se
−

a1
a2

t
.

This expression is remaining in an original state (unaltered) under the action
of the symmetry group, that means this expression is an invariant of the
symmetry group. In another word,

inv1 = lnS − a1
a2
t. (78)

and according to [13], we get following expression for inv2

inv2 = uS(k−1) (79)

Now we aim, with help of the invariant variables (78) and (79), to reduce
the number of the independent variables in PDE from two to one which im-
plies an ordinary differential equation which depends on one variable. The
solutions of this ODE are the group of invariant solutions of the main PDE.
We should consider different cases for λ(S).

1. λ(S) = ωSk, ω, k ∈ R, k 6= 1, k 6= 0, in PDE (42)

We start with studying the original PDE (42), for λ(S) = ωSk, k ∈ R,
that takes the following form

ut +
σ2S2

2

uSS
(1− ρωSk+1uSS)2

= 0, (80)

where ω 6= 0, ρ ∈ (0, 1), S > 0.
Let us introduce two new variables, one independent say z

z = inv1 = lnS + at, a =
−a1
a2

, a2 6= 0, (81)

and one dependent variable v(z),

v(z) = inv2 = uS(k−1). (82)

Thus representation of the dependent variable u by using (z, v) turns to the
form

u = vS(1−k).
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The presentation of partial derivatives of u are

ut = S1−kvza,

uS = S−k(((1− k)v + SvS),

uSS = −kS−k−1((1− k)v + SvS) + S−k((1− k)vS + vS + SvSS),

(83)

Because v is a function of z, we obtain

vS = vzzS ,

vSS = vzz
1

S
− vz

1

S2
,

by substitution these expressions in (83), we obtain new expression which by
rewriting PDE (80) with them, it turns to have a reduced PDE to a second
order ODE with the form

avz +
σ2

2

vzz + (1− 2k)vz − k(1− k)v

(1− b(vzz + (1− 2k)vz − k(1− k)v))2
= 0, (84)

where a, b 6= 0.

We should always consider that the dominator is not equal to zero i.e.,

(1− b(vzz + (1− 2k)vz − k(1− k)v))2 6= 0.

We can obtain one of the solutions to the second order ODE (84) simply if
we assume that v = constant or vz = 0.
This equation has trivial solution v = 0 for any k and vz = 0 for k 6= 1, k 6= 0.
Another solution is v = non-zero constant and vz = non-zero constant, for
k = 0, k = 1.

Let us introduce another set of solutions to second order ODE (84). Since
all of the coefficient are constant, hence we can reduce the order of this ODE
from two to one by a suitable substitution. Therefore we introduce a new
dependent variable

x(v) = vz(z). (85)

Now we express vzz as follows

vzz =
d

dz
(vz(z)) =

d

dz
(x(v)) =

d

dv
(x(v))

dv

dz
= (x(v))vx(v)) = xvx.

By substitution this in equation (84) we obtain a first order ODE as a
reduction of PDE (80)

ax+
σ2

2

xxv + (1− 2k)x− k(1− k)v

(1− ρω(xxv + (1− 2k)x− k(1− k)v))2
= 0,
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where its solutions are

x = 0, k = 0, k = 1,

xv = −1 + 2k − σ2

4a(ρω)2x2
+

1

(ρω)x
+
k(1− k)v

x
−

√

σ2(σ2 − 8aρωx)

4a(ρω)2x2
.

(86)

where in the last expression x, a, ρ, ω 6= 0.
These equations are easier to solve compared with the main PDE (42). The
solutions of these equations are the invariant solutions to the main PDE.
This work is excluded from this thesis.

�

2. λ(S) = ωS, (k = 1), ω ∈ R, in PDE (42)

As a shortcut, we put k = 1 in equation (84), then divide the whole expres-
sion by a 6= 0, then we obtain the following second order ODE

vz +
σ2

2a

vzz − vz
(1− ρω(vzz − vz))2

= 0, (87)

where the dominator is not equal to zero, i.e.,

v(z) 6= − z

ρω
+ c1e

z + c2,

where c1, c2 are arbitrary constant.

We can reduce the order of ODE (87) from two to one, similarly to the
previous section by a suitable variable substitution as (85).
One of the solutions to equation (87) is found by a simple method. Suppose
that vz =constant which implies vzz = 0, by inserting them in equation (87)
we obtain a second order polynomial which has the roots

vz =
1

ρω

(

−1±
√

σ2

2a

)

, b 6= 0. (88)

Consequently we can present one of the solution u(S, t) to PDE (80) for
k = 1 on the following way: by integrating equation (87) we obtain

v(z) =
1

ρω

(

−1±
√

σ2

2a

)

z + c, (89)
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where c is an arbitrary constant. And for k = 1 in (82) we obtain v(z) = u,
by a suitable substitution it follows that

u(S, t) =
1

ρω

(

−1±
√

σ2

2a

)

(logS + at) + c. (90)

In order to find the set of solutions to the second order ODE (87), we
introduce a new dependent variable

y(z) = vz(z), (91)

by substitution them in equation (87) we obtain the following fist order ODE

yy2z −2

(

y2 +
1

ρω
y − (σ2/2a2)

2(ρω)2

)

yz+

(

y2 +
2

ρω
y +

(

1− (σ2/2a2)

(ρω)2

))

y = 0,

(92)
where ρω 6= 0.

The set of solutions to this ODE are the following equations

y = 0,

y = (−1±
√

(σ2/2a)/ρω, ρω 6= 0,

yz =



y2 +
1

ρω
y − (σ2/2a)

2(ρω)2
−

√

σ2

2a(ρω)3

(

σ2/2a

4ρω
− y

)





1

y
,

yz =



y2 +
1

ρω
y − (σ2/2a)

2(ρω)2
+

√

σ2

2a(ρω)3

(

σ2/2a

4ρω
− y

)





1

y
, (93)

where in the two last equations y 6= 0.

Consider the two last equations of the set of solutions (93). We put the
right hand side of these equations equal to f(y), i.e., yz = f(y). If in all

points of domain,
∂f

∂y
exists and is bounded then the Lipschitz condition is

satisfied. Therefore we can have the unique solution for the last two equa-
tions in the set (93). As we see the Lipschitz is satisfied everywhere except
the lines

y = 0, y =
σ2

8aρω
, y = ∞. (94)

Studying the behaviour of the solution in the neighbourhood of lines (94) is
achieved in the complex plane which is excluded form this thesis. For more
study in this subject we refer to [3].
All listed equations in (93) are more simple to solve compared with the main
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PDE (42). The solutions of these equations give rise to the invariant solu-
tions of the PDE (42). But this project is not included in this thesis.

�

3. λ(S) = ω, (k = 0), ω ∈ R, in PDE (42)

In this case for ω = 1, we will obtain the PDE (16), then according to the
explanations below, we can get the reduced form of this PDE to an ODE
and its corresponding solutions.
The methods are very similar to the case k = 1, thus we just mention the
results of our calculation.
PDE (84) for k = 0 becomes a second order ODE on the form

vz +
σ2

2a

vzz + vz
(1− ρω(vzz + vz))2

= 0, (95)

where ρω 6= 0, a 6= 0.

In order to study set of solutions to PDE (42), we start by introducing
a new dependent variable

g(z) = vz(z). (96)

By substituting (96) in equation (95) and assuming that the dominator in
(95) is not equal to zero, we obtain the following first order ODE

gg2z +2

(

g2 − 1

ρω
g +

(σ2/2a2)

2(ρω)2

)

gz +

(

g2 − 2

ρω
g +

(

1 + (σ2/2a2)

(ρω)2

))

g = 0,

(97)
where ρω 6= 0.

The set of solution to equation (97) are

g = 0,

g = (−1±
√

(σ2/2a)/ρω, ρω 6= 0,

gz =



−g2 + 1

ρω
g − (σ2/2a)

2(ρω)2
−

√

σ2

2a(ρω)3

(

σ2/2a

4ρω
− g

)





1

g
,

gz =



−g2 + 1

ρω
g − (σ2/2a)

2(ρω)2
+

√

σ2

2a(ρω)3

(

σ2/2a

4ρω
− g

)





1

g
, (98)

where in two last equations g 6= 0.
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The two last equations in the collection of solution (98) do not satisfy Lip-
schitz condition in

g = 0, g =
σ2

8aρω
, g = ∞. (99)

See [13], in order to study the behaviour of these equations in the neigh-
bourhood of lines (99).
In order to obtain invariant solution to PDE (42) where λ(S) = ω, we solve
equations listed in (98) which can be solved much easier than PDE (42), but
this work is out of the frame of this thesis.

�
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7 Conclusions

In this thesis our aim has been to show how we can solve a PDE, in order
to calculate the asset price related to one type of an illiquid market, called
”Reduced-Form SDE models”.

First we have introduced three formulas about pricing an asset, such as:
• Mathematical representation for generating asset price as the following
expression

dS = µSdt+ σSdW,

where S, µ, t, σ and W, are stock price, drift, time, volatility and Brownian
motion, respectively.

• Ito lemma (for the function f which depends on two variables)

df = σS
∂f

∂S
dW + (µS

∂f

d∂S
+

1

2

∂2f

∂S2
σ2S2 +

∂f

∂t
)dt,

to find differential of the smooth function of a stochastic variable.

• Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Note that the equality sign in the expression above, for America options
becomes less than or equal to zero.
In this expression V is a differentiable function of stock price S and time t,
volatility is denoted by σ, and r is interest rate.
This formula is used for calculating the price of European and American
put and call options. We obtain option price by solving the Black-Scholes
partial differential equation.

We have discussed about three different illiquid markets with the relevant
PDEs for the value function u(S, t), and considered about one of the models
”Reduced-Form SDE Model” which rises to the following PDE

ut +
1

2

σ2

(1− ρSuSS)2
S2uSS = 0,

where u is a differentiable function of stock price S and time t, ρ > 0 is
liquidity parameter and σ is volatility.
This is a non-linear PDE and is difficult to solve. Thus we have chosen a
method, called ”Lie group analysis” to solve it.
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In order to understand how to apply Lie analysis method on PDEs and
its related definitions and theorems, we have studied informally this subject
and demonstrated some elementary examples.

In order to solve the above PDE, we have considered a more general
equation from [3]

ut +
σ2S2

2

uSS
(1− ρλ(S)SuSS)2

= 0,

where we have considered two cases, λ(S) as an arbitrary function and
λ(S) = ωSk.
By applying Theorem 5.1.2, we have obtained corresponding Lie algebra
(56) for the main PDE where λ(S) was an arbitrary function and Lie alge-
bra (58) for the main PDE with λ(S) = ωSk.
Then by applying Theorem 5.1.1 we have solved the system of ordinary
differential equation (62), where we have considered different cases for con-
stant a2, a3, a4, and calculated in detailed only for one of these cases and
have obtained symmetry groups (63),(64),(65). Then with the help of these
symmetry groups we have calculated invariant variables (68), where these
variables have been useless, because they did not lead us to any reduced
ODE of the main PDE.
The corresponding Lie algebra for the the case λ(S) = ωSk, in the main
PDE, by considering different k−values and by applying Theorem 5.1.2 have
been obtained as (58). The corresponding symmetry groups are (70), (71)
and (74),(75),(76).
We have construct invariant variables

inv1 = lnS + at, a = −a1/a2,
inv2 = uS(k−1).

By inserting these variables in PDE (42), for the case λ(S) = ωSk, k ∈ R, we
have obtained the second order differential equation (84), where by a relevant
variable substitution (85), we have reduced our PDE to the following first
order ODE

ax+
σ2

2

xxv + (1− 2k)x− k(1− k)v

(1− ρω(xxv + (1− 2k)x− k(1− k)v))2
= 0,

where its solutions are (86).
The solutions of this ODE give rise to the invariant solution of PDE (42).

For the case λ(S) = ωS, (k = 1) in PDE (42), with the help of the same
invariant variables as above, we have obtained the following second order
ODE
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vz +
σ2

2a

vzz − vz
(1− ρω(vzz − vz))2

= 0.

We have reduced this equation to a first order ODE by the following variable
substitution

y(z) = vz(z),

we have obtained the following first order ODE to PDE (42)

yy2z − 2

(

y2 +
1

ρω
y − (σ2/2a2)

2(ρω)2

)

yz +

(

y2 +
2

ρω
y +

(

1− (σ2/2a2)

(ρω)2

))

y = 0,

where ρω 6= 0. The solutions of this equation are (93).
These set of equations are easier to solve than the main PDE. The solutions
of these equations lead us to invariant solution.

At the end we have considered the last case λ(S) = ω, (k = 0) in main
PDE (42). We have obtained the second order ODE

vz +
σ2

2a

vzz + vz
(1− ρω(vzz + vz))2

= 0.

We have made it more simple to solve by variable substitution g(z) = vz(z),
then we have obtained a first order ODE as follows

gg2z +2

(

g2 − 1

ρω
g +

(σ2/2a2)

2(ρω)2

)

gz +

(

g2 − 2

ρω
g +

(

1 + (σ2/2a2)

(ρω)2

))

g = 0,

which has the set of solutions (98). By solving this equation we can obtain
invariant solutions.
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